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The Isometry-Dual Property in Flags of
Two-Point Algebraic Geometry Codes

Maria Bras-Amords, Alonso S. Castellanos, Luciane Quoos

Abstract—A flag of codes Co ¢ C1 C --- & Cs C Fy is said to
satisfy the isometry-dual property if there exists x € (Fj)™ such that
the code C; is x-isometric to the dual code C- , for alli = 0,...,s.
For P and Q@ rational places in a function field F, we investigate the
existence of isometry-dual flags of codes in the families of two-point
algebraic geometry codes

Ce(D,aoP +0Q) € Ce(D,a1P+0Q) C -+ C Cr(D,as P +bQ),

where the divisor D is the sum of pairwise different rational places of
F and P,Q are not in supp(D). We characterize those sequences in
terms of b for general function fields. We then apply the result to the
broad class of Kummer extensions F defined by affine equations of the
form y™ = f(z), for f(z) a separable polynomial of degree r, where
ged(r,m) = 1. For P the rational place at infinity and @ the rational
place associated to one of the roots of f(z), and for D an Aut(F/Fq)-
invariant sum of rational places of F, such that P,Q ¢ supp D, it
is shown that the flag of two-point algebraic geometry codes has the
isometry-dual property if and only if m divides 2b + 1. At the end we
illustrate our results by applying them to two-point codes over several
well know function fields.

Keywords: AG code; function field; dual code; flag
of codes; isometry-dual property.
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1 INTRODUCTION

A linear code C' C Fy is a Fy-linear subspace of Fy. The
dual code C* of C is defined as the orthogonal complement
of C'in Fy with the standard inner product of Fj. The
explicit determination of dual codes is specially important
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in the detection and correction of errors. A code is self-dual
if C = C+ and such codes have been investigated in [28],
[29] and recently in [31], [35]. This is a restrictive condition
and can be relaxed to the condition C C C+, defining the
so-called self-orthogonal codes. In [1], [30] and [23] we find
applications of self-orthogonal algebraic geometry codes to
the construction of quantum codes using the CSS construc-
tion introduced in [20].

A flag of linear codes Cy C C € --- C Cj is said to have
the isometry-dual property (first introduced in [12]]) if there
exists x € (F})" such that C; is x-isometric to C3-; for all
i=0,...,s, thatis, C; :x-Cj-_i.

The theory of algebraic geometry codes attracted a lot of
attention in the last decades since the construction of linear
codes from algebraic curves by Goppa in 1982 [14]. Let F /F,
be a function field. Consider D = P; + --- + P,, a divisor
given by the sum of pairwise distinct rational places on F,
and G a divisor such that P; is not in the support of G
for i = 1,...,n. The algebraic geometry code C,(D,G)
(abbreviated by AG code) is defined by

C(D,G) = {(F(P),.... f(P) | f € L(G)} S F,

where L£(G) denotes the Riemann-Roch space associated
to the divisor G. These codes are called one-point or two-
point codes provided the divisor G is supported on a single
rational place P (that is, G = aP), or on two different
rational places P, () (that is, G = aP + b()), respectively.
We notice that a point for us is the same as a rational place.
Determining or even improving the parameters of one or
two-point AG codes has been a major subject of research,
see for example [15], [17], [19], [33]], and [5]].

Natural flags of one-point codes are obtained by varying
a in the divisor G = aP. In [3], [12] one can find an analysis
of flags of one-point AG codes satisfying the isometry-
dual property. Explicit constructions are carried on over
the projective line, Hermitian, Suzuki, Ree, and the Klein
function fields. In [4] there is a characterization of isometry-
dual flags of one-point codes in terms of sparse ideals of
numerical semigroups.

In this work we investigate the isometry-dual property
in flags of two-point algebraic geometry codes. Given a fixed
b € N and an increasing sequence 0 < ap < --- < a, we
study the flag

Cr(D,aoP +bQ) S Ce(D,a1 P +0Q) ©
-+ C Cr(D,asP + bQ)



An important role in this investigation is played by the sets
Hy,={a>0:£L(aP+bQ)#{(a—1)P+bQ)}

and

Hy ={a>0: Ce(D,aP+bQ) # Ce(D, (a—1)P +bQ)}

that have a close connection with the Weierstrass semi-
groups at one rational place H(P), and two rational places
H(P, Q). In Theorem {4.2| this connection allows to provide
an arithmetic condition on b to decide when the flag (1)) has
the isometry-dual property.

From a coding theory point of view, it is natural to con-
sider function fields with many rational places. Indeed, if n,
k, d are, respectively, the length, dimension, and minimum
distance of an algebraic geometry code over a function field
of genus g, the rate (k + d)/n satisfies the relation

1+(1—-g)/n<(k+d)/n<14+1/n.

These inequalities depend on the length n of the code with
respect to the genus g of the underlying function field.
Codes with a large rate (k + d)/n are considered the best
ones. Thus, function fields with many rational places, that
is, function fields over F, such that the number of rational
places is close (or equal) to the Hasse-Weil upper bound
q+1+2g,/q have been intensively studied. A function field
attaining the Hasse-Weil upper bound is called a maximal
function field. Several explicit constructions of AG codes over
well known families of maximal or with many rational
places function fields can be found in the literature, see
[11], [19], [25], [27], [33], and [6]. In these papers a variety
of subjects are investigated, such as the computation or
improvement of parameters. It turns out that numerous
examples of function fields with many rational places can
be described by an affine equation of the form y™ = f(x)
for some polynomial f(z) € Fy[z]. Important examples of
maximal function fields of such form are the Hermitian
function field [26], the Giullietti-Korchméros function field
[13], and the generalized Hermitian function field described
in [10], [22]. Other examples of such function fields with
many rational places are given by the norm-trace function
field [11], [27], and the ones as the described in [9]. Function
fields defined by equations of the form y™ = f(z) are
also known as Kummer extensions, see [32] for a formal
definition. The study of codes on one or more points over
certain Kummer extensions can be found in [2]], [7], [11],
[27], [34].

Using a result in [24] we are able to investigate the
isometry-dual property in the large class of algebraic Kum-
mer extensions given by y™ = f(z), where f(x) is a
separable polynomial of degree r, with r,m coprime and
2 <r < m — 1. These function fields have only one place at
infinity, denoted by P. Fixing a second place @) associated
to a root of f(z), in Theorem we show that the flag
satisfies the isometry-dual condition if and only if m divides
2b+ 1.

The article is organized as follows. In Section 2, we
present preliminary results on function fields, codes and
Weierstrass semigroups. In Section 3, we investigate the
dimension of certain Reimann-Roch spaces and codes as-
sociated to these spaces. In Theorem in Section 4, we
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present our main result concerning the isometry-dual prop-
erty on flags of AG two-point codes. In Section 5, we present
the case of two-point codes and the isometry-dual property
over the Hermitian function field. In Section 6, we present
results for Kummer extensions in Theorems[6.T]and and
provide explicit results for the norm-trace function field and
for the generalized Hermitian function field defined by the
equation yq“‘l = 79+ x over F2c. We implemented several
examples in magma and sage to illustrate all the results
presented in each section.

2 PRELIMINARIES

In this section we state the notation and some preliminary
results on function fields, algebraic geometry codes, and
Weierstrass semigroups.

Let F/F, be a function field. We denote by P(F) the
set of places of F, and the places of degree one over
F, are called rational places. A divisor is a formal finite
sum of places in P(F), and the degree of a divisor D =
> pep(r)npP is the sum deg(D) = 3= pep(F) np deg(P).
For a function z in F, (2), (2)o, and (2)s stand for its
divisor, zero divisor, and pole divisor, respectively.

Given a divisor D, the Riemann-Roch vector space as-
sociated to D is defined by £L(D) = {z € F : (2) >
—D} U {0}. We denote by ¢(D) the dimension of L(D)
as a vector space over F,. Two divisors D; and D, are
said to be equivalent if there exists a function z € F such
that D1 = D3 + (2) and we write D; ~ Ds. In this case,
L(Dy) = 271L(D5) and it follows that the Riemann-Roch
spaces L£(D1) and £(Ds) are isomorphic.

In the present work we illustrate our results on the broad
class of Kummer extensions defined by affine equations of
the form y™ = f(x), for f(x) a separable polynomial of
degree r with ged(m,r) = 1 and 2 < r < m — 1. This
class contains important examples such as the Hermitian,
the norm-trace, and the generalized Hermitian function field
defined by the equation y? 1 = 29 4z over Fy2e. In this
case, the dimension of Riemann-Roch spaces can be ana-
lyzed by means of the next theorem due to Maharaj [24] by
decomposing them as a direct sum of Riemann—Roch spaces
of divisors over the projective line. At first we need a defini-
tion. For any function field extension K C E C F, and for a
divisor D of F, define the restriction of D = ) Pep(F) N pP
to E as the divisor

Dy = mmH np J:PeP]-'andPR}R,

where e(P|R) is the ramification index of P over R.

Theorem 2.1. [24] Theorem 2.2] Let F/K(x) be a Kummer
extension of degree m defined by y™ = f(x). Then for any divisor
D of F, with D invariant by the action of Gal(F /K (x)), we
have that

—

m—

L(D) = P L(D + ")) x(w) ¥

t=0

Let D and G be divisors on F such that D is the sum of
n distinct rational places on F that are not in the support



of G; say, Pi,...,P,. The linear algebraic geometry code
Cr(D,G) is defined by

Ce(D,G) = {(f(P),.... f(Py) : f € L(G)} CFL.

Through all the paper n, k, and d will stand for the length,
dimension, and minimum distance of C.(D,G), respec-
tively. The next result establishes the relationship between
these parameters and the divisor G.

Proposition 2.2. [32| Theorem 2.2.2, Corollary 2.2.3] For the
code Cr (D, Q),
k=4(G)— 4G —D)and d > n — deg(G).

Moreover,

(1) if deg(G) < n, then k = ¢(G) > deg(G) + 1 — g, and

(2) if29—2 < deg(G) < n, then k = {(G) = deg(G) +1—g.
Let P and @ be two rational places in P(F) and let N =

{0,1,...} denote the set of natural numbers. We define the
Weierstrass semigroup at one place P, and two places P, () as

H(P)={aeN: 3f € Fwith (f)so =aP}, and

H(P,Q) = {(a,b) e N? : 3f € F with (f)os = aP + bQ}.

One can check that H(P) and H (P, Q) are, indeed, subsemi-
groups of N and N2, respectively. It follows by definition
that ¢ € H(P) if and only if (aP) # ¢((a — 1)P) and, in a
similar way, (a,b) € H(P, Q) if and only if £(aP + bQ) #
((a—1)P 4+ bQ) or £(aP + bQ) # L(aP + (b —1)Q). The
gap sets are the complement sets G(P) = N\ H(P) and
G(P,Q) = N2\ H(P, Q). For the semigroup defined at one
rational place P the set G(P) has g elements [32, Theorem
1.6.8] and its maximum element is at most 2g — 1. For the
semigroup at two places, in general the cardinality of the
gap set G(P, Q) depends on the fixed places, see [15] and
Section 3 in [2].

In the case of two rational places P and (), the knowl-
edge of the Weierstrass semigroup at each one of the
places allows a full description of the Weierstrass semigroup
H(P, Q) as we describe below. Let 51 < 82 < --- < B4 and
M < 72 < -+ < 74 be the gap sequences at P and @),
respectively. For each i, let ng, = min{y € N : (8;,7) €
H(P,Q)}. Then {ng : p € G(P)} = G(Q) by [21, Lemma
2.6]. So there exists a permutation o of the set {1,2,...,g}
such that ng, = 7,(;).- The graph of the bijective map
between G(P) and G(Q) is the set

I'P,Q)={(Bi,ng,) :i=1,2,...,9}
= {(51‘7%(1)) S 1727'”79}
C G(P) x G(Q).

Given I'(P, Q)), we can compute H(P, Q) in the following
way. For two pairs x = (f1,71) and y = (B2,72) € N?,
the least upper bound of x and y is defined as lub(x,y) =
(max{B1, A}, max{71,72}).

The elements in a semigroup always satisfy the follow-
ing property concerning the lub function.

Lemma 2.3. [21, Lemma 2.2] If uy and ug € H(P,Q), then
lub(uy,ug) € H(P,Q) .

In general we have
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Lemma 2.4. [21, Lemma 2.3] Let P and Q be two distinct
rational places. The Weierstrass semigroup associated to P and ()
is given by
H(P,Q) = {lub(x,y) :

x,y € [(P,Q) U (H(P) x {0}) U ({0} x H(Q))}-

3 DIMENSION OF TWO-POINT RIEMANN-ROCH
SPACES AND DIMENSION OF TWO-POINT CODES

Let P, () be two different rational places on the function field
F/Fq4 of genus g. For b in N define the set

Hy={a>0: 0aP+bQ) # {((a— 1)P +bQ)}.

The next lemma relates the set H, with the sets
H(P),H(Q),and H(P,Q).

Lemma 3.1. (1) Forb € N, {a > 0 :
Hy, and if b € H(Q) then H, =
H(P,Q)}.

2) Ifb € H(Q), then H(P) C {a >0 : (a,b) € H(P,Q)}.

(3) Forbe N, ifa > 2g — bthen a € Hy.

(a,b) € H(P,Q)} C
{a >0 : ) €

Proof. (1) The first inclusion follows by definition. Suppose
that b € H(Q) and let a € H;. Then there exists a
rational function f € L(aP+bQ)\ L((a—1)P+bQ). So,
the pole divisor of f is (f)e = aP+rQ with r < b. This
implies that (a,r7) € H(P,Q) and as (0,b) € H(P,Q)
then from Lemma 2.3 we have (a,b) € H(P, Q).

(2) Since H(P) x H(Q) C H(P,Q), we get H(P) C {a >
0: (a,b) € H(P,Q)}.

(3) If a > 2g — b, then deg(aP + bQ) > 2g and we get
LaP+0bQ)=4((a—1)P+bQ) + 1.

O

Example 3.2. Consider the Hermitian function field over Fy.
In Figure |I| we depicted the sets Hy, H(P,(Q), and H(Q), so
that all the items in Lemma can be checked. Details of this
function field will be explicited in Section[p] The set T'(P, Q) was
computed using the results in [8, Theorem 3.4]. Notice that in
this case the unique gap of H(Q) is b = 1. We can check that for
any b it holds {a > 0 : (a,b) € H(P,Q)} C Hy. Furthermore,
for b outside 1 the inequality is, indeed, an equality and it holds
H(P)C{a>0: (a,b) € H(P,Q)}. But this is not true for
b=1

Similarly, consider the norm-trace function field over Fg. In
Figure 2| we depicted the sets Hy, H(P, Q) and H(Q). Details
of this function field will be explicited in Section [6] Again, the
set I'(P, Q) was computed using the results in [8, Theorem 3.4].
In this case the genus is g = 9. We can check that for any b it
holds {a > 0 : (a,b) € H(P,Q)} C H,. Furthermore, for
b € H(Q), the inequality is, indeed, an equality and it holds
{a >0 : (a,b) € H(P,Q)} D H(P). This is not true outside
H(Q).

In both cases the diagonal line is on the points where a =
2g — b, so that one can visually check the third item.

Now, let D = P, + --- + P,, be the sum of n distinct
rational places different than P and Q). For b in N define

Hy ={a>0: Cr(D,aP+bQ) # Cr(D, (a—1)P+bQ)}.

Notice that H is always a finite set with #H; < n. The
next lemma relates the sets Hy, and H; ata given b € N.



Figure 1. Hermitian function field over F4 defined by the affine equation
y>+22+2=0.Inthiscasen=7,g=1,P=(1:0:0),Q=(0:0:
1), H(P) = H(Q) = {0,2,3,...},and I'(P,Q) = {(1, 1)}

Figure 2. Norm trace function field over FFg defined by the affine equation
vy +azt+22+xz =0 Inthiscasen =31,g=9, P = (1:0:0),
Q = (0:0:1), HP) = {0,4,7,8,11,12,14,15,16,18,19,... },
H(Q) = {0,6,7,11,12,13,14,16,17,18,19,...}, and I'(P,Q) =
{(3,15),(10,8),(6,9), (2,10), (17, 1), (13,2), (9,3), (5,4), (1,5)}
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° at(a,b)ifa € H(P)

O at (a,b) if (a,b) € H(P,Q)

O at (a,b) ifa € Hy

Lemma 3.3. For b € N we have

(1) H} C Hy, and

(2) Hy\ Hf ={a>1: l(aP +bQ — D) # {((a —1)P +
bQ — D)}.

(3) If0 <a<n—>bthena € Hf ifand only if a € H,.

Proof. For any divisor G with supp(G) N supp(D) = 0,
the evaluation map ev : £(G) — Fy has image the code

Figure 3. Hermitian function field over F4 defined by the affine equation
Y2+ 22+ =0.
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O at (a,b) ifa € Hy
* at (a,b) ifa € HY
bounds on max(Hy)

Figure 4. Norm trace function field over IFs defined by the affine equation
Yy +at+z24+z=0.
b

A

d 5 - 10‘ 15 \:20 25 30 35 40 45
O at (a,b) ifa € Hy
* at (a,b) ifa € H}

bounds on max(H,')

Cr(D,G) and kernel £(G — D). This yields

dim (D, aP + bQ) — dim C£ (D, (a — 1)P + bQ) =
L(aP +bQ)—((a —1)P 4+ bQ) — £(aP + bQ — D)
+4((a —1)P+0bQ — D),

and items (1) and (2) follow.

Let us prove now item (3). If 0 < a <n —bwehave 0 <
a+ b < n. Applying Proposition 2.2] yields dim C (D, aP +
bQ) = £(aP +bQ) and dim Cr (D, (a — 1) P+ bQ) = £((a —
)P + Q). O
Example 3.4. Consider the Hermitian function field over Fy. In

Figure [3|we depicted the sets Hy, and Hy, while in Figure [@we
depicted the same sets for the norm-trace function field over Fg.



The first and third items in Lemma can be checked. That is,
for each b in both graphs, the set H} is included in Hy and below
the lower diagonal line both sets coincide.

The next lemma bounds the maximum element in H;.

Lemma 3.5. Suppose that the genus of F is nonzero. For b € N,

(1) max(H}) < n+2g—1—0b. Inparticular, if b > n+2g—1
we have H; = 0.

(2) max(H;)>n—b.

Proof. (1) By the Riemman-Roch Theorem, ¢((n +2g — 1 —
b)P + b@Q — D) = g because deg((n + 29 — 1 —b)P +
bQ — D) = 2g — 1, while {/((n +2g — 1 —b)P 4+ bQ) =
g + n because deg((n +2g — 1 —b)P +bQ — D) =
2g—1+n > 2g—1. On the other hand, by Proposition[2.2}
dimCr(D,(n+29g—1-0P+bQ)=4((n+29g—1—
b)P+bQ) —l((n+29—1—-bP+bQ —D)=n.

(2) Let ap > 0 be the minimum such that dimC. (D, aP +
bQ) = n,VYa > ag. Since dimCp(D,aoP + bQ) =
l(agP + bQ) — L(agP + bQ — D), we have that if
ap < n—>b—1then dimCs(D,aoP + bQ) = £(agP +
bQ) < ag + b+ 1 < n, a contradiction. We conclude
that ap > n — b — 1. If max(H}) = n — b — 1 then
n=dimCz(D,(n —b—1)P + bQ) and as deg((n — b —
1)P +bQ) = n— 1 < n then by Proposition 2.2l we have
that £((n — b —1)P + bQ) = n — g, and we conclude
g=0.

O

Example 3.6. In Figures [3| and [4 we also depicted the two
diagonal lines representing the upper bound and the lower bound
of Lemma It can be easily checked that for each b, the
maximum of Hy lies between the two lines.

4 THE ISOMETRY-DUAL PROPERTY FOR TWO-
POINT CODES

The next definition was first introduced in [12].

Definition 4.1. A flag of codes (C;)i=o,....s is said to satisfy the
isometry-dual condition if there exist x € (F};)" such that C; is
x-isometric to C- , foralli =0,...,s.

In [12] the isometry-dual property was studied for one-
point codes, that is, codes of the form C,(D,iP), where
P € P(F)is arational place, and D is the sum of n different
rational places of P(F), all of them different than P. The
authors defined the set H5(P) = {0 < i : Cp(D,iP) #
Cr(D, (i—1)P)} and they proved that, given n > 2g+2, the
flag of one-point codes C(D,iP), for i € Hj,(P), satisfies
the isometry-dual condition if and only if the divisor (n +
2g — 2)P — D is canonical or, equivalently, n + 29 — 1 €
H7},(P). This result was extended for any n > 2¢ + 2 in [3].
Next we extend this results to two-point codes. Just notice
that the two-point codes defined on a function field have
length at most the number of rational places in the function
field minus two, while the maximum length that one-point
codes can have in the same function field is one more.

Theorem 4.2. Let F be a function field of genus g over Fy and
P, Q two different rational places in P(F). Consider b € N and
the divisor D = Py + --- + P, the sum of n > 2g + 2b + 2
distinct rational places, P, Q ¢ supp(D).
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Let HY = {0} U (H; n{l,...,n+2g — 2 — 2b}). The
following are equivalent.
(1) There exists a constant vector x such that the flag of codes

Ce(D,aoP +bQ) S Cr(D,a1 P +bQ) C
-+ C Cr(D,asP +bQ)

is x-isometry-dual, where 0 < ag < a1 < --- < ay is the
ordered sequence of elements in Hp.
(2) Thedivisor E = (n+2g—2—2b)P+2bQ — D is canonical.
(3) n+2g—1—2be Hj,.

Proof. Let us first prove that (1) implies (2). By hypothesis
there exists a such that 2g < a < n — 2 — 2b. Since a > 2g,
by Lemmawe have a € Hy, and sincea <n —2—2b <
n — 1 — b, from Lemma [3.3(3) we obtain a € Hp. Define
at = n—+ 29 — 2 — 2b — a. As before, since a < n — 2 — 2b,
we have a1+ > 2¢g and hence at € H,. Furthermore, since
a > 2g we also have alt <n-2-2bandsoat € Hp.

Notice that, since 2g < a + b, at + b < n, it holds
dim(Cr(D,aP+bQ)) = a+b+1—gand dim(Cr(D,a* P+
bQ)) = at +b+1—g =n—dim(Cz(D,aP+bQ)).So, a and
a' correspond to dual indices in the isometry-dual flag. We
know that Cz(D,aP +bQ)* is C(D, D + W — aP — bQ),
where W is a canonical divisor with vp(W) = —1 for any
P in supp(D) (see [32} Proposition 2.2.10]). Assuming the x-
isometry-dual property we deduce that D+ W —aP —b() ~
atP+bQ,since a > 2g. Then W ~ (a+at)P+2bQ—D =
(n+2g—2—2b)P+ 2bQ — D = E. Hence FE is canonical.

Now we prove that (2) implies (1). Suppose that £ =
(n+ 29 —2 —2b)P + 2bQ — D is a canonical divisor. Let
W be a canonical divisor with vp(WW) = —1 for any P in
supp(D) (see [32, Proposition 2.2.10]). Then there is a ratio-
nal function f such that E + (f) = W. In particular, f has
neither poles, nor zeros in the support of D. Let x = evp(f).
Then, for any a € Hg,letal- =n+29—2—2b—aand
(at)* = max{a € H : a < a'}. Notice that (a1)* € Hp.
We have

D+ W — (aP + bQ)

=D+ E+(f)— (aP +0Q)
=(n+29—-2-2b)P+20Q+ (f) — (aP + bQ)
= (a"P +bQ) + (f).

Hence,

Cr(D,aP +bQ)* =x-Cr(D,at P +bQ)
=x-Cg(D,(at)*P +bQ).

With this we proved that, assuming (2), there exists a
vector x such that the dual code of any code of the form
Cr(D,aP 4 bQ), where a € H is exactly x - Cz(D,a’P +
bQ) for some a’ € Hp. Hence, the flag in (1) satisfies the
isometry-dual property.

Now we prove that (2) and (3) are equivalent. By
Riemann-Roch Theorem we know that {(E + P) = g and,
consequently, {(E) < g. Since deg(FE) = 29 — 2, E is
canonical if and only if £(E) = g (see [32, Proposition 1.6.2]).
Then F is canonical if and only if /(E) = {(F + P), that is,
if and only if

((n+2g—2—2b) P4+2bQ—D) = £((n+2g9—1—2b) P+2bQ—D).



By Lemma [3.3(2) this is equivalent to n + 29 — 1 — 2b €
H;,. O

Notice that the condition n + 29 — 1 — 2b € H3, is
equivalent to the maximum of H3; attaining the upper
bound in Lemma B3 If b = 0 we are in the case of one-
point codes and the condition n + 2g — 1 € Hj is coherent
with [3| Theorem 2].

5 THE ISOMETRY-DUAL PROPERTY FOR TWO-
POINT HERMITIAN CODES

In this section we study the isometry-dual property for two-
point codes arising from the Hermitian function field. The
results here, which are interesting on their own, will serve as
an example for what will be proved about the isometry-dual
property for Kummer extensions.

Consider the Hermitian function field H over F,» of
genus g = @ defined by the affine equation y4! =
29 4+ x. Let P = P, denote the only pole of x and y in H.
The Hermitian function field is maximal over [F > with ¢+1
rational places denoted by

{Pap : B =0+ a,0,8 €Fp}.

The study of a two-point code over the Hermitian function
field does not depend on the fixed places P and @ since
the automorphism group Aut(#) of the Hermitian function
field acts double transitively on the F,» rational places. An
explicit proof of this fact can be found in [16| Lemma 3.1].

From now on we fix P = Py, and ) = Fp ¢ and consider
the divisor

D =

>

Bitl=al+a

P a,B | — Q
in order to study the family of algebraic geometry codes
Cr(D,aP + bQ) of length n = ¢* — 1.

The Riemann-Roch spaces L(aP + bQ) and L((a + g +
1)P + (b — ¢ — 1)Q) are isometric by multiplication by the
function x. By recursion, suppose that 8, p are the quotient
and remainder of the division of b by ¢ + 1, that is, b =
O(g+1)+p,0<p<gq0<0. Then, it follows by induction
on § > 1, that

a € Hyj ifand only ifa +6(q + 1) € H}.

A complete characterization of the set H; can be found
in [16, Section 3], where the dimensions of the codes
Cr(D,aP+bQ) have been determined by Homma and Kim.
Let 0 < b < g, then

Hy={q0+p:0<p<q—2,p<0<p+q°—1}
U{gd+(q—1): g—b—-1<0<¢*+q—b—3}.
This characterization can be also found in the introductions
of the papers [17] and [18]. We now compute the maximal

element in Hj.
From Equation (5) we have

max(Hy) = max(H,) — 0(q+ 1)

_Jn+29—(0+1)(¢+1)
N n+29g—q—0(g+1)

ifl1<p<m-—1,
if p=0.

Figure 5. Hermitian function field over F1¢ defined by the affine equation
y> +ax* + 2 = 0. Inthiscasen = 63, g = 6, P = (1 : 0 : 0),
Q=(0:0:1), HP) = HQ) = {0,4,5,8,9,10,12,13,...}, and
I'(P,Q) ={(1,11),(6,6),(2,7), (11,1),(7,2),(3,3)}.
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delimits the hypothesis of Theorem(n > 2g+2b+2)
e at (a,b) if Cz (D, aP + bQ) in an isometry-dual sequence
guaranteed by Theorem [£.2]

Now we can state the main theorem of this section.

Theorem 5.1. Let n = ¢® — 1 and suppose b < n/2 — g — 1.
Let 0 < ag < -+ < as be the ordered sequence of elements in
Hy ={0}U(Hf n{1,...,n+ 29 — 2 — 2b}). The code flag

Cr(D,agP +bQ) C Cr(D,a1P +bQ) C
-+ C Cr(D,asP +bQ)

satisfies the isometry-dual condition if and only if q is even and
b is congruent with q/2 modulo g + 1. In particular, for odd ¢'s
the flag of two-point codes over the Hermitian function field is not
isometry-dual for any b.

Proof. From Theorem [£.2 and the description of the maxi-
mum of H; we deduce that the flag satisfies the isometry-
dual condition if and only if 2b is congruent with ¢ modulo
q+1 O

Example 5.2. In Figure |5| there is a graph of the sets H; for
the two-point codes C (D, aP + bQ) defined on the Hermitian
function field over F1¢. The sequences of places corresponding to
codes satisfying the isometry-dual property are marked with black
bullets. One can check all results analyzed up to this point for
two-point Hermitian codes.

6 THE ISOMETRY-DUAL PROPERTY FOR TWO-
POINT CODES DEFINED ON KUMMER EXTENSIONS
Let F/F, be a Kummer extension defined by the affine
equation

T

ym:f(l'):H((E—Oci), aie]Fq (1)

i=1



where f(z) is a separable polynomial of degree 2 < r <
m — 1 with ged(m,r) = 1. This function field has genus
g = (m —1)(r —1)/2 and only one rational place at infinity
denoted by P, which is also the only pole of x and y. Let
R € P(F,(z)) be the only pole of z, and Ry, ..., R, stand
for the places of the rational function field F,(z) associated
to the zeros ay, . . ., a; of f(z), respectively. Since the places
Ryq,..., R, are totally ramified in the extension F/F,(x),
there exists a unique rational place P,, ¢ in P(F) over R;
fori = 1,...,r. Notice that P, in P(F) is the only place
over . Then we have the following divisors in F:

(1) (x —a;) =mPa, 0 —mPyx foreveryi, 1 <i<r,

(2) ( ): a1,0+ +Pozr,0_TPoo-

From now on in this section, fix P = Py, and Q = P,, o
for some £ = 1,...,r. Let D be the sum of n rational
places in P(F) such that P,Q ¢ supp(D). We investigate
the dimension of the two-point codes Cz (D, aP+bQ) where
a > 0and b > 0. First of all, notice that multiplication by the
function x—o, gives an isomorphism between the Riemann-
Roch spaces L(aP+bQ) and L((a+m)P+(b—m)Q), and so
the codes Cz(D,aP+bQ) and C(D, (a+m)P+(b—m)Q)
are isometric. In particular, if b > m, then a € Hj if and only
if a +m € Hy_ . Inductively, suppose that 6 and p are the
quotient and remainder of the division of b by m, that is,
b=0m+p,0<p<m,0<4. Then,

a € Hy ifand only if a +0m € H}.

Next theorem is the principal result in this section. The
notation aw mod m is used to refer to the unique integer
congruent with o modulo m in the interval from 0 to m — 1.

Theorem 6.1. Let F/F, be a Kummer extension of genus g given
by

y" = f(z) = [[(@ - ),
i=1
where «; € Fy, f(x) is a separable polynomial of degree
2 <r <m-—1,and gcd(m,r) = 1. For r; < q —r, fix
Ryi1,..., Ry, rational places in P(Fq(x)) completely split in
the extension F [Fq(x). Let P = Py and Q = P,, o for some
k=1,...,r. Consider the divisor

D = <§Pai,0) -Q+ Z > P

i=r+1 p|R;
Denote n = deg(D) and suppose n > 2g — 1.
Let 1 <7 < m — 1 be the multiplicative inverse of r modulo
m. Then, a € Hy if and only if

{Famodm< ath if0 <a+b<n,

atb—n
r

Fla—n—1)modm > 23" ifn<a+b<n+2g9—1

Proof. We use the same notations as above. We have n =
r—1+ (r1 —7r)m > (m —1)(r — 1) — 1. By Proposition 2.2}
a € Hy if and only if
1=4(aP+bQ)—{((a —1)P+bQ)
—l(aP+bQ — D)+ {((a —1)P +bQ — D).
Hence, a € H if and only if

L(aP+0bQ)—{4((a—1)P+bQ) =1and

(aP +bQ — D) — ((a—1)P+bQ— D) 0. @
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In the same way R, ..., R, denote the places in the ratio-
nal function field Fy(x) associated to the zeros au,...,a,
of f(z), we suppose the rational places R,i1,..., R,
in P(F, (x)) are associated to the zeros of the functions
L= Qpgly ey T—Qpy 6 Fy (), respectively. Then the divisor

of the function z = y H (r — ;) in Fis
1=r+1

(2) = D+Q—((r—-1)+m(r1—r)+1)Px = D+Q—(n+1)P.

This yields the following equivalence of divisors
D~ (n+1)P—-Q,
which allows to conclude
LaP+bQ —D)=l(a—n—1)P+(0H+1)Q). 3)

By [24] Theorem 2.2] we have that foranya > —1and b > 0

m—1
L(aP+bQ) = P L([aP +bQ + (Y5, ) V'
t=0

which gives

m—1
UaP+bQ) = > UaP +bQ + (y)]r, )
t=0
m—1 T
= UaP+bQ+ Y tP;—rtP)s, )
t=0 =1

=S e ] ),

Fort=0,...,m—1define D; 45 = La
Then, using equation 8| we have

L(aP +bQ)—{((a—1)P+bQ) =
m—1
Z V(Dt,a,b)
t=0
and
{(aP +bQ — D) — £((a — 1)P +bQ — D)
m—1
= [E(Dt,a—n—Lb-i-l) - €<Dt7a—n—2,b+1)] .
t=0

| Roo |55 R

- K(Dt,a—l,b)] )

From equation (2), we have a € H; if and only if

m—1
[e(Dt’aJ)) — f(Dtva_Lb)] = ]. and
t=0
m—1
[E(Dt,a—n—l,b+1) - E(Dt,a—n—2,1)+1)] =0.
t=0

In the rational function field F,(z), by the Riemann-Roch
theorem, we have that for any divisor A with deg(A4) > —1,
¢(A) = deg(A) + 1. This yields two cases to be analyzed
depending on the value of the sum a + b.

Case 1: if 0 < a+ b < n then {(aP + bQ — D) =

((a —1)P +bQ — D) = 0, and we are left to analyze the
condition £(aP +bQ) —{((a —1)P+bQ) = 1. Now we have



m—1
> (Drap) — Dy g—1,)] = 1if and only if the following
=0

two conditions are satisfied
30 < t9 < m — 1 such that deg(Dy, 4—1,) >

—rt — 11—t
{a TOJ:{a TOJJrl.
m m

Case 2: if a + b > n > 2g — 1, then by Riemann-Roch
theorem we have £(aP + bQ) — £((a — 1)P + bQ) =
and we are left to analyze the condition ¢(aP + bQ —
D) — ¢((a — 1)P + bQ — D) = 0. In this case we get

ZO [E(Dt,a—n—l,b—i-l) — K(Dt,a—n—Q,b-ﬂ—l)] = 0 lf and only lf

t=
forevery t € {0,...,m
is satisfied:

i) deg(Dya—n—1p41) = |2 4+ | B < Oor

m

—1 and
“4)

— 1} one of the following conditions

i) deg(Dra—n-1p41) = [“= =] 4 [HEL | > 0 and
Lanlr:LanQTtJ.
m m
These conditions can be summarized as a € Hj if and only
if
i) an > 0 and m |

0<tsg<m-—1,if0<a+b<n

(a — rtg) for some

i)m t (a — n — 1 — rt), for all t €
{o,omin{m—1, (=252} if 0 < atb <
n+2g—1.

Once more, we have a € H} if and only if

i) a =rty mod m for some 0 < to < min{m — 1, |2t}
if0<a-+bdb<n.
ii)a — n — 1 # 1t modm, for all t €

{O, ...,min{m — 1, L“J;E”J}} ifn <a+b<nt2g—1.
Now, since 7 is the inverse of r modulo m, we deduce that
a € Hy if and only if
i) 7a = to mod mforsome0 < ¢, < min{m —

L[ ]lf0<a+b<n.
ii) 7la — n — 1) = t mod m for all ¢ €
{0, ...,min{m — 1, L%J}} if n < a+b < n+2g—1.

And the result in the statement of the theorem follows. [

Notice that the divisor D in Theorem[6.1]has degree n =
r — 14 M, where M is a multiple of m and n is assumed to
be larger than 2¢g — 1. Of course, n is also at most the total
number of rational places on F minus 2.

The results of Theorem [6.1] allow to compute the maxi-
mum of H} for Kummer extensions as follows in the next
proposition.

Proposition 6.2. With hypotheses and notation as in Theo-
rem[6.1) and b = Om + p where 0 < p < m — 1,

_ o if0 < m
ity = {27200 A0S0 L2

n+29—b+p—m

Proof. Since ged(m,r) = 1, we can choose 1 < u < m — 1
and 1 < A < r — 1 such that Am = ur + 1. In particular we
have that 1 <7 =m —u < m —1 is the inverse of » modulo
m. Notice that v = m — 7 modulo m and that [ | = [ ].
We recall that 29 = (m — 1)(r — 1).

iflm]<p<m—1L
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First let us show that a —n—i-Qg—b-i—p—T—rpe Hy.
By Theorem [6.1} we need to prove that 7(a —n — 1) modulo
m is larger than “H’ 7. In this case we have 1"(29 —b+p—

r—rp—1)=m-— p 2 mod m, which is already between
0 and m — 1 and which is larger than
a+b—n 29+p—r—rp 9 1
= = m — — _
r—1 r—1 P r—1’
as desired.

Let us now prove thata = n+2g—-b+p—m € Hy.
We need to prove that 7#(a —n — 1) modulo m is larger than
atb-n We have 7(2g —b+p—m—1)=m — 1 modm
Wthh is obviously larger than ‘”‘b e as
desired.

Now suppose 0 < p < |™ | andleta =n+2g—b+p—
r—rp+£ with £ > 0. We are going to prove that #(a —n —1)
modulo m is at most “'ﬁ‘l =m-—p _1 . We have
T2g—b+p—r—rp+L—1)=7—p _9 modm Let
)\€+1:tr+swith0§sgr—l.Define

O b R

Notice that ¢ € Z and that p is congruent with 7¢ — p — 2
modulo m. We are going to prove that 0 <p<m-—1
and that ¢ < = = — p — 2 + £21 proving hence
thatn+2g—b+p—r—rp+€doesnotbelongto Hy.
In fact, if we prove the last inequality, then the inequality
i < m —11is a consequence of it, together with the bound
¢ < (p+1)(r — 1), derived from Lemma 3.5

If s =0 thenpy =%~ —p—2="E _p_2 Since
ged(A,r) = 1 from the equality A(m + £) = r(u +t) we
conclude that 7 divides m + £. Hence p+1 < [T | < T <
mTH and therefore x> 0. On the other hand, as r > 2, if
¢ < r wehave m“ < mandtheny < m p—2
if ¢ > rthen £ < f_l.SO,,u =
If s > 0, we have that [ 7] = 1andu— 7( S+1+T‘)+

— p— 2 is a decreasing function of s. The lowest value of
ulswhens =r—1.Inthiscase \(m+4)+1=r(u+t+1)
and so

=m-1-=

rl’

—-2.

t+1

then y > ™ + mT” — p — 2 > 0, where the last equality is
because p+ 1 < |Z| < ™ and ™t > 1.

Taking s = 1wehave y = Y+l —p—2 = m—p—2+%.
From s = 1 we also obtain A/ = ¢r, and since )\ and r are
coprime we conclude 7 divides ¢, and in partlcular >
Therefore)\ = f < [ 1 .Hence, u <m —p— 2+r 1

Secondly suppose Lrj <p<m-—1landleta =n+
29 — b+ p—m+ { with £ > 0. We need to prove that
#(a —n — 1) modulo m is at most 425" = 1 — 1 4 =2,
Wehave 7(2g —b+p-—m—1+L) =7l —r)=m—1—ul
mod m. Let ¢ be the residue of ¢ modulo m and p = m —

. (Z_ L)\[{;\_l r)u+ L)\I/ 1




Notice that since 1 < Al — L@Jr < r, one has

LAZ—lJ u L)\Z_IJ
1< -1+ =<pu<m-1—=
<yt Sp<molog4
and so p is the residue of m — 1 — uf modulo m. It remains
tocheckthatu<m—1+£m+p.

Dividing M/ — 1 by rweget Ml — 1 =t'r + 5,0 < ' <
r — 1. Then

S mflv

cm—1-Yi-tn 4+ L
p=m-—1 )\()\f tr)—i—)\

t —us’' —u

—m—1
m + h
' —us’ —u)(r—1)
—m—1
(L YO
M—s —1—ur(s +1) —t' +us’ +u
=m-1+
A(r—=1)
J_ I Y /
:m_1+)\€ (ur+1)(s'+1) =t +us’ +u
Alr—1)
/_ / oy /
:m—1—|—)\£ am(s'+1) =t/ +u(s’"+1)
Ar—1)
_m_1+€~—m—ms’ u(s' +1) =t
B r—1 A(r—1)
0 _ / ’ o
:m_1+€ m+p ms'+p uls’+1)—t
r—1 r—1 Alr—1)
C—m+p Ims' +Ap—us —u+t
r—1 Ar—1)
C—m+p wulrs—s —1)+Ip+t'+¢
<m-—1 .
=m + r—1 Ar—1)
Let A = "(”,_s:\_(i)_ﬁ?pﬁ,"'sl, we need to prove that A > 0.

If s > 0, since 7 > 2, then A > 0. If s’ = 0, then we get
A(l—m) = r(t' —u) and r divides £ —m since gcd (A, r) = 1.
Then, from p > | ™ |, we obtain

' —u+Ap
Ar—1)

e _
r—1

A:

Theorem 6.3. With the same notation as in Theorem|[6.1} suppose
that 0 <b<n/2—g—1.Let 0 = ag < - -- < ag be the ordered
set of elements in Hy = {0}U (H; N{1,...,n+2g—2—2b}).
The flag of algebraic geometry codes

Cr(D,aoP +bQ) S Ce(D,a1 P +0Q) ©
- ¢ Cr(D,asP +bQ)

is x-isometry-dual for some vector x if and only if m divides
2b + 1.

Proof. By Theorem 4.2} the flag above is x-isometry-dual for
some vector x if and only if n + 2g — 1 — 2b € H;;. Now,
by Theorem [6.1} n + 29 — 1 — 2b € Hj, if and only if the
remamder of r((n + 29 — 1 — 2b) — n — 1) divided by m
= (m—1)(r — 1), this is
equivalent to the remamder of #(—r — 2b— 1) divided by m
being exactly m — 1. That is, if and only if —r —2b—1 = —r
modulo m, i.e., 2b + 1 = 0 modulo m. O
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Corollary 6.4. If m is even, there is no isometry-dual flag of
codes for 0 < b < n/2—g— 1. If m is odd, there is an isometry-
dual flag of codes at a given integer b, for 0 < b <n/2—g—1,if
and only if b = =L for some t, which is necessarily odd. Hence,
b=mt+ = forsomeO<t<L%2glj.

Remark 6.5. With the same notation as in Theorem let n
stand for the total number of rational places on the function field.
Notice that Theorem in the case b = 0, corresponds to flags of
one-point algebraic geometry codes. In particular, it is shown that
there is no isometry-dual flag of one-point codes of length n — 2
for the case of the Kummer extensions we analyzed.

This is coherent with the existence of isometry-dual flags of
one-point codes of length n — 1 such as the Hermitian function
fields examples is [12] and [3|]. Indeed, in [3|, Theorem 23] it was
shown that unless the Weierstrass semigroup at P is N, if a flag
of codes of length n — 1 satisfies the isometry-dual condition then
the flag obtained by shortening it at one place (that is, of length
n — 2) does not satisfy the isometry-dual condition.

In what follows we illustrate the results in Corollary
and Theorem [6.3] for two function fields.

Example 6.6. In this first example we work with a maximal
function field that has been object of investigation in [10]. It is
called the generalized Hermitian function field. It is defined by the
affine equation yq[+1 = x?+x over F 20 with £ odd. It has genus
g = q'(q — 1)/2, one single place at infinity Po, = (1: 0 : 0)
and plus ¢**1 rational places.

We take P = Py and QQ = Py and consider the codes
Cc(D,aP +bQ) of length n = g**+* — 1.

If m is even (i.e. q odd), by Corollary there will be no
isometry-dual flags for 0 < b < n/2 — g — 1. So, we will analyze
only the cases in which m is odd, and so the characteristic is
2. In this case, Theorem [6.3] and Corollary [6.4] ensure that for
0<b<n/2—g—1,theflag of codes associated to Hp satzsﬁes

the isometry-dual property if and only if b = (¢° + 1)t + - for
— (¢°=1)q""" -3
t —_— O, I\[7+1)J .

In Figure 6 there is a graph of the sets Hy' for the two-point
codes Cr(D,aP + bQ), where P = Py, and Q is the place
at the origin defined over Fgy, with ¢ = 2 and ¢ = 3. The
sequences of places corresponding to codes satisfying the isometry-
dual property are marked with black bullets. As just proved, they
correspond to the values of b equal to 9t + 4 fort =0, ..., 6.

Example 6.7. In this second example we work with the norm-
trace function field that was first addressed by Geil in [11]. In
[19] there is a study of two-point codes over this function field.
Let £ > 2. The norm-trace function field is defined by the affine

£—2

equation y o= g + 2% + -+ It has genus g =

£2—1
%(% — 1), and ¢**~ + 1 rational places over F

We take P = Poo and () at the origin and consider the codes
Cr(D,aP + bQ) of length n = ¢**~1 — 1.

If m is even (this occurs if and only if q is odd and ¢ is
even), by Corollary there will be no isometry-dual flags for
0 <b<n/2—g—1. So, we will analyze only the cases in which
m is odd. In this case, Theoremand Corollaryensure that
for 0 < b < n/2—g—1, the flag of codes associated to Hp



Figure 6. Generalized Hermitian function field over Fg4 defined by the
affine equation y° + 22 +x = 0. Inthiscase n = 127,9 = 4, P =
(1:0:0,Q=(0:0:1), HP) = {0,2,4,6,8,9,...}, HQ) =
{0,5,6,7,8,9,...},and I'(P,Q) = {(7,1), (5,2), (3,3), (1,4)}.
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satisfies the isometry-dual property if and only if
q‘-1
q—1

3 , for

(@ =2)q-1)—(¢"—1)— ("' —1D(¢" —q)

¢ _ -1
q 1

t
q—1 *

b

oL

- q2€ _ 2q2€—1 +q€ _ 3q+3

- 2(¢" - 1)

Notice that for ¢ = 2, t attains only one value and so there is only
one isometry-dual flag of codes for a fixed b < n/2 — g — 1.

In Figure [ there is a graph of the sets Hy for the norm-
trace function field over Fg, i.e, with ¢ = 2 and £ = 3. The
sequences of places corresponding to codes satisfying the isometry-
dual property are marked with black bullets. One can check all
results analyzed up to this point for two-point norm-trace codes.
In this case, for 0 < b < n/2— g —1, the flag of codes associated
to Hy satisfies the isometry-dual property if and only if b = Tt 43
fort = 0. That is, if and only if b = 3.

2(¢* - 1)
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