
7904 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

Torn-Paper Coding
Ilan Shomorony , Member, IEEE, and Alireza Vahid , Senior Member, IEEE

Abstract— We consider the problem of communicating over
a channel that randomly “tears” the message block into small
pieces of different sizes and shuffles them. For the binary
torn-paper channel with block length n and pieces of length
Geometric(pn), we characterize the capacity as C = e−α ,
where α = limn→∞ pn log n. Our results show that the
case of Geometric(pn)-length fragments and the case of
deterministic length-(1/pn) fragments are qualitatively different
and, surprisingly, the capacity of the former is larger. Intuitively,
this is due to the fact that, in the random fragments case, large
fragments are sometimes observed, which boosts the capacity.

Index Terms— Torn paper, unordered communication, data
storage, DNA storage.

I. INTRODUCTION

CONSIDER the problem of transmitting a message by
writing it on a piece of paper, which will be torn into

small pieces of random sizes and randomly shuffled. This
coding problem is illustrated in Figure 1. We refer to it as
torn-paper coding, in allusion to the classic dirty-paper coding
problem [2].

This problem is mainly motivated by macromolecule-based
(and in particular DNA-based) data storage, which has recently
received significant attention due to several proof-of-concept
DNA storage systems [3]–[8]. In these systems, data is
written onto synthesized DNA molecules, which are then
stored in solution. During synthesis and storage, molecules
in solution are subject to random breaks and, due to the
unordered nature of macromolecule-based storage, the result-
ing pieces are shuffled [9]. Furthermore, the data is read
via high-throughput sequencing, which is typically preceded
by physical fragmentation of the DNA with techniques like
sonication [10]. In addition, the torn-paper channel is related
to the DNA shotgun sequencing channel, studied in [11]–[13],
but in the context of variable-length reads, which are obtained
in nanopore sequencing technologies [14], [15].

Manuscript received July 3, 2020; revised April 26, 2021; accepted
September 23, 2021. Date of publication October 15, 2021; date of current
version November 22, 2021. The work of Ilan Shomorony was supported in
part by the National Science Foundation (NSF) under Grant CCF-2007597 and
in part by NSF CAREER Award under Grant CCF-2046991. The work of
Alireza Vahid was supported in part by NSF under Grant ECCS-2030285 and
Grant CNS-2106692. An earlier version of this article was presented in
part at the 2020 IEEE Global Communications Conference (GLOBECOM)
[DOI: 10.1109/GLOBECOM42002.2020.9348147]. (Corresponding author:
Ilan Shomorony.)

Ilan Shomorony is with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana–Champaign (UIUC), Urbana,
IL 61801 USA (e-mail: ilans@illinois.edu).

Alireza Vahid is with the Department of Electrical Engineering,
University of Colorado Denver, Denver, CO 80204 USA (e-mail:
alireza.vahid@ucdenver.edu).

Communicated by L. Dolecek, Associate Editor for Coding Techniques.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2021.3120920.
Digital Object Identifier 10.1109/TIT.2021.3120920

Fig. 1. In the torn-paper channel, a length-n sequence is torn into random
size pieces, which are made available to the decoder in an unordered fashion.

We consider the scenario where the channel input is a
length-n binary string that is then torn into pieces of lengths
N1, N2, . . . , each of which has a Geometric(pn) distribution.
The channel output is the unordered set of these pieces. As we
will see, even this noise-free version of the torn-paper coding
problem is non-trivial.

To obtain some intuition, notice that E[Ni] = 1/pn, and
hence it is reasonable to compare our problem to the case
where the tearing points are evenly separated, and Ni = 1/pn

for i = 1, 2, . . . , npn with probability 1. In this case, the chan-
nel becomes a shuffling channel, similar to the one considered
in [16], but with no noise. Coding for the case of deterministic
fragments of length Ni = 1/pn is easy: since the tearing
points are known, we can prefix each fragment with a unique
identifier, which allows the decoder to correctly order the
npn fragments. From the results in [16], such an index-based
coding scheme is capacity-optimal for the shuffling channel,
and any achievable rate must satisfy, for large n,

R < (1 − pn log n)+. (1)

If we let α = limn→∞ pn log n, the capacity for the case
of deterministic fragment lengths becomes (1 − α)+.

It is not clear a priori whether the capacity of the torn-paper
channel (with random fragment lengths) should be higher
or lower than (1 − α)+. The fact that the tearing points
are not known to the encoder makes it challenging to place
a unique identifier in each fragment, suggesting that the
torn-paper channel is “harder” and should have a lower capac-
ity. The main result of this paper contradicts this intuition
and shows that the capacity of the torn-paper channel with
Geometric(pn)-length fragments is higher than (1 − α)+.
More precisely, we show that the capacity of the torn-paper

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5077-2269
https://orcid.org/0000-0002-5079-4617

SHOMORONY AND VAHID: TORN-PAPER CODING 7905

Fig. 2. Comparison between the capacity of the torn-paper channel C =
e−α, the capacity of the shuffling channel with fragments of deterministic
length 1/pn, and the rate achieved on the torn-paper channel by the explicit
code construction based on the interleaved-pilot scheme.

channel is C = e−α. The comparison is shown in Figure 2.
Intuitively, this boost in capacity comes from the tail of
the geometric distribution, which guarantees that a fraction
of the fragments will be significantly larger than the mean
E[Ni] = 1/pn. This allows the capacity to be positive even for
α ≥ 1, in which case the capacity of the deterministic-tearing
case in (1) becomes 0.

To prove the converse part of this result we partition
the set of fragments into bins of fragments with roughly
the same size and view the torn-paper channel as parallel
shuffling channels. The achievability is based on a random
code construction and optimal decoding. We also present an
explicit code construction based on the idea of interleaving
a synchronization pilot sequence with codewords from an
erasure code. The synchronization sequence allows fragments
that are long enough to have their location in the codeword
determined [17], and is shown to achieve a rate

R ≥ (1 − 1
m

)
(2mα + 1) e−2mα

for any integer m ≥ 2. As shown in Figure 2, the rates
achieved by this interleaved-pilot scheme have a similar shape
to the capacity curve, but with a significant gap.

Related Literature: The problem of reconstructing a string
from a set of its subsequences has been studied in the context
of the assembly problem [11], [12], the trace reconstruction
problem [18]–[20], and the problem of reconstructing a string
from its substring spectrum [13], [21]. In all of these settings,
the set of observed strings have overlaps with each other,
which is different from the case considered here.

Several recent works have designed codes tailored to spe-
cific aspects of DNA storage. These include DNA synthesis
constraints such as sequence composition [7], [22], [23],
the asymmetric nature of the DNA sequencing error chan-
nel [24], the need for codes that correct insertion errors [25],
and the need for techniques to allow random access [23].

Motivated by DNA-based storage, a few recent works have
considered the problem of coding across an unordered set
of strings [26]–[29] and the problem of coding over sets
[30], [31]. Channels that shuffle blocks of information were

also recently studied in the context of the bee-identification
problem [32] and noisy permutation channels [33].

Finally, the interleaved-pilot scheme presented in
Section VII is related to the notion of phase detection
sequences, which appear in the context of positioning
systems [17]. Our proposed construction is based on de
Bruijn sequences [34], which have been used in the problem
of sequence reconstruction from substring profiles [22].

II. PROBLEM SETTING

We consider the problem of coding for the torn-paper
channel, illustrated in Figure 1. The transmitter encodes a
message W ∈ {1, . . . , 2nR} into a length-n binary codeword
Xn ∈ F

n
2 . The channel output is a set of binary strings

Y =
{

�Y1, �Y2, . . . , �YK

}
. (2)

The process by which Y is obtained is described next.

1) The channel tears the input sequence into segments
of Geometric(pn)-length for a tearing probability pn.
More specifically, let N1, N2, . . . be i.i.d. Geometric(pn)
random variables, and K be the smallest index such that∑K

i=1 Ni ≥ n. Notice that K is also a random variable.
The channel tears Xn into segments �X1, . . . , �XK , where

�Xi =
[
X1+

�i−1
j=1 Nj

, . . . , X�i
j=1 Nj

]
,

for i = 1, . . . , K − 1 and

�XK =
[
X1+

�K−1
j=1 Nj

, . . . , Xn

]
.

We note that this process is equivalent to independently
tearing the message in between consecutive bits with
probability pn. More precisely, let T2, T3, . . . , Tn be
binary indicators of whether there is a cut between
Xi−1 and Xi. Then, letting Tis be i.i.d. Bernoulli(pn)
random variables results in independent fragments of
length Geometric(pn). Also, K = 1+

∑n
i=2 Ti, implying

that E[K] = 1 + (n − 1)pn = npn + (1 − pn).
2) Given K , let [π1, . . . , πK] be a uniformly distributed ran-

dom permutation on [1, 2, . . . , K]. The output segments
are then obtained by setting, for i = 1, . . . , K ,

�Yi = �Xπi . (3)

We note that there are no bit-level errors, e.g., bit flips,
in this process. We also point out that we allow the tearing
probability to be a function of the block length n, thus,
we include subscript n in pn.

A code with rate R for the torn-paper channel is a set C
of 2nR binary codewords, each of length n, together with a
decoding procedure that maps a set Y of variable-length binary
strings to an index Ŵ ∈ {1, . . . , 2nR}. The message W is
assumed to be chosen uniformly at random from {1, . . . , 2nR},
and the error probability of a code is defined accordingly.
A rate R is said to be achievable if there exists a sequence of
rate-R codes {Cn}, where Cn has blocklength n, whose error
probability tends to 0 as n → ∞. The capacity C is defined as
the supremum over all achievable rates. Notice that C should
be a function of the sequence of tearing probabilities {pn}∞n=1.

7906 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

Notation: Throughout the paper, log(·) represents the log-
arithm base 2, while ln(·) represents the natural logarithm.
For functions f(n) and g(n), we write g(n) = o(f(n)) if
g(n)/f(n) → 0 as n → ∞. For an event A, we let 1A or 1{A}
be the binary indicator of A. For a real number x, we define
(x)+ = max(0, x).

III. MAIN RESULTS

If the encoder had access to the tearing locations ahead of
time, a natural coding scheme would involve placing unique
indices on every fragment, and using the remaining bits for
encoding a message. In particular, if the message block was
evenly broken into npn pieces of length Ni = 1/pn, results
from [16] imply that placing a unique index of length log(npn)
in each fragment is capacity optimal. The rate achieved is

(Ni − log(npn))/Ni = 1 − pn log(npn),

and the capacity is (1 − α)+, where we define α =
limn→∞ pn log(npn) = limn→∞ pn log n (assuming the limit
exists). If α ≥ 1, no positive rate is achievable.

However, in our setting, the fragment lengths are random
and the same index-based approach cannot be used. Because
we do not know the tearing points, we cannot place indices
at the beginning of each fragment. Furthermore, while the
expected fragment length may be large, some fragments may
be shorter than log(npn) and a unique index could not be
placed in them even if we knew the tearing points. Our main
result shows that, surprisingly, the random tearing locations
and fragment lengths in fact increase the channel capacity.

Theorem 1: The capacity of the torn-paper channel is

C = e−α,

where α = limn→∞ pn log n.
Another surprising aspect about the capacity expression in

Theorem 1 is that it is the same rate that is achievable if the
transmitter knew ahead of time the tearing locations in Xn.
An enhanced channel where the transmitter knows the tearing
locations is discussed in Section IV to provide intuition for the
capacity expression. At a high level, the reason for an exponen-
tial function to appear in the capacity expression in Theorem 1
is that, if N (n) has a Geometric(pn) distribution, as n → ∞,
N (n)/ logn converges in distribution to an Exponential(α)
random variable, where α = limn→∞ pn log n (provided the
limit exists). In Section IV, we provide additional discussion
on the intuition behind the capacity expression.

The rest of the paper is organized as follows. In Sections V
and VI we prove Theorem 1. To prove the converse to this
result we exploit the fact that, for large n, Ni/ log n has
an approximately exponential distribution. This, together with
several concentration results, allows us to partition the set
of fragments into multiple bins of fragments with roughly
the same size and view the torn-paper channel, in essence,
as parallel channels with fixed-size fragments. Our achiev-
ability is based on random coding arguments and does not
provide much insight into practical coding schemes. Then,
in Section VII we explore an explicit code construction based
on “sprinkling” a synchronization sequence throughout all

codewords, which allows fragments that are long enough to be
ordered. A significant gap remains between the rate achieved
by this explicit construction and the true capacity.

IV. INTUITION FOR CAPACITY EXPRESSION

The capacity expression in Theorem 1 can be intuitively
understood by considering a modified channel where the
transmitter knows the locations of all tearing points. In that
setting, a simple coding approach is the following: we ignore
all fragments that are shorter than log n and we place a
unique index at the beginning of every fragment longer than
log n. Since for large n, Ni/ logn has approximately an
Exponential(α) distribution (formally stated in Lemma 2),

Pr (Ni ≥ log n) ≈ e−α. (4)

Since the total number of fragments is roughly n/E[Ni] =
npn, we need

log(npne−α) < log n

bits per fragment for the index, making it feasible to place a
unique index in each fragment longer than log n.

As we show later in Lemma 6, the number of bits from the
original codeword Xn that end up in fragments of length at
least log n, for large n, is approximately

n(α + 1)e−α.

Out of those bits, since α ≈ pn log n, we use

(npne−α) log n ≈ nαe−α

for indices. Hence, we are left with

n(α + 1)e−α−nαe−α = ne−α

message bits. Since there is no noise, message bits can be
written directly onto the non-index parts of the fragments,
yielding a data rate of e−α. The decoding procedure is
straightforward: using the unique indices the fragments can
be ordered and the message bits can then be read directly.

Notice that this scheme cannot be employed in the original
torn-paper channel since the tearing points are not known at
the transmitter. Furthermore, it is not obvious that throwing
out fragments shorter than log n is capacity-optimal. Hence,
this scheme is only included to provide intuition and place the
capacity expression in context.

V. CONVERSE

In order to prove the converse for Theorem 1, we first
partition the input and output strings based on length. This
allows us to view the torn-paper channel as a set of parallel
channels, each of which with fragments of roughly the same
size. More precisely, for an integer parameter L, we will let

Xk =
{

�Xi : k−1
L log n ≤ Ni < k

L log n
}

and

Yk =
{

�Yi : k−1
L log n ≤ Nπi < k

L log n
}

, (5)

for k = 1, 2, . . . , and we will think of the transformation from
Xk to Yk as a separate channel. Notice that the kth channel is

SHOMORONY AND VAHID: TORN-PAPER CODING 7907

intuitively similar to the shuffling channel with equal-length
pieces considered in [26].

We will use the fact that the number of fragments in Yk

concentrates as n → ∞. More precisely, we let

qk,n = Pr
(

k − 1
L

≤ N1

log n
<

k

L

)
, (6)

and we have the following lemma, proved in Section VIII.
Lemma 1: The number of fragments in Yk satisfies

Pr (||Yk|−npnqk,n| > �npn) ≤ 4e−np2
n�2/4, (7)

for any � > 0 and n large enough.
Notice that, since limn→∞ pn log n = α, E

[
N1

log n

]
→ α−1

as n → ∞. Moreover, asymptotically, N1
log n approaches an

Exponential(α) distribution. This known fact is stated as the
following lemma, which we also prove in Section VIII.

Lemma 2: If N (n) is a Geometric(pn) random variable and
limn→∞ E[N (n)]/ logn = 1/α, then

lim
n→∞Pr

(
N (n) ≥ β log n

)
= e−αβ . (8)

Lemma 1 implies that, with high probability, the number
of fragments in the kth channel satisfies ||Yk| − npnqk,n| <
�npn, which in particular implies that

lim
n→∞

E [|Yk|]
npn

= lim
n→∞

npnqk,n + o(npn)
npn

= lim
n→∞ Pr

(
k−1
L ≤ N1

log n < k
L

)
= e−α(k−1)/L − e−αk/L, (9)

where the last equality follows from Lemma 2. Next, we define
the event Ek,n = {||Yk| − npnqk,n| > �nnpn}, where �n =
1/ logn, which guarantees that, as n → ∞, �n → 0 and
Pr(Ek,n) → 0 from Lemma 1. Then,

H(Yk) ≤ H(Yk,1Ek,n
) ≤ 1 + H(Yk|1Ek,n

)
≤ 1 + 2n Pr(Ek,n) + H(Yk|Ēk,n), (10)

where we loosely upper bound H(Yk|Ek) with 2n, since Y
can be fully described by the binary string Xn and the n− 1
tearing points indicators T2, . . . , Tn.

In order to bound H(Yk|Ēk,n), i.e., the entropy of Yk given
that its size is close to npnqk,n, we first note that the number
of possible distinct sequences in Yk is

k
L log n∑

i= k−1
L log n

2i < 2 · 2 k
L log n = 2nk/L.

Moreover, given Ēk,n,

|Yk| ≤ npnqk,n + �nnpn

= npn

[
�n + Pr

(
k − 1

L
≤ N1

log n
<

k

L

)]
� M, (11)

and the set Yk can be seen as a histogram (x1, . . . , x2nk/L)
over all possible 2nk/L strings with

∑
xi = M . Notice that

we can view the last element of the histogram as containing
“excess counts” if |Yk| < M . Hence, using a simple counting

argument to bound the number of different possible histograms
(see Lemma 1 in [26]),

H(Yk|Ēk,n)

≤ log
(

2nk/L + M − 1
M

)

≤ M log
(

e(2nk/L + M − 1)
M

)

= M
[
log
(
2nk/L + M − 1

)
+ log(e) − log M

]
= M

[
max(k

L log n, log M) − log M + o(log n)
]

= M
[
(k

L log n − log M)+ + o(log n)
]

= M log n
[
(k

L − log M/ logn)+ + o(1)
]
. (12)

From (11), we have log M/logn → 1 as n → ∞.
Combining (10) and (12), dividing by n, and letting n → ∞
yields

lim
n→∞

H(Yk)
n

≤ lim
n→∞

H(Yk|Ēk,n) + 1 + 2n Pr(Ek,n)
n

≤ lim
n→∞

M log n

n

(
k

L
− 1
)+

= lim
n→∞ pn log n (qk,n + �n)

(
k

L
− 1
)+

= α
(
e−α(k−1)/L − e−αk/L

)(k

L
− 1
)+

. (13)

In order to bound an achievable rate R, we use Fano’s
inequality to obtain

nR ≤ I(Xn;Y) + o(n) ≤ H(Y) + o(n), (14)

and we conclude that any achievable rate must satisfy R ≤
limn→∞

H(Y)
n . In order to connect (14) and (13), we state the

following lemma, which allows us to move the limit inside
the summation. The proof is in Section VIII.

Lemma 3: If Yk is defined as in (5) for k = 1, 2, . . . ,

lim
n→∞

H(Y)
n

≤
∞∑

k=1

lim
n→∞

H(Yk)
n

.

Using this lemma and (13), we can upper bound any
achievable rate as

R ≤ lim
n→∞

H(Y)
n

≤
∞∑

k=1

lim
n→∞

H(Yk)
n

=
∞∑

k=L+1

α
(
e−α(k−1)/L − e−αk/L

)
(k

L − 1)

=
α

L

∞∑
k=L+1

k
(
e−α(k−1)/L − e−αk/L

)

− α

∞∑
k=L+1

(
e−α(k−1)/L − e−αk/L

)

=
α

L

∞∑
k=L+1

k
(
e−α(k−1)/L − e−αk/L

)
− αe−α, (15)

7908 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

Fig. 3. The decoder throws out all fragments shorter than γ log n and then
it attempts to align the remaining pieces to each codeword xL

j in a non-
overlapping fashion. The fraction of positions of xL

j that are covered by Yγ

is cγ (see Definition 1).

where the last equality is due to a telescoping sum. The
remaining summation can be computed as

∞∑
k=L+1

k
(
e−α(k−1)/L − e−αk/L

)

= (L + 1)e−α +
∞∑

k=L+2

e−α(k−1)/L

= Le−α + e−α
∞∑

k=0

e−αk/L = Le−α +
e−α

1 − e−α/L
.

We conclude that any achievable rate must satisfy

R <
α

L

(
Le−α +

e−α

1 − e−α/L

)
− αe−α =

αe−α

L(1 − e−α/L)
,

for any positive integer L. Since

lim
L→∞

L(1 − e−α/L) = α,

we obtain the outer bound R < e−α.

VI. ACHIEVABILITY VIA RANDOM CODING

A random coding argument can be used to show that any
rate R < e−α is achievable. Consider generating a codebook
C with 2nR codewords, by independently picking each symbol
as Bernoulli(1/2). Let C = {xL

1 , . . . , xL
2nR}, where xL

i is the
random codeword associated with message W = i. Notice
that optimal decoding can be obtained by simply finding an
index i such that xL

i corresponds to a concatenation of the
strings in Y . If more than one such codewords exist, an error
is declared.

Suppose message W = 1 is chosen and Y = {�Y1, . . . , �YK}
is the random set of output strings. To bound the error
probability, we consider a suboptimal decoder that throws
out all fragments shorter than γ log n, for some γ > 0 to
be determined, and simply tries to find a codeword xL

j that
contains all output strings Yγ = {�Yi : Nπi ≥ γ log n} as non-
overlapping substrings. In other words, the decoder takes one
codeword xL

j at a time, and tries to find a way to align all
fragments in Yγ to xL

j so that the fragments do not overlap
with each other and they match the segment of xL

j they are
aligned to (see Figure 3). If we let E be the error event
averaged over all codebook choices, then

Pr(E) = Pr(E|W = 1)

= Pr
(
some xL

j , j �= 1, contains all strings in Yγ |W = 1
)
.

Using a similar approach to the one used in Section V, it can
be shown that E[|Yγ |] = npn Pr(N1 ≥ γ log n) + o(npn).
From Lemma 2, we thus have

lim
n→∞

E[|Yγ |]
n · pn

= lim
n→∞Pr (N1 ≥ γ log n) = e−αγ . (16)

If we let Zi be the binary indicator of the event {Ni ≥
γ log n}, then |Yγ | =

∑K
i=1 Zi. In Section VIII, we prove the

following concentration result.
Lemma 4: The number of fragments in Yγ satisfies

Pr
(||Yγ | − e−αγnpn| > �npn

)→ 0, (17)

for any � > 0 and n large enough.
In addition to characterizing |Yγ | asymptotically, we will

also be interested in the total length of the sequences in
Yγ . Intuitively, this determines how much of codeword xL

1

is “covered” by fragments in Yγ .
Definition 1: The coverage of Yγ is defined as

cγ =
1
n

K∑
i=1

Ni1{Ni≥γ log n}. (18)

Notice that 0 ≤ cγ ≤ 1 with probability 1.
In order to characterize cγ asymptotically, we will again

resort to the exponential approximation of a geometric distri-
bution through the following lemma.

Lemma 5: If N (n) is a Geometric(pn) random variable and
limn→∞ E[N (n)]/ log n = 1/α, then, for any β ≥ 0,

lim
n→∞E

[
N (n)1{N(n)≥γ log n}

]
/ logn

= E
[
Ñ1{Ñ≥γ}

]
=
(

γ +
1
α

)
e−αγ , (19)

where Ñ is an Exponential(α) random variable.
Using Lemma 5, we can characterize the asymptotic value

of E[cγ] and show that cγ concentrates around this value. More
precisely, we show the following lemma in Section VIII.

Lemma 6: If cγ is defined as in (18), then

Pr
(∣∣cγ − (αγ + 1)e−αγ

∣∣ > �
)→ 0, (20)

as n → ∞ for any � > 0.
In particular, Lemma 6 together with the fact that cγ ∈ (0, 1)

implies that

lim
n→∞E[cγ] = (αγ + 1)e−αγ , (21)

and cγ cannot deviate much from this value with high proba-
bility. If we let B1 = (1+ �)e−αγnpn and B2 = (1− �)(αγ +
1)e−αγ , and we define the event

B = {|Yγ | < B1} ∪ {cγ > B2}, (22)

then (17) and (20) imply that Pr(B) → 0 as n → ∞. Since
B is independent of {W = 1}, we can upper bound the

SHOMORONY AND VAHID: TORN-PAPER CODING 7909

probability of error as

Pr(E) ≤ Pr
(
some xL

j contains all strings in Yγ |W = 1
)

≤ Pr
(
some xL

j contains all strings in Yγ |B̄, W = 1
)

+ Pr(B)
(i)

≤ |C| nB1

2nB2
+ Pr(B)

≤ 2nR 2B1 log n 2−nB2 + o(1)

= 2nR 2(1+�)e−αγnpn log n−n(1−�)(αγ+1)e−αγ

+ o(1)

= 2−n((1−�)(αγ+1)e−αγ−(1+�)e−αγpn log n−R) + o(1).

Inequality (i) follows from the union bound and from the
fact that there are at most nB1 ways to align the strings in
Yγ to a codeword xL

j . This is because, given B̄, there are
at most B1 strings in Yγ and each one can be aligned to
at most n locations in xL

j (notice that this crude upper bound
allows overlaps, which the decoder does not). Moreover, since
a non-overlapping alignment of the strings in Yγ to a codeword
xj covers at least nB2 positions of xj , the probability that it
matches xj on all covered positions is at most 2−nB2 . Since
pn log n → α as n → ∞, we see that we can achieve a rate
R as long as

R < (1 − �)(1 + αγ)e−αγ − (1 + �)αe−αγ ,

for some � > 0 and γ > 0. Letting � → 0, yields

R < (1 + αγ − α)e−αγ

for some γ > 0. The right-hand side is maximized by setting
γ = 1, which implies that we can achieve any rate R < e−α.
We point out that this choice of γ justifies the optimality of
discarding fragments of length less than log n, first mentioned
in Section IV.

Recovering Previous Results for Fixed-Length Pieces:
Notice that, in previous works on the case of fixed-length
pieces [16], [27], [29], the achievability argument was based
on placing a unique index in each piece. The unique indices
allow the recovered fragments to be ordered, effectively con-
verting the channel to an erasure channel.

The random coding argument in this section suggests that
a similar code construction can be used in the case of fixed-
length pieces, providing an alternative achievability argument
for existing results that does not involve placing unique indices
in each string. This is indeed the case, as explained next.

Consider the error-free torn-paper channel where all frag-
ments have a deterministic length Ni = 1/pn. Notice that,
in this case, the set of output fragments Y is a deterministic
function of the input string Xn. Hence, an achievable scheme
that does not require the placing of indices can be obtained
by choosing codewords xL

j that lead to distinct output sets Y .
This guarantees that, given Y , the correct input codeword can
be recovered. The maximum achievable rate can be computed
directly by finding the total number of distinct sets Y of npn

binary strings of length 1/pn. Each such set can be uniquely
described by a histogram, or a vector of length 21/pn with
non-negative integer entries summing to npn. As shown in

Fig. 4. Interleaving a pilot sequence p with codewords su(1), . . . , su(m−1)
to form the codeword cu.

Lemma 1 of [27], the number of such histograms is given by(
21/pn + npn − 1

npn

)
≥
(

21/pn + npn − 1
npn

)npn

.

Therefore, the rate achieved by this scheme (which does not
require indexing of pieces) is

R = lim
n→∞

1
n

log
(

21/pn + npn − 1
npn

)
≥ lim

n→∞ pn log(21/pn + npn − 1) − pn log(npn)

≥ lim
n→∞ pn log(21/pn) − pn log(n) − pn log pn = 1 − α,

where we used the fact that pn log n → α and pn → 0.
As described in Section I, this is the capacity in the case of
deterministic pieces of length 1/pn.

VII. INTERLEAVED-PILOT SCHEME

While the scheme presented in Section VI achieves the
capacity of the torn-paper channel, it is far from being a
practical scheme. In principle, it requires one to consider all
possible K! orderings of the K fragments and trying to align
each one to each of the 2nR codewords.

A natural way to design schemes for a channel that shuf-
fles fragments of the message involves placing “indices” on
the different pieces, which allows properly ordering them.
However, as previously discussed, the randomness in the
tearing locations and in the length of the fragments makes
this approach not straightforward for the torn-paper channel.
In particular, if we place indices at evenly separated points of
the input string Xn, they will appear at random locations of the
fragments, and a fraction of the indices will be fragmented,
making the recovery more difficult. For that reason, in this
section we explore the idea of interleaving a pilot, or a phase
detection sequence [17] throughout the input codewords.

The interleaving procedure to construct codewords is illus-
trated in Figure 4. As we describe in more detail below,
the pilot block p and the message blocks si are designed
so that no string of length 2 logn appears in both p and sj

for some j. The “sprinkled” nature of the pilot sequence in
cu prevents it from being fragmented by the tearing process.
More precisely, we let n/m be the length of the pilot block
p and of each message block sj , where m ≥ 2 is a positive
integer. Notice that a fragment of length Ni must contain at
least Ni/m pilot symbols in it. As we will see, provided that
Ni is long enough, this will allow its location on Xn to be
uniquely determined.

7910 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

A. Codebook Construction

For a fixed value of m, we will construct a pilot sequence
p of length n/m. Notice that m controls the fraction of
the codeword that is dedicated to pilot symbols. The pilot
sequence p is constructed as a de Bruijn sequence of order
log(n/m) [34]. This sequence has length 2log(n/m) = n/m
and it has the property that each length log(n/m) substring
appears exactly once. For example, a de Bruijn sequence of
order 4 is S = 0000100110101111. Notice that each binary
string of length 4 appears exactly once (when we view S
as a cyclic sequence). In order to simplify the exposition,
we will assume that log(n/m) is an integer. The results can
be extended to the general case, by considering a de Bruijn
sequence of order
log(n/m)�.

In order to build our codebook, we will interleave code-
words from an erasure code with the pilot sequence p. Suppose
we have an erasure code Cer with rate Rer and blocklength
n/m. We consider applying a random shift to Cer. More
precisely, we generate a length-n/m i.i.d. Ber(1/2) sequence
Zn/m and take the modulo-2 sum of every codeword in Cer

with Zn/m to form a modified codebook C̃er. Notice that this
effectively does not change the code, as the shift Zn/m is the
same for all codewords and can be subtracted at the receiver
side. The probability that a randomly shifted codeword s ∈ C̃er

shares an identical length-k segment with the pilot sequence
can be upper bounded as

Pr (p[i : i + k − 1] = s[j : j + k − 1],
for 1 ≤ i ≤ n/m − k, 1 ≤ j ≤ n/m−k)

≤ (n/m)22−k

Therefore, if we let k = (2 + δ) log n for δ > 0,

Pr (p[i : i + k − 1] = s[j : j + k − 1],
for 1 ≤ i ≤ n/m − k, 1 ≤ j ≤ n/m−k) → 0, (23)

as n → ∞. This means that for any � > 0, for n large enough,
it is possible to choose Zn/m so that at least a (1− �) fraction
of the shifted codewords in C̃er contain no length-(2+δ) logn
segment that is also in the pilot sequence p.

Let S = {s1, . . . , s|S|} ⊂ C̃er be a set with (1 − �)2
n
m Rer

such sequences. We build each codeword cu by taking
m − 1 sequences su(1), . . . , su(m−1) from S and interleaving
their symbols with the symbols from p. More precisely, for
each u ∈ {1, . . . , |S|}m−1 we build the codeword cu =
(cu[0], . . . , cu[n − 1]) as

cu[mt + j] =
{

p[t], for j = 0,
su(j)[t], for j = 1, . . . , m − 1,

for t = 0, . . . , n/m − 1, as illustrated in Figure 4. The
resulting codebook C has |S|m−1 = (1 − �)m−12(1−1/m)nRer

codewords. Notice that, for any fixed m and any small � > 0,
such a codebook can be constructed for n large enough,
yielding a coding rate of approximately (1 − 1/m)Rer.

B. Decoding and Analysis

As illustrated in Figure 4, a codeword cu will contain one
symbol of p every m bits. Hence, if a given output fragment

Fig. 5. Aligning a fragment yL incorrectly to the generic codeword c?

requires |yL|/m pilot symbols in c? to align with |yL|/m consecutive
symbols of si.

has length Ni, it must contain at least Ni/m symbols from
the pilot sequence (though at unknown locations).

Suppose a random fragment has length Ni > (2+δ)m logn.
By the previous argument, it must contain at least (2+δ) logn
pilot symbols. We claim that the location of such a fragment in
its original codeword cu can be uniquely identified by aligning
it to a “generic” codeword c? that only contains the pilot
symbols, as illustrated in Figure 5. Suppose by contradiction
that the fragment can be properly aligned to c? at an incorrect
location. Since sequences of log n consecutive symbols of p
are unique, it must be the case that Ni/m > (2 + δ) log n
pilot symbols of c? align with Ni/m non-pilot symbols of the
fragment. However, these Ni/m symbols must correspond to
consecutive symbols in one of the codewords si from S. Since
no block of length (2 + δ) log n of p appears in any si ∈ S,
this is a contradiction.

This suggests a straightforward decoding procedure for
the code outlined above. Each of the received fragments
with length at least (2 + δ)m log n is aligned to c?. Shorter
fragments are discarded, and their locations on c? are treated
as erasures. This effectively converts the channel into an
erasure channel (though not memoryless) with a total number
of erasures given by

K∑
i=1

Ni1{Ni<(2+δ) log n} = n(1 − c(2+δ)m), (24)

where c(2+δ)m is the coverage by fragments of length at least
(2+δ)m logn, as defined in Definition 1. Hence, as long as the
rate of the original erasure code Cer satisfies Rer < c(2+δ)m,
the code for the torn-paper channel can be decoded with small
error probability as n → ∞. From Lemma 6, we know that
c(2+δ)m concentrates around its mean as n → ∞. Hence we
can choose Rer arbitrarily close to E[c(2+δ)m] and achieve
arbitrarily close to rate(

1 − 1
m

)
lim

n→∞E[c(2+δ)m]. (25)

Since δ > 0 can be chosen arbitrarily small, and using (21),
as n → ∞, we can achieve any rate below(

1 − 1
m

)
lim

n→∞E[c2m] =
(
1 − 1

m

)
(2mα + 1) e−2mα. (26)

This expression can be optimized over positive integers m,
yielding the achievable curve shown in Figure 2. We notice

SHOMORONY AND VAHID: TORN-PAPER CODING 7911

that the gap between this efficient interleaved-pilot approach
and the actual capacity is still very significant.

VIII. PROOFS OF LEMMAS

Lemma 1: The number of fragments in Yk satisfies

Pr (||Yk| − npnqk,n| > �npn) ≤ 4e−np2
n�2/4,

for any � > 0 and n large enough.
Proof of Lemma 1: First notice that, since K = 1 +∑n

i=2 Ti, where T2, . . . , Tn are i.i.d. Bernoulli(pn) random
variables, E[K] = npn + (1 − pn), and using Hoeffding’s
inequality,

Pr(|K − npn| > δnpn)
= Pr (|K − E[K] + (1 − pn)| > δnpn)
≤ Pr (|K − E[K]| > δnpn − (1 − pn))

= Pr

(∣∣∣∣∣
n∑

i=2

(Ti − pn)

∣∣∣∣∣ > (n − 1)
δnpn − (1 − pn)

n − 1

)

≤ 2e−2(n−1)(δnpn−(1−pn)
n−1)2

≤ 2e−2n(δnpn−(1−pn)
n)2

≤ 2e−np2
nδ2

, (27)

where the last inequality holds for n large enough.
Now suppose the sequence N1, N2, . . . of independent

Geometric(pn) random variables is an infinite sequence (and
does not stop at K). Let Zi be the binary indicator of
the event {(k − 1)/L ≤ Ni/ logn < k/L}, and Z̃ =∑npn

i=1 Zi. Intuitively, |Yk| and Z̃ should be close. In particular,
||Yk| − Z̃| ≤ |K − npn|. Moreover, E[Z̃] = npnqk,n. If
|Z̃−npnqk,n| < 1

2�npn and ||Yk|−Z̃ | < |K−npn| < 1
2�npn,

by the triangle inequality, ||Yk|−npnqk,n| < �npn. Therefore,

Pr (||Yk| − npnqk,n| > �npn)

≤ Pr
(
|Z̃ − npnqk,n| > 1

2�npn

)
+ Pr

(|K − npn| > 1
2�npn

)
≤ 2e−npn�2/2 + 2e−np2

n�2/4 ≤ 4e−np2
n�2/4

where we used Hoeffding’s inequality and (27).
Lemma 2: If N (n) is a Geometric(pn) random variable and

limn→∞ E[N (n)]/ logn = 1/α, then

lim
n→∞Pr

(
N (n) ≥ β log n

)
= e−αβ .

Proof of Lemma 2: By definition,

Pr
(
N (n) ≥ β log n

)
= (1 − pn)�β log n�

=
(

1 − 1
E[N (n)]

)E[N(n)](�β log n�/E[N(n)])

.

As n → ∞,
β log n�/E[N (n)] → αβ, E[N (n)] → ∞, and
(1 − 1/E[N (n)])E[N(n)] → e−1, implying the lemma.

Lemma 3: If Yk is defined as in (5) for k = 1, . . . ,∞,

lim
n→∞

H(Y)
n

≤
∞∑

k=1

lim
n→∞

H(Yk)
n

.

Proof of Lemma 3: For a fixed integer A, we define Y≥A =
{�Yi : Nπi ≥ (A/L) log n} and we have

lim
n→∞

H(Y)
n

≤ lim
n→∞

A∑
k=1

H(Yk)
n

+ lim
n→∞

H(Y≥A)
n

=
A∑

k=1

lim
n→∞

H(Yk)
n

+ lim
n→∞

H(Y≥A)
n

. (28)

If we define cγ as in Definition 1, from Lemma 6, we have

lim
n→∞E

[
cA/L

]
= (αA/L + 1)e−αA/L.

Moreover, for any δ > 0, from Lemma 6, the event

A = {cA/L > (αA/L + 1)e−αA/L + δ}
has vanishing probability as n → ∞. This allows us to write

H(Y≥A) ≤ H(Y≥A|Ā) + H(Y≥A|A) Pr(A) + 1
≤ H(Y≥A|Ā) + 2n Pr(A) + 1

≤ 2n
[
(αA/L + 1)e−αA/L + δ

]
+ o(n).

Hence, from (28), we have that for every A and δ > 0,

lim
n→∞

H(Y)
n

≤
A∑

k=1

lim
n→∞

H(Yk)
n

+ 2(αA/L + 1)e−αA/L+2δ.

Notice that (αA/L+1)e−αA/L → 0 as A → ∞. Therefore,
we can let δ → 0 and A → ∞, and we conclude that

lim
n→∞

H(Y)
n

≤
∞∑

k=1

lim
n→∞

H(Yk)
n

.

Lemma 4: The number of fragments in Yγ satisfies

Pr
(||Yγ | − e−αγnpn| > �npn

) ≤ 4e−np2
n�2/9

for any � > 0 and n large enough.
Proof of Lemma 4: Let Zi = 1{Ni≥γ log n}, for i =

1, 2, Then |Yγ | =
∑K

i=1 Zi. Since K is random (and not
independent of the Nis), we need to follow similar steps to
those in the proof of Lemma 1.

Let us assume that the sequence N1, N2, . . . of independent
Geometric(pn) random variables is an infinite sequence and
let Z̃ =

∑npn

i=1 Zi. Notice that Z̃ is a sum of i.i.d. Bernoulli
random variables with

E[Z̃] = npn Pr(N1 ≥ γ log n), (29)

and the standard Hoeffding’s inequality can be applied. More-
over, from (29) and Lemma 2,

lim
n→∞E[Z̃]/(npn) = e−αγ

and, for any δ > 0, |E[Z̃] − e−αγnpn| < δnpn, for n large
enough. If we set δ = �/3, for n large enough, we have
|E[Z̃]−e−αγnpn| < 1

3�npn. Moreover, if |Z̃−E[Z̃]| < 1
3�npn

7912 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

and ||Yγ | − Z̃| < |K − npn| < 1
3�npn, by the triangle

inequality (applied twice), ||Yγ | − e−αγnpn| < �npn. Hence,

Pr
(||Yγ | − e−αγnpn| > �npn

)
≤ Pr

(
|Z̃ − E[Z̃]| > 1

3�npn

)
+ Pr

(∣∣∣|Yγ | − Z̃
∣∣∣ > 1

3�npn

)
≤ Pr

(∣∣∣Z̃ − E|Z|
∣∣∣ > 1

3 �npn

)
+ Pr

(|K − npn| > 1
3 �npn

)
≤ 2e−2npn�2/9 + 2e−np2

n�2/9 ≤ 4e−np2
n�2/9

where we used Hoeffding’s inequality and (27).
Lemma 5: If N (n) is a Geometric(pn) random variable and

limn→∞ E[N (n)]/ logn = 1/α, then, for any β ≥ 0,

lim
n→∞E

[
N (n)1{N(n)≥γ log n}

]
/ logn

= E
[
Ñ1{Ñ≥γ}

]
=
(

γ +
1
α

)
e−αγ ,

where Ñ is an Exponential(α) random variable.
Proof of Lemma 5:

We first notice that

1
log n

E
[
N (n)1{N(n)≥γ log n}

]
=

1
log n

E
[
N (n)

∣∣∣N (n) ≥ γ log n
]
Pr
(
N (n)≥γ log n

)
=

1
log n

(

γ log n� + E[N (n)]

)
Pr
(
N (n) ≥ γ log n

)
,

where we used the memoryless property of the Geometric
distribution. As n → ∞, we have
γ log n�/ logn →
γ, E[N (n)]/ log n → 1/α. Moreover, from Lemma 2,
Pr
(
N (n) ≥ γ log n

)→ e−αγ , and the lemma follows.
Lemma 6: If cγ is defined as in (18), then, for any � > 0,

Pr
(∣∣cγ − (αγ + 1)e−αγ

∣∣ > �
) ≤ 19

�2np2
n

for n large enough.
Proof of Lemma 6: Since cγ = 1

n

∑K
i=1 Ni1{Ni≥γ log n},

where K is a random variable, we once again follow an
approach similar to the one in the proof of Lemma 1.

Let us assume that the sequence N1, N2, . . . of independent
Geometric(pn) random variables is an infinite sequence. Let
Zi = Ni1{Ni≥γ log n}, and Z̃ =

∑npn

i=1 Zi. Since E[Z̃] =
npnE[N11{N1≥γ log n}], by Lemma 5,

lim
n→∞

E[Z̃]
n

→ α

(
γ +

1
α

)
e−αγ . (30)

Intuitively, Z := ncγ and Z̃ should be close. If Z̃ > Z ,
then npn > K , and

|Z − Z̃| =
npn∑

i=K+1

Zi ≤
npn∑

i=K+1

Ni ≤
∣∣∣∣∣
npn∑
i=1

Ni−n

∣∣∣∣∣ . (31)

If Z > Z̃, then K > npn, and

|Z − Z̃| =
K∑

i=npn+1

Zi ≤
K∑

i=npn+1

Ni ≤
∣∣∣∣∣
npn∑
i=1

Ni−n

∣∣∣∣∣ . (32)

Hence, for any δ > 0, we have that

Pr
(
|Z − Z̃| > δnpn

)

≤ Pr

(∣∣∣∣∣
npn∑
i=1

Ni−n

∣∣∣∣∣ > δnpn

)

≤ e−npn(δ−ln(1+δ)) + e−npn(−δ−ln(1−δ))

≤ 2e−npn(δ−ln(1+δ)). (33)

where we used the Chernoff bound for geometrically distrib-
uted random variables [35], and the fact that x− ln(1 + x) <
−x − ln(1 − x) for x > 0.

To bound the probability that |Z̃ −E[Z̃]| > δn, we can use
a Chernoff bound, which requires the computation of the rate
function for N11{N1≥γ log n}. A simpler approach is to use
Chebyshev’s inequality, which yields

Pr
(
|Z̃ − E[Z̃]| > δn

)
≤ Var(Z1)

δ2n
≤ E[Z2

1]
δ2n

=
E[N2

11{N1≥γ log n}]
δ2n

≤ E[N2
1]

δ2n
=

2 − pn

δ2np2
n

. (34)

From (30), we know that for any δ > 0 and n large enough,

|E[Z̃] − n(αγ + 1)e−αγ | < δn.

Moreover, if |Z̃ − E[Z̃]| < 1
3�n, |ncγ − Z̃| < 1

3�n,
and |E[Z̃] − n(αγ + 1)e−αγ | < 1

3�n, then, by the triangle
inequality, |cγ − (αγ + 1)e−αγ | < �. Therefore, for n large
enough so that |E[Z̃] − n(αγ + 1)e−αγ | < 1

3 �n,

Pr
(∣∣cγ − (αγ + 1)e−αγ

∣∣ > �
)

≤ Pr
(
|Z̃ − E[Z̃]| > 1

3�n
)

+ Pr
(
|Z̃−Z| > 1

3�n
)

≤ Pr
(
|Z̃ − E[Z̃]| > 1

3�n
)

+ Pr
(
|Z̃−Z| > 1

3�npn

)
≤ 18/(�2np2

n) + 2e−npn(�/3−ln(1+�/3)) ≤ 19/(�2np2
n),

where we used (33) and (34), and the last inequality follows
for n large enough.

REFERENCES

[1] I. Shomorony and A. Vahid, “Communicating over the torn-paper chan-
nel,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2020,
pp. 1–6.

[2] M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory,
vol. IT-29, no. 3, pp. 439–441, May 1983.

[3] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital informa-
tion storage in DNA,” Science, vol. 337, no. 6102, p. 1628, 2012.

[4] N. Goldman et al., “Towards practical, high-capacity, low-maintenance
information storage in synthesized DNA,” Nature, vol. 494, pp. 77–80,
Jan. 2013.

[5] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angew. Chem. Int. Ed., vol. 54, no. 8, pp. 2552–2555,
2015.

[6] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and
K. Strauss, “A DNA-based archival storage system,” ACM SIGPLAN
Notices, vol. 51, no. 4, pp. 637–649, Jun. 2016.

[7] Y. Erlich and D. Zielinski, “DNA fountain enables a robust and effi-
cient storage architecture,” Science, vol. 355, no. 6328, pp. 950–954,
Mar. 2017.

[8] L. Organick et al., “Random access in large-scale DNA data storage,”
Nature Biotechnol., vol. 36, no. 3, pp. 242–248, 2018.

[9] R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of the DNA
data storage channel,” 2018, arXiv:1803.03322. [Online]. Available:
https://arxiv.org/abs/1803.03322

SHOMORONY AND VAHID: TORN-PAPER CODING 7913

[10] K. R. Pomraning, K. M. Smith, E. L. Bredeweg, L. R. Connolly,
P. A. Phatale, and M. Freitag, “Library preparation and data
analysis packages for rapid genome sequencing,” in Fungal Sec-
ondary Metabolism. New York, NY, USA: Springer, 2012, pp. 1–22.
[Online]. Available: https://link.springer.com/book/10.1007%2F978-1-
62703-122-6

[11] A. S. Motahari, G. Bresler, and D. N. C. Tse, “Information theory of
DNA shotgun sequencing,” IEEE Trans. Inf. Theory, vol. 59, no. 10,
pp. 6273–6289, Oct. 2013.

[12] G. Bresler, M. Bresler, and D. Tse, “Optimal assembly for high
throughput shotgun sequencing,” BMC Bioinf., vol. 14, no. S5, pp. 1–13,
Apr. 2013.

[13] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded
sequences from multiset substring spectra,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018, pp. 2540–2544.

[14] T. Laver et al., “Assessing the performance of the Oxford nanopore tech-
nologies MinION,” Biomol. Detection Quantification, vol. 3, pp. 1–8,
Mar. 2015.

[15] W. Mao, S. N. Diggavi, and S. Kannan, “Models and information-
theoretic bounds for nanopore sequencing,” IEEE Trans. Inf. Theory,
vol. 64, no. 4, pp. 3216–3236, Apr. 2018.

[16] I. Shomorony and R. Heckel, “Capacity results for the noisy shuffling
channel,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019,
pp. 762–766.

[17] L. Wang, S. Hu, and O. Shayevitz, “Quickest sequence phase detection,”
IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5834–5849, Sep. 2017.

[18] T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder, “Trace
reconstruction with constant deletion probability and related results,” in
Proc. SODA, vol. 8, 2008, pp. 389–398.

[19] S. R. Srinivasavaradhan, M. Du, S. Diggavi, and C. Fragouli, “On maxi-
mum likelihood reconstruction over multiple deletion channels,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018, pp. 436–440.

[20] M. Cheraghchi, J. Ribeiro, R. Gabrys, and O. Milenkovic, “Coded trace
reconstruction,” in Proc. IEEE Inf. Theory Workshop (ITW), Aug. 2019,
pp. 1–5.

[21] S. Marcovich and E. Yaakobi, “Reconstruction of strings from their
substrings spectrum,” 2019, arXiv:1912.11108. [Online]. Available:
https://arxiv.org/abs/1912.11108

[22] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3125–3146,
Jun. 2016.

[23] S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic,
“A rewritable, random-access DNA-based storage system,” Sci. Rep.,
vol. 5, no. 1, p. 14138, Nov. 2015.

[24] R. Gabrys, H. M. Kiah, and O. Milenkovic, “Asymmetric lee distance
codes: New bounds and constructions,” in Proc. IEEE Inf. Theory
Workshop (ITW), Apr. 2015, pp. 1–5.

[25] F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Exact reconstruction
from insertions in synchronization codes,” IEEE Trans. Inf. Theory,
vol. 63, no. 4, pp. 2428–2445, Apr. 2017.

[26] R. Heckel, I. Shomorony, K. Ramchandran, and D. N. C. Tse, “Funda-
mental limits of DNA storage systems,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2017, pp. 3130–3134.

[27] I. Shomorony and R. Heckel, “DNA-based storage: Models and funda-
mental limits,” IEEE Trans. Inf. Theory, vol. 67, no. 6, pp. 3675–3689,
Jun. 2021.

[28] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Anchor-based
correction of substitutions in indexed sets,” 2019, arXiv:1901.06840.
[Online]. Available: https://arxiv.org/abs/1901.06840

[29] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobit, “Coding over
sets for DNA storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2018, pp. 2411–2415.

[30] M. Kovacevic and V. Y. F. Tan, “Codes in the space of multisets—
Coding for permutation channels with impairments,” IEEE Trans. Inf.
Theory, vol. 64, no. 7, pp. 5156–5169, Jul. 2018.

[31] W. Song, K. Cai, and K. A. S. Immink, “Sequence-subset distance
and coding for error control in DNA-based data storage,” 2018,
arXiv:1809.05821. [Online]. Available: https://arxiv.org/abs/1809.05821

[32] A. Tandon, V. Y. F. Tan, and L. R. Varshney, “The bee-identification
problem: Bounds on the error exponent,” IEEE Trans. Commun., vol. 67,
no. 11, pp. 7405–7416, Nov. 2019.

[33] A. Makur, “Information capacity of BSC and BEC permutation chan-
nels,” in Proc. 56th Annu. Allerton Conf. Commun., Control, Comput.
(Allerton), Oct. 2018, pp. 1112–1119.

[34] N. G. de Bruijn, “A combinatorial problem,” Koninklijke Nederlandse
Akademie Wetenschappen, vol. 49, pp. 758–764, Jun. 1946.

[35] S. Janson, “Tail bounds for sums of geometric and exponential vari-
ables,” Statist. Probab. Lett., vol. 135, pp. 1–6, Apr. 2018.

Ilan Shomorony (Member, IEEE) received the Ph.D. degree in electrical
and computer engineering from Cornell University in 2014. He was a
Post-Doctoral Scholar at UC Berkeley through the NSF Center for Science
of Information (CSoI) until 2017. After that, he spent a year working as a
Researcher and Data Scientist at Human Longevity Inc., a personal genomics
company. He is currently an Assistant Professor in electrical and computer
engineering with the University of Illinois at Urbana–Champaign (UIUC),
where he is a member of the Coordinated Science Laboratory. His research
interests include information theory, communications, and computational
biology. He received the NSF CAREER Award in 2021.

Alireza Vahid (Senior Member, IEEE) received the B.Sc. degree in electrical
engineering from the Sharif University of Technology, Tehran, Iran, in 2009,
and the M.Sc. and Ph.D. degrees in electrical and computer engineering
from Cornell University, Ithaca, NY, USA, in 2012 and 2015, respectively.
From 2015 to 2017, he worked as a Post-Doctoral Research Scientist at
the Information Initiative at Duke University, Durham, NC, USA. He is
currently an Assistant Professor of electrical engineering at the University of
Colorado Denver. His research interests include network information theory,
wireless communications, coding theory, and applications of coding theory in
high-performance computer memory systems. He received the 2015 Outstand-
ing Ph.D. Thesis Research Award, the 2010 Director’s Ph.D. Teaching Award,
and Jacobs Scholar Fellowship in 2009 from Cornell University. He has also
received the Qualcomm Innovation Fellowship in 2013 and the Lab Venture
Challenge Award in 2019.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

