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Abstract

This paper examines the average age minimization problem where only a fraction of the network users can

transmit simultaneously over unreliable channels. Finding the optimal scheduling scheme, in this case, is known to be

challenging. Accordingly, the Whittle’s index policy was proposed in the literature as a low-complexity heuristic to

the problem. Although simple to implement, characterizing this policy’s performance is recognized to be a notoriously

tricky task. In the sequel, we provide a new mathematical approach to establish its optimality in the many-users regime

for specific network settings. Our novel approach is based on intricate techniques, and unlike previous works in the

literature, it is free of any mathematical assumptions. These findings showcase that the Whittle’s index policy has

analytically provable asymptotic optimality for the AoI minimization problem. Finally, we lay out numerical results

that corroborate our theoretical findings and demonstrate the policy’s notable performance in the many-users regime.

I. INTRODUCTION

Technological advances in wireless communications and the cheap cost of hardware have led to the emergence

of real-time monitoring services. In these systems, an entity is interested in knowing the status of one or multiple

processes observed by a remote source. Accordingly, the source sends packets to the monitor to provide information

about the process/processes of interest. The main goal in these applications is to keep the monitor up to date. In

fact, in such applications, information has the highest value when it is fresh since the outcome of the monitor’s

tasks is better when it is based on new rather than outdated data. To quantify this notion of freshness, the Age of

Information (AoI) was introduced in [1]. Ever since, the AoI has become a hot research topic, and a considerable

number of research works have been published on the subject [2]–[9].

Among the most fundamental issues that the research community aimed to address is age-based resource

allocation. In most real-time applications, numerous sources share the same transmission channel where the available

resources are scarce. The scarcity can be a consequence of battery considerations for the devices involved or

physical interference that may limit the number of simultaneous transmissions. Consequently, a smart resource

allocation scheme has to be adopted to minimize the AoI and attain the desired timeliness objective. In [10], the

authors proposed both age-optimal and near age-optimal scheduling policies for the single and multi-server cases,

respectively. In particular, they have shown that a greedy policy is age-optimal under certain assumptions in the

single exponential server case. In [11], the authors examined a single-source scenario where the source’s update
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rate cannot exceed a predefined limit due to battery considerations. In this case, they were able to propose an

age-optimal scheduling policy when the channel exhibit possible decoding errors. Age-optimal policies were also

proposed in various network settings such as distributed scheduling and random access environments [12]–[14].

Among the scheduling problems investigated in the literature, we cite the following: consider N users commu-

nicating with a central entity over unreliable channels where, at most, M < N users can transmit simultaneously.

What is the age-optimal strategy in this case? The wide range of applications that this problem encompasses let it

emerge as a fundamental one that needs to be investigated. Unfortunately, this problem belongs to the family of

Restless Multi-Armed Bandit (RMAB) problems, which are generally difficult to solve optimally. To address this

difficulty, the authors in [15] have examined this problem and proved that a greedy algorithm is optimal when users

have identical channel statistics. For the asymmetric case, the authors proposed a sub-optimal policy, known as the

Whittle’s index policy. The Whittle’s index policy has been embraced by many works in various frameworks [16]–

[25] as it is recognized for its low complexity and its notable performance. For example, in [17], the Whittle’s index

policy was adopted to minimize the average delay of queues. In another line of work, the authors in [22] employed

a Whittle’s index-based policy to maximize the average throughput over Markovian channels. Although it is simple

to implement, the main challenge that arises when adopting this policy is characterizing its performance since its

analysis is known to be notoriously difficult. To attend to this difficulty, the authors in [24] provided a sufficient

condition, dubbed as Weber’s condition, for the Whittle’s index policy’s asymptotic optimality in the many-users

regime. However, this condition requires ruling out the existence of both closed orbits and chaotic behavior of a

high-dimensional non-linear differential equation, which is extremely difficult to verify even numerically. To further

facilitate the analysis of the policy, the works in [17], [22] have provided an approach based on a fluid limit model

for the delay minimization and throughput maximization frameworks. By leveraging this model, they proved the

asymptotic optimality of the Whittle’s index policy in these frameworks under a recurrence assumption that is

easier than Weber’s condition but still requires numerical verification. Following the same footsteps, the present

authors adopted the fluid limit model and provided proof of the asymptotic optimality of the Whittle’s index

policy in the AoI framework under similar assumptions [21]. This raises the following important question: can we

prove the Whittle’s index policy’s asymptotic age-optimality in specific network settings without recoursing to any

assumptions? Answering this question is extremely difficult and has yet to be answered even for the standard delay

and throughput metrics. In this paper, we examine this question in the AoI framework, and we provide rigorous

theoretical results that showcase the validity of the Whittle’s index asymptotic optimality in certain network settings

without imposing any assumptions. Note that the importance of the asymptotic many-users regime stems from the

astronomical growth in the number of interconnected devices. For example, machine-type communications and the

IoT in 5G networks require supporting tens of thousands of connected devices in a single cell. To that end, we

summarize in the following the structure of the paper along with its key contributions:

• We start by formulating the problem of minimizing the average age of a network where M out of N users

can communicate simultaneously with the central entity. As previously explained, this problem belongs to the

class of RMAB problems, which are known to be notoriously difficult to solve. Accordingly, the Whittle’s
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index policy has been proposed in previous works as a low-complexity solution, which is the main focus of

our work. To establish the Whittle’s index policy, the following steps have to be taken:

1) Provide a relaxed version of the original problem and tackle it through a Lagrangian approach.

2) Prove the indexability property of the relaxed problem and derive the Whittle’s index expressions.

These steps have been carried out in previous works by the authors in [15], and their main results are reported

in our paper for completeness.

• Next, we present a fluid limit model that approximates the Whittle’s index policy behavior. In the many-

users regime, we prove that the fluid limit can be made arbitrarily close to the actual network’s evolution.

Therefore, we mainly focus on the evolution of the fluid limit vector in our optimality analysis. The method

previously carried out in the literature to establish the Whittle’s index policy’s asymptotic optimality follows a

spectral analysis approach [22]. However, this approach is highly contingent on the initial state of the system.

Accordingly, to extend their results to any random initial state, the authors imposed a restrictive assumption,

which can only be verified numerically. In our paper, we take a different approach to analyze the fluid model.

Specifically, we propose a novel method based on intricate techniques (e.g., Cauchy criterion) to prove the fluid

model’s convergence to a fixed point. We stress that this step’s technical details are intricate and constitute

our paper’s main technical contribution. Note that, even for the standard delay and throughput metrics, such

proof was not provided in the literature, which further highlights our approach’s novelty. Afterwards, we

establish the global optimality of Whittle’s index policy leveraging the fact that the aforementioned fixed point

is nothing but the optimal system’s operating point in the many-users regime. Finally, we provide numerical

results that corroborate the theoretical results and highlight the Whittle’s index policy’s notable performance

in the many-users regime.

The rest of the paper is organized as follows: Section II is devoted to the system model and the problem formulation.

Section III is dedicated to the establishment of the Whittle’s index policy. In Section IV-B, we provide our main

results where we prove the asymptotic optimality of the Whittle’s index policy. Numerical results that corroborate

our theoretical findings are given in Section V while Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a time-slotted system with one base station, M uncorrelated channels, and N users (N > M ). Time

is considered to be normalized to the slot duration (i.e, t = 1, 2, . . .). We suppose that any of the M channels can

be allocated to at most one user. Hence, at most M users will be able to transmit in each time slot t. If a user is

scheduled at time t, it generates a fresh new packet and sends it to the base station. This packet is successfully

decoded by the base station at time t + 1 with a certain success probability. We consider that if a decoding error

takes place, the packet is discarded (i.e., users are not equipped with buffers). In practice, users may share similar

channel conditions. Accordingly, we suppose that the users can be partitioned into K = 2 different classes such

that users within the same class share the same decoding success probability. In other words, each user i belonging
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to class k ∈ {1, 2} has a decoding success probability pk, which is assumed to be known by the scheduler. We let

γk be the proportion of users belonging to class k. To that end, the following always holds: γ1 + γ2 = 1.

A scheduling policy π is defined as a sequence of actions π = (aπ(0),aπ(1), . . .) where

aπ(t) = (a1,π
1 (t), a1,π

2 (t), . . . , a1,π
γ1N

(t), a2,π
1 (t), a2,π

2 (t), . . . , a2,π
γ2N

(t)) is a binary vector such that ak,πi (t) = 1 if

user i of class k is scheduled at time t. We also let the binary random variable cki (t) denote the channel state of

user i of class k such that cki (t) = 1 if no decoding error takes place. As per our system model, we always have

Pr(cki (t) = 1) = pk and Pr(cki (t) = 0) = 1− pk for any user i of class k. We let Bk,πi (t) denote the time-stamp

of the freshest packet delivered by user i of class k to the base station at time t under the scheduling policy π. The

age of information, or simply the age, of user i of class k is defined as [1]:

ski (t) = t−Bki (t) (1)

By taking into account the variables defined, the age of this user under policy π evolves as follows:

sk,πi (t+ 1) =


1 if ak,πi (t) = 1, cki (t) = 1

sk,πi (t) + 1 if ak,πi (t) = 1, cki (t) = 0

sk,πi (t) + 1 if ak,πi (t) = 0,

(2)

We let sπ(t) denote the vector of all users’ age sπ(t) = (s1,π
1 (t), · · · , s1,π

γ1N
(t), s2,π

1 (t), · · · , s2,π
γ2N

(t)) under policy

π. With all these notations in mind, we can formulate the optimization problem that we focus on in our paper.

B. Problem Formulation

In this paper, we are interested in minimizing the total expected average age of information of the network under

the constraint on the number of users scheduled at each time slot t. The latter must be less than the total number

of channels αN where α is equal to M
N . We let Π denote the set of all causal scheduling policies in which the

scheduling decisions are made based on the history and current states of the system. To that end, and given an initial

system state s(0) = (s1
1(0), · · · , s1

γ1N
(0), · · · , sK1 (0), · · · , sKγKN (0)), our problem can be formulated as follows:

min
π∈Π

lim sup
T→∞

1

T
Eπ
[
T−1∑
t=0

K∑
k=1

γkN∑
i=1

sk,πi (t) | s(0)

]

s.t.
K∑
k=1

γkN∑
i=1

ak,πi (t) ≤ αN, t = 0, 1, 2, . . . (3)

This problems belongs to the family of RMAB problems, which are generally difficult to solve optimally (see

Papadimitriou et al. [26]). For this reason, one should aim to develop a well-performing sub-optimal policy. As it

has been mentioned, the low-complexity scheduling policy that we are interested in throughout this paper is the

Whittle’s index policy. To establish this policy and derive the Whittle’s indices expressions, one has to follow the

steps below:

1) Provide a relaxed version of the original problem and tackle it through a Lagrangian approach.

2) Prove the indexability property of the problem and derive the Whittle’s index expressions.
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As previously mentioned, these steps have been carried out in previous works by the authors in [15]. For complete-

ness, and as we will use these steps later in our optimality analysis, we report them along with the main results of

[15] in the following section.

III. RELAXED PROBLEM AND WHITTLE’S INDEX POLICY

A. Relaxed Problem

The first step toward establishing the Whittle’s index policy consists of relaxing the constraint on the number of

scheduled users of the problem in (3). Specifically, instead of having the constraint satisfied at each time slot, we

consider that it has to be satisfied on average. Therefore, the relaxed problem can be formulated as follows:

min
π∈Π

lim sup
T→∞

1

T
Eπ
[
T−1∑
t=0

K∑
k=1

γkN∑
i=1

sk,πi (t) | s(0)

]

s.t. lim sup
T→∞

1

T
Eπ
[
T−1∑
t=0

K∑
k=1

γkN∑
i=1

ak,πi (t)

]
≤ αN (4)

To study this problem, one has to introduce a Lagrangian approach to transform the problem into an unconstrained

one as will be detailed in the sequel.

B. Dual Problem

To circumvent the difficulty of studying the constrained problem in (4), a Lagrangian approach has to be adopted.

In particular, let us denote by λ ≥ 0 the Lagrangian parameter. For a fixed λ, the Lagrangian function of the relaxed

problem is:

F (λ, π) = lim sup
T→∞

1

T
Eπ
[
T−1∑
t=0

K∑
k=1

γkN∑
i=1

sk,πi (t) + λ(ak,πi (t)− α) | s(0)

]
(5)

Based on the dual approach, the next step consists of finding the policy π that minimizes F (λ, π). Note that the

term 1
T

∑T−1
t=0

∑K
k=1

∑γkN
i=1 λα, which is equal to Nλα, doesn’t depend on π. Therefore, the policy that minimizes

the above function F (λ, π) also minimizes the following function:

f(λ, π) = lim sup
T→∞

1

T
Eπ
[
T−1∑
t=0

K∑
k=1

γkN∑
i=1

sk,πi (t) + λak,πi (t) | s(0)

]
(6)

Then, we can formulate the dual problem as follows:

min
π∈Π

f(λ, π) (7)

C. Structural Results

To solve the problem in (7), it can be shown that this N -dimensional problem can be decomposed into N one-

dimensional problems that can be solved independently [15]. Therefore, we can drop the i and k indices from (6)

and simply investigate the following one-dimensional problem:

min
π∈Π

lim sup
T→∞

1

T
Eπ
[
T−1∑
t=0

sπ(t) + λaπ(t) | s(0)

]
(8)
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It turns out that the above one dimensional problem can be cast into an infinite horizon average cost Markov

Decision Process (MDP) that is defined as follows:

• States: The state of the MDP at time t is the age of the user s(t) that can take any integer value strictly higher

than 0. Therefore, the considered state space is countable and infinite.

• Actions: The action at time t, denoted by a(t), indicates if a transmission is attempted (value 1) or the user

remains idle (value 0).

• Transitions probabilities: The transitions probabilities between the different states have been previously

detailed in Section II.

• Cost: The cost function at time t is designated by C(s(t), a(t)) = s(t) + λa(t).

To solve this MDP, the authors in [15] have leveraged the Bellman equation and studied the characteristics of the

value function involved. Based on the particularity of the value function, the following result was found:

Proposition 1. The optimal policy that solves problem (8) is of a threshold nature.

Proof. See [15, Proposition 14].

The above results tell us that there exists an integer lk ∈ N∗ such that by only letting users of class k with an age

larger or equal to lk to transmit, we attain the optimal operating point of (8). These results are pivotal to proceed

with establishing the Whittle’s index policy.

D. Indexability and Whittle’s Index Expressions

To proceed toward our goal, one has to analyze the behavior of the MDP when a threshold policy is adopted. To

that end, we note that for any fixed threshold n, the MDP can be modeled through a Discrete Time Markov Chain

(DTMC) where:

• The state is the age s(t).

• For any state s(t) < n, the user is idle. On the other hand, when s(t) ≥ n, the user is scheduled.

The DTMC is reported in Fig. 1. To be able to prove the indexability property and find the Whittle’s index

Figure 1: The states transition when a threshold policy is adopted

expression, one has to find the average objective function in (8) when a threshold policy is adopted. To that end,

we provide the following propositions.
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Proposition 2. For a fixed threshold n, the stationary distribution un of the DMTC when the decoding success

probability is equal to p is:

un(i) =


p

np+1−p if 1 ≤ i ≤ n

(1− p)i−n p
np+1−p if i ≥ n

(9)

Proof. The results can be easily obtained by solving the full balance equations.

The next step consists of calculating the average objective function in (8) when a threshold policy is employed.

Proposition 3. For a fixed threshold n, the average cost of the threshold policy of the problem (8) is:

C(n, λ) =
[(n− 1)2 + (n− 1)]p2 + 2p(n− 1) + 2

2p((n− 1)p+ 1)
+

λ

np+ 1− p
(10)

Proof. The results can be concluded by leveraging the stationary distribution expressions and the fact that C(n, λ) =∑+∞
i=1 iu

n(i) + λ
∑+∞
i=n u

n(i).

Using the stationary distribution, and the average cost, one can then prove the indexability property of the problem,

which ensures the existence of the Whittle’s indices. Before providing these results, we first lay out the definition

of the aforementioned property.

Definition 1 (Indexability). For a fixed λ, consider the vector l(W ) = (l1(λ), . . . , lK(λ)) where lk(λ) is the optimal

threshold for the problem in (8) for each user of class k. We define Dk(λ) = {s ∈ N∗ : s < lk(λ)} as the set of

states for which the optimal action is to not schedule the users belonging to class k. The one-dimensional problem

associated with these users is said to be indexable if Dk(λ) is increasing in λ. More specifically, the following

should hold:

λ′ ≤ λ⇒ Dk(λ) ⊆ Dk(λ) (11)

The indexability property for the problem in (8) was established by the authors in [15]. With the Whittle’s indices

ensured to exist, one can then leverage the stationary distribution and the average cost reported in Proposition 2

and 3 to derive the Whittle’s index expressions as previously done in [15] and [21].

Proposition 4. For any given class k, the Whittle’s index expression of state i is:

W k(i) =
(i− 1)pki

2
+ i (12)

Proof. See [15, pp. 10].

With the Whittle’s index expression derived, we can now establish the Whittle’s index scheduling policy. This

can be summarized in the following algorithm description.

Algorithm 1 Whittle’s index scheduling policy

1: At each time slot t, calculate the Whittle’s index of all users in the network using (4).

2: Schedule the M users having the highest Whittle’s index values at time t, with ties broken arbitrarily.
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Although the above scheduling policy is easy to implement, it remains sub-optimal. Accordingly, characterizing its

performance compared to the optimal policy is important. Equipped with the above results and notations, we can

now tackle the main issue that we aim to address in our paper: the asymptotic optimality of this policy.

IV. ASYMPTOTIC OPTIMALITY OF THE WHITTLE’S INDEX POLICY

A. Optimal Solution of the Relaxed Problem

To be able to prove the asymptotic optimality of the Whittle’s index policy, one has to compare its performance

to the optimal policy that solves (3). However, as previously explained, the optimal policy of (3) is not known. To

circumvent this, and to have a benchmark performance to compare to, we note that the following always holds:

CRP,N

N
≤ COP,N

N
≤ CWIP,N

N
(13)

where CWIP,N

N is the average age per-user under the Whittle’s index policy, C
OP,N

N is the optimal expected average

age per-user of the original problem (3), and CRP,N

N is the optimal average age per-user of the relaxed problem

(4). Thus, in order to show the asymptotic optimality, it is sufficient to prove that for a large number of users N ,
CWIP,N

N converges to CRP,N

N . To that end, the next task is to find an expression of CRP = CRP,N

N . For this purpose,

we provide the following proposition.

Proposition 5. The optimal solution of the relaxed problem is of type threshold for each class. More precisely, it

is a linear combination between two threshold vectors (l11, · · · , l1K) and (l21, · · · , l2K) such that:

• There exists a unique real value W ∗ ∈ R, a class m and state p such that W ∗ = Wm(p).

• The expressions of l1k and l2k are as follows:

l1k = argmax
i∈N∗

{W k(i) : W k(i) ≤W ∗}+ 1 ∀k ∈ {1, . . . ,K}

l2k = argmax
i∈N∗

{W k(i) : W k(i) < W ∗}+ 1 ∀k ∈ {1, . . . ,K} (14)

• There exists a unique 0 < θ ≤ 1 that satisfies θ
∑K
k=1 γk

∑+∞
i=l1k

u
l1k
k (i) + (1− θ)

∑K
k=1 γk

∑+∞
i=l2k

u
l2k
k (i) = α,

where unk is the stationary distribution of the age given a threshold n for class k.

Proof. See [21, Proposition 5].

Thanks to this proposition, we can conclude that the optimal per-user cost of the relaxed problem has the following

expression:

CRP =

K∑
k=1

γk

+∞∑
i=1

[θu
l1k
k (i) + (1− θ)ul

2
k

k (i)]i (15)

By leveraging these results, we can proceed with characterizing the performance of the Whittle’s index policy.
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B. Global Optimality of the Whittle’s index policy

This section constitutes the main contribution of the paper where we show the asymptotic optimality of the

Whittle’s index policy. The idea is to show that the performance of this policy converges to CRP when N is large

and the ratio α = M
N is kept constant.

We let Zk,Ni (t) denote the proportion of users belonging to class k in state i at time t. In other words, it

denotes the ratio of the number of users in class k having an age equal to i to the total number of users N .

We have that ZN (t) = (Z1,N (t), ....., ZK,N (t)) with Zk,N (t) = (Zk,N1 (t), ......, Zk,N
mk(t)

(t)), where mk(t) is the

highest state at time t in class k and
∑mk(t)
i=0 Zk,Ni (t) = γk for each class k. We also denote by z∗ the proportion

corresponding to the optimal policy of the relaxed problem. Thus, the elements of the vector z∗ are exactly the set

{γk(θu
l1k
k (i) + (1− θ)ul

2
k

k (i))} 1≤k≤K
1≤i

where i and k refer to the user i and class k respectively. This can be easily

concluded from the results previously laid out in eq. (15).

In the sequel, we will establish the global optimality for two different classes of users where p1 and p2 are the

successful transmission probabilities of class 1 and 2 respectively (p1 > p2). In order to prove that, we show that

when the Whittle’s index policy is adopted, ZN (t) converges in probability to z∗ when N and t are very large.

To that extent, we follow the steps below:

• We show that the fluid approximation of ZN (t), denoted by z(t), converges to z∗. Such a convergence has

been proven in previous works under restrictive mathematical assumptions that can only be verified numerically

[22]. We escape these assumptions as we will detail in the following.

• Since the relation between z(t+ 1) and z(t) is not linear, our approach to establish the convergence of z(t)

involves two terms: α1(t) and α2(t). These two proportions are nothing but the scheduled proportion at time

t of class 1 and 2, respectively. Note that we always have α1(t) + α2(t) = α. Based on Lemma 1, we show

that for a large enough time t, there exists Tt such that we can find a partial relation between each element

of the vector z(t+ Tt) and terms of the sequence {αk(t′)} k=1,2
t′≤t+Tt

. More precisely, we prove that for Tt, we

can express each proportion that is not scheduled at time t + Tt in function of one term of {αk(t′)} k=1,2
t′≤t+Tt

.

This allows us to obtain 1− α as a linear combination between the terms of {αk(t′)} k=1,2
t′≤t+Tt

at time t+ Tt.

• Subsequently, we introduce in Definition 3, Tmax that satisfies these two following properties proven in

Propositions 7 and 8 using Lemma 2: the Whittle’s index alternates between the two classes from state 1

to Tmax under a given assumption on α; the instantaneous thresholds l1(.) and l2(.) are bounded by Tmax at

time t+ Tt.

• Based on that, we derive the relation between the instantaneous thresholds at time t+Tt in Proposition 9. Taking

as initial time t + Tt = T0, we show by induction in Proposition 10 that, for all T ≥ T0, the instantaneous

thresholds are less than Tmax and that all none scheduled proportions can be expressed in function of terms

of the sequence {αk(t′)} k=1,2
t′≤T

. Next, we define for each class k a vector Ak(T ) composed by αk(T ) (the

scheduled proportion at time T ) plus the finite subset of the sequence {αk(t′)}t′≤T such that for all proportion

of users in class k at a given state at time T that is not scheduled can be expressed by one element belonging

to this subset. After that, we provide the relation between the elements of the vectors Ak(T ) and Ak(T + 1)
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in Propositions 11 and 12

• As was mentioned in Introduction, our proof is based on Cauchy criterion which states that in the real number

space R, a given sequence h(T ) is convergent if and only if its terms become closer together as T increases.

To that extent, we show that the elements of the vector Ak(·) which are nothing but the terms of the sequence

αk(·) are getting closer when T increases. For that purpose, we prove that the highest and the smallest element

of Ak(T ) converge to the same limit when T grows. To that end, we start by establishing the convergence

of the highest and the smallest element of Ak(T ) in Theorem 1. Then, we demonstrate by contradiction that

the highest and the smallest element of Ak(T ) must converge to the same limit in Proposition 13. This last

result implies that αk(t) converges when t scales. In light of that fact, we prove that z(t) converges to z∗

in Proposition 14. Finally, using Kurth theorem, we show in Proposition 15 that ZN (t) converges to z∗ in

probability. And finally we establish in Proposition 16 the convergence of CWIP,N

N to CRP .

With the steps of our approach clarified, we can proceed with introducing the fluid limit approximation. The fluid

limit technique consists of analyzing the evolution of the expectation of ZN (t) under the Whittle’s index policy.

For that, we define the vector z(t) as follows:

z(t+ 1)− z(t)|z(t)=z = E
[
ZN (t+ 1)−ZN (t)|ZN (t) = z

]
(16)

This above equation reveals to us that we have a sequence z(t) defined by recurrence for a fixed initial state

z(0) that we should study its behavior when t is very large. Hence, we end up with a function z(t) that depends on

two variables, t and the initial value z(0). To that extent, our aim is to prove that z(t) converges to z∗ regardless

of the initial state z(0). We let z(t) = (z1(t), .....,zK(t)) with zk(t) = (zk1 (t), ......, zkmk(t)(t)) where zki (t) is the

expected proportion of users at state i in class k at time t with respect to the equation (16). Accordingly we have

that
∑mk(t)
i=0 zki (t) = γk for each class k.

One can notice that z∗ is a particular vector with respect to the equation (16).

Proposition 6. z∗ is the unique fixed point of the fluid approximation equation. In other words, z(t) = z(t+ 1),

if and only if z(t) = z∗.

Proof. The proof follows the same methodology of the paper [22, Lemma 9]

According to this proposition, it is sufficient to show that z(t) converges starting from any initial state z(0), as

the only eventual finite limit of z(t) when t tends to +∞ is the fixed point of the equation (16), z∗.

Remark 1. We highly emphasize that the proportion αk(t) and 1− α refer to the scheduled users’ proportion at

time t in class k and the non scheduled users’ proportion either for class 1 or 2 respectively. Meanwhile, for any

other proportion A, it refers only to the number of users in this proportion over the total users’ number of the

system whatever the different states of users that contains. Having said that, A = B means that they are equal in

terms of proportion, while they can contain users in different states.
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In the following, we prove that the fluid approximation vector of ZN (t), z(t) under the Whittle Index Policy

converges starting from any initial state. We prove this result for 2 different classes of users where p1 and p2 are

the successful transmission probabilities of the class 1 and 2 respectively (p1 > p2), given a sufficient condition

on α. Throughout this section, we denote by w1(n) and w2(n), the Whittle’s index, whose expression is given in

Proposition 4, of state n in class 1 and class 2 respectively. We need to prove that zki (t) converges for each state

i in class k.

Now, focusing on the Whittle index policy, we can see it as an instantaneous threshold policy for each class,

where the thresholds vary over time t. Moreover, under the Whittle index policy, the proportion of users that are

scheduled at each time slot t is fixed and equals to α since the number of scheduled users at each time slot t is

αN . This proportion α contains the users with the highest Whittle index values. In that respect, we define α1(t)

and α2(t) the proportion of users in class 1 and class 2 respectively at time t with the highest Whittle index values

such that α1(t) +α2(t) = α. The remaining proportion of users which are not scheduled at each time slot t, which

is equal to 1 − α, contains the users with the smallest Whittle index values. Now, regarding this proportion, we

give its decomposition into proportions of users at different states in different classes. Denoting by l1(t) and l2(t)

at time t the instantaneous threshold integers under Whittle index policy, then there exists two real values between

0 and 1, β(t) and γ(t), with γ(t) = 1 and 0 < β(t) ≤ 1, or 0 < γ(t) ≤ 1 and β(t) = 1, such that:
l1(t)−1∑
i=1

z1
i (t) +

l2(t)−1∑
i=1

z2
i (t) + β(t)z1

l1(t)(t) + γ(t)z2
l2(t)(t) = 1− α (17)

and {z1
i }1≤i≤l1(t) ∪ {z2

i }1≤i≤l2(t) is exactly the set {zki : wk(i) ≤ max(w1(l1(t), w2(l2(t))}.

In paper [21], in order to prove the convergence of z(t), the authors assume that z(0) is within a precise

neighborhood of z∗ and they consider that the number of states is finite. These assumptions allow them to find an

easy linear relation between z(t) and z(t + 1) (z(t + 1) = Qz(t) + c see [21, Section IV-C]), and then deduce

the convergence of z by establishing that the spectral value of Q is less strictly than one. In our case, as we aim

to prove the convergence of z from any initial state, the relation between z(t+ 1) and z(t) is as follows

z(t+ 1) = Q(z(t))z(t) + c(t) (18)

This equation is not linear which makes studying the evolution of z(·) a hard task. Moreover, as the number of

state is infinite, then the dimensions of z(t) varies per time. Therefore, the matrix Q(z(t)) is not square. Hence

we can not apply the same method as in [21] since the spectral values are not defined for a non square matrix. For

these reasons, we proceed differently than [21]. Our method consists in fact on expressing each proportion zki (t)

that belongs to a non scheduled users’ proportion at time t in function of a term of αk(·) at a given time less than

t. By this way, we will obtain a part of the vector z(t) in function of {αk(t′)} t′≤t,
k∈{0,1}

, and the sum of the other

part equal to α. Then, we show that αk(·) converges for k = 1, 2. We will see later that it is sufficient to show

that αk(·) converges in order to conclude for the convergence of z(·). To find the partial relation between z(t) and

{αk(t′)} t′≤t
k∈{0,1}

, we prove the following lemma.
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Lemma 1. Knowing zk(t), αk(t) and lk(t), we have that:

For i = 1:

zk1 (t+ 1) = pkαk(t).

For 1 ≤ i < lk(t):

zki+1(t+ 1) = zki (t).

Proof. See Appendix A.

According to Lemma 1, after scheduling under the Whittle’s Index Policy, we get at time t+ 1, a proportion of

p1α1(t) of users at state 1 in class 1 and p2α2(t) of users at state 1 in class 2 respectively (i.e. z1
1(t+1) = p1α1(t)

and z2
1(t+ 1) = p2α2(t)).

According to the same lemma, at time t + 2, a proportion of p1α1(t) and p2α2(t) of users will go to state 2 in

class 1 and class 2 respectively and p1α1(t+ 1), p2α2(t+ 1) of users will move to state 1 in class 1 and class 2

respectively (i.e. z1
1(t+ 2) = p1α1(t+ 1), z2

1(t+ 2) = p2α2(t+ 1), z1
2(t+ 2) = p1α1(t) and z2

2(t+ 2) = p2α2(t)).

At time t+ 3, a proportion of p1α1(t) and p2α2(t) of users will go to state 3 in class 1 and class 2 respectively,

p1α1(t+1), p2α2(t+1) of users will move to state 2 in class 1 and class 2 respectively, p1α1(t+2) and p2α2(t+2)

of users will move to state 1 in class 1 and class 2 respectively, (i.e. z1
1(t+3) = p1α1(t+2), z2

1(t+3) = p2α2(t+2),

z1
2(t+ 3) = p1α1(t+ 1) and z2

2(t+ 3) = p2α2(t+ 1), z1
3(t+ 3) = p1α1(t), z2

3(t+ 3) = p2α2(t))

Thereby, at time t+ t0 where the instantaneous threshold lk(t+ t0) ≥ t0, we get a set of proportions

{p1α1(t), p2α2(t), · · · , p1α1(t + t0 − 1), p2α2(t + t0 − 1)} that belong to the proportion 1 − α of users with

the lowest Whittle index values, such that z1
1(t + t0) = p1α1(t + t0 − 1), z2

1(t + t0) = p2α2(t + t0 − 1), · · · ,

z1
t0(t+ t0) = p1α1(t) and z2

t0(t+ t0) = p2α2(t). Hence, we obtain a zki (t+ 1) which is well expressed in function

of terms of αk(·) (k = 1, 2) for i ∈ [1, t0], k = 1, 2.

Remark 2. Considering Whittle index policy framework, the order of the different users’ proportions with respect

to their Whittle index values must be taking into account throughout this analysis. In fact, as we have already

mentioned, we need to give the expression of the non scheduled users’ proportions in function of the terms of αk(·)

for k = 1, 2, which can not be done only if we consider the order of the Whittle index values. To that extent, since

the set of the non scheduled users’ proportions, according to the Whittle’s index policy, is exactly the set of users’

proportions with the lowest Whittle index values among all the different users’ proportions of the system, then the

form at time t of this specific set will be {zki (t) : wk(i) ≤ wm(n)} for a given m and n that vary with t.

Based on this remark above, we need to find at time t+ t0, a set of the form {zki (t+ t0) : wk(i) ≤ wm(n)} for

a given class m and state n, such all the elements of this set are well expressed in function of αk(·). We show in

the sequel that the highest Whittle index of this set could be w2(t0).

Indeed, given that the Whittle index function is increasing with n where n refers to a given age of information

state, then for any state in class 2 with Whittle index less than w2(t0), belongs to [1, t0]. Moreover, considering the

state q in class 1 such that w1(q) ≤ w2(t0) ≤ w1(t0) (p1 > p2), then w1(q) ≤ w1(t0), which means that q ∈ [1, t0].

Hence, for any element in {zki (t+ t0) : wk(i) ≤ w2(t0)}, can be expressed in function of terms of αk(·) (k = 1, 2).
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Figure 2: Evolution of zki (·)) for different states i in function of α1(t) and α2(t) under the Whittle Index Policy

(the green and the yellow colors refer to class 1 and 2 respectively)

Accordingly, {zki (t+ t0) : wk(i) ≤ w2(t0)} equals to the set {p2α2(t), · · · , p2α2(t+ t0 − 1), p1α1(t+ t0 − l(t+

t0)), · · · , p1α1(t + t0 − 1)}, where l(t + t0) is the greatest state q in class 1 such that w1(q) ≤ w2(t0). We note

that l(t+ t0) ≤ t0 because w2(l(t+ t0)) ≤ w1(l(t+ t0)) ≤ w2(t0).

Therefore, in that regards, for a fixed t, we associate for each t0 the corresponding sum
∑l(t+t0)
j=1 z1

j (t + t0) +∑t0
j=1 z

2
j (t+ t0) =

∑l(t+t0)
j=1 p1α1(t+ t0 − j) +

∑t0
j=1 p2α2(t+ t0 − j). To that extent, we define in the following

the time t0 when this aforementioned sum exceeds 1− α.

Definition 2. Starting at time t, we define Tt such that t+ Tt is the first time that verifies:

l(t+Tt)∑
j=1

p1α1(t+ Tt − j) +

Tt∑
i=1

p2α2(t+ Tt − j) ≥ 1− α (19)

In other words, the first time when
∑l(t+t0)
j=1 p1α1(t+t0−j)+

∑t0
i=1 p2α2(t+t0−j) exceeds 1−α is t+t0 = t+Tt.

Then, at time t+Tt, there exists l′1(t+Tt) ≤ l(t+Tt), l′2(t+Tt) ≤ Tt, such that the set {z1
i (t+Tt)}1≤i≤l′1(t+Tt)∪
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{z2
i (t + Tt)}1≤i≤l′2(t+Tt) is exactly the set {zki (t + Tt) : wk(i) ≤ max(w1(l′1(t + Tt), w2(l′2(t + Tt))}1, and

γ(t+ Tt) = 1 and 0 < β(t+ Tt) ≤ 1, or 0 < γ(t+ Tt) ≤ 1 and β(t+ Tt) = 1 such that:

l′1(t+Tt)−1∑
j=1

p1α1(t+Tt−j)+
l′2(t+Tt)−1∑

j=1

p2α2(t+Tt−j)+β(t+Tt)p1α1(t+Tt−l′1(t+Tt))+γ(t+Tt)p2α2(t+Tt−l′2(t+Tt)) = 1−α,

(20)

with l′1(t + Tt) and l′2(t + Tt) being the instantaneous thresholds in class 1 and 2 respectively at time t + Tt.

α1(t+ Tt) and α2(t+ Tt) are the users’ proportions with the highest Whittle index values, and their sum is equal

to α. Without loss of generality, we let l′k(t+ Tt) = lk(t+ Tt).

Figure 3: The proportions of users at different states at time t+ Tt when γ(t+ Tt) = 1 and 0 < β(t+ Tt) ≤ 1

1According to Remark 2, the form of this set means that it contains the users’ proportions with the lowest Whittle index values among all

users’ proportions of the system
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Figure 4: The proportions of users at different states at time t+ Tt when β(t+ Tt) = 1 and 0 < γ(t+ Tt) ≤ 1

As we can see, at time t+Tt, all the expressions of the users’ proportions that belong to the 1−α of users with

the smallest Whittle index values, are in function of α1(t) or α2(t) at various time. In fact, at time t+Tt, we end up

with z1
1(t+Tt) = p1α1(t+Tt−1), z2

1(t+Tt) = p2α2(t+Tt−1), · · · , z1
l1(t+Tt)

(t+Tt) = p1α1(t+Tt− l1(t+Tt))

and z2
l2(t+Tt)

(t+ Tt) = p2α2(t+ Tt− l2(t+ Tt)), and the rest of the proportions belongs to α1(t+ Tt) for class 1

and α2(t+ Tt) for class 2. For this reason, we work only with α1(·) and α2(·) in order to prove the convergence.

As we have mentioned earlier, the proof of the optimality is valid under an assumption on α. This later relies on

the maximum value that can take the instantaneous thresholds lk(t+Tt) at time t+Tt for k = 1, 2. To that extent,

we start by defining and bounding a certain constant Tmax. Then under an assumption on α, we show that the order

of Whittle index alternates between the two classes in the set [1, Tmax + 1] (this will be detailed later). Based on

this, we establish that Tmax is an upper bound of lk(t+ Tt).

First of all, we give a lemma which will be useful to prove the propositions 8, 9 and 10.

Lemma 2. There exists a time tf such that for all t ≥ tf , α1(t) > 0.

Proof. See appendix B.
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Figure 5: Graphical representation of Tmax

In this following definition, we define Tmax, and we check later that it coincides with the upper bound of lk(t+Tt)

for k = 1, 2.

Definition 3. Starting at time t, we define Tmax as Tt defined in Definition 2, that verifies the following:

•
∑l(t+Tt)
j=1 p1α1(t+ Tt − j) +

∑Tt
j=1 p2α2(t+ Tt − j) ≥ 1− α

• α1(t+ i) = 0 for all i ∈ [0, Tmax − 1]

In the next lemma, we determine the upper and the lower bound of Tmax.

Lemma 3. Tmax doesn’t depend on t and satisfies: 1−α
p2α
≤ Tmax ≤ 1−α

p2α
+ 1.

Proof. See appendix C.

We say that the order of the Whittle index strictly alternates between the two classes in [1, n] or from state 1 to

n, if we have w2(1) < w1(1) < w2(2) < w1(2) < w2(3) < w1(3) < · · · < w2(n) < w1(n). To that extent, the

proof of αk(·) convergence is feasible when the alternation condition is satisfied from 1 to lk(t+ Tt) + 1 for all t.

We note that this condition will be relevant in the proof of the proposition 12. To that end, we start by introducing



17

the assumption on α. Then, we demonstrate effectively that under this assumption the condition of alternation is

satisfied from 1 to lk(t+ Tt) + 1.

Assumption 1. Denoting 1
p1−p2 (p1+p2

2 +
√

2(p1 − p2) + (p1+p2)2

4 ) by D. Then, the users’ proportion scheduled

at each time α satisfies:

α >
1

1 + (D − 2)p2
(21)

If Tmax is the highest value that lk(t+Tt) can take, (this will be shown later in proposition 8), then it is sufficient

to prove that the hypothesis of the Whittle index alternation is satisfied from 1 to Tmax + 1. This will be shown in

the next proposition.

Proposition 7. Under Assumption (1), the order of the Whittle index alternates between the two classes from state

1 to state to Tmax + 1.

Proof. See appendix D.

Now we prove that the instantaneous thresholds of the two classes can not exceed Tmax.

Proposition 8. Denoting by lmax the highest instantaneous threshold in the sense that ∀t ≥ tf ,max(l1(t+Tt), l2(t+

Tt)) ≤ lmax, then Tmax = lmax.

Proof. See appendix E

According to the last proposition, Tmax is truly the upper bound of lk(t + Tt) for all t and k = 1, 2. As

consequence, the order of the Whittle index alternates between the two classes in the set [1, lk(t + Tt) + 1]. The

next goal is to find a relation between l1(t+ Tt) and l1(t+ Tt). To do so, we recall that we have at time t:

l1(t)−1∑
i=1

z1
i (t) +

l2(t)−1∑
i=1

z2
i (t) + β(t)z1

l1(t)(t) + γ(t)z2
l2(t)(t) = 1− α (22)

with l1(t) and l2(t) being the thresholds in class 1 and 2 respectively at time t, and β(t) = 1 and 0 < γ(t) ≤ 1,

or γ(t) = 1 and 0 < β(t) ≤ 1. Thereby, the first step consists of establishing the relationship between l1(t) and

l2(t) when max(l1(t), l2(t)) ≤ Tmax depending on two different cases that we will explain thereafter in order to

give a generalized expression of the aforementioned equation (22) where the index of the class is not specified in

the expressions of the thresholds l1(t) and l2(t).

Remark 3. It is worth mentioning that, as we have defined lmax in Proposition 8, it refers to the highest value

that can be attained by the thresholds of the class 1 or 2 at time t+ Tt for t > tf where tf is a given in Lemma

2. Whereas, at any time t > tf , max(l1(t), l2(t)) ≤ lmax might not be true since we don’t have necessary a given

t′ such that t′ + Tt′ = t for any t > tf .
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Proposition 9. At any time t > tf , if max(l1(t), l2(t)) ≤ Tmax = lmax, then there exists l(t) ≤ lmax and, β(t) = 0

and 0 < γ(t) ≤ 1, or 0 < β(t) ≤ 1 and γ(t) = 1 such that:

l(t)−1∑
i=1

z1
i (t) +

l(t)−1∑
i=1

z2
i (t) + β(t)z1

l(t)(t) + γ(t)z2
l(t)(t) = 1− α (23)

Proof. See appendix G.

Starting at time t ≥ tf , we have that at time t+ Tt, the thresholds l1(t+ Tt) and l2(t+ Tt) are less than lmax.

Hence, according to Proposition (9), there exists l(t+ Tt) such that:

l(t+Tt)−1∑
j=1

p1α1(t+Tt−j)+
l(t+Tt)−1∑

j=1

p2α2(t+Tt−j)+β(t+Tt)p1α1(t+Tt−l(t+Tt))+γ(t+Tt)p2α2(t+Tt−l(t+Tt)) = 1−α

(24)

where β(t+ Tt) = 0 and 0 ≤ γ(t+ Tt) < 1, or 0 ≤ β(t+ Tt) < 1 and γ(t+ Tt) = 1.

Denoting t+ Tt by T0, we obtain:

l(T0)−1∑
j=1

p1α1(T0 − j) +

l(T0)−1∑
j=1

p2α2(T0 − j) + β(T0)p1α1(T0 − l(T0)) + γ(T0)p2α2(T0 − l(T0)) = 1− α (25)

where β(T0) = 0 and 0 < γ(T0) ≤ 1, or 0 < β(T0) ≤ 1 and γ(T0) = 1.

Now, we prove by induction that this latter expression is valid for all T ≥ T0, and that l(T ), the instantaneous

threshold at time T , is less than lmax.

Proposition 10. For all T ≥ T0, there exists l(T ) ≤ lmax, β(T ) and γ(T ), such that:

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) + β(T )p1α1(T − l(T )) + γ(T )p2α2(T − l(T )) = 1− α (26)

where β(T ) = 0 and 0 < γ(T ) ≤ 1, or 0 < β(T ) ≤ 1 and γ(T ) = 1.

Proof. See appendix H.

According to the latter proposition, we can now define at each time T ≥ T0, for each class k, the vector

Ak(T ) = (αk(T ), αk(T − 1), · · · , αk(T − l(T ))), such that, there exists β(T ) and γ(T ):

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) + β(T )p1α1(T − l(T )) + γ(T )p2α2(T − l(T )) = 1− α (27)

where β(T ) = 0 and 0 < γ(T ) ≤ 1, or 0 < β(T ) ≤ 1 and γ(T ) = 1. We note that as we have explained previously,

the relation between Ak(T ) and zk(T ) is: pkαk(T − 1) = zk1 (T ), pkαk(T − 2) = zk2 (T ), · · · , pkαk(T − l(T )) =

zkl(T )(T ).

Remark 4. We emphasize that in the following analysis, T is always considered greater than T0.
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We prove in the sequel that maxAk(T ) is decreasing and minAk(T ) is increasing (with the max and min

referring to the element of the vector with the greatest value, and the smallest value respectively). After that, we

conclude the convergence of maxAk(T ) and minAk(T ) when T tends to +∞. Then, we prove that they must

converge to the same real number. In order to prove that maxAk(T ) is decreasing and minAk(T ) is increasing,

we first demonstrate this following proposition.

Proposition 11. All the elements of the vector Ak(T + 1) belong to the elements of the vector Ak(T ) except

αk(T + 1).

Proof. See appendix I

With the intention of proving the monotony of maxA1(T ) and minA1(T ), we still need to prove that the value

of α1(T + 1) must be less than maxA1(T ) and greater than minAk(T ). For that, we introduce the following

proposition.

Before doing that, we note that, as α1(t) + α2(t) = α at each time slot t, then it is sufficient for us to prove that

α1(·) is converging. To that extent, we study only the vector function A1(T ) in order to prove the convergence.

Proposition 12. Under assumption 1, for a given vector A1(T ) = (α1(T ), α1(T −1), · · · , α1(T − l(T )))(T ≥ T0),

we have four possible cases of inequalities:

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ))

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T )

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T )

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1)

Moreover: If α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )), then:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T ))

If α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ), then:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T )))

If α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ), then:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1))

If α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1), then:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ) + 1)− α1(T ))

Proof. See appendix J.
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Theorem 1. minA1(T ) and maxA1(T ) converge and we denote their limits respectively by l1 and l2.

Proof. According to Proposition 11, the elements of the vector A1(T+1) except the first element which is α1(T+1)

belong to the elements of the vector A1(T ). Hence, the values of these elements (except the first element of

A1(T + 1)) is less than maxA1(T ) and greater than minA1(T ). According to the first result of Proposition 12,

we deduce that α1(T+1) is between two values of two elements of the vector A1(T ). Hence, combining the results

of Proposition 11 and 12, maxA1(T + 1) ≤ maxA1(T ) and minA1(T + 1) ≥ minA1(T ). Then maxA1(T ) is

decreasing with T and minA1(T ) is increasing with T . Given that for all T , 0 ≤ α1(T ) ≤ α, then maxA1(T )

and minA1(T ) are bounded by 0 and α. Therefore, we can conclude that minA1(T ) and maxA1(T ) converge

and we denote their limits by l1 and l2 respectively. Moreover maxA1(T ) is lower bounded by l2 and minA1(T )

is upper bounded by l1.

However, in order to have α1(T ) converges to a unique point, we need to establish that maxA1(T ) and

minA1(T ) converge to the same limit. In other words, we need to prove that l1 = l2. For that, we will use

the second result of Proposition 12. To that extent, we proceed by contradiction, i.e. we suppose that l1 6= l2. More

specifically, given that l1 ≤ l2 by definition, the two possible cases satisfied by l1 and l2 are: l1 < l2 or l1 = l2,

then to show that l1 = l2, it is sufficient to find a contradiction considering l1 < l2.

In fact, we prove that if l1 < l2, there exists Td such that all the elements of A1(Td) are less strictly than l2, that

contradicts with the fact that maxA1(T ) is lower bounded by l2.

As maxA1(T ) converges to l2, then for a given ε > 0, there exists a given time slot that we denote by Tε ≥ T0

such that for all T ≥ Tε, maxA1(T ) < l2 + ε. Our proof consists of showing that for a small enough ε, there

exists T ≥ Tε, maxA1(T ) is less strictly than l2. We need first to determine an upper bound of the number of the

elements of the vector A1(T ) whatever T . In fact, as we have demonstrated that at each time T , the instantaneous

threshold l(T ) is less than lmax. Then the number of the elements of A1(T ) will not exceed lmax + 1. In the

following proof, we denote lmax by L.

Proposition 13. If l1 < l2, for ε ≤ (l2 − l1) (1−p1)L

1−(1−p1)L
, there exist Td ≥ Tε such that all the elements of A1(Td)

are less strictly than l2.

Proof. See appendix K.

Providing that l2 is a lower bound of maxA1(T ) which contradicts with the result of the above proposition.

Hence, the supposition of l1 6= l2 is not valid.

Therefore, l1 = l2. Consequently, maxA1(T ) and minA1(T ) converge to the same limit denoted α∗1. Given that

minA1(T ) ≤ α1(T ) ≤ maxA1(T ) for all T , then α1(T ) also converges to α∗1. Similarly, α2(T ) converges to

α− α∗1 = α∗2. In the following proposition, we prove that z(t) converges.

Proposition 14. If αk(t) converges to α∗k, then for each state i and class k, zki (t) converges to zk,∗i .

Proof. See appendix L.
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However, we still have to establish that the stochastic vector ZN (t) converges to z∗ in probability when N

scales. For that, we introduce the following proposition inspired from the discrete-time version of Kurtz Theorem

in [27]. Before that, knowing that the norms on the infinite dimension vector space are not equivalents, we work

only with a specific norm which will be useful to show the optimality of the Whittle index’s policy. Accordingly,

we define || · || as follows:

||v|| =
+∞∑
i=1

|v1
i |i+

+∞∑
i=1

|v2
i |i (28)

where vki is the i-th component in the class k of the vector v. The reason behind chosen a such norm will be

revealed in the proof of Proposition 16.

Proposition 15. For any µ > 0 and finite time horizon T , there exists positive constant C such that

Px( sup
0≤t<T

||ZN (t)− z(t)|| ≥ µ) ≤ C

N

where Px denotes the probability conditioned on the initial state ZN (0) = z(0) = x. Furthermore, C is independent

of N .

Proof. See appendix M.

According to the Proposition above, the system state ZN (t) behaves very close to the fluid approximation model

z(t) when the number of users N is large and starting from any initial state. To that extent, in order to establish the

optimality of Whittle’s index policy, we give first this following lemma which is a consequence of the Proposition

15.

Lemma 4. For any µ > 0, there exists a time T0 such that for each T > T0, there exists a positive constant s with,

Px( sup
T0≤t<T

||ZN (t)− z∗|| ≥ µ) ≤ s

N

Proof. See appendix N

We remind that starting from an initial state x, our objective is to compare the total expected average age per user

under Whittle index policy which can be expressed as 1
T E

wi
[∑T−1

t=0

∑K
k=1

∑+∞
i=1 Z

k,N
i (t)i | ZN (0) = x

]
where

ZN (t) evolves under Whittle index policy, with the optimal age of the relaxed problem per user whose expression

in function of z∗ is, CRP = CRP,N

N =
∑K

1

∑+∞
i=1 z

k,∗
i i, when the number of users N as well as the time duration

T grow.

According to Lemma 4, we are ready now to establish the asymptotic optimality of the Whittle index policy.

Proposition 16. Starting from a given initial state ZN (0) = z(0) = x, then:

lim
T→+∞

lim
N→∞

1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

Zk,Ni (t)i | ZN (0) = x

]
=

K∑
k=1

+∞∑
i=1

zk,∗i i (29)

Proof. See appendix O.
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p1 p2 Bα

0.1 0.2 0.7034

0.2 0.4 0.6250

0.3 0.5 0.4711

0.4 0.6 0.3556

0.4 0.8 0.5328

0.5 0.8 0.3612

0.5 1 0.5

0.6 0.9 0.2893

0.7 0.9 0.1675

0.8 0.9 0.1351

Table I: Evaluation of Bα for a

wide range of channel statics

Figure 6: Average age per-user under the Whittle’s index policy

V. NUMERICAL RESULTS

A. Verification of assumption 1

In this section, we compute the value of the lower bound on α given in Assumption 1. We denote this lowerbound

by Bα. For a wide range of parameters p1 and p2, we provide an exhaustive table that represents the lower bound

on α in function of p1 and p2. As can be seen, the lowerbound decreases when p1 and p2 are close one to the

other. Moreover, it grows even smaller when p1 and p2 have relatively high values. According to table I, we can

notice that in most cases of (p1, p2), the lower bound of α doesn’t exceed 0.5. This implies that the interval of α

where the assumption 1 is satisfied, is enough wide for different values of p1 and p2.

B. Implementation of the Whittle’s index policy

In this section, we evaluate the Whittle’s index policy’s performance by comparing the per-user average age of

the Whittle’s index policy to the optimal per-user average age of the relaxed problem Crp. To that extent, we let

the number of users in class 1 and class 2 to be equal to N
2 . The probability of successful transmission of class 1

and class 2 are set to 0.8 and 0.5, respectively. At each time slot t, at most, M = N
2 of users can be scheduled

per each time slot, i.e., α = M
N = 1

2 . As seen in Figure 6, the gap between the two policies tightens as the number

of users N grows. Indeed, these numerical results corroborate our theoretical analysis and show that the Whittle’s

index policy is effectively globally asymptotically optimal.

VI. CONCLUSION

In this paper, we have examined the average age minimization problem where only a fraction of the network

users can transmit simultaneously over unreliable channels. We presented and derived a novel method based Cauchy
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criterion to prove the Whittle’s index policy’s optimality in the many-users regime. Compared to the state of the

art methods, our approach does not require imposing strict mathematical assumptions, which can be challenging

to verify. We also provided numerical results that corroborate our theoretical findings and highlight the Whittle’s

index policy’s performance. Moving forward, the next research direction is to extend our proof to various other

scheduling problems under different system models and objective functions.
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APPENDIX A

PROOF OF LEMMA 1

We can formulate the fluid limit equation (16) as follows:

z(t+ 1) = E
[
ZN (t+ 1)

∣∣∣ZN (t) = z(t)
]

At time t + 1, applying Whittle index policy, in average exactly a proportion of pkαk(t) of users will be at state

one since αk(t) refers to the proportion of users in class k that are scheduled. Accordingly, zk1 (t+ 1) = pkαk(t).

While for 1 ≤ i < lk(t), the users’ proportion zki (t) is not scheduled. Therefore at time t + 1, since prescribing

idle action to a given user implies that its state will be increased by 1, the proportion zki (t) at state i in class k

will be at state i+ 1. Thus, E
[
ZN,ki+1 (t+ 1)

∣∣∣ZN (t) = z(t)
]

= zki+1(t+ 1) = zki (t)..

APPENDIX B

PROOF OF LEMMA 2

First of all, we provide an useful lemma.

Lemma 5. We have for all integer i and for k = 1, 2:

wk(i+ 1)− wk(i) = ipk + 1

Proof. renewcommand � The result can be obtained directly by replacing wk(i) by its expression.

In order to prove the present lemma, we proceed in two steps:

• We prove first by contradiction that there exists a given time tf such that α1(tf ) > 0.

• We prove that if α1(tf ) > 0, then α1(t) > 0 for all t ≥ tf .

1) For the first point, we suppose that for all t, we have that α1(t) = 0. Consequently, we get that z1
1(t+Tt) =

0, · · · , z1
l1(t+Tt)

(t+Tt) = 0, and α1(t+Tt) = 0. This means that, the proportion of all users in class 1 is equal

to 0. However, the users’ proportion of class 1 is γ1 6= 0. That is, there exists a given time tf such α1(tf ) > 0.
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2) Before addressing the second point, we recall that α1(t) refers to the scheduled users’ proportion in the class

1. Thereby, α1(t) contains all users with the highest Whittle index values among all users in class 1. To that

extent, at time tf , the Whittle index of α1(tf ) is greater than the Whittle index of the users’ proportion 1−α

that we denote by C. We let Stf (C) be the set of pair (state,class) at time tf in the users’ proportion C.

Denoting by q the smallest state of α1(tf ), n and m a given state and class respectively such that zmn (t)

belongs to C at time tf , then wm(n) ≤ w1(q). Under the Whittle index policy, at time tf + 1, the states

of a users’ proportion that equals to (1 − p1)α1(tf ) among the users’ proportion α1(tf ), will be increased

by one in comparison with the time slot tf , as well as the users’ proportion C. Accordingly, the smallest

state of the proportion (1 − p1)α1(tf ), is q + 1. Stf+1(C) is shifted of one with respect to Stf (C), i.e.,

(n,m) ∈ Stf (C)⇔ (n+ 1,m) ∈ Stf+1(C). We compare w1(q+ 1) with the Whittle index of n in class m

such that (n,m) ∈ Stf+1(C). In that direction, we let (n,m) ∈ Stf+1(C), and we distinguish between two

cases:

• m = 1: Leveraging the fact that (n − 1,m) ∈ Stf (C), then w1(q) ≥ w1(n − 1). That implies that

n− 1 ≤ q since wk(.) is increasing. Hence n ≤ q + 1. As consequence, w1(n) ≤ w1(q + 1)

• m = 2: Again we distinguish between two case:

– If n− 1 ≤ q, then w2(n) < w1(n) ≤ w1(q + 1).

Therefore, we obtain our desired result for the first case.

– If n− 1 > q:

We have that:

w1(q + 1)− w2(n) = (w1(q + 1)− w1(q))− (w2(n)− w2(n− 1)) + w1(q)− w2(n− 1)

Applying Lemma 5, we obtain: (w1(q+ 1)−w1(q))− (w2(n)−w2(n− 1)) = qp1− (n− 1)p2. Given

that w2(n− 1) ≤ w1(q), therefore replacing by their expressions we get:

(n− 2)(n− 1)p2/2 + n− 1 ≤ (q − 1)qp1/2 + q

As n− 1 > q, then:

(n− 2)(n− 1)p2/2 ≤ (q − 1)qp1/2

Hence:

(n− 1)p2 ≤ qp1

Therefore, (w1(q+1)−w1(q))−(w2(n)−w2(n−1)) ≥ 0. Hence, knowing that w1(q)−w2(n−1) ≥ 0

we end up with our desired result for this case, i.e. w1(q + 1)− w2(n) ≥ 0.

Thus, we have proved that at time tf + 1, all the users’ proportions in C whose sum is equal to 1−α have a

Whittle index less than that of (1− p1)α1(tf ) defined in the beginning of this proof. That means that there

exists at least a users’ proportion that equals to 1− α with Whittle index values less than those of the states

of the users’ proportion (1 − p1)α1(tf ). Then surely, the users’ proportion (1 − p1)α1(tf ) that is different
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from 0 belongs to the users’ proportion α with the highest Whittle index values. This implies that surely at

time tf + 1, there will be at least one queue in class 1 belonging to α with the highest Whittle index values.

Therefore, we have that α1(tf + 1) > 0. This result can be generalized for all t ≥ tf . In other words, we

have for all t ≥ tf , α1(t) > 0.

APPENDIX C

PROOF OF LEMMA 3

As α1(j) + α2(j) = α for all integers j, then, if α1(t+ i) = 0, α2(t+ i) = α. For j ∈ [1, Tmax], we have that

Tmax− j ∈ [0, Tmax−1]. This means that α1(t+Tmax− j) is equal to 0, which implies that α2(t+Tmax− j) = α.

Moreover, knowing that l(t+Tmax) ≤ Tmax, then for all j ∈ [1, l(t+Tmax)], Tmax−j ∈ [Tmax−l(t+Tmax), Tmax−

1] ⊂ [0, Tmax − 1]. Hence, we get that α1(t+ Tmax − j) = 0, for all j ∈ [1, l(t+ Tmax)].

Therefore, according to the definition 2, Tmax satisfies:

Tmaxp2α ≥ 1− α (30)

Tmax ≥
1− α
p2α

(31)

Providing that Tmax by definition is the first time when
∑l(t+Tmax)
j=1 p1α1(t+Tmax−j)+

∑Tmax

j=1 p2α2(t+Tmax−j)

exceeds 1−α, then at time t+Tmax−1,
∑l(t+Tmax−1)
j=1 p1α1(t+Tmax−1−j)+

∑Tmax−1
j=1 p2α2(t+Tmax−1−j) <

1 − α. This latter sum is equal to (Tmax − 1)p2α which is less than 1 − α. Therefore, we have as result that

Tmax <
1−α
p2α

+ 1. As there is one integer value between 1−α
p2α

and 1−α
p2α

+ 1, then Tmax doesn’t depend on t, and

satisfies: 1−α
p2α
≤ Tmax <

1−α
p2α

+ 1..

APPENDIX D

PROOF OF PROPOSITION 7

We have that w1(n) = (n−1)p1n
2 + n, and w2(n) = (n−1)p2n

2 + n. We start first by finding the set of states for

which the Whittle index alternate between the two classes. As we can see from the expression of the Whittle index,

for a given state n, w2(n) < w1(n) as p2 < p1. In order to have the condition of alternation strictly satisfied for

any given state n, we must have w1(n) < w2(n+ 1). Hence, denoting by f(n) the difference w2(n+ 1)−w1(n),

we study the sign of f(n) to see for which n f is strictly positive.

Lemma 6. For all n ∈ [1, D[, f(n) > 0

Proof. We have that:

f(n) =
n2

2
(p2 − p1) +

n

2
(p1 + p2) + 1 (32)

Hence:

f ′(n) = n(p2 − p1) +
p1 + p2

2
(33)

The derivative is equal to zero for n = p1+p2
2(p1−p2) , which is greater strictly than 0. This means that f is strictly

increasing in [0, p1+p2
2(p1−p2) ] since f ′(n) > 0 in [0, p1+p2

2(p1−p2) [. Providing that f(0) = 1, then surely f is strictly positive
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in [0, p1+p2
2(p1−p2) ]. This means that, the unique positive solution for f(n) = 0 must be in the interval [ p1+p2

2(p1−p2) ,+∞[,

as lim
n→+∞

f(n) = −∞. Indeed, the unique solution n0 of f(n) = 0 in [ p1+p2
2(p1−p2) ,+∞[ is the biggest root of the

polynomial (32) which is exactly the value D introduced in Assumption 1. As the function f is decreasing in

[ p1+p2
2(p1−p2) ,+∞[, then f is strictly positive in [0, D[. Therefore, f(n) > 0 for n ∈ [1, D[, which concludes the

proof. �

According to Lemma 6, the order of the Whittle index strictly alternates between the two states when n ∈ [1, D[.

Therefore, we need to prove that Tmax + 1 is upper bounded by D in order to prove that the alternation condition

is satisfied from state 1 to Tmax + 1.

Indeed, as we have found an upper bound of Tmax which is equal to 1−α
p2α

+ 1 (according to Lemma 3), we just

need to prove that 1−α
p2α

+ 2 is strictly less than D.

Under assumption (1), we have that:

α >
1

1 + (D − 2)p2
(34)

α(1 + p2(D − 2)) > 1 (35)

αp2(D − 2) > 1− α (36)

D − 2 >
1− α
p2α

(37)

D >
1− α
p2α

+ 2 (38)

Hence, from state 1 to Tmax + 1, the order of the Whittle index strictly alternates between the two classes.

Accordingly, the proof is concluded.

APPENDIX E

PROOF OF PROPOSITION 8

We present first a lemma which will be helpful in proving this proposition as well as the next ones.

Lemma 7. For any state q, at any time t, we have that:

w1(q) ≤ w2(l2(t))⇒ w1(q) ≤ w1(l1(t))

and

w2(q) ≤ w1(l1(t))⇒ w2(q) ≤ w2(l2(t))

Proof. See appendix F �

We consider t ≥ tf . After time Tt, we have that:

l(t+Tt)∑
j=1

p1α1(t+ Tt − j) +

Tt∑
j=1

p2α2(t+ Tt − j) ≥ 1− α (39)
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Then, as it has been showcased, at time t+ Tt, there exists l1(t+ Tt) ≤ l(t+ Tt), l2(t+ Tt) ≤ Tt, γ(t+ Tt) = 1

and 0 < β(t+ Tt) ≤ 1; or 0 < γ(t+ Tt) ≤ 1 and β(t+ Tt) = 1 such that:

l1(t+Tt)−1∑
j=1

p1α1(t+Tt−j)+
l2(t+Tt)−1∑

j=1

p2α2(t+Tt−j)+β(t+Tt)p1α1(t+Tt−l1(t+Tt))+γ(t+Tt)p2α2(t+Tt−l2(t+Tt)) = 1−α

(40)

with l1(t+ Tt) and l2(t+ Tt) being the instantaneous thresholds in class 1 and 2 respectively at time t+ Tt.

Now, we prove by contradiction that max(l1(t+ Tt), l2(t+ Tt)) ≤ Tmax.

We prove first that l2(t+ Tt) is greater than l1(t+ Tt).

As we have that w2(l1(t + Tt)) < w1(l1(t + Tt)), then according to lemma 7, w2(l1(t + Tt)) ≤ w2(l2(t + Tt)).

This implies that l2(t+ Tt) is greater than l1(t+ Tt).

Reasoning by contradiction, we suppose that l2(t+ Tt) > Tmax (l2(t+ Tt) = max(l1(t+ Tt), l2(t+ Tt)) > Tmax).

Based on this, we have that w1(Tmax) < w2(l2(t+Tt)) because w1(Tmax) < w2(Tmax + 1) ≤ w2(l2(t+Tt)) since

the order of the Whittle index alternates between the two classes as it has been proved in Proposition 8. To that

extent, we distinguish between two cases:

1) First case: If β(t+ Tt) = 1:

We have that w1(Tmax) < w2(l2(t+ Tt)). Then, according to Lemma 7, we have that w1(Tmax) ≤ w1(l1(t+ Tt)).

Hence, we can conclude that Tmax ≤ l1(t+ Tt) as w1 is an increasing function with the age of information.

Moreover, since we have that p1α1(t + Tt − j) + p2α2(t + Tt − j) > p2α (the strict inequality is due to the fact

that α1(t) > 0 as t ≥ tf according to Lemma 2), then according to Lemma 3, we obtain:

l1(t+Tt)−1∑
j=1

p1α1(t+Tt−j)+
l2(t+Tt)−1∑

j=1

p2α2(t+Tt−j)+β(t+Tt)p1α1(t+Tt−l1(t+Tt))+γ(t+Tt)p2α2(t+Tt−l2(t+Tt)) = 1−α

(41)

=

l1(t+Tt)∑
j=1

p1α1(t+ Tt − j) +

l2(t+Tt)−1∑
j=1

p2α2(t+ Tt − j) + γ(t+ Tt)p2α2(t+ Tt − l2(t+ Tt)) (42)

≥
Tmax∑
j=1

p1α1(t+ Tt − j) +

Tmax∑
j=1

p2α2(t+ Tt − j) > Tmaxp2α ≥ 1− α (43)

The last inequality comes from the fact that Tmax ≥ 1−α
p2α

. This implies that:

1− α > 1− α (44)

This gives us an illogical statement. Consequently, in this case, the assumption l2(t+ Tt) > Tmax is not true.

2) Second case: If β(t+ Tt) < 1:

As we have that β(t + Tt) < 1, then γ(t + Tt) should be equal to 1. Therefore, all users at state l2(t + Tt) in

class 2 are in the users’ proportion 1 − α with the smallest Whittle index values. However, there exists users in

state l1(t + Tt) in class 1 in the users’ proportion α that has the highest Whittle index values. That is, we have
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w1(l1(t+Tt)) ≥ w2(l2(t+Tt)). As it has been established before tackling the first case, w1(Tmax) < w2(l2(t+Tt)),

then w1(Tmax) < w1(l1(t+ Tt)). This means that l1(t+ Tt) > Tmax. Therefore, we have that:

l1(t+Tt)−1∑
j=1

p1α1(t+Tt−j)+
l2(t+Tt)−1∑

j=1

p2α2(t+Tt−j)+β(t+Tt)p1α1(t+Tt−l1(t+Tt))+γ(t+Tt)p2α2(t+Tt−l2(t+Tt)) = 1−α

(45)

≥
Tmax∑
j=1

p1α1(t+ Tt − j) +

Tmax∑
j=1

p2α2(t+ Tt − j) > Tmaxp2α ≥ 1− α (46)

This implies that:

1− α > 1− α (47)

Consequently, in this case, the assumption l2(t+ Tt) > Tmax is not true.

Hence, in both cases, l2(t+ Tt) must be less than Tmax, i.e. max(l1(t+ Tt), l2(t+ Tt)) ≤ Tmax for all t.

Thus, we end up with Tmax = lmax, which concludes our proof.

APPENDIX F

PROOF OF LEMMA 7

We prove only the first statement as the proof steps for both cases are exactly the same. By definition of l1(t) and

l2(t), we have that {z1
i (t)}1≤i≤l1(t)∪{z2

i (t)}1≤i≤l2(t) is exactly the set {zki (t) : wk(i) ≤ max(w1(l1(t), w2(l1(t))}.

Hence, if a given q verifies w1(q) ≤ w2(l2(t)), then w1(q) ≤ max(w1(l1(t), w2(l2(t)), that implies that z1
q (t) ∈

{zki (t) : wk(i) ≤ max(w1(l1(t), w2(l2(t))} = {z1
i (t)}1≤i≤l1(t) ∪ {z2

i (t)}1≤i≤l2(t). Knowing that the highest users’

proportion’s state of the aforementioned set in class 1 is l1(t), then q ≤ l1(t). Therefore as w1(.) is increasing,

w1(q) ≤ w1(l1(t)).

APPENDIX G

PROOF OF PROPOSITION 9

We have that:
l1(t)−1∑
i=1

z1
i (t) +

l2(t)−1∑
i=1

z2
i (t) + β(t)z1

l1(t)(t) + γ(t)z2
l2(t)(t) = 1− α (48)

with l1(t) and l2(t) being the thresholds in class 1 and 2 respectively at time t, and β(t) = 1 and 0 < γ(t) ≤ 1,

or γ(t) = 1 and 0 < β(t) ≤ 1.

Our aim in this proof is to show that there is a link between l1(t) and l2(t) when they are less than Tmax. By doing

so, we find a general form of the aforementioned equation. To that end, we prove first that l1(t) is less than l2(t).

Indeed, as we have w2(l1(t)) < w1(l1(t)), then according to lemma 7, w2(l1(t)) ≤ w2(l2(t)). Consequently, we

can conclude that l1(t) ≤ l2(t).

Secondly, we prove that l2(t) ≤ l1(t)+1. As the order of the Whittle indices alternates between the two classes from

state 1 to state Tmax + 1, w1(l2(t)− 1) < w2(l2(t)). Hence, according to lemma 7, we have that w1(l2(t)− 1) ≤

w1(l1(t)). Consequently, l2(t)− 1 ≤ l1(t).

Given that l1(t) ≤ l2(t) ≤ l1(t) + 1, then l1(t) can be either l2(t) or l2(t)− 1.

The second step consists of deriving the value of β(t) or γ(t) depending on the value of l1(t) and l2(t).



30

• If l1(t)) = l2(t):

We prove that γ(t) = 1 if z2
l2(t) > 0. Indeed, if γ(t) 6= 1 and z2

l2(t) > 0, thus there is at least a non

empty set of users in class 2 at state l2(t) that belongs to the users’ proportion α with the highest Whittle

index values. However there exists always a non empty set of queues in class 1 at state l1(t) that belong to

1− α users’ proportion with the least Whittle index values, since β(t) > 0. Then, we have that w2(l2(t)) ≥

w1(l1(t)). However, we know that w2(l2(t)) = w2(l1(t)) < w1(l1(t)). This later inequality contradicts with

what precedes. Thus, the statement that γ(t) 6= 1 is not true, i.e. γ(t) = 1.

In this case we denote l(t) = l1(t) = l2(t).

We end up:
l(t)−1∑
j=1

z1
i (t) +

l(t)−1∑
i=1

z2
i (t) + β(t)z1

l(t)(t) + z2
l(t)(t) = 1− α (49)

If z2
l2(t) = 0, the last equation still valid since z2

l2(t) = 0 whatever the value of γ(t), namely when γ(t) = 1.

• If l1(t) + 1 = l2(t):

We prove that β(t) = 1 if z1
l1(t) > 0. Indeed, if β(t) 6= 1 and z1

l1(t) > 0, there is at least a set of users in

class 1 in state l1(t) that belongs to the users’ proportion α with the highest Whittle index values. However

there is always a set of queues in class 2 at state l2(t) that belong to 1 − α users’ proportion with the least

Whittle index values, since γ(t) > 0. Then, we have that w1(l1(t)) ≥ w2(l2(t)). However, we know that

w2(l2(t)) = w2(l1(t) + 1) > w1(l1(t)) since the order of Whittle index alternates between the two classes

from state 1 to Tmax + 1 according to Proposition 8. Thus, w2(l1(t) + 1) > w1(l1(t)) ≥ w2(l1(t) + 1), which

gives us an obvious contradiction. Therefore, we can assert that β(t) = 1.

In this case, we consider that l(t) = l1(t) + 1 = l2(t) and we get:

l(t)−1∑
i=1

z1
i (t) +

l(t)−1∑
i=1

z2
i (t) + γ(t)z2

l(t)(t) = 1− α (50)

Similarly to the first case, if z1
l1(t) = 0, the last equation still valid since z1

l1(t) = 0 whatever the value of β(t),

namely when β(t) = 1. Subsequently, combining the two cases, there exists l(t) such that:

l(t)−1∑
i=1

z1
i (t) +

l(t)−1∑
i=1

z2
i (t) + β(t)z1

l(t)(t) + γ(t)z2
l(t)(t) = 1− α (51)

where β(t) = 0 and 0 < γ(t) ≤ 1, or 0 < β(t) ≤ 1 and γ(t) = 1.

APPENDIX H

PROOF OF PROPOSITION 10

We prove the Proposition by induction:

• For T = T0, we have already proved our claim.

• We suppose that the statement is valid for a given T , i.e. there exists l(T ), β(T ) and γ(T ) such that:

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) + β(T )p1α1(T − l(T )) + γ(T )p2α2(T − l(T )) = 1− α (52)
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where β(T ) = 0 and 0 < γ(T ) ≤ 1, or 0 < β(T ) ≤ 1 and γ(T ) = 1. Then, at the next time slot, among the

users’ proportion scheduled, α, exactly p1α1(T ) and p2α2(T ) will go to state one for each class, while for the

rest, their states will be incremented by one. Likewise, for the other users for which the action taken is passive,

their states will be incremented by one. As consequence, the decreasing order according to the Whittle index

value for these proportions of users at the next slot is β(T )p1α1(T − l(T )), γ(T )p2α2(T − l(T )), p1α1(T −

l(T ) + 1), p2α2(T − l(T ) + 1), p1α1(T − l(T ) + 2), p2α2(T − l(T ) + 2), p1α1(T − l(T ) + 3), p2α2(T − l(T ) +

3), · · · , p1α1(T ), p2α2(T ) (As we have mentioned before, the order of the Whittle indices alternates between

the two classes because l(T ) + 1 ≤ lmax + 1). Moreover, the states of the users’ proportion (1 − p1)α1(t)

and (1− p2)α2(t); which are scheduled but they don’t transit to the state 1 with respect to their classes; will

be increased by one. Leveraging the above results, we provide the decreasing order of all users’ proportions

according to the Whittle index value depending on two cases of β(t).

If β(T ) = 0, then the smallest state’s value among the users’ proportions (1− p1)α1(t) and (1− p2)α2(t) at

time T + 1 is l(T ) + 1. Hence, their Whittle index values will be higher than w2(l(T ) + 1), and consequently,

they will be higher than those of users’ proportion of γ(T )p2α2(T − l(T )) at state l(T ) + 1 in class 2.

If β(T ) 6= 1, the smallest state value among the users’ proportions (1 − p1)α1(t) and (1 − p2)α2(t) at time

T + 1 is respectively l(T ) + 1 and l(T ) + 2. Then, their Whittle index values will be higher than w1(l(T ) + 1)

(w1(l(T ) + 1) < w2(l(T ) + 2) as the alternation condition is satisfied from 1 until lmax + 1). Consequently,

their Whittle index values will be higher than the Whittle index of users’ proportion β(T )p1α1(T − l(T )) at

state l(T ) + 1 in class 1.

Thus, the decreasing order of all users’ proportions according to the Whittle index value whatever the value of

β(T ) at T + 1 is: (1− p1)α1(t), (1− p2)α2(t), β(T )p1α1(T − l(T )), γ(T )p2α2(T − l(T )), p1α1(T − l(T ) +

1), p2α2(T − l(T ) + 1), p1α1(T − l(T ) + 2), p2α2(T − l(T ) + 2), p1α1(T − l(T ) + 3), p2α2(T − l(T ) +

3), · · · , p1α1(T ), p2α2(T ).

As we have that (1 − p1)α1(t) + (1 − p2)α2(t) ≤ α, then surely the thresholds at time T + 1 in class 1

and in class 2 are less than the state of the users’ proportion β(T )p1α1(T − l(T )) and γ(T )p2α2(T − l(T ))

respectively. Therefore, there exists l1(T + 1), l2(T + 1), β(T + 1) and γ(T + 1) such that 0 < β(T + 1) ≤ 1

and γ(T + 1) = 1, or β(T + 1) = 1 and 0 < γ(T + 1) ≤ 1:

l1(T+1)−1∑
j=1

p1α1(T+1−j)+
l2(T+1)−1∑

j=1

p2α2(T+1−j)+β(T+1)p1α1(T+1−l1(T+1))+γ(T )p2α2(T+1−l2(T+1)) = 1−α

(53)

Now we prove by contradiction that max(l1(T + 1), l2(T + 1)) ≤ Tmax.

We prove first that l2(T + 1) is greater than l1(T + 1).

As w2(l1(T + 1)) < w1(l1(T + 1)), that means according to lemma 7, l2(T + 1) is greater than l1(T + 1)

(w2(l1(T + 1)) < w2(l2(T + 1))).

Reasoning by contradiction, if l2(T + 1) > Tmax, then we distinguish between two cases:

– First case: If β(T + 1) = 1:

we have that w1(Tmax) < w2(l2(T + 1)) (w1(Tmax) < w2(Tmax + 1) as the alternation condition is
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satisfied in [1, Tmax + 1]), i.e., according to lemma 7, we have that lmax ≤ l1(T + 1). Hence, according

to lemmas 2 and 3, we have that:
l1(T+1)−1∑

j=1

p1α1(T+1−j)+
l2(T+1)−1∑

j=1

p2α2(T+1−j)+β(T+1)p1α1(T+1−l1(T+1))+γ(T+1)p2α2(T+1−l2(T+1))

(54)

= 1− α ≥
Tmax∑
j=1

p1α1(T + 1− j) +

Tmax∑
j=1

p2α2(T + 1− j) > Tmaxp2α ≥ 1− α (55)

Therefore we end up with:

1− α > 1− α (56)

Hence, the assumption that l2(T + 1) > Tmax leads us to an illogical statement. Consequently, the

hypothesis of l2(T + 1) > lmax is not valid for the first case.

– Second case: If β(T + 1) < 1:

Then we have that γ(T + 1) = 1. Therefore, all users at state l2(T + 1) in class 2 are in the proportion

1−α with the smallest Whittle index values. However, there are users in state l1(T + 1) in class 1 of the

α proportion with the highest Whittle index values. In other words, w1(l1(T + 1)) ≥ w2(l2(T + 1)) >

w1(Tmax). This means that l1(T + 1) > Tmax. Therefore, according to lemmas 2 and 3:

l1(T+1)−1∑
j=1

p1α1(T+1−j)+
l2(T+1)−1∑

j=1

p2α2(T+1−j)+β(T+1)p1α1(T+1−l1(T+1))+γ(T+1)p2α2(T+1−l2(T+1))

(57)

= 1− α ≥
Tmax∑
j=1

p1α1(T + 1− j) +

Tmax∑
j=1

p2α2(T + 1− j) > Tmaxp2α ≥ 1− α (58)

1− α > 1− α (59)

Therefore, the hypothesis of l2(T + 1) > Tmax is not valid for the second case.

Consequently, we have that l2(T + 1) ≤ Tmax, i.e. max(l1(T + 1), l2(T + 1)) ≤ Tmax. Then, according to

Proposition 9, there exists l(T + 1), and γ(T + 1) and β(T + 1) such that:

l(T+1)−1∑
j=1

p1α1(T+1−j)+
l(T+1)−1∑
j=1

p2α2(T+1−j)+β(T+1)p1α1(T+1−l(T+1))+γ(T+1)p2α2(T+1−l(T+1)) = 1−α

(60)

where β(T + 1) = 0 and 0 < γ(T + 1) ≤ 1, or 0 < β(T + 1) ≤ 1 and γ(T + 1) = 1.

To conclude, we have proved by induction, that for all T ≥ T0, there exists l(T ), β(T ) and γ(T ), such that:

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) + β(T )p1α1(T − l(T )) + γ(T )p2α2(T − l(T )) = 1− α (61)

where β(T ) = 0 and 0 < γ(T ) ≤ 1, or 0 < β(T ) ≤ 1 and γ(T ) = 1, which concludes our proof.
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APPENDIX I

PROOF OF PROPOSITION 11

We proceed by the same method used to prove the Proposition 10.

We consider at time T :
l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) + β(T )p1α1(T − l(T )) + γ(T )p2α2(T − l(T )) = 1− α, (62)

where β(T ) = 0 and 0 ≤ γ(T ) < 1, or 0 ≤ β(T ) < 1 and γ(T ) = 1. Among the users’ proportion scheduled α,

exactly p1α1(T ) and p2α2(T ) will go to state one for each classes, and (1− p1)α1(T ) and (1− p2)α2(T ) will go

to the next state.

For the other users for which the action taken is passive, their states will be increased by one, then the de-

creasing order according to the Whittle index value at the next time slot is β(T )p1α1(T − l(T )), γ(T )p2α2(T −

l(T )), p1α1(T − l(T ) + 1), p2α2(T − l(T ) + 1), p1α1(T − l(T ) + 2), p2α2(T − l(T ) + 2) · · · p1α1(T ), p2α2(T ) (As

we said before that the order based on the value of the Whittle indices, alternate between the two classes from

state 1 to l(T ) ≤ lmax + 1). Moreover, the users’ proportion scheduled (1− p1)α1(T ) and (1− p2)α2(T ) will be

at states that have Whittle index values higher than those of β(T )p1α1(T − l(T )) and γ(T )p2α2(T − l(T )) (as we

have explained in the proof of Proposition 10).

Hence, the global decreasing order according to the Whittle index value is (1−p1)α1(T ), (1−p1)α2(T ), β(T )p1α1(T−

l(T )), γ(T )p2α2(T − l(T )), p1α1(T − l(T ) + 1), p2α2(T − l(T ) + 1), p1α1(T − l(T ) + 2), p2α2(T − l(T ) +

2) · · · p1α1(T ), p2α2(T ).

Providing that (1− p1)α1(t) + (1− p2)α2(t) ≤ α, then at time T + 1:

l(T )−1∑
j=1

p1α1(T−j)+

l(T )−1∑
j=1

p2α2(T−j)+β(T )p1α1(T−l(T ))+γ(T )p2α2(T−l(T ))+p1α1(T )+p2α2(T ) ≥ 1−α

(63)

Then, there exists β = 0 and 0 < γ ≤ 1, or 0 < β ≤ 1 and γ = 1, and sub-set {α1(T ), α2(T ), α1(T − 1), α2(T −

1) · · ·α1(T −m), α2(T −m)} ⊂ {α1(T − l(T )), α2(T − l(T )), α1(T − l(T ) + 1), α2(T − l(T ) + 1), α1(T − l(T ) +

2), α2(T − l(T ) + 2) · · ·α1(T ), α2(T )}, such that:

(m+1)−1∑
j=1

p1α1(T+1−j)+

(m+1)−1∑
j=1

p2α2(T+1−j)+βp1α1(T+1−(m+1))+γp2α2(T+1−(m+1)) = 1−α (64)

Indeed, m+ 1 is effectively l(T + 1), β = β(T + 1), γ = γ(T + 1), and the elements of the set {α1(T ), α1(T −

1), · · ·α1(T −m)} ∪ {α1(T + 1)} and the set {α2(T ), α2(T − 1), · · · , α2(T −m)} ∪ {α2(T + 1)} are exactly

the elements of the vectors A1(T + 1) and A2(T + 1) respectively. Given that {α1(T ), α1(T − 1), · · ·α1(T −m)}

and {α2(T ), α2(T − 1), · · · , α2(T − m)} are included in the set of elements of the vector A1(T ) and A2(T )

respectively, then for k = 1, 2, all the elements of the vector Ak(T + 1) except αk(T + 1) belong to the elements

of vector Ak(T ).
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APPENDIX J

PROOF OF PROPOSITION 12

According to Proposition 10, the elements of the vectors A1(T ) and A2(T ) satisfy:

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) + β(T )p1α1(T − l(T )) + γ(T )p2α2(T − l(T )) = 1− α, (65)

where 0 < β(T ) ≤ 1 and γ(T ) = 1, or β(T ) = 0 and 0 < γ(T ) ≤ 1. We distinguish between two cases depending

on the values of β and γ (we drop the index T on β(T ) and γ(T ) to ease the notation):

• First case: 0 < β ≤ 1, and γ = 1:

Hence:
l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) + β(T )p1α1(T − l(T )) + p2α2(T − l(T )) = 1− α (66)

Our aim is to derive the expression of αk(T+1) for class 1 and class 2. Among the users’ proportion scheduled

α, exactly p1α1(T ) and p2α2(T ) will go to state one for each class, and the rest will go to the next state.

Hence:

α1(T + 1) = (1− p1)α1(T ) +B1(T ) (67)

α2(T + 1) = (1− p2)α2(T ) +B2(T ) (68)

such that B1(T ) +B2(T ) = p1α1(T ) + p2α2(T ).

At time T+1, the decreasing order according to the Whittle index value is (1−p1)α1(T ), (1−p2)α2(T ), βp1α1(T−

l(T )), p2α2(T − l(T )), p1α1(T − l(T ) + 1), p2α2(T − l(T ) + 1), p1α1(T − l(T ) + 2), p2α2(T − l(T ) +

2), · · · , p1α1(T ), p2α2(T ).

In order to get B1(T ) and B2(T ), we sum the users’ proportions at different states starting from the users’

proportion βp1α1(T − l(T )) following the decreasing order of the Whittle index until we get the sum that

equals to p1α1(T ) + p2α2(T ). We distinguish between six sub-cases and for each sub-case, we prove that

αk(T + 1) is surely between two elements of the vector Ak(T ). In fact, if we prove it just for one class, the

result will be true for the other one, since α1(T ) + α2(T ) = α for all T . In the following, we derive the

expression of αk(T + 1) for k = 1, 2, in function of the elements of the vector A1(T ) and A2(T ) and we

show that α1(T + 1) is surely between two elements of the vector A1(T ).

1) If p1α1(T ) + p2α2(T ) ≤ p1βα1(T − l(T )):

In this case p1α1(T ) + p2α2(T ) is less than p1βα1(T − l(T )). Therefore, we will take a proportion of users

from p1βα1(T − l(T )) that equals to p1α1(T ) +p2α2(T ) denoted by C. This users’ proportion exactly equals

to B1(T ) +B2(T ) that we add to (1− p1)α1(T ) and (1− p2)α2(T ). Thus, B1(T ) +B2(T ) = C. However,

since all the users of the proportion C belong to p1βα1(T − l(T )), then C contains only the users of the class

1. Consequently, B1(T ) = C and B2(T ) = 0. Hence:

α2(T + 1) = (1− p2)α2(T ) (69)
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As α1(T + 1) + α(T + 1) = α, then:

α1(T + 1) = α− α2(T + 1) (70)

Now we find the upper bound of α2(T )− α2(T + 1):

α2(T )− α2(T + 1) =p2α(T ) (71)

≤βα1(T − l(T ))p1 − α1(T )p1 (72)

≤p1(α1(T − l(T ))− α1(T )) (73)

=p1(α2(T )− α2(T − l(T ))) (74)

The first inequality comes from the fact that p1α1(T ) + p2α2(T ) ≤ p1βα1(T − l(T )) and the second one

comes from the fact that β ≤ 1.

Given that α2(i)− α2(j) = α1(j)− α1(i) for all integers i and j, thus:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )) (75)

Moreover, we have that α1(T+1)−α1(T ) ≥ 0 because α2(T+1)−α2(T ) ≤ 0. Therefore, α1(T ) ≤ α1(T+1).

On the other hands, as p1(α1(T − l(T ))− α1(T )) ≥ α1(T + 1)− α1(T ) ≥ 0 then α1(T − l(T ))− α1(T ) ≥

α1(T + 1)− α1(T ). This means that α1(T − l(T )) ≥ α1(T + 1). Consequently, we end up with:

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (76)

2) If βα1(T − l(T ))p1 ≤ p1α1(T ) + p2α2(T ) ≤ βα1(T − l(T ))p1 + α2(T − l(T ))p2:

Hence:

α1(T + 1) =(1− p1)α1(T ) + βp1α1(T − l(T )) (77)

α2(T + 1) =α− α1(T + 1) (78)

Then:

α1(T + 1)− α1(T ) =βp1α1(T − l(T )− p1α1(T ) (79)

≤p1(α1(T − l(T )− α1(T )) (80)

On the other hand, we have according to the right inequality of sub-case’s assumption:

α1(T + 1)− α1(T ) =βp1α1(T − l(T )− p1α1(T ) (81)

≥p2α2(T )− p2α2(T − l(T )) (82)

=p2(α1(T − l(T ))− α1(T )) (83)
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Hence :

p2(α1(T − l(T ))− α1(T )) ≤ α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )) (84)

Knowing that p2 < p1, the later inequalities imply that α1(T − l(T ))− α1(T ) ≥ 0.

As a result we have that:

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (85)

And

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )) (86)

3) If βα1(T − l(T ))p1 + α2(T − l(T ))p2 ≤ p1α1(T ) + p2α2(T ) ≤ βα1(T − l(T ))p1 + α2(T − l(T ))p2 +

p1α1(T − l(T ) + 1):

Hence:

α2(T + 1) =(1− p2)α2(T ) + p2α2(T − l(T )) (87)

α1(T + 1) =α− α2(T + 1) (88)

Therefore:

α2(T + 1)− α2(T ) = p2(α2(T − l(T ))− α2(T )) (89)

And:

α1(T )− α1(T + 1) = p2(α1(T )− α1(T − l(T ))) (90)

This means that if α1(T ) ≤ α1(T + 1):

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (91)

And

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )) (92)

If α1(T + 1) ≤ α1(T ):

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ) (93)

And

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ))) (94)

4) If βα1(T − l(T ))p1 +α2(T − l(T ))p2 + p1α1(T − l(T ) + 1) ≤ p1α1(T ) + p2α2(T ) ≤ βα1(T − l(T ))p1 +

α2(T − l(T ))p2 + p1α1(T − l(T ) + 1) + p2α2(T − l(T ) + 1) :

Hence:

α1(T + 1) =(1− p1)α1(T ) + p1βα1(T − l(T )) + p1α1(T − l(T ) + 1) (95)

α2(T + 1) =α− α1(T + 1) (96)
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Therefore:

α1(T + 1)− α1(T ) =− p1α1(T ) + p1βα1(T − l(T )) + p1α1(T − l(T ) + 1) (97)

(98)

According to the left inequality of the assumption of this case, we have that:

α1(T + 1)− α1(T ) ≤p2α2(T )− p2α2(T − l(T )) (99)

=p2(α1(T − l(T ))− α1(T )) (100)

On the other hand, we have that:

α1(T + 1)− α1(T ) =− p1α1(T ) + p1βα1(T − l(T )) + p1α1(T − l(T ) + 1) (101)

≥p1(α1(T − l(T ) + 1) + α1(T ) (102)

(103)

Hence:

p1(α1(T − l(T ) + 1)− α1(T )) ≤ α1(T + 1)− α1(T ) ≤ p2(α1(T − l(T ))− α1(T )) (104)

Thus:

If α1(T ) ≤ α1(T + 1):

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (105)

And

α1(T + 1)− α1(T ) ≤p2(α1(T − l(T ))− α1(T )) (106)

≤p1(α1(T − l(T ))− α1(T )) (107)

If α1(T + 1) ≤ α1(T ):

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (108)

And

α1(T )− α1(T + 1) ≤p1(α1(T )− α1(T − l(T ) + 1)) (109)

5) If there exists m ≥ 1 such that:

βα1(T − l(T ))p1 +α2(T − l(T ))p2 +p1α1(T − l(T )+1)+ · · ·+p1α1(T − l(T )+m)+p2α2(T − l(T )+m) ≤

p1α1(T ) + p2α2(T ) ≤ βα1(T − l(T ))p1 + α2(T − l(T ))p2 + p1α1(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +

m) + p2α2(T − l(T ) +m) + p1α1(T − l(T ) +m+ 1) :

This means that:

α2(T + 1) =(1− p2)α2(T ) + p2α2(T − l(T )) + · · ·+ p2α2(T − l(T ) +m) (110)

α1(T + 1) =α− α2(T + 1) (111)
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We have that:

α2(T + 1)− α2(T ) = −p2α2(T ) + p2α2(T − l(T )) + p2α1(T − l(T ) + 1) + · · ·+ p2α2(T − l(T ) +m)

(112)

≥ p2(α2(T − l(T ) + 1)− α2(T )) (113)

On the other hand:

α2(T + 1)− α2(T ) = −p2α2(T ) + p2α2(T − l(T )) + p2α2(T − l(T ) + 1) + · · ·+ p2α2(T − l(T ) +m)

(114)

≤ p1α1(T )− βp1α1(T − l(T ))−
m∑
i=1

p1α1(T − l(T ) + i) (115)

≤ p1(α1(T )− α1(T − l(T ) + 1)) (116)

= p1(α2(T − l(T ) + 1)− α2(T ) (117)

Thus:

p2(α1(T )− α1(T − l(T ) + 1) ≤ α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)) (118)

Therefore:

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (119)

And:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)) (120)

6) If there exists m ≥ 1 such that:

βα1(T − l(T ))p1 + α2(T − l(T ))p2 + p1α1(T − l(T ) + 1) + p2α2(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +

m) + p2α2(T − l(T ) +m) + p1α1(T − l(T ) +m+ 1) ≤ p1α1(T ) + p2α2(T ) ≤ βα1(T − l(T ))p1 + α2(T −

l(T ))p2 + p1α1(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +m) + p2α2(T − l(T ) +m) + p1α1(T − l(T ) +m+

1) + p2α2(T − l(T ) +m+ 1) :

Hence:

α1(T + 1) =(1− p1)α1(T ) + p1βα1(T − l(T )) + · · ·+ p1α1(T − l(T ) +m+ 1) (121)

α2(T + 1) =α− α1(T + 1) (122)

We have that:

α1(T + 1)− α1(T ) = −p1α1(T ) + p1βα1(T − l(T )) + p1α1(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +m+ 1)

(123)

≥ p1(α1(T − l(T ) + 1)− α1(T )) (124)
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On the other hand:

α1(T + 1)− α1(T ) = −p1α1(T ) + p1βα1(T − l(T )) + p1α1(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +m+ 1)

(125)

≤ p2α2(T )−
m∑
i=0

p2α2(T − l(T ) + i) (126)

≤ p2(α2(T )− α2(T − l(T ) + 1)) (127)

= p2(α1(T − l(T ) + 1)− α1(T )) (128)

Thus:

p1(α1(T − l(T ) + 1)− α1(T )) ≤ α1(T + 1)− α1(T ) ≤ p2(α1(T − l(T ) + 1)− α1(T )) (129)

Therefore:

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (130)

And:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)) (131)

• Second case: β = 0 and 0 < γ ≤ 1:

Hence, we have that:

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) + γp2α2(T − l(T )) = 1− α (132)

Then, at time T + 1, the decreasing order according to the Whittle index value is (1 − p1)α1(T ), (1 −

p2)α2(T ), γp2α2(T − l(T )), p1α1(T − l(T ) + 1), p2α2(T − l(T ) + 1), p1α1(T − l(T ) + 2), p2α2(T − l(T ) +

2), · · · , p1α1(T ), p2α2(T ). In order to obtain B1(T ) and B2(T ), we sum the users’ proportions at different

states starting from the users’ proportion γp2α2(T − l(T )) following the decreasing order of the Whittle index

until we get the sum that equals to p1α1(T ) + p2α2(T ). For this case, we distinguish between five sub-cases,

and for each sub-case, we prove that α1(T + 1) is surely between two elements of the vector A1(T ).

1) If p1α1(T ) + p2α2(T ) ≤ γα2(T − l(T ))p2:

Hence:

α1(T + 1) = (1− p1)α1(T ) (133)

α2(T + 1) = α− α1(T + 1) (134)
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We have that:

α1(T )− α1(T + 1) =p1α1(T ) (135)

≤γα2(T − l(T ))p2 − α2(T )p2 (136)

≤p2(α2(T − l(T ))− α2(T )) (137)

=p2(α1(T )− α1(T − l(T ))) (138)

Thus:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T )) (139)

And:

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ) (140)

2) If γα2(T − l(T ))p2 ≤ p1α1(T ) + p2α2(T ) ≤ γα2(T − l(T ))p2 + α1(T − l(T ) + 1)p1

Consequently:

α2(T + 1) =(1− p2)α2(T ) + γp2α2(T − l(T )) (141)

α1(T + 1) =α− α2(T + 1) (142)

Hence:

α2(T + 1)− α2(T ) =− p2α2(T ) + γp2α2(T − l(T )) (143)

≤p2(α2(T − l(T ))− α2(T )) (144)

(145)

On the other hand, according to the right inequality of the assumption of this case, we have that:

α2(T + 1)− α2(T ) =− p2α2(T ) + γp2α2(T − l(T )) (146)

≥p1(α1(T )− α1(T − l(T ) + 1)) (147)

=p1(α2(T − l(T ) + 1)− α2(T )) (148)

That means:

p1(α2(T − l(T ) + 1)− α2(T )) ≤ α2(T + 1)− α2(T ) ≤ p2(α2(T − l(T ))− α2(T )) (149)

i.e.

p1(α1(T )− α1(T − l(T ) + 1)) ≤ α1(T )− α1(T + 1) ≤ p2(α1(T )− α1(T − l(T ))) (150)

Therefore:

If α1(T ) ≤ α1(T + 1):

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1) (151)
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And:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ) + 1)− α1(T )) (152)

If α1(T + 1) ≤ α1(T ):

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ) (153)

And:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ))) (154)

3) If γα2(T − l(T ))p2 + α1(T − l(T ) + 1)p1 ≤ p1α1(T ) + p2α2(T ) ≤ γα2(T − l(T ))p2 + α1(T − l(T ) +

1)p1 + p2α2(T − l(T ) + 1).

Hence:

α1(T + 1) =(1− p1)α1(T ) + p1α1(T − l(T ) + 1) (155)

α2(T + 1) =α− α1(T + 1) (156)

We have that:

α1(T + 1)− α1(T ) = p1(α1(T − l(T ) + 1)− α1(T ) (157)

If α1(T ) ≤ α1(T + 1):

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1) (158)

And:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ) + 1)− α1(T )) (159)

If α1(T + 1) ≤ α1(T ):

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (160)

And:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)) (161)

4) If there exists m ≥ 1 such that:

γα2(T − l(T ))p2 + · · · + α1(T − l(T ) + m)p1 + p2α2(T − l(T ) + m) ≤ p1α1(T ) + p2α2(T ) ≤ γα2(T −

l(T ))p2 + · · ·+ α1(T − l(T ) +m)p1 + p2α2(T − l(T ) +m) + p1α1(T − l(T ) +m+ 1):

Hence:

α2(T + 1) =(1− p2)α2(T ) + p2γα2(T − l(T )) + · · ·+ p2α2(T − l(T ) +m) (162)

α1(T + 1) =α− α2(T + 1) (163)
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α2(T + 1)− α2(T ) = −p2α2(T ) + p2γα2(T − l(T )) + p2α2(T − l(T ) + 1) + · · ·+ p2α2(T − l(T ) +m)

(164)

≥ p2(α2(T − l(T ) + 1)− α2(T )) (165)

On the other hand:

α2(T + 1)− α2(T ) = −p2α2(T ) + p2γα2(T − l(T )) + p2α2(T − l(T ) + 1) + · · ·+ p2α2(T − l(T ) +m)

(166)

≤ p1α1(T )−
m∑
i=1

p1α1(T − l(T ) + i) (167)

≤ p1(α1(T )− α1(T − l(T ) + 1)) (168)

= p1(α2(T − l(T ) + 1)− α2(T )) (169)

Thus:

p2(α1(T )− α1(T − l(T ) + 1) ≤ α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)) (170)

Therefore:

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (171)

And:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)) (172)

5) If there exists m ≥ 1 such that:

γα2(T − l(T ))p2 + · · · + α1(T − l(T ) + m)p1 + p2α2(T − l(T ) + m) + p1α1(T − l(T ) + m + 1) ≤

p1α1(T ) + p2α2(T ) ≤ γα2(T − l(T ))p2 + · · · + α1(T − l(T ) + m)p1 + p2α2(T − l(T ) + m) + p1α1(T −

l(T ) +m+ 1) + p2α2(T − l(T ) +m+ 1):

That implies that:

α1(T + 1) =(1− p1)α1(T ) + · · ·+ p1α1(T − l(T ) +m) + p1α1(T − l(T ) +m+ 1) (173)

α2(T + 1) =α− α1(T + 1) (174)

α1(T + 1)− α1(T ) = −p1α1(T ) + p1α1(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +m+ 1) (175)

≥ p1(α1(T − l(T ) + 1)− α1(T )) (176)

On the other hand:

α1(T + 1)− α1(T ) = −p1α1(T ) + p1α1(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +m+ 1) (177)

≤ p2α2(T )− γp2α2(T − l(T ))−
m∑
i=1

p2α2(T − l(T ) + i) (178)

≤ p2(α2(T )− α2(T − l(T ) + 1)) (179)

= p2(α1(T − l(T ) + 1)− α1(T )) (180)
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Thus:

p1(α1(T − l(T ) + 1)− α1(T ) ≤ α1(T + 1)− α1(T ) ≤ p2(α1(T − l(T ) + 1)− α1(T )) (181)

Therefore:

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (182)

And:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)) (183)

In conclusion, all these six sub-cases when γ = 1 and 0 < β ≤ 1, plus the five sub-cases when β = 0 and

0 < γ ≤ 1, can be summarized in four cases:

1) α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )), and α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )).

2) α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ), and α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ))).

3) α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ), and α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)).

4) α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1), and α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ) + 1)− α1(T )).

Thus, the proof is concluded.

APPENDIX K

PROOF OF PROPOSITION 13

In all the proof, we consider that ε ≤ (l2 − l1) (1−p1)L

1−(1−p1)L
.

Before tackling the proof, we give a brief insight about the procedure adopted to establish the desired result: We start

by finding a given time denoted T2 ≥ Tε where α1(T2) is less than l1. Then, we show that α1(T2), · · · , α1(T2 +L)

are strictly less than l2. To that end, we start first by defining a relevant sequence un in function of ε, l1, l2 and p1

when n ∈ [0, L]. After that, we prove that un is increasing with n and strictly less than l2. Next, we establish that

un is an upper bound of α1(·) in [T2, T2 + L]. More precisely, we show that α1(T2 + n) ≤ un for n ∈ [0, L]. For

that purpose, we proceed with two following steps: The first one consists of deriving an inequality verified by two

consecutive terms of the sequence α1(·), namely α1(T ) and α1(T + 1) using the Proposition 12 given that T ≥ Tε.

As for the second step, we use essentially the aforementioned result to demonstrate by induction that un is indeed an

upper bound of α1(T2 +n). Finally, based on these results, we show that there exists Td such that maxA1(Td) < l2.

To find a time T2 ≥ Tε such that α1(T2) is less than l1, we use the fact that minA1(t) ≤ l1 for all t. At time

Tε + L, we have the vector A1(Tε + L) = (α1(Tε + L), α1(Tε + L− 1), · · · , α1(Tε + L− l(Tε + L))). Providing

that minA1(Tε+L) ≤ l1, then there exists an element from the vector A1(Tε+L) less than l1 denoted by α1(T2).

According to 10, we have for all T ≥ T0, l(T ) ≤ lmax = L, then l(Tε + L) ≤ L. That is, T2 is greater than Tε
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since T2 ≥ Tε + L − l(Tε + L) ≥ Tε. Therefore, we find an element of the sequence α1(·) at time T2 ≥ Tε such

that α1(T2) ≤ l1. To that extent, we are interested in proving that α1(T2), · · · , α1(T2 +L) are strictly less than l2.

To do so, we define a sequence un which will constitute an upper bound of the function α1(T ).

Definition 4. We define a sequence un by induction: u0 = l1 ifn = 0

un+1 = p1(l2 + ε) + (1− p1)un ifn > 0
(184)

Next, we prove that the L first terms of this sequence are strictly less than l2. We detail this in the following.

Lemma 8. For n ∈ [0, L], un < l2

Proof. renewcommand � In fact, the sequence un satisfies for all n:

un = λ(1− p1)n + (l2 + ε) (185)

where λ = −(ε+ l2 − l1).

un is clearly increasing with n, then for all n ∈ [0, L]:

un ≤ uL = λ(1− p1)L + (l2 + ε) = ε(1− (1− p1)L) + l2 − (l2 − l1)(1− p1)L (186)

We have that:

ε < (l2 − l1)(
(1− p1)L

1− (1− p)L
) (187)

Given that 1− (1− p1)L ≥ 0, then:

(1− (1− p1)L)ε < (l2 − l1)(1− p1)L (188)

(1− (1− p1)L)ε+ l2 − (l2 − l1)(1− p1)L < l2 (189)

Therefore, uL < l2.

Based on the lemma above, we prove that for any element of the set {α1(T2), · · · , α1(T2 + L)} must be less

than uL.

For that, we introduce a useful Lemma:

Lemma 9. If for T ∈ [T2, T2 + L− 1], we have that:

α1(T ) ≤ α1(T + 1) (190)

Then, we have that:

α1(T + 1) ≤ p1(l2 + ε) + (1− p1)α1(T ) (191)
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Proof. Before starting the proof, we recall that, according to the first result of Proposition 12, the four possible

inequalities satisfied by α1(T ), α1(T + 1), α1(T − l(T )), α1(T − l(T ) + 1) are:

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (192)

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ) (193)

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (194)

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1) (195)

Therefore, the two cases for which α1(T ) ≤ α1(T + 1) are:

• α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )).

• α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1).

Hence, according to the results of Proposition 12, the inequalities satisfied by α1(T + 1)− α1(T ) are:

If α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )), then:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )) (196)

If α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1), then:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ) + 1)− α1(T )) (197)

Since, by assumption of the Lemma, T ≥ T2 ≥ Tε, then maxA1(T ) ≤ l2 + ε. As a consequence, α1(T − l(T ) + 1)

and α1(T − l(T )) which are elements of the vector A1(T ), are less than l2 + ε.

Hence, for T ∈ [T2, T2 + L− 1]:

α1(T + 1)− α1(T ) ≤ p1(l2 + ε− α1(T )) (198)

Therefore:

α1(T + 1) ≤ p1(l2 + ε) + (1− p1)α1(T ) (199)

�

Now we should prove that for all possible sequences of α1 in [T2, T2 + L], their values can not exceed λ(1 −

p1)L + (l2 + ε2) = uL.

Lemma 10. For all sequences of α1 when T ∈ [T2, T2 + L], α1(T ) ≤ uT−T2

Proof. We prove this result by induction.

For T = T2, we have that:

α1(T2) ≤ l1 = u0 (200)
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We suppose that at time T , α1(T ) ≤ uT−T2 , then at time T + 1:

If α1(T + 1) ≤ α1(T ):

Then as uT−T2
is increasing in T :

α1(T + 1) ≤ uT−T2
≤ uT−T2+1 (201)

If α1(T + 1) ≥ α1(T ):

Then, according to Lemma 9:

α1(T + 1) ≤ p1(l2 + ε) + (1− p1)α1(T ) (202)

≤ p1(l2 + ε) + (1− p1)uT−T2 (203)

= uT−T2+1 (204)

Therefore, α1(T + 1) ≤ uT−T2+1.

Hence, we have proved by induction that for all T ∈ [T2, T2 + L], α1(T ) ≤ uT−T2 �

As uT−T2
is less than uL for T ∈ [T2, T2+L], then according to Lemma 10, the elements α1(T2+1), · · · , α1(T2+

L) are less than uL < l2.

Thus, we have found T2 ≥ Tε such that α1(T2), α1(T2 + 1), · · · , α1(T2 + lmax) are strictly less than l2. We denote

T2 + lmax by Td and we verify that maxA1(Td) < l2. Indeed, we now that Td− l(Td) ≥ Td− lmax = T2, then the

elements of the vector A1(Td) are included in the set of elements {α1(T2), α1(T2 + 1), · · · , α1(T2 + lmax)}. That

is maxA1(Td) < l2.

Hence, we have found Td ≥ Tε, such that maxA1(Td) < l2.

APPENDIX L

PROOF OF PROPOSITION 14

In this proof, we show that for each state i in class k, zki (t) converges. To that end, we start first by specifying

the eventual limit of zki (t) for each i. To do so, we decompose 1− α as follows:

l(p1α
∗
1 + p2α

∗
2) + γp2α

∗
2 + βp1α

∗
1 = 1− α (205)

where l is the biggest integer such that: l(p1α
∗
1 + p2α

∗
2) < 1 − α, and 0 < γ ≤ 1 and β = 0; or γ = 1 and

0 < β ≤ 1. Then, we proceed with these following steps:

• We prove by induction that for all states 1 ≤ i ≤ l + 1, zki (t) converges to pkα∗k.

• Based on the theoretical findings of the first step, we prove that z1
l+2(t) converges to (β+(1−p1)(1−β))p1α

∗
1

and z2
l+2(t) converges to (γ + (1− p2)(1− γ))p2α

∗
2.

• Finally, we show that for all states i > l+ 2, z1
i (t) converges to (1− p1)i−l−2(β + (1− p1)(1− β))p1α

∗
1 and

z2
i (t) converges to (1− p2)i−l−2(γ + (1− p2)(1− γ))p2α

∗
2

1) For all states 1 ≤ i ≤ l + 1, zki (t)→ pkα
∗
k:

We prove this result by induction
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• For i = 1, we have that zk1 (t) = pkαk(t−1). Therefore, zk1 (t) converge to pkα∗k as αk(t) converges to α∗k.

• We consider that for a certain j ≤ l, for each 1 ≤ i ≤ j, zki (t) converges to pkα
∗
k and we show that

zkj+1(t) converges also to pkα∗k.

Given that j ≤ l:

j(p1α
∗
1 + p2α

∗
2) < 1− α

We consider 0 < ε ≤ 1−α− j(p1α
∗
1 + p2α

∗
2). Providing that zki (t) converges to pkα∗k for all 1 ≤ i ≤ j,

that means there exists tj such that for t ≥ tj , for 1 ≤ i ≤ j:

|zki (t)− pkα∗k| <
ε

2j

Hence:
j∑
i=1

|z1
i (t)− p1α

∗
1|+

j∑
i=1

|z2
i (t)− p2α

∗
2| < ε

That is,
j∑
i=1

z1
i (t) +

j∑
i=1

z2
i (t) < ε+ j(p1α

∗
1 + p2α

∗
2)

As consequence, for all t ≥ tj , we have that:
j∑
i=1

z1
i (t) +

j∑
i=1

z2
i (t) < 1− α

Thus, for all t ≥ tj , the action prescribed to the users’ proportion zkj (t) is the passive action 2. Then, for

all t ≥ tj :

zkj+1(t+ 1) = zkj (t)

Therefore, zkj+1(t) converges to pkα∗k.

Consequently, we prove by induction that for all 1 ≤ i ≤ l + 1, zki (t) converges to pkα∗k.

2) z1
l+2(t)→ (β + (1− p1)(1− β))p1α

∗
1 and z2

l+2(t)→ (γ + (1− p2)(1− γ))p2α
∗
2.

To avoid redundancy , we will be limited to the first case when 0 < γ ≤ 1 and β = 0, since the proof’s steps

for both cases are exactly the same. We have that:

l(p1α
∗
1 + p2α

∗
2) + γp2α

∗
2 = 1− α

As
∑l
i=1 z

1
i (t) +

∑l
i=1 z

2
i (t) converges to l(p1α

∗
1 + p2α

∗
2) which is strictly less than 1−α, then there exists

tl such that for all t ≥ tl, we have that:
l∑
i=1

z1
i (t) +

l∑
i=1

z2
i (t) < 1− α

2Knowing that the order of the proportions of the users according to the Whittle’s index value alternates between the two classes in the set

[1, lmax + 1] as was established in 7, then for all integer b ∈ [1, lmax], the set {zki : k = 1, 2; 1 ≤ i ≤ b} is the set of users with the lowest

Whittle’s index value. Therefore,
∑b
i=1 z

1
i (t) +

∑b
i=1 z

2
i (t) < 1 − α implies that the actions prescribed to the users belonging to the set

{zki : k = 1, 2; 1 ≤ i ≤ b} is the passive action. By definition of l, l < 1−α
p2α

, then, l ≤ lmax (see Lemma 3). Hence, the above reasoning can

be applied as well when b = l.
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As
∑l+1
i=1 z

1
i (t) +

∑l+1
i=1 z

2
i (t) converges to (l + 1)(p1α

∗
1 + p2α

∗
2) which is strictly greater than 1 − α, then

there exists tl+1 such that for all t ≥ tl+1, we have that:
l+1∑
i=1

z1
i (t) +

l+1∑
i=1

z2
i (t) > 1− α

For t ≥ max{tl, tl+1}, we have that:

l∑
i=1

z1
i (t) +

l∑
i=1

z2
i (t) < 1− α <

l+1∑
i=1

z1
i (t) +

l+1∑
i=1

z2
i (t)

Denoting γ(t) and β(t) the users’ proportion of z2
l+1(t) and z1

l+1(t) respectively which are not scheduled,

therefore, the relation that links z1
l+2(t+ 1) and z2

l+2(t+ 1) to z1
l+1(t) and z1

l+1(t) when t ≥ max{tl, tl+1}:

z1
l+2(t+ 1) = β(t)z1

l+1(t) + (1− p1)(1− β(t))z1
l+1(t)

z2
l+2(t+ 1) = γ(t)z2

l+1(t) + (1− p2)(1− γ(t))z2
l+1(t)

with 0 < γ(t) ≤ 1 and β(t) = 0; or γ(t) = 1 and 0 < β(t) ≤ 1. To that extent, we show that β(t) tends to

β = 0 and γ(t) tends to γ. For that purpose, we give the following equation which is always satisfied when

t ≥ max{tl, tl+1}:
l∑
i=1

z1
i (t) +

l∑
i=1

z2
i (t) + γ(t)z2

l+1(t) + β(t)z1
l+1(t) = 1− α (206)

Tending t to +∞ in the equation 206, we obtain:

lim
t→+∞

[γ(t)z2
l+1(t) + β(t)z1

l+1(t)] = γp2α
∗
2

We consider the set {t : β(t) 6= 0}. If this set is infinite, then there exists a strictly increasing function n(.)

from N to {t ∈ Nβ(t) 6= 0}, such that β(n(t)) is a sub-sequence of β(t). As β(n(t)) 6= 0, then γ(n(t)) = 1.

Therefore, we get:

lim
t→+∞

[z2
l+1(n(t)) + β(n(t))z1

l+1(n(t))] = γp2α
∗
2

Since z2
l+1(n(t)) converges to p2α

∗
2, then:

lim
t→+∞

[β(n(t))z1
l+1(n(t))] = (γ − 1)p2α

∗
2

(γ − 1)p2α
∗
2 is less than 0, and β(n(t))z1

l+1(n(t)) is greater than 0 for all t. Thus:

lim
t→+∞

[β(n(t))z1
l+1(n(t))] = (γ − 1)p2α

∗
2 = 0

This implies that γ = 1 = γ(n(t)), and lim
t→+∞

β(n(t)) = 0 because z1
l+1(n(t)) converges to p1α

∗
1 6= 0. Hence

lim
t→+∞

β(t) = 0 = β, i.e. lim
t→+∞

γ(t) = γ = 1.

If {t : β(t) 6= 0} is finite, then there exists te such that for all t ≥ te, β(t) = 0. Therefore, for all t ≥ te, we

have that:

lim
t→+∞

[γ(t)z2
l+1(t)] = γp2α

∗
2

That means lim
t→+∞

β(t) = 0, and lim
t→+∞

γ(t) = γ. Hence, in both cases, β(t)→ β = 0 and γ(t)→ γ.

Consequently, combining the last result with the one derived in the first step, we conclude that z1
l+2(t)
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converges to (β+ (1−p1)(1−β))p1α
∗
1 and z2

l+2(t) converges to (γ+ (1−p2)(1−γ))p2α
∗
2. Similar analysis

can be applied to come with the aforementioned result when γ(t) = 1 and 0 < β(t) ≤ 1.

3) For i > l+ 2, z1
i (t)→ (1− p1)i−l−2(β+ (1− p1)(1−β))p1α

∗
1 and z2

i (t)→ (1− p2)i−l−2(γ+ (1− p2)(1−

γ))p2α
∗
2:

For t ≥ max{tl, tl+1}, we are sure that the action prescribed to zki (t) for all i ≥ l + 2 is the active action.

As consequence, zki+1(t+ 1) satisfies:

zki+1(t+ 1) = (1− pk)zki (t)

Therefore, as z1
l+2(t) converges to (β+(1−p1)(1−β))p1α

∗
1 and z2

l+2(t) converges to (γ+(1−p2)(1−γ))p2α
∗
2,

one can easily establish by induction that z1
i (t) converges to (1 − p1)i−l−2(β + (1 − p1)(1 − β))p1α

∗
1 and

z2
i (t) converges to (1− p2)i−l−2(γ + (1− p2)(1− γ))p2α

∗
2 for all i > l + 2.

We conclude that for all states i and k = 1, 2, zki (t) converges. On the other hands, according to Proposition 6, the

only possible limit of z(t) is z∗. As consequence, for each k and i, zki (t) converges to zk,∗i .

**here**

APPENDIX M

PROOF OF PROPOSITION 15

For a given z, let m1(z) and m2(z) be the highest states of the class 1 and the class 2 respectively and l1(z)

and l2(z) be the thresholds of class 1 and 2 respectively at time t when ZN (t) = z. Given that, we introduce the

following lemma.

Lemma 11. For any µ, there exists positive constant C(z) such that:

P (||ZN (t+ 1)− z′|| ≥ µ|ZN (t) = z) ≤ C(z)

N
(207)

where C(z) is independent of N and z′ = Q(z)z = E(ZN (t+ 1)|ZN (t) = z)

Proof. By definition of m1(z) and m2(z), we have that z = (z1
1 , · · · , z1

m1(z), z
2
1 , · · · , z2

m2(z)). On can easily show

that m1(z′) = m1(z) + 1 and m2(z′) = m2(z) + 1 since the users’ proportions at states m1(z) and m2(z) in

class 1 and class 2 will become at states m1(z) + 1 and m2(z) + 1 at the next time slot respectively. To prove this

lemma, we use the Chebychev inequality presented as follows:

P (|X − E(X)| > µ) ≤ V ar(X)

µ2
(208)

for any µ > 0 and random variable X .

As z′ = E(ZN (t+1)|ZN (t) = z), we can apply the Chebychev inequality. However we need to find the distribution

of ZN (t + 1) knowing ZN (t) = z in order to derive the expression of V ar(ZN (t + 1)|ZN (t) = z). It is more

simple to study the parameters of one dimensional random variable than multi-dimensional random variable. Hence,

instead of investigating ZN (t+ 1), we look into ZN,ki . In this regard, we have that:

{ZN (t+ 1) : ||ZN (t+ 1)− z′|| ≥ µ} ⊂ ∪
k,i
{ZN (t+ 1) : ||ZN,ki (t+ 1)− z

′k
i ||i >

µ

m1(z′) +m2(z′)
} (209)
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Therefore:

P (||ZN (t+ 1)− z′|| ≥ µ|ZN (t) = z) ≤ P (∪
k,i
{||ZN,ki (t+ 1)− z

′k
i ||i >

µ

m1(z′) +m2(z′)
|ZN (t) = z}) (210)

≤
∑
k,i

P ({||ZN,ki (t+ 1)− z
′k
i ||i >

µ

m1(z′) +m2(z′)
|ZN (t) = z})

(211)

Now, we look for the distribution of ZN,ki (t+ 1) knowing ZN (t) = z.

For 2 ≤ i ≤ lk(z), as all the users at state i− 1 less strictly than lk(z) will transit to the state i at the next time

slot, then we have ZN,ki (t+ 1) = zki−1 = z
′k
i . This implies that:

P ({||ZN,ki (t+ 1)− z
′k
i ||i >

µ

m1(z′) +m2(z′)
|ZN (t) = z}) = 0 (212)

For i = 1, defining α1(z) and α2(z) as the proportions of the scheduled users in class 1 an class 2 respectively

when ZN (t) = z, then NZN,k1 (t+1)|ZN (t) = z follows a binomial distribution with parameters pk and αk(z)N .

Therefore, V ar(NZN,k1 (t + 1)|ZN (t) = z) = pk(1 − pk)αk(z)N , which means that V ar(ZN,k1 (t + 1)|ZN (t) =

z) = pk(1−pk)αk(z)
N . As a results, according to Chebychev inequality, we have that:

P ({||ZN,k1 (t+ 1)− z
′k
1 || >

µ

m1(z′) +m2(z′)
|ZN (t) = z}) ≤ pk(1− pk)αk(z)

Nµ2
(m1(z′) +m2(z′))2 (213)

For i ≥ lk(z) + 2, NZN,ki (t+ 1)|ZN (t) = z follows a binomial distribution with parameters 1− pk and zki−1N .

Hence, V ar(ZN,ki (t+ 1)|ZN (t) = z) =
pk(1−pk)zki−1

N . Thus:

P ({||ZN,ki (t+ 1)− z
′k
i || >

µ

i(m1(z′) +m2(z′))
|ZN (t) = z}) ≤

pk(1− pk)zki−1

Nµ2
(m1(z′) +m2(z′))2i2 (214)

Denoting βk(z) the users’ proportion of zklk(z) that will not be transmitted, then for i = lk(z) + 1, NZN,ki (t +

1)|(ZN (t) = z) = βk(z)Nzki−1 + X , where X follows a binomial distribution with parameters 1 − pk and

(1− βk(z))zki−1N , then:

P ({||ZN,ki (t+1)−z
′k
i || >

µ

i(m1(z′) +m2(z′))
|ZN (t) = z}) ≤

pk(1− pk)(1− βk(z))zki−1

Nµ2
(m1(z′)+m2(z′))2i2

(215)

We end up with:

P (||ZN (t+ 1)− z′|| ≥ µ|ZN (t) = z) ≤

(m1(z′) +m2(z′))2.[
p1(1− p1)α1(z)

Nµ2
+
p2(1− p2)α2(z)

Nµ2
+

∑
i≥l1(z)+2

p1(1− p1)i2z1
i−1

Nµ2
+

∑
i≥l2(z)+2

p2(1− p2)i2z2
i−1

Nµ2
+
p1(1− p1)(l1(z) + 1)2(1− β1(z))z1

l1(z)

Nµ2
+
p1(1− p2)(l2(z) + 1)2(1− β2(z))z2

l2(z)

Nµ2
]

Knowing that αk(z) ≤ 1,
∑
i≥lk(z) z

k
i ≤ 1, 1−βk(z) ≤ 1, and for all state i in the vector z′, i ≤ m1(z′)+m2(z′)

then:

P (||ZN (t+ 1)− z′|| ≥ µ|ZN (t) = z) ≤ (m1(z′) +m2(z′))4

µ2N
[2p1(1− p1) + 2p2(1− p2)]
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Hence, denoting by C(z), (m1(z′)+m2(z′))4

µ2 [2p1(1−p1)+2p2(1−p2)] = (m1(z)+1+m2(z)+1)4

µ2 [2p1(1−p1)+2p2(1−

p2)], we obtain as a result:

P (||ZN (t+ 1)− z′|| ≥ µ|ZN (t) = z) ≤ C(z)

N
(216)

�

Now, we give a lemma that bounds the probability knowing the initial state z(0) = x. One can easily verifies that

m1(z(t)) = m1(x)+t and m2(z(t)) = m2(x)+t by induction. Without loss of generality, we let mk(z(t)) = mk(t)

for k = 1, 2.

Lemma 12. For any µ, there exists positive constant C(t+ 1) such that:

Px(||ZN (t+ 1)− z(t+ 1)|| ≥ µ) ≤ C(t+ 1)

N
(217)

where C(t+ 1) is independent of N .

Proof. We recall from Lemma 11 that for any µ > 0, there exists a constant C(z) independent of N such that:

P (||ZN (t+ 1)−Q(z)z|| ≥ µ|ZN (t) = z) ≤ C(z)

N
(218)

Before proving the present lemma, we give an important lemma that will helps us in the later analysis.

Lemma 13. For any proportion vector z, there exists σ > 0 such that if ||ZN (t)−z|| ≤ σ, then Q(ZN (t)) = Q(z).

Proof. One can deduce from the analysis done in [21, Section IV-C] that there exists σ > 0 such that if ZN (t) ∈

Ωσ(z), Q(ZN (t)) is constant and doesn’t depend on ZN (t). Therefore, there exists σ > 0 such that Q(ZN (t)) =

Q(z). That concludes the proof. �

Corollary 1. For any v > 0, there exists ρ such that ||ZN (t)−z(t)|| ≤ ρ⇒ ||Q(ZN (t))ZN (t)−Q(z(t))z(t)|| ≤ v

Proof. According to the previous lemma, if ||ZN (t) − z(t)|| ≤ σ, then Q(ZN (t)) = Q(z(t)). This implies that

||Q(ZN (t))ZN (t) − Q(z(t))z(t)|| = ||Q(z(t))ZN (t) − Q(z(t))z(t)|| ≤ ||Q(z(t))||||ZN (t) − z(t)||. That is,

choosing ρ = min{ v
||Q(z(t))|| , σ}, we get ||Q(ZN (t))ZN (t)−Q(z(t))z(t)|| ≤ v. �

With the above corollary being laid out, we prove the statement by a mathematical induction.

For t = 1, applying Lemma 11, the following holds:

Prx(||ZN (1)− z(1)|| ≥ µ) =P (||ZN (t+ 1)−Q(x)x|| ≥ µ|ZN (t) = x) ≤ C(x)

N

=
C(1)

N
(219)

and the desired result holds for t = 1 by simply choosing C(1) = (m1(x)+1+m2(x)+1)4

µ2 [2p1(1− p1) + 2p2(1− p2)].

Let us suppose that the statement holds for any t ≥ 1. We investigate the property for t + 1. To that end, let us

consider ν < µ. Therefore, according to Corollary 1, there exists ρ such that:

||ZN (t)− z(t)|| ≤ ρ⇒ ||Q(ZN (t))ZN (t)−Q(z(t))z(t)|| ≤ v (220)
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Bearing that in mind, we have that:

Prx(||ZN (t+ 1)− z(t+ 1)|| ≥ µ) =Prx(||ZN (t+ 1)− z(t+ 1)|| ≥ µ
∣∣∣||ZN (t)− z(t)|| ≥ ρ)Prx(||ZN (t)− z(t)|| ≥ ρ)

+ Prx(||ZN (t+ 1)− z(t+ 1)|| ≥ µ
∣∣∣||ZN (t)− z(t)|| < ρ)Prx(||ZN (t)− z(t)|| < ρ)

≤(a)C
′(t)

N
+ Prx(||ZN (t+ 1)− z(t+ 1)|| ≥ µ

∣∣∣||ZN (t)− z(t)|| < ρ) (221)

where (a) follows from Prx(||ZN (t+ 1)− z(t+ 1)|| ≥ µ
∣∣∣||ZN (t)− z(t)|| ≥ ρ) ≤ 1 and C ′(t) being the constant

related to the statement holding for t and for ρ. Next, we tackle the second term of the inequality in (221):

Prx(||ZN (t+ 1)−z(t+ 1)|| ≥ µ
∣∣∣||ZN (t)− z(t)|| < ρ)

=Prx(||ZN (t+ 1)−Q(ZN (t))ZN (t) +Q(ZN (t))ZN (t)− z(t+ 1)|| ≥ µ
∣∣∣||ZN (t)− z(t)|| < ρ)

≤(a)Prx(||ZN (t+ 1)−Q(ZN (t))ZN (t)||+ ||Q(ZN (t))ZN (t)−Q(z(t))z(t)|| ≥ µ
∣∣∣||ZN (t)− z(t)|| < ρ)

≤(b)Prx(||ZN (t+ 1)−Q(ZN (t))ZN (t)|| ≥ µ− ν
∣∣∣||ZN (t)− z(t)|| < ρ)

=
∑

z∈Ωρ(z(t))
mk(z)≤mk(z(t))

k=1,2

Prx(ZN (t) = z
∣∣∣ZN (t) ∈ Ωρ(z(t)))Prx(||ZN (t+ 1)−Q(z)z|| ≥ µ− ν|ZN (t) = z)

+
∑

z∈Ωρ(z(t))
m1(z)>m1(z(t))

or
m2(z)>m2(z(t))

Prx(ZN (t) = z
∣∣∣ZN (t) ∈ Ωρ(z(t)))Prx(||ZN (t+ 1)−Q(z)z|| ≥ µ− ν|ZN (t) = z)

(222)

where (a) and (b) follows from the triangular inequality and the relationship in (220). One can notice that at any

time slot t, mk(ZN (t)) ≤ mk(z(t)). In light of that fact, the second term of the equation (222) is equal to 0.

Bearing that in mind, We have for z ∈ Ωρ(z(t)) such that mk(z) ≤ mk(z(t)):

Prx(||ZN (t+ 1)−Q(z)z|| ≥ µ− ν|ZN (t) = z) ≤ C1(z(t))

N
(223)

where C1(t) = (m1(z(t))+m2(z(t))+2)4

(µ−ν)2 [2p1(1− p1) + 2p2(1− p2)] = (m1(t)+m2(t)+2)4

(µ−ν)2 [2p1(1− p1) + 2p2(1− p2)].

By substituting the above results in (222), we get:

Prx(||ZN (t+ 1)− z(t+ 1)|| ≥ µ
∣∣∣||ZN (t)− z(t)|| < ρ) ≤ C1(t)

N
(224)

Combining this with (221), we can conclude that there exists a constant C(t+ 1) such that:

Prx(||ZN (t+ 1)− z(t+ 1)|| ≥ µ) ≤ C(t+ 1)

N
(225)

which concludes our inductive proof. �

Knowing that:

Px( sup
0≤t<T

||ZN (t)− z(t)|| ≥ µ) ≤
T−1∑
t=0

Px(||ZN (t)− z(t)|| ≥ µ)

Therefore, from Lemma 12, there exists a constant C which doesn’t depend on N such that:

Px( sup
0≤t<T

||ZN (t)− z(t)|| ≥ µ) ≤ C

N

Which concludes the proof.
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APPENDIX N

PROOF OF LEMMA 4

We show first of all that z(t) converges to z∗ with respect to our considered norm, i.e. lim
t→+∞

∑+∞
i=1 |zki (t) −

zk,∗i |i = 0 for k = 1, 2. For that purpose, we use the limit inversion theorem which states that:

• If the series
∑
i fi(t) is uniformly convergent on R+

• If for each integer i, fi(t) admits a finite limit ri when t tends to +∞.

Therefore, lim
t→+∞

∑+∞
i=1 fi(t) =

∑+∞
i=1 lim

t→+∞
fi(t) =

∑+∞
i=1 ri.

By letting fi(t) denotes |zki (t)− zk,∗i |i for a given k, proving the result above is equivalent to establish that:

lim
t→+∞

+∞∑
i=1

|zki (t)− zk,∗i |i =

+∞∑
i=1

lim
t→+∞

|zki (t)− zk,∗i |i

To that extent, we check if the aforementioned conditions are satisfied for this specific function fi(t) = |zki (t)−zk,∗i |i.

• Uniform convergence: According to Weierstrass criterion,
∑
i fi(t) is uniformly convergent if for each i the

function fi(t) is bounded by a constant ci such that
∑
i ci is convergent. Based on the proof of the Proposition

14, one can deduce that for large enough t denoted by tl, the following induction relation always holds for

t ≥ tl and i ≥ lmax + 1:

zki+1(t+ 1) = pkz
k
i (t)

That is, choosing t0 greater than tl, and denoting by i0 = mk(t0) the highest state of the vector z(t0) which

is greater than lmax + 1, we have that for each i > i0:

zki (t) =

 0 if t0 ≤ t < t0 + i− i0
pi−i0k zki0(t− (i− i0)) if t ≥ t0 + i− i0

(226)

Based on the above equation, for each i > i0, zki (t) is less than pi−i0k for all t ≥ t0. To that extent, we

investigate the evolution of the series of interest only when t ≥ t0 (the limit inversion theorem still applicable

since +∞ > t0). Moreover, we have that for all t ≥ t0:∑
i

|zki (t)− zk,∗i |i =

i0∑
i=1

|zki (t)− zk,∗i |i+

+∞∑
i0+1

|zki (t)− zk,∗i |i ≤ i
2
0 +

+∞∑
i=i0+1

(pi−i0k i+ zk,∗i i)

This last sum is known to be a finite sum since
∑+∞
i=1 z

k,∗
i i is the optimal average age of the relaxed problem

for the class k which is finite, and
∑+∞
i=1 p

ii is a finite sum for any 0 ≤ p < 1. Hence, the uniform convergence

can be accordingly concluded.

• Existence of the limit of fi(t) = |zki (t)−zk,∗i |i: According to the result of Proposition 14, we have lim
t→+∞

|zki (t)−

zk,∗i |i = 0 which is finite. Therefore, the second condition is satisfied.

Leveraging these findings, we can inverse the order between the limit and the sum. Subsequently:

lim
t→+∞

+∞∑
i=1

|zki (t)− zk,∗i |i =

+∞∑
i=1

lim
t→+∞

|zki (t)− zk,∗i |i = 0
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In other words, for k = 1, 2,
∑+∞
i=1 |zki (t) − zk,∗i |i tends to 0 when t grows. Consequently, z(t) converges to z∗

with respect to our defined norm.

Therefore, for 0 < ν < µ, there exists T0 such that for any t ≥ T0:

||z(t)− z∗|| ≤ ν (227)

By leveraging Proposition 15, we have:

Prx( sup
T0≤t<T

||ZN (t)− z∗|| ≥ µ)

≤ Prx( sup
T0≤t<T

||ZN (t)− z(t)||+ ||z(t)− z∗|| ≥ µ)

≤ Prx( sup
T0≤t<T

||ZN (t)− z(t)|| ≥ µ− ν)

≤ Prx( sup
0≤t<T

||ZN (t)− z(t)|| ≥ µ− ν) ≤ s

N
(228)

which concludes the proof.

APPENDIX O

PROOF OF PROPOSITION 16

We have that:∣∣ 1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

Zk,Ni (t)i
∣∣∣ZN (0) = x

]
−

K∑
k=1

+∞∑
i=1

zk,∗i i
∣∣ =
∣∣ 1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

(Zk,Ni (t)i− zk,∗i i)
∣∣∣ZN (0) = x

] ∣∣
(229)

≤
∣∣ 1

T

T0−1∑
t=0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣ZN (0) = x
] ∣∣

(230)

+
∣∣ 1

T

T−1∑
t=T0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣ZN (0) = x
] ∣∣

(231)

We start by bounding (230). We have that:

∣∣ 1

T

T0−1∑
t=0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣ZN (0) = x
] ∣∣ ≤ 1

T

T0−1∑
t=0

K∑
k=1

+∞∑
i=1

Ewi
[∣∣Zk,Ni (t)i− zk,∗i i

∣∣∣∣∣ZN (0) = x
]
(232)

≤ 1

T

T0−1∑
t=0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i

∣∣∣ZN (0) = x
]
] +

1

T

T0−1∑
t=0

K∑
k=1

+∞∑
i=1

zk,∗i i

(233)

=
1

T

T0−1∑
t=0

K∑
k=1

max{m1(t),m2(t)}∑
i=1

Ewi
[
Zk,Ni (t)i

∣∣∣ZN (0) = x
]

+
1

T

T0−1∑
t=0

CRP

(234)



55

As mk(.) is increasing with t, then denoting m(t) = max{m1(t),m2(t)}, we get:

1

T

T0−1∑
t=0

K∑
k=1

max{m1(t),m2(t)}∑
i=1

Ewi
[
Zk,Ni (t)i

∣∣∣ZN (0) = x
]

+
1

T

T0−1∑
t=0

CRP ≤ (m(T0) + CRP )T0

T
(235)

We denote YN the event sup
T0≤t<T

||ZN (t)− z∗|| ≥ µ, and we proceed to bound the second term (231).

∣∣ 1

T

T−1∑
t=T0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣ZN (0) = x
] ∣∣ = Px(YN )

∣∣ 1

T

T−1∑
t=T0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣YN ,ZN (0) = x
] ∣∣+

(236)

(1− Px(YN ))
∣∣ 1

T

T−1∑
t=T0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣YN ,ZN (0) = x
] ∣∣

(237)

≤(a) (T − T0)(m(T ) + CRP )

T
Px(YN ) + (1− Px(YN ))µ

(238)

where (a) results from:

∣∣ 1

T

T−1∑
t=T0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣YN ,ZN (0) = x
] ∣∣ ≤ sup

T0≤t<T
Ewi

[
K∑
k=1

+∞∑
i=1

|Zk,Ni (t)i− zk,∗i i|
∣∣∣YN ,ZN (0) = x

]
(239)

= Ewi
[

sup
T0≤t<T

||ZN (t)− z∗||
∣∣∣YN ,ZN (0) = x

]
< µ

(240)

According to Lemma 4, we have limN→∞ Px(YN ) = 0. Thus, combining the result (235) and (238), we obtain:

lim
N→∞

∣∣ 1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

Zk,Ni (t)i
∣∣∣ZN (0) = x

]
−

K∑
1

+∞∑
i=1

zk,∗i i
∣∣ ≤ T0(m(T0) + CRP )

T
+ µ (241)

This inequality is true for all µ > 0, then:

lim
N→∞

∣∣ 1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

Zk,Ni (t)i
∣∣∣ZN (0) = x

]
−

K∑
k=1

+∞∑
i=1

zk,∗i i
∣∣ ≤ T0(m(T0) + CRP )

T
(242)

Finally we have:

lim
T→∞

lim
N→∞

∣∣ 1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

Zk,Ni (t)i
∣∣∣ZN (0) = x

]
−

K∑
k=1

+∞∑
i=1

zk,∗i i
∣∣ = 0 (243)

As consequence:

lim
T→+∞

lim
N→∞

1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

Zk,Ni (t)i
∣∣∣ZN (0) = x

]
=

K∑
k=1

+∞∑
i=1

zk,∗i i (244)
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