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Abstract

Consider n random variables forming a Markov random field (MRF). The true model of the MRF is unknown, and

it is assumed to belong to a binary set. The objective is to sequentially sample the random variables (one-at-a-time)

such that the true MRF model can be detected with the fewest number of samples, while in parallel, the decision

reliability is controlled. The core element of an optimal decision process is a rule for selecting and sampling the

random variables over time. Such a process, at every time instant and adaptively to the collected data, selects the

random variable that is expected to be most informative about the model, rendering an overall minimized number

of samples required for reaching a reliable decision. The existing studies on detecting MRF structures generally

sample the entire network at the same time and focus on designing optimal detection rules without regard to the data-

acquisition process. This paper characterizes the sampling process for general MRFs, which, in conjunction with the

sequential probability ratio test, is shown to be optimal in the asymptote of large n. The critical insight in designing

the sampling process is devising an information measure that captures the decisions’ inherent statistical dependence

over time. Furthermore, when the MRFs can be modeled by acyclic probabilistic graphical models, the sampling rule

is shown to take a computationally simple form. Performance analysis for the general case is provided, and the results

are interpreted in several special cases: Gaussian MRFs, non-asymptotic regimes, connection to Chernoff’s rule to

controlled (active) sensing, and the problem of cluster detection.

1 Introduction

1.1 Overview

Driven by advances in information sensing and acquisition, many application domains have evolved towards inter-

connected networks of information sources in which large-scale and complex data is constantly generated and pro-

cessed for various inferential and decision-making purposes. Induced by their physical couplings, such information

sources generate data streams that often bear strong statistical dependence structures. Probabilistic graphical models,

in general, and Markov random fields (MRFs), in particular, provide effective analytical frameworks for encoding the

statistical relationship among the datasets generated by different agents in a network [1–4].

Forming inferential decisions in an MRF strongly hinges on determining the dependence structure embedded in

the MRF. There are two distinct aspects to determining an MRF structure: selecting (estimating) versus differentiating
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(detecting) the models. In model selection (structure learning), the objective is to sample the random variables that

form an MRF, and select (estimate) the edge set of the graphical model associated with the MRF (a representative list

includes [5–18]). While the problem of graph structure learning is NP-hard in its general form [19], it becomes feasible

under proper restrictions on the structure of the graph, e.g., limiting the graph to the classes of sparsely-connected

graphs, edge-bounded graphs, and degree-bounded graphs. There is a rich literature investigating the algorithmic

and information-theoretic aspects of structure learning, especially for Gaussian and Ising graphical models. The

existing studies can be distinguished based on the sampling mechanisms that they adopt. Broadly, there exists two

distinct approaches to sampling: (i) pre-specific sampling, in which sampling is agnostic to the data and follows pre-

specified rules [5–12], and (ii) active sampling, in which the sampling decisions are data-driven and they are updated

dynamically as the data is collected [13–18]. In active sampling methods, sampling and model selection processes

are inherently coupled, and the emphasis is on co-designing these two processes. In contrast, when the sampling

mechanism is pre-specified, the sampling and model selection processes are decoupled, and the emphasis is placed on

forming reliable decisions given a set of samples.

In contrast to model selection, in model detection, the unknown model of an MRF is assumed to belong to a finite

set of known models, and the objective is to sample the random variables in order to identify the true model. MRF

model detection, in its simplest form, is used for deciding whether a given set of random variables are independent,

which is referred to as testing against independence. More generally, dependence model detection is the process of

deciding in favor of one dependence model against a group of alternative ones (a representative list of relevant literature

includes [20–28]). The existing studies on MRF model detection adopt pre-specified sampling mechanisms and focus

on forming detection rules. Furthermore, existing studies primarily investigate Gaussian MRFs.

In this paper, we investigate active sampling for model detection in general MRFs. The objectives are (i) es-

tablishing the fundamentally minimum number of samples required for forming decisions with target reliability, and

(ii) characterizing the attendant sampling and detection rules. Characterizing an optimal active sampling algorithm

that can detect the model of an MRF with the minimal number of samples is especially imperative as MRF’s size or

dimension grow, in which case sampling incurs substantial communication, sensing, and decision delay costs. An

active sampling process in an MRF is specified by the aggregate number of samples to be collected as well as the

order in which they are collected. When the order is pre-specified, determining the optimal sampling strategy reduces

to minimizing the (average) number of samples. This can be effectively facilitated via sequential hypothesis testing,

which is well-investigated. In sequential hypothesis testing, the samples are collected sequentially according to a

pre-specified order, and the sampling strategy dynamically decides whether to take more samples or to terminate the

process and form a decision [29–32]. However, incorporating dynamic decisions about the order of sampling intro-

duces a new dimensiont to decision-making, which is less-investigated. Forming such dynamic decisions that pertain

to data acquisition naturally arises in a broad range of applications such as sensor management [33], inspection, and

classification [34], medical diagnosis [35], cognitive science [36], generalized binary search [37], and channel coding

with feedback [38], to name a few.
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1.2 Related Literature

Controlled (active) sensing for detection. One directly applicable approach to treat such coupled sampling and

decision-making process is controlled sensing, originally developed by Chernoff for binary composite hypothesis

testing through incorporating a controlled information gathering process that dynamically decides about taking one of

a finite number of possible actions at each time [39]. Under the assumption of uniformly distinguishable hypotheses

and having independent control actions, Chernoff’s rule decides in favor of the action with the best immediate return

according to proper information measures and achieves optimal performance in the asymptote of a diminishing rate of

erroneous decisions. Chernoff’s rule, specifically, at each time, identifies the most likely true hypothesis based on the

collected data and takes the action that reinforces the decision.

Extensions of the Chernoff’s rule to various settings are studied in [40–43]. Specifically, studies in [40] and [41]

investigate the extension of Chernoff’s rule to accommodate an infinite number of available actions and an infinite

number of hypotheses, and [42] and [43] provide alternative rules that are empirically shown to outperform the Cher-

noff rule in the non-asymptotic regimes. Recent advances in controlled sensing that are relevant to the scope of this

paper include [44–47]. In [44], Chernoff’s rule is modified to relax the assumption that the hypotheses should be

uniformly distinguishable in the multi-hypothesis setting. In this modified rule, a randomization policy is introduced

into the selection rule such that at certain time instants it ignores the Chernoff rule and randomly selects one action

according to a uniform distribution. This rule is shown to admit the same asymptotic performance as the Chernoff rule.

The results are extended to the setting in which the available data belongs to a discrete alphabet and follows a station-

ary Markov model [45]. An application of the Chernoff rule to anomaly detection in a dataset is investigated in [46],

where it is shown that when facing a finite number of sequences consisting of an anomalous one, the Chernoff rule is

asymptotically optimal even without assuming that the hypotheses are distinguishable, or exerting randomized actions.

The study in [47] imposes a cost on switching among different actions and offers a modification of the Chernoff rule,

which randomly decides between repeating the previous action, and a new action based on Chernoff’s rule. It achieves

the same asymptotic optimality property as the Chernoff rule. Similarly, the Chernoff rule is also applied to sparse

signal recovery [48], sequential estimation [49], and classification problems [50, 51] often resulting in considerable

performance gains.

Besides Chernoff’s rule and its variations, there exist alternative strategies admitting certain optimality guarantees.

In pioneering studies, [52] and [53] offer a strategy that initially takes a number of samples according to a pre-

designated rule in order to identify the true hypothesis, after which it selects the action that maximizes the information

under the identified hypothesis. The study in [54] proposes a heuristic strategy and characterizes the deviation of its

average delay from the optimal rule. More studies have investigated the Bayesian setting [55–59]. The study in [55]

considers a sequential multi-hypothesis testing problem with multiple control actions for which the optimal strategy is

the solution to dynamic programming that is computationally intractable. Hence, it designs two heuristic policies and

investigates their non-asymptotic and asymptotic performances. For the same problem, performance bounds and the

gains of sequential sampling and optimal data-adaptive selection rules are analyzed in the asymptote of the large cost of

erroneous decisions [56]. The study in [57] restricts the smaples to be generated by the exponential family distributions

and shows that the dimension of the sufficient statistic space is less than both the number of parameters governing the
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exponential family and the number of hypotheses. Hence, the exactly optimal policy can be characterized by only

moderate computational complexity. Other heuristic approaches for anomaly detection are also investigated in [58]

and [59], which select the action with the minimum immediate effect on the total Bayesian cost and are shown to

achieve the same optimality guarantees suggested by Chernoff [39].

Despite their discrepancies in settings and approaches, all the studies above on controlled sensing assume that the

available actions are independent or follow a first-order stationary Markov process. This is in contrast to the setting of

this paper, in which the correlation structure in the generated data under one hypothesis or both induces co-dependence

among the control actions. In this paper, we devise a sequential sampling strategy for detecting Markov networks, in

which the correlation model plays a significant role in forming the sampling decisions. Specifically, the devised

selection rule, unlike the Chernoff rule, incorporates the correlation structure into the decision-making via accounting

for the impact of each action on the future ones and selecting the one with the largest expected information under

the most likely true hypothesis. The associated optimality guarantees are established, and the specific results for the

special case of Gaussian distributions are characterized. The gains of the proposed selection rule are also delineated

analytically and by numerical evaluations.

Active learning for model selection. Unlike for model detection, active sampling for model selection (structure learn-

ing) is investigated in more depth [13–18]. In [13], a model selection problem in a supervised setting is considered,

to which active learning is applied in order to identify the set of training examples that should be used to minimize

the integrated variance of the model. The studies in [17] and [18] propose active learning algorithms for selecting the

structures of MRFs. Their main distinction from our work is that they are concerned with a structure learning problem,

while in this paper, the true model is selected from a finite set of candidate models. In [14–16], active learning over

Bayesian networks. In [14], it is assumed that the graphical model underlying the Bayesian network is known, and the

objective is estimating network parameters. The studies in [15, 16, 60] are concerned with learning the connectivity

structure, the parameters, and the direction of the causal relationship among the nodes.

In another related direction, model selection is performed via estimating the covariance matrix (or its inverse) of

the data [5,9,10,12,28]. In [28], the temporal correlation of the data is treated as a nuisance parameter, and by making

a Gaussian assumption, a sufficient test statistic, as well as a test procedure, is proposed to identify all the non-zero

elements of the precision matrix with guaranteed performance. Estimation of sparse covariance matrices via adaptive

thresholding is considered in [9]. By adapting the threshold to the variability of individual entries in a data-driven

setting, it is shown that, compared to the commonly used universal thresholding estimators, these estimators achieve

the optimal rate of convergence over a large class of sparse covariance matrices under the spectral norm and enjoy

excellent performance both theoretically and numerically. In [5, 10, 12] estimation of sparse precision matrices is

considered, and `1 minimization is used to solve the problem by using the estimated covariance matrix of the given

data. All the studies above consider the problem in the fixed sample-size setting, and their application to model

selection is limited to Gaussian distributions.
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G0(E, V0)

Fig. 1: Data model with two different correlation structures.

2 Data Model and Problem Formulation

2.1 Notation

Throughout the paper (Ω,F ,P) is a probability space on which all the probability measures are defined. In this space,

consider n random variables X 4
= {X1, . . . , Xn} forming a Markov random field (MRF) with respect to an undirected

graph G(V,E) with nodes V 4
= {1, . . . , n} and the edge set E ⊆ V × V . Throughout the paper, for any given set

A ⊆ {1, . . . , n} we define XA
4
= {Xi : i ∈ A}. Random variables X satisfy the global Markov property, that is any

two disjoint subsets of random variables are conditionally independent given a separating set, i.e.,

XA ⊥⊥ XB | XC , (1)

where C separates disjoint A and B such that every path between a node in A and a node in B passes through at least

one node in C. One immediate result of the global Markov property is the pair-wise Markov property, i.e.,

∀ (i, j) /∈ E ⇔ Xi ⊥⊥ Xj | XV \{i,j} . (2)

The model of the underlyingX is unknown, and it is assumed to obey one of the two possible known models. Detecting

the MRF model can be formalized as the solution to the binary hypothesis test:

H0 : (X1, . . . , Xn) ∼ P0 versus H1 : (X1, . . . , Xn) ∼ P1 , (3)

where P0 and P1 denote the two known and completely distinct probability measures governing the two models. We

denote the undirected dependency graphs associated with joint measures P0 and P1 by G0(V,E0) and G1(V,E1),

respectively. Figure 1 depicts the graphs associated with the precision matrices of a a dichotomous Gaussian MRF

model, in which the edges encode the conditional dependency structures. For convenience in notations, we assume

that the distributions of the random variables under each hypothesis ` ∈ {0, 1} are absolutely continuous with respect

to a common distribution and have well-defined probability density functions (pdfs). For every non-empty set A ⊆ V ,

we denote the joint pdf of XA under H` by f`(·;A). We also define T ∈ {H0,H1} as the true hypothesis and denote

the prior probability that hypothesis H` is true by ε`, where ε0 + ε1 = 1.

5



2.2 Sampling Model

We consider a fully sequential data acquisition mechanism, in which we select and sample one node at-a-time. The

objective is to identify an optimal sequence of nodes, such that with the minimum number of samples, the true model

T ∈ {H0,H1} can be discerned. Samples are collected sequentially, such that at any time t and based on the informa-

tion accumulated up to that time, the sampling procedure takes one of the following actions.

A1) Exploration: Due to lack of sufficient confidence, making any decision is deferred, and one more sample is

taken from another node in the graph. Under this action, the node to be selected should be specified.

A2) Detection: Data collection process is terminated, and a reliable decision about the true model of the graph is

formed. Under this action, the stopping time and the final decision rule upon stopping will be specified.

The sampling process can be expressed uniquely by the data-adaptive rule for selecting the nodes over time, the

stopping rule, the final detection decision rule. To formalize the information-gathering process (exploration), we

define ψn : {1, . . . , n} → V , where ψn(t) returns the index of the node observed at time t. Accordingly, we define ψtn
as the ordered set of nodes selected and sampled up to time t, i.e., ψtn

4
= {ψn(1), . . . , ψn(t)}. We also define ϕtn as

the set of nodes that are remained unobserved prior to time t and can be observed at t, i.e., ϕtn
4
= V \ψt−1

n . We denote

sample collected at time t by Yt
4
= Xψn(t), and denote the sequence of samples accumulated up to time t by Y t 4=(

Y1, . . . , Yt
)
. The information accumulated sequentially generate a σ-algebra of F denoted by {Ft : t = 1, 2, . . . },

where

Ft 4= σ(Y t;ψtn) . (4)

We define τn ∈ N as the Markov stopping time with respect to the family {Ft}, at which the sampling process is

terminated and a decision is formed. We also define δn ∈ {0, 1} as an Ft-measurable function as the terminal decision

rule, where δn = ` indicates accepting hypothesis H`, for ` ∈ {0, 1}. Based on the decision rules defined above,

we define the tuple Φn
4
= (τn, δn, ψ

τn
n ) to uniquely specify the sampling strategy1 and the decision rules involved.

Finally, we define two information measures that are instrumental in formalizing and analyzing various decision rules

throughout the paper. Specifically, for any given ψtn and A ⊆ {1, . . . , n}\ψtn we define

J0(A,ψtn)
4
= DKL

(
f0(XA;A | Ft) ‖ f1(XA;A | Ft)

)
, (5)

and J1(A,ψtn)
4
= DKL

(
f1(XA;A | Ft) ‖ f0(XA;A | Ft)

)
. (6)

DKL(f ‖ g) denotes the Kullback-Leibler (KL) divergence from a statistical model with pdf g to a model with pdf f .

2.3 Problem Statement

The coupled information-gathering strategy and decision-making processes are uniquely specified by the triplet Φn =

(τn, δn, ψ
τn
n ). Designing the optimal sampling strategy for achieving the quickest reliable decision involves resolving

the tension between the quality and agility of the process as two opposing measures (improving one penalizes the other

1We remark that the subscript n is included in all decision rules to signify the effect of network size.
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one). The agility of the process is captured by the average delay in reaching a decision, i.e., E{τn}, and the decision

quality is captured by the frequency of erroneous decisions denoted by

P0
n
4
= P0(δn = 1) , and P1

n
4
= P1(δn = 0) . (7)

To formalize the quickest reliable decision, we control the quality of the decision and minimize the average number of

samples over all possible combinations of Φn = (τn, δn, ψ
τn
n ). Therefore, an optimal sampling strategy of interest is

a solution to

P(α, β)
4
=


infΦn E{τn}

s.t. P0
n ≤ e−nα

P1
n ≤ e−nβ

, (8)

where α, β ∈ R+ control the error probability terms P0
n and P1

n, respectively, and are selected such that the problem

P(α, β) is feasible.

3 Network-guided Active Sampling

The core element in characterizing the decision tuple Φ is the data-adaptive and sequential sampling process ψn(t).

The structure of this process is strongly shaped by the two MRFs specified under H0 and H1. In this section, we

characterize a data-adaptive and sequential sampling process and show that this process, in conjunction with a thresh-

olding rule for the stopping time and a likelihood ratio detection rule, constitutes an optimal solution to (8). Optimality

properties, performance analysis, and complexity analysis are provided in Section 4.

3.1 Terminal Decision Rules

Before providing the details of the core process (node selection rule), we briefly discuss the terminal decision rules.

For this purpose, define2

Λt
4
= ln

f1(Y t;ψt)

f0(Y t;ψt)
, (9)

as the log-likelihood ratio (LLR) of the samples collected up to time t. It can be readily verified that

Λt+1 = Λt + ln
f1(Yt+1;ψ(t+ 1) | Ft)
f0(Yt+1;ψ(t+ 1) | Ft)

. (10)

Stopping rule: To specify the stopping rule of the sampling process, we define

γL
n
4
= −nβ , and γU

n
4
= nα , (11)

and specify the stopping time through the following sequential likelihood ratio test:

τ∗n
4
= inf

{
t : Λt /∈ (γL

n , γ
U
n ) or t = n

}
. (12)

2For simplicity in notations, throughout the rest of the paper, we omit the subscript n in terms ψt
n, ψn(t), and ϕt

n.

7



This is a truncated sequential probability ratio test (SPRT), in which the delay is bounded by the total number of

samples possibly available. If we drop the condition t = n, the stopping rule simplifies to that of the canonical SPRT.

We note that dependin on the context, there exist other variations of truncated SPRT as well [61].

Detection rule: At the stopping time, we decide on the model according to

δ∗n
4
=

 0 , if Λτ∗n < 0

1 , if Λτ∗n ≥ 0
. (13)

Based on (12) and (13), the sampling process resumes as long as Λt ∈ (γL
n , γ

U
n ) and terminates as Λt falls outside this

band or we exhaust all the samples, i.e., t = n. Furthermore, if Λt exits this interval from the upper threshold γU
n the

set {X1, . . . , Xn} is deemed to form a Markov network with model P1, and if it falls below the lower threshold γL
n

we make a decision in favor of P0. We remark this decision rule is different from that of the SPRT. Specifically, our

thresholds are constants, while those of the SPRT are controlled by the target error probabilities, i.e.,

δ∗SPRT =

 0 , if ΛτSPRT
< γL

n

1 , if ΛτSPRT
≥ γU

n

. (14)

3.2 Dynamic Sampling

At any time t ∈ {1, . . . , τn}, prior to the stopping time, based on the information accumulated up to time (t − 1) the

sampling process dynamically identifies and takes a sample from one unobserved node that is expected to provide the

most relevant information about the true hypothesis. In this subsection, we provide two approaches to dynamic node

selection. First, we provide the design of the selection rule based on Chernoff’s principle, as the widely used approach

for various controlled (active) sensing decisions. Its widespread use is mainly due to its computational simplicity

and the fact that it admits asymptotic optimality in a wide range of settings. Next, we discuss the shortcomings

of Chernoff’s rule, mainly because it loses its optimality (even in the asymptotic regime) for the problem at hand.

Motivated by this, we finally offer an alternative rule to circumvent the Chernoff rule’s shortcomings. We remark

that discussing Chernoff’s rule serves a two-fold purpose: it furnishes some of the elements for designing the optimal

approach and serves as the baseline for assessing the performance of the proposed rule.

3.2.1 Chernoff’s Principle

In the context of the problem studied in this paper, at any time t and based on the filtration Ft, Chernoff’s rule first

forms the maximum likelihood (ML) decision about the true model of the data T ∈ {H0,H1}. By denoting the ML

decision about the true hypothesis at time t by δML(t) we have

δML(t)
4
=

 H0 , if Λt < 0

H1 , if Λt ≥ 0
. (15)

Next, based on this decision Chernoff’s rule at time t selects and samples the node whose sample is expected to

maximally reinforce the decision δML(t) to be also the decision at time (t+ 1). We define ψch(t) as the node selected
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by Chernoff’s rule at time t, and accordingly define the ordered set ψtch = {ψch(1), . . . , ψch(t)}. To formalize

Chernoff’s rule in the context of the hypothesis testing problem considered in this paper, and in order to quantify the

information gained from each sample, we define the following two measures:

Di
0(t)

4
= J0({i}, ψt−1

ch ) , and Di
1(t)

4
= J1({i}, ψt−1

ch ) , (16)

where J0 and J1 are defined in (5) and (6), respectively. Measure Di
`(t) quantifies the information gained by

observing node i at time t when the true hypothesis is H`. Chernoff’s rule selects the node that maximizes the distance

between f` and its alternative when the ML decision is in favor of H`. Therefore, we obtain the following node

selection function:

ψch(t)
4
=


arg max
i∈ϕt

Di
0(t) , if δML(t− 1) = H0

arg max
i∈ϕt

Di
1(t) , if δML(t− 1) = H1

. (17)

To avoid any ambiguities, whenever arg maxi∈ϕtn Di
`(t) is not unique (for instance, at the beginning of the sampling

process), we select one node randomly according to a uniform distribution. Chernoff’s rule minimizes the average

delay in the asymptote of a low rate of erroneous decisions if all the selection actions are independent [39, 44], which

in the context of this paper translates to testing for two distributions without any correlation structures. In this pa-

per, however, the available actions, i.e., selecting unobserved nodes, are co-dependent due to the underlying MRF’s

correlation structure. Therefore, Chernoff’s rule, which ignores such correlation, fails to exploit it. Specifically, by

selecting the best immediate action, Chernoff’s rule ignores the perspective of the decisions and the impact of the

current decision on the future ones.

We provide an example in Section 5.3 through which we show that designing the node selection rule based on

Chernoff’s principle is not optimal (even asymptotically). Our analyses show that incorporating the impact of the

decisions on future actions improves the agility of the process significantly. This, in turn, brings about computational

complexities, which we will show that can be reduced considerably by leveraging the MRF structures. In the context

of the problem analyzed in this paper, another disadvantage of Chernoff’s rule is that when the MRFs are comprised of

multiple disconnected subgraphs. In such cases, the sampling strategy will be trapped in one subgraph until it exhausts

all the nodes in that subgraph before moving to another one. This limits the flexibility of the sampling strategy for

freely navigating the entire graph. Another shortcoming of Chernoff’s rule that penalizes the quickness significantly

is when the highly correlated nodes (random variables) are concentrated in a cluster with a size considerably smaller

than that of the graph n. In such cases, our proposed selection rule approaches the cluster more rapidly.

3.2.2 Active Sampling Rule

We start by introducing information measures that link the node selection decisions over time. This enables dynami-

cally incorporating the impact of the decision at any given time on all possible future ones. We select these measures

to facilitate selecting the nodes, the samples of which maximize the combination of immediate information, and future

expected information. To this end, at time t and for each node i ∈ ϕt we define the set Rit as the set of all subsets of

ϕt that contain i, i.e.,

Rit
4
= {S : S ⊆ ϕt and i ∈ S} . (18)
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Corresponding to the samples collected from the nodes in the set S ∈ Rit, under H0 and H1 we define the following

information measures:

M i
0(t,S)

4
= J0(S, ψt−1) = E0

{
ln
f0(XS ;S |Ft−1)

f1(XS ;S |Ft−1)

}
, (19)

and M i
1(t,S)

4
= J1(S, ψt−1) = E1

{
ln
f1(XS ;S |Ft−1)

f0(XS ;S |Ft−1)

}
. (20)

The termsM i
`(t,S) capture the information content of |S| samples. Hence, the normalized terms 1

|S|M
i
`(t,S) account

for the average information content per sample. Based on these two normalized measures, an optimal action is to select

the node that maximizes the average information over all possible future decisions. Therefore, the node selection

function is the solution of the following optimization problem over all combinations of the unobserved nodes:

ψ∗(t) =


arg max
i∈ϕt

max
S∈Rit

M i
0(t,S)

|S| , if δML(t− 1) = H0

arg max
i∈ϕt

max
S∈Rit

M i
1(t,S)

|S| , if δML(t− 1) = H1

. (21)

In this selection rule, an ML decision about the true hypothesis is formed based on the collected data, and the node

that maximizes the average information over all possible future sequences of samples is selected. We note that the sets

S are selected such that they i) contain node i, which is a candidate to be observed at time t, and ii) contain possibly

additional nodes that will be observed in the future. Mimicking this decomposition of S, for S ∈ Rit, the information

measure M i
`(t,S) can be also decomposed according to

M i
`(t,S) = J`({i}, ψt−1) + J`(S\{i}, ψt−1) , for ` ∈ {0, 1} . (22)

In this expansion, the first term in the decomposition, i.e., J`({i}, ψt−1) defined in (5) and (6), accounts for the infor-

mation gained by observing node i at time t. Similarly, the second term J`(S\{i}, ψt−1) is the expected information

gained from future samples from the nodes contained in S\{i} when ψ(t) = i. This second term constitutes the key

distinction of the proposed rule compared to Chernoff’s rule, which accounts for incorporating every possible future

action. Finding the optimal node i and set S in (21) involves an exhaustive search over all the remaining nodes, which

can become computationally prohibitive. In the next subsection we show that by leveraging the Markov properties of

an MRF, and a certain acyclic dependency assumption, the exhaustive search for an optimal S ∈ Rit can be simplified

significantly. Based on the stopping rule specified in (12), the terminal decision rule given in (13), and the sampling

rule specified in (61), Algorithm 1 provides the detailed steps for detecting a Markov network with a certain correlation

structure.

4 Main Results

In this section, we provide performance guarantees for the proposed network-guided active sampling procedure in

Algorithm 1. Specifically, we analyze (ii) the delay (sample complexity) of the algorithm in Section 4.2; (ii) the

accuracy of the decision in Section 4.1; (iii) the error exponents in Section 4.3; and (iv) the complexity of the node-

selection rule in Section 4.4.
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Algorithm 1: Network-guided active sampling for quickest detection of Markov networks

1 set t = 0, ϕ1 = {1, . . . , n}, Λ0 = 0, γL
n = −nβ, and γU

n = nα

2 t← t+ 1

3 for i ∈ ϕt

5 for any S ⊆ Rit
6 compute M i

0(t,S) and M i
1(t,S) according to (19)-(20)

7 end for

8 end for

9 find ψ∗(t) based on (21)

10 ϕt+1 ← ϕt+1 \ ψ(t)

11 compute Λt according to (10)

12 if γL
n < Λt < γU

n and t < n

13 go to step 2

14 else if Λt < 0

15 set δ∗n = 0 and τ∗n = t

16 else

17 set δ∗n = 1 and τ∗n = t

18 end if

4.1 Decision Reliability

Problem P(α, β) by design faces a hard constraint on the number of available samples n. This, in turn, acts as a hard

constraint on the stopping time τn. Under such a constraint, the error probabilities P0
n and P1

n cannot necessarily be

made arbitrarily small simultaneously. Hence, a decision algorithm provides a feasible solution to P(α, β) only if it

satisfies the constraints enforced on P0
n and P1

n while not requiring more than n samples.

Definition 1 ((α, β)-accuracy). We say that a decision tuple Φn
4
= (τn, δn, ψ

τn
n ) is (α, β)-accurate if it ensures

P0
n ≤ e−nα and P1

n ≤ e−nβ . First, we establish that the decisions generated by Algorithm 1 satisfy the performance

guarantees of the problem.

In this subsection, we examine the problem (8) in both the asymptotic and non-asymptotic regime with respect to the

size of the network n, and characterize conditions on α and β under which Algorithm 1 is guaranteed to generate

(α, β)-accurate decisions. To this end, note that the sampling process terminates if i) the LLR Λt exits the band

(γL
n , γ

U
n ) at some t ∈ {1, . . . , n}, or ii) we exhaust all the samples, i.e., τn = n. For establishing the conditions for

ensuring (α, β)-accuracy, in the first step, we show that if the process terminates by exiting the band (γL
n , γ

U
n ), then

the decision is (α, β)-accurate. In the second step, we evaluate the probability of Λt exiting the band (γL
n , γ

U
n ) prior

to exhaustive all n samples. These two steps, collectively, establish a sufficient condition for ensuring (α, β)-accuracy

of Algorithm 1. For this purpose, we denote the Bhattacharyya coefficient, as a measure of similarity of the two

11



distributions, by

Bn(f0, f1)
4
=

∫ √
f0(x;V )f1(x;V ) dx . (23)

Accordingly, we denote the normalized Bhattacharyya distance by

κ(f0, f1)
4
= − lim

n→∞

1

n
lnBn(f0, f1) . (24)

The following theorem establishes a sufficient condition under which Algorithm 1 generates (α, β)-accurate solutions.

Theorem 1 (Non-asymptotic (α, β)-accuracy). For a given network size n, Algorithm 1 generates an (α, β)-accurate

solution with a probability at least

1− Bn(f0, f1)

[
ε0 exp

(
nβ

2

)
+ ε1 exp

(nα
2

)]
. (25)

Proof: See Appendix A.

We will evaluate the probability term in (25) in Section 5.1 through an illustrative example and in Section 6 through

numerical evaluations. We will show that for widely used MRF models (e.g., Gaussian MRFs), this probability

approaches 1 in all practical ranges of n and error probabilities, rendering the Algorithm 1 (α, β)-accurate almost

surely even in the non-asymptotic regime. By leveraging the result of Theorem 1, we can readily provide a sufficient

condition for (α, β)-accuracy in the asymptote of large network sizes.

Corollary 1 (Asymptotic (α, β)-accuracy). Algorithm 1 generates (α, β)-accurate solutions almost surely in the

asymptote of large networks if

max{α, β} < 2κ(f0, f1) . (26)

Proof: The proof follows from finding a sufficient condition that ensures probability in (25) approaches 1 as n→∞.

4.2 Delay Analysis

In this subsection, we analyze the performance of the proposed selection rule in the asymptote of large networks

sizes, i.e., when n → ∞, i.e., V = N. We note that the proposed network-guided node selection rule capitalizes on

the discrepancies in the information measures corresponding to selecting different nodes. In general, a wider range

of information measures leads to more effectively distinguishing the most informative nodes to sample. This, in

turn, reduces the average delay for reaching a sufficiently confident decision. In order to analyze the performance,

corresponding to any subset of nodes U ⊆ N we define normalized LLR measures as follows:

nLLR0(XU ;U)
4
=

1

|U | ln
f0(XU ;U)

f1(XU ;U
, (X1, . . . , Xn) ∼ P0 , (27)

and nLLR1(XU ;U)
4
=

1

|U | ln
f1(XU ;U)

f0(XU ;U)
, (X1, . . . , Xn) ∼ P1 . (28)

12



Such log-likelihood ratios play pivotal roles in characterizing the performance of sequential methods. When the

random variables {Xi : i ∈ {1, . . . , n}} are independent and identically distributed (i.i.d.), according to the strong

law of large numbers, the measures nLLR`(Y t;ψt) converge almost surely to the KL divergence terms as |U | → ∞.

While in an i.i.d. setting these measures are well-defined and can have tangible interpretations (e.g., being random

walks), in a non-i.i.d. setting, they are not as well-defined, and their convergence can be guaranteed only under

stronger conditions. A relevant notion of convergence for non-i.i.d. settings that is especially widely used in sequential

detection is complete convergence (introduced in [62], a good overview in [63], and used in the context of sequential

detection in [31, 64])3. For this purpose, corresponding to the set of nodes V we define

S(V )
4
= {∀A ⊆ V : |A| ≥ g(n)} , (29)

where g(x) is an arbitrary function that satisfies g(x)
x→∞−−−−→ ∞. Hence, S(V ) is the collection of all subsets of V

whose cardinality is at least g(n).

Definition 2 (Complete convergence). Corresponding to any possible sampling sequence ψ∞ ∈ S(N), we say that

the normalized log-likelihood ratios nLLR`(Y t;ψt) converge completely to a constant I`(ψ∞) when

∞∑
t=1

P`
{ ∣∣nLLR`(Y t;ψt)− I`(ψ∞)

∣∣ > h
}
< +∞ , ∀h > 0 . (30)

It can be readily verified that the condition in (30) is equivalent to

E`[T`(h, ψ∞)] < +∞ , ∀h > 0 , (31)

where we have defined

T`(h, ψ
∞)

4
= sup

{
t ∈ N :

∣∣∣nLLR`(XUt ;U
t)− I`(ψ∞)

∣∣∣ ≥ h} . (32)

The term T`(h, ψ
∞) denotes the last time that the sequence {nLLR`(Y t;ψt)} leaves the interval

[I`(ψ
∞)− h , I`(ψ∞) + h] . (33)

Next, we define two types of networks, depending on how the LLR sequences converge.

Definition 3 (Homogeneous network). We say that an MRF is homogeneous when I`(ψ∞) exists and it is the same

for all possible sets ψ∞. When we have a homogeneous structure, we replace I`(ψ∞) by the shorthand I`, which

emphasizes a lack of dependence on ψ∞.

The critical property of homogeneous networks is that observing any subsequence of nodes provides the same average

amount of information in the long run.

Example 1. Consider a setting in which the samples are i.i.d. under H0 and they form a Gauss-Markov random field

(GMRF) under H1 with the same marginal distributions as the ones under H0. If under H1 the nodes form a line graph

with correlation coefficients a 6= ±1, then we have a homogeneous network in which

I0 = ln(1− a2) +
2a2

1− a2
, and I1 = ln

1

1− a2
. (34)

3In some literature it is also called 1-quick convergence (see [65]) with generalizations to stronger r-quickness convergence in [31]
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Definition 4 (Heterogeneous network). We say that an MRF is heterogeneous when the two information measures

I`(ψ
∞) exist and vary for different permutations ψ∞. In such networks, we define

I∗`
4
= sup
ψ∞∈S(N)

I`(ψ
∞) , for ` ∈ {0, 1} . (35)

Example 2. Consider a setting in which the samples are i.i.d. under H0, and they form a GMRF under H1 with the

same marginal distributions as the ones under H0. Under H1 the dependency graph consists of two line subgraphs

defined over two distinct sets of nodes denoted by

ψ∞1 = {2k − 1 : k ∈ N} and ψ∞2 = {2k : k ∈ N} , (36)

where the elements in ψ∞i have constant correlation coefficients ai 6= ±1. Assuming |a1| > |a2| we have

I0(ψ∞i ) = ln(1− a2
i ) +

2a2
i

1− a2
i

, I∗0 = ln(1− a2
1) +

2a2
1

1− a2
1

, (37)

I1(ψ∞i ) = ln
1

1− a2
i

, I∗1 = ln
1

1− a2
1

. (38)

Based on the measures I` and I∗` in homogeneous and heterogeneous settings, respectively, next, we analyze the

average stopping time. We first focus on the homogeneous setting and establish the optimality of stopping and terminal

decision rules characterized in (11)–(13) and then generalize the results to the heterogeneous setting. The following

lemma will be instrumental in evaluating the average stopping time.

Lemma 1. For the choices of α and β that satisfy (26), in the homogeneous and heterogeneous networks we have

max{α, β} ≤ min{I0, I1} , and max{α, β} ≤ min{I∗0 , I∗1} , (39)

almost surely.

Proof: See Appendix B.

The following theorem provides a universal (algorithm-independent) lower bound on the average delay for any feasible

solution to problem (8) when the network has a homogeneous dependency structure.

Theorem 2 (Homogeneous Structures – Delay Converse). In a homogeneous network with information constants I0

and I1, any feasible solution of problem (8) with the stopping time τn satisfies

lim
n→∞

E0{τn}
n

≥ β

I0
, and lim

n→∞

E1{τn}
n

≥ α

I1
. (40)

Proof: See Appendix C.

We show that any selection rule combined with the likelihood ratio test given in (11)–(13) achieves these lower bounds.

Theorem 3 (Homogeneous Structures – Delay Achievability). In a homogeneous network, for the stopping and ter-

minal decision rules specified in (11)–(13) and an arbitrary sampling rule, in the asymptote of large n we have

lim
n→∞

E0{τ∗n}
n

≤ β

I0
, and lim

n→∞

E1{τ∗n}
n

≤ α

I1
. (41)

Proof: See Appendix D.
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The last two theorems, collectively, establish that when the network has a homogeneous structure, irrespectively of

how the nodes are selected and sampled over time, the stopping and terminal decision rules specified in (11)–(13)

render asymptotically optimal decisions. The optimality of the decisions being independent of the node selection rule

signifies that in homogeneous structures, all sequences of nodes, asymptotically, contain the same average amount

of information, and the overall performance does not critically depend on the sampling path. Next, we show that

the observation above is not necessarily valid for the networks with heterogeneous structures, and the optimality of

decisions in those networks critically depends on the sampling path. By leveraging Theorem 2, in the next corollary,

we first provide algorithm-independent lower bounds on the average delay in heterogeneous networks.

Corollary 2 (Heterogeneous Structures – Delay Converse). In a heterogeneous network with information constants

I∗0 and I∗1 , any feasible solution of problem (8) with the stopping time τn satisfies

lim
n→∞

E0{τn}
n

≥ β

I∗0
, and lim

n→∞

E1{τn}
n

≥ α

I∗1
. (42)

Proof: By following the same line of argument as in the proof of Theorem 2 we can show that for any arbitrary

sampling path ψ∞ ∈ N we have

lim
n→∞

E0{τn}
n

≥ β

I0(ψ∞)
, and lim

n→∞

E1{τn}
n

≥ α

I1(ψ∞)
. (43)

Since (43) is true for any set ψ∞, subsequently, we have

lim
n→∞

E0{τn}
n

≥ inf
ψ∞∈N

β

I0(ψ∞)

(35)
=

β

I∗0
, and lim

n→∞

E1{τn}
n

≥ inf
ψ∞∈N

α

I1(ψ∞)

(35)
=

α

I∗1
. (44)

Next, we provide the proof for the optimality of the decisions produced by Algorithm 1, and especially the optimality

of the proposed dynamic node selection rule when facing heterogeneous networks. This result will also be instrumental

in characterizing the performance gap between the proposed sampling strategy and the Chernoff rule. By character-

izing such a gap, through an example in Section 5.3, we will show that the Chernoff rule loses its optimality for the

correlation detection problem in networks. To prove the upper bounds on the average delay, we define the random

variable τ̂n as the first time instant after which the ML decision about the true hypothesis is always correct, i.e.,

τ̂n
4
= inf{u : δML(t) = T , ∀t ≥ u} , (45)

where we adopt the convention that the infimum of an empty set is +∞. We emphasize that τ̂n is not a stopping time,

but rather a term that, as we will show, is dominated by the stopping time. In order to establish the desired upper

bounds, we show the following two properties for τ̂n:

1. Ei{τ̂n} is upper bounded by a constant.

2. 1
nEi{τ∗n − τ̂n} is upper bounded according to

lim
n→∞

E0{τ∗n − τ̂n}
n

≤ β

I∗0
, and lim

n→∞

E1{τ∗n − τ̂n}
n

≤ α

I∗1
. (46)

In order to prove that Ei{τ̂n} is finite, we first provide the following lemma, which at the core establishes that the

probability Pi(τ̂n ≥ t) decays exponentially with respect to time t.
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Lemma 2. Ei{τ̂n} is upper bounded by a constant.

Proof: See Appendix E.

Next, in order to prove (46), we define

U∞
4
= arg max

ψ∞∈S(N)
I1(ψ∞) , (47)

corresponding to which we have I1(U∞) = I∗1 . When there are more than one choice for U∞, we select it to be

the largest such set. Based on this definition, we provide the following lemma showing that the number of times that

we sample from a set other than U∞ is, on average, finite. This property follows from the assumption of complete

convergence in heterogeneous networks.

Lemma 3. For the setH 4
= {s ∈ {1, . . . , τn} : ψ∗(s) /∈ U∞} we have Ei{H} < +∞.

Proof: See Appendix F.

This establishes that by the stopping time, the samples collected are taken dominantly from the set U∞. By leveraging

Lemma 3, we next provide the final ingredient for characterizing the achievable average delay.

Lemma 4. 1
nEi{τ∗n − τ̂n} is upper bounded according to (46).

Proof: See Appendix G.

Theorem 4 (Heterogeneous Structures – Delay Achievability). Algorithm 1 generates decisions that are asymptoti-

cally optimal solutions to problem (8). Specifically

lim
n→∞

E0{τ∗n}
n

≤ β

I∗0
, and lim

n→∞

E1{τ∗n}
n

≤ α

I∗1
. (48)

Proof: By combining the results of Lemma 2 and Lemma 4 we obtain

α

I∗1

(46)
≥ lim

n→∞

E1{τ∗n − τ̂n}
n

(49)

≥ lim
n→∞

E1{τ∗n}
n

− lim
n→∞

B

n(1− e−c)
(50)

= lim
n→∞

E1{τ∗n}
n

. (51)

which concludes the proof for the upper bound on 1
nE1{τ∗n}. The proof of the upper bound on 1

nE0{τ∗n} follows the

same line of argument.

4.3 Error Exponents

In this subsection, we characterize the gain obtained from the data-adaptive stopping time. To this end, we compare the

performance of sequential sampling procedures with that of the fixed-sample-size setting in terms of their associated

error exponents. In the fixed-sample-size counterpart of the binary testing problem considered in this paper, the

optimal decision rule is the Neyman-Pearson (NP) rule, where its associated error exponents are characterized in [21].

By denoting the NP decision rule by δNP, we define

P0
NP

4
= P0(δNP = 1) , and P1

NP
4
= P1(δNP = 0) , (52)
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as the frequencies of erroneous decisions by the NP test based on n samples. Accordingly, we define

E0
NP

4
= − lim

n→∞

1

n
lnP0

NP , and E1
NP

4
= − lim

n→∞

1

n
lnP1

NP , (53)

as the associated error exponents. Similarly, we define

E0
n
4
= − lim

n→∞

1

r1
lnP0

n(r1) , and E1
n
4
= − lim

n→∞

1

r0
lnP1

n(r0) , (54)

as the error exponents of the sequential detection approach, where P0
n(r1) and P1

n(r0) are the error probabilities of

sequential sampling when the average number of samples (i.e., the stopping time) is r` , E`{τ∗n}. The connections

between the error exponents of the NP test and sequential sampling strategies are established in the following theorem.

Theorem 5 (Gain of Adaptivity). The error exponents of the decision rules in Algorithm 1 are related to those of the

NP rule through

E1
n = I0 and E0

n = I1 , (55)

E1
NP = I0 and E0

NP = 0 . (56)

Proof: See Appendix H.

4.4 Search Complexity Analysis

In this subsection, we show that under certain connectivity structures for the given MRFs, by judiciously leveraging

the structures, the complexity of the search for the optimal node selection path over time can be reduced significantly.

For this purpose, based on the given graphs G0(V,E1) and G1(V,E2) we construct the graph G(V,E) such that

E
4
= E0 ∪ E1 . (57)

Based on this, we define the neighborhood of node i ∈ V according to

Ni 4= {j ∈ V : j 6= i , (i, j) ∈ E} . (58)

We will show that when G is acyclic, for each node i, the optimal set S is restricted to only contain the neighbors of i

that are not observed prior to time t, i.e., S ⊆ Lit where

Lit
4
= {i} ∪ {Ni ∩ ϕt} . (59)

This indicates that for determining the node to select at each time, it is sufficient to consider a significantly shorter

future sampling path for each node. The cardinality of the set of subsets of Lit is significantly smaller than that of ϕt,

which translates to a substantial reduction in the complexity of characterizing the optimal selection functions. This

observation is formalized in the following theorem.

Theorem 6. For an acyclic dependency graph G, at each time t and for ` ∈ {0, 1} we have

arg max
i∈ϕt

max
S∈Rit

M i
`(t,S)

|S| = arg max
i∈ϕt

max
S⊆Lit

M i
`(t,S)

|S| . (60)
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Proof: See Appendix I.

Based on this theorem, the selection function given in (21) simplifies to

ψ∗(t) =


arg max
i∈ϕt

max
S⊆Lit

M i
0(t,S)

|S| , if δML(t− 1) = H0

arg max
i∈ϕt

max
S⊆Lit

M i
1(t,S)

|S| , if δML(t− 1) = H1

. (61)

By further leveraging the Markov property, computing

max
S⊆Lit

M i
`(t,S)

|S| (62)

can be further simplified. Specifically, by recalling the definition of M i
`(t,S) given in (19) and (20) we have

M i
`(t,S) = DKL

(
f`(XS |Ft−1) ‖ f1−`(XS |Ft−1)

)
(63)

= DKL

(
f`(Xi|Ft−1) ‖ f1−`(Xi|Ft−1)

)
(64)

+
∑

j∈S\{i}

DKL

(
f`(Xj |Xi,Ft−1) ‖ f1−`(Xj |XiFt−1)

)
(65)

= DKL

(
f`(Xi|Xψ∗(t−1)) ‖ f1−`(Xi|Xψ∗(t−1))

)
(66)

+
∑

j∈S\{i}

DKL

(
f`(Xj |Xi) ‖ f1−`(Xj |Xi

)
, (67)

where the transition from (64) to (66) is due to the graph being acyclic and Markov. Hence, for computing the

information measures M i
`(t,S) we need to compute only the marginal distributions of the form f`(Xi|Xj).

5 Special Cases and Illustrative Examples

In this section, we consider a few special cases, for each of which we present more specialized results. First, for

gaining further insight into the tightness of the probabilistic (α, β)-accuracy guarantee in the non-asymptotic regime

(Theorem 1), we provide an illustrative example showing the achievable ranges of error probabilities for a given

network size. Next, we consider the setting in which both distributions are Gaussian and characterize measures defined

for designing the sampling strategy in terms of the covariance matrices of the distributions. Built on these results,

next, we provide a counterexample establishing that the Chernoff rule is not asymptotically optimal for carrying out

the detection decisions in the MRFs considered in this paper. Finally, we consider detecting whether a given MRF

contains a cluster of nodes whose data form a given correlation model. In all the special cases, we quantify the

performance gaps between our network-guided active sampling strategy and the Chernoff rule.

5.1 Non-asymptotic Detection Performance

In this subsection, we provide an illustrative example to assess the sufficient condition for (α, β)-accuracy of Algo-

rithm 1 in the non-asymptotic regime, which was established in Theorem 1. We consider testing correlation versus

independence when both distributions are Gaussian, i.e.,

H0 : (X1, . . . , Xn) ∼ N (θ, I) versus H1 : (X1, . . . , Xn) ∼ N (θ,Σ) , (68)
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where I is the identity matrix and Σ is an arbitrary correlation matrix such that Σii = 1. Hence, the Bhattacharyya

distance is given by

κn(f0, f1)
4
= − lnBn(f0, f1) =

1

2
ln

1√
detΣ

· det
(

I + Σ

2

)
=

1

2
ln

n∏
i=1

1 + λi

2
√
λi

, (69)

where {λi}ni=1 are the distinct eigenvalues of the symmetric positive definite matrix Σ. Accordingly, the Bhat-

tacharyya coefficient is given by

Bn(f0, f1) = exp (−κn(f0, f1)) =

n∏
i=1

√
2
√
λi

1 + λi
. (70)

By noting that Σii = 1 for all i ∈ {1, . . . , n}, according to Gershgorin circle theorem all the eigenvalues {λi}ni=1 lie

in closed discs centered at 1. Select ξ > 0 such that at least half of the eigenvalues {λi}ni=1 lie outside the interval[(√
1 + ξ −

√
ξ
)2
,
(√

1 + ξ +
√
ξ
)2]

. (71)

It can be readily verified that if

λi /∈
[(√

1 + ξ −
√
ξ
)2
,
(√

1 + ξ +
√
ξ
)2]

, (72)

then

2
√
λi

1 + λi
<

1√
1 + ξ

. (73)

Hence, we have the following upper bound on the Bhattacharyya coefficient:

Bn(f0, f1) ≤ (1 + ξ)−
n
8 . (74)

Therefore, for all the error probability exponents α and β that satisfy

1

4
ln(1 + ξ) > max{α, β} , (75)

according to Theorem 1 Algorithm 1 is (α, β)-accurate almost surely in the non-asymptotic regime. For instance, for

n = 200, ξ = 0.2, α = β = 0.02, Algorithm 1 is (α, β)-accurate with probability at least 0.999.
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5.2 Gauss-Markov Random Fields

In this subsection we specialize the general results to GMRF, where we assume that

H0 : (X1, . . . , Xn) ∼ N (θ, I) versus H1 : (X1, . . . , Xn) ∼ N (θ,Σ) , (76)

where Σii = 1 for all i ∈ {1, . . . , n}. This test is generally known as the problem of testing against independence.

The graphical model associated with H0 consists of n nodes without any edges, and we denote the graphical model

associated with H1 by G(V,E). A GMRF with covariance matrix Σ is non-degenerate if Σ is positive-definite, in

which case, the potential matrix associated with the GMRF is denoted by J 4
= Σ−1. The non-zero elements of the

potential matrix have a one-to-one correspondence with the edges of the dependency graph in the sense that

Juv = 0 ⇔ (u, v) /∈ E . (77)

In a GMRF, the properties of the network are strongly influenced by the structure of the underlying dependency graph.

GMRFs with acyclic dependency represent an important class of GMRFs in which there exists at most one path

between any pair of nodes, and consequently, the cross-covariance value between any two non-neighbor nodes in the

graph is related to the cross-covariance values of the nodes connecting them. Specifically, corresponding to any two

edges (i, j) ∈ E and (i, k) ∈ E, which share node i ∈ V , we have

Σjk = ΣjiΣ
−1
ii Σik , for all {j, k} ⊆ Ni . (78)

In a GMRF with an acyclic graph, the elements and the determinant of the potential matrix can be expressed explicitly

in terms of the elements of the covariance matrix.

Theorem 7 ([21], Theorem 1). For a GMRF with an acyclic dependency graph G = (V,E) and covariance matrix

Σ, the elements of the potential matrix J are given by

Jii =
1

Σii

1 +
∑
j∈Ni

Σ2
ij

ΣiiΣjj − Σ2
ij

 , ∀i ∈ {1, . . . , n} , (79)

and

Jij =


−Σij

ΣiiΣjj − Σ2
ij

if (i, j) ∈ E

0 if (i, j) /∈ E
. (80)

Furthermore, the determinant of the potential matrix is also given by

det(J) =
∏
i∈V

Σ
deg(i)−1
ii

∏
(i,j)∈E

[ΣiiΣjj − Σ2
ij ]
− 1

2 , (81)

where deg(i) is the degree of node i.
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Fig. 2: Toy example for the evolution of Gt(Vt, Et) over time for ψ3 = {1, 4, 3}.

We leverages the properties of the GMRFs to obtain closed-form expressions for the information measures defined in

(16) and (19)–(20), as well as the node selection rules characterized in Section 3.2. In order to describe the effect of

the sequential sampling process on different measures that we use, we sequentially construct the sequence of graphs

{Gt(Vt, Et) : t ∈ {1, . . . , τ∗n}} such that the graph Gt(Vt, Et) at time t is adapted to the nodes observed up to time t.

Specifically, we set Vt = ψt, and for each pair of nodes i, j ∈ Vt we include an edge (i, j) ∈ Et if and only if either

(i, j) ∈ E, or there exists a path between nodes i and j in the original graph G(V,E) such that none of the nodes

on this path has been observed up to time t (except for i and j). Figure 2 depicts a toy example on the evolution of

Gt(Vt, Et) over time for t ∈ {1, 2, 3} corresponding to an underlying graph G(V,E). Furthermore, for any (i, j) ∈ Et
we define

LLR(i, j)
4
=

1

2

[
ln

1

1− σ2
ij

−
σ2
ij

1− σ2
ij

(
X2
i +X2

j

)
+

2σij
1− σ2

ij

XiXj

]
. (82)

Under these definitions and by assuming that Gt(Vt, Et) remains acyclic at time t, for the LLR of the samples up to

time t defined in (9) we have

Λt =
∑
i∈Vt

∑
j∈N ti

LLR(i, j) , (83)

where Xi is the sample taken from node i and N t
i
4
= {j ∈ Vt : (i, j) ∈ Et}. Next, by invoking the GMRF structure,

the information measures defined for the Chernoff rule in (16) for any i ∈ ϕt can be further simplified and expressed

in terms of the correlation coefficients. Specifically, corresponding to the Chernoff rule and its associated sampling

sequence ψτcch we have

Di
0(t) =

1

2

∑
j∈N ti

[
ln(1− σ2

ij) +
σ2
ij

1− σ2
ij

(
X2
j + 1

)]
, (84)

and Di
1(t) =

1

2

∑
j∈N ti

[
ln

1

1− σ2
ij

+
σ2
ij

1− σ2
ij

(
X2
j − 1

)]
. (85)

Furthermore, by defining

∆i
t
4
= {(j, k) : j, k ∈ N t

i } , (86)
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from (5) and (6) for the proposed node selection rule we have

J0({i}, ψt−1) =
1

2

∑
j∈N ti

ln(1− σ2
ij) +

1

2

∑
j∈N ti

σ2
ij

1− σ2
ij

(
X2
j + 1

)
+

∑
(j,k)∈∆i

t

LLR(j, k) , (87)

and

J1({i}, ψt−1) =
1

2

∑
j∈N ti

ln
1

1− σ2
ij

− 1

2

∑
(j,k)∈∆t

i

ln
1

1− σ2
jk

(88)

+
1

2

[ ∑
j∈N ti

σ2
ij

1− σ2
ij

(
X2
j − 1

)
+

∑
(j,k)∈∆i

t

LLR(j, k)
]
×

∏
j∈N ti

(1− σ2
ij)∏

(j,k)∈∆i
t
(1− σ2

jk)
. (89)

Similarly, by leveraging the result of Theorem 6, for any S ∈ Lit we find

J0(S\{i}, ψt−1) =
1

2

∑
j∈S\{i}

[
ln(1− σ2

ij) +
2σ2

ij

1− σ2
ij

]
, (90)

and J1(S\{i}, ψt−1) =
1

2

∑
j∈S\{i}

[
ln

1

1− σ2
ij

]
. (91)

Subsequently, based on (22), the closed-form expression for M i
`(t,S) is obtained from

M i
`(t,S) = J`({i}, ψt−1) + J`(S\{i}, ψt−1) , for ` ∈ {0, 1} . (92)

These closed-form expressions of the information measures in terms of the covariance matrix entries and the depen-

dency graph structure substantially reduces the computational complexities involved in calculating these measures

from the expected values in (16) and (19)–(20).

5.3 Counter Example for the Optimality of Chernoff rule

Building on the results for the GMRF, in this subsection, we provide an example of a heterogeneous network for which

the Chernoff rule is not asymptotically optimal, and quantify the gap between its performance and our proposed rule.

For this purpose, we consider a setting in which the random variables XV = {Xi : i ∈ V } are independent under

H0, while under H1 they form a GMRF with covariance matrix Σ. As depicted in Fig. 3, the dependency graph of the

GMRF consists of two disjoint line graphs corresponding to the nodes in sets A and B = V \ A. By denoting the

2 3

X1 X2 X3

1 . . . r
Xr

. . .r + 1 r + 2 r + 3 n

Xr+1 Xr+2 Xr+3 Xn

> a > a > a > a

< b < b < b < b

A

B

G1(V, E1)

Fig. 3: A GMRF consisting of two line graphs.
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covariance matrix of the random variables generated by sets A and B by ΣA and ΣB , respectively, we assume that

for any (i, j) ∈ E we have

|ΣAij | > a , and |ΣBij | < b , (93)

where a > b. This means that the random variables generated by the nodes in set A are more strongly correlated than

those generated by the nodes in set B. For such a network, the performance gap between the proposed rule and the

Chernoff rule is established in terms of a and b in the following theorem.

Theorem 8. Consider testing independence in (76), where the GMRF consists of two disjoint line graphs correspond-

ing to the sets of nodes in A and B. If the correlation coefficient values between the neighbors in set A are greater

than a, while in set B they are less than b and |A| = p = o(n), then as n grows for ` ∈ {0, 1}

lim
n→∞

E`{τc}
E`{τ∗n}

=
I`(A)

I`(B)
≥
(a
b

)2

> 1 , (94)

where τc and τ∗n are the stopping times of the strategies based on the Chernoff rule and Algorithm 1.

Proof: See Appendix J.

This theorem establishes that the Chernoff rule is not necessarily an asymptotically optimal sampling strategy when

selection decisions are statistically dependent.

5.4 Cluster Detection

In this subsection, we analyze cases in which the two statistical models under H0 and H1 are all similar except for

a small cluster of nodes that exhibit two different correlation models. Specifically, we first consider a model in

which there is a subset of nodes B ⊆ {1, . . . , n} such that random variables XB
4
= {Xi : i ∈ B} are statistically

independent under both models H0 and H1. This indicates that the correlation models under H0 and H1 differ only

in their distributions over the random variables from nodes A 4
= {1, . . . , n} \ B, as depicted in Fig. 4. Also, we

assume that the random variables XA
4
= {Xi : i ∈ A} form a homogeneous correlation structure, which means that

observing any subsequence of the nodes in set A, on average provides the same amount of information. Clearly, for

any set of nodes U ⊆ B, we have

∀U ⊆ B : I`(U) = 0 . (95)
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Fig. 4: Independence versus a MRF consisting of one cluster and independent random variables.
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In this setting, we show that there is a constant gap between the expected stopping times of the proposed rule and the

Chernoff rule. This gap stems from the fact that our proposed approach directly starts from sampling the nodes in A,

and does not waste any sampling time by taking samples from set B. However, the Chernoff rule, on average, takes

a number of samples from B before sampling from A. The gap between the stopping times is formulated in the next

theorem.

Theorem 9. In a network of size n, when there exists a subset of nodesA with size p forming an MRF with a connected

graph, while the rest of the network generate independent random variables, we have

0 ≤ E`{τc} − E`{τ∗n} = Θ
(n
p

)
, for ` ∈ {0, 1} , (96)

where τc and τ∗n are the stopping times of the strategies based on the Chernoff rule and the proposed selection rule,

respectively.

Proof: See Appendix K.

This theorem establishes the zero order asymptotic gain of the proposed strategy over the Chernoff rule in a special

setting. Note that as p (the size of A) becomes smaller, which leads to more similar and less distinguishable models

under H0 and H1, the performance gap increases according to n
p . Next, we further generalize the above setting to one

in which under H1, besidesXA, random variablesXB also form a homogeneous correlation structure (not independent

anymore) with a connected dependency graph, i.e., for ` ∈ {0, 1} and ∀U ⊆ B we have I`(U) = I`(B). This setting

is depicted in Fig. 5. If for set A we have |A| = o(n), then the Chernoff rule starts the sampling process from set B

almost surely, and it remains in set B until it exhausts all the nodes of B, while the proposed rule always identifies

the most informative nodes to take the sample. The following theorem characterizes the performance gap between the

Chernoff and the proposed rule in this setting.

Theorem 10. Consider a network of size n partitioned into sets A and B specified in Fig. 5. In the asymptote of large

n, if the dependency graph of the nodes in both A and B are connected and |A| = o(n), then

lim
n→∞

E0{τc}
E0{τ∗n}

=
max{I0(A), I0(B)}

I0(B)
, and lim

n→∞

E1{τc}
E1{τ∗n}

=
max{I1(A), I1(B)}

I1(B)
. (97)

Proof: When p = o(n) the Chernoff rule starts the sampling process from set B with probability 1. By invoking the

results of Theorem 3, Corollary 2, and Theorem 4 we conclude the proof.
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Fig. 5: Independence versus a MRF consisting of two clusters.
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According to the theorem above, when the size of A is sufficiently small such that most of the time, the Chernoff

rule starts the sampling process from set B, the Chernoff loses its first-order asymptotic optimality property, as shown

in the counterexample in Section 5.3. The settings discussed in this subsection highlight the advantages of the proposed

selection rule by quantifying two main gains; the gain of selecting the best node at the beginning of the sampling

process, and the gain obtained from freely navigating throughout the entire network by jumping over subgraphs in

order to find the most informative nodes. Although these settings are special cases, the gain of the proposed rule for a

general network is a combination of these two gains.

6 Numerical Evaluations

In this section, we evaluate the performance of the proposed sampling strategy by comparing it with the existing

approaches through simulations. First, we examine the (α, β)-accuracy conditions. We consider Gaussian distributions

N (θ,Σ0) and N (θ,Σ1) under models H0 and H1, respectively. The covariance matrices Σ0 and Σ1 have all their

diagonal elements equal to 1, and the off-diagonal elements randomly take values in the range [−1, 1], such that the

overall combinations constitute valid covariance matrices. Figure 6 shows the variations of the lower bound on the

(α, β)-accuracy probability established in Theorem 1 with respect to increasing network size n for four different levels

of reliability constraints. It is observed that for reliabilities as small as 10−8, (α, β)-accuracy is guaranteed almost

surely when the network size is as small as 100 nodes. We remark that for each reliability level, we evaluate two

distinct settings where in one the covariance matrices Σ0 and Σ1 are generated completely randomly (solid curves)

and in the other settings half of the n Gaussian random variables, i.e., {X1, . . . , Xn
2
} have the same joint distribution

(dashed curves).

For the rest of the numerical evaluations and simulations, we use the NP test as the fixed sample-size approach, and

for the sequential sampling, we consider random (non-adaptive) sampling order and the Chernoff rule. We consider

zero-mean Gaussian distributions for data, and test covariance matrix under H1 versus In under H0. We also set

ε0 = ε1 = 0.5. As the first comparison, we consider the nearest neighbor dependency graph for uniformly distributed

nodes in a two-dimensional space, for which the cross-covariance value between two nearest neighbors is a function

of their distance. We denote the distance between nodes i and j by Rij and set the correlation coefficient between

nodes i and j to Σij = Me−aRij , where a,M ∈ R+. Under H0 we set M = 0, which corresponds to independent

samples. Under H1 as M increases the KL divergence between the distributions corresponding to f0 and f1 grows. In

Fig. 7, we set M = 0.1, a = 0, and βn = e−nβ = 0.1 and compare the performance of different approaches. To this

end, for different values of n we find P0
n associated with the NP test (i.e., the false alarm probability), based on which

we design the sequential sampling strategy for the Chernoff and proposed selection rules and find the average delay.

It is observed that the proposed sampling procedure outperforms both the NP test and the Chernoff rule in terms of

the reliability-agility trade-off. We also compare the performance of the proposed strategy with that of the Chernoff

rule and the random selection rule in a heterogeneous network. For this purpose, we generate a subgraph with three

nodes and two edges, in which the cross-covariance values between the neighbors are 0.5 and 0.1. We use 500 copies

of this subgraph as the building block for a network consisting of 1500 nodes. For such a network, the optimal rule

is to select the nodes with larger cross-covariance values. Figure 8 demonstrates the average delay before reaching a
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Fig. 6: Lower bound on the probability of (α, β)-accuracy.

confident decision for different target accuracies and the selection rules when α = β. By comparing Fig. 7 and Fig. 8,

it is observed that in heterogeneous networks, the proposed strategy improves significantly compared to the Chernoff

rule. The reason is the larger discrepancy in the amount of information gained from different nodes.

In order to compare the performance of different selection rules for different levels of correlation strength, Fig. 9

compares the average delays incurred by the proposed approach, the Chernoff rule and a random selection rule for

different values of M when n = 1000, α = β = 1.6× 10−3, and a = 1. It is observed that both the Chernoff rule and

the proposed approach outperform the random selection rule, and as the KL divergence grows by increasing M the

improvement is more significant. Furthermore, in Fig. 10 the error exponents are compared where it is observed that

the proposed strategy has an error exponent twice as large as that of the Chernoff rule and both of them outperform

the strategy based on a random selection of nodes.

In order to verify the results of Theorem 9, we consider a network with n = 30000 nodes, in which only a subset

A consisting of p nodes generate correlated random variables under one of the two hypotheses, while the random

variables generated by the rest of the nodes are independent under both hypotheses. Figure 11 demonstrates the

average delay of the Chernoff rule in taking its first sample from set A. The upper bound and lower bound obtained

in Theorem 9 are also shown for comparison. It is observed that the delay difference is always between the obtained

bounds, which confirms that it is Θ(np ).

Finally, we consider a network with 10000 nodes, from which 50 nodes, denoted by set A, are strongly correlated,

i.e., the cross-covariance values between the neighbors in set A, denoted by ΣAij , are greater than a constant a ∈
(0.3, 0.6), while the rest of the nodes, denoted by set B, also form a connected graph with cross-covariance values
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ΣBij less than a constant b = 0.2. In Fig. 12 the ratio between the average delay of the proposed sampling strategy

is compared with the lower bound (ab )2 obtained in Theorem 8 for different values of a. We also include the ratio

between the average delays for the setting in which the cross-covariance values in sets A and B are equal to a and b,

respectively, for which it is observed that the lower bound is tighter.

7 Conclusion

We have considered the quickest detection of a correlation structure in a Markov network, with the objective of

determining the true model governing the samples generated by different nodes in the network. After discussing the

widely used Chernoff rule and its shortcomings, we have designed a sequential and data-adaptive sampling strategy to

determine the true correlation structure with the fewest average number of samples while, in parallel, the final decision

is controlled to meet target reliability. The proposed sampling strategy, which judiciously incorporates the network’s

correlation structure into its decision rules, involves dynamically deciding whether to terminate the sampling process,

or to continue collecting further evidence, and prior to terminating the process which node to observe at each time. We
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have established the optimality properties of the proposed sampling strategy and leveraged the Markov properties of

the network to reduce the computational complexities involved in the implementation of the proposed approach. We

have provided an example for which the Chernoff rule is not optimal. Finally, we have quantified the advantages of

the proposed rule over the Chernoff rule for some special cases.

Notations throughout the Proofs

For the convenience in notations, throughout the proofs we drop the necessary subscript n in ϕtn, ψtn, γL
n , γU

n .

A Proof of Theorem 1

We start by showing that if

∃t ∈ {1, . . . , n} such that Λt /∈ (γL
n , γ

U
n ) , (98)

then any sequential decision algorithm with the stopping rule τ∗n and the detection rule δ∗n specified in (12) and (13),

respectively, is (α, β)-accurate. Given the structure of the stopping time, according to which the sampling process

terminates as soon as Λt exits the band (γL, γU), the assumption in (98) is equivalent to having

Λτ∗ /∈ (γL, γU) . (99)

Therefore, for P0
n we have

P0
n = P0(δ∗n = 1) (100)

=

n∑
k=1

P0(δ∗n = 1, τ∗n = k) (101)
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(13), (99)
=

n∑
k=1

P0(Λτ∗n ≥ γU, τ∗n = k) (102)

(99)
=

n∑
k=1

P0(Λτ∗n ≥ γU, τ∗n = k) (103)

=

n∑
k=1

∫
(Λk≥γU,τ∗n=k)

f0(Y k;ψk) dY k (104)

(9)
=

n∑
k=1

∫
(Λk≥γU,τ∗n=k)

exp(−Λk)f1(Y k;ψk) dY k (105)

≤
n∑
k=1

∫
(Λk≥γU,τ∗n=k)

exp(−γU)f1(Y k;ψk) dY k (106)

(11)
= e−nα

n∑
k=1

∫
(Λk≥γU,τ∗n=k)

f1(Y k;ψk) dY k (107)

= e−nα
n∑
k=1

P1(δ∗n = 1, τ∗n = k) (108)

= e−nα · P1(δ∗n = 1) (109)

≤ e−nα , (110)

where (102) holds according to the definition of the terminal decision rule in (13), (103) holds due to the assumption

in (99), (105) holds due to the definition of LLR in (9), and (106) holds due to the structure of the region over which

the integral is computed. Finally (108) holds by noting that the decision rule δ∗n = 1 specifies that Λτ∗n > 0, which by

taking into account (99) and the fact that γL < 0, becomes equivalent to Λτ∗n ≥ γU. By following the same line of

argument for P1
n we obtain

P1
n ≤ eγ

L · P1(δ∗n = 0) = e−nβ · P1(δ∗n = 0) ≤ e−nβ . (111)

Next, we analyze the likelihood of the condition in (98) being valid, which establishes a probabilistic guarantee for

Algorithm 1 generating (α, β)-accurate solutions to P(α, β).

1− P
(
∃t ∈ {1, . . . , n} s.t. Λt /∈ (γL, γU)

)
= P

(
Λt ∈ (γL, γU) , ∀t ∈ {1, . . . , n}

)
(112)

≤ P
(
Λn ∈ (γL, γU)

)
(113)

=

1∑
i=0

εiPi
(
Λn ∈ (γL, γU)

)
(114)

Next, for the probability terms in the right hand side we have

P0(Λn ∈ (γL, γU)) ≤ P0(Λn > γL) (115)

≤ 1√
exp(γL)

· E0{
√

exp(Λn)} (116)

(23)
=

1√
exp(γL)

· Bn(f0, f1) (117)

(11)
= exp

(
nβ

2

)
· Bn(f0, f1) , (118)
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where (116) follows the Markov inequality. By following a similar line of argument we obtain

P1(Λn ∈ (γL, γU)) ≤ exp
(nα

2

)
· Bn(f0, f1) . (119)

Hence, from (114), (118), and (119) we obtain

P
(
∃t ∈ {1, . . . , n} s.t. Λt /∈ (γL, γU)

)
≥ 1− Bn(f0, f1)

[
ε0 exp

(
nβ

2

)
+ ε1 exp

(nα
2

)]
. (120)

B Proof of Lemma 1

From the definition of κ(f0, f1) in (24) we have

2κ(f0, f1) = − lim
n→∞

2

n
lnBn(f0, f1) (121)

(23)
= − lim

n→∞

2

n
ln

∫ √
f0(x;V )f1(x;V ) dx (122)

= − lim
n→∞

2

n
ln

∫ √
f0(x;V )

f1(x;V )
f1(x;V ) dx (123)

≤ − lim
n→∞

2

n

∫
ln

(√
f0(x;V )

f1(x;V )

)
f1(x;V ) dx (124)

= lim
n→∞

∫
1

n
ln

(
f1(x;V )

f0(x;V )

)
f1(x;V ) dx (125)

(28)
= lim

n→∞
E1 [nLLR1(XV ;V )] , (126)

where (124) holds due to Jensen’s inequality. By definition, in a homogeneous network, when the limit exists, the

term nLLR1(XV ;V ) converges completely to I1. This, in turn, implies that E1 [nLLR1(XV ;V )] also converges com-

pletely to I1, which, subsequently, converges almost surely to I1 (complete convergence implies almost sure conver-

gence [63]). Hence, in homogeneous networks

2κ(f0, f1) ≤ lim
n→∞

E1 [nLLR1(XV ;V )]
a.s.−−→ I1 . (127)

For the heterogeneous networks, we will follow the same line of argument to show that

2κ(f0, f1) ≤ lim
n→∞

E1 [nLLR1(XV ;V )]
a.s.−−→ I1(V )

(35)
≤ I∗1 . (128)

A similar line of argument also shows that almost surely 2κ(f0, f1) ≤ I0 and 2κ(f0, f1) ≤ I∗0 in homogeneous and

heterogeneous networks. By noting the assumption max{α, β} ≤ 2κ(f0, f1), the desired conclusion is established.

C Proof of Theorem 2

In order to prove (40), we show that for any feasible solution to (8) and for all ε > 0 we have

lim
n→∞

P1

(
τn
n
>

α

I1 + ε

)
= 1 . (129)
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This property, in turn, establishes the desired result in (40). Specifically, by applying the Markov inequality we obtain

lim
n→∞

E1

{
τn
n
· I1
α

}
≥ lim
n→∞

I1
I1 + ε

· P1

(
τn
n
· I1
α
>

I1
I1 + ε

)
(129)
=

I1
I1 + ε

, ∀ε > 0 . (130)

Since the inequality in (130) is valid for all ε > 0 we have

lim
n→∞

E1

{
τn
n
· I1
α

}
≥ sup

ε>0

I1
I1 + ε

= 1 , (131)

which concludes (40). To prove (129), for i ∈ {0, 1} andL ∈ {2, . . . , n−1}, and corresponding to any (α, β)-accurate

algorithm with stopping time τn and decision rule δn let us define the event

A(i, L)
4
= {δn = i , τn ≤ L} . (132)

Then, for any ζ > 0, for the error probability term P0
n when the stopping time is τn and the decision rule is δn, we

have

P0
n = P0(δn = 1) (133)

= E0{1{δn=1}} (135)

= E1{1{δn=1} exp(−Λτn)} (136)

≥ E1{1{A(1,L),Λτn<ζ} exp(−Λτn)} (137)

≥ e−ζ P1(A(1, L),Λτn < ζ) (138)

≥ e−ζ P1

(
A(1, L) , sup

t<L
Λt < ζ

)
(139)

≥ e−ζ
[
P1(A(1, L))− P1

(
sup
t<L

Λt ≥ ζ
)]

(140)

≥ e−ζ
[
P1(δn = 1)− P1(τn > L)− P1

(
sup
t<L

Λt ≥ ζ
)]
, (141)

where (136) holds by changing the probability measure, (137) holds by noting that the event {A(1, L),Λτn < ζ} is a

subset of the event {δn = 1}, and (140) and (141) hold due to basic set operations properties. By rearranging the terms

in (133) and (141) and invoking P0(δn = 1) ≤ e−nα and P1(δn = 0) ≤ e−nβ (the decision rules are (α, β)-accurate)

we obtain

P1(τn > L) ≥ P1(δn = 1)− eζ P0(δn = 1)− P1

(
sup
t<L

Λt ≥ ζ
)

(142)

= 1− P1
n − eζ P0

n − P1

(
sup
t<L

Λt ≥ ζ
)

(143)

(8)
≥ 1− e−nβ − eζ e−nα − P1

(
sup
t<L

Λt ≥ ζ
)
. (144)

Note that (144) holds for any ζ > 0. Next, we set ζ 4= cLI1 where

c , 1 +
ε

2I1
. (145)

Hence, for any K ∈ {2, . . . , L− 1} for the last term in (144) we have

P1

(
sup
t<L

Λt ≥ ζ
)

= P1

(
sup
t<L

Λt ≥ cLI1
)

(146)
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≤ P1

(
sup
t<K

Λt + sup
K≤t<L

Λt ≥ cLI1
)

(147)

≤ P1

(
sup
t<K

Λt + sup
K≤t<L

{L
t

Λt

}
≥ cLI1

)
(148)

= P1

( 1

L
sup
t<K

Λt + sup
K≤t<L

{Λt
t
− I1

}
≥ (c− 1)I1

)
(149)

≤ P1

( 1

L
sup
t<K

Λt + sup
t≥K

∣∣∣Λt
t
− I1

∣∣∣ ≥ (c− 1)I1

)
(150)

(145)
= P1

( 1

L
sup
t<K

Λt + sup
t≥K

∣∣∣Λt
t
− I1

∣∣∣ ≥ ε

2

)
(151)

≤ P1

( 1

L
sup
t<K

Λt ≥
ε

4

)
+ P

(
sup
t>K

∣∣∣Λt
t
− I1

∣∣∣ > ε

4

)
. (152)

We show that both probability terms in (152) diminish as n grows. Fro the second term in (152) note that from the

definition of T`(h, ψ∞) in (32) we know that corresponding to any given sampling path ψ∞ we have

∀t ≥ T`
( ε

4
, ψ∞

)
:

∣∣∣Λt
t
− I1

∣∣∣ ≤ ε

4
. (153)

This indicates that by setting K = T`(
ε
4 , ψ

∞), it can be readily verified that

lim
n→∞

P
(

sup
t>K

∣∣∣Λt
t
− I1

∣∣∣ > ε

4

)
= 0 . (154)

As a result, for K = T`(ε/4, ψ
∞) from (146)-(152) we obtain

lim
n→∞

P1

(
sup
t<L

Λt ≥ cLI1
)
≤ lim
n→∞

P1

( 1

L
sup
t≤K

Λt ≥
ε

4

)
. (155)

For the right hand side of (155) we find that for any ε > 0

P1

( 1

L
sup
t<K

Λt ≥
ε

4

)
≤ P1

( 1

L

K∑
t=1

Λt ≥
ε

4

)
(156)

≤ 4

ε
· 1

L
E1

[
K∑
t=1

Λt

]
(157)

=
4

ε
· 1

L
E1

[
K∑
t=1

E1[Λt]

]
(158)

≤ 4

ε
· 1

L
E1[K] max

1≤t≤K
E1[Λt] , (159)

where (157) holds due to Markov’s inequality and (158) follows from Wald’s identity (general form). Next, we set

L =

⌈
nα

I1 + ε

⌉
. (160)

By recalling Lemma 1 we know that for sufficiently large n, we have L ≤ n. Hence, based on (155) and (159) we get

lim
n→∞

P1

(
sup
t<L

Λt ≥ cLI1
)
≤ lim
n→∞

4

ε
· 1

L
E1[K] max

1≤t≤K
E1[Λt] (161)

(160)
≤ 4

ε
· I1 + ε

α
lim
n→∞

1

n
E1[K] max

1≤t≤K
E1[Λt] (162)
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= 0 , (163)

where the last step holds by noting that E`[K] = E`[T`(ε/4, ψ∞)] < +∞ specified in (31). Subsequently, from (146),

(152), (154), (161), and (163) we have

lim
n→∞

P1

(
sup
t<L

Λt ≥ ζ
)

= 0 . (164)

As a result, from (142)-(144) we obtain

lim
n→∞

P1

(
τn
n
>

α

I1 + ε

)
(160)
= lim

n→∞
P1 (τn > L) (165)

(144) , (164)
= lim

n→∞

[
1− exp(−nβ)− exp

(
− nα · ε

2I1 + ε

)]
(166)

= 1 , (167)

which proves (129). Since this is always valid irrespectively of the sampling procedure and the stopping rule, we

conclude that (40) is always valid, establishing

lim
n→∞

E1{τn}
n

≥ α

I1
. (168)

We can prove

lim
n→∞

E0{τn}
n

≥ β

I0
, (169)

by following the same line of argument.

D Proof of Theorem 3

Following the definition of T1(h, ψ∞) in (32), we provide a truncated counterpart of it for a network with n nodes

(non-asymptotic regime) as follows.

R1(h, ψn)
4
= sup

{
t ≤ n :

∣∣∣Λt
t
− I1

∣∣∣ > h
}
, ∀h > 0 , (170)

where we adopt the convention that the supremum of an empty set is +∞. Obviously,

lim
n→∞

R1(h, ψn) = T1(h, ψ∞) . (171)

According to the definition of the stopping time in (12), at the instance prior to stopping, i.e., at time τ∗n−1, we always

have Λτ∗n−1 ∈ (γL, γU). We start the proof by comparing Λτ∗n−1 with these two bounds. First, consider the following

relationship

Λτ∗n−1 < γU . (172)

Based on the definition of R1(h, ψn) in (170), if R1(h, ψτ
∗
n) < τ∗n − 1, then for t = τ∗n − 1 we have∣∣∣Λτ∗n−1

τ∗n − 1
− I1

∣∣∣ ≤ h , ∀h > 0 , (173)
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which indicates that for all h ∈ (0, I1) we have

τ∗n ≤
Λτ∗n−1

I1 − h
+ 1

(172)
≤ γU

I1 − h
+ 1 . (174)

Hence, from (174) for all h ∈ (0, I1) we have

τ∗n = τ∗n · 1{τ∗n>R1(h,ψτ
∗
n )+1} + τ∗n · 1{τ∗n≤R1(h,ψτ

∗
n )+1}︸ ︷︷ ︸

≤R1(h,ψτ
∗
n )+1

(175)

(174)
≤
[

γU

I1 − h
+ 1

]
· 1{τ∗n>R1(h,ψτ

∗
n )+1} +R1(h, ψτ

∗
n) + 1 (176)

≤ 2 +
γU

I1 − h
+R1(h, ψτ

∗
n) . (177)

Subsequently,

τ∗n ≤ 2 + inf
h∈(0,I1)

γU

I1 − h
+R1(h, ψτ

∗
n) (178)

≤ 2 +
γU

I1
+R1(h, ψτ

∗
n) . (179)

Since

E1{T1(h, ψ∞)} < +∞ , ∀h > 0 , (180)

by recalling that γU = nα, from (171) and (178)-(179) we obtain

lim
n→∞

E1{τ∗n}
n

≤ α

I1
. (181)

Similarly, by also considering

Λτ∗n−1 > γL (182)

and following the same line of argument we obtain

lim
n→∞

E0{τ∗n}
n

≤ β

I0
, (183)

which concludes the proof.

E Proof of Lemma 2

We start by showing that there exist positive constants B and c such that for all t ∈ {1, . . . , n}

P1(τ̂n ≥ t) ≤ Be−ct . (184)

For this purpose, note that

P1(τ̂n ≥ t) =

n∑
u=t

P1(τ̂n = u) (185)
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=

n∑
u=t

P1

(
δML(u− 1) = H0 , δML(u) = · · · = δML(n) = H1

)
(186)

≤
n∑
u=t

P1(δML(u− 1) = H0) (187)

(15)
=

n−1∑
u=t−1

P1(Λu < 0) . (188)

Next, we find an upper bound on P1(Λu < 0). For this purpose, note that for any s ∈ R we have

P1(Λt < 0) · E1

{
exp{sΛt} | 1{Λt<0}

}
= E1

{
exp{sΛt}1{Λt<0}

}
≤ E1

{
exp{sΛt}

}
. (189)

Furthermore, for any s < 0 we have

E1

{
exp{sΛt} | 1{Λt<0}

}
≥ 1 . (190)

By combining (189)–(190) we find that for any s < 0

P1(Λt < 0) ≤ E1

{
exp{sΛt}

}
. (191)

The right hand side of (191) can be expanded by using the towering property of expectation as follows:

E1

{
exp{sΛt}

}
(9)
= E1

{
exp{sΛt−1} · E1

{[f1(Yt;ψ(t)|Ft−1)

f0(Yt;ψ(t)|Ft−1)

]s ∣∣∣ Ft−1

}}
. (192)

Now, consider the inner expectation and define

ξt(s)
4
= E1

{[f1(Yt;ψ(t)|Ft−1)

f0(Yt;ψ(t)|Ft−1)

]s ∣∣∣ Ft−1

}
. (193)

It can be ready verified that ξt(s) is convex in s and satisfies

ξt(−1) = ξt(0) = 1 . (194)

ξt(s) can have two possible behaviors in the range s ∈ (−1, 0):

Case 1: ξt(s) = 1, ∀s ∈ (−1, 0). This occurs only when the likelihood ratio inside the expectation is equal to 1, i.e.,

the sample taken at time t has the same likelihood values under both hypotheses. This event has measure zero. As a

result, the probability of this case occurring is 0.

Case 2: ξt(s) < 1, ∀s ∈ (−1, 0). It means that in this case there exists a constant c > 0 such that for some

s∗ ∈ (−1, 0) and ∀t ≤ τ∗n

ξt(s
∗) ≤ e−c < 1 . (195)

By successively applying the towering property as in (192), and accounting for Case 1 we obtain

P1(Λt < 0)
(191)
≤ E1

{
exp{s∗Λt}

}
≤ e−ct . (196)

Next, by combining (188) and (196) we obtain

P1(τ̂n ≥ t) ≤
n−1∑
u=t−1

e−cu ≤
∞∑

u=t−1

e−cu =
ec

1− e−c
e−ct = be−ct , (197)
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where we have defined b 4= 1
1−e−c . By using this result, it can be ready verified that E1{τ̂n} is finite. Specifically,

E1{τ̂n} =

∞∑
t=1

P(τ̂n ≥ t) ≤
∞∑
t=0

be−ct =
b

1− e−c
, (198)

which shows that E1{τ̂n} is asymptotically upper bounded by a constant. The proof for E0{τ̂n} being bounded by a

constant follows a similar line of argument.

F Proof of Lemma 3

For any h > 0 define

T1(h)
4
= max
ψ∞∈S(N)

T1(h, ψ∞) . (199)

Based on the (31), for any sampling path ψ∞ and any t > T1(h) we have

nLLR1(Y t;ψt) ∈ [I1(ψ∞)− h , I1(ψ∞) + h] . (200)

By expanding the joint pdfs we find that for any pair of time instances t and s such that s > t > T1(h) we have

ln
f1(Y t ∪XS ;ψt ∪ S)

f0(Y t ∪XS ;ψt ∪ S)︸ ︷︷ ︸
=(t+|S|)×nLLR1(Y t∪XS ;ψt∪S)

= ln
f1(Y t;ψt)

f0(Y t;ψt)︸ ︷︷ ︸
=t×nLLR1(Y tψt)

+ ln
f1(XS ;S |Ft)
f0(XS ;S |Ft)

. (201)

Hence, from (200) and (201) we find that corresponding to any sampling path ψ∞, for any set S ⊆ ψt and any h > 0

we have

1

|S| ln
f1(XS ;S |Ft)
f0(XS ;S |Ft)

∈
[
I1(ψ∞)−

(
2t

|S| + 1

)
h , I1(ψ∞) +

(
2t

|S| + 1

)
h

]
, (202)

which indicates that for all h > 0 we have

∀S ⊆ U∞ : max
S∈ϕt

E1

{
1

|S| ln
f`(XS ;S |Ft)
f0(XS ;S |Ft)

}
≥ I∗1 −

(
2t

|S| + 1

)
h . (203)

By selecting h arbitrarily small, this lower bound can be made arbitrarily close to I∗1 . By noting the characteristics of

the sampling rule ψ∗(t) specified in (21), at time t+ 1 we select a node from a set S∗ that satisfies

E1

{
1

|S∗| ln
f`(XS∗ ;S∗ | Ft)
f0(XS∗ ;S∗ | Ft)

}
≥ I∗1 −

(
2t

|S| + 1

)
h . (204)

On the other hand, corresponding to set ψ∞ 6= U∞, we have I1(ψ∞) < I∗1 . Consequently, for all sets S ⊆ ψ∞ and

arbitrarily small h we have

E1

{
1

|S| ln
f`(XS ;S |Ft)
f0(XS ;S |Ft)

}
≤ I1(ψ∞) +

(
2t

|S| + 1

)
h < I∗1 −

(
2t

|S| + 1

)
h , (205)

Hence, the set S∗ from which we sample at time t+ 1 must be a subset of U∞. In other words, for all t > T1(h) the

samples are taken from U∞. This indicates that for the setH we have

E1{H} ≤ E1{T1(h)} (199)
< +∞ . (206)
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G Proof of Lemma 4

Following the definition of T1(h, ψ∞) in (32) for heterogeneous networks , we provide a truncated counterpart for it

defined as follows. For this purpose, we denote the first n elements of U∞ by Un.

R1(h, Un)
4
= sup

{
t ≤ n :

∣∣∣Λt
t
− I∗1

∣∣∣ > h
}
, ∀h > 0 , (207)

where clearly

lim
n→∞

R1(h, Un) = T1(h, ψn) . (208)

Hence, by accounting for the first (τ̂n + T1(h)) samples, some of which may have been observed from nodes not

included in the first (̂τn +T1(h)) elements of U∞, the last time that the normalized log-likelihood ratios λt
t leaves the

interval [I∗1 − h, I∗1 + h] will happen no later than R1(h, Un) + τ̂n + T1(h). In other words,

∀t ≥ R1(h, Un) + τ̂n + T1(h) : −h ≤ Λt − Λτ̂n
(t− τ̂n)

− I∗1 ≤ h , ∀h > 0 . (209)

If τ∗n > R1(h, Un) + τ̂n + T1(h), then for all h ∈ (0, I∗1 ) we have

τ∗n − τ̂n ≤
γU − Λτ̂n
I∗1 − h

+ 1 . (210)

Hence, for all h ∈ (0, I∗1 ) we have

τ∗n − τ̂n = (τ∗n − τ̂n) · 1{τ∗n>R1(h,Un)+τ̂n+T1(h)} + (τ∗n − τ̂n) · 1{τ∗n≤R1(h,Un)+τ̂n+T1(h)}︸ ︷︷ ︸
≤R1(h,Un)+T1(h)

(211)

(210)
≤
[
γU − Λτ̂n
I∗1 − h

+ 1

]
· 1{τ∗n>R1(h,Un)+τ̂n+T1(h)} +R1(h, Un) + T1(h) (212)

≤ γU − Λτ̂n
I∗1 − h

+R1(h, ψn) + T1(h) + 1 . (213)

Hence,

τ∗n − τ̂n ≤ 1 + inf
h∈(0,I∗1 )

γU − Λτ̂n
I∗1 − h

+R1(h, Un) + T1(h) (214)

= 1 +
γU − Λτ̂n

I∗1
+R1(h, ψn) + T1(h) . (215)

Since the convergence of the nLLR is complete, we can conclude the proof of (46) by combining (11) and (214)–(215)

to obtain

lim
n→∞

E1{τ∗n − τ̂n}
n

≤ α

I∗1
− lim
n→∞

E1{Λτ̂n}
nI∗1

+ lim
n→∞

E1[R1(h, ψn)]

n
+ lim
n→∞

E1{T1(h)}
n

(216)

≤ α

I∗1
+ lim
n→∞

E1[T1(h, U)]

n
+ lim
n→∞

E1{T1(h)}
n

(217)

=
α

I∗1
, (218)

where (216) holds since E1{Λτ̂n} is a KL divergence term and it is non-negative, and (217) holds since E1{T1(h)}
and E1{T1(h)} are finite values.

37



H Proof of Theorem 5

The error exponents of the NP test are studied in [67], where it is shown that when P0
NP is fixed, which is equivalent

to an error exponent of 0, the error exponent of P1
n is the convergence limit of nLLR0(Y n;ψn) as n grows under the

assumption that {Y1, . . . , Yn} are drawn from distribution f0. This is equivalent to the definition of I0. Hence, for the

NP test we have E1
NP = I0 and E0

NP = 0. For the sequential sampling setting, based on the analysis of the average

delay in Theorems 2 and 3 we have

and lim
n→∞

E1{τ∗n}
n

=
α

I1
. (219)

For the error exponent of P0
n yielded by Algorithm 1 we have

E0
n = − lim

n→∞

1

r1
lnP0

n(r1) (220)

≥ − lim
n→∞

−nα
r1

(221)

= lim
n→∞

n

E1{τ∗n}
· α (222)

(219)
= I1 , (223)

where (221) follows from Algorithm 1 generating (α, β)-accurate decisions. Next, we define ∆
4
= E0

n−I1 ≥ 0, based

on which we have

− lnP0
n(r1)

(220)
= r1E

0
n + o(n) = r1∆ + r1I1 + o(n) . (224)

On the other hand, we observe that in the proof of Theorem 2, P0
n has been replaced by its upper bound. By keeping

P0
n throughout the proof it can be readily shown that

lim
n→∞

E1{τ∗n}
n

≥ | lnP0
n(r1)|
nI1

. (225)

By combining (224) and (225) we obtain

lim
n→∞

E1{τ∗n}
n

≥ lim
n→∞

|r1∆ + r1I1 + o(n)|
nI1

(226)

= lim
n→∞

r1

n
· ∆ + I1

I1
(227)

(219)
=

α

I1
· ∆ + I1

I1
. (228)

On the other hand, from Theorem 3 we have

lim
n→∞

E1{τ∗n}
n

≤ α

I1
. (229)

By comparing (228) and (229) and noting that ∆ ≥ 0, in the asymptote of large n we should have ∆ = 0, and

consequently, E0
n = I1. The error exponent of P1

n can be obtained by following the same line of argument.
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I Proof of Theorem 6

Without loss of generality assume that at time t− 1 we have δML(t− 1) = H`. By recalling the definition ofRit given

in (18), corresponding to any unobserved node i ∈ ϕt at time t we define S̄it ∈ Rit as the smallest set of nodes that

maximizes the normalized information measure assigned to node i ∈ ϕt at time t, i.e.,

S̄it
4
= arg max

S∈Rit

M i
`(t,S)

|S| . (230)

Also, we define

u
4
= arg max

i

M i
`(t, S̄it)
|S̄it |

, (231)

as the index of the node that exhibits the largest normalized information measure4, selected by the selection rule

specified in (21). Hence, the optimal sampling path is the set S̄ut . In order to prove the theorem, we show that the

maximum normalized information measure achieved by the set S̄ut is equal to the normalized information measure

achieved by only the members of S̄it ∈ Rit that are neighbors of u. In other words, by defining

T ut
4
= S̄ut ∩ Lut , (232)

we show that

Mu
` (t, S̄ut )

|S̄ut |
=
Mu
` (t, T ut )

|T ut |
. (233)

We prove this identity by removing the nodes not neighboring u in four steps, and in each step showing that removing

those nodes does not penalize Mu
` (t,S̄ut )

|S̄ut |
.

1. Removing any node in S̄ut that belongs to a subgraph of G different from the subgraph that containins u, does

not decrease Mu
` (t,S̄ut )

|S̄ut |
.

2. Furthermore, removing any node of S̄ut whose path to u contains a node that has been observed earlier, does not

decrease Mu
` (t,S̄ut )

|S̄ut |
.

3. Moreover, removing any node of S̄ut whose path to u contains an unobserved node that does not belong to S̄ut ,

does not decrease Mu
` (t,S̄ut )

|S̄ut |
.

4. Finally, removing any remaining node that is not a neighbor of u does not decrease Mu
` (t,S̄ut )

|S̄ut |
.

Step 1: First we show that removing the nodes from all subgraphs of G other than the one that containing node u, does

not increase the information measure of node u. For this purpose, we partition S̄ut according to

S̄ut = A ∪ Ā , and A ∩ Ā = φ , (234)

where A ⊆ S̄ut is the set of nodes that belong to the same subgraph as u, and Ā 4
= S̄ut \A. We expand the information

measure of u as follows:

Mu
` (t, S̄ut )

|S̄ut |
=
DKL

(
f`(XĀ|Ft−1) ‖ f1−`(XĀ|Ft−1)

)
|S̄ut |

(235)

4For convenience in notation, we suppressed the dependence of u on t, `, and the past samples.
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+
DKL

(
f`(XA|Ft−1) ‖ f1−`(XA|Ft−1)

)
|S̄ut |

. (236)

We note that A is non-empty since u ∈ A. We show that if Ā is not empty, removing it does not decrease the

information measure of node u. Suppose otherwise, i.e., Ā is non-empty and

DKL

(
f`(XA|Ft−1) ‖ f1−`(XA|Ft−1)

)
|A| <

Mu
` (t, S̄ut )

|S̄ut |
. (237)

Then, in order for (235)–(236) to hold, we must have

DKL

(
f`(XĀ|Ft−1) ‖ f1−`(XĀ|Ft−1)

)
|Ā| >

Mu
` (t, S̄ut )

|S̄ut |
. (238)

Denote one of the members of Ā by v. Then, by noting that Ā ⊆ v
t and invoking the definition of u, we have

DKL

(
f`(XĀ|Ft−1) ‖ f1−`(XĀ|Ft−1)

)
|Ā|

(230)
≤ max
S∈Rvt

Mv
` (t,S)

|S|
(231)
≤ Mu

` (t, S̄ut )

|S̄ut |
, (239)

which contradicts (237). Hence, we remove all the nodes that do not belong to the subgraph of G that contains u, and

assume that the optimal set S̄ut is free of such nodes. In the next steps, we focus only on the nodes that belong to the

same subgraph that u lies in.

Step 2: Next, we show that further removing the nodes whose path to u contains a node that has been observed earlier,

does not increase the information measure of u. For this purpose, we partition S̄ut according to

S̄ut = B ∪ B̄ , and B ∩ B̄ = φ , (240)

where B ⊆ S̄ut is the set of nodes whose paths to u includes an observed node, i.e. an element of ψt−1
n . According to

the global Markov property we have

B ⊥⊥ B̄
∣∣ Ft−1 , (241)

Hence, we have the decomposition

Mu
` (t, S̄ut )

|S̄ut |
=
DKL

(
f`(XB |Ft−1) ‖ f1−`(XB |Ft−1)

)
|S̄ut |

(242)

+
DKL

(
f`(XB̄ |Ft−1) ‖ f1−`(XB̄ |Ft−1)

)
|S̄ut |

. (243)

We can follow the exact same line of argument as in Step 1, to prove that removing the the nodes in B does not

decrease the information measure of node u, and consequently, the selected node.

Step 3: In the next step, we show that further removing any node of Sut whose path to u contains an unobserved node

that does not belong to Sut can be also removed without penalizing the desired information measure. For this purpose,

we partition the set S̄ut according to

S̄ut = C ∪ C̄ , and C ∩ C̄ = φ , (244)
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where C̄ is the set of nodes whose paths to u contains at least one node that does not belong to S̄ut . Let us also define

the set Cj as a subset of C̄ whose paths to u contains the unobserved node j /∈ Sut . Since the graph is acyclic, the sets

{Cj} are disjoint and partition C̄, i.e.

C̄ =
⋃
j∈J

Cj , and Cj ∩ Cj
′

= φ , ∀j, j′ ∈ J , (245)

where we have defined J as the smallest set that separates C and C̄. Then, we expand the information measure of u

as follows:

Mu
` (t, S̄ut )

|S̄ut |
=
DKL

(
f`(XC |Ft−1) ‖ f1−`(XC |Ft−1)

)
|S̄ut |

(246)

+
∑
j∈J

DKL

(
f`(XCj |XMj

,Ft−1) ‖ f1−`(XCj |XMj
,Ft−1)

)
|S̄ut |

(247)

≤ max

{
DKL

(
f`(XC |Ft−1) ‖ f1−`(XC |Ft−1)

)
|C| , (248)

max
j∈J

DKL

(
f`(XCj |XMj

,Ft−1) ‖ f1−`(XCj |XMj
,Ft−1)

)
|Cj |

}
, (249)

where we have defined

Mj
4
= Nj ∩ C . (250)

We prove this step by contradiction. Suppose that

Mu
` (t, S̄ut )

|S̄ut |
>
DKL

(
f`(XC |Ft−1) ‖ f1−`(XC |Ft−1)

)
|C| . (251)

Hence, for (246)–(249) to hold, we should have

Mu
` (t, S̄ut )

|S̄ut |
< max

j∈J

DKL

(
f`(XCj |XMj

,Ft−1) ‖ f1−`(XCj |XMj
,Ft−1)

)
|Cj |

, (252)

indicating that there exists at least one j ∈ J such that

Mu
` (t, S̄ut )

|S̄ut |
<
DKL

(
f`(XCj |XMj ,Ft−1) ‖ f1−`(XCj |XMj ,Ft−1)

)
|Cj |

. (253)

Next, by defining C̄j
4
= Cj ∪ {j}, we consider the following two different expansions for

DKL

(
f`(XC̄j |XMj

,Ft−1) ‖ f1−`(XC̄j |XMj
,Ft−1)

)
. (254)

Specifically, on one hand we have

DKL

(
f`(XC̄j |XMj ,Ft−1) ‖ f1−`(XC̄j |XMj ,Ft−1)

)
(255)

= DKL

(
f`(Xj |XMj ,Ft−1) ‖ f1−`(Xj |XMj ,Ft−1)

)
(256)

+DKL

(
f`(XCj |Xj ,Ft−1) ‖ f1−`(XCj |Xj ,Ft−1)

)
, (257)
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and on the other hand we have

DKL

(
f`(XC̄j |XMj ,Ft−1) ‖ f1−`(XC̄j |XMj ,Ft−1)

)
(258)

= DKL

(
f`(XCj |XMj ,Ft−1) ‖ f1−`(XCj |XMj ,Ft−1)

)
(259)

+DKL

(
f`(Xj |XMj , XCj ,Ft−1) ‖ f1−`(Xj |XMj , XCj ,Ft−1)

)
. (260)

Since the KL divergence is a convex function in both of its arguments and f`(Xj |XMj
,Ft−1) is the average of

f`(Xj |XMj , XCj ,Ft−1), by applying Jensen’s inequality we obtain

DKL

(
f`(Xj |XMj

, XCj ,Ft−1) ‖ f1−`(Xj |XMj
, XCj ,Ft−1)

)
≥ (261)

DKL

(
f`(Xj |XMj

,Ft−1) ‖ f1−`(Xj |XMj
,Ft−1)

)
. (262)

By combining (255)–(262) we get

DKL

(
f`(XCj |Xj ,Ft−1) ‖ f1−`(XCj |Xj ,Ft−1)

)
≥ (263)

DKL

(
f`(XCj |XMj

,Ft−1) ‖ f1−`(XCj |XMj
,Ft−1)

)
, (264)

which in conjunction with (253) yields

Mu
` (t, S̄ut )

|S̄ut |
<
DKL

(
f`(XCj |Xj ,Ft−1) ‖ f1−`(XCj |Xj ,Ft−1)

)
|Cj |

≤ Mu
` (t, Cj)

|Cj |
. (265)

This identity, however, contradicts the optimality of u, that is u is the node with the largest information measure.

Step 4: The first three steps, collectively, establish that based on the definition of S̄ut (being the smallest set that

maximizes the information measure), the graph formed by the set of nodes in S̄ut is connected and is not separated by

any subset of nodes in V \ S̄ut . This indicates that so far we have shown that S̄ut should contain only neighbors of u

or other nodes that are connected to u via a neighbor of u. In the final stage we show cannot contain any node other

than the neighbors of u. By contradiction, suppose that S̄ut contains at least one node that is not a neighbor of u. We

denote this node by k. By defining

Sut
4
= S̄ut \ {k} , (266)

we have

Mu
` (t, S̄ut )

|S̄ut |
=
Mu
` (t,Sut ) +DKL

(
f`(Xk|XMk

,Ft−1) ‖ f1−`(Xk|XMk
,Ft−1)

)
|S̄ut |

, (267)

where we have defined

Mk
4
= Nk ∩ Sut . (268)

Since S̄ut maximizes the normalized information content of u, we have

Mu
` (t, S̄ut )

|S̄ut |
>
Mu
` (t,Sut )

|Sut |
, (269)
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and, consequently, in order for (267) to hold we should have

DKL

(
f`(Xk|XMk

,Ft−1) ‖ f1−`(Xk|XMk
,Ft−1)

)
>
Mu
` (t, S̄ut )

|S̄ut |
. (270)

On the other hand, we have

DKL

(
f`(Xk|XMk

,Ft−1) ‖ f1−`(Xk|XMk
,Ft−1)

)
<
Mk
` (t, S̄kt )

|S̄kt |
, (271)

which combined with (270) indicates

Mu
` (t, S̄ut )

|S̄ut |
<
Mk
` (t, S̄kt )

|S̄kt |
. (272)

This contradicts the optimality of of u, and as a result S̄ut cannot contain any node that is not a neighbor of u. This

completes the proof.

J Proof of Theorem 8

For a GMRF with an underlying line dependency graph, when σij = σ among the neighboring nodes, we have a

homogeneous networks in which

I0 = ln(1− σ2) +
2σ2

1− σ2
, and I1 = ln

1

1− σ2
. (273)

By applying these identities to sets A and B in which σ > a and σ < b, respectively, and noting that I0 and I1 are

monotonically increasing functions of |σ| we have

I0(A)

I0(B)
≥

ln(1− a2) + 2a2

1−a2

ln(1− b2) + 2b2

1−b2
(274)

=
−a2 − a4

2 − a6

3 − o(a6) + 2a2
(
1 + a2 + a4 + o(a4)

)
−b2 − b4

2 − b6

3 − o(b6) + 2b2
(
1 + b2 + b4 + o(b4)

) (275)

=
a2 + 3

2a
4 + 5

6a
6 + o(a6)

b2 + 3
2b

4 + 5
6b

6 + o(b6)
(276)

≥ a2

b2
, (277)

where the last inequality holds since a > b. Similarly, for the expected delays under H1 we have

I1(A)

I1(B)
≥ − ln(1− a2)

− ln(1− b2)
(278)

=
a2 + a4

2 + a6

3 o(a
6)

b2 + b4

2 + b6

3 + o(b6)
(279)

=
a2(1 + 1

2a
2 + 1

3a
4 + o(a4)

b2(1 + 1
2b

2 + 1
3b

4 + o(b4)
(280)

≥ a2

b2
. (281)
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When |A| = o(n), the Chernoff rule starts the sampling process from set B with probability 1 and since the graph is

connected stays in set B until it exhaust all its nodes. By invoking the results of Theorem 3, we can conclude that the

expected delay of the Chernoff rule under H` is inversely proportional to I`(B). Furthermore, from Corollary 2 and

Theorem 4 the expected delay of our strategy under H` is inversely proportional to I`(A), which concludes the proof

K Proof of Theorem 9

We define τd , τc − τ∗n . The optimal sampling strategy starts by directly sampling from set A. For the Chernoff rule,

however, there is a chance that it starts sampling from B before entering A. We define τAc and τBc as the number of

samples that the Chernoff rule spends on sets A and B, respectively. We show that

E`{τAc } ≥ E`{τ∗n} , and E`{τBc } = Θ

(
n

p

)
, (282)

which indicates the desires result, i.e.,

0 ≤ E`{τd} = E`{τAc }+ E`{τBc } − E`{τ∗n} ≥ Θ

(
n

p

)
. (283)

The first identity in (282) follows the optimality of τ∗n . Specifically, the optimal rule starts by sampling from A and

stays inside A until the stopping time τ∗n . On the other hand, the Chernoff rule might start from sampling B, but

once it enters A it remains there until it takes τAc samples. By noting the optimality of τ∗n , we immediately have the

first identity in (282). In order to establish the second identity in (282), we provide lower and upper bounds on the

asymptotic value of E`{τBc }. By definition, any sampling rule can take at most (n − p) samples from set B. Hence,

we obtain an upper bound as follows:

E`{τBc } =

n−p∑
k=0

k · P`(τBc = k) (284)

=

n−p∑
k=0

k ·
(
n−p
k

)(
n
k

) · p

n− k (285)

=

n−p∑
k=1

k · p
n
· (n− p)!

(n− p− k)!
· (n− k − 1)!

(n− 1)!
(286)

=

n−p∑
k=1

k · p
n

k−1∏
i=0

n− p− i
n− 1− i︸ ︷︷ ︸
≤n−pn−1

(287)

≤ p

n

n−p∑
k=1

k ·
(

1− p− 1

n− 1

)k
. (288)

Hence, by noting that p = o(n) we obtain

lim
n→∞

E`{τBc }
n
p

≤ lim
n→∞

( p
n

)2
n−p∑
k=1

k ·
(

1− p− 1

n− 1

)k
= lim
n→∞

( p
n

)2
(
n− 1

p− 1

)2

= 1 . (289)
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For the lower bound, from (287) we have

E{τd} =

n−p∑
k=1

k · p
n

k−1∏
i=0

n− p− i
n− 1− i (290)

≥
bn−p2 c∑
k=1

k · p
n

k−1∏
i=0

n− p− i
n− 1− i (291)

≥
bn−p2 c∑
k=1

k · p
n

k−1∏
i=0

n− p− bn−p2 c
n− 1− bn−p2 c

(292)

≥
bn−p2 c∑
k=1

k · p
n

k−1∏
i=0

n−p
2

n+p
2

(293)

=
p

n

bn−p2 c∑
k=1

k

(
n− p
n+ p

)k
(294)

=
p

n

bn−p2 c∑
k=1

k

(
1− 2p

n+ p

)k
. (295)

Hence, by noting that p = o(n) we obtain

lim
n→∞

E`{τBc }
n
p

≥ lim
n→∞

( p
n

)2
bn−p2 c∑
k=1

k

(
1− 2p

n+ p

)k
(296)

= lim
n→∞

( p
n

)2
(
n+ p

2p

)2

(297)

=
1

4
. (298)

Hence, from (289) and (298) we have

E`{τBc } = Θ

(
n

p

)
, (299)

which completes the proof.
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