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On Sampling Continuous-Time AWGN Channels
Guangyue Han , Senior Member, IEEE, and Shlomo Shamai , Life Fellow, IEEE

Abstract— For a continuous-time additive white Gaussian noise
(AWGN) channel with possible feedback, it has been shown that
as sampling gets infinitesimally fine, the mutual information of
the associative discrete-time channels converges to that of the
original continuous-time channel. We give in this paper more
quantitative strengthenings of this result, which, among other
implications, characterize how over-sampling approaches the true
mutual information of a continuous-time Gaussian channel with
bandwidth limit. The assumptions in our results are relatively
mild. In particular, for the non-feedback case, compared to
the Shannon-Nyquist sampling theorem, a widely used tool to
connect continuous-time Gaussian channels to their discrete-time
counterparts that requires the band-limitedness of the channel
input, our results only require some integrability conditions on
the power spectral density function of the input.

Index Terms— Continuous-time additive white Gaussian noise
channel, the Shannon-Nyquist sampling theorem, mutual
information, the I-MMSE relationship, stochastic differential
equation.

I. INTRODUCTION

IN THIS paper, we are concerned with the following
continuous-time AWGN channel:

Y (t) =
� t

0

X(s)ds+B(t), t ≥ 0, (1)

where {B(t)} denotes the standard Brownian motion. We will
examine the channel (1) for both the non-feedback and feed-
back cases. More specifically, the non-feedback case refers to
the scenario when the feedback is not allowed in the channel,
and thereby the channel input {X(s)} takes the following
form:

X(s) = g(s,M), (2)

where M is a random variable over a finite alphabet M which
is independent of {B(t)} and often interpreted as the message
to be transmitted through the channel, and g is a real-valued
deterministic function from [0,∞) × M to R. By contrast,
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for the feedback case, X(s) may also depend on the previous
output with the following form:

X(s) = g(s,M, Y s
0 ), (3)

where g is a non-anticipative functional from [0,∞) ×M×
C[0,∞) to R in the sense that, roughly speaking, with t
interpreted as the present time, for any m ∈ M and ϕ ∈
C[0,∞), the value of g(t,m, ϕ) only causally depends on the
“history” of ϕ (see the rigorous definition in Section II), and
Y s

0 � {Y (r) : 0 ≤ r ≤ s} is the channel output up to time
s that is fed back to the sender, which will be referred to as
the channel feedback up to time s. Here, we remark that for
the non-feedback case as in (2), it can be verified that for
any T > 0,

I(XT
0 ;Y T

0 ) = I(M ;Y T
0 ),

which however does not hold true for the feedback case as
in (3) when the channel is intricately characterized by the
following stochastic differential equation:

Y (t) =
� t

0

g(s,M, Y s
0 )ds+B(t), t ≥ 0, (4)

rather than a simple input-output equation.
For any T > 0, we say that t0, t1, . . . , tn ∈ R

1 are evenly
spaced over [0, T ] if t0 = 0, tn = T and ti − ti−1 = T/n
for all feasible i, and we will use δT,n to denote the stepsize,
i.e., δT,n � t1 − t0. Sampling the continuous-time channel
(1) over the time window [0, T ] with respect to evenly spaced
t0, t1, . . . , tn, we obtain the following discrete-time Gaussian
channel2

Y (ti) =
� ti

0

X(s)ds+B(ti), i = 1, 2, . . . , n. (5)

It turns out that if the sampling is “fine” enough, the mutual
information of the continuous-time Gaussian channel (1) over
[0, T ] can be “well-approximated” by that of the discrete-time
Gaussian channel (5). More precisely, it has been established
in [17] that under some mild assumptions,

lim
n→∞ I(M ;Y (ΔT,n)) = I(M ;Y T

0 ), (6)

where

ΔT,n � {t0, t1, . . . , tn},
Y (ΔT,n) � {Y (t0), Y (t1), . . . , Y (tn)}.

1Here and hereafter, all ti depend on T and n, however we suppress this
notational dependence for brevity.

2The sampler associated with (5) has been examined from a communication
system design perspective and termed as the integrate-and-dump filter; see,
e.g., [1], [3] and references therein.
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This result connects a continuous-time Gaussian channels
with its associative discrete-time versions, which has been used
to recover a classical information-theoretic formula [16].

Strictly speaking, the above result is not new; as a matter
of fact, it has been “known” for decades. Indeed, though not
explicitly stated, a more general result, which implies (6) as
a special corollary, follows from an appropriately modified
argument in [7] (see more details in Appendix A). Moreover,
the functional analysis approach as in [7] tackles more general
channels and thus reveals the essence beneath the connection
as in (6). By comparison, when it comes to merely establishing
the result (6), our stochastic approach in [17] is indirect and
cumbersome, only scratching the surface of the connection.

That being said, the stochastic calculus approach does
allow us to capitalize on the peculiar characteristics of the
continuous-time AWGN channel formulated as in (1), which is
already evidenced by the approximation theorems established
in [17] that do not seem to follow from the aforementioned
functional analysis approach. The present paper will continue
to employ the stochastic calculus approach to conduct a
closer examination of (1) and quantitatively strengthen (6),
particularly by zooming in on its convergence behavior. Our
results encompass both the non-feedback case (Theorem III.1)
and the feedback case (Theorem IV.4), which may be used
for a finer analysis of continuous-time AWGN channels from
an information-theoretic perspective. In particular, among
other possible implications, our results characterize how over-
sampling (see, e.g., [5] and references therein) approaches
the true mutual information of a continuous-time band-limited
AWGN channel over a finite time window (Corollary III.2).
Though sampling has been extensively studied in the fields of
signal processing and information theory (see, e.g., [14] and
the references therein), we are not aware of any results in the
literature that of comparable forms to our results.

We would like to add that the assumptions imposed in our
results are rather mild. Indeed, to connect a continuous-time
non-feedback AWGN channel to its discrete-time versions over
an infinite time window, a conventional approach is to use the
Shannon-Nyquist sampling theorem [22], [29], which requires
the band-limitedness of the channel input. By comparison,
with considerably stronger conclusions, Theorem III.1 and
Theorem IV.4 do so over a finite time window, which is
typically deemed more of practical interest; and moreover,
Theorem III.1 only requires some integrability conditions on
the power spectral density function of the channel input and
Theorem IV.4 only requires some mild regularity conditions
that are more or less standard in the theory of stochastic
differential equations.

II. NOTATION AND PRELIMINARIES

We use (Ω,F ,P) to denote the underlying probability space,
and E to denote the expectation with respect to the probability
measure P. As is typical in the theory of SDEs, we assume
the probability space is equipped with a filtration {Ft : 0 ≤
t < ∞}, which satisfies the usual conditions [12] and is
rich enough to accommodate the standard Brownian motion
{B(t) : 0 ≤ t < ∞}. Throughout the paper, we will use
uppercase letters (e.g.,X , Y , Y (n)) to denote random variables

or processes, and their lowercase counterparts (e.g., x, y, y(n))
to denote their realizations.

Let C[0,∞) denote the space of all continuous functions
over [0,∞), and for any t > 0, let C[0, t] denote the space
of all continuous functions over [0, t]. As usual, we will equip
the space C[0,∞) with the filtration {Bt}0≤t<∞, where B∞
denotes the standard Borel σ-algebra on the space C[0,∞) and
Bt = π−1

t (B∞), where πt : C[0,∞) → C[0, t] is defined as
(πtx)(s) = x(t∧s). We say that a functional f from [0,∞)×
M×C[0,∞) to R is non-anticipative if f is B([0,∞)⊗2M⊗
B∞-measurable and for any m ∈ M and any t ∈ [0,∞),
f(t,m, ·) is Bt-measurable, or equivalently, for ϕ ∈ C[0,∞),

f(t,m, ϕ) = f(t,m, {ϕ(s); 0 ≤ s ≤ t}).

For any ϕ ∈ C[0,∞), we use ϕ({t1, t2, . . . , tn}) to denote
{ϕ(t1), ϕ(t2), . . . , ϕ(tn)} and ϕt

0 to denote {ϕ(s) : 0 ≤
s ≤ t}. The sup-norm of ϕt

0, denoted by 	ϕt
0	, is defined

as 	ϕt
0	 � sup0≤s≤t |ϕ(s)|; and similarly, we define 	ϕt

0 −
ψt

0	 � sup0≤s≤t |ϕ(s) − ψ(s)|. For any ϕ, ψ ∈ C[0,∞),
slightly abusing the notation, we define 	ϕs

0 − ψt
0	 � 	ϕ̂∞

0 −
ψ̂∞

0 	, where ϕ̂, ψ̂ ∈ C[0,∞) are “stopped” versions of ϕ, ψ
at time s, t, respectively, with ϕ̂(r) � ϕ(r ∧ s) and ψ̂(r) �
ψ(r ∧ t) for any r ≥ 0.

Let X,Y, Z be random variables defined on the probability
space (Ω,F ,P), which will be used to illustrate most of the
notions and facts in this section (note that the same notations
may have different connotations in other sections). Note that
in this paper, a random variable can be discrete-valued with
a probability mass function, real-valued with a probability
density function or path-valued (more precisely, C[0,∞)- or
C[0, t]-valued).

For any two probability measures μ and ν, we write
μ ∼ ν to mean they are equivalent, namely, μ is absolutely
continuous with respect to ν and vice versa. For any two
path-valued random variables Xt

0 = {X(s); 0 ≤ s ≤ t} and
Y t

0 = {Y (s); 0 ≤ s ≤ t}, we use μXt
0

and μY t
0

to denote
the probability distributions on Bt induced by Xt

0 and Y t
0 ,

respectively; and if μY t
0

is absolutely continuous with respect
to μXt

0
, we write the Radon-Nikodym derivative of μY t

0
with

respect to μXt
0

as dμY t
0
/dμXt

0
. We use μY t

0 |Z=z denote the
probability distribution on Bt induced by Y t

0 given Z = z, and
dμY t

0 |Z=z/dμXt
0|Z=z to denote the Radon-Nikodym derivative

of Y t
0 with respect to Xt

0 given Z = z. Obviously, when Z is

independent of X , dμY t
0 |Z=z/dμXt

0|Z=z = dμY t
0 |Z=z/dμXt

0
.

By definition, for E[X |σ(Y, Z)], the conditional expectation
of X with respect to the σ-algebra generated by Y and Z , there
exists a σ(Y ) ⊗ σ(Z)-measurable function Ψ(·, ·) such that
Ψ(Y, Z) = E[X |σ(Y, Z)]. For notational convenience, we will
in this paper simply write E[X |σ(Y, Z)] as E[X |Y, Z], and
Ψ(y, z) as E[X |y, z] and furthermore, Ψ(Y, z) as E[X |Y, z].

A partition of the probability space (Ω,F ,P) is a disjoint
collection of elements of F whose union is Ω. It is well known
there is a one-to-one correspondence between finite partitions
and finite sub-σ-algebras of F . For a finite sub-σ-algebra
H ⊆ F , let η(H) denote the corresponding finite partition. The
entropy of a finite partition ξ = {A1, A2, · · · , Am}, denoted
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by H(ξ), is defined as H(ξ) �
�m

i=1 −P(Ai) log P(Ai),
whereas the conditional entropy of ξ given another finite
partition ζ = {B1, B2, . . . , Bn}, denoted by H(ξ|ζ), is
defined as H(ξ|ζ) �

�n
j=1

�m
i=1 −P(Ai ∩Bj) log P(Ai|Bj).

The mutual information between the above-mentioned two
partitions ξ and ζ, denoted by I(ξ; ζ), is defined as I(ξ; ζ) ��n

j=1

�m
i=1 P(Ai ∩Bj) log P(Ai ∩Bj)/P(Ai)P(Bj).

For the random variable X , we define

η(X) � {η(H) : H is a finite sub-σ-algebra of σ(X)}.
The entropy of the random variable X , denoted by H(X),

is defined as

H(X) � sup
ξ∈η(X)

H(ξ).

The conditional entropy of Y given X , denoted by
H(Y |X), is defined as

H(Y |X) � inf
ξ∈η(X)

sup
ζ∈η(Y )

H(ζ|ξ).

Here, we note that if X and Y are independent, then
obviously it holds that

H(Y |X) = H(Y ). (7)

The mutual information between X and Y , denoted by
I(X ;Y ), is defined as

I(X ;Y ) � sup
ξ∈η(X), ζ∈η(Y )

I(ξ; ζ).

A couple of properties of mutual information are in order.
First, it can be shown, via a concavity argument, that the
mutual information is always non-negative. Second, the mutual
information is determined by the σ-algebras generated by the
corresponding random variables. For example, for any random
variables X �, Y �, X ��, Y ��,

I(X �;Y �) = I(X ��;Y ��)
if σ(X �) = σ(X ��) and σ(Y �) = σ(Y ��) (8)

and

I(X �;Y �) ≤ I(X ��;Y ��)
if σ(X �) ⊆ σ(X ��) and σ(Y �) ⊆ σ(Y ��). (9)

For another example, we have

I(X ;Y ) = I(X,X ;Y, Y +X), I(X ;Y ) ≤ I(X ;Y, Z).

It turns out that for the case that X,Y, Z are all discrete
random variables, all the above-mentioned notions are well-
defined and can be computed rather explicitly: H(X) can be
computed as H(X) = E[− log pX(X)], where pX(·) denotes
the probability mass function of X ; H(Y |X) can be computed
as H(Y |X) = E[− log pY |X(Y |X)], where pY |X(·|·) denotes
the conditional probability mass function of Y given X ;
I(X ;Y ) can be computed as

I(X ;Y ) = E

�
log

pY |X(Y |X)
pY (Y )

�
. (10)

The mutual information is intimately related to entropy.
As an example, one verifies that

I(X ;Y ) = H(Y ) −H(Y |X). (11)

Note that the quality (11) may fail if non-discrete ran-
dom variables are involved, since the corresponding entropies
H(Y ) and H(Y |X) can be infinity. For the case of real-valued
random variables with density, this issue can be circumvented
using the notion of differential entropy, as elaborated below.

Now, assume that Y is real-valued with probability den-
sity function fY (·). The differential entropy of Y , denoted
by h(Y ), is defined as h(Y ) � E[− log fY (Y )]. And the
differential conditional entropy of Y given a finite partition
ξ = {A1, A2, . . . , An}, denoted by h(Y |ζ), is defined as
h(Y |ζ) �

�n
j=1 P(Ai)

�
fY |Ai

(x) log fY |Ai
(x)dx. The dif-

ferential conditional entropy of Y given X (which can be
discrete-, real- or path-valued), denoted by h(Y |X), is defined
as h(Y |X) � infξ∈η(X) h(Y |ξ) (which, similarly as in (7),
reduces to h(Y ) if Y is independent of X); in particular, if the
conditional probability density function fY |X(·|·) exists, then
h(Y |X) can be explicitly computed as E[− log fY |X(Y |X)].
As mentioned before, the aforementioned failure of (11) can
be salvaged with the notion of differential entropy:

I(X ;Y ) = h(Y ) − h(Y |X). (12)

Here we emphasize that all the above-mentioned definitions
naturally carry over to the setting when some/all of the
invovled random variables are replaced by vectors of random
variables. For a quick example, let Y = {Y1, Y2, . . . , Yn},
where each Yi is a real-valued random variable with density.
Then, the differential entropy h(Y ) of Y is defined as

h(Y ) = h(Y1, Y2, . . . , Yn)

� E[− log fY1,Y2,...,Yn(Y1, Y2, . . . , Yn)],

where fY1,Y2,...,Yn is the joint probability density function of
Y1, Y2, . . . , Yn.

The notion of mutual information can be further extended
to generalized random processes, which we will only briefly
describe and we refer the reader to [7] for a more comprehen-
sive exposition.

The mutual information between two generalized random
processes X = {X(t)} and Y = {Y (t)} is defined as

I(X ;Y ) = sup I(X(φ1), X(φ2), . . . , X(φm);
Y (ψ1), Y (ψ2), . . . , Y (ψn)), (13)

where the supremum is over all possible n,m ∈ N and all
possible testing functions φ1, φ2, . . . , φm and ψ1, ψ2, . . . , ψn,
and we have defined

X(φi) =
�
X(t)φi(t)dt, i = 1, 2, . . . ,m,

Y (ψj) =
�
Y (t)ψj(t)dt, j = 1, 2, . . . , n.

It can be verified that the general definition of mutual
information as in (13) includes all previous definitions as
special cases; moreover, when one of X and Y , say, Y , is
a random variable, the general definition boils down to

I(X ;Y ) = sup I(X(φ1), X(φ2), . . . , X(φm);Y ),

where the supremum is over all possible n ∈ N and all possible
testing functions φ1, φ2, . . . , φm.
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For the channel (1) with the input as in (2) or (3) , it is
known that its mutual information over [0, T ] can be computed
as (see, e.g., [11], [25]):

I(M ; Y T
0 ) =

����
���

E

�
�log

dμ
M,Y T

0

dμM × μ
Y T
0

(M, Y T
0 )

�
� , if

dμ
M,Y T

0

dμM × μ
Y T
0

exists ,

∞, otherwise ,

(14)

where dμM,Y T
0
/dμM × μY T

0
denotes the Radon-Nikodym

derivative of μM,Y T
0

with respect to μM × μY T
0

.

III. THE NON-FEEDBACK CASE

In this section, adopting the notations in Section I, we
examine the AWGN channel (1) for the non-feedback case
and give quantitative strengthenings of (6), detailed in the
following theorem.

Theorem III.1: For the continuous-time AWGN channel (1),
suppose that the channel input {X(t)} is a stationary stochas-
tic process with power spectral density function f(·).3 Then,
the following two statements hold:

(a) Suppose
�
f(λ)|λ|dλ <∞. Then, for any T and n,

�
I(XT

0 ;Y T
0 ) ≤ 1

2

�	
2TδT,n

�
f(λ)|λ|dλ

+

	
2TδT,n

�
f(λ)|λ|dλ + 4I(XT

0 ;Y (ΔT,n))



.

(b) Suppose
�
f(λ)|λ|dλ < ∞ and

�
f(λ)dλ < ∞. Then,

for any T and n,

I(XT
0 ;Y T

0 ) − I(XT
0 ;Y (ΔT,n)) ≤

T
�
δT,n

��
f(λ)|λ|dλ


1/2 ��
f(λ)dλ


1/2

. (15)

Consequently, for any T , choosing n = n(T ) such that
limT→∞ δT,n(T ) = 0, we have

I(XT
0 ;Y T

0 )
T

− I(XT
0 ;Y (ΔT,n(T )))

T
= O

��
δT,n(T )

�
,

(16)

as T tends to infinity.

Proof: Consider the following parameterized version of
the channel (1):

Z(t) =
√
snr

� t

0

X(s)ds+B(t), t ∈ [0, T ], (17)

where the parameter snr > 0 can be regarded as the signal-to-
noise ratio of the channel. Obviously, when snr is fixed to be
1, Z(t) = Y (t) for any t ∈ [0, T ], and moreover, the channel
(17) is exactly the same as the channel (1).

3More precisely, the channel input {X(t) : t ≥ 0} can be extended to a
bi-infinite stationary stochastic process {X(t) : −∞ < t < ∞} with power
spectral density function f(·).

Sampling the channel (17) with respect to sampling times
t0, t1, . . . , tn that are evenly spaced over [0, T ], we obtain the
following discrete-time Gaussian channel:

Z(ti) − Z(ti−1) =
√
snr

� ti

ti−1

X(s)ds+B(ti) −B(ti−1),

i = 1, 2, . . . , n, (18)

which can be “normalized” as follows:

Z(ti) − Z(ti−1)�
δT,n

=
√
snr

� ti

ti−1
X(s)ds�
δT,n

+
B(ti) −B(ti−1)�

δT,n

,

i = 1, 2, . . . , n, (19)

where, at each time i, the channel noise B(ti)−B(ti−1)√
δT,n

is

a standard Gaussian random variable and
	 ti

ti−1
X(s)ds√
δT,n

and
Z(ti)−Z(ti−1)√

δT,n

should be regarded as the channel input and

output, respectively.
Applying the continuous-time I-MMSE relationship (see

Theorem 6 in [9]) to the channel (17), we have

d

dsnr
I(XT

0 ;ZT
0 ) =

1
2

� T

0

E[
�
X(s) − E[X(s)|ZT

0 ]
�2

]ds.

Moreover, we deduce from (17) that

I(XT
0 ;ZT

0 )|snr=1 = I(XT
0 ;Y T

0 ), I(XT
0 ;ZT

0 )|snr=0 = 0,

where we have in addition used the fact that {X(t)} and
{B(t)} are independent in deriving the second equality. It then
follows that the mutual information of the channel (1) can be
computed as

I(XT
0 ;Y T

0 ) = I(XT
0 ;ZT

0 )|snr=1 − I(XT
0 ;ZT

0 )|snr=0

=
� 1

0

d

dsnr
I(XT

0 ;ZT
0 )dsnr

=
1
2

� 1

0

� T

0

E[
�
X(s) − E[X(s)|ZT

0 ]
�2

]dsdsnr.

Similarly, applying the discrete-time I-MMSE relationship
(see Theorem 14 in [9]) to the channel (19), we have

I(XT
0 ;Y (ΔT,n)) =

1
2

� 1

0

n�
i=1

E

⎡
⎣
⎛
⎝
� ti

ti−1
X(s)ds�
δT,n

−E

⎡
⎣
� ti

ti−1
X(s)ds�
δT,n

������Z(ΔT,n)

⎤
⎦
⎞
⎠

2
⎤
⎥⎦ dsnr.

Obviously, by (9), it holds true that I(XT
0 ;Y T

0 ) ≥
I(XT

0 ;Y (ΔT,n)). In the following, we will give an upper
bound on their difference I(XT

0 ;Y T
0 ) − I(XT

0 ;Y (ΔT,n)),

4More precisely, rather than the discrete-time I-MMSE relationship, we may
have to resort to its extension to Gaussian vector channels (see Theorem 2
in [9]) or its further extension to Gaussian memory/feedback channels (see
Theorem 3 in [10]) as the channel input to the channel (19) may not be an
independent process.
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thereby characterizing the closeness between the two quan-
tities. Towards this goal, applying the well-known fact that
for any random variables U , V and W with σ(V ) ⊆ σ(W ),

E[(U − E[U |W ])2] ≤ E[(U − E[U |V ])2],

we first deduce that for each i,

E

⎡
⎣
�� ti

ti−1

X(s) − E[X(s)|ZT
0 ] ds


2
⎤
⎦

≤ E

⎡
⎣
�� ti

ti−1

X(s) − E[X(s)|Z(ΔT,n)] ds


2
⎤
⎦ .

It then follows that

I(XT
0 ;Y T

0 ) − I(XT
0 ;Y (ΔT,n))

=
1
2

� 1

0

�� T

0

E[
�
X(s) − E[X(s)|ZT

0 ]
�2

]ds

−
n�

i=1

E

⎡
⎣
�� ti

ti−1

X(s) − E[X(s)|Z(ΔT,n)]�
δT,n

ds


2
⎤
⎦
⎞
⎠ dsnr

≤ 1
2

� 1

0

�� T

0

E[
�
X(s) − E[X(s)|ZT

0 ]
�2

]ds

−
n�

i=1

E

⎡
⎣�� ti

ti−1

X(s) − E[X(s)|ZT
0 ]�

δT,n

ds


2
⎤
⎦
⎞
⎠ dsnr

=
1
2

� 1

0

�� T

0

E[R2[X(s);ZT
0 ]]ds

−
n�

i=1

E

⎡
⎣�� ti

ti−1

R[X(s);ZT
0 ]�

δT,n

ds


2
⎤
⎦
⎞
⎠ dsnr

=
1
2
(S1 + S2),

where we have used the shorthand notation R[X(s);ZT
0 ] for

X(s) − E[X(s)|ZT
0 ] and

S1 �
n�

i=1

� 1

0

�� ti

ti−1

E[R2[X(s); ZT
0 ]]ds

−
n�

i=1

� ti

ti−1

E

�
R[X(s); ZT

0 ]R[X(ti−1); Z
T
0 ]
�
ds

�
dsnr,

S2 �
n�

i=1

� 1

0

E

��� ti

ti−1

R[X(s); ZT
0 ]ds

�
R[X(ti−1); Z

T
0 ]

�
dsnr

−
n�

i=1

� 1

0

E

��� ti

ti−1

R[X(s); ZT
0 ]	

δT,n

ds

�2�
dsnr.

For the first term, we have that the following (20) holds,
where we have used the Cauchy-Schwarz inequality for the
last inequality. Now, applying the well-known fact that for
any random variables U and V ,

E[(U − E[U |V ])2] = E[U2] − E[E2[U |V ]] ≤ E[U2],

we deduce that

E[R2[X(s) −X(ti−1);ZT
0 ]] ≤ E[(X(s) −X(ti−1))2],

and we continue from (20) to reach (21). Now, using the fact
that, for any u, v ∈ R,

E[X(u)X(u+ v)] =
�
f(λ)eivλdλ,

we have that (22) holds true.
For the second term, we have

S2
2 =

�
n�

i=1

� ti

ti−1

� 1

0

E
�
R[X(s);ZT

0 ]

×
� ti

ti−1

R[X(ti−1) −X(u);ZT
0 ]

δT,n
du

�
dsnrds


2

.

Starting from this and proceeding in a similar fashion as in
(20)-(22), shown at the bottom of the next page, we derive

S2
2 ≤ 2TδT,nI(XT

0 ;Y T
0 )

�
f(λ)|λ|dλ.

Combining the bounds on S1 and S2, we have

I(XT
0 ;Y T

0 ) − I(XT
0 ;Y (ΔT,n))

≤ �
2TδT,n

�
I(XT

0 ;Y T
0 )

�
f(λ)|λ|dλ


1/2

. (23)

It then immediately follows that�
I(XT

0 ;Y T
0 ) ≤ 1

2

�	
2TδT,n

�
f(λ)|λ|dλ

+

	
2TδT,n

�
f(λ)|λ|dλ + 4I(XT

0 ;Y (ΔT,n))



,

establishing (a). Moreover, together with the fact that

I(XT
0 ;Y T

0 ) ≤ 1
2

� T

0

E[X2(s)]ds =
T

2

�
f(λ)dλ,

the inequality (23) implies that��I(XT
0 ;Y T

0 ) − I(XT
0 ;Y (ΔT,n))

��
≤ T

�
δT,n

��
f(λ)|λ|dλ


1/2 ��
f(λ)dλ


1/2

,

establishing (b).
The following corollary, which immediately follows from

Theorem III.1, characterizes, among others, how over-
sampling approaches the true mutual information of the
channel (1) with bandwidth limit.

Corollary III.2: For the continuous-time AWGN
channel (1), suppose that the channel input has bandwidth
limit W and average power P , or more precisely, f(λ) = 0
for any λ ∈ (−∞,−W ]∪ [W,∞) and E[X2(s)] ≤ P for any
s ≥ 0. Then, the following two statements hold:
(a) For any T and n,�

I(XT
0 ;Y T

0 ) ≤ 1
2

��
2TPWδT,n

+
�

2TPWδT,n + 4I(XT
0 ;Y (ΔT,n))



.

(b) For any T and n,

I(XT
0 ;Y T

0 ) − I(XT
0 ;Y (ΔT,n)) ≤ TP

�
WδT,n.
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Consequently, for each T , choosing n = n(T ) such that
limT→∞ δT,n(T ) = 0, we have

I(XT
0 ;Y T

0 )
T

− I(XT
0 ;Y (ΔT,n))

T
= O

��
δT,n(T )

�
,

as T tends to infinity.

Remark III.3: The I-MMSE relationship has played an
important role in deriving our results for non-feedback AWGN
channels. This powerful tool has been extended [10] to feed-
back AWGN channels in both discrete and continuous time.
A natural question is whether the extended relationship can
help us to derive counterpart results to Theorem III.1 for the
feedback case. As tempting and promising as this idea may
look, we failed to find a way to effectively apply the extended
I-MMSE relationship, and our treatment for the feedback
case, to be detailed in the next section, will use other tools
and techniques from the theory of stochastic calculus. Here,
we remark that the formulas derived in [10] are valid only
with some extra assumption imposed and yet fail to hold
true in general. For more detailed explanations and corrected
formulas, see Arxiv:1401.3527.

IV. THE FEEDBACK CASE

In this section, adopting the notations in Section I, we give
quantitative strengthenings of (6) for the AWGN channel (1) in
the feedback case, which we remind the reader is characterized
by the stochastic differential equation in (4).

The following regularity conditions may be imposed:

(I) The uniform Lipschitz condition: There exists a con-
stant L > 0 such that for any 0 ≤ s1, s2, t1, t2 ≤ T , any
M ∈ M and any Y T

0 , Z
T
0 ∈ C[0, T ],

|g(s1,M, Y s2
0 )−g(t1,M,Zt2

0 )|≤L(|s1−t1|+	Y s2
0 −Zt2

0 	).
(II) The uniform linear growth condition: There exists a

constant L > 0 such that for any M ∈ M and any
Y T

0 ∈ C[0, T ],

|g(t,M, Y t
0 )| ≤ L(1 + 	Y t

0 	).
Remark IV.1: The uniform Lipschitz condition, uniform

linear growth condition and their numerous variants are typical
assumptions that can guarantee the existence and uniqueness
of the solution to a given stochastic differential equation. These
two conditions will be taken for granted in most practical

S2
1 =

�
n�

i=1

� ti

ti−1

� 1

0

E[R2[X(s);ZT
0 ]]dsnrds−

n�
i=1

� ti

ti−1

� 1

0

E
�
R[X(s);ZT

0 ]R[X(ti−1);ZT
0 ]
�
dsnrds


2

=

�
n�

i=1

� ti

ti−1

� 1

0

E[R[X(s);ZT
0 ]R[X(s) −X(ti−1);ZT

0 ]]dsnrds


2

≤ n

n�
i=1

�� ti

ti−1

� 1

0

E[R[X(s);ZT
0 ]R[X(s) −X(ti−1);ZT

0 ]]dsnrds


2

≤ n

n�
i=1

� ti

ti−1

� 1

0

E[R2[X(s);ZT
0 ]]dsnrds

� ti

ti−1

� 1

0

E[R2[X(s) −X(ti−1);ZT
0 ]]dsnrds (20)

S2
1 ≤ n

n�
i=1

� ti

ti−1

� 1

0

E[R2[X(s);ZT
0 ]]dsnrds

� ti

ti−1

� 1

0

E[(X(s) −X(ti−1))2]dsnrds

= n

n�
i=1

� ti

ti−1

� 1

0

E[R2[X(s);ZT
0 ]]dsnrds

� ti

ti−1

� 1

0

E[X2(s) +X2(ti−1) − 2X(s)X(ti−1)]dsnrds (21)

S2
1 ≤ n

n�
i=1

� ti

ti−1

� 1

0

E[R2[X(s);ZT
0 ]]dsnrds

� ti

ti−1

� 1

0

�
2f(λ)|1 − eiλ(s−ti−1)|dλdsnrds

≤ n

n�
i=1

� ti

ti−1

� 1

0

E[R2[X(s);ZT
0 ]]dsnrds

� ti

ti−1

� 1

0

�
2f(λ)|λ|(s− ti−1)dλdsnrds

≤ nδ2T,n

�
f(λ)|λ|dλ

� 1

0

n�
i=1

� ti

ti−1

E[R2[X(s);ZT
0 ]]dsdsnr

= TδT,n

�
f(λ)|λ|dλ

� 1

0

� T

0

E[(X(s) − E[X(s)|ZT
0 ])2]dsdsnr

= 2TδT,n I(XT
0 ;Y T

0 )
�
f(λ)|λ|dλ (22)
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communication situations: as might be expected, the signals
employed in practice will be much better-behaving. For a quick
examples, it can be easily verified that the following linear
feedback coding scheme

g(t,M, Y t
0 ) = h(t,M) +

� t

0

k(s)dY (s)

satisfies the two conditions, provided some appropriate
assumptions are imposed on the two functions h(·, ·) and k(·).

We will need the following lemma, which has already been
established [17] in a slightly more general setting.

Lemma IV.2: Assume Conditions (I) and (II). Then, there
exists a unique strong solution of (4) with initial value
Y (0) = 0. Moreover, there exists ε > 0 such that

E[eε�Y T
0 �2

] <∞, (24)

which immediately implies

P


� T

0
g
2
(t, M, Y

t
0 )dt < ∞

�
= P


� T

0
g
2
(t, M, B

t
0)dt < ∞

�
= 1

(25)
and � T

0

E[|g(t,M, Y t
0 )|]dt <∞. (26)

We will also need the following lemma, whose proof is
deferred to Appendix B.

Lemma IV.3: Let Zmax = max{Z1, Z2, . . . , Zn}, where the
i.i.d. random variables Zi ∼ N(0, 1/n). Then, we have:

a) For any 0 < ε < 1, E[Z2
max] = O(n−(1−ε)).

b) For any 0 < ε < 1, E[Z4
max] = O(n−(2−ε)).

c) For any 0 < ε < 1, E[eZ2
max ] = 1 +O(n−(1−ε)).

As detailed below, the following theorem gives the afore-
mentioned quantitative strengthening of (6). Here, we men-
tion that with the channel input as in (4), the discrete-time
channel (5) obtained by sampling the channel (1) over [0, T ]
with respect to ΔT,n takes the following form:

Y (ti) =
� ti

0

g(s,M, Y s
0 )ds+B(ti), i = 0, 1, . . . , n.

(27)

Theorem IV.4: Fix T > 0 and assume Conditions (I)
and (II). Then, for any 0 < ε < 1/2, we have

I(M ;Y T
0 ) = I(M ;Y (ΔT,n)) +O(δ1/2−ε

T,n ), (28)

where we recall from Section II that Y (ΔT,n) =
{Y (t0), Y (t1), . . . , Y (tn)} and we remark the constant in the

O(δ1/2−ε
T,n )-term may depend on T .

Remark IV.5: Roughly speaking, (15) and (16) characterize
the closeness between the mutual information of a continuous-
time AWGN channel and its associative discrete time versions
with respect to fixed T and scaled T , respectively, in the non-
feedback setting. Noting that (28) is the counterpart result to
(15) in the feedback setting, we remark that we are not able to
establish a counterpart result to (16) in the feedback setting.

Proof: First of all, recall from Section II that for a
stochastic process {X(s)} and any t ∈ R+, we use μXt

0
to

denote the distribution on C[0, t] induced by Xt
0. Throughout

the proof, we only have to deal with the case t = T , and so
we will simply write μXT

0
as μX . Moreover, we will rewrite

ΔT,n as Δn and δT,n as δn for notational simplicity.
Note that with (25) and (26), an application of

Theorem 7.14 of [15] yields that

P

�� T

0

E
2[g(t,M, Y t

0 )|Y t
0 ]dt <∞



= 1. (29)

Now for any m ∈ M, fix M = m. One then verifies that
the assumptions of Theorem C.1 are all satisfied (Theorem C.1
is a rephrased version of Lemma 7.7 of [15], whose general
assumptions boil down to (25), (26) and (29) when restricted
to our settings). It then follows that (Below “∼” means
“equivalent”; see Section II)

μY |M=m ∼ μB , (30)

and moreover, with probability 1,

dμY |M
dμB

(Y T
0 |M) =

1
E[eρ1(M,Y T

0 )|Y T
0 ,M ]

, (31)

where

ρ1(m,Y T
0 ) � −

� T

0

g(s,m, Y s
0 )dY (s)

+
1
2

� T

0

g(s,m, Y s
0 )2ds. (32)

Since ρ1(M,Y T
0 ) is a deterministic functional of M and

Y T
0 , we conclude that, with probability 1,

dμY |M
dμB

(Y T
0 |M) =

1
eρ1(M,Y T

0 )
. (33)

Furthermore, using a parallel argument, we infer that

μY ∼ μB, (34)

and moreover, with probability 1,

dμY

dμB
(Y T

0 ) =
1

E[eρ1(M,Y T
0 )|Y T

0 ]
. (35)

Note that it follows from E[dμB/dμY (Y T
0 )] = 1 that

E[eρ1(M,Y T
0 )] = 1, which is equivalent to

E[e−
	 T
0 g(s,M,Y s

0 )dB(s)− 1
2

	 T
0 g(s,M,Y s

0 )2ds] = 1. (36)

Then, a parallel argument as in the proof of Theorem 7.1
of [15] (which requires the condition (36)) further implies that,
for any n,

dμY (Δn)|M
dμB(Δn)

(Y (Δn)|M) =
1

E[eρ1(M,Y T
0 )|Y (Δn),M ]

, a.s.,

(37)

and

dμY (Δn)

dμB(Δn)
(Y (Δn)) =

1
E[eρ1(M,Y T

0 )|Y (Δn)]
, a.s.. (38)
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Next, by the definition of mutual information, we have

I(M ;Y T
0 ) = E

 
log

dμM,Y T
0

dμM × μY T
0

(M,Y T
0 )

�

= E

�
log

dμY |M
dμB

(Y T
0 |M)

�
− E

�
log

dμY

dμB
(Y T

0 )
�
,

(39)

and

I(M ;Y (Δn)) (40)

= E


log fY (Δn)|M (Y (Δn)|M)

� − E


log fY (Δn)(Y (Δn))

�
= E

�
log

dμY (Δn)|M
dμB(Δn)

(Y (Δn)|M)



− E

�
log

dμY (Δn)

dμB(Δn)

(Y (Δn))



.

(41)

Furthermore, by (39), (35), (31) and (33), we have

I(M ; Y T
0 ) = E

�
log

dμY |M
dμB

(Y T
0 |M)



− E

�
log

dμY

dμB
(Y T

0 )




= −E[log E[eρ1(M,Y T
0 )|Y T

0 , M ]] + E[log E[eρ1(M,Y T
0 )|Y T

0 ]]

= −E[ρ1(M, Y T
0 )] + E[log E[eρ1(M,Y T

0 )|Y T
0 ]],

and by (41), (38) and (37), we have

I(M ;Y (Δn))

= E

�
log

dμY (Δn)|M
dμB(Δn)

(Y (Δn)|M)



− E

�
log

dμY (Δn)

dμB(Δn)

(Y (Δn))




= −E[log E[eρ1(M,Y T
0 )|Y (Δn), M ]]+E[log E[eρ1(M,Y T

0 )|Y (Δn)]].

We next proceed in the following two steps.
Step 1. In this step, we show that for any 0 < ε < 1/2,

E



log

dμY |M
dμB

(Y
T
0 |M)

�
− E

�
log

dμY (Δn)|M
dμB(Δn)

(Y (Δn)|M)

�
= O(δ

1/2−ε
n ).

Apparently, it suffices to show that for any 0 < ε < 1/2,

E[| log E[eρ1(M,Y T
0 )|Y (Δn),M ] − ρ1(M,Y T

0 )|]=O(δ1/2−ε
n ).

(42)

Let Ȳ T
Δn,0 denote the piecewise linear version of Y T

0 with
respect to Δn; more precisely, for any i = 0, 1, . . . , n, let
ȲΔn(ti) = Y (ti), and for any ti−1 < s < ti with s =
λti−1 + (1 − λ)ti for some 0 < λ < 1, let ȲΔn(s) =
λY (ti−1) + (1 − λ)Y (ti). Here we note that any sample
path of Ȳ T

Δn,0 defined this way is continuous over [0, T ].

Let ḡΔn(s,M, Ȳ s
Δn,0) denote the piecewise “flat” version of

g(s,M, Ȳ s
Δn,0) with respect to Δn; more precisely, for any

ti−1 ≤ s < ti, ḡΔn(s,M, Ȳ s
Δn,0) = g(ti−1,M, Ȳ

ti−1
Δn,0).

Letting

ρ2(Δn,m, Y
T
0 ) � −

� T

0

ḡΔn(s,m, Ȳ s
Δn,0)dY (s)

+
1
2

� T

0

ḡ2
Δn

(s,m, Ȳ s
Δn,0)ds,

we have that (43), shown at the bottom of the page, holds true,
where we have used the fact that

E[eρ2(Δn,M,Y T
0 )|Y (Δn),M ] = eρ2(Δn,M,Y T

0 ), (44)

since ρ2(Δn,M, Y T
0 ) only depends on M and Y (Δn).

We now prove the following rate of convergence:

E
�
(ρ1(M,Y T

0 ) − ρ2(Δn,M, Y T
0 ))2

�
= O(δ1−ε

n ), (45)

where 0 < ε < 1. To this end, we note that

ρ1(M,Y T
0 ) − ρ2(Δn,M, Y T

0 ) = −
� T

0

(g(s) − ḡΔn(s))dB(s)

−1
2

� T

0

(g(s) − ḡΔn(s))2ds, (46)

where we have rewritten g(s,M, Y s
0 ) as g(s), and

ḡΔn(s,M, Ȳ s
Δn,0) as ḡΔn(s). It then follows that (45) boils

down to

E

�

−
� T

0
(g(s)−ḡΔn (s))dB(s)− 1

2

� T

0
(g(s)−ḡΔn (s))

2
ds

�2
�

=O(δ
1−ε
n ).

(47)

To establish (47), notice that, by the Itô isometry [23], we
have

E

�
� T

0
(g(s) − ḡΔn (s))dB(s)

�2
�

= E


� T

0
(g(s) − ḡΔn(s))2ds

�
.

We next prove that for any 0 < ε < 1,

E

 � T

0

(g(s) − ḡΔn(s))2ds

�
= O(δ1−ε

n ). (48)

To see this, we note that, by Conditions (I) and (II), there
exists L1 > 0 such that for any s ∈ [0, T ] with ti−1 ≤ s <
ti, (49), shown at the bottom of the next page, holds true.
Similarly, there exists L2 > 0 such that for any s ∈ [0, T ],
(50), shown at the bottom of the next page, holds true, where
we have used the non-negativity of the following expressions
when deriving (a) therein:

max
s∈[ti−1,ti]

(B(s) −B(ti−1)),− min
s∈[ti−1,ti]

(B(s) −B(ti−1)),

max
s∈[ti−1,ti]

(B(s) −B(ti)),− min
s∈[ti−1,ti]

(B(s) −B(ti)).

It is well-known (see, e.g., Theorem 2.21 in [20])
that maxs∈[ti−1,ti](B(s) − B(ti−1)) is distributed as

log E[eρ1(M,Y T
0 )|Y (Δn),M ] = log E[eρ2(Δn,M,Y T

0 )+ρ1(M,Y T
0 )−ρ2(Δn,M,Y T

0 )|Y (Δn),M ]

= log eρ2(Δn,M,Y T
0 )

E[eρ1(M,Y T
0 )−ρ2(Δn,M,Y T

0 )|Y (Δn),M ]

= ρ2(Δn,M, Y T
0 ) + log E[eρ1(M,Y T

0 )−ρ2(Δn,M,Y T
0 )|Y (Δn),M ] (43)
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|B(ti) −B(ti−1)|, which, together with the fact that {B(t)}
has independent increments, leads to

E

 �
max

i

!
max

s∈[ti−1,ti]
(B(s) −B(ti−1))

"
2
�

= E

��
max

i
{|B(ti) −B(ti−1)|}

�2
�

≤ E

��
max

i
{B(ti) −B(ti−1)}

�2
�

+ E

��
min

i
{B(ti) −B(ti−1)}

�2
�
.

Now, applying Lemma IV.3 a), we conclude that for any
0 < ε < 1,

E

 �
max

i

!
max

s∈[ti−1,ti]
(B(s) −B(ti−1))

"
2
�

= O(δ1−ε
n ).

And a completely parallel argument yields that for any 0 <
ε < 1,

E

 �
max

i

!
− min

s∈[ti−1,ti]
(B(s) −B(ti−1))

"
2
�

= O(δ1−ε
n ),

and moreover,

E

 �
max

i

!
max

s∈[ti−1,ti]
(B(s) −B(ti))

"
2
�

= O(δ1−ε
n ),

E

 �
max

i

!
− min

s∈[ti−1,ti]
(B(s) −B(ti))

"
2
�

= O(δ1−ε
n ),

where for the latter two, we have used, in addition, the well-
known fact that the time reversed Brownian motion is still a
Brownian motion. Noticing that, by Lemma IV.2, 	Y T

0 	2 is
integrable, we arrive at (48) for an arbitrarily small ε > 0.

A similar argument as above, coupled with Lemma IV.3 b)
(rather than Lemma IV.3 a)), will yield that for any 0 < ε < 1,

E

⎡
⎣
�� T

0

(g(s) − ḡΔn(s))2ds


2
⎤
⎦ = O(δ2−ε

n ), (51)

which, together with (47) and (48), implies (45), as desired.
We now prove the following rate of convergence:

E[log E[eρ1(M,Y T
0 )−ρ2(Δn,M,Y T

0 )|Y (Δn),M ]] = O(δ1−ε
n ),

(52)

where 0 < ε < 1. To this end, we first note that for any n,

E[log E[eρ1(M,Y T
0 )−ρ2(Δn,M,Y T

0 )|Y (Δn),M ]]

≤ log E[E[eρ1(M,Y T
0 )−ρ2(Δn,M,Y T

0 )|Y (Δn),M ]]

= log E[eρ1(M,Y T
0 )−ρ2(Δn,M,Y T

0 )]

= log E[e−
	

T
0 (g(s)−ḡΔn (s))dB(s)− 1

2

	
T
0 (g(s)−ḡΔn (s))2ds]

where for the last equality, we have used (46). Moreover, it
follows from (48) that for any n,� T

0

(g(s) − ḡΔn(s))2ds <∞, a.s.,

and so the conditions of Lemma 2 of [8] are satisfied, which
readily leads to

E[e−
	 T
0 (g(s)−ḡΔn (s))dB(s)− 1

2

	 T
0 (g(s)−ḡΔn (s))2ds] ≤ 1, (53)

and furthermore,

E[log E[eρ1(M,Y T
0 )−ρ2(Δn,M,Y T

0 )|Y (Δn),M ]] ≤ 0.

For another direction, we have

E[log E[eρ1(M,Y T
0 )−ρ2(Δn,M,Y T

0 )|Y (Δn),M ]]

≥ E[E[log eρ1(M,Y T
0 )−ρ2(Δn,M,Y T

0 )|Y (Δn),M ]]

|g(s,M, Ȳ s
Δn,0) − ḡΔn(s,M, Ȳ s

Δn,0)| = |g(s,M, Ȳ s
Δn,0) − g(ti−1,M, Ȳ

ti−1
Δn,0)|

≤ L1(|s− ti−1| + 	Ȳ s
Δn,0 − Ȳ

ti−1
Δn,0	)

≤ L1(|s− ti−1| + |Y (ti) − Y (ti−1)|)
≤ L1δn + L1δn + L1δn	Y T

0 	 + |B(ti) −B(ti−1)| (49)

|g(s,M, Y s
0 ) − g(s,M, Ȳ s

Δn,0)|
≤ L2δn + L2δn	Y T

0 	 + max
i

max
s∈[ti−1,ti]

max{|B(s) − B(ti−1)|, |B(s) −B(ti)|}

≤ L2δn + L2δn	Y T
0 	 + max

i

�
max{ max

s∈[ti−1,ti]
(B(s) −B(ti−1)),− min

s∈[ti−1,ti]
(B(s) −B(ti−1)),

max
s∈[ti−1,ti]

(B(s) −B(ti)),− min
s∈[ti−1,ti]

(B(s) −B(ti))}



(a)

≤ L2δn + L2δn	Y T
0 	 + max

i

!
max

s∈[ti−1,ti]
(B(s) −B(ti−1))

"
+ max

i

!
− min

s∈[ti−1,ti]
(B(s) −B(ti−1))

"

+ max
i

!
max

s∈[ti−1,ti]
(B(s) −B(ti))

"
+ max

i

!
− min

s∈[ti−1,ti]
(B(s) −B(ti))

"
(50)
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= E[E[ρ1(M,Y T
0 ) − ρ2(Δn,M, Y T

0 )|Y (Δn),M ]]

= E[ρ1(M,Y T
0 ) − ρ2(Δn,M, Y T

0 )]

= −1
2

� T

0

E[(g(s) − ḡΔn(s))2]ds,

which, together with (48), leads to (52). It can be readily
verified that (42) follows from (45) and (52), establishing
Step 1.

Step 2. In this step, we will prove that for any 0 < ε < 1/2,
there exists a constant C > 0 such that for all n,

−E

�
log

dμY

dμB
(Y T

0 )
�
+E

�
log

dμY (Δn)

dμB(Δn)
(Y (Δn))

�
≤Cδ1/2−ε

n .

(54)

First of all, note that by Theorem C.1, we have,

dμY

dμB
(Y T

0 ) = e
	

T
0 ĝ(Y s

0 )dY (s)− 1
2

	
T
0 ĝ2(Y s

0 )ds, (55)

where ĝ(Y s
0 ) = E[g(s,M, Y s

0 )|Y s
0 ]. And by (37), we have

dμY (Δn)

dμB(Δn)
(Y (Δn)) =

�
dμY (Δn)|M
dμB(Δn)

(Y (Δn)|m)dμM (m)

=
�

1
E[eρ1(M,Y T

0 )|Y (Δn),m]
dμM (m).

It then follows that (56), shown at the bottom of the
page, holds true, where we have used the shorthand notation
ρ̂1(Y T

0 ) for − � T

0
ĝ(Y s

0 )dY (s) + 1
2

� T

0
ĝ2(Y s

0 )ds, and we
have used (44) in deriving the last equality. It then follows
that (57), shown at the bottom of the page, holds true, where
we have applied Jensen’s inequality with the convex functions
1/x and − log(x) when deriving (a) and (b), respectively,
and we have used (55) and (33) when deriving (c). Now,
applying the Cauchy-Schwarz inequality, we deduce that (58),
shown at the bottom of the page, holds true, where we have
applied Jensen’s inequality with the convex function x2 when
deriving (a). Again, applying the Cauchy-Schwarz inequality,
we deduce that (59), shown at the bottom of the page, holds
true, where for the last inequality, we have used the fact that

E[e−4
	 T
0 (g(s)−ḡΔn (s))dB(s)−8

	 T
0 (g(s)−ḡΔn (s))2ds] ≤ 1,

which readily follows from a similar argument as in the
derivation of (53). Now, using a largely parallel argument as
in Step 1 coupled with Lemma IV.3 c), we conclude that for

−E

�
log

dμY

dμB
(Y T

0 )
�

+ E

�
log

dμY (Δn)

dμB(Δn)
(Y (Δn))

�
= −E

#
log e−ρ̂1(Y

T
0 )
$

+ E

�
log

�
1

E[eρ1(M,Y T
0 )|Y (Δn),m]

dμM (m)
�

= E

 
log

�
eρ̂1(Y

T
0 )−ρ2(Δn,m,Y T

0 )

E[eρ1(M,Y T
0 )−ρ2(Δn,M,Y T

0 )|Y (Δn),m]
dμM (m)

�
(56)

E

 
log

�
eρ̂1(Y T

0 )−ρ2(Δn,m,Y T
0 )

E[eρ1(M,Y T
0 )−ρ2(Δn,M,Y T

0 )|Y (Δn),m]
dμM (m)

�

(a)

≤ E

�
log

�
eρ̂1(Y

T
0 )−ρ2(Δn,m,Y T

0 )
E[e−ρ1(M,Y T

0 )+ρ2(Δn,M,Y T
0 )|Y (Δn),m]dμM (m)

�
(b)

≤ log E

�
eρ̂1(Y

T
0 )−ρ2(Δn,M,Y T

0 )
E[e−ρ1(M,Y T

0 )+ρ2(Δn,M,Y T
0 )|Y (Δn),M ]

�
dμY

dμB
(Y T

0 )


/

�
dμY |M
dμB

(Y T
0 |M)


�
(c)
= log E

#
eρ1(M,Y T

0 )−ρ2(Δn,M,Y T
0 )

E[e−ρ1(M,Y T
0 )+ρ2(Δn,M,Y T

0 )|Y (Δn),M ]
$

(57)

E
2
#
eρ1(M,Y T

0 )−ρ2(Δn,M,Y T
0 )

E[e−ρ1(M,Y T
0 )+ρ2(Δn,M,Y T

0 )|Y (Δn),M ]
$

≤ E

#
e2ρ1(M,Y T

0 )−2ρ2(Δn,M,Y T
0 )
$

E

#
E

2[e−ρ1(M,Y T
0 )+ρ2(Δn,M,Y T

0 )|Y (Δn),M ]
$

(a)

≤ E

#
e2ρ1(M,Y T

0 )−2ρ2(Δn,M,Y T
0 )
$

E

#
E[e−2ρ1(M,Y T

0 )+2ρ2(Δn,M,Y T
0 )|Y (Δn),M ]

$
= E

#
e2ρ1(M,Y T

0 )−2ρ2(Δn,M,Y T
0 )
$

E

#
e−2ρ1(M,Y T

0 )+2ρ2(Δn,M,Y T
0 )
$

(58)

E
2[e2ρ1(M,Y T

0 )−2ρ2(Δn,M,Y T
0 )] = E

2[e−2
	 T
0 (g(s)−ḡΔn (s))dB(s)−	 T

0 (g(s)−ḡΔn (s))2ds]

= E
2[e−2

	
T
0 (g(s)−ḡΔn (s))dB(s)−4

	
T
0 (g(s)−ḡΔn (s))2ds+3

	
T
0 (g(s)−ḡΔn (s))2ds]

≤ E[e−4
	

T
0 (g(s)−ḡΔn (s))dB(s)−8

	
T
0 (g(s)−ḡΔn (s))2ds]E[e6

	
T
0 (g(s)−ḡΔn (s))2ds]

≤ E[e6
	 T
0 (g(s)−ḡΔn (s))2ds] (59)
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any 0 < ε < 1,

E
2[e2ρ1(M,Y T

0 )−2ρ2(Δn,M,Y T
0 )] ≤ E[e6

	
T
0 (g(s)−ḡΔn (s))2ds]

= 1 +O(δ1−ε
n ),

which further leads to (54).
The theorem then immediately follows from Steps 1, 2 and

the fact that

0 ≤ I(M ;Y T
0 ) − I(M ;Y (ΔT,n)).

V. CONCLUDING REMARKS

As opposed to the Brownian motion formulation in (1), a
continuous-time AWGN channel can be alternatively charac-
terized by the following white noise formulation:

Y (t) = X(t) + Z(t), t ∈ R

where {Z(t)} is a white Gaussian noise with flat spectral
density 1, and slightly abusing the notation, we have still
used X and Y , parameterized by t ∈ R, to represent the
channel input and output, respectively. While there is a com-
prehensive comparison between these two models in [17], we
emphasize here that the Brownian motion formulation enables
a more rigorous information-theoretic examination of AWGN
channels and empowers the tools in the theory of stochas-
tic calculus that seem to be essential for more quantitative
results.

Indeed, we believe the framework and techniques developed
in this work can be applied to a more quantitative investigation
of sampling a wider range of Gaussian channels possibly with
different input constraints and related issues, detailed below.
First, it is possible that our approach can be applied to obtain
a faster rate of convergence for sampling of a peak-power
constrained AWGN channel (see, e.g., [24] and references
therein) since, as observed in [21], the peak-power constraint
can provide some much needed uniformity properties. Second,
a result by Elias [4] has been used to re-derive [6] the
somewhat surprising result that for feedback AWGN chan-
nels, the Schalkwijk-Kailath scheme yields the decoding error
probability that decreases as a second-order exponent in block
length. Noticing that Elias’ argument in fact used discrete-
time MMSE and our treatment essentially quantifies the dif-
ference between discrete-time and continuous-time MMSEs,
it is worthwhile to investigate whether a rate of convergence
result on the decoding error probability can be established
for continuous-time feedback AWGN channels. Third, we can
also consider sampling of continuous-time additive non-white
Gaussian channels. To the best of our knowledge, results in this
direction are scarce, but there are a great deal of efforts devoted
to discrete-time feedback non-white Gaussian channels (see,
e.g., [13] and references therein). Given the recently obtained
counterpart results in discrete time [18], it is promising that
our treatment can be adapted to such channels, in particular,
additive channels with continuous-time auto-regressive and
moving average Gaussian noises.

APPENDIX A
PROOF OF (61)

Consider the continuous-time AWGN channel (1) with the
input as in (2) or (3). Assuming that the channel input {X(t)}
is integrable over [0, T ], T > 0, that is,� T

0

|X(t)|dt <∞, a.s.. (60)

we will in this section prove that

lim
n→∞ I(M ;Y (ΔT,n)) = I(M ;Y T

0 ). (61)

As previously mentioned, this result has been implicitly
derived in [7], and so we only sketch its proof for brevity.

First of all, an appropriately modified version of the proof
of Theorem 1.3 in [7] can be used to establish that

I(M ;Y T
0 ) = sup I(M ;Y ({t1, t2, . . . , tn})),

where the supremum is over all possible n ∈ N and
t1, t2, . . . , tn ∈ [0, T ]. It immediately follows that

lim sup
n→∞

I(M ;Y (ΔT,n)) ≤ I(M ;Y T
0 ).

So, to prove (61), it suffices to prove the other direction:

lim inf
n→∞ I(M ;Y (ΔT,n)) ≥ I(M ;Y T

0 ).

To this end, for each m ∈ N, we choose a finite subset
Π(m)

T ⊆ [0, T ] such that

I(M ;Y T
0 ) = lim

m→∞ I(M ;Y (Π(m)
T )).

Now, for fixed Π(m)
T and for each n ∈ N, we choose

Π̂(m)
T,n ⊆ ΔT,n so that Y (Π̂(m)

T,n ) is convergent to Y (Π(m)
T )

in distribution. Here we note that the existence of {Π̂(m)
T,n} can

be justified by the continuity of {Y (t)}, which is due to the
assumed integrability of {X(t)}. Then, by Property II at Page
211 of [7], we have

lim inf
n→∞ I(M ;Y (Π̂(m)

T,n )) ≥ I(M ;Y (Π(m)
T )).

Taking m to infinity and using the fact that Π̂(m)
T,n ⊆ ΔT,n

for all n, we have

lim inf
n→∞ I(M ;Y (ΔT,n)) ≥ I(M ;Y T

0 ),

as desired.

APPENDIX B
PROOF OF LEMMA IV.3

We will only prove a), the proof of b) and c) being largely
parallel.

First of all, it can be verified that

E[Z2
max] = − tP(Z2

max ≥ t)
��∞
0

+
� ∞

0

P(Z2
max ≥ t)dt

= − lim
t→∞ tP(Z2

max ≥ t) +
� ∞

0

P(Zmax ≤ −√
t)dt

+
� ∞

0

P(Zmax ≥ √
t)dt.
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Note that

P(Zmax≤−√
t) = P(Z1≤−√

t, Z2≤−√
t, . . . , Zn≤−√

t)

=P(
√
nZ1≥

√
nt,

√
nZ2≥

√
nt, . . . ,

√
nZn≥

√
nt)

=
�� ∞

√
nt

1√
2π
e−x2/2dx


n

,

where we used the fact that each
√
nZi is a standard normal

random variable. Now, using the well-known fact that for any
x > 0,

2√
π

� ∞

x

e−t2dt ≤ e−x2
,

we derive

P(Zmax ≤ −√
t) =

�� ∞
√

nt

1√
2π
e−x2/2dx


n

=

�
1
2

2√
π

� ∞
√

nt
2

e−s2
ds


n

≤
�

1
2


n

e−n2t/2. (62)

It then follows that

P(Zmax ≥ √
t) = 1 − P(Zmax ≤ √

t)

= 1 − P(
√
nZ1 ≤ √

nt,
√
nZ2 ≤ √

nt, . . . ,
√
nZn ≤ √

nt)

= 1 −
�� √

nt

−∞

1√
2π
e−x2/2dx


n

= 1 −
�

1 −
� ∞
√

nt

1√
2π
e−x2/2dx


n

.

Now, using the well-known fact that for any x > −1,
x

1 + x
≤ log(1 + x),

and for any x ≤ 0,

1 + x ≤ ex,

we derive that for any x with |x| < 1,

(1 − x)n = en log(1−x) ≥ e−nx/(1−x) ≥ 1 − nx

1 − x
.

It then follows that

P(Zmax ≥ √
t) = 1 −

�
1 −

� ∞
√

nt

1√
2π
e−x2/2dx


n

≤ 1 −
�

1 − 1
2
e−nt/2


n

≤ 1 −
�

1 −
n
2 e

−nt/2

1 − 1
2e

−nt/2




=
n
2 e

−nt/2

1 − 1
2e

−nt/2
. (63)

Now, using (62) and (63), we have that for any t > 0,

tP(Z2
max ≥ t) = tP(Zmax ≤ −√

t) + tP(Zmax ≥ √
t)

≤ t

�
1
2


n

e−n2t/2 + t
n
2 e

−nt/2

1 − 1
2e

−nt/2
,

which immediately implies that

lim
t→∞ tP(Z2

max ≥ t) = 0. (64)

Moreover, using (62), we derive� ∞

0

P(Zmax ≤ −√
t)dt ≤

�
1
2


n � ∞

0

e−n2t/2dt

=
2
n2

�
1
2


n

. (65)

And, using (63), we have that for any 0 < a < 1, (66),
shown at the bottom of the page, holds true. Finally, combining
(64), (65) and (66), we conclude that for any 0 < a < 1,

E[Z2
max] = O(n−a),

as desired.

APPENDIX C
LEMMA 7.7 OF [15] RESTATED

In this section, Lemma 7.7 of [15] and some conclusions
in its proof will be restated using the notations that are more
consistent with this paper.

Let T > 0 and consider a continuous random process ξ =
{ξ(t) : 0 ≤ t ≤ T } having the differential

dξ(t) = C(t, α, ξ)dt +D(t, ξ)dB(t), ξ(0) = 0, (67)

where α = {α(t) : 0 ≤ t ≤ T } is a random process
independent of the Brownian motion {B(t) : 0 ≤ t ≤ T }
whose trajectories belong to some measure space (AT ,BAT ).
We shall assume the following conditions are satisfied.

� ∞

0

P(Zmax ≥ √
t)dt =

� ∞

0

1 −
�

1 −
� ∞
√

nt

1√
2π
e−x2/2dx


n

dt

≤
� n−a

0

1 −
�

1 − 1
2
e−nt/2


n

dt+
� ∞

n−a

1 −
�

1 − 1
2
e−nt/2


n

dt

≤
� n−a

0

dt+
� ∞

n−a

1 −
�

1 −
n
2 e

−nt/2

1 − 1
2e

−nt/2



dt

≤
� n−a

0

dt+
� ∞

n−a

n
2 e

−nt/2

1 − 1
2e

−nt/2
dt

= O(n−a) +O(e−n1−a

)
= O(n−a) (66)
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(A) The random process ξ is a strong solution to the
equation (67).

(B) The functionals C(t, a, x) and D(t, x) are non-
anticipative, and for each a ∈ AT and x ∈ C[0, T ],� T

0

|C(t, a, x)|dt <∞,

� T

0

D2(t, x)dt <∞.

(C) For any x and x̃ from C[0, T ],

|D(t, x) −D(t, x̃)|2 ≤ L1

� t

0

|x(s) − x̃(s)|2dK(s)

+L2|x(t) − x̃(t)|2,

D2(t, x) ≤ L1

� t

0

(1 + x(s))2dK(s) + L2(1 + x2(t)),

D2(t, x) ≥ L0 > 0,

where K(t) is a non-decreasing right continuous function
with 0 ≤ K(t) ≤ 1 and L0, L1, L2 are positive constants.

(D)

P


� T

0
C

2
(t, α, ξ)dt < ∞

�
= P


� T

0
C

2
(t, α, η)dt < ∞

�
= 1,

where η = {η(t) : 0 ≤ t ≤ T } is a strong solution to the
equation

dη(t) = D(t, η)dB(t), η(0) = 0.

(E) � T

0

E[|C(t, α, ξ)|]dt <∞, P

�� T

0

C̄2(t, ξ)



= 1,

where C̄(t, ξ) = E[C(t, α, ξ)|ξt
0 ].

Then, we have the following theorem:
Theorem C.1: It holds true that μξ ∼ μη and moreover,

with probability 1,

dμη

dμξ
(ξT

0 ) = exp

%
−
� T

0

C̄(t, ξ)
D2(t, ξ)

dξ(t) +
1
2

� T

0

C̄2(t, ξ)
D2(t, ξ)

dt

&
,

dμη

dμξ
(ξT

0 ) = E

�
dμη

dμξ|α
(ξ|α)

���� ξT
0

�
.
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