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Abstract

The identification capacity is developed without randomization at neither the encoder nor the decoder. In particular,

full characterization is established for the deterministic identification (DI) capacity for the Gaussian channel and for

the general discrete memoryless channel (DMC) with and without constraints. Originally, Ahlswede and Dueck

established the identification capacity with local randomness given at the encoder, resulting in a double exponential

number of messages in the block length. In the deterministic setup, the number of messages scales exponentially, as

in Shannon’s transmission paradigm, but the achievable identification rates can be significantly higher than those of

the transmission rates. Ahlswede and Dueck further stated a capacity result for the deterministic setting of a DMC,

but did not provide an explicit proof. In this paper, a detailed proof is given for both the Gaussian channel and the

general DMC. The DI capacity of a Gaussian channel is infinite regardless of the noise.

Index Terms

Channel Capacity, identification, deterministic codes, identification without randomization, Gaussian channel.

I. INTRODUCTION

In the fundamental communication paradigm considered by Shannon [1], a sender wishes to convey a message

through a noisy channel in a such a manner that the receiver will be able to retrieve the original message. In other

words, the decoder’s task is to determine which message was sent. Ahlswede and Dueck [2] introduced a scenario of

a different nature where the decoder only performs identification and determines whether a particular message was

sent or not [2]–[4]. Applications include identification plus transmission (point-to-multipoint communication) [5],

communication complexity [6], private interrogation theory [7], the tactile internet [8], vehicle-to-X communications

[9], [10], digital watermarking [11]–[13], online sales [14], [15], industry 4.0 [16]–[18], health care [19], molecular

communications [20]–[22] and other event-triggered systems.

We present two motivating examples for applications of the identification scheme. Molecular communication is

a promising candidate for the sixth generation of cellular communication networks (6G) [22], [23], in which some

applications demand alerts to be identified [23]. Furthermore, in other systems of molecular communication, a nano-

device needs to determine the occurrence of a specific event. For instance, in the targeted drug delivery [24], [25]

http://arxiv.org/abs/2010.04239v3
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or cancer treatment [26]–[28], a nano-device will seek to know whether the blood pH exceeds a critical threshold or

not, whether a specific drug is released or not, whether another nano-device has replicated itself, whether a certain

molecule was detected, whether a target location in the vessels is identified, or whether the molecular storage is

empty, etc [29]. A second application for identification is vehicle-to-X communications, where a vehicle that collects

sensor data may ask whether a certain alert message concerning the future movement of an adjacent vehicle was

transmitted or not [30, Sec. VII].

The identification problem [2] can be regarded as a Post-Shannon [31] model where the decoder does not perform

an estimation, but rather a binary hypothesis test to decide between the hypotheses ‘sent’ or ‘not sent’, based on

the observation of the channel output. As the sender has no knowledge of the desired message that the receiver

is interested in, the identification problem can be regarded as a test of many hypotheses occurring simultaneously.

The scenario where the receiver misses and does not identify his message is called a type I error, or ‘missed

identification’, whereas the event where the receiver accepts a false message is called a type II error, or ‘false

identification’.

Ahlswede and Dueck [2] required randomized coding for their identification-coding scheme. This means that a

randomized source is available to the sender. The sender can make his encoding dependent on the output of this

source. It is known that this resource cannot be used to increase the transmission capacity of discrete memoryless

channels [32]. A remarkable result of identification theory is that given local randomness at the encoder, reliable

identification can be attained such that the code size, i.e., the number of messages, grows double exponentially in

the block length n, i.e., ∼ 22
nR

[2]. This differs sharply from the traditional transmission setting where the code size

scales only exponentially, i.e., ∼ 2nR. Beyond the exponential gain in identification, the extension of the problem

to more complex scenarios reveals that the identification capacity has a very different behavior compared to the

transmission capacity [33]–[38]. For instance, feedback can increase the identification capacity [33] of a memoryless

channel, as opposed to the transmission capacity [39]. Nevertheless, it is difficult to implement randomized-encoder

identification (RI) codes that will achieve such performance, because it requires the encoder to process a bit string

of exponential length. The construction of identification codes is considered in [4], [40]–[43]. Identification for

Gaussian channels is considered in [35], [44]–[47].

In the deterministic setup, the number of messages scales exponentially in the blocklength [2], [48]–[50], as in

the traditional setting of transmission. Nevertheless, the achievable identification rates are significantly higher than

those of transmission. In addition, deterministic codes often have the advantage of simpler implementation and

simulation [51], explicit construction [52], and single-block reliable performance. In particular, JáJá [49] showed

that the deterministic identification (DI) capacity1 of a binary symmetric channel is 1 bit per channel use, as one can

exhaust the entire input space and assign (almost) all sequences in the n-dimensional space {0, 1}n as codewords.

Ahlswede et al. [2], [48] stated that the DI capacity of a discrete memoryless channel (DMC) with a stochastic

matrix W is given by the logarithm of the number of distinct row vectors of W ( [2, see Sec. IV] and [48, see

Abstr.]). Nonetheless, an explicit proof for this result was not provided in [2], [48]. Instead, Ahlswede and Cai [48]

1The DI capacity in the literature is also referred to as the non-randomized identification (NRI) capacity [48] or the dID capacity [35].
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referred the reader to a paper [53] which does not include identification and addresses a completely different model

of an arbitrarily varying channel [53]. Since then, the problem of proving this result has remained unsolved, since

a straightforward extension of the methods in [53], using decoding territories, does not seem to yield the desired

result on the DI capacity [54].

In this paper, we establish the DI capacity of a channel subject to an input constraint. Such a constraint is often

associated with a limited power supply or regulation, as in the case of the Gaussian channel. Our main result is

that the DI capacity of a DMC W , under the input constraint 1
n

∑n
t=1 φ(xt) ≤ A, is given by

CDI(W) = max
pX :E{φ(X)}≤A

H(X) , (1)

and that the DI capacity of a Gaussian Channel G under power constraint A is infinite, regardless of the noise in the

channel. For a DMC, we may assume without loss of generality that the rows of the channel matrix are distinct (see

Section III-A). This result has the following geometric interpretation. At first glance, it may seem reasonable that

for the purpose of identification, one codeword could represent two messages. While identification allows overlap

between decoding regions [55], [56], it turns out that overlap at the encoder is not allowed for deterministic codes.

We observe that if two messages are represented by the same codeword, then the low probability of a type I error

comes at the expense of the high probability of a type II error, and vice versa. That is, as shown in our proof, if

the probability of missed identification is upper bounded by ε, then the probability of false identification is lower

bounded by 1− ε. Thus, DI coding imposes the restriction that every message must have a distinct codeword. The

converse proof follows from this property in a straightforward manner since the volume of the input subspace of

sequences that satisfy the input constraint is ≈ 2nCDI (W). A similar principle guides the direct part as well. The

input space is covered such that each codeword is surrounded by a sphere of radius nε to separate the codewords.

For the Gaussian channel, the DI capacity can be achieved using a simple distance-decoder.

By providing a detailed proof for this problem, we thus fill the gap in the previous analysis [2], [48] as well. In

the proof, we use the method of types, while the derivation is based on ideas that are analogous to the combinatoric

analysis of Hamming distances by JáJá [49]. Although the codebook construction is similar to that of Ahlswede’s

coding scheme [53], the decoder is significantly different. In particular, we do not use decoding territories as in [53],

but rather perform a typicality check. Nonetheless, the type-class intersection lemma and the message-set analysis

in [53] turn out to be useful in our analysis as well. Hence, our proof combines techniques and ideas from both

works, by JáJá [49] and by Ahlswede [53], to derive the DI capacity both with and without an input constraint.

II. DEFINITIONS AND RELATED WORKS

In this section, we introduce the channel model and coding definitions. Here, we only consider the discrete

memoryless channel (DMC). The channel description and coding definition for the Gaussian channel will be

presented in Section IV.

A. Notation

We use the following notation conventions throughout. Calligraphic letters X ,Y,Z, . . . are used for finite sets.

Lowercase letters x, y, z, . . . stand for constants and values of random variables, and uppercase letters X,Y, Z, . . .
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stand for random variables. The distribution of a random variable X is specified by a probability mass function

(pmf) pX(x) over a finite set X . The set of all pmfs over X is denoted by P(X ), H(X), and I(X ;Y ) are the

entropy and mutual information, respectively; all logarithms and information quantities are taken to the 2. We

use xj = (x1, x2, . . . , xj) to denote a sequence of letters from X . A random sequence Xn and its distribution

pXn(xn) are defined accordingly. The set of consecutive natural numbers from 1 through M is denoted by [[M ]].

The Hamming distance between two sequences an and bn is defined as the number of positions for which the

sequences have different symbols, i.e.,

dH(an, bn) = |{t ∈ [[n]] ; at 6= bt}| . (2)

The n-dimensional Hamming sphere of radius nε that is centered at an is defined as

Sε(a
n) = {xn ∈ Xn : dH(xn, an) < nε} . (3)

Further, we denote the hyper-sphere of radius r around x0 by

Sx0
(n, r) = {x ∈ R

n : ‖x− x0‖ ≤ r} . (4)

In the continuous case, we use the cumulative distribution function FX(x) = Pr(X ≤ x) for x ∈ R, or alternatively,

the probability density function (pdf) fX(x), when it exists. The notation x = (x1, x2, . . . , xn) is used instead of

xn when it is understood from the context that the length of the sequence is n, and the ℓ2-norm of x is denoted

by ‖x‖.

B. Channel Description

A DMC (X ,Y,W ) consists of finite input and output alphabets X and Y , respectively, and a conditional pmf

W (y|x). The channel is memoryless without feedback, and therefore Wn(yn|xn) =
∏n

t=1 W (yt|xt). We denote a

DMC by W = (X ,Y,W ). Next, we consider an input constraint. Let φ : X → [0,∞) be some given bounded cost

function, and define

φn(xn) =
1

n

n∑

t=1

φ(xt) . (5)

Let A > 0. Given an input constraint A corresponding to the cost function φn(xn), the channel input xn must

satisfy

φn(xn) ≤A . (6)

We may assume without loss of generality that 0 ≤ A ≤ φmax, where φmax is given by

φmax = max
x∈X

φ(x) . (7)

It is also assumed that for some x0 ∈ X , φ(x0) = 0.
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C. Coding

The definitions for DI codes, achievable rates, and capacity are given below.

Definition 1. A (2nR, n) DI code for a DMC W under input constraint A, assuming 2nR is an integer, is defined

as a system (U ,D) that consists of a codebook U = {ui}i∈[[2nR]], U ⊂ Xn, such that

φn(ui) ≤ A , (8)

for all i ∈ [[2nR]] and a collection of decoding regions D = {Di}i∈[[2nR]] with
⋃2nR

i=1 Di ⊂ Yn. Given a message

i ∈ [[2nR]], the encoder transmits ui. The decoder’s aim is to answer the following question: Was a desired message

j sent or not? Two types of errors may occur: Rejection of the true message, or accepting a false message. Those

error events are often referred to as type I and type II errors, respectively. Specifically, P
(n)
e,1 (i) is the type I error

probability for rejecting the true message i, while P
(n)
e,2 (i, j) is the type II error probability for accepting the false

message j given that the message i was sent.

The error probabilities of the identification code (U ,D) are given by

Pe,1(i) = Wn(Dc
i |ui) (missed-identification error) , (9)

Pe,2(i, j) = Wn(Dj |ui) (false identification error) . (10)

A (2nR, n, λ1, λ2) DI code further satisfies

Pe,1(i) ≤ λ1 , (11)

Pe,2(i, j) ≤ λ2 . (12)

for all i, j ∈ [[2nR]] such that i 6= j.

A rate R > 0 is called achievable if for every λ1, λ2 > 0 and sufficiently large n, there exists a (2nR, n, λ1, λ2)

DI code. The operational DI capacity is defined as the supremum of achievable rates, and will be denoted by

CDI(W).

Alternatively, one may consider achievable identification rates for codes with a double-exponential number of

messages [2]. A rate R > 0 is said to be achievable in the double-exponential scale if there exists a corresponding

(22
nR

, n, λ1, λ2) DI code. We denote the DI capacity in the double-exponential scale by CDI(W).

As mentioned earlier, Ahlswede and Dueck [2] needed randomized encoding for their identification-coding

scheme. This means that a randomized source is available to the sender. The sender can make his encoding dependent

on the output of this source. Therefore, a randomized-encoder identification (RI) code is defined in a similar manner

where the encoder is allowed to select a codeword Ui at random according to some conditional input distribution

Q(xn|i). The RI capacities in the exponential and double-exponential scales are then denoted by CRI(W) and

CRI(W), respectively. Given local randomness at the encoder, reliable identification can be attained such that the

number of messages grow double exponentially in the block length n, i.e., ∼ 22
nR

[2]. This differs sharply from

the traditional transmission setting where the code size scales only exponentially, i.e., ∼ 2nR. Remarkably, in [2]

it is shown that CRI(W) = CT (W), where CT (W) denotes the transmission capacity of the channel.



6

Remark 1. Observe that in general, if the capacity in an exponential scale is finite, then it is zero in the double

exponential scale. Conversely, if the capacity in a double exponential scale is positive, then the capacity in the

exponential scale is +∞.

Remark 2. The MC has recently made advances on the technological side. This development is about promoting

complex networks, such as the Internet of Things (IoT), with MC. The IoT describes the integration of intel-

ligent/smart machines and objects on the Internet. These smart devices can be accessed and controlled via the

Internet. The advances made in the field of nanotechnology enable the development of devices in the nano-meter

range, which are called nanothings. The interconnection of nanothings with the Internet is known as Internet of

NanoThings (IoNT) and is the basis for various future healthcare and military applications [57]. Nanothings are based

on synthesized materials, use electronic circuits, and EM-based communication. Unfortunately, these characteristics

could be harmful for some application environments, such as inside the human body. The concept of Internet of

Bio-NanoThings (IoBNT) has been introduced in [58], where nanothings are biological cells that are created using

tools from synthetic biology and nanotechnology. Such biological nanothings are called bio-nanothings. Similar

to artificial nanothings, bio-nanothings have control (cell nucleus), power (mitochondrion), communication (signal

pathways), and sensing/actuation (flagella, pili or cilia) units. For the communication between cells, MC is especially

well suited, since the natural exchange of information between cells is already based on this paradigm. MC in cells

is based on signal pathways (chains of chemical reactions) that process information that is modulated into chemical

characteristics, such as molecule concentration. Identification is a very interesting communication task for these

applications. However, it is also unclear how RI codes can be incorporated into such systems. It is unclear how

powerful random number generators should be developed for synthetic materials on these small scales. In the case

of Bio-NanoThings, it is uncertain whether the natural biological processes can be controlled or reinforced by local

randomness at this level. Therefore, for the design of synthetic IoNT, or for the analysis and utilization of IoBNT,

it is interesting to consider identification with deterministic encoding.

A geometric illustration for the type I and II error probabilities is given in Figure II-C. When the encoder sends

the message i, but the channel output is outside Di, then type a I error occurs. This kind of error is also considered

in traditional transmission. In identification, the decoding sets can overlap. A type II error covers the case where

the output sequence belongs to the intersection of Di and Dj for j 6= i.

D. Related Work

We briefly review Ahlswede and Dueck’s result [2] on the RI capacity, i.e., when the encoder uses a stochastic

mapping. As mentioned above, using RI codes, it is possible to identify a double-exponential number of messages

in the block length n. That is, given a rate R < CRI(W), there exists a sequence of (22
nR

, n) RI codes with

vanishing error probabilities. Despite the significant difference between the definitions in the identification setting

and in the transmission setting, it was shown that the value of the RI capacity in the double-exponential scale equals

the Shannon capacity of transmission.
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Xn

u1

u2

u3

u4

Yn

D1

D2

D3

D4

correct identification

type I error

type II error

Fig. 1. Geometric illustration of identification errors in the deterministic setting. The arrows indicate three scenarios for the channel output,

given that the encoder transmitted the codeword u1 corresponding to i = 1. If the channel output is outside D1, then a type I error has occurred,

as indicated by the bottom red arrow. This kind of error is also considered in traditional transmission. In identification, the decoding sets can

overlap. If the channel output belongs to D1 but also belongs to D2, then a type II error has occurred, as indicated by the middle brown arrow.

Correct identification occurs when the channel output belongs only in D1, which is marked in blue.

Theorem 1 (see [2], [5]). The RI capacity in the double-exponential scale of a DMC W is given by

CRI(W) = max
pX : E{φ(X)}≤A

I(X ;Y ) . (13)

Hence, the RI capacity in the exponential scale is infinite, i.e.,

CRI(W) = ∞ . (14)

In the next sections, we will consider the identification setting when the encoder does not have access to

randomization.

III. MAIN RESULTS - DMC

We give our main results on the DI capacity of the DMC. For a DI code, as opposed to the randomized case, the

number of messages 2nR is only exponential in the blocklength. In this sense, DI codes are similar to transmission

codes. However, the achievable rates for identification are significantly higher, as the DI capacity is given in terms

of the input entropy instead of the mutual information.

A. Channel Reduction

We begin with a procedure of channel reduction where we remove identical rows from the channel matrix, so

that the remaining input letters have a lower cost compared to the deleted letters. As will be seen below, the DI
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capacity remains the same following this reduction. The characterization of the DI capacity will be given in the

next section in terms of the reduced input alphabet.

We begin with the definition of the reduced channel.

Definition 2 (Reduced channel). Given a DMC W with a stochastic matrix W : X → Y , we define the reduced

DMC Wr as follows. Let {X (ℓ)} be a partition of X into equivalent classes, so that two letters x and x′ belong

to the same equivalent class if and only if the corresponding rows are identical, namely

x, x′ ∈ X (ℓ) ⇔ W (y|x) = W (y|x′) ∀y ∈ Y . (15)

For every class X (ℓ), assign a representative element

z(ℓ) = arg min
x∈X (ℓ)

φ(x) , (16)

which is associated with the lowest input cost. If there is more than one letter that is associated with the lowest

input cost in X (ℓ), then choose one of them arbitrarily. Then the reduced input alphabet is defined as

Xr = {z(ℓ)} , (17)

and the reduced DMC Wr is defined by a channel matrix Wr : Xr → Y , consisting of the rows in Xr, i.e.,

Wr(y|x) = W (y|x) , (18)

for x ∈ Xr and y ∈ Y .

Remark 3. We note that the reduction procedure above can be viewed as merging input letters with identical rows

in W . Furthermore, the channels W and Wr are equivalent in the sense that W and Wr are degraded with respect

to each other [59, Section III]. Thus, the property in the lemma below is not surprising.

Lemma 2. The operational capacities of the reduced channel Wr and the original channel W are the same:

CDI(W) = CDI(Wr) . (19)

We give the proof of Lemma 2 in Appendix A. As we will see shortly, the DI capacity of a DMC W depends

on W only through Xr. That is, the DI capacity does not depend on the individual values of the channel matrix

and depends solely on the distinctness of its rows.

B. Capacity Theorem

In this section, we give our main result on the DI capacity of a channel subject to input constraint. The capacity

result is stated in terms of the reduced channel as defined in the previous section. Let W be a DMC channel with

input cost function φ(x) and input constraint A as specified in (6). Define

CDI(W) = max
pX : E{φ(X)}≤A

H(X) , (20)

for X ∼ pX .
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Theorem 3. The DI capacity of a DMC W under input constraint is given by

CDI(W) = CDI(Wr) , (21)

where Wr denotes the reduced channel (see Definition 2). Hence, the DI capacity in the double exponential scale

is zero, i.e., CDI(W) = 0.

We prove the direct part in Subsection III-C and the converse part in Subsection III-D. Notice that we have

characterized the DI capacity of the DMC W in terms of its reduced version, as specified in Lemma 2

Corollary 4 (also in [2], [48]). The DI capacity of a DMC W without constraints, i.e., with A = φmax, is given

by

CDI(W) = log (nrow(W )) , (22)

where nrow(W ) is the number of distinct rows of W .

The corollary above is an immediate consequence of Theorem 3. Indeed, for A = φmax, we have

CDI(Wr) = max
pX , supp{pX}⊆Xr

H(X)

= log |Xr|

= log (nrow(W )) , (23)

since the maximal value of H(X) is log |X |, and follows the definition of Xr in Definition 2.

Remark 4. Ahlswede et al. [2], [48] stated that the result in Corollary 4 on the DI capacity of a DMC without

constraints ( [2, see Sec. IV] and [48, see Abstr.]). Nonetheless, an explicit proof for this result was not provided in

[2], [48]. Instead, Ahlswede and Cai [48] referred the reader to a paper [53] which does not include identification

but rather the arbitrarily varying channel [53]. Since then, the problem of proving this result has remained unsolved,

as a straightforward extension of the methods in [53], using decoding territories, does not seem to yield the desired

result on the DI capacity.

Remark 5. Our result in Theorem 3 has the following geometric interpretation. At a first glance, it may seem

reasonable that for the purpose of identification, one codeword could represent two messages. However, as can be

seen in the converse proof in Subsection III-C, the deterministic setting imposes the restriction that every message

must have a distinct codeword. While identification allows overlap between decoding regions [55], it turns out that

overlap at the encoder is not allowed for deterministic codes. The converse proof follows from this property in

a straightforward manner since the volume of the input subspace of sequences that satisfy the input constraint is

≈ 2nCDI (Wr). A similar principle guides the direct part as well. Namely, the input space is covered such that each

codeword is surrounded by a sphere of radius nε
2 to separate the codewords.

To illustrate our results, we give the following example.

Example 1. Consider the binary symmetric channel (BSC),

Y = X + Z mod 2 , (24)
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where X = Y = {0, 1}, Z ∼ Bernoulli(ε), with crossover probability 0 ≤ ε ≤ 1
2 . Suppose that the channel is

subject to a Hamming weight input constraint,

1

n

n∑

t=1

xt ≤ A , (25)

with φ(x) = x. Observe that for ε = 1
2 , the rows of the channel matrix are identical. Hence, the reduced input

alphabet consists of one letter, and the DI capacity is zero (see Definition 2).

Now, suppose that ε < 1
2 . Then the rows of the channel matrix W =


1− ε ε

ε 1− ε


 are distinct, hence

Wr = W . Since the channel input is binary,

CDI(W) = max
0≤p≤A

H2(p) , (26)

where H2(p) is the binary entropy function and is given by

H2(p) = −(1− p) log2(1− p)− p log2(p) . (27)

Therefore, by Theorem 3, the DI capacity of the BSC with Hamming weight constraint is given by

CDI(W) =




H2(A) if A < 1

2 ,

1 if A ≥ 1
2 ,

(28)

(see Figure 1). To show the direct part, set X ∼ Bernoulli(A) if A < 1
2 , and X ∼ Bernoulli

(
1
2

)
otherwise. The

converse part follows from (26), as the binary entropy function H2(p) is strictly increasing on 0 ≤ p ≤ 1
2 , attaining

its maximum value H2(
1
2 ) = 1, and strictly decreasing on 1

2 < p ≤ 1 (see Figure 1). In accordance with Remark 5,

the geometric interpretation is that the binary Hamming ball of radius np can be covered with codewords. As the

volume of the Hamming ball is approximately 2nH2(p), one can achieve rates that are arbitrarily close to H2(p).

Without an input constraint, i.e., for A = 1, we recover the result of JáJá [49],

CDI(W) = 1 . (29)

This example demonstrates that the DI capacity is discontinuous in the channel statistics, as CDI(W , L) = 1 for

ε < 1
2 and CDI(W , L) = 0 for ε = 1

2 .

C. Achievability proof

Consider a DMC W . By Lemma 2 we can assume without loss of generality that the channel matrix W : X → Y
has distinct row vectors. To prove achievability of the DI capacity, we combine methods and ideas from the work

of JáJá [49] as well as techniques by Ahlswede [53]. The analysis for the type II error is based on ideas that are

analogous to the combinatoric analysis of Hamming distances in [49]. The codebook construction is similar to that

of Ahlswede’s coding scheme [53], yet the decoder is significantly different. Nonetheless, the type-class intersection

lemma and the message-set analysis in [53] are useful in our analysis for the type II error.

We extensively use the method of types [60, Ch. 2]. Here a brief review of the definitions for type classes and

δ-typical sets is given. The type P̂xn of a given sequence xn is defined as the empirical distribution P̂xn(a) =
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Fig. 2. The deterministic identification (DI) capacity of the BSC as a function of the input constraint A. The dashed red line indicates the

binary entropy function, which is maximized in (26). The solid blue line indicates the DI capacity.

N(a|xn)/n for a ∈ X , where N(a|xn) is the number of occurrences of the symbol a ∈ X in the sequence xn.

The space of all types over X of sequences of length n is denoted by Pn(X ). The δ-typical set Tδ(pX) is defined

as the set of sequences xn ∈ Xn such that for every a ∈ X : |P̂xn(a)− pX(a)| ≤ δ if pX(a) > 0, and P̂xn(a) = 0

if pX(a) = 0. A type class is denoted by T (P̂ ) = {xn : P̂xn = P̂}. Similarly, a joint type is denoted by

P̂xn,yn(a, b) = N(a, b|xn, yn)/n for (a, b) ∈ X × Y , where N(a, b|xn, yn) is the number of occurrences of the

symbol pair (a, b) in the sequence (xi, yi)
n
i=1, and as a conditional type by P̂yn|xn(b|a) = N(a, b|xn, yn)/N(a|xn).

The conditional δ-typical set Tδ(pY |X |xn) is defined as the set of sequences yn ∈ Yn such that for every b ∈ Y:

|P̂yn|xn(b|a)− pY |X(b|a)| ≤ δ if pX,Y (a, b) > 0, and pX,Y (a, b) = 0 if pX(a) = 0.

The Codebook

First, we show that there exists a code such that the codewords are separated by a distance of nε. Let pX(x) be

an input distribution on X , such that

E {φ(X)} =
∑

x∈X
pX(x)φ(x) ≤ A− ε′(δ) , (30)

for X ∼ pX(x), where ε′(δ) → 0 as δ → 0. We may assume without loss of generality that pX is a type, due to

the entropy continuity lemma [60, Lem. 2.7].

Lemma 5. Let R < H(X). Then, for sufficiently small ε ∈ (0, 1) and sufficiently large n, there exists a codebook

U∗ = {vi , i ∈ M}, which consists of |M| sequences in Xn, such that the following hold:

1) All the codewords belong to the type class T (pX), namely

vi ∈ T (pX) for all i ∈ M . (31)

2) The codewords are distanced by nε, i.e.,

dH(vi, vj) ≥ nε for all i 6= j . (32)
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3) The codebook size is at least 1
2 · 2nR, that is, |M| ≥ 2n(R− 1

n
).

Proof of Lemma 5. Denote

M , 2nR . (33)

Let U1, ..., UM be independent random sequences, each uniformly distributed over the type class of pX , i.e.,

Pr (Ui = xn) =





1
|T (pX )| xn ∈ T (pX) ,

0 xn /∈ T (pX) .

(34)

Next, define a new collection of sequences V1, ..., VM as follows,

Vi =




Ui if dH(Ui, Uj) ≥ nε ∀i 6= j ,

∅ otherwise ,

(35)

where dH(·, ·) denotes the Hamming distance, and ∅ represents an idle sequence of no interest. The assignment

Vi = ∅ is interpreted as “dropping the ith word Ui.” Consider the following message set,

M̃ = {i : Vi 6= ∅, i ∈ [[M ]]} , (36)

corresponding to words that were not dropped, where we use the notation M̃ to indicate that the set is random.

We show that even though we removed words from the original collection {Ui}i∈[[M ]] (of size M ), the rate

decrease can be made negligible. Following the lines of [53], we derive an upper-bound on Pr(|M̃| ≤ 1
2M) where

M̃ defined in (36) is the operational message set. To this end, we will use the following concentration lemma,

Lemma 6 (also in [53]). Let A1, . . . , AK be a sequence of discrete random variables. Then,

Pr

(
1

K

K∑

i=1

Ai ≥ c

)
≤ 2−cK

K∏

i=1

max
ai−1

E
(
2Ai

∣∣Ai−1 = ai−1
)
. (37)

Now, define an indicator for dropping the ith word by

V̂i =




1 Vi = ∅ ,

0 Vi 6= ∅ ,
(38)

and notice the equivalence between the following events,

{∣∣∣M̃
∣∣∣ ≤ 1

2
M

}
=

{
M∑

i=1

V̂i >
1

2
M

}
. (39)

Observe that V̂i = 1, if and only if Ui is inside an ε-sphere of some other Uj . Namely, V̂i = 1 iff Ui ∈
⋃
j 6=i

Sε(Uj).

The selection of codewords can be viewed as an iterative procedure. Specifically, define

Ai =





1 Ui ∈
⋃
j<i

Sε(Uj) ,

0 otherwise ,

(40)

Bi =





1 Ui ∈
⋃
j>i

Sε(Uj) ,

0 otherwise .

(41)
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Now, since V̂i = 1 implies that either Ai = 1 or Bi = 1, it follows that the number of dropped messages is bounded

by

M −
∣∣∣M̃
∣∣∣ =

M∑

i=1

V̂i

≤
M∑

i=1

Ai +

M∑

i=1

Bi . (42)

Consider the event that

M∑

i=1

V̂i >
1

2
M . (43)

If this holds, then the two sums in the right hand side of (42) cannot be smaller than 1
4M together, that is, either

∑M
i=1 Ai ≥ 1

4M , or
∑M

i=1 Bi ≥ 1
4M , or both. Hence,

{
M∑

i=1

V̂i >
1

2
M

}
⊆
{

M∑

i=1

Ai ≥
1

4
M

}
∪
{

M∑

i=1

Bi ≥
1

4
M

}
, (44)

and by the union bound,

Pr
( M∑

i=1

V̂i >
1

2
M
)
≤ Pr

( M∑

i=1

Ai ≥
1

4
M
)
+ Pr

( M∑

i=1

Bi ≥
1

4
M
)

= 2Pr
( M∑

i=1

Ai ≥
1

4
M
)
, (45)

where the last line follows by symmetry, as the random variables Ā =
∑M

i=1 Ai and B̄ =
∑M

i=1 Bi have the same

probability distribution.

Next we apply Lemma 6,

Pr
( M∑

i=1

Ai ≥
1

4
M
)
≤ 2−

1
4
M

M∏

i=1

max
ai−1

E
(
2Ai |Ai−1 = ai−1

)
. (46)

Consider the conditional expectation above. Using the law of total expectation, we can add conditioning on U i−1

as well, i.e.

E
(
2Ai |Ai−1 = ai−1

)
=
∑

ui−1

Pr(U i−1 = ui−1|Ai−1 = ai−1) · E(2Ai |U i−1 = ui−1, Ai−1 = ai−1)

=
∑

ui−1

Pr(U i−1 = ui−1|Ai−1 = ai−1) · E(2Ai |U i−1 = ui−1)

≤ max
ui−1

E(2Ai |U i−1 = ui−1) , (47)

where the second equality holds since Ai, is a deterministic function of U i−1 (see (40)). Hence, by (46)-(47),

Pr
( M∑

i=1

Ai ≥
1

4
M
)
≤ 2−

1
4
M

M∏

i=1

max
ui−1

E
(
2Ai|U i−1 = ui−1

)

= 2−
1
4
M

M∏

i=1

max
ui−1

(
1 · Pr

{
Ai = 0|U i−1 = ui−1

}
+ 2 · Pr

{
Ai = 1|U i−1 = ui−1

})

≤ 2−
1
4
M

M∏

i=1

(
1 + 2 ·max

ui−1
Pr(Ai = 1|U i−1 = ui−1)

)
. (48)
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We bound the probability term Pr(Ai = 1|U i−1 = ui−1), as follows. For a Hamming sphere of radius nε,

|Sε(x
n)| ≤

(
n

nε

)
· |X |nε ≤ 2nθ(ε) , (49)

for sufficiently large n, where

θ(ε) = H2(ε) + ε log |X | , (50)

tends to zero as ε → 0. The first inequality holds by a simple combinatoric argument. Namely, counting the

number of sequences with up to nε different entries compared to a given xn, we have
(
n
nε

)
optional choices for

the locations of those entries, and |X | possible values for each of those entries. The last inequality follows from

Stirling’s approximation [61, Example 11.1.3]. Hence,
∣∣∣∣∣∣

M⋃

j=1

Sε(uj)

∣∣∣∣∣∣
≤ M2nθ(ε)

= 2n(R+θ(ε)) , (51)

for every given collection of sequences, u1, . . . , uM ∈ T (pX). Consider a random sequence X̄n that is uniformly

distributed over the type class T (pX), and statistically independent of U1, . . . , UM . We use this external sequence

as an auxiliary in the derivation below. Then,

Pr
(
Ai = 1

∣∣U i−1 = ui−1
)
= Pr


Ui ∈

⋃

j<i

Sε(uj)




= Pr


X̄n ∈

⋃

j<i

Sε(uj)




≤ Pr



X̄n ∈

M⋃

j=1

Sε(uj)



 . (52)

The first equality follows from the definition of Ai in (40) and because U1, . . . , UM are statistically independent.

The second equality holds because Ui and X̄n are both uniformly distributed over the type class of pX . The

inequality follows as Pr(F1) ≤ Pr(F1 ∪ F2) for every pair F1, F2 of probabilistic events. Since X̄n is uniformly

distributed over T (pX), we have

Pr



X̄n ∈

M⋃

j=1

Sε(uj)



 =

∑

xn∈T (pX ) ∩
⋃

M
j=1

Sε(uj)

1

|T (pX)|

=
1

|T (pX)| ·

∣∣∣∣∣∣
T (pX) ∩

M⋃

j=1

Sε(uj)

∣∣∣∣∣∣

≤ 2n(R+θ(ε))

|T (pX)|

≤ (n+ 1)|X | · 2
n(R+θ(ε))

2nH(X)

≤ 2−n(H(X)−R−2θ(ε)) , (53)
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for sufficiently large n, where the first inequality follows from (51), and the second is due to standard type class

properties [61, Th. 11.1.3]. The last expression tends to zero as n → ∞, provided that

R < H(X)− 3θ(ε) . (54)

Together with (52)-(53), this implies

Pr
(
Ai = 1

∣∣U i−1 = ui−1
)
≤ 2−nθ(ε) . (55)

Now plugging (55) into (48) yields

Pr

(
M∑

i=1

Ai ≥
1

4
M

)
≤ 2−

1
4
M
(
1 + 2 · 2−nθ(ε)

)M

=
(
2−

1
4 + 2

3
4 · 2−nθ(ε)

)M
, (56)

for sufficiently large n, we have 2
3
4 · 2−nθ(ε) ≤ 2−5 hence,

2−
1
4 + 2

3
4 · 2−nθ(ε) ≤ 2−

1
4 + 2−5

= 0.8721

< 1 . (57)

Thus we have a double exponential bound

Pr

(∣∣∣M̃
∣∣∣ ≤ 1

2
M

)
≤ 2−α1M

= 2−α12
nR

, (58)

for some α1 > 0. We deduce that there exists at least one codebook with the desired properties. This completes

the proof of Lemma 5.

We continue to the main part of the achievability proof. Let U∗ = {vi , i ∈ M} be a codebook of size 2n(R− 1
n
)

as in Lemma 5. Consider the following DI coding scheme for W .

Encoding: Given a message i ∈ M at the sender, transmit xn = vi.

Decoding: Let δ > 0, such that δ → 0 as ε → 0. Let j ∈ M be the message that the decoder wishes to identify.

To do so, the decoder checks whether the channel output yn belongs to the corresponding decoding set Dj or not,

where

Dj = {yn : (vj , y
n) ∈ Tδ(pXW )} . (59)

Namely, given the channel output yn ∈ Yn, if (vj , y
n) ∈ Tδ(pXW ), then the decoder declares that the message j

was sent. On the other hand, if (vj , y
n) /∈ Tδ(pXW ), it declares that j was not sent.
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Error analysis

First, consider the error of type I, i.e., the event that Y n /∈ Di. For every i ∈ M, the probability of identification

error of type I, Pe,1(i) = Pr((vi, Y
n) /∈ Tδ(pXW )) tends to zero by standard type class considerations [62, Th. 1.2].

We move to the error of type II, i.e., when Y n ∈ Dj for j 6= i. To bound the probability of error Pe,2(i, j), we

use the conditional type-class intersection lemma, due to Ahlswede [53], as stated below.

Lemma 7 (see [53, Lem. I1]). Let W : X → Y be a channel matrix of a DMC W with distinct rows. Then, for

every xn, x′n ∈ Tδ(pX) with dH(xn, x′n) ≥ nε,

|Tδ(pY |X |xn) ∩ Tδ(pY |X |x′n)|
|Tδ(pY |X |xn)| ≤ 2−nL(ε) , (60)

with pY |X ≡ W , for sufficiently large n and some positive function L(ε) > 0 which is independent of n.

Now, for short notation, denote the conditional δ-typical set in Yn, given xn ∈ T (pX), by

G(xn) ≡ Tδ(W |xn)

= {yn : (xn, yn) ∈ Tδ(pXW )} . (61)

Then, for every i 6= j,

Pe,2(i, j) = Pr(Dj |xn = vi)

=
∑

yn∈G(vj)
Wn(yn|vi)

=
∑

yn∈G(vj)∩G(vi)
Wn(yn|vi) +

∑

yn∈G(vj)∩(G(vi))c
Wn(yn|vi) . (62)

Observe that the second sum in the last line is bounded by the probability Pr(Y n /∈ Tδ(W |vi)|xn = vi), which in

turn is bounded by 2−α1(δ)n as before, and tends to zero as well.

To bound the first sum in (62), we first consider the cardinality of the set that the sum acts upon (the domain).

We note that since vi and vj belong to the type class T (pX) by the first property of Lemma 5, it follows that they

also belong to the δ-typical set, i.e., vi, vj ∈ Tδ(pX). Further, according to the second property of Lemma 5, every

pair of codewords vi and vj satisfy dH(vi, vj) ≥ nε. Finally, having assumed that the rows of W are distinct, we

have by Lemma 7,

|G(vj) ∩ G(vi)| ≤ 2−nL(ε)|G(vj)|

≤ 2n[H(Y |X)−L(ε)] , (63)

where X ∼ pX , as we explained below. The second inequality in (63) holds since the size of the conditional type

class G(xn) = Tδ(W |xn) is bounded by 2nH(Y |X) [60, Lem. 2.5], as the type of vi and vj is pX . Furthermore, by

standard type class properties [62, Th. 1.2],

Wn(yn|vi) ≤ 2−n[H(Y |X)−δ log |Y|] . (64)
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Now by Equation (63) and (64),

∑

yn∈G(vj)∩G(vi)
Wn(yn|vi) ≤ 2−n[L(ε)−δ log |Y|] , (65)

which tends to zero as n → ∞ for sufficiently small δ > 0, such that δ log |Y| < L(ε). Thus, by (62) and (65), the

probability of type II error is bounded by

Pe,2(i, j) ≤ 2−nα2(ε,δ) , (66)

for sufficiently large n, where α2(ε, δ) = min{α1(δ), L(ε) − δ log |Y|}. The proof follows by taking the limits

n → ∞, and ε, δ → 0.

D. Converse Proof

To prove the converse part, we will use the following observation. Let R > 0 be an achievable rate. We will

assume to the contrary that there exist two different messages i1 and i2 that are represented by the same codeword,

i.e., ui1 = ui2 = xn, and show that this leads to error probabilities such that

Pe,1(i1) + Pe,2(i2, i1) = 1 . (67)

Hence the assumption is false. The number of messages 2nR is thus bounded by the size of the subset of input

sequences that satisfy the input constraint φn(xn) ≤ A. Then we notice that the average cost of a codeword depends

only on its type, and hence this subset is in fact a union of type classes. This also implies that we have a strong

converse for the DI capacity.

Consider a sequence of (2nR, n, λ
(n)
1 , λ

(n)
2 ) codes (U (n),D(n)) such that λ

(n)
1 and λ

(n)
2 tend to zero as n → ∞.

Lemma 8. Consider a sequence of codes as described above. Then, given a sufficiently large n, the codebook U (n)

satisfies the following property. There cannot be two distinct messages that are represented by the same codeword,

i.e.,

i1 6= i2 ⇒ ui1 6= ui2 , (68)

where i1, i2 ∈ [[2nR]].

Proof. Assume to the contrary that there exist two messages i1 and i2, where i1 6= i2, such that

ui1 = ui2 = xn , (69)

for some xn ∈ Xn. Since (U (n),D(n)) form a (2nR, n, λ
(n)
1 , λ

(n)
2 ) code, we have

Pe,1(i1) = Wn(Dc
i1 |xn) ≤ λ

(n)
1

Pe,2(i2, i1) = Wn(Di1 |xn) ≤ λ
(n)
2 . (70)

This leads to a contradiction as

1 = Wn(Dc
i1 |xn) +Wn(Di1 |xn)

= Pe,1(i1) + Pe,2(i2, i1)
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≤ λ
(n)
1 + λ

(n)
2 . (71)

Hence, the assumption is false, and i1 and i2 cannot have the same codeword.

By Lemma 8, each message has a distinct codeword. Hence, the number of messages is bounded by the number

of input sequences that satisfy the input constraint. That is, the size of the codebook is upper-bounded as follows:

2nR ≤
∣∣∣∣∣

{
xn :

1

n

n∑

t=1

φ(xt) ≤ A

}∣∣∣∣∣ . (72)

Notice that the input cost of a given sequence xn depends only on the type of the sequence, since

1

n

n∑

t=1

φ(xt) =
∑

a∈X
P̂xn(a)φ(a)

= E
{
φ(X ′)

}
, (73)

where the random variable X ′ is distributed according to the type of xn, i.e., pX′ = P̂xn . Therefore, the subset on

the right hand side of (72) can be written as a union of type classes:
∣∣∣∣∣

{
xn :

1

n

n∑

t=1

φ(xt) ≤ A

}∣∣∣∣∣ =
∣∣∣∣∣

⋃

pX′∈Pn(X ):
E{φ(X′)}≤A

T (pX′)

∣∣∣∣∣

≤ |Pn(X )| max
pX′∈Pn(X ):
E{φ(X′)}≤A

|T (pX′)|

≤ |Pn(X )| · 2nH(X′)

≤ 2n(H(X′)+αn)

≤ 2n(CDI (W)+αn) , (74)

where αn → 0 as n → ∞, where Pn(X ) denotes the space of all types over X of sequences of length n. The

second inequality holds since the size of a type class T (pX′) is bounded by |T (pX′)| ≤ 2nH(X′) [61, Th. 11.1.3].

The third inequality holds since the number of types on X is polynomial in n [61, Th. 11.1.1]. Thus, by (72) and

(74), the code rate is bounded by R ≤ CDI(W) + αn, which completes the proof of Theorem 3.

IV. THE GAUSSIAN CHANNEL

In this section, we consider the Gaussian channel G , specified by the input-output relation

Y = x+ Z . (75)

with additive white Gaussian noise, i.e., when the noise sequence Z is i.i.d. ∼ N (0, σ2). The transmission power

is limited to ‖x‖2 ≤ nA.

A. Coding for the Gaussian Channel

The definition of a DI code for the Gaussian channel is given below.
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i Encoder + Decoder
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Yes/No

Z

ui Y

Fig. 3. Deterministic identification for the standard Gaussian channel

Definition 3 (Gaussian DI Code). A (2nR, n) DI code for a Gaussian channel G under input constraint A, assuming

2nR is an integer, is defined as a system (U ,D) consisting of a codebook U = {ui}i∈[[2nR]], U ⊂ Xn, such that

‖ui‖2 ≤ nA , (76)

for all i ∈ [[2nR]] and a collection of decoding regions D = {Di}i∈[[2nR]] with

2nR⋃

i=1

Di ⊂ R
n . (77)

Given a message i ∈ [[2nR]], the encoder transmits ui. The decoder’s aim is to answer the following question: Was

a desired message j sent or not? There are two types of errors that may occur: Rejecting of the true message, or

accepting a false message. Those are referred to as type I and type II errors, respectively.

The error probabilities of the identification code (U ,D) are given by

Pe,1(i) = 1−
∫

Di

fZ(y − ui) dy correctness property , (78)

Pe,2(i, j) =

∫

Dj

fZ(y − ui) dy disjointedness property . (79)

with the noise formula given by

fZ(z) =
1

(2πσ2)n/2
e−‖z‖2/2σ2

, (80)

(see Figure II-C). A (2nR, n, λ1, λ2) DI code further satisfies

Pe,1(i) ≤ λ1 , (81)

Pe,2(i, j) ≤ λ2 , (82)

for all i, j ∈ [[2nR]], such that i 6= j.

A rate R > 0 is called achievable if for every λ1, λ2 > 0 and sufficiently large n, there exists a (2nR, n, λ1, λ2)

DI code. The operational DI capacity of the Gaussian channel is defined as the supremum of achievable rates, and

will be denoted by CDI(G ).

B. Main Result - Gaussian Channel

Our DI capacity theorem for the Gaussian channel is stated below.
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Theorem 9. The DI capacity of the Gaussian channel G is given by

CDI(G ) = ∞ . (83)

The proof of Theorem 9 is given below.

Proof. Consider the Gaussian channel G . To show that the capacity is infinite, it suffices to prove the direct part.

We show here that the DI capacity of the Gaussian channel can be achieved using a simple distance-decoder. A DI

code for the Gaussian channel G is constructed as follows. Since the decoder can normalize the output symbols by

1√
n

, we have an equivalent input-output relation,

Ȳ = x̄+ Z̄ , (84)

where the noise sequence Z̄ is i.i.d. ∼ N
(
0, σ2

n

)
, and an input power constraint

‖x̄‖ ≤
√
A , (85)

with x̄ = 1√
n
x, Z̄ = 1√

n
Z, and Ȳ = 1√

n
Y.

Codebook construction: Let S denote a sphere packing, i.e., an arrangement of L non-overlapping spheres

Sui
(n, r0), i ∈ [[L]], that cover a bigger sphere S0(n, r1), with r1 > r0. As opposed to standard sphere packing

coding techniques, the small spheres are not necessarily entirely contained within the bigger sphere (see Figure 4).

That is, we only require that the spheres are disjoint from each other and have a non-empty intersection with

S0(n, r1). The packing density ∆n(S ) is defined as the fraction of the big sphere volume Vol (S0(n, r1)) that is

covered by the small spheres, i.e.

∆n(S ) ,
Vol
(
S0(n, r1) ∩

⋃L
i=1 Sui

(n, r0)
)

Vol(S0(n, r1))
, (86)

(see [63, Ch. 1]). A sphere packing is called saturated if no spheres can be added to the arrangement without

overlap. sphere packing is called saturated if no spheres can be added to the arrangement without overlap.

√

A−

√

ε

√

ε

Fig. 4. Illustration of a sphere packing, where small spheres of radius r0 =
√
ε cover a bigger sphere of radius r1 =

√
A −

√
ε. The small

spheres are disjoint from each other and have a non-empty intersection with the big sphere. Some of the small spheres, marked in gray, are not

entirely contained within the bigger sphere, and yet they are considered to be a part of the packing arrangement. As we assign a codeword to

each small sphere center, the norm of a codeword is bounded by
√
A as required.
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We use a packing argument that has a similar flavor as in the Minkowski–Hlawka theorem in lattice theory

[63]. We use the property that there exists an arrangement
⋃L

i=1 Sui
(n,

√
εn) of non-overlapping spheres inside

S0(n,
√
A) with a density of ∆n(S ) ≥ 2−n [64, Lem. 2.1]. Specifically, consider a saturated packing arrangement

of L(n,R) = 2nR spheres of radius r0 =
√
ε covering the big sphere S0(n, r1 =

√
A − √

ε), i.e., such that no

spheres can be added without overlap. Then, for such an arrangement, there cannot be a point in the big sphere

S0(n, r1) with a distance of more than 2r0 from all sphere centers. Otherwise, a new sphere could be added. As a

consequence, if we double the radius of each sphere, the 2r0-radius spheres cover the whole sphere of radius r1.

In general, the volume of a hyper-sphere of radius r is given by

Vol (Sε(x, r)) =
π

n
2

Γ(n2 + 1)
· rn , (87)

(see Eq. (16) in [63]). Hence, doubling the radius multiplies the volume by 2n. Since the 2r0-radius spheres cover

the entire sphere of radius r1, it follows that the original r0-radius packing has density at least 2−n, i.e.,

∆n(S ) ≥ 2−n . (88)

We assign a codeword to the center ui of each small sphere. The codewords satisfy the input constraint as

‖ui‖ ≤ r0 + r1 =
√
A. Since the small spheres have the same volume, the total number of spheres is bounded

from below by

L =
Vol
(⋃L

i=1 Sui
(n, r0)

)

Vol(Su1
(n, r0))

≥
Vol
(
S0(n, r1) ∩

⋃L
i=1 Sui

(n, r0)
)

Vol(Su1
(n, r0))

=
∆n(S ) · Vol(S0(n, r1)))

Vol(Su1
(n, r0))

≥ 2−n · Vol(S0(n, r1)))

Vol(Su1
(n, r0))

= 2−n · r
n
1

rn0
, (89)

where the second equality is due to (86), the inequality that follows holds by (88), and the last equality follows

from (87). That is, the codebook size satisfies

L(n,R) = 2nR

≥ 2−n ·
(√

A−√
ε√

ε

)n

. (90)

Hence,

R ≥ 1

2
log

(
A

ε

)
− 1 . (91)

Encoding: Given a message i ∈ [[2nR]], transmit x̄ = ūi.

Decoding: Let δ > 0. To identify whether a message j ∈ M was sent, the decoder checks whether the channel

output y belongs to the following decoding set,

Dj =

{
ȳ ∈ R

n : ‖ȳ − ūj‖ ≤
√
σ2
Z + δ

}
. (92)
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Error Analysis: Consider the type I error, i.e., when the transmitter sends ūi, yet Ȳ /∈ Di. For every i ∈ [[2nR]],

the type I error probability is bounded by

Pe,1(i) = Pr
(∥∥Ȳ − ūi

∥∥2 > σ2
Z + δ

∣∣ x̄ = ūi

)

= Pr
(∥∥Z̄

∥∥2 > σ2
Z + δ

)

= Pr

(
n∑

t=1

Z̄t
2
> σ2

Z + δ

)

≤ 3σ4
Z

nδ2

≤ λ1 , (93)

which tends to zero as n → ∞, where the last inequality holds by Chebyshev’s inequality.

Next, we address the type II error, i.e., when Ȳ ∈ Dj while the transmitter sent ūi. Then, for every i, j ∈ [[2nR]],

where i 6= j, the type II error probability is given by

Pe,2(i, j) = Pr
(∥∥Ȳ − ūj

∥∥2 ≤ σ2
Z + δ

∣∣ x̄ = ūi

)

= Pr
(∥∥ūi − ūj + Z̄

∥∥2 ≤ σ2
Z + δ

)
. (94)

Observe that the square norm can be expressed as

∥∥ūi − ūj + Z̄
∥∥2 = ‖ūi − ūj‖2 +

∥∥Z̄
∥∥2 + 2

n∑

t=1

(ūi,t − ūj,t)Zt . (95)

Then, define the event

E0 =

{∣∣∣∣∣

n∑

t=1

(ūi,t − ūj,t)Z̄t

∣∣∣∣∣ >
δ

2

}
, (96)

By Chebyshev’s inequality, the probability of this event vanishes,

Pr(E0) ≤
σ2
Z

∑n
t=1(ūi,t − ūj,t)

2

n
(
δ
2

)2

=
4σ2

Z ‖ūi − ūj‖2
nδ2

≤ 16σ2
ZA

nδ2

≤ ζ , (97)

for sufficiently large n, where ζ > 0 is arbitrary constant, where the first inequality holds since the sequence {Z̄t}
is i.i.d. ∼ N

(
0,

σ2
Z

n

)
, and the second inequality follows as

‖ūi − ūj‖2 ≤ (‖ūi‖+ ‖ūj‖)2

≤ (
√
A+

√
A)2

= 4A , (98)

by the triangle inequality. Now let us define following event

Ai,j

(
σ2
Z + δ

)
≡
{
Z̄ ∈ R

n :
∥∥ūi − ūj + Z̄

∥∥2 ≤ σ2
Z + δ

}
, (99)
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Observe that given the complementary event Ec
0 , we have

2

n∑

t=1

(ūi,t − ūj,t)Z̄t ≥ −δ , (100)

hence, by (95), the event Ai,j

(
σ2
Z + δ

)
implies following event

E1 =
{
Z̄ ∈ R

n : ‖ūi − ūj‖2 +
∥∥Z̄
∥∥2 ≤ σ2

Z + 2δ
}

. (101)

Applying the law of total probability to (94), we have

Pe,2(i, j)
(a)
= Pr

({
Ai,j

(
σ2
Z + δ

)}
∩ E0

)
+ Pr

({
Ai,j

(
σ2
Z + δ

)}
∩ Ec

0

)

(b)

≤ Pr(E0) + Pr
({

Ai,j

(
σ2
Z + δ

)}
∩ Ec

0

)

(c)

≤ ζ + Pr (E1) , (102)

where (a) is due to (99), (b) holds since each probability is bounded by 1 and (c) follows from (101). Based on

the codebook construction, each codeword is surrounded by a sphere of radius
√
ε, which implies

‖ūi − ūj‖ ≥ √
ε , (103)

Hence,

−‖ūi − ūj‖2 ≤ −ε . (104)

Thus, choosing δ = ε
3 , we obtain

Pe,2(i, j) ≤ Pr
(∥∥Z̄

∥∥2 ≤ σ2
Z − δ

)
+ ζ

= Pr

(
n∑

t=1

Z̄2
t − σ2

Z ≤ −δ

)
+ ζ

≤
∑n

t=1 Var(Z̄2
t )

δ2
+ ζ

≤ n · E{Z̄4
t }

δ2
+ ζ

=
3σ4

Z

nδ2
+ ζ

≤ λ2 , (105)

for sufficiently large n, where λ2 > 0 is arbitrary constant, since the fourth moment of a Gaussian variable

V ∼ N (0, σ2
V ) is E{V 4} = 3σ4

V .

We have thus shown that for every λ1, λ2 > 0 and sufficietnly large n, there exists a (2nR, n, λ1, λ2) code. The

proof follows by taking the limits n → ∞, then γ, δ → 0, hence ε, β → 0 and R → ∞ by (91).

C. Alternative Proof: Discretization

In this subsection, we give a second proof for the DI capacity theorem of the Gaussian channel, Theorem 9. We

show that the theorem can be obtained from our result on the DMC in Theorem 3, using discretization. We show

that given a Gaussian random variable X ∼ N (0, A), the entropy of the discretized variable is approximately

1

2
log(2πeA)− 2∆√

2πA
+ log

1

∆
, (106)
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where ∆ > 0 is the discretization step. Therefore, as ∆ tends to zero, the discretized entropy grows to infinity.

Our discretization procedure is similar to the one presented in [65, see Sec. 3.4.1]. Consider a Gaussian random

variable X ∼ N (0, A), hence h(X) = 1
2 log(2πeA). Let J > 0 be arbitrarily large and ∆ > 0 be arbitrarily small.

Consider the discretized variable

X̂ ∈ {−J∆, −(J − 1)∆, · · · , −∆, 0, ∆, · · · , (J − 1)∆, J∆} , (107)

obtained by mapping X to the closest discretization point X̂ = gJ,∆(X), such that |X̂| ≤ |X |. Clearly, E(X̂2) ≤
E(X2) = A. More specifically,

gJ,∆(x) =





k∆ k∆ ≤ x < (k + 1)∆ ,

−k∆ −(k + 1)∆ < x ≤ −k∆ ,

J∆ x ≥ J∆ ,

−J∆ x ≤ −J∆ .

(108)

Let Ŷ = X̂ + Z be the output corresponding to the input X̂ and let Ỹ = gJ′,∆(Ŷ ) be a discretized version of Ŷ

defined in the same manner. Observe that the rows of the discretized DMC from X̂ to Ỹ are distinct for sufficiently

large J and small ∆, since for every pair of inputs x1, x2 ∈ R, x1 6= x2, we have

fZ(y − x1) 6= fZ(y − x2) , (109)

for some y ∈ R (e.g. y = x1). Thus, based on Theorem 3, any rate

R = H(X̂)− ε , (110)

is achievable for the DMC with input X̂ and output Ỹ under power constraint A, where ε > 0 is arbitrarily small.

By (108), the probability distribution of the discretized variable is specified by

Pr(X̂ = ±k∆) =





pk k ∈ [[J − 1]] ,

∑∞
k=J pk k ∈ {J, J + 1, · · · } ,

2p0 k = 0 ,

(111)

where

pk =

∫ (k+1)∆

k∆

fX(x) dx , (112)

for k ∈ {0, 1, · · · } and for the case k = 0 we have

Pr(X̂ = 0) =

∫ ∆

0

fX(x) dx

=
1

2

∫ ∆

−∆

fX(x) dx , (113)

Thus, the corresponding entropy is bounded by

R+ ε = H(X̂)
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= −
J∑

k=−J

Pr(X̂ = k∆) logPr(X̂ = k∆)

≥ −
J−1∑

k=−(J−1)

Pr(X̂ = k∆) logPr(X̂ = k∆)

= −2p0 log(2p0)− 2
J−1∑

k=1

pk log pk . (114)

Since the Gaussian density function fX is continuous, then, by the mean value theorem, there exists a value xk

within each discretization interval such that

fX(xk)∆ =

∫ (k+1)∆

k∆

fX(x) dx

= pk , (115)

where the last equality holds by the definition of pk in (112). Plugging this into (114), we obtain

H(X̂) ≥ −2fX(x0)∆ log(2fX(x0)∆)− 2

J−1∑

k=1

fX(xk)∆ log(fX(xk)∆)

= −2fX(x0)∆ log(2fX(x0))− 2

J−1∑

k=1

fX(xk)∆ log(fX(xk))

= −2fX(x0)∆ log∆− 2

J−1∑

k=1

fX(xk)∆ log∆ . (116)

Then, taking J to infinity, we have

lim
J→∞

H(X̂) ≥ −2fX(x0)∆ log(2fX(x0))− 2

∞∑

k=1

fX(xk)∆ log(fX(xk))− log∆

(
2

∞∑

k=0

fX(xk)∆

)

= −2fX(x0)∆− 2
∞∑

k=0

fX(xk)∆ log(fX(xk))− log∆ , (117)

since

2

∞∑

k=0

fX(xk)∆ =

∞∑

k=−∞
Pr(X = k∆)

= 1 , (118)

As the Gaussian pdf is bounded by fX(x) ≤ (2πA)−1/2, the last bound, (117), implies

lim
J→∞

H(X̂) ≥ −2

∞∑

k=0

∆fX(xk) log(fX(xk))−
2√
2πA

∆+ log
1

∆
. (119)

At last, we take the limit ∆ → 0+. First, consider the sum. Since fX(x) log fX(x) is Riemann integrable,

lim
∆→0+

(
−2

∞∑

k=0

∆fX(xk) log(fX(xk))

)
= −2

∫ ∞

0

fX(x)∆ log(fX(x)) dx

= −
∫ ∞

−∞
fX(x) log fX(x) dx

= h(X)
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=
1

2
log(2πeA) . (120)

The second term in the right hand side of (119) tends to zero as δ → 0+. Hence, as J → ∞ and δ → 0+, we

obtain R+ ε = H(X̂) converges to

1

2
log(2πeA) + lim

∆→0+
log

1

∆
. (121)

which tends to ∞. This completes the proof.

V. SUMMARY AND DISCUSSION

To summarize, we have established the deterministic identification (DI) capacity of a channel subject to an input

constraint. Our capacity formula is given in terms of the entropy of the channel input. For a Gaussian Channel

G , the DI capacity is CDI(G ) = ∞, regardless of the noise (as long as it has finite energy). Our results have the

following geometric interpretation. At a first glance, it may seem reasonable that for the purpose of identification,

one codeword could represent two messages. While identification allows overlap between decoding regions [55],

[56], overlap at the encoder is not allowed for deterministic codes. We observed that when two messages are

represented by the same codeword, then, if the probability of missed identification is upper bounded by ε, then the

probability of false identification is lower bounded by 1 − ε. Hence, low probability of type I error comes at the

expense of high probability of type II error, and vice versa. Thus, deterministic coding imposes the restriction that

every message must have a distinct codeword. The converse proof follows from this property in a straightforward

manner since the volume of the input subspace of sequences that satisfy the input constraint is ≈ 2nCDI (W), with

CDI(W) = max
pX : E{φ(X)}≤A

H(X) . (122)

A similar principle guides the direct proof as well. The input space is covered such that each codeword is surrounded

by a sphere of radius nε
2 to separate the codewords. For the Gaussian channel, the DI capacity can be achieved

using a simple distance-decoder.

Next, we compare and discuss different results from the literature on the DI capacity. We will use the notation

of CDI(W) for the DI capacity in the double-exponential scale, or equivalently, when the rate is defined as

R =
1

n
log log(# of messages) , (123)

as stated in [2], and confirmed in this paper as well,

CDI(W) = 0 , (124)

since the code size of DI codes scales only exponentially in block length.

On the other hand, as observed by Bracher and Lapidoth [38], if one considers an average error criterion instead

of the maximal error, then the double-exponential performance of randomized-encoder codes can also be achieved

using deterministic codes.

Alternatively, one may consider the ε-capacity, for a fixed 0 < ε < 1. In the double exponential scale, a rate R

is called ε-achievable if there exists a (22
nR

, n, ε, ε) code for sufficiently large n. The DI ε-capacity C
ε
DI(W) is
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then defined as the supremum of ε-achievable rates. As the DI and RI capacities in the double exponential scale

have strong converses [2], [66], [67],

C
ε
RI(W) = CRI(W) = max

pX

I(X ;Y ) , (125)

C
ε
DI(W) = CDI(W) = 0 , (126)

for 0 < ε < 1
2 . On the other hand, for ε ≥ 1

2 we have

C
ε
DI(W) = C

ε
RI(W) = ∞ . (127)

(see [35]). To understand (127), suppose ε > 1
2 , and consider an arbitrary set of codewords with a stochastic decoder

that makes a decision for the identification hypothesis by flipping a fair coin [2]. Both error probabilities of type I

and II equal 1
2 , and are thus smaller than ε.

By providing a detailed proof for the DI capacity theorem with and without an input constraint, we have filled

the gap in the previous analysis [2], [48] as well. In particular, in [48], Ahlswede and Cai asserted that the DI

capacity for a compound channel is given by

CDI(Wcompound) = max
pX(x)

min
s∈S

H(X̂(s)) , (128)

where s ∈ S is the channel state, and the map X̂(s) is induced from X by a partition of the input alphabet to

equivalent classes as specified in [48, Sec. I.F]. This result immediately yields Corollary 4, since the DMC is a

special case of a compound channel with a single state value. Indeed, taking |S| = 1 and considering the reduced

channel Wr (see Definition 2), it can be readily shown that X̂(s) = X . Nonetheless, a significant part of the proof

in [48] is missing. At the beginning of Sec. VII in [48], the following claim is given: “It was shown in [A’80]

that for any channel Ṽ : X → ¸Y without two identical rows, any u1, u2, ε > 0, sufficiently large n and any

U ⊂ Xn such that for all u, u′ ∈ U , dH(u, u′) > nε, there exists a family of subsets of Yn, say Du, u ∈ U , such

that Ṽ n(Du|u) > 1− u1 and Ṽ n(Du|u′) < u2 for all u 6= u′, where dH is the Hamming distance.”, where [A’80]

refers to a paper by Ahlswede [53] on the arbitrarily varying channel, and does not include identification. In fact,

the work [53] was published 9 years before the introduction of the identification problem by Ahlswede and Dueck

[2]. Unfortunately, a straightforward extension of the methods in [53], using decoding territories, does not seem

to yield a proof of such a property [54]. In this sense, our derivation completes the proof of Ahlswede and Cai’s

capacity theorem [48] for the compound channel.
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APPENDIX A

PROOF OF LEMMA 2

Let W be a given DMC, with a stochastic matrix W : X → Y and its reduced version Wr : Xr → Y as defined

in Definition 2. Observe that the capacity of the original channel is lower bounded by that of the reduced channel,

i.e.,

CDI(W) ≥ CDI(Wr) , (129)

since every code for Wr can also be used for W . Hence, it remains to be shown that

CDI(Wr) ≥ CDI(W) . (130)

Assume without loss of generality that the input alphabet of the original channel W is given by X = {1, 2, · · · , |X |}.

Let L : X → Xr denote the projection of the input alphabet onto the equivalent classes,

L[x] = z(ℓ) iff x ∈ X (ℓ) . (131)

Now let (U ,D) be a (2nR, n, λ1, λ2) code for W . Then the type I probability of error can be expressed as

PW
e,1(i) =

∑

yn /∈Di

Wn(yn|ui)

=
∑

yn /∈Di

n∏

t=1

W (y(t)|ui(t)) , (132)

where we use the notation yn =
(
y(t)

)n
t=1

and ui =
(
ui(t)

)n
t=1

. Next, we define a code (Ũ ,D) for the channel

Wr where the codebook consists of the following codewords,

ũi =
(
L[ui(t)]

)n
t=1

. (133)

Now recall that we have defined the equivalence classes such that input letters in the same equivalence class

correspond to identical rows in the channel matrix W (see Definition 2). Thus, by definition,

Wr(y|L[x]) = W (y|x) , (134)

for all x ∈ X and y ∈ Y . Hence, the error probability of type I for the reduced channel Wr satisfies

PWr

e,1 (i)
(a)
=

∑

yn /∈Di

Wr(y
n|ũi)

(b)
=

∑

yn /∈Di

n∏

t=1

Wr

(
y(t)|L[ui(t)]

)

(c)
=

∑

yn /∈Di

n∏

t=1

W (y(t)|ui(t))

(d)
=

∑

yn /∈Di

Wn(yn|ui)

(e)
= PW

e,1(i) , (135)
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for all i, where (a) and (e) are due to (9); (b) and (d) hold since the channel is memoryless, and (c) follows from

(134). By the same considerations, we also have PWr

e,2 (i, j) = PW
e,2(i, j) for all j 6= i. That is, the error probabilities

of the code (Ũ ,D) are the same as those of the original code for W . Therefore, the code constructed above for

Wr is also a (2nR, n, λ1, λ2) code, and the proof of Lemma 2 follows.
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