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Abstract

Diameter perfect codes form a natural generalization for perfect codes. They are

based on the code-anticode bound which generalizes the sphere-packing bound. The

code-anticode bound was proved by Delsarte for distance-regular graphs and it holds

for some other metrics too. In this paper we prove the bound for non-binary constant-

weight codes with the Hamming metric and characterize the diameter perfect codes

and the maximum size anticodes for these codes. We distinguish between six families

of non-binary diameter constant-weight codes and four families of maximum size non-

binary constant-weight anticodes. Each one of these families of diameter perfect codes

raises some different questions. We consider some of these questions and leave lot of

ground for further research. Finally, as a consequence, some t-intersecting families

related to the well-known Erdös-Ko-Rado theorem, are constructed.
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1 Introduction

Perfect codes are one of the most fascinating structures in coding theory. These codes meet
the well-known sphere-packing bound. When the size of a ball does not depend on its center,
these codes are the largest ones for their length and minimum distance. They are defined
for variety of metrics in coding theory. For most such metrics other bounds which improve
on the sphere-packing bound, were developed. One of these bounds is the code-anticode

bound which was first introduced by Delsarte in his seminal work [12]. This bound is a
direct generalization of the sphere-packing bound. For this bound the concept of anticode
is required. An anticode A with diameter D in a space V is a subset of V, with a
metric, such that the maximum distance between elements in A is D. Delsarte [12] proved
the code-anticode bound for distance-regular graphs. The bound was re-introduced and
generalized by Ahlswede, Aydinian, and Khachatrian [1] who called any code which meets
this bound, a D-diameter perfect code. To apply the code-anticode bound, one must find
the size of the maximum size anticode for the related space, metric, and parameters. This
diametric problem in some schemes, such as the Hamming scheme and the Johnson scheme
was discussed in [1] and shown to be closely related to intersection problems for systems of
finite sets which go back to Erdös-Ko-Rado theorem (see [2, 3, 14] and references therein).

The proof of the code-anticode bound which was introduced in [1] required a space and
metric associated with a graph which admits a transitive group of automorphisms. The
proof in [1] was demonstrated on the Johnson graph. Nevertheless, no general proof was
given for the theorem for the family of graphs which admit a transitive group of automor-
phisms. They have considered the related codes and anticodes in the Hamming scheme, the
Johnson scheme, and the Grassmann scheme. Other metrics, which are not associated with
distance-regular graphs, for which the proof was generalized, are the ℓ∞ metric on the set
of permutations Sn [33], the Lee metric in Z

n
m [17] and the Kendall τ -metric on the set of

permutations Sn [6]. The bound was also considered for the rank-distance on Ferrers dia-
grams in [18]. For each one of these spaces and metrics some diameter perfect codes were
introduced in these papers.

In this paper we further expand our knowledge on diameter perfect codes and optimal
anticodes. We consider the set of all words of length n with weight w over an alphabet Q

with q symbols, q > 2, where the metric used is the Hamming distance. The graph (whose
vertices are the space) associated with these words and metric will be denoted by Jq(n, w).
Its set of vertices consists of all the words of length n and weight w over an alphabet Q of size
q, say Zq. Two vertices are connected by an undirected edge if the Hamming distance of their
associated words is one. Hence, when q > 2 the related graph is not connected unless w = n.
Therefore, the graph is not distance-regular, unless w = n, which implies that the direct
arguments in [1, 12] do not apply. It should be noted that the graph is a union of disjoint
distance-regular graphs, each one is formed from codewords which have the same support.
This graph was considered before when q = 3 and w = n− 1 in [24, 25] who provided some
arguments for the code-anticode bound for this family of codes. Nevertheless, similarly to
the proof in [1], the proof in [24, 25] is not complete. In [24] it is proved that there is only one
such diameter perfect code with minimum distance 4, based on the nonexistence of related
perfect colorings [20]. There is also a construction in [24] of diameter perfect codes with
minimum distance 5. In [25] there is a proof that a diameter perfect code with minimum
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distance 5 and length 16 does not exists. A diameter perfect code with minimum distance
5 and length 64 is derived from a construction in [5]. In this paper, we provide a general
proof of the code-anticode bound for Jq(n, w), q > 2. We distinguish between six families of
diameter perfect codes in Jq(n, w) and four families of maximum size anticodes associated
with them. It should be noted that each family of non-binary diameter perfect constant-
weight codes is a family of maximum size constant-weight codes with the related parameters
(the length of the codewords will be denoted by n, their weight by w, the minimum distance
of the code by d, and the alphabet size by q). This problem of finding the maximum size of
such codes was extensively studied, e.g. [8, 9, 36] and references therein.

The rest of this paper is organized as follows. In Section 2, the sphere-packing bound,
the code-anticode bound, and its generalization presented in [1], are introduced. The local
inequality lemma from which the code-anticode bound can be proved, is also presented in
this section. Based on the code-anticode bound the concept of a diameter perfect code,
which is a generalization of a perfect code, is defined. Finally, the set of words with weight
w over an alphabet with q letters is defined and some preliminaries are given. In Section 3,
the code-anticode bound is proved for the Johnson scheme and it is shown that Steiner
systems and complements of Steiner systems are diameter perfect codes in this scheme.
In Section 4, non-binary diameter perfect constant-weight codes are discussed. The code-
anticode bound is proved for non-binary constant-weight words and six families of diameter
perfect codes are characterized. In Section 4.1, non-binary diameter perfect constant-weight
codes for which w = n are discussed. These codes are derived from diameter perfect codes
in the Hamming scheme. There is a one-to-one correspondence between these two families
of codes. In Section 4.2, non-binary perfect constant-weight codes for which the alphabet
size is 2k + 1, the length is n, and the weight is w = n − 1 are considered. Most of these
codes are over ternary alphabet. In Section 4.3, we define the family of generalized Steiner
systems and show that each generalized Steiner system is a diameter perfect constant-weight
code. In Section 4.4, the family of MDS constant-weight codes is defined. This family got
its name from MDS codes since the minimum weight codewords of any MDS code form such
a code. Section 4.5 is devoted to codes for which d = w + 1. Codes in this family have
exactly one codeword for each support which consists of any w-subset of the n coordinates.
In Section 4.6, the last family called multiple orthogonal arrays constant-weight codes is
defined. For this family d < w and each w coordinates are the supports of codewords which
form an orthogonal array. In Section 4.7, we compare between the different maximum size
anticodes associated with the six families of diameter perfect constant-weight codes. We
distinguish between four families of such anticodes. Finally, in Section 5 we summarize our
results and suggest a list of open problems for future research.

2 The Code-Anticode Bound and Preliminaries

Let V be a space and d : V × V −→ Z be a metric defined on V. In the metric d, the ball ,
Be(x) of radius e around x ∈ V is the set of elements which are at distance e from x, i.e.
Be(x) , {y : d(x, y) ≤ e}. The metric is called regular if the size of the ball does not
depend on its center. In this case the ball of radius e is denoted by B(e). The well-known
sphere-packing bound is introduced in the following theorem.
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Theorem 1. If C ⊆ V is a code with minimum distance 2e + 1, associated with a regular
metric, then

|C| · |B(e)| ≤ |V| .

A code which meets the bound of Theorem 1 is called a perfect code. Theorem 1 is
generalized by the code-anticode bound which will be introduced now. The bound is an
immediate consequence of the following theorem which was proved by Delsarte [12].

Theorem 2. Let V be the set of vertices in a distance-regular graph and let X and Y be two
set of vertices in V. If the nonzero distances occurring between vertices of X do not occur
between vertices of Y , then

|X| · |Y | ≤ |V| .

Corollary 1. Let V be the set of vertices in a distance-regular graph and let X and Y be two
sets of vertices in V. If the the minimum distance in X is D+1 and the maximum distance
in Y is D, then

|X| · |Y | ≤ |V| .

Theorem 2 was proved in [12] for distance-regular graphs using the duality theorem for lin-
ear programming. Much simpler proofs to the same bound for distance-regular graphs were
given by [13] and [31]. Theorem 2 was generalized by Ahlswede, Aydinian, and Khacha-
trian [1] with the following lemma which is the key result required for the definition of
diameter perfect codes. It has several proofs, depending on the space and the metric being
considered. Nevertheless, there are spaces and metrics for which this lemma is not satisfied
and hence it cannot be used for those spaces and metrics.

Lemma 1. Let CD be a code in a space V with a metric d : V × V −→ Z (satisfying some
conditions), where the distances between the codewords in C are taken from a subset D. Let A
be a subset of V and let C′

D
⊆ A be the largest code in A with distances taken from D. Then

|CD|

|V|
≤

|C′

D
|

|A|
. (1)

The conditions required for Lemma 1 can be different depending on the space and the
metric. The lemma was proved for several such spaces and metrics, e.g. [6, 17, 18, 33].
Lemma 1 will be referred to as the local inequality lemma and (1) as the local inequality
bound . The local inequality lemma implies the code-anticode bound as follows. Choose A
in Lemma 1 to be an anticode with diameter D and choose CD to be a code with distances
between codewords taken from the subset D , {i : D + 1 ≤ i ≤ ∆}, for some ∆ ≥ D + 1.
Hence, C′

D
is a code with exactly one codeword and therefore (1) implies that

|CD| · |A| ≤ |V| , (2)

which will be referred to as the code-anticode bound .
Lemma 1 was proved in [1] only for the Johnson graph J(n, w), but it was claimed that

it holds for any graph which admits a transitive group of automorphism. The proof for the
Johnson graph was not trivial and a different proof, based on the transitive operation, should
be adapted to different distance-regular graphs. In particular it can be easily adapted to the
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Hamming graph. Distance-regular graphs are associated with association schemes [12] from
which the most important one in coding theory is the Hamming scheme associated with the
Hamming distance. The following lemma is well-known in the Hamming scheme as well as
for any other metric. It can be proved using the triangle inequality.

Lemma 2. A ball with radius e in a metric is an anticode with diameter 2e.

Proof. Let y, z be two distinct words in a the ball centered at some word x, i.e., d(y, x) ≤ e

and d(x, z) ≤ e. Hence, by the triangle inequality,

d(y, z) ≤ d(y, x) + d(x, z) ≤ 2e,

which implies that an ball with radius e is an anticode with diameter 2e.

A code C which attains (2) with equality is called a D-diameter perfect code. The
following theorem implies a tight connection between perfect codes and diameter perfect
codes. It is an immediate consequence from Theorem 1 and Lemma 2.

Theorem 3. If d : V × V −→ Z is a regular metric for which the local inequality bound (1)
is satisfied, then an e-perfect code in V is a (2e)-diameter perfect code.

We continue with the spaces and metrics which will be discussed in this paper.

Definition 1. Let J(n, w) denote the set of all w-subset of an n-set (or equivalently, the set
of all the binary words of length n and weight w), with the Johnson distance (defined as half
of the Hamming distance).

Definition 2. Let Jq(n, w), q > 2, denote the set of all the words of length n and weight w,
over Zq, with the Hamming distance.

Clearly, both J(n, w) and Jq(n, w) are contained in the Hamming scheme. But, J(n, w) is
a well-known association scheme, while Jq(n, w) does not define an association scheme and
its related graph is not connected. But, since both subsets are part of the Hamming scheme,
they share the following property of the Hamming scheme implied by Theorem 3.

Theorem 4. An e-perfect code in J(n, w) is a (2e)-diameter perfect code in J(n, w). If the
local inequality lemma holds for Jq(n, w), then an e-perfect code in Jq(n, w) is a (2e)-diameter
perfect code in Jq(n, w).

The following definitions will be used in the sequel. For a word x = (x1, x2, . . . , xn) over
an alphabet Q, the support of x, supp(x), is the subset of nonzero coordinates in x, i.e.,
supp(x) , {i : xi 6= 0, 1 ≤ i ≤ n}. The weight of x, wt(x), is the number of nonzero
coordinates in x, i.e., wt(x) , |{i : xi 6= 0, 1 ≤ i ≤ n}| = |supp(x)|. Let Q denote an
alphabet of size q which contains a zero and let Q∗ , Q \ {0}.

Definition 3. An (n, d, w)q code is a code of length n over an alphabet with q > 2 sym-
bols having minimum Hamming distance d. Let Aq(n, d, w) denote the maximum size of an
(n, d, w)q code.
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In the sequel, for some constructions and bounds we will require to use MDS codes
and their nonlinear version of orthogonal arrays. An orthogonal array OAλ(t, n, q) is an
(λqt) × n array M over an alphabet Q with q symbols such that in each projection of t
columns from M each ordered t-tuple of Q appears in exactly λ rows. When λ = 1 the
orthogonal array is denoted by OA(t, n, q) and is called an orthogonal array with index

unity . If such an orthogonal array with index unity is a linear code, then the code is called
a maximum distance separable code (an MDS code in short). This code has length n,
dimension t, and minimum Hamming distance n− t+ 1. An orthogonal array OA(t, n, q) is
also a (n− t)-diameter perfect code [1] in the Hamming scheme. The related maximum size
anticode of length n, diameter n− t, and qn−t codewords is defined by

{(a1, a2, . . . , an−t

t times
︷ ︸︸ ︷

0 · · · · · · 0)) : ai ∈ Q, 1 ≤ i ≤ n− t} .

There are some well-known bounds on the tradeoff between t, n, and q (see for exam-
ple [30, pp. 11-16]).

Theorem 5. If there exists an OA(2, n, q) then n ≤ q + 1.

Theorem 6. Assume that there exists an OA(t, n, q), where t ≥ 3 and q ≥ t.

1. If q is even then n ≤ q + t− 1.

2. If q is odd then n ≤ q + t− 2.

Theorem 7. If there exists an OA(t, n, q), where q ≤ t, then n ≤ t + 1.

The following result [27, pp. 317–331] is derived from MDS codes.

Theorem 8. If t ≤ n−2, then there exists an OA(t, n, q) if n ≤ q+1 for each prime power q
and 2 ≤ t ≤ q − 1. The only exception is when q is even and t ∈ {3, q − 1} in which case
n ≤ q + 2.

3 Binary Diameter Perfect Constant-Weight Codes

Our first step is to prove the local inequality lemma and as a consequence to prove the code-
anticode bound. The local inequality lemma for the Johnson scheme was proved in [1] and
for completeness the proof is presented here. It will be interesting to look on the difference
between the proof of this lemma for the Johnson scheme and its proof for constant-weight
codes over a non-binary alphabet (see Lemma 8).

Lemma 3. Let CD be a code in J(n, w) with distances between the codewords of CD are taken
from a subset D. Let A be a subset of J(n, w) and let C′

D
⊆ A be the largest code in A with

distances taken from D. Then
|CD|
(
n
w

) ≤
|C′

D
|

|A|
. (3)
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Proof. Consider the set of pairs

P = {(c, π) : c ∈ CD, π ∈ Sn, π(c) ∈ A}.

For a fixed c ∈ CD and a fixed a ∈ A there are exactly w!(n−w)! choices for a permutation π,
such that a = π(c). Hence, the number of pairs in P equals to |CD| · |A| · w! · (n− w)!.

Note, that for each permutation π and two elements x, y ∈ J(n, w), we have that
d(π(x), π(y)) = d(x, y). It implies that a fixed permutation π ∈ Sn can transfer the ele-
ments of CD into at most |C′

D
| elements of A. Therefore, each permutation π contributes at

most |C′

D
| pairs to P, and hence the number of pairs in P is at most |C′

D
| · n! which implies

that
|CD| · |A| · w! · (n− w)! ≤ |C′

D
| · n! ,

and the claim of the lemma follows.

Lemma 3 implies that the code-anticode bound is satisfied for the Johnson scheme.

Corollary 2. If C is a code in J(n, w) with minimum Johnson distance D + 1 and A is an
anticode in J(n, w) with maximum Johnson distance D, then

|C| · |A| ≤

(
n

w

)

.

The following lemma is readily verified.

Lemma 4. The set A(n, w, t), where 0 ≤ t ≤ w ≤ n
2
, defined by

A(n, w, t) , {(

t times

︷ ︸︸ ︷

1 · · · · · · 1, a1, . . . , an−t) : aj ∈ {0, 1}, 1 ≤ j ≤ n−t, wt(a1, . . . , an−t) = w−t},

is an anticode in J(n, w) whose diameter is w − t and its size is
(
n−t
w−t

)
.

For a binary code C of length n, the complement of C, C̄, is defined by

C̄ , {(x̄1, x̄2, . . . , x̄n) : (x1, x2, . . . , xn) ∈ C},

where b̄ is the binary complement of b ∈ {0, 1}.

Lemma 5. The set Ā(n, w, t), where 0 ≤ t ≤ w ≤ n
2
, defined by

Ā(n, w, t) , {(

t times

︷ ︸︸ ︷

0 · · · · · · 0, a1, . . . , an−t) : aj ∈ {0, 1}, wt(a1, . . . , an−t) = n− w},

is an anticode in J(n, n− w) whose diameter is w − t and its size is
(
n−t
w−t

)
.

Proof. Clearly, Ā(n, w, t) is the complement of A(n, w, t) and hence by Lemma 4, we have
that

∣
∣Ā(n, w, t)

∣
∣ =

(
n−t
w−t

)
. Moreover, for each two words x, y ∈ J(n, w), d(x, y) = d(x̄, ȳ)

and hence the diameter of Ā(n, w, t) equals to the diameter of A(n, w, t) which is w − t by
Lemma 4. Thus, the claim of the lemma follows directly from Lemma 4.
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Definition 4. A Steiner system S(t, w, n) is a pair S = (N , B), where N is an n-set and
B is a set of w-subsets (called blocks) from N , where each t-subset of N is contained in
exactly one block of B.

Subsets can be translated to words, and vice versa, via the following definition. The
characteristic vector of a w-subset S of an n-set N is a binary word of length n and
weight w whose i-th coordinate is a one if and only if the i-th element of N is contained
in S. In some cases, we are going to consider mixed language of words and subsets and the
translation between the two should be understood from the context.

The following well-known theorem is readily verified.

Theorem 9. The number of blocks in a Steiner system S(t, w, n) is

(
n

t

)

/
(
w

t

)

and its minimum Johnson distance is w − t+ 1.

Theorem 10. Any Steiner system S(t, w, n) forms a (w − t)-diameter perfect code.

Proof. If C is the code constructed from a Steiner system S(t, w, n), then by Theorem 9 its
Johnson distance is w − t + 1, and

|C| =

(
n
t

)

(
w
t

) =

(
n
w

)

(
n−t
w−t

) .

On the other hand by the code-anticode bound |C| · |A| ≤
(
n
w

)
, where A is an anticode in

J(n, w) whose diameter is w − t, and therefore |A| ≤
(
n−t
w−t

)
.

Since by Lemma 4 the set A(n, w, t) is an anticode in J(n, w) of size
(
n−t
w−t

)
and whose

diameter is w − t, the claim of the theorem follows.

Theorem 10 was proved in [1], but it should be noted (as it was not mentioned in [1]),
that except for the family of Steiner systems, there is another family of diameter perfect
codes in J(n, w).

Theorem 11. The complement of a Steiner system S(t, w, n) forms a (w − t)-diameter
perfect code.

Proof. For each two words x, y ∈ J(n, w), d(x, y) = d(x̄, ȳ) and hence the complement of a
Steiner system S(t, w, n) has minimum Johnson distance w− t+ 1. By Lemma 5, Ā(n, w, t)
and A(n, w, t) have the same diameter w−t and the same size

(
n−t
w−t

)
. Moreover, the weight of

the codewords in Ā(n, w, t) is n−w and since also
(

n
n−w

)
=

(
n
w

)
, this implies, as in the proof

of Theorem 10, that the complement of a Steiner system S(t, w, n) forms a (w− t)-diameter
perfect code in J(n, n− w).

Corollary 3. Any Steiner system S(t, w, n) and any complement of a Steiner system S(t, w, n)
forms a (w − t)-diameter perfect code.
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There is a well-known conjecture [12] that there are no nontrivial perfect codes in J(n, w).
Steiner systems are embedded in diameter perfect codes in J(n, w) [1] similar to Steiner
systems embedded in perfect codes in J(n, w) as was proved in [15]. This makes it very
tempting to have a similar conjecture for diameter perfect codes.

Conjecture 1. There are no nontrivial diameter perfect codes in J(n, w), except for Steiner
systems and their complements.

The following well-known results, to which we will refer later, can be easily verified.

Lemma 6. If there exists a Steiner system S(t, w, n), t > 1, then there exists a Steiner
system S(t− 1, w − 1, n− 1).

Corollary 4. A necessary condition that a Steiner system S(t, w, n) exists is that all the

numbers
(n−i

t−i
)

(k−i

t−i
)
, 0 ≤ i ≤ t− 1, are integers.

Steiner system were investigated throughout the years and a short survey by Colbourn
and Mathon can be found in [11, pp. 102–110]. It was proved in [23] and later in [21] that
for each pair (t, w), there exists an n0 such that for each n ≥ n0 the necessary conditions
of Corollary 4 are also sufficient. Unfortunately, the proof is nonconstructive and this n0 is
beyond our imagination.

4 Non-Binary Diameter Perfect Constant-Weight Codes

The main part of our paper is devoted to non-binary diameter perfect constant-weight codes.
We distinguish between six families of such codes in Jq(n, w), where q > 2.

[F1] Non-binary diameter perfect constant-weight codes for which w = n.

[F2] Diameter perfect constant-weight codes over an alphabet of size 2k+1 for which w = n− 1
.

[F3] Non-binary diameter perfect constant-weight codes which are generalized Steiner sys-
tems.

[F4] Non-binary diameter perfect constant-weight codes for which d = w. These codes
are called maximum distance separable constant-weight codes. Each such code has
(
n
w

)
(q − 1) codewords.

[F5] Non-binary diameter perfect constant-weight codes for which d = w + 1. Such a code
has

(
n
w

)
codewords.

[F6] Non-binary diameter perfect constant-weight codes for which d < w. These codes
are called multiple orthogonal arrays constant-weight codes. Each such code has
(
n
w

)
(q − 1)w−d+1 codewords.

Before we start our discussion on these six families of codes we have to prove the local
inequality lemma for Jq(n, w) with the Hamming metric. For the proof of this lemma it is
required to prove the following simple lemma.
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Lemma 7. For each q ≥ 2 and any given pair (t, n), where 1 ≤ t ≤ n, there exists some
λ ≥ 1 for which there exists an OAλ(t, n, q).

Proof. Consider a matrix M whose rows are all the qn distinct words of length n over Zq.
Clearly, in each projection of t coordinates from M each t-tuple is contained in qn

qt
= qn−t

distinct rows (codewords). Thus, the qn×n matrixM forms an OAλ(t, n, q), where λ = qn−t.

Lemma 8. Let CD be a constant-weight code of length n and weight w over Zq, q > 2, with
distances between the codewords of CD taken from a subset D. Let A be a subset of Jq(n, w)
and let C′

D
⊆ A be the largest code in A with distances taken from D. Then

|CD|
(
n
w

)
(q − 1)w

≤
|C′

D
|

|A|
. (4)

Proof. Consider the set of pairs

P = {(c, π) : c ∈ CD, π ∈ Sn, supp(π(c)) = supp(a), where a ∈ A}.

For a fixed c ∈ CD and a fixed a ∈ A there are exactly w!(n − w)! choices for π, for which
supp(π(c)) = supp(a). Hence, the number of pairs in P equals to |CD| · |A| · w! · (n− w)!.

For the word v = (v1, v2, . . . , vn) ∈ Z
n
q−1, we form a subset Av of Jq(n, w) as follows.

Given a word x = (x1, x2, . . . , xn) of A, the word av = (a1, a2, . . . , an) is constructed in Av

as follows.

1. If xi = 0, then ai = xi = 0.

2. If xi 6= 0, then ai = xi+ vi when xi+ vi < q and ai = xi+ vi− (q−1) when xi+ vi ≥ q.
In other words, if j = vi, then ai takes the j-th nonzero value of Zq after the value
of xi, where 1 follows q − 1.

Using this definition, we have that supp(av) = supp(x).
Clearly, Av is obtained from A by permuting the nonzero elements in each one of the

w nonzero coordinates, of the words in A, by some w cyclic permutations (a permutation
for each coordinate) on the q − 1 nonzero symbols of Zq (which can be different for each
coordinate) and hence |Av| = |A|. Moreover, Av and A are isomorphic subsets of Jq(n, w).

Now, let M be any orthogonal array OAλ(w, n, q − 1), for some λ ≥ 1, whose existence
is implied by Lemma 7. The number of rows of M is λ(q − 1)w.

Consider now the set of triples

T = {(c, π, v) : c ∈ CD, π ∈ Sn, v ∈ M, π(c) ∈ Av }.

Let (c, π) be a pair in P, i.e., c ∈ CD, π ∈ Sn, and supp(π(c)) = supp(a) for some a ∈ A. Let
X = supp(a) and let u = (u1, u2, . . . , un) be a word in Z

n
q−1 such that a = π(c)u. It is easy

to verify that for each word v ∈ Z
n
q−1, for which the projection of the coordinates in X on u

and the projection of the coordinates in X on v are equal, we have that π(c)v = a = π(c)u.
Since M contains λ rows for which these projections are equal, it follows that |T | = λ |P|.
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Note, that for each permutation π ∈ Sn and two elements x, y ∈ Jq(n, w), we have that
d(π(x), π(y)) = d(x, y). This implies that a fixed permutation π with a fixed row v ∈ M
can transfer the elements of CD into at most |C′

D
| elements of Av. Therefore, the number of

triples in T is at most λ · |C′

D
| · n! · (q − 1)w which implies that

λ · |CD| · |A| · w! · (n− w)! = λ · |P| = |T | ≤ λ · |C′

D
| · n! · (q − 1)w ,

and hence the claim of the lemma is proved.

The important consequence from Lemma 8 is that (1) and (2) are satisfied and hence we
can consider diameter perfect codes in Jq(n, w).

4.1 Diameter perfect constant-weight codes for which w = n

The first family, [F1], of non-binary diameter perfect constant-weight codes contains all
perfect code in the Hamming scheme and all diameter perfect codes in the Hamming scheme.
Since by Theorem 3 any perfect code in the Hamming scheme is also a diameter perfect code,
it follows that we can consider only diameter perfect codes. In this family of codes we have
that w = n and the size of the non-binary alphabet is increased by one compared to the
alphabet in the Hamming scheme. The relation between these families of codes is stated in
the following theorem.

Theorem 12. There exists a D-diameter perfect code of length n over an alphabet of
size q − 1 in the Hamming scheme, if and only if there exists a D-diameter perfect constant-
weight code of length n and weight w = n over an alphabet of size q.

Proof. Let C be a D-diameter perfect code of length n over the alphabet {1, 2, . . . , q − 1}
in the Hamming scheme. Let A be the related maximum size anticode with diameter D for
which |C| · |A| = (q − 1)n. We define the same code C′ , C and the same anticode A′ , A,
over the extended alphabet Q = {0, 1, 2, . . . , q−1}. We claim that C′ is a D-diameter perfect
constant-weight code of length n, weight w = n, and minimum Hamming distance D + 1,
over Q. We also claim that A′ is a maximum size anticode of length n, weight w = n, and
maximum Hamming diatance D, over Q. Clearly, the minimum Hamming distance of C′ is
equal to the minimum Hamming distance of C, i.e., D+1. Similarly, the maximum Hamming
distance of A′ is equal to the maximum Hamming distance of A, i.e., D. Moreover,

|C′| · |A′| = |C| · |A| = (q − 1)n = |Jq(n, n)| ,

which completes the proof of our claims.
Let C be an D-diameter perfect constant-weight code of length n and weight w = n over

the alphabet Q = {0, 1, 2, . . . , q − 1}. Using similar arguments, in reverse order, the same
code defined over Q∗ is a D-diameter perfect code, of length n over Q∗, in the Hamming
scheme. Similarly, if A is a maximum size anticode, of length n and weight w = n, with
diameter D, over Q, then the same anticode defined over Q∗ is a maximum size anticode
over Q∗.
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In other words, Theorem 12 implies that when w = n, in each word all the coordinates
are nonzero. Hence, the words in Jq(n, n) are over an alphabet with only q − 1 letters. It
implies that any code in Jq(n, n) can be considered as a code in the Hamming scheme over
an alphabet with q − 1 letters. Therefore, any D-diameter perfect code of length n over
an alphabet with q − 1 letters is also D-diameter perfect code in Jq(n, n). Similarly, each
maximum size anticode of length n and diameter D over an alphabet with q − 1 letters
(with no zeroes) is also a maximum size anticode with diameter D in Jq(n, n). Finally, all
the diameter perfect codes in the Hamming scheme over an alphabet whose size is a prime
power were characterized in [1].

Theorem 13. In the Hamming scheme whose alphabet size is a prime power there are no
diameter perfect codes except for the Hamming codes, the extended Hamming codes, the Golay
codes, the extended Golay codes, and the MDS codes.

When q is not a prime power the only known diameter perfect codes are the orthogonal
arrays with index unity.

4.2 Codes with alphabet size 2k + 1 for which w = n− 1

By Theorem 4 an e-perfect code in Jq(n, w) is also a (2e)-diameter perfect code in Jq(n, w).
All known nontrivial non-binary perfect constant-weight codes of length n have weight w =
n − 1 and they form an important class of the family [F2] of non-binary diameter perfect
codes. There are a few known families of nontrivial non-binary perfect constant-weight
codes. Ternary 1-perfect codes in J3(2

m, 2m − 1), m ≥ 2, were constructed in [32, 34]
and it was proved in [34] that there are no other ternary 1-perfect constant-weight codes.
A large number of nonequivalent codes with these parameters were constructed by [24].
The construction in [34] was generalized in [19] and 1-perfect codes were constructed in
Jq(q + 1, q), where q = 2k + 1, k ≥ 2. It is not known whether there exist more nontrivial
perfect constant-weight codes.

Ternary diameter perfect codes of length n and weight w = n−1 were considered in [24].
For d = 4, it was proved in [24] that there is only one set of parameters for which there
exist a ternary 3-diameter perfect constant-weight codes of length n and weight w = n− 1.
A ternary code in this set has length 6, weight 5, and 12 codewords. Such a code was
constructed in [28]. For ternary 4-diameter perfect constant-weight codes, it was proved
by [24] that for every length n = 2m, m odd, there exists such a code with weight w = n−1.
When m is even only a code of length n = 64 constructed in [5] is known [25] and it was
proved in [25] that such a code does not exist for length n = 16.

4.3 Generalized Steiner systems

We already saw that a Steiner system S(t, w, n) is a binary (w−t)-diameter perfect constant-
weight code. For non-binary alphabet, there is an analog definition of generalized Steiner
system which was introduced in [16].

Definition 5. A generalized Steiner system GS(t, w, n, q) is a constant-weight code C,
over Zq, whose length is n, weight w, for each codeword, such that:

12



1. The minimum Hamming distance of C is 2(w − t) + 1.

2. Each word x of length n and weight t over Zq is covered by exactly one codeword c ∈ C,
i.e., d(x, c) = w − t.

Similarly to Theorem 9 we have the following theorem.

Theorem 14. The number of codewords in a generalized Steiner system GS(t, w, n, q) is

(
n
t

)

(
w
t

)(q − 1)t

and its minimum Hamming distance is 2(w − t) + 1.

Similarly to Lemma 6 one can verify the following lemma.

Lemma 9. If there exists a GS(t, w, n, q), t > 1, then there exists a GS(t−1, w−1, n−1, q).

Let As(n, w, t) be the anticode defined by

As(n, w, t) , {(

t times
︷ ︸︸ ︷

1 · · · · · · 1, a1, . . . , an−t) : ai ∈ Zq, wt(a1 · · · an−t) = w − t} .

Note, that when q = 2 we have that As(n, w, t) is identical to A(n, w, t).
The following lemma can be readily verified.

Lemma 10. The anticode As(n, w, t) has codewords of length n and weight w, with maximum
distance 2(w − t), where n ≤ 2w − t, over Zq. The anticode As(n, w, t) has

(
n−t
w−t

)
(q − 1)w−t

codewords.

Lemma 11. If there exists a generalized Steiner system S(t, w, n, q), then the anticode
As(n, w, t) is a maximum size anticode of length n and weight w, with maximum distance
2(w − t), where n ≤ 2w − t, over Zq.

Proof. Let C be a generalized Steiner system GS(t, w, n, q) and letA be the anticodeAs(n, w, t).
By the definition of a generalized Steiner system and by Lemma 14, C has minimum Ham-

ming distance 2(w− t) + 1 and its size is
(n
t
)

(w
t
)
(q− 1)t. By Lemma 10 the anticode As(n, w, t)

has maximum distance 2(w − t) and its size is
(
n−t
w−t

)
(q − 1)w−t. Since

|C| · |A| =

(
n
t

)

(
w
t

)(q − 1)t ·

(
n− t

w − t

)

(q − 1)w−t =

(
n

w

)

(q − 1)w = |Jq(n, w)| ,

it follows by the code-anticode bound that As(n, w, t) is a maximum size anticode of length n

and weight w, over Zq, whose maximum distance 2(w − t).

Corollary 5. A generalized Steiner system GS(t, w, n, q) is a 2(w − t)-diameter perfect code.

Generalized Stiener systems were defined in [16] and further considered in many papers,
e.g. [7, 10, 29, 35], but there is still lot ground for further research in this area.
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4.4 Maximum distance separable constant weight codes

Definition 6. An (n, w, q)maximum distance separable constant-weight code (MDS-
CW code in short) is a constant-weight code C, over Zq, whose length is n, weight w, for
each codeword, such that:

1. The minimum Hamming distance of C is w.

2. Each subset of w coordinates is the support of exactly q − 1 codewords.

The name MDS-CW codes is a consequence from the observation that the minimum
weight codewords in an MDS codes form such an MDS-CW code [27, pp. 319–321].

Let Am(n, w, δ), 1 ≤ δ ≤ w, be the anticode defined as follows

Am(n, w, δ) , {(a1, a2, . . . , aδ,

w−δ times
︷ ︸︸ ︷

1 · · · · · · 1,

n−w times
︷ ︸︸ ︷

0 · · · · · · 0) : ai ∈ Zq \ {0}} .

The following lemma can be readily verified.

Lemma 12. The anticode Am(n, w, δ) has codewords of length n, weight w, with maximum
distance δ, and the number of codewords in Am(n, w, δ) is (q − 1)δ.

Lemma 13. If there exists an (n, w, q) MDS-CW code, then the anticode Am(n, w, w− 1) is
a maximum size anticode of length n, weight w, with maximum distance w − 1, over Zq.

Proof. Let C be an (n, w, q) MDS-CW code and A be the anticode Am(n, w, w− 1). By the
definition, an (n, w, q) MDS-CW code, has minimum distance w and size

(
n
w

)
(q − 1). By

Lemma 12, the anticode Am(n, w, w − 1) has maximum distance w − 1 and size (q − 1)w−1.
Since

|C| · |A| =

(
n

w

)

(q − 1) · (q − 1)w−1 =

(
n

w

)

(q − 1)w = |Jq(n, w)| ,

it follows by the code-anticode bound that the anticode Am(n, w, w − 1) is a maximum size
anticode of length n, weight w, with maximum distance w − 1, over Zq.

Corollary 6. An (n, w, q) MDS-CW code is a (w − 1)-diameter perfect code.

Given a pair (w, n) it is very simple to verify from Theorem 8 that there exists a prime
power q for which there exists an (n, w, q) MDS-CW code. But, this can be further improved
as It was proved in [16] that there exists a q0 = QMDS(n, w) such that for each q ≥ q0 there
exists an (n, w, q) MDS-CW code. Finally, we will present a theorem related to a very simple
union construction [16] which can be used to prove an upper bound on this QMDS(n, w).

Theorem 15. If there exists an (n, w, q1) MDS-CW code and an (n, w, q2) MDS-CW code,
then there exists an (n, w, q1 + q2 − 1) MDS-CW code.

There are more constructions and bounds on the parameters of MDS-CW codes which
were presented in [16]. Some of these bounds and constructions can be modified and gener-
alized to the sixth family, [F6], which will be discussed in Section 4.6.
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4.5 Codes for which d = w + 1

When d = w + 1 we are looking for an (n, w + 1, w)q code, i.e., a constant-weight code of
length n, weight w, and minimum Hamming distance w + 1, over Zq. In such a code, each
subset of w coordinates will support exactly one codeword, i.e., the number of codewords
is

(
n
w

)
. It is rather easy to verify that such a code is a w-diameter perfect constant-weight

code and it exists for any given n and w as it is proved in the following theorem.

Theorem 16. If n and w are integers such that 1 ≤ w ≤ n− 1, then there exists a q0(w, n)
such that for each q ≥ q0(w, n) there exist an (n, w + 1, w)q w-diameter perfect code C.

Proof. First, note that since the minimum distance of an (n, w + 1, w)q code C is w + 1, it
follows that each subset of w coordinates can be a support for at most one codeword. If
each such subset of w coordinates supports exactly one codeword, then the total number of
codewords in C will be

(
n
w

)
. Assume further that in C for each coordinate all the nonzero

elements in the codewords of C have distinct symbols. It implies that in each coordinate
there are

(
n
w

)
w
n
=

(
n−1
w−1

)
nonzero symbols. Let q′ , 1 +

(
n−1
w−1

)
and let Q be an alphabet with

q = q′+ ǫ symbols, where ǫ ≥ 0. Assign now for each coordinate a different nonzero symbols
from the q′ + ǫ − 1 nonzero symbols of Q∗ to each codeword that has a nonzero symbol in
this coordinate. Clearly, C in an (n, w + 1, w)q code with

(
n
w

)
codewords.

Let A be the anticodeAm(n, w, w) over Q. By Lemma 12, the anticodeA, has diameter w
and (q − 1)w codewords. Clearly,

|C| · |A| =

(
n

w

)

(q − 1)w = |Jq(n, w)|

and hence by the code-anticode bound, C is an (n, w + 1, w)q w-diameter perfect constant-
weight code over the alphabet Q of size q.

Corollary 7. If there exists an (n, w + 1, w)q code with
(
n
w

)
codewords, then Am(n, w, w) is

a maximum size anticode of length n, weight w, and diameter w, over and alphabet with q

symbols.

The proof of Theorem 16 implies that an (n, w + 1, w)q w-diameter constant-weight
perfect code C has

(
n
w

)
codewords, where each w-subset of w coordinates of C is the support

of exactly one codeword of C. In view of Theorem 16 our goal now is to find q0(w, n) which
is the smallest size alphabet q for such an (n, w + 1, w)q code exists.

Corollary 8. For each alphabet Q of size q, where q ≥ 1+
(
n−1
w−1

)
, there exists an (n, w+1, w)q

code, i.e., q0(w, n) ≤ 1 +
(
n−1
w−1

)
.

Lemma 14. For each w ≥ 1 there exists an (w+1, w+1, w)w+1 code which is a w-diameter
perfect code.

Proof. Follows immediately from the fact that if there is a codeword on each subset of w
coordinates, then there are exactly w codewords with nonzero symbols on each coordinates.

Corollary 9. If w ≥ 1, then q0(w,w + 1) = w + 1.
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Theorem 16 implies the existence of an (n, w+1, w)q code for each q ≥ q0(w, n), but the
upper bound 1 +

(
n−1
w−1

)
on q0(w, n), inferred in Corollary 8, is quite large. Can we find a

better upper bound on q0(w, n)? The answer is definitely positive and for this purpose we
have the following results.

Lemma 15. If n > w + 1, then q0(w, n) ≥ q0(w, n− 1).

Proof. Assume that C is an (n, w+1, w)q w-diameter constant-weight perfect code and let S
be any subset of n − 1 coordinates. By definition, the set codewords whose supports are
subsets of S form an (n− 1, w + 1, w)q w-diameter constant-weight perfect code. Thus, the
claim of the lemma follows.

Corollary 10. If n > w + 1 then q0(w, n) ≥ w + 1.

Lemma 16. If n > w + 1, then q0(w, n) ≥ n− w + 2.

Proof. Let C be an (n, w + 1, w)q w-diameter perfect code C. Consider the sub-code C′ of
codewords from C for which there is no zero in the first w − 1 coordinates. Since, each
one of the other n − w + 1 coordinates must have a nonzero symbol with exactly one of
these codewords, it follows that the sub-code C′ contains n − w + 1 codewords. Since the
distance of C′ is w + 1, each pair of codewords of C′ have only two distinct coordinates in
their supports, and each pair of codewords of C′ have w − 1 joint coordinates with nonzero
symbols, it follows that in each given coordinate of the first w−1 coordinates the codewords
of C′ have distinct nonzero symbols. Since |C′| = n − w + 1, it follows that C has at least
n− w + 1 nonzero symbols and hence q ≥ n− w + 2.

Corollary 11. If n > 2, then q0(2, n) = n.

Proof. By Lemma 16 we have that q0(2, n) ≥ n and by Corollary 8 we have that q0(2, n) ≤ n.
Thus, q0(2, n) = n.

The proof of the next theorem requires two more concepts, a one-factorization and a
near-one-factorization. A one-factorization of the complete graph Kn, n even, is a partition
of the edges of Kn into perfect matchings. In other words, the set

F = {F1,F2, . . . ,Fn−1}

is a one-factorization of Kn if each Fi, 1 ≤ i ≤ n − 1, is a perfect matching (called a
one-factor), and the Fi’s are pairwise disjoint.

If n is odd, then there is no perfect matching in Kn and we define a near-one-factorization

F = {F1,F2, . . . ,Fn}

to be a partition of the edges in Kn into sets of n−1
2

pairwise disjoint edges, where each Fi

has one isolated vertex. Each Fi is called a near-one-factor.

Theorem 17. If n is odd, then q0(3, n) = n− 1, and if n is even, then q0(3, n) = n.
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Proof. By Lemma 16 we have that q0(3, n) ≥ n−1 and this bound is applied when n is odd.
Assume now that n is even and let C be a related code. Let C1 be the set of codewords

in C with a nonzero symbol in the first coordinate. By the definition of this family of codes,
it follows that |C1| =

(
n−1
2

)
= (n−1)(n−2)

2
. Since the minimum distance of C1 is four and n is

even, it follows that the number of codewords in C1 with a given nonzero symbol σ in the
first coordinate is at most n−2

2
. Since |C1| =

(n−1)(n−2)
2

, it follows that there are at least n−1
nonzero symbols in the first coordinate. Therefore, q0(3, n) ≥ n if n is even.

Regarding the upper bound on q0(3, n) we distinguish again between two cases, depending
on whether n is odd or n is even.
Case 1. n is odd.

Let N be the set of n coordinates and let Q , {0, σ1, . . . , σn−2} be an alphabet of
size n−1. Let C be a code of length n and weight 3 with

(
n
3

)
codewords, a codeword for each

support of size 3. Consider the i-th coordinate, i ∈ N and let F = {F1,F2, . . . ,Fn−2} be a
one-factorization on the n− 1 points of N \ {i}. Given a triple {i, j, k}, where {j, k} ∈ Fr,
we assign σr to the symbol in coordinate i of the codeword {i, j, k}, where the nonzero
symbols are in coordinates i, j, k. It is readily verified that we have constructed a code of
length n and weight 3, over an alphabet Q of size n − 1. Clearly, if two codewords share
at most one coordinate, then their Hamming distance is at least 4. Now, assume that two
codewords c1 and c2 share nonzero symbols in two coordinates i and j. If the symbols in the
i-th coordinate of c1 and c2 are distinct and the symbols in the j-th coordinate of c1 and c2
are distinct, then clearly d(c1, c2) = 4. Now, assume for the contrary that in one coordinate,
say i, c1 and c2 have the same symbol. By the construction, we have that the two other pairs
of nonzero coordinates in c1 and c2 must be disjoint (they belong to the same one-factor), a
contradiction. Therefore, the minimum distance of C is 4 and hence q0(3, n) ≤ n− 1.
Case 2. n is even.

Let N be the set of n coordinates and let Q , {0, σ1, . . . , σn−1} be an alphabet of size n.
Let C be a code of length n and weight 3 with

(
n
3

)
codewords, a codeword for each support

of size 3. Consider the i-th coordinate, i ∈ N and let F = {F1,F2, . . . ,Fn−1} be a near-one-
factorization on the n − 1 points of N \ {i}. Given a triple {i, j, k}, where {j, k} ∈ Fr, we
assign σr to the symbol in coordinate i of the codeword {i, j, k}. It is readily verified that
we have constructed a code of length n and weight 3, over an alphabet Q of size n. As in
Case 1 the minimum distance of C is 4 and therefore, q0(3, n) ≤ n.

Thus, these two cases complete the proof of the theorem.

Other codes with the same parameters as the ones constructed in Theorem 17 were also
presented in [8, 9], by using different techniques from combinatorial designs. Similarly to
the technique used in the proof of Theorem 17 one can construct (n, w + 1, w)q w-diameter
perfect codes, for relatively small q, when w is small using techniques coming from com-
binatorial designs. The same is true for (n, w + 1, w)q w-diameter perfect codes, when n

is not much larger than w. Such constructions are left for future research. Moreover, the
technique used in Theorem 17 to obtain the upper bound on q0(3, n) can be used to obtain
better upper bounds on q0(w+1, n+1) than the trivial one, i.e., q0(w+1, n+1) ≤ 1+

(
n
w

)
.

The idea is to partition the set of all binary words of length n and weight w into pairwise
disjoint constant-weight codes of length n, weight w, and minimum Hamming distance w+2.
Let χ(n, w) be the minimum number of codes in such a partition. With an identical proof
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as the one in Theorem 17 we can prove that q0(w + 1, n+ 1) ≤ χ(n, w) + 1. Note, that the
minimum distance of a constant-weight code is always even and hence the proof will be more
effective for even w, i.e., for bounds on q0(w + 1, n + 1) when w + 1 is odd. This kind of a
partition problem was discussed in [4]. As a simple example we can use prove the following
bound implied by a result proved in [22].

Theorem 18. If w is even and p is the smallest prime power for which p ≥ n, then

q0(w + 1, n+ 1) ≤ 1 + pw/2 .

We leave further improvements in this direction for future research.

4.6 Multiple orthogonal arrays constant weight codes

In the last family of diameter perfect constant-weight codes we have similarly as in families
[F4] and [F5] that each projection of any w coordinates supports some specified number
of codeword codewords. The distinction from families [F4] and [F5] is that the minimum
distance of the code in this family, [F6] , is strictly smaller than the weight of the codewords.
More precisely we have the following definition.

Definition 7. An (n, d, w)q multiple orthogonal arrays constant weight (MOA-CW
in short) code is a code of length n, constant weight w, minimum distance d < w, where each
subset of w coordinates is the support of exactly (q−1)w−d+1 codewords, i.e., these codewords
form an OA(w − d+ 1, w, q − 1).

One might asks why this family does not include the MDS-CW codes, where d = w.
The two families of codes, [F4] and [F6] share some properties such as similar expression
of their size (which is also shared by the family [F5]), they are both related to orthogonal
arrays (MDS codes) in a way that codewords with no zeroes in the same w coordinates
form an orthogonal array. The main reason for the distinction between the two families is
that an MDS-CW code either forms the codewords of minimum weight in an orthogonal
array or has the same parameters as it would have had, if such an orthogonal array have
been possible. There is no similar property for an MOA-CW code. The codewords of an
MOA-CW code are not related to codewords of some weights in MDS codes or orthogonal
arrays. Another important distinction is in the simple union construction of Theorem 15
which cannot be applied to MOA-CW codes. The similarity of the two families will be also
demonstrated in one construction of such codes which is a joint construction for both families
of codes. Similarly, some bounds on the tradeoff between the parameters of these codes are
joint bounds for the two families of codes.

Theorem 19. An (n, d, w)q MOA-CW code is a (d − 1)-diameter perfect constant-weight
code.

Proof. By definition, the size of an (n, d, w)q MOA-CW code C is
(
n
w

)
(q − 1)w−d+1 and by

Lemma 12 the related anticode A with diameter d− 1 in Jq(n, w), A
m(n, w, d− 1), has size

(q − 1)d−1. Therefore we have that,

|C| · |A| =

(
n

w

)

(q − 1)w−d+1(q − 1)d−1 =

(
n

w

)

(q − 1)w = |Jq(n, w)| ,
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which by the code-anticode bound implies that C is a (d−1)-diameter perfect constant-weight
code.

Corollary 12. If there exists an (n, d, w)q MOA-CW code, then Am(n, w, d− 1) is a max-
imum size anticode of length n, weight w, and diameter d − 1, over an alphabet with q

symbols.

Next, we present a construction for MOA-CW codes which can also serve as a construction
for MDS-CW codes. The construction is a generalization and a modification of a construction
presented in [16]. Let M be an OA(t, n, q) over Q, where Q = {1, 2, . . . , q}. Assume further
that the symbols in the last coordinate of the first qt−1 codewords ofM are ones, the symbols
in the last coordinate of the next qt−1 codewords ofM are twos, and so on, where the symbols
in the last coordinate of the last qt−1 codewords of M are q’s. Assume further that q ≥

(
n−1
ℓ

)

for a given ℓ, 1 ≤ ℓ ≤ n − 1. Let S1, S2, . . . , Sr, where r =
(
n−1
ℓ

)
, be a sequence containing

all the ℓ-subsets of {1, 2, . . . , n− 1}. Let M′ be the
((

n−1
ℓ

)
qt−1

)
× (n− 1) array constructed

from M as follows.

1. If S1 = {i1, i2, . . . , iℓ}, then replace all the symbols in the first qt−1 rows of column ij
in M, for each 1 ≤ j ≤ ℓ, with zeroes.

2. If S2 = {i1, i2, . . . , iℓ}, then replace all the symbols in the next qt−1 rows of column ij
in M, for each 1 ≤ j ≤ ℓ, with zeroes.

3. Continue the same process with S3, S4, and so on until Sr.

4. Remove the last column of M.

5. Remove the last qt −
((

n−1
ℓ

)
qt−1

)
rows of M.

Theorem 20. The rows of the array M′ form an (n− 1, n− t− ℓ+ 1, n− ℓ− 1)q+1 code C
that is an (n− t− ℓ)-diameter perfect constant-weight code over Q ∪ {0}.

Proof. Exactly one column was deleted from M to obtain M′ and hence the length of the
code M′ is n − 1. In each codeword of length n − 1 exactly ℓ zeroes were inserted instead
of nonzero symbols and hence the weight of each codeword is n − 1 − ℓ. Since M is an
OA(t, n, q), it follows that |M| = qt, and since q ≥

(
n−1
ℓ

)
, it follows that qt ≥

(
n−1
ℓ

)
qt−1

and hence M has at least
(
n−1
ℓ

)
qt−1 rows as required by the construction. Furthermore,

note that the minimum distance of the code defined by M is n − t + 1. Let c1 and c2
be two codewords in M′. If the zeroes in c1 and c2 are on the same ℓ coordinates, then
c1 and c2 were derived from two rows c′1α and c′2α of M, where α ∈ {1, 2, . . . , q}, and
d(c′1α, c

′

2α) ≥ n − t + 1. Since the same ℓ coordinates were changed in c′1 and c′2 to obtain
c1 and c2, respectively, it follows that d(c1, c2) ≥ n− t+ 1− ℓ. If the zeroes in c1 and c2 are
not on the same coordinates, then c1 and c2 were derived from two rows c′1α and c′2β, where
α, β ∈ {1, 2, . . . , q}, α 6= β, and d(c′1α, c

′

2β) ≥ n− t+ 1, which implies that d(c′1, c
′

2) ≥ n− t.
The number of coordinates in which both c1 and c2 have zeroes is at most ℓ − 1 and hence
d(c1, c2) ≥ d(c′1, c

′

2)− (ℓ− 1) ≥ n− t− (ℓ− 1) = n− t− ℓ+ 1. Thus, d(C) ≥ n− t− ℓ+ 1.
As an immediate consequence from the construction, the number of rows in the array M′

is
(
n−1
ℓ

)
qt−1 and its alphabet {0, 1, 2, . . . , q} is of size q + 1. Let A be a related anticode of
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length n − 1 and diameter n − t − ℓ. By Lemma 12 there exists such a constant-weight
anticode Am(n− 1, n− 1− ℓ, n− t− ℓ), over Zq+1, whose size is qn−t−ℓ. Therefore,

|C| · |A| =

(
n− 1

ℓ

)

qt−1 · qn−t−ℓ =

(
n− 1

n− 1− ℓ

)

qn−ℓ−1 = |Jq+1(n− 1, n− ℓ− 1)| ,

which implies by the code-anticode bound thatM′ is an (n−t−ℓ)-diameter perfect code.

Corollary 13. When t = 2 the code M′ is an (n− 1, n− ℓ− 1, q + 1) MDS-CW code.

Corollary 14. When t > 2 the code M′ is an (n− 1, n− t− ℓ− 1, n− ℓ− 1)q+1 MOA-CW
code.

Theorem 21.

1. If there exists an (n, d, w)q MOA-CW code, then there exists an (n−1, d, w)q MOA-CW
code.

2. If there exists an (n, d, w)q MOA-CW code, then there exists an (n− 1, d− 1, w − 1)q
MOA-CW code.

Proof. Let C be (n, d, w)q MOA-CW code and define the following two code

C1 , {(x2, x3, . . . , xn) : (0, x2, x3, . . . , xn) ∈ C}

and
C2 , {(x2, x3, . . . , xn) : (x1, x2, x3, . . . , xn) ∈ C, x1 6= 0} .

One can easily verify that C1 is an (n−1, d, w)q MOA-CW code and C2 is an (n−1, d−1, w−1)q
MOA-CW code.

After constructing (d− 1)-diameter constant-weight perfect codes for d < w, where each
w coordinates are the support of exactly (q−1)w−d+1 codewords we would like to have some
lower bounds on the alphabet size of such codes and upper bounds on their length and their
weights. Since each w coordinates are the support of exactly (q − 1)w−d+1 codewords, it
follows that the projection on each w coordinates on these codewords forms an orthogonal
array OA(w−d+1, w, q−1) and the related bounds on orthogonal arrays in Theorems 5, 6,
and 7, can be applied. This implies the following theorem which present a tradeoff between
the alphabet size and the minimum distance of the code.

Theorem 22.

1. If there exists an (n, w − 1, w)q MOA-CW code, then w ≤ q.

2. If there exists an (n, w − δ, w)q MOA-CW code, where 2 ≤ δ ≤ w − 1 and q is even,
then w ≤ q + δ.

3. If there exists an (n, w − δ, w)q MOA-CW code, where 2 ≤ δ ≤ w − 1 and q is odd,
then w ≤ q + δ − 1.

4. If there exists an (n, w − δ, w)q MOA-CW code, where q − 1 ≤ δ + 1, then w ≤ δ + 2.
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Proof. All the claims are direct consequences of Theorems 5, 6, and 7, where the length n

in the OA(t, n, q) is restricted to w, the alphabet size is q − 1, and w − δ = n− t + 1.

Theorem 22 implies upper bounds on w as a function of the alphabet size q and the
minimum distance d of the code and, similarly, lower bounds on q as a function of the
weight w and the minimum distance of the code. Since d = w − δ, it follows that these
bounds can be written as bounds only as a tradeoff between d and q.

Corollary 15.

1. If there exists an (n, d, w)q MOA-CW code, where 1 ≤ d ≤ w − 2 and q is even, then
d ≤ q.

2. If there exists an (n, d, w)q MOA-CW code, where 1 ≤ d ≤ w − 2 and q is odd, then
d+ 1 ≤ q.

The next bound presents a tradeoff between the length, the weight, and the alphabet
size, of the code. It is interesting to note that the minimum distance has no influence on the
bound.

Theorem 23. If there exists an (n, d, w)q MOA-CW code, then n ≤ q+w− 2 (equivalently,
q ≥ n− w + 2).

Proof. Let C be an (n, d, w)q MOA-CW code and consider the set S of codewords in C which
have only nonzero symbols in the first w−1 coordinates and in these w−1 coordinates of S,
all the codewords of S share the same suffix of length w − d+ 1. Each two such codewords
of S can differ in at most two coordinates out of the last n − w + 1 coordinates and in the
first d−2 coordinates. Hence, since the minimum distance of C is d, it follows that two such
codewords of S differ exactly in these d coordinates. This implies the following observations:

1. The only nonzero symbol in the last n − w + 1 coordinates of each codeword from S
is in a distinct coordinate. This implies that |S| ≤ n − w + 1. Moreover, since the
projection, on the nonzero entries, of the codewords whose support is a given subset of
w coordinates forms an OA(w−d+1, w, q−1), it follows that S contains a codeword with
a nonzero symbol in each one of the last n−w+1 coordinates and hence |S| ≥ n−w+1.

Thus, |S| = n− w + 1.

2. Each two codewords of S differ in all the symbols of their first d− 2 coordinates. This
implies that q − 1 ≥ |S|.

Thus, q − 1 ≥ n− w + 1, which completes the proof of the theorem.

4.7 Comparison between maximum size anticodes

So far we have characterized the families of diameter perfect constant-weight codes. Each
family is associated with some maximum size anticodes. In this subsection we will charac-
terize these families of maximum size anticodes and compare some of them.
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The first family of maximum size anticodes is associated with the family [[F1]] of non-
binary diameter perfect constant-weight codes for which w = n. Clearly, for these anticodes
the length of a codeword is n and the weight of each codeword is w = n. Moreover, the
anticodes are derived from the related anticodes in the Hamming scheme, by replacing the
zeroes in the anticodes of the Hamming scheme with the additional nonzero symbol of the
constant-weight code.

The second family of maximum size anticodes is associated with the family [[F2]] of
diameter perfect constant-weight codes over an alphabet of size 2k + 1 for which w = n− 1.
Clearly, the related anticodes also have length n and weight w = n − 1. If the non-binary
diameter perfect code is in fact a non-binary perfect code, then the related anticode is a ball.
If the non-binary diameter perfect code is not a non-binary perfect code, then the related
anticode is not a ball and it should be computed for each set of parameters. For example,
it was proved in [25] that for ternary codes if n = 2m ≥ 8, w = n− 1, an the diameter is 4,
then the maximum size anticode has size n2 and such a set can be defined by the union of
the set of ternary words with a unique zero and all the other symbols are ones and the set
of ternary words with a unique zero and a unique two and all the other symbols are ones.

The third family of maximum size anticodes is associated with the family of generalized
Steiner system. The related anticode As(n, w, t) was defined by

As(n, w, t) , {(

t times
︷ ︸︸ ︷

1 · · · · · · 1, a1, . . . , an−t) : ai ∈ Zq, wt(a1 · · · an−t) = w − t} .

This anticode has diameter 2(w− t) (when n− t ≥ 2(w− t)) and its size is
(
n−t
w−t

)
(q− 1)w−t.

The last family of maximum size anticodes is associated with families [F4], [F5], and [F6]
of the diameter perfect constant-weight codes. The related anticode Am(n, w, δ) was defined
by

Am(n, w, δ) , {(a1, . . . , aδ,

w−δ times
︷ ︸︸ ︷

1 · · · · · · 1,

n−w times
︷ ︸︸ ︷

0 · · · · · ·0) : ai ∈ Zq \ {0}} ,

This anticode has diameter δ and its size is (q − 1)δ.
One can be easily observed that nontrivial anticodes of the first two families cannot

have the same parameters since they have different weights. Moreover, it can be observed
that nontrivial anticodes from these two families cannot have the same parameters as the
anticodes from the last two families. Hence, we will compare the anticodes from the last two
families.

Unless the two anticodes represent one of two trivial cases (w = n and δ = w−t; or w = t)
they cannot be isomorphic. This can be observed from the fact that the zeroes of Am(n, w, δ)
are in n−w fixed coordinates, while the zeroes of As(n, w, t) are in any combination of n−w

coordinates in the last n− t coordinates.
Can these two anticodes be maximum size anticodes, related to two diameter perfect

codes of different families, be of the same size (when the length, weight, and diameter are the
same)? Note first that this implies that the related code from the family [F4], or the family
[F5], or the family [F6] must be also a generalized Steiner system since the two codes will
have the same parameters. Since |As(n, w, t)| =

(
n−t
w−t

)
(q−1)w−t and |Am(n, w, δ)| = (q−1)δ,

it follows that the two anticodes are of equal size if and only if
(
n−t
w−t

)
= (q − 1)ℓ for some

nonnegative integer ℓ = δ+ t−w. If ℓ = 0, then either n = w (the first trivial case) or w = t
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(the second trivial case). We distinguish now between two cases depending on whether ℓ = 1
or ℓ > 1.

1. If ℓ = 1, then
(
n−t
w−t

)
= q − 1 and we distinguish between three cases, depending on

whether the related code is from the family [F4], the family [F5], or the family [F6].

Case 1.1. The diameter perfect code is from the family [F4] which implies that δ = w

and hence t = ℓ = 1.

Since t = 1, it follows that
(
n−1
w−1

)
= q − 1 and hence by Corollary 8, there exists an

(n, w + 1, w)q code of the family [F4]. If w = 2, then q = n and the two related codes
are a GS(1, 2, n, n) which is also an (n, 3, 2)n code from the family [F4]. Such a code
exists by Corollary 11. If 2 < w < n, then a related code with

(
n
w

)
codewords cannot

be a GS(1, w, n, q).

Case 1.2. The diameter perfect code is from the family [F5] which implies that
δ = w − 1 and hence t = ℓ+ 1 = 2.

For the GS(2, w, n, q) and the (n, w, q) MDS-CW code to be equal they must have
the same minimum distance and hence 2(w − 2) + 1 = w, i.e., w = 3. Since also
(
n−2
w−2

)
= q − 1, it follows that n = q + 1. Two codes are considered in this case.

The first one is a generalized Steiner system GS(2, 3, q+ 1, q) derived from a 1-perfect
Hamming code over Fq. The second one is an (q+1, 3, q) MDS-CW code derived from
a [q+1, q−1, 3]q MDS code. For these parameters the 1-perfect Hamming code is also
an MDS code and hence both constant-weight codes are the same code. There might
be other such constant-weight codes for q which is not a power of a prime, but no such
code is known.

Case 1.3. The diameter perfect code is from the family [F6], for which the MOA-CW
code has minimum Hamming distance d < w, which implies that δ = d− 1 and hence
t = ℓ+ 1 + w − d = w − d+ 2.

Hence, the related codes are GS(t, w, n, q) and an (n, d, w)q MOA-CW code. The codes
have the same minimum Hamming distance and hence d = 2(w − t) + 1 = 2d− 3, i.e.,
d = 3, which implies that w = t+ 1. Since

(
n−t
w−t

)
= q− 1, it follows that n− t = q− 1,

i.e., n = q+ t−1, and hence one of our codes is a GS(t, t+1, q+ t−1, q). By iteratively
applying Lemma 9, we obtain a GS(2, 3, q+1, q) which is the code in the previous case.
Unfortunately, no GS(t, t+ 1, q + t− 1, q) is known for t > 2.

2. If ℓ > 1, then
(
n−t
w−t

)
= (q − 1)ℓ and first we have to consider the solutions for this

equation. We distinguish between three cases depending whether w−t ∈ {1, n−t−1},
w − t ∈ {2, 3, n− t− 3, n− t− 2}, or 3 < w − t < n− t− 3.

Case 2.1. If w − t ∈ {1, n− t− 1}.

If w−t = n−t−1, then w = n−1 and one code is a GS(t, n−1, n, q) and by iteratively
applying Lemma 9, we obtain a GS(1, n − t, n − t + 1, q). One can easily verify that
for such a code n− t+ 1 ≥ 1 + (n− t+ 1)(q − 1) (see also [16]) and hence it does not
exist.

If w − t = 1, then one code is a GS(t, t + 1, n, q) for which the minimum distance
is 3. Hence, the related codes from the families [F4], [F5], and [F6] are only those
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considered in cases 1.1., 1.2., and 1.2., respectively. Therefore, no such code will be
found for ℓ > 1.

Case 2.2. If w − t ∈ {2, n− t− 2}.

When w − t = 2 or w − t = n − t − 2, there are infinitely many such solutions which
satisfy the recursion am = 6am−1 − am−2 (where q − 1 = am and ℓ = 2) [Online
Encyclopedia on Integer Sequences A001109], with the initial conditions a1 = 1 and
a2 = 6. Similar analysis to the previous cases shows that there is no diameter perfect
code from two different families in this case.

Case 2.3. If 2 < w − t < n− t− 2.

It was proved by Erdös [26, p. 48] that this equation has exactly one solution for
n− t = 50 and w − t = 3 or w − t = n− t− 3. In the region for this solution there is
no code from two families.

Therefore, all those cases for which the anticodes As(n, w, t) and Am(n, w, δ) have the
same size and different structure, the anticodes are not related to a diameter perfect codes
from two different families. Moreover, they might not be of maximum size.

In general, one can decide based on the size of a maximum size anticode if the given pa-
rameters are in the range of a generalized Steiner system, an MDS-CW code, or an MOA-CW
code. Each such code is an optimal non-binary constant-weight code that meets the value of
Aq(n, d, w). In some cases these codes coincide as illustrated in the following example (and
analyzed in the comparison of the codes with their anticodes).

Example 1. Let C be a linear 1-perfect code of length q+1, dimension q−1, and minimum
Hamming distance 3, over Fq. By its parameters, this code is also an MDS code. The
codewords of weight three of C form a generalized Steiner system GS(2, 3, q + 1, q) and also
a (q + 1, 3, q) MDS-CW code. The related maximum size anticodes are As(q + 1, 3, 2) and
Am(q + 1, 3, 1) which are of the same size (q − 1)2, but different structure.

5 Conclusions and Open Problems for Future Research

We have considered diameter perfect constant-weight codes. First, we have revisited the
family of such binary constant-weight codes which are codes in the Johnson scheme. Non-
binary such codes (where the metric is the Hamming distance) are not associated with an
association scheme and hence the original proofs for the code-anticode bound do not hold
for these codes. Also proofs which were given to other spaces with related metrics, which
do not require the association scheme conditions, do not hold for these codes. We have
presented a novel proof to the code-anticode bound for these codes. We have distinguished
between six families of such codes and four families of related maximum size anticodes. All
the new constructed non-binary diameter perfect constant-weight codes are optimal codes,
which attain the value of Aq(n, d, w). Two of the families of anticodes are new and the proof
of their optimality is a simple consequence from the code-anticode bound. As was pointed
out in [1] maximum size anticodes in the Hamming scheme, the Johnson scheme, and the
Grassmann scheme, are related to t-intersecting families and the celebrated Erdös-Ko-Rado
theorem. The proofs that certain t-intersecting families (anticodes) are of maximum size are
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not simple and they were mainly obtained via extremal combinatorics. This is in contrast
to our proofs which are very simple since they are derived from the code-anticode bound.
Four of the families of diameter perfect constant-weight codes were considered before, but
they were not observed as diameter perfect constant-weight codes. The last two families are
new and raise many problems for future research. Some of these problems, as well as other
problems related to the other families, will be presented now.

1. Are there diameter perfect codes in J(n, w), except for Steiner systems and their com-
plements? By Conjecture 1 such codes do not exist, but there are hardly any result in
this direction. It was proved in [1] (who used an idea from [15]) that if such a diameter
perfect code exists then some Steiner systems also exist. This excludes the existence
of some parameters of such diameter perfect codes as a consequence of the necessary
conditions in Corollary 4.

2. Continue to develop the theory of generalized Steiner systems GS(t, w, n, q). Even for
small parameters, such as (t, w) = (2, 3), we don’t know if the necessary conditions
similar to the ones in Corollary 4 are sufficient, although there are many results on
these parameters, e.g. [10, 16, 29]. We conjecture that this is the case for all q, with a
possible exceptions for a small number of values of n. For other parameters there are
also lot of research work, e.g. [7, 16, 35], but there is no known construction for t > 3
and we would like to see a construction for such a system.

3. For a given pair (w, n), 3 ≤ w < n, find good upper bound on the alphabet size
QMDS(w, n), for which there exist an (n, w, q) MDS-CW code for each q ≥ QMDS(w, n).
It was proved in [16] that for each pair (w, n) there exists such a value QMDS(w, n),
but the current upper bound is very large.

4. For any given pair (w, n), 4 ≤ w ≤ n − 2, improve the upper bound on q = q0(w, n),
which is the smallest alphabet for which there exist an (n, w + 1, w)q code. A very
intriguing problem is this direction is to find good lower bounds and upper bounds on
χ(w, n), the minimum number of codes in a partition of all binary words of length n

and weight w into codes with minimum Hamming distance w + 2.

5. Present new constructions for MDS-CW codes (and also for MOA-CW codes). The
only construction, which is not derived directly from an orthogonal array, which we
gave was analyzed in Theorem 20. Another construction is the union construction
for MDS-CW codes as mentioned in Theorem 15. Is there a related construction
for MOA-CW codes? We would like to see new different constructions as well as
amendments to the construction which was given in the paper.

6. Present new bounds on the tradeoff between the parameters of MDS-CW codes (and
also for MOA-CW codes). This is especially important and we would like to see some
new directions which will enable to conjecture for which parameters such codes exist.

7. Given 1 < d < w < n, does there exist a q0(n, d, w) for which there exists an (n, d, w)q
MOA-CW for all q ≥ q0(n, d, w)? recall that for MDS-CW codes such a value called
QMDS(w, n) exists as was proved in [16].
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8. Are there more families of diameter perfect constant-weight codes, except for the six
families which were presented? One possible direction, to exclude such possible families
of codes, is to show sets of parameters with tradeoff between n, w, and d, where such
codes cannot exist.

9. Characterize all parameters for which As(n, w, t) is a maximum size anticode. Such a
proof can be done by using extremal combinatorics as was done in [2] for such anticodes
related to binary words with constant weight. Similarly, characterize all parameters
for which Am(n, w, δ) is a maximum size anticode. Such a proof can be also done by
using extremal combinatorics as was done in [2] and in [3] for such anticodes related to
binary words with constant weight and for non-binary words in the Hamming scheme.
The range in which Am(n, w, δ) is optimal can be proved by using a combination of
techniques from both papers.

10. Are there (q + 1, 3, q) MDS-CW codes which are also generalized Steiner systems
GS(2, 3, q + 1, q) beside those for prime power q?

11. Is there any GS(3, 4, q + 2, q) for a prime power q? and for non-prime power q?

12. Define the anticodes As(n, w, t) and Am(n, w, δ) in terms of t-intersecting families.
Find the maximum size of these t-intersecting families (in other words, the maximum
size of these anticodes) for all parameters, including the cases where d > w + 1.
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[21] S. Glock, D. Kühn, A. Lo, and D. Osthus, The existence of designs via iterative
absorption, arxiv.org/abs/1611.06827, January 2014.

[22] R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes, IEEE
Trans. Inf. Theory 26 (1980), 37–43.

27



[23] P. Keevash, The existence of designs, arxiv.org/abs/1401.3665, January 2014.

[24] D. S. Krotov, On diameter perfect constant-weight ternary codes, Discrete Math.
308 (2008), 3104–3114.

[25] D. S. Krotov, P. R. J. Österg̊ard, and O. Pottonen, Non-existence of a
ternary constant weight (16, 5, 15; 2048) diameter perfect code, Advances in Math. of
Commun. 10 (2016), 393–399.

[26] F. Le Lionnais, Les nombres remarquables, Paris: Hermann, 1983.

[27] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,
Amsterdam: North-Holland, 1977.
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