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Equivalence of three classical algorithms with
quantum side information: Privacy amplification,

error correction, and data compression
Toyohiro Tsurumaru

Abstract—Privacy amplification (PA) is an indispensable com-
ponent in classical and quantum cryptography. Error correction
(EC) and data compression (DC) algorithms are also indis-
pensable in classical and quantum information theory. We here
study these three algorithms (PA, EC, and DC) in the presence
of quantum side information, and show that they all become
equivalent in the one-shot scenario. As an application of this
equivalence, we take previously known security bounds of PA,
and translate them into coding theorems for EC and DC which
have not been obtained previously. Further, we apply these results
to simplify and improve our previous result that the two prevalent
approaches to the security proof of quantum key distribution
(QKD) are equivalent. We also propose a new method to simplify
the security proof of QKD.

Index Terms—Data compression, error correction, privacy am-
plification, quantum cryptography, quantum information theory.

I. INTRODUCTION

Privacy amplification (PA) algorithms is an indispensable
component in classical and quantum cryptography [1], [2],
[3], [4]. The goal of PA is to generate a random bit string that
is completely unknown to outside, from a bit string which
may be partially leaked to outside. On the other hand, error
correction (EC) and data compression (DC) algorithms are also
indispensable in classical and quantum information theory [5].

We here study these three algorithms (PA, EC, and DC), in
the presence of quantum side information, and show that they
all become equivalent in the one-shot scenario.

The equivalence here means that the following two con-
ditions are satisfied: 1) If one chooses any one of the three
algorithms (PA, EC and DC) and its input, the remaining two
algorithms and their inputs are also determined uniquely and
automatically, and 2) The security or the performance indices
of the three algorithms thus determined are all equal (see Sec.
IV for the rigorous statements). This means that these three
algorithms are in fact a single algorithm viewed from different
angles.

Also, by generalizing this result to randomized algorithms,
we show the equivalence between a security evaluation method
for PA (called the leftover hashing lemma, LHL), and the
coding theorems for EC and DC. From a practical viewpoint,
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this means, e.g., that if one wishes to improve PA algorithms
used for quantum cryptography, it suffices to improve DC or
EC algorithms instead, and vice versa.

The equivalence is made possible by modifying these three
algorithms in the following three points:

First, we consider the generalized cases where there is
quantum side information: In PA, information leaked to the
eavesdropper is not necessarily classical but quantum [1],
[6]. In EC and in DC, the decoder can use an auxiliary
quantum state, in addition to the classical codeword or the
usual classical compressed data [7], [8].

Second, in order to evaluate the security of PA, we use a
relatively new security index put forward by König et al. [9]
based on the purified distance [10], while most literature use
the conventional criterion called the ε-security (see e.g. Ref.
[1]), based on the trace distance. We stress that we do not
lose the security essentially by using this new criterion; see
Section III-A3 for details.

Third, we restrict hash functions used for PA, and codes
used for PA and EC to be linear.

We also demonstrate the usefulness of this equivalence with
two applications:

First, we take previously known security bounds (i.e., LHLs)
of PA, and convert them into new coding theorems for EC and
DC with quantum side information. Specifically, we consider
three types of hash functions F which are widely used for PA,
namely, the universal2 [11], the almost universal2 [12], and the
almost dual universal2 functions [13], [14]. Then we convert
their LHLs into the coding theorems of EC and DC using
the dual function of F . To the best of our knowledge, these
coding theorems are new results that have not been obtained
previously.

Second, we apply these results to the security proof of
quantum key distribution (QKD) [15]. In the field of QKD,
there are two major approaches to the security proof, called
the leftover hashing lemma (LHL)-based approach [1], and
the phase error correction (PEC)-based approach [16], [17],
[18], [19], [20]. Previously, we have shown that these two
approaches are in fact equivalent mathematically [8]. In this
paper, we simplify and improve this proof by exploiting the
equivalence of the three algorithms (PA, EC, and DC). The
proof here is improved in that it is valid for a larger class
of hash functions; that is, the equivalence holds for the case
where the random function F for PA is almost universal2 and
almost dual universal2, while previously we treated only the
case of universal2 [8].
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Further, utilizing the knowledge gained in this new proof,
we propose a method to simplify the PEC-based proof. That
is, we propose to evaluate the randomness of Alice’s phase
degrees of freedom by the smooth max-entropy, rather than
by the phase error rate. This method has an additional merit
that every step of the proof becomes equivalent to that of the
corresponding LHL-based proof. As a result, one is guaranteed
to reach exactly the same security bound as in the LHL-based
approach, without any extra factor.

The relations between results of the present manuscript and
the existing literature are as follows:

In Refs. [21], [22], Renes and coauthors studied PA and DC
in the independent and identically distributed (i.i.d.) setting,
not in the one-shot scenario, and showed that their asymptotic
rates are equal. Renes refined these results in more recent
papers [23], [24], and showed that PA and DC are equivalent
in the one-shot scenario using a fixed (not randomized) code
(Ref. [23], Corollary 11). This corresponds to a limited case
of Theorem 1 of the present manuscript. In comparison, our
contributions here are the extension of this equivalence that
includes EC (Theorem 1), and all the results after that, such
as (i) we generalized Theorem 1 further to random codes,
and showed the equivalence of LHL for PA and the coding
theorems for DC and EC (Theorems 2 and 3), (ii) obtained
explicit forms of equivalent pairs of an LHL and a coding
theorem for practical cases including the universal2 hash
function (Section V), and (iii) showed how these results can
simplify and improve the security proof of QKD (Section VI).

We also note that our main result here can be considered as a
refinement of the results of our previous paper [8]. Previously,
we have shown the leftover hashing lemmas (LHLs) can be
derived from a coding theorem of EC with quantum side infor-
mation [8]. On the other hand, in the present manuscript, we
demonstrate that PA and EC are not only directly connected,
but are in fact equivalent, if we define the security of PA
using the purified distance, instead of the trace distance which
has been widely used. In addition, we also prove that DC
with quantum side information is also equivalent to these two
algorithms.

II. NOTATION

All the rules below apply to alphabets besides A, U and V .

A. Random variables and the Hilbert spaces

We denote random variables by a capital letter, such as A.
The same capital letter will also be used to denote the Hilbert
space where the random variable is stored, unless otherwise
specified. For example, if a random variable, A, is already
defined and if we speak of Hilbert space A, it means that
random variable A is stored in Hilbert space A (for examples
of this notation, see Refs. [1], [10]).

B. Use of tilde

If a random variable A takes value a, and if it is stored in
the z basis, we write the situation as |a〉A without tilde; and
if stored in the x basis, we write it as |ã〉A with tilde.

To put it more precisely: We denote the Pauli matrices in
the z and the x bases by σZ and σX respectively1. We denote
eigenstates of σZ and σX in a qubit space by |z〉 and |x̃〉
respectively; i.e., σZ |z〉 = (−1)z |z〉 and σX |x̃〉 = (−1)x |x̃〉
with z, x ∈ {0, 1}. We also extend this notation to multi-
qubit space with length l, and write |z〉 = |z1〉⊗· · ·⊗ |zl〉 and
|x̃〉 = |x̃1〉⊗· · ·⊗|x̃l〉 for z = (z1, . . . , zl), x = (x1, · · · , xl) ∈
{0, 1}l.

C. Classical states

Given any quantum state ρU in a space U , we denote by ZU

the random variable that results from the z-basis measurement
in U , and by ρZU the resulting state; see, e.g., Ref. [7].

In this notation, when given a state ρUV , the result of z
basis measurement on space U takes the form

ρZUV =
∑
z

(|z〉 〈z|U ⊗ IV )ρUV (|z〉 〈z|U ⊗ IV ), (1)

with I being the identity operator. We say that ρUV is classical
in ZU if ρUV = ρZUV , i.e., if ρUV is invariant under the ZU -
measurement (or informally, if U is already measured in the
z basis).

We also use the same notation for the x basis; e.g., ρUV is
classical in XU if ρUV = ρXUV .

D. Distance measures and entropies

A state ρ is called sub-normalized if Tr(ρ) ≤ 1. The L1

norm of a matrix A is ‖A‖1 := Tr(
√
AA†). For two sub-

normalized states ρ, σ, the generalized fidelity is F (ρ, σ) :=
‖√ρ
√
σ‖1 +

√
(1− Tr(ρ))(1− Tr(σ)), and the purified dis-

tance is P (ρ, σ) :=
√

1− F (ρ, σ)2. We say that ρ, σ are ε-
close and write ρ ≈ε σ, if P (ρ, σ) ≤ ε (see e.g. Ref. [10]).

The conditional min- and max-entropies of a sub-
normalized state ρUV are

Hmin(U |V )ρ

:= − log min
σ≥0
{Tr(σ) : ρUV ≤ IU ⊗ σV }, (2)

Hmax(U |V )ρ

:= max
σ≥0,Tr(σ)=1

log2(|U|F (ρUV , |U|−1IU ⊗ σV )2), (3)

where U denotes the domain (alphabets) of random variable
U , and |U| its cardinality. Their smoothed versions are

Hmin(U |V )ερ := max
ρ̄

Hmin(U |V )ρ̄, (4)

Hmax(U |V )ερ := min
ρ̄
Hmax(U |V )ρ̄, (5)

where the maximum and the minimum are evaluated for sub-
normalized states ρ̄UV ≈ε ρUV (see e.g. Ref. [10]).

III. THREE ALGORITHMS TO BE CONSIDERED

In this section, we specify three algorithms to be considered
in this paper: Privacy amplification (PA), error correction (EC),
and data compression (DC). In the next section, these three
algorithms will be shown equivalent to each other.

1It is straightforward to generalize all our results below to the mutually
unbiased bases (MUB) in prime power dimensions. However for the sake of
simplicity, in this paper we limit ourselves with the case of qubits.
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Linear function 𝑓

Classical random bits 𝐴
(𝑛 bits)

Classical random bits 𝐾
(𝑚 bits)

= Classical bit known to eavesdropper

= Classical bit unknown to eavesdropper

Eavesdropper (Eve)
having space 𝐸

Partially known
(correlated)

Unknown
(uncorrelated)

Legitimate user
(Alice)

Initial state 𝜌𝑍𝐴𝐸

Final state 𝜌𝐾𝐸
𝑓

Fig. 1. Privacy amplification (PA) against quantum side information. Initially,
Alice’s bit string ZA is partially known to the Eve; i.e., Eve has a quantum
side information in space E, which is correlated with ZA. By applying a
linear function f , Alice attempts to convert ZA into a bit string K, which is
unknown to Eve.

A. Privacy amplification (PA) against quantum side informa-
tion

Privacy amplification (PA) is an algorithm for extracting a
secret random bits, from a bit string which may be partially
leaked outside (Fig. 1) [1], [6], [2], [3].

1) Description of the algorithm: By definition, A PA algo-
rithm starts with a situation where the legitimate user, Alice,
has a classical information z ∈ {0, 1}n, and the eavesdropper,
Eve, has a quantum state (quantum side information) ρz

correlated with z. That is, there is initially a classical-quantum
(cq) state,

ρZAE =
∑
z

|z〉 〈z|A ⊗ ρ
z
E , (6)

where Hilbert spaces A and E describe Alice’s and Eve’s
degrees of freedom, respectively. Then Alice applies a linear
function f : {0, 1}n → {0, 1}m to z and generates a random
bits k = f(z). The function f used in this context of PA is
often called a hash function. As a result, random bits K and
Eve end up in a state

ρfKE := ρf(ZA)E =
∑
k

|k〉 〈k|K ⊗
∑

z∈f−1(k)

ρzE , (7)

where k is the output of function f , and K is the Hilbert space
for storing k.

2) Security criteria of PA: We say that random bits K is
ideally secure, if it is uniformly distributed and completely
unknown to Eve, i.e., if ρfKE = 2−mIK⊗σE for a normalized
state σ. However, such ideal state is unrealistic in practice.
Thus it is customary to define the security by the distance
between the actual state ρfKE and the ideal state 2−mIK⊗σE .

In this paper, we particularly follow König et al. [9] and
measure the security by an index

QPA,f (ρZAE) := Tr(ρZAE)− 2Hmax(f(ZA)|E)ρ−m

= Tr(ρfKE)− 2Hmax(K|E)
ρf
−m. (8)

The idea here is to measure the distance between the actual and
ideal states by the square of the purified distance. Note that if
ρZAE is normalized, QPA,f (ρZAE) indeed equals the squared
purified distance between the two states. For the general case
where ρZAE is not necessarily normalized, QPA,f (ρZAE) is
defined to scale proportionally to Tr(ρZAE).

3) Justification for using the new index QPA,f :
a) Conventional criterion: On the other hand, in fact,

most existing literature on PA do not use the security index
QPA,f of (8). They rather use an alternative index

d1(ρfKE) :=
∥∥∥ρfKE − 2−mIK ⊗ ρE

∥∥∥
1

(9)

based on the trace distance, and say that random number K
is ε-secure if 1

2d1(ρfKE) ≤ ε (e.g. Ref. [1]). This criterion, ε-
security, is prevalent because it is explicitly shown to satisfy
a desirable property called the universal composability [25].

Even so, our use of a rather new criterion, QPA,f , can be
justified by the following two observations.

b) ε-security using the new index QPA,f : The ε-security
can also be guaranteed by using QPA,f (ρZAE). This is because
QPA,f (ρZAE) bounds d1(ρfKE) as

d1(ρfKE) ≤ 4
√

Tr(ρ)
√
QPA,f (ρZAE) (10)

(see Appendix B for the proof).
c) Tightness of security bounds: Bounds on QPA,f thus

obtained are nearly as tight as previously obtained bounds on
d1(ρfKE) in many practical situations.

For example, if we let function f be a random function
called the universal2 function [11], and denote it by capital
letter F (see Section IV-B for details of this notation), then
we have

EF Q
PA,F (ρZAE) ≤ 2m−Hmin(ZA|E)ρ , (11)

where the expected value EF is taken on the ensemble of
random function F (Lemma 12 of Ref. [8], or Lemma 4 of the
present paper). If we further apply (10) and Jensen’s inequality
to (11), we obtain

EF d1(ρFKE) ≤ 4
√

Tr(ρ)
√

2m−Hmin(ZA|E)ρ , (12)

which differs only by a factor of 4 from the well-known
bound called the leftover hashing lemma (LHL, or Theorem
5.5.1 of Ref. [1]. Later, we will derive it again as Eq. (49)).
Note that this factor 4 is harmless in practice, since it can be
compensated for by reducing the length of random bits m only
by 4 bits.

In Section V, we will also show that similarly tight bounds
can be obtained for almost universal2 [12] and almost dual
universal2 hash functions [13], [14].

4) LHLs of the conventional type and of the new type:
In the past literature, an LHL always meant a bound on an
average of the conventional security index, EF d1(ρFKE). In
this paper, we extend this terminology and use the word LHL
to also mean a bound on an average of the new security index,
EF Q

PA,F (ρZAE) (e.g. (11)). When we need to distinguish
between these two types, we call the former an LHL of the
conventional type, and the latter the new type.

We do not claim that the new security index based on QPA,F

is either best or proper. The main motivation for using this
index here is to clarify the equivalence of PA and other two
algorithms, EC and DC, defined below.
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B. Error correction (EC) with quantum side information

Next we introduce a generalized form of classical error cor-
rection (EC), which we call EC with quantum side information
(Fig. 2). This is identical to what we called the generalized
error correction in Ref. [8], but in this paper we will use the
name above to clarify the relation with the data compression
algorithm to be discussed in the next subsection. From now
on, whenever we say EC, we mean this generalized form.

In a conventional classical EC algorithm [5], the sender
chooses a message t ∈ {0, 1}m and generates the correspond-
ing codeword c(t) ∈ {0, 1}n. The string c(t) is then sent
through a noisy channel, and output as a string x, which is
c(t) with bit flips applied probabilistically. The receiver then
decodes x to recover c(t).

On the other hand, in our EC with quantum side informa-
tion, codeword c(t) is sent through a noisy quantum channel
and output as a cq state ρc(t) =

∑
x |x̃〉 〈x̃| ⊗ ρ̃c(t),x; see Fig.

2. Or equivalently as a classical string x plus an auxiliary
quantum state (quantum side information) ρ̃c(t),x, where the
tilde indicates that it is an expansion of ρc(t) with respect to
|x̃〉. Hence, it is possible that the decoding succeeds with a
higher probability, due to information (i.e. hint) obtained by
measuring ρ̃c(t),x. Details are as follows.

1) Description of the algorithm: For the sake of similicity,
we assume that the channel is symmetric under bit flips (i.e.,
binary symmetric channel). We also assume that the error
correcting code C ⊂ {0, 1}n is linear, i.e., a linear [n,m]
code. We denote its linear syndrome function by g : {0, 1}n →
{0, 1}n−m.

a) Encoding and sending: The sender chooses an mes-
sage m ∈ {0, 1}m, and the classical codeword c(t) ∈ C that
corresponds to it.

b) Quantum channel: The codeword c(t) is input to
the quantum channel and then output as a cq state ρc(t) =∑
x |x̃〉 〈x̃| ⊗ ρ̃c(t),x. Or equivalently it is output as a classical

string x plus an auxiliary quantum state ρ̃c(t),x.
c) Decoding: The receiver performs the following de-

coding algorithm using x and ρ̃c(t),x.

1) Calculate the syndrome s = g(x) ∈ {0, 1}n−m.
2) Measure ρ̃c(t),x using positive operator valued measures

(POVMs) which depend on s; that is, Ms = {Ms,e | e ∈
{0, 1}n} satisfying

∑
eM

s,e = I. The result e is the
estimated error pattern.

3) Output y = x+ e as the estimated codeword.

2) Performance index: We say that the decoding is suc-
cessful when its output y equals the correct codeword c(t);
i.e., Pr[EC succeeds] := Pr[Y = c(T )]. We then define the
performance index of our EC to be its failure probability
(block error rate) when using the best decoder,

QEC,g := min
{Ms}

Pr[Y 6= c(T )]. (13)

As we here limit ourselves with a BSC, we have

ρ̃c(t)+∆,x+∆ = ρ̃c(t),x (14)

Message 𝑡

Received word 𝑋𝐴

Sender

Quantum
side info. 

in space 𝐵
Correlated

Decoded 
message 𝑌

Received state

𝜌
𝑋𝐴𝐵

𝑐 𝑡

Receiver

Codeword 𝑐 𝑡

Linear encoder

Quantum channel (binary symmetric)

Decoder

Decoding successful
if 𝑌 = 𝑐 𝑡

= Classical bit

(𝑛 bits)

(𝑚 bits)

Fig. 2. Error correction (EC) with quantum side information. The sender
uses a linear classical error correcting code C, and we denote its syndrome
function by g. Note that the situation becomes the same as in the conventional
classical error correction, if the quantum side information (orange cloud) is
absent.

for any ∆ ∈ {0, 1}n. Hence, as we also limit ourselves with
a linear code C, it suffices to consider QEC,g for conditioned
on message t = 0 and the codeword c(0) = 0; that is,

QEC,g(ρ0
XAB) = min

{Ms}
Pr[Y 6= 0 |T = 0]

= min
{Ms}

Pr[Y 6= 0 | ρ0
XAB ], (15)

where
ρ0
XAB =

∑
x

|x̃〉 〈x̃|A ⊗ ρ̃
0,x
B (16)

denotes the output of the quantum channel on input c(0) = 0.
As remarked in Section II-B, |x̃〉 appearing in (16) means that
the channel output x is encoded in the x basis. We stress that
we lose no generality by using this particular choice of the
basis; see Section III-D.

In what follows, for ease of notation, we will often omit
superscript 0 of ρ0

XAB and ρ̃0,x
B , and write

ρXAB = ρ0
XAB , ρ̃xB = ρ̃0,x

B . (17)

In this notation, Eq. (16) is rewritten as

ρXAB =
∑
x

|x̃〉 〈x̃|A ⊗ ρ̃
x
B , (18)

and the performance index (15) can also regarded a function
of ρXAB ,

QEC,g(ρXAB) = QEC,g(ρ0
XAB). (19)

3) Relation with classical EC with quantum decoder in
the past literature: The EC defined above is a limitation of
classical EC with quantum decoder, which has been discussed
in various literatures (see e.g. Ref. [15], Section 12.3 for the
asymptotic case, and [26] for non-asymptotic cases). The past
literature and this paper are the same up to the point where
the quantum channel receives codeword c(t) and outputs a
quantum state ρc(t). On the other hand, while ρc(t) are general
quantum state in the past literature, we here assume that ρc(t)

are cq states satisfying BSC condition (14).
The main motivation for considering such restricted form

of EC is its application to the security proof of QKD, whose
details will be given in Section VI. A. 4. To give a quick
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Linear compression function 𝑔

Data 𝑋𝐴

(𝑛 bits)

Compressed data 𝑆
(𝑚 bits)

User initial state 𝜌𝑋𝐴𝐵
Quantum

side info.

in space 𝐵
Correlated

Decoder

Message 𝑋′
Decoding successful 

if 𝑋′ = 𝑋𝐴

= Classical bit

Fig. 3. Data compression (DC) with quantum side information. Note that the
situation becomes the same as in the conventional classical data compression
using compression function g, if the quantum side information (orange cloud)
is absent.

overview: In the phase error correction (PEC)-based approach
of the QKD security proof, one can benefit by considering
EC on a purification |ρ〉ABE (virtual state) of the actual state
ρZAE , instead of dealing with ρZAE directly. This naturally
gives rise to EC as defined above, where the additional
information from the (virtual) ancilla space B improves the
performance of EC (and thus also improve the security of
QKD).

C. Data compression (DC) with quantum side information

Similarly, a generalization of classical data compression
(DC) is known, called DC with quantum side information
(Fig. 3); see Ref. [27] for the original definition, and Refs.
[7], [10], [22], [23], [28] for recent results on one-shot and
non-asymptotic cases. From now on, whenever we say DC,
we mean this generalized type.

In a conventional classical DC algorithm [5], given a
classical data x ∈ {0, 1}n, one generates the corresponding
compressed data g(x) ∈ {0, 1}m, using a compression func-
tion g, and stores it. After some time passes, one decodes g(x)
to restore x.

On the other hand, in DC with quantum side information
(Fig. 3) [27], [7], [10], [23], [22], [28], there is an additional
set of sub-normalized quantum states (quantum side informa-
tion) ρ̃x which correspond to x and satisfy

∑
x Trρ̃x = 1.

The user can store ρ̃x along with the classical compressed data
g(x), and also use it for decoding. Thus, as in the EC algorithm
of the previous subsection, it is possible that the decoding
succeeds with a higher probability, due to information (i.e.
hint) obtained by measuring ρ̃x. Details are as follows.

1) Description of the algorithm: For the sake of simplicity,
we assume that the compression function g : {0, 1}n →
{0, 1}m is linear.

a) Encoding: Choose variable x with probability
Pr[XA = x] = Tr(ρ̃x). Then output the compressed data
s = g(x) of x, along with the corresponding quantum side
information ρ̃x.

b) Decoding: Receive s ∈ {0, 1}n−m and state ρ̃xB as in-
puts. Measure ρ̃xB using a POVM Ms = {Ms,e | e ∈ {0, 1}n},
and output x′ = e as the estimated value of x.

2) Performance index: We say that the decoding is suc-
cessful when its output x′ equals the correct data x;
Pr[DC succeeds] = Pr[X ′ = XA]. We then define the
performance index of DC with quantum side information to
be its failure probability when using the best decoder,

QDC,g({ρ̃x}) := min
{Ms}

Pr[X ′ 6= XA | {ρ̃x}] (20)

If we particularly choose to encode the classical data x in
the x basis, then the correlation between x and ρ̃x can be rep-
resented by a single quantum state ρXAB =

∑
x |x̃〉 〈x̃| ⊗ ρ̃x,

which has the identical form to the state ρXAB of (18), which
is used in EC. That is, though ρXAB was originally introduced
to describe the quantum channel of EC, it can also be regarded
as describing the initial state of DC. In this notation, the
probability QDC,g of (20) can be considered as a function
of ρXAB ,

QDC,g({ρ̃x}) = QDC,g(ρXAB)

= min
{Ms}

Pr[X ′ 6= XA | ρXAB ]. (21)

D. Note on the basis choices of the classical information

In the specification of algorithms above, for each algorithm
we assigned different orthogonal bases for encoding the clas-
sical variable z or x: Variable z in PA is encoded in the z basis
(without tilde), whereas variable x in EC and DC is encoded
in the x basis (with tilde).

We note that we chose these particular bases solely for
the purpose of simplifying the discussion of the following
sections, where we prove the equivalence of the three al-
gorithms. We stress that we have no other reason for these
particular choices. For example, when one implements any one
of the three algorithms in practice, one can use an arbitrary
orthogonal basis for encoding classical variables, even besides
the z and the x bases.

IV. MAIN RESULTS

Next we present the two main results of this paper.
The first result is that all three algorithms described above

are actually equivalent. That is, if any one of the three is
specified, the other two can also be defined uniquely, and in
addition, their indices, QPA, QEC, QDC, are all equal.

The second result is that an leftover hashing lemma (LHL)
for PA and coding theorems for EC and DC with quantum side
information, are also equivalent. That is, given either an LHL
for PA, or a coding theorem for EC or DC, one can also derive
the other two propositions (LHL or coding theorem) uniquely,
and the three propositions thus obtained are all equivalent.

A. Equivalence of the three algorithms

1) Definition of the equivalence: By the equivalence of the
three algorithms, we mean the following two conditions:

I. Correspondence between the three types of algo-
rithms: If one specifies any one of the three algorithms
(PA, EC and DC) and its input, the other two algorithms
and their inputs are also specified uniquely and automat-
ically.
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Here, to “specify an algorithm” means to fix the function
f or g, which is used for the classical data processing2.
To “specify the input to an algorithm” is to fix the state
ρZAE or ρXAB , which determines the initial state or the
environment of the algorithm.

II. Equality of three indices: The indices of the three algo-
rithms thus specified (i.e., QPA,f (ρZAE), QEC,g(ρXAB),
and QDC,g(ρXAB)) are all equal.

Condition I says that, once the hash function f and the
input ρZAE for PA are fixed, then the function g and the input
ρXAB for EC (or for DC) are also fixed automatically; and
vice versa. This correspondence will be defined explicitly in
Section IV-A2.

Condition II says that once the analysis is finished for the
security or the failure probability of any one of the three
algorithms, then analyses for the other two algorithms become
no longer necessary, since we know that they always give
the same result. From a practical viewpoint, this means, for
example, that if one wishes to improve PA algorithms used
for quantum cryptography, it suffices to improve DC or EC
algorithms instead; and vice versa. This equality will be shown
in Section IV-A3.

In short, there is a correspondence between the three types
of algorithms, and the triplet of algorithms connected by
this correspondence share the same value of indices Q. This
means that the triplet of algorithms are in fact a single
algorithm viewed from different angles. Thus we call it the
the equivalence of the three types of algorithms.

2) Correspondence between the three types of algorithms
(Condition I): Here we explicitly define the correspondence
mentioned in Condition I above. That is, we show that if one
specifies the classical function (i.e., f or g) and the input (i.e.,
(ρZAE or ρXAB) for any one of the three algorithms (PA, EC
and DC), then the function and the input for the other two
algorithms are also specified uniquely and automatically.

a) Correspondence between f and g (dual functions):
Given either one of functions f and g, one can choose the
other function to be the dual function in the following sense.

Definition 1 (Dual function pair [14], [29]). Suppose a pair
of linear functions f : {0, 1}n → {0, 1}m and g : {0, 1}n →
{0, 1}n−m is given, and can be written f(x) = fxT , g(x) =
gxT using m × n matrices f, g. Also suppose that functions
f, g are both surjective (i.e., matrices f, g are of full rank). We
say that functions f, g are dual, if the corresponding matrices
f, g satisfy fgT = 0.

We will often write f ⊥ g or g = f⊥ or f = g⊥, to say
that f , g are dual.

Note that we do not lose generality by restricting f and g to
be surjective. A non-surjective f or g can always be modified
to be surjective by discarding some of its output bits, and this
modification does not affect the indices of the corresponding
algorithm, QPA, QEC, and QDC.

2It is straightforward to see that an PA algorithm can be specified uniquely
by fixing the function f ; and that an DC algorithm can be specified by g. An
EC algorithm can also be specified uniquely by the linear syndrome function
g, as g determines the corresponding linear error correcting code C, up to
unessential linear transformations on input variable x

𝜌𝑍𝐴𝐸 𝜌𝑋𝐴𝐵𝜌𝐴𝐵𝐸

Purification

Purification

Tripartite state
in the standard

form

Channel output
of EC, or

initial state of DC
Initial state

of PA

satisfying
𝜌𝑍𝐴𝐸 = 𝜌𝐴𝐸, or

𝜌𝑋𝐴𝐵 = 𝜌𝐴𝐵

𝑋𝐴 measurement
& tracing out 𝐸

𝑍𝐴 measurement
& tracing out 𝐵

Fig. 4. Standard form of tripartite states: The state ρZAE that specifies
the PA algorithm, and the state ρXAB that specifies EC and DC can be
converted to each other uniquely, as shown above (cf. Section IV-A2). In
these processes, one also obtains a pure tripartite state ρABE satisfying the
condition ρAE = ρZAE or ρAB = ρXAB . For later convenience, we call
this type of ρABE the standard form (see Definition 2).

b) Correspondence between ρZAE and ρXAB (standard
form of tripartite states): Given either one of states ρZAE and
ρXAB , one can always define the other state uniquely by the
following procedure (Fig. 4).

1) Define a tripartite pure state ρABE by purifying ρZAE
or ρXAB .
(E.g., if ρZAE is given, introduce ancilla space B and
let ρABE such that ρZAE = TrB(|ρ〉 〈ρ|ABE).)

2) Trace out the unnecessary one of spaces B and E.
3) Measure space A in the appropriate basis, of the z and

x bases.
(E.g., in order to obtain ρXAB , perform the XA-
measurement on ρAB = TrE(|ρ〉 〈ρ|ABE).)

In what follows, we will often refer to this procedure as T
3. The pure state ρABE obtained in this procedure satisfies
ρAE = ρZAE or ρAB = ρXAB by definition. For later
convenience, we call this type of ρABE the standard form.

Definition 2 (Standard form of tripartite states; Fig. 4). We say
that a sub-normalized tripartite state ρABE is in the standard
form, if it is pure, and satisfies either one of the conditions
below,

• ρAE is classical in ZA (i.e., ρAE = ρZAE),
• ρAB is classical in XA (i.e., ρAB = ρXAB).

3) Equality of three indices (Condition II): Next we prove
the equality of the indices of the three algorithms thus specified
(Condition II of Section IV-A1). We also show that they can
all be expressed by the conditional min- and max-entropies.

Theorem 1 (Equality of the indices; Fig. 5.). For a dual pair
of functions, f and g (= f⊥), and for a sub-normalized state
ρABE in the standard form,

QPA,f (ρZAE) = QEC,g(ρXAB) = QDC,g(ρXAB)

= Tr(ρ)− 2Hmax(f(ZA)|E)ρ−m

= Tr(ρ)− 2−Hmin(XA|B,g(XA))ρ . (22)

3In fact, applying T twice in a row does not output the original state,
e.g. T (T (ρZAE)) 6= ρZAE , but this fact does not compromise our
correspondence of the states. This is because the state T (T (ρZAE)) and
ρZAE can be regarded equivalent as long as PA is concerned, and similarly,
T (T (ρXAB)) and ρXAB are equivalent as long as DC or EC is concerned.
Details are given in Appendix C.
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𝜌𝐴𝐵𝐸

Space BSpace ASpace E

Eavesdropper’s
degrees of freedom

Legitimate player’s
degrees of freedom

𝜌𝐴𝐵𝜌𝐴𝐸

Error correction (EC)
with quantum side info.
using function 𝑔(= 𝑓⊥)

Data compression (DC) 
with quantum side Info.
using function 𝑔(= 𝑓⊥)

Privacy amplification 
(PA) using

function 𝑓(= 𝑔⊥)

𝑄EC,𝑔 𝜌𝑋𝐴𝐵 𝑄DC,𝑔 𝜌𝑋𝐴𝐵𝑄PA,𝑓 𝜌𝑍𝐴𝐸

Reduced states

Algorithms

Indices

𝜌𝑋𝐴𝐵
𝑋𝐴-measurement

𝜌𝑍𝐴𝐸

𝑍𝐴-measurement

cq states

Tripartite state
in the standard form

= =

Fig. 5. Equality of three indices: The indices QPA, QEC, QDC of the
three algorithms are equal (Section IV-A3), if their inputs ρZAE and ρXAE
are related via tripartite state ρABE in the standard form (cf. Fig. 4), and if
functions f and g are dual (cf. Definition 1).

In other words, evaluating the security of PA is equivalent
to evaluating the performances of EC and DC. The proof of
this theorem is given in Appendix A.

We note that Renes has already shown part of Theorem
1, the equivalence of PA and DC (Ref. [23], Corollary 11).
Thus our contribution in Theorem 1 is that we extended the
equivalence to also include EC.

B. Random functions F,G

Next suppose that one chooses function f (or g) randomly
from a given set F (or G) with a given probability p(f) (or
q(g)), every time one executes the algorithm. This corresponds
to the case where one uses a random hash function in PA, or
a random code in EC and DC.

Even in this setting, Theorem 1 is true, as long as f and g
are randomized in such a way that their duality is maintained.
Details are as follows.

In order to simplify the notation of these random func-
tions f, g, from now on, we will consider them as random
variables and write them in uppercase F,G. In this notation,
the occurrence probability of f , for example, is denoted
Pr[F = f ] = p(f), and the expected value of r(f), a function
r of f , is EF r(F ) =

∑
f∈F p(f)r(f). The same is true for

function g.
Then we say that a pair of random functions F,G is dual,

if they are chosen randomly with their duality (in the sense of
Definition 1) maintained; that is,

Definition 3. We say that a pair of random functions F,G
is dual, if they are chosen from sets of the same size,
F = {f1, f2, . . . }, G = {g1, g2, . . . }, respectively, and if each
function pair fi, gi is dual (in the sense of Definition 1) and
is chosen with the same probability, i.e.,

fi ⊥ gi and Pr[F = fi] = Pr[G = gi] for ∀i. (23)

We also write F ⊥ G or G = F⊥ or F = G⊥, if F , G are
dual.

By using this notation, we can state an averaged version of
Theorem 1 as follows.

Corollary 1. Let F,G be a pair of dual random functions,
and ρABE be a sub-normalized state in the standard form,
then

EF Q
PA,F (ρZAE)

= EGQ
EC,G(ρXAB) = EGQ

DC,G(ρXAB)

= Tr(ρ)− EF 2Hmax(F (ZA)|E)ρ−m

= Tr(ρ)− EG 2−Hmin(XA|B,G(XA))ρ . (24)

C. Equivalence of leftover hashing lemmas (LHL) and coding
theorems

1) Equivalence of LHLs and coding theorems: If the aver-
age security index EF Q

PA,F (ρZAE), appearing in Corollary
1, can be bounded by some function of the initial state ρZAE ,
it will be called a leftover hashing lemma (LHL). Similarly,
if the average failure probability EGQ

EC,G(ρXAB) of EC (or
EGQ

DC,G(ρXAB) of DC) can be bounded by some function
of the environment state ρXAE , it will be called a coding
theorem.

We can show that these LHLs and coding theorems are
equivalent, if we combine Corollary 1 and the duality of min-
and max-entropies (Lemma 1 below).

Theorem 2 (Equivalence of an LHL and coding theorems).
Let F,G be a pair of dual random functions, r be an arbitrary
function, and ρZAE and ρXAB be normalized states. Then the
following three inequalities are equivalent; that is, if any one
of them is true, then all of them are true.
• An LHL for PA using F (= G⊥),

EF Q
PA,F (ρZAE) ≤ r(Hmin(ZA|E)ρ). (25)

• Coding theorem for EC using G (= F⊥),

EGQ
EC,G(ρXAB) ≤ r(n−Hmax(XA|B)ρ). (26)

• Coding theorem for DC using G (= F⊥),

EGQ
DC,G(ρXAB) ≤ r(n−Hmax(XA|B)ρ). (27)

This theorem is a direct consequence of Corollary 1 above,
and Lemma 1 below. The left hand sides of (25), (26), (27) are
equal due to Corollary 1, and the right hands are also equal
due to Lemma 1.

Lemma 1 (Entropic uncertainty relation [30], and its equality
condition [31]). Let A be an n-qubit space and ρABE be a
sub-normalized pure state. Then for ε ≥ 0, we have [30]

Hε
max(XA|B)ρ +Hε

min(ZA|E)ρ ≥ n. (28)

The inequality holds if ρABE is in the standard form [31].

2) Equivalence of the generalized bounds: We note that
Theorem 2 above can also be generalized in a straightforward
way.

In Theorem 2, we implicitly assumed that the average
security index EF Q

PA,F (ρZAE) of PA should be bounded
by a function of its initial state ρZAE , and also that the failure
probability EGQ

EC,G(ρXAB) of EC (or EGQ
DC,G(ρXAB)

of DC) should be bounded by its environment state ρXAB .
However, as one can see from the proof of Theorem 2, such
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restriction is not in fact essential in our formalism. Rather, we
may consider bounds of the generalized forms by removing
such restriction, and prove their equivalence.

Theorem 3 (Generalization of Theorem 2). Let F,G be a
pair of dual random functions, r be a function, and ρABE be a
normalized state in the standard form. Then the six inequalities
of the form

a ≤ r(b) (29)

are all equivalent, where

a ∈ {EF QPA,F (ρZAE), EGQ
EC,G(ρXAB),

EGQ
DC,G(ρXAB)},

b ∈ {Hmin(ZA|E)ρ, n−Hmax(XA|B)ρ}.

That is, if one inequality of the form (29) is true, then all the
six are true.

V. APPLICATION 1: LEFTOVER HASHING LEMMAS FOR
(DUAL) UNIVERSAL2 FUNCTIONS F , AND THE

CORRESPONDING CODING THEOREMS

Next we apply our main results of the previous section,
Theorem 3 in particular, to explicit examples of dual random
function pair, F and G (= F⊥).

Specifically, we choose F be the three classes of hash
functions that are commonly used for PA: the universal2 [11],
the almost universal2 [12], and the dual universal2 functions
[13], [14]. Then we prove LHLs of the new type (i.e. bounds
on EF Q

PA,F ; cf. III-A4) for these F .
Further, we apply Theorem 3 to the new LHLs thus ob-

tained, and demonstrate that the coding theorems for EC and
DC using the dual random function F⊥ follows automatically.

To the best of our knowledge, most of the LHLs and the
coding theorems obtained below are new results that have
not been obtained previously (also see the first paragraph of
Section V-B).

A. Basic strategy

The basic strategy here is to borrow previous results related
with LHLs of the conventional form (i.e. bounds on the
standard security index EF d1(ρFKE)) [1], [6], [13], [14], and
convert them to LHLs of the new type. The actual procedure
is as follows.

1) Previous derivation of LHLs of the conventional form:
First we review the previous results of Refs. [1], [6], [13],
[14]. In these papers, LHLs of the conventional form were
obtained by the following two steps.

1) Prove a bound of the form

EF d2(ρFKE |σE) ≤ 2−mr(H2(ρZAE |σE)), (30)

where r(·) is a non-increasing function, and d2(·) and
H2(·|·) are defined by

d2(ρKE |σE)

:= Tr

{((
ρKB − 2−mIK ⊗ ρE

) (
IK ⊗ σ−1/2

E

))2
}
,

(31)

H2(ρZAE |σE) := − log Tr

{(
ρZAE

(
IA ⊗ σ−1/2

E

))2
}

(32)

for a normalized σ (see, e.g., [1]).
2) By using relations

d1(ρfKE) ≤
√

2md2(ρfKE |σE), (33)

Hmin(ZA|E)ρ ≤ H2(ρZAE |σE) (34)

which hold for a normalized σ (see Ref. [1] for the
proofs), and by using Jensen’s inequality, one obtains
an LHL of the conventional form,

EF d1(ρFKE) ≤
√
r(Hmin(ZA|E)ρ). (35)

2) How to derive the new type of LHLs: As we have seen
above, bounds of the form (30) have already been proved for
some random functions F [1], [6], [13], [14]. These bounds
can readily be converted to the new type of LHLs (i.e. bounds
on EF Q

PA,F (ρZAE)) by using the following theorem.

Theorem 4. Let ρZAE be a normalized state, F be a random
function, and r be a non-increasing function. If we have a
bound of the form

EF d2(ρFKE |ρE) ≤ 2−mr(H2(ρZAE |ρE)) (36)

(i.e., Inequality (30) with σE = ρE), then we have an LHL
for PA using F ,

EF Q
PA,F (ρZAE) ≤ r(Hmin(ZA|E)ρ), (37)

and coding theorems for EC and DC using G = F⊥,

EF Q
EC,F⊥(ρXAB) = EF Q

DC,F⊥(ρXAB)

≤ r(n−Hmax(XA|B)ρ), (38)

which holds for a normalized state ρXAB .

Note here that if we apply (10) and Jensen’s inequality to
Inequality (37), we again derive an LHL of the conventional
type

EF d1(ρKE) ≤ 4
√
r(Hmin(ZA|E)ρ). (39)

Also note that this inequality differs only by the factor of four
from the previous result (35), which was obtained without
using (37). In this sense we say that the new bound (37) is
nearly as tight as the previous bound (35).
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3) Proof of Theorem 4: Theorem 4 can be proved by using
Theorem 2 and the following two lemmas.

Lemma 2. For any random hash function F , and for a
normalized state ρZAE ,

QPA,f (ρZAE) ≤ 2md2(ρfKE |ρE). (40)

Proof. According to Ref. [32], we have

H̃↓1/2(K|E)ρ ≥ H̃↓2 (K|E)ρ, (41)

where

H̃↓1/2(K|E)ρ := 2 log2 F (IK ⊗ ρE , ρKE), (42)

H̃↓2 (K|E)ρ := − log2 Tr

{(
ρKE

(
IK ⊗ ρ−1/2

E

))2
}
.

(43)

Also by definition of Hmax(K|E)ρ and H̃↓1/2(K|E)ρ, we have
Hmax(K|E)ρ ≥ H̃↓1/2(K|E)ρ. Thus

QPA,f (ρ) ≤ 1− 2
−m+H̃↓

1/2
(K|E)ρ

≤ 1− 2−m+H̃↓2 (K|E)ρ ≤ 2m−H̃
↓
2 (K|E)ρ − 1

= 2mTr

{(
ρKE

(
IK ⊗ ρ−1/2

E

))2
}
− 1

= 2md2(ρKE |ρE), (44)

where in the second line we used 1 − 1/x ≤ x − 1 for x >
0.

Lemma 3. For any random hash function F , and for a
normalized state ρZAE ,

Hmin(ZA|E)ρ ≤ H2(ρZAE |ρE). (45)

Proof. H2(ρZAE |ρE) equals the quantity H̃↓2 (ZA|E)ρ defined
in Ref. [32], and Hmin(ZA|E)ρ equals H̃↑∞(ZA|E)ρ also
defined in the same paper. Hence it suffices to show

H̃↑∞(ZA|E)ρ ≤ H̃↓2 (ZA|E)ρ. (46)

This inequality follows by substituting α = ∞ in Eq. (48),
Corollary 4, Ref. [32].

B. Explicit examples of an LHL and the corresponding coding
theorems

Next we apply Theorem 4 above to three examples of
random functions F . To the best of our knowledge, all lemmas
in this subsection, except Lemma 4, are new results that have
not been obtained previously.

1) Case where F is universal2: The first example of F
is the universal2 function. This is the most commonly used
random functions for PA.

Definition 4 (Linear universal2 function [11]). A linear ran-
dom function F : {0, 1}n → {0, 1}m is universal2 if

Pr[F (x) = 0] ≤ 2−m for ∀x 6= 0. (47)

a) Leftover hashing lemma: For this type of F , an
inequality of the type of (30) is already known, which takes
the form

EF d2(ρKE |σE) ≤ 2−H2(ρZAE |σE) (48)

for a normalized ρZAE (Lemma 5.4.3, Ref. [1]). If one applies
relations (33) and (34) to this inequality, one obtains an LHL
of the conventional form,

EF d1(ρFKE) ≤
√

Tr(ρ)
√

2m−Hmin(ZA|E)ρ (49)

for a sub-normalized ρZAE (Theorem 5.5.1 of Ref. [1]).
On the other hand, if we instead apply the former half of

Theorem 4 to (48), we obtain an LHL of the new type.

Lemma 4 (LHL for PA using a universal2 hash function, in
terms of QPA (Lemma 12, Ref. [8])). For a universal2 function
F , and for a sub-normalized state ρZAE ,

EF Q
PA,F (ρZAE) ≤ 2m−Hmin(ZA|E)ρ . (50)

As noted in Section III-A3a, this LHL of the new type is
nearly as tight as the LHL (49) of the conventional type, which
has been obtained previously for the same type of F .

b) Coding theorems: On the other hand, if we apply
Theorem 2 to Lemma 4, we readily obtain coding theorems
for EC and DC using G (= F⊥), with F being universal2.

Lemma 5 (Coding theorems for EC and DC using a dual
universal2 function (Lemma 12, Ref. [8])). Let G be a random
function whose dual G⊥ is universal2 (or equivalently, let G
be a dual universal2 function; see Definition 6). Then for a
sub-normalized state ρXAB ,

EGQ
EC,G(ρXAB) = EGQ

DC,G(ρXAB)

≤ 2Hmax(XA|B)ρ−(n−m). (51)

2) Case where F is almost universal2: The second example
of F is a generalization of the universal2 function above,
which is defined as follows.

Definition 5 (Linear almost universal2 function [12]). Let δ ∈
R be a parameter. A linear random function F : {0, 1}n →
{0, 1}m is δ-almost universal2 if

Pr[F (x) = 0] ≤ 2−mδ for ∀x 6= 0. (52)

We note that δ must satisfy (2n−2m)/(2n−1) ≤ δ, as can
be shown by a simple argument [12]. Note that the universal2
case of the previous subsection corresponds to δ = 1, near the
minimum value.

a) Leftover hashing lemma: For this type of F as well,
an inequality of the type of (30) is already known,

EF d2(ρFKE |ρE) ≤ 2−m(δ − 1) + 2−H2(ρZAE |ρE) (53)

for a normalized ρZAE (Lemma 5 of Ref. [6]), as well as an
LHL of the conventional type

EF d1(ρFKE) (54)

≤ inf
ε>0

1

2

√
δ − 1 + 2m−H2(ρZAE |ρE)+log(2/ε2+1) + ε

(Lemma 2 of Ref. [6]).
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By applying the former half of Theorem 4 to (53), we obtain
an LHL of the new type.

Lemma 6 (LHL for PA using an almost universal2 hash
function, in terms of QPA). For a universal2 hash function
F and for a sub-normalized state ρZAE ,

EF Q
PA,F (ρZAE) ≤ (δ − 1)Tr(ρ) + 2m−Hmin(ZA|E)ρ . (55)

Note that if we set δ = 1, we again obtain Lemma 4. Also
note that the bound (55) loses its meaning for 2 < δ, where
its right hand exceeds one. Therefore, PA using this type of
F can only be secure when δ is confined within a relatively
small region, 1 ' (2n − 2m)/(2n − 1) ≤ δ < 2 (see Section
VIII.B of Ref. [14] for a more detailed argument). This seems
to reflect the fact that this type of F was originally conceived
for information theoretically secure authentication [12], and
not for PA.

b) Coding theorems: As in the previous subsection, if
we apply Theorem 2 to Lemma 6, we readily obtain coding
theorems for EC and DC using a dual random function G
(= F⊥).

Lemma 7 (Coding theorems for EC and DC using an almost
dual universal2 function). Let G be a random function whose
dual function G⊥ is δ-almost universal2 (or equivalently, let
G be a δ-almost dual universal2 function; see Definition 6).
Then for a sub-normalized state ρXAB ,

EGQ
EC,G(ρXAB) = EGQ

DC,G(ρXAB)

≤ (δ − 1)Tr(ρ) + 2Hmax(XA|B)ρ−(n−m). (56)

3) Case where G is almost universal2, or equivalently,
where F is almost dual universal2: In the third example of
random functions, we switch properties of F and G, and let
G (= F⊥) be an almost universal2 function, instead of F . In
this case, F is said to be an almost dual universal2 function.

Definition 6 (Almost dual universal2 function [13], [14]). A
random function F is called δ-almost dual universal2, if its
dual random function F⊥ is δ-almost universal2.

We note that for this type of F , parameter δ must satisfy
(2n − 2n−m)/(2n − 1) ≤ δ [14]. We also note that this
type of F is 2(1 − 2−mδ) + (δ − 1)2n−m-almost universal2
simultaneously [14]4.

a) Leftover hashing lemma: For this type of F as well,
an inequality of the type of (30) is known [13], [14],

EF d2(ρFKE |σE) ≤ 2−H2(ρZAE |σE)δ, (57)

for a normalized ρZAE .
If one applies relations (33) and (34) to this inequality, one

obtains an LHL of the conventional form,

EF d1(ρFKE) ≤
√

Tr(ρ)
√

2m−Hmin(ZA|E)ρ
√
δ (58)

for a sub-normalized ρZAE [13], [14].
On the other hand, if we instead apply the former half of

Theorem 4 to (57), we obtain an LHL of the new type.

4Conversely, the type of random function F that is defined in Definition 5
is also 2(1− 2−mδ) + (δ − 1)2n−m-almost dual universal2 [14].

Lemma 8 (LHL for PA using an almost dual universal2 hash
function, in terms of QPA). For a δ-almost dual universal2
hash function F , and for a sub-normalized state ρZAE ,

EF Q
PA,F (ρZAE) ≤ 2m−Hmin(ZA|E)ρδ. (59)

Unlike the δ-almost universal2 function of the previous
subsection (see the paragraph below Lemma 6), PA using
this type of F is secure even for δ exponentially larger than
one. Hence, this type of F provides a much larger class of
secure functions for PA. Exploiting this property, in Ref. [29]
we proposed many useful examples of F , such as, efficiently
computable hash functions requiring a small random seed.

b) Coding theorems: Again by applying Theorem 2 to
Lemma 8, we readily obtain the following lemma.

Lemma 9 (Coding theorems for EC and DC using an almost
universal2 function). For a δ-almost universal2 function G,
and for a sub-normalized state ρXAB ,

EGQ
EC,G(ρXAB) = EGQ

DC,G(ρXAB) (60)

≤ 2Hmax(XA|B)ρ−(n−m)δ.

This lemma generalizes and improves the first inequality
given in Theorem 1 of Ref. [22], which essentially says, in
our notation,

EGQ
DC,G(ρXAB) ≤ 4

√
2Hmax(XA|B)ρ−(n−m) (61)

for normalized ρXAB and for δ = 1.

VI. APPLICATION 2: EQUIVALENCE OF THE TWO
APPROACHES TO THE SECURITY PROOF OF QUANTUM KEY

DISTRIBUTION

There are two major approaches for the security proof of
quantum key distribution (QKD):
• Leftover hashing lemma (LHL)-based approach,

where one makes use of an LHL [1].
• Phase error correction (PEC)-based approach [16],

[17], [18], [19], [20], where one transforms a given QKD
protocol mathematically to a EC algorithm on the phase
degree of freedom of its sifted key.

Previously we have proved that these two approaches are
equivalent, in the sense that a proof of one approach can
always be converted to the one of the other approach without
affecting the resulting security bound [8].

Below, we will apply the results obtained in this paper to
simplify and improve our previous proof in Ref. [8]. The proof
below is improved in that it is valid for a larger classes of hash
functions. That is, the equivalence holds for the case where the
random function F for PA is almost universal2 [12] and almost
dual universal2 [13], [14], while previously [8] we treated only
the case where F is universal2 [11].

Further, utilizing the knowledge gained in this new proof,
we propose a method to simplify the PEC-based proof. That
is, we propose to evaluate the randomness of Alice’s phase
degrees of freedom by the smooth max-entropy, rather than
by the phase error rate. This method has an additional merit
that every step of the proof becomes equivalent to that of the
corresponding LHL-based proof. As a result, one is guaranteed
to reach exactly the same security bound as in the LHL-based
approach, without any extra factor.
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A. Quick review of the two approaches
We begin by reviewing these approaches concentrating on

typical cases, though not completely general.
1) Typical QKD protocol: First, we specify what we mean

by a typical QKD protocol.
a) Participants and their degrees of freedom: There are

two legitimate users, Alice and Bob, who want to share a
secure key, and an eavesdropper Eve.

We let space A be Alice’s n-qubit space for storing her
sifted key, and B be all other degrees of freedom of the
legitimate users. Note here that space B generally includes
Alice’s degrees of freedom, besides Bob’s.

We also let space E be all degrees of freedom of Eve.
b) Protocol: For the sake of simplicity we limit ourselves

with entanglement-based protocol. We note that we do not
lose generality here, since a prepare-and-measure protocols
can always be transformed to an entanglement-based protocol
by introducing ancillary spaces appropriately.

Initially, Alice, Bob, and Eve are in a state µABE . Alice
and Bob then perform the following protocol.

1. Sample measurement Alice and Bob measure their
reduced state µAB , and determine whether they abort the
protocol or not.

2. Corrected key generation Alice and Bob each performs
a measurement in space AB independently. They then
perform information reconciliation together, and generate
their corrected keys z ∈ {0, 1}n for Alice, and z′ ∈
{0, 1}n for Bob respectively.
We assume that Alice stores her corrected key z in space
A in the z basis, or in ZA basis. We denote by ρZAE
the sub-normalized state after this step of Alice’s z and
Eve’s degree of freedom E.

3. Secret key generation Alice and Bob each applies PA
using a random function F to their sifted keys z, z′

respectively, and generates their secret keys k, k′.
2) Security criterion of QKD: In order to show the security

of a QKD protocol as a whole, it suffices to bound the sum of
the failure probability of IR, εIR = Pr[Z 6= Z ′] (≥ Pr[K 6=
K ′]), and the security index of Alice’ secret key EF d1(ρFKE)
(see e.g. Remark 6.1.3 of Ref. [1]).

The probability εIR can easily be bounded using the theory
of classical error correcting codes.

As a result, the security analysis of QKD is reduced to that
of Alice’s secret key, i.e., to bounding EF d1(ρFKE).

3) Leftover hashing lemma (LHL)-based approach: For a
QKD protocol of the above type, a typical LHL-based proof
proceeds as follows.

a) Assumption: One assumes that the sample measure-
ment is designed so that the resulting sub-normalized state
ρZAE satisfies

Hth
min ≤ Hε

min(ZA|E)ρ (62)

with Hth
min being a predetermined constant.

One also assumes that an LHL for the random function
F has already been proved. In practice, it suffices to assume
that Alice and Bob use one of the examples of F that we
studied in Section V, i.e., universal2, δ-almost universal2 (with
δ sufficiently small), and δ-almost dual universal2 functions.

b) Security proof: As mentioned in Section VI-A2, in
order to prove the security of the QKD protocol, one needs to
bound the security index of Alice’s secret key, EF d1(ρFKE).
For this purpose, one uses an LHL.

For example, if F is universal2, EF d1(ρFKE) can be bound
by using an LHL (49). By substituting (62) to (49), one obtains
a security bound

EF d1(ρFKE) ≤ 2ε+
√

2m−H
th
min . (63)

Also for the case where F is δ-almost universal2, one can
obtain a similar security bounds using an LHL (54). For the
case of δ-almost universal2, one can use (58).

4) Phase error correction (PEC)-based approach: On the
other hand, a typical PEC-based proof proceeds as follows.

a) Assumption: This approach starts by deriving a virtual
state ρXAB . That is, one applies to state ρZAE (defined in step
2 of Section VI-A1b) the procedure given in Section IV-A and
Fig. 4, and generates ρXAB along with a tripartite state ρABE
in the standard form.

Then one supposes that Alice and Bob together perform EC,
with ρXAB regarded as the quantum channel on input Alice’s
codeword c(t) = 0 and message t = 05. One also assumes
that the sample measurement step and the random function F
are designed, so that the EC using the dual random function
F⊥ fails with a probability,

EF Q
EC,F⊥(ρXAB) ≤ QEC,th, (64)

where QEC,th is a predetermined constant.
b) Security proof: As mentioned in Section VI-A2, one

needs to bound the security index of Alice’s secret key,
EF d1(ρFKE). For this purpose, one uses an inequality

d1(ρfKE) ≤ 2
√

2
√
QEC,f⊥(ρXAB), (65)

which has been known previously (see e.g. Refs. [33], [8]).
By substituting condition (64) to (65), one obtains a security
bound

EF d1(ρFKE) ≤ 2
√

2
√

EF QEC,F⊥(ρXAB)

≤ 2
√

2
√
QEC,th, (66)

where used Jensen’s inequality is used in the first line.
c) Typical method for satisfying the assumption: In most

literature of the PEC-based approach, one designs the sample
measurement step and determines the upper bound QEC,th on
the average failure probability of the virtual EC, as follows.

1) One chooses a POVM N = {Ne |
∑
eN

e = IB}
in space B, and calculates the classical distribution
p(x, e) := Tr {ρXAB (|x̃〉 〈x̃|A ⊗Ne)}.

2) One designs the sample measurement step such that the
randomness of x seen in p(x, e) becomes sufficiently
small, for example, such that the phase error rate eph :=∑
x 6=0,e p(x, e) becomes sufficiently small.

5This corresponds to the situation where Alice always sends out c(t) = 0,
and Bob’s goal is always to recover y = 0. If this setting seems unnatural, one
may rewrite the situation such that the quantum channel is binary symmetric
(see Section III-B) by “twirling” or by randomizing the EC with bit flips in
the X basis (randomization by the Pauli Z operators). Such randomization is
always possible since ρZAE is invariant under the Pauli Z operators.
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3) Using the theory of classical EC, one obtains an upper
bound on the average failure probability of the EC. This
bound serves as QEC,th.

The POVM N here plays the same role as Ms of Section
III-B1c; i.e., they both provide a hint to boost the performance
of the decoder (cf. 3rd paragraph, Section III-B). The differ-
ence is that unlike Ms, N does not depend on the syndrome
s = f⊥(x).

d) Remarks: There are two remarks regarding the above
procedure.

First, in the context of the QKD, state ρXAB is often
called a virtual state since it is not necessarily realized in the
actual QKD protocol, unlike ρZAE . It is rather a mathematical
artifact introduced for simplifying security proofs. For the
same reason, the EC on the phase error correction considered
above is often called the virtual EC.

Second, while the bound (65) has been known previously,
it can alternatively be regarded as a consequence of the
equivalence of EC and PA, which we have shown in Section
IV. Indeed, if we combine (10) and Theorem 1, we obtain a
slightly weaker inequality d1(ρfKE) ≤ 4

√
QEC,f⊥(ρXAB).

B. How to convert one approach to the other

By using our results of Section IV, one can always convert
proofs of these two approaches to each other, while keeping
the bounds (63) and (66) essentially the same.

1) Conversion from the LHL-based to the PEC-based:
When given a LHL-based proof, one can always convert it
to an alternative proof of the PEC-based approach.

The basic idea is as follows. When given ρZAE , one can
always reconstruct the (sub-normalized) virtual state ρXAB ,
by using the procedure of Fig. 4. If one applies EC to ρXAB
thus obtained, the situation now becomes equivalent to the
PEC-based approach. In addition, the failure probability of the
EC there equals the security of PA in the original LHL-based
proof,

EF Q
PA,F (ρZAE) = EF Q

EC,F⊥(ρXAB). (67)

This is because, by definition, ρZAE and ρXAB here are related
via a standard form ρABE , and Corollary 1 can be applied. If
one further applies (65), one can recover essentially the same
bound as the original LHL approach, though one is working
in the PEC-based approach.

We will see this procedure in detail for the case where
F is universal2. (For the case where F is almost universal2
or almost dual universal2, one also can perform a similar
procedure using Lemma 6 or 8).

By the definition of the smooth min-entropy, there exists
a sub-normalized state ρ̄ZAE which is ε-close to ρZAE and
satisfies Hmin(ZA|E)ρ̄ = Hε

min(ZA|E)ρ. Let ρ̄XAB be the
virtual sub-normalized state corresponding to ρ̄ZAE . Then by
applying Corollary 1 and Lemma 4, one obtains

EF Q
EC,F⊥(ρ̄XAB) = EF Q

PA,F (ρ̄ZAE)

= 2m−Hmin(ZA|E)ρ̄ = 2m−H
ε
min(ZA|E)ρ

≤ 2m−H
th
min . (68)

This means that the situation is now equivalent to that of the
PEC-based approach where assumption (64) holds for ρ̄XAB
with QEC,th = 2m−H

th
min . Therefore by applying (66), one

obtains a bound,

EF d1(ρ̄FKB) ≤ 2
√

2
√

2
1
2 (m−Hth

min), (69)

and also the security bound for the actual state ρFKB ,

EF d1(ρFKB) ≤ 2ε+ 2
√

2
√

2
1
2 (m−Hth

min), (70)

which is identical to (63), except for the presence of the factor
of 2
√

2.
2) Conversion from the PEC-based to the LHL-based ap-

proach: Conversely, when given a security proof of the PEC-
based approach, one can always convert it to a proof of the
LHL-based approach.

To this end, one repeats the the reasoning of the first two
paragraph of Section VI-B1, and reaches Eq. (67). Then by
substituting condition (64) to (67), one obtains a LHL of the
new type (see Section III-A4),

EF Q
PA,F (ρZAE) ≤ QEC,th. (71)

The situation is now equivalent to that of the LHL-based
approach. If one further applies (10) to (71), one obtains

EF d1(ρKE) ≤ 4
√

Trρ
√

EF QPA,F (ρZAE)

≤ 4
√
QEC,th, (72)

which is the same as (66), except that it is looser by the factor
of
√

2.

C. Evaluating the phase randomness by the smooth max-
entropy

In Section VI-A4c, we explained a typical method used
in the PEC-based approach for designing the sample mea-
surement step and for determining the bound QEC,th on the
average failure probability of the virtual EC.

However, this method has a problem that there is no fixed
methodology for finding the appropriate POVM N .

We here propose a method to avoid this problem. Namely,
we point out that it is convenient to evaluate the randomness
of the phase degrees of freedom XA by the conditional max-
entropy Hε

max(XA|B)ρ, rather than by the phase error rate eph

mentioned in Section VI-A4c. In this method one can exploit
the coding theorems for EC (e.g. those derived in Section V-B)
to determine QEC,th, without being bothered by the choice of
the POVN N .

This method has an additional merit that every step of the
proof becomes equivalent to that of the LHL-based approach
of Section VI-A3. As a result, one is guaranteed to reach
exactly the same security bound as in the LHL-based approach,
without any extra factor.

1) PEC-based approach using the smooth max-entropy:
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a) Assumptions: As in Section VI-A4a, we derive the
(sub-normalized) virtual state ρXAB by the procedure given
in Section IV-A and Fig. 4. Then we assume the following
two items.

1) The sample measurement step is designed such that the
virtual (sub-normalized) state ρXAB ends up having the
smooth min-entropy bounded as

Hε
max(XA|B)ρ ≤ n−Hth

min. (73)

2) The random hash function F is universal2.

These two assumptions together guarantee that there exists a
approximate virtual (sub-normalized) state ρ̄XAB (≈ε ρXAB)
which satisfies condition (64) of the PEC-based approach, with
the parameter

QEC,th = 2m−H
th
min . (74)

To see this, note that by the definition of the smooth max-
entropy, there exists a sub-normalized state ρ̄XAB (≈ε ρXAB)
satisfying Hmax(XA|B)ρ̄ = Hε

max(XA|B)ρ. Then by apply-
ing the coding theorem for EC using F⊥ (Lemma 5) to this
ρ̄XAB ,

EF Q
EC,F⊥(ρ̄XAB) ≤ 2Hmax(XA|B)ρ̄−(n−m)

= 2H
ε
max(XA|B)ρ−(n−m)

≤ 2m−H
th
min . (75)

b) Security proof: Hence we can apply the PEC-based
proof of Section VI-A4 to the approximate virtual (sub-
normalized) state ρ̄XAB . By substituting (75) to (65), we
obtain

EF d1(ρ̄FKE) ≤ 2
√

2
√

2H
ε
max(XA|B)ρ−(n−m). (76)

Since ρ̄fKE ≈ε ρ
f
KE , we then have an LHL which is expressed

in terms of Alice’s phase degree of freedom XA,

EF d1(ρFKE) ≤ 2ε+ 2
√

2
√

2H
ε
max(XA|B)ρ−(n−m). (77)

By substituting condition (73) to (77), we obtain

EF d1(ρFKE) ≤ 2ε+ 2
√

2
√

2m−H
th
min . (78)

2) Equivalence with the LHL-based approach: The final
result (78) of the PEC-based proof above is the same as (63) of
the LHL-based proof, except for the presence of the factor of
2
√

2. This is because we are in fact using the same assumption
and the same inequality as in the LHL-based approach of
Section VI-A2:

• Condition (73) is equivalent to condition (62) of the LHL-
based approach.
This is because in the current situation, we have

Hε
min(ZA|E)ρ +Hε

max(XA|B)ρ = n (79)

due to Lemma 1.
• The coding theorem (Lemma 5) that we used to derive

(75) is essentially equivalent to the LHL (49), which is
used in the LHL-based approach.

To see this, we apply Theorem 2 (the equivalence of PA
and EC) to Lemma 5, and obtain an LHL of the new
type,

EF Q
EC,F⊥(ρXAB) = EF Q

PA,F (ρZAE)

≤ 2Hmax(XA|B)ρ−(n−m)

= 2m−Hmin(ZA|E)ρ (80)

If we then apply (10) to these inequalities, we obtain an
LHL of the conventional type, which differs from (49)
by a factor of 4.

Thus, in fact our proof method here is essentially the same
as the LHL-based approach that was specified in Section
VI-A2. The difference is that ours is re-formalized within the
PEC-based approach.

3) Advantages of our method: From the standpoint of the
PEC-based approach, we believe that this stronger version of
the equivalence is an additional merit of our method. As a
result, the advantages of our method against the typical PEC-
based approach can be summarized as follows.

1) It admits the use of the smoothing parameter ε.
2) The analysis is simple: One need not specify POVM

N , which was mentioned in Section VI-A4c. Once one
finishes evaluating Alice’s phase randomness in terms of
Hε

max(XA|B)ρ, the security bound readily follows from
the LHL (77).

3) The bound thus obtained is guaranteed to be the same
as in the corresponding LHL-based proof.

4) Improved bound using the uncertainty relation: Finally,
we note that the LHL expressed in terms of Alice’s phase
degree of freedom, (77), is not by itself a new result (though
we believe that our interpretation in the PEC-based approach
is). It is rather a direct consequence of the entropic uncertainty
relation (the former half of Lemma 1 of this paper), which was
shown previously by Tomamichel and coauthors [30], [34],
[10]. Moreover, (77) can be improved by using their result.

If we substitute (28) to (49), we obtain an LHL

EF d1(ρFKE) ≤ 2ε+
√

Tr(ρ)
√

2H
ε
max(XA|B)ρ−(n−m), (81)

which improves (77) by a factor of 2
√

2. If we then substitute
condition (73) to (81), we obtain a security bound

EF d1(ρFKE) ≤ 2ε+
√

2m−H
th
min , (82)

which again improves (78) by a factor of 2
√

2, and equals
(63) of the LHL-based proof exactly.

VII. SUMMARY AND OUTLOOK

We showed that quantum algorithms of privacy amplifica-
tion (PA), error correction (EC), and data compression (DC)
are equivalent, if we define the security of PA by using the
purified distance and if we generalize EC and DC by adding
quantum side information.

As an application of this equivalence, we took previously
known security bounds of PA, and converted them into cod-
ing theorems for EC and DC that have not been obtained
previously. We applied these results to simplify and improve
our previous result that the two prevalent approaches to
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the security proof of quantum key distribution (QKD) are
equivalent. We also propose a method to simplify the security
proof of QKD by using the insight gained in this analysis.

An interesting future direction is to generalize the equiva-
lence by using a dual pair of K-entropies [31] for defining the
indices Q for the three algorithms. For example, if we use the
von Neumann entropy to define the index Q for any one of
the three algorithms, and if we can still prove the equivalence,
then all the three algorithms will share the same definition for
their indices Q. Therefore, the equivalence in a stronger sense
will be established, and the three algorithms will become truly
indistinguishable.

APPENDIX A
PROOF OF THEOREM 1

In this section we will prove Theorem 1.
Since all terms in (22) are proportional to Tr(ρABE), it

suffices to consider the case where ρABE is normalized. In
this case, Theorem 1 follows immediately by combining Eq.
(8) and the following three lemmas.

Lemma 10. For a normalized state ρXAB and for a function
g, we have

QEC,g(ρXAB) = QDC,g(ρXAB)

= 1− 2−Hmin(XA|B,g(XA))ρ . (83)

Proof. From the definitions of EC and DC, it is evident that
their indices QEC,g(ρXAB) and QDC,g(ρXAB) can both be
rewritten as

QEC,g(ρXAB) = QDC,g(ρXAB)

= min
{Ms}

(
1−

∑
x

tr(ρ̃xMg(x),x)

)
. (84)

Next note that the decoding of DC is equivalent to the situation
where, given a state

τ =
∑
x

|x̃〉 〈x̃|A ⊗ ρ̃
x
B ⊗ |g(x)〉 〈g(x)|D (85)

(with D being a new ancillary space), one estimates x by
measuring spaces B,D. According to Ref. [9], the success
probability of this estimation equals 2Hmin(XA|B,D)τ . Then,
by noting Hmin(XA|B,D)τ = Hmin(XA|B, g(XA))ρ, we
obtain the lemma.

Lemma 11. For a dual pair of functions f, g, and for a
normalized state ρABE , we have

QPA,f (ρZAE) ≤ QEC,g(ρXAB). (86)

Proof. We begin by introducing a new notation: We denote
the i-th row of a matrix f (appearing in Definition 1) by fi,
and components of fi by fi1, . . . , fin. In this notation, for
example, the duality condition fgT = 0 can be written fi·gj =∑
k fikgjk = 0 for ∀i, j.
Next we note that the security index QPA,f for PA can be

rewritten as

QPA,f (ρZAE) (87)
= 1− max

σ≥0,Trσ=1
F (ΠPA,f (ρABE)KE , 2

−mIK ⊗ σE)2.

by using the algorithm ΠPA,f below, which is designed to
affect spaces A,E in the same way as the actual PA.
• Equivalent algorithm for PA (ΠPA,f ): Measure space
A using the operator Zfi = Zfi1 ⊗ · · · ⊗ Zfin (i =
1, . . . ,m), and store the result k ∈ {0, 1}m in space K.

Similarly, we also note that the performance index
QEC,g(ρXAB) of EC can be rewritten as

QEC,g(ρXAB)

= 1− max
{Ms}

F (|0̃〉 〈0̃|A ,Π
EC,g(ρABE)A)2. (88)

by using the algorithm ΠEC,g below.
• Equivalent decoding algorithm for EC (ΠEC,g):

1) Syndrome measurement: Measure space A using
an operator Xgi = Xgi1 ⊗ · · · ⊗ Xgin (i =
1, . . . , n−m), and record the result as the syndrome
s = (s1, . . . , sn−m) ∈ {0, 1}n−m.

2) Side information measurement: Measure space
B using the POVM Ms = {Ms,e}x′∈{0,1}n , and
obtain the estimated error pattern e.

3) Bit flip: Apply the operator Ze in space A.
The state |0̃〉 〈0̃|A appearing in Eq. (88) must take the form
|0̃〉 〈0̃|A⊗σE for some σ, when it is extended to spaces A,E.
Thus Eq. (88) can be rewritten further as

QEC,g(ρXAB) = (89)

1− max
{Ms},σ≥0,σ,Trσ=1

F
(
|0̃〉 〈0̃|A ⊗ σE ,Π

EC,g(ρABE)AE
)2
.

Further, if functions f, g are dual, the operator Zfi of ΠPA,f ,
commutes with Xgi and with Zz

′
of ΠEC,g . Thus algorithms

ΠPA,f and ΠEC,g also commute with each other. Therefore
we have ΠPA,f (ΠEC,g(ρ))KE = ΠEC,g(ΠPA,f (ρ))KE =
ΠPA,f (ρ)KE , and

1−QEC,g(ρXAB) (90)
≤ max
{Ms},σ≥0,Trσ=1

F
(
ΠPA,f (|0̃〉 〈0̃|A ⊗ σE)KE ,Π

PA,f (ΠEC,g(ρ)AE)KE
)2

= max
σ≥0,Trσ=1

F
(
ΠPA,f (|0̃〉 〈0̃|A ⊗ σE)KE ,Π

PA,f (ρ)KE
)2

= max
σ≥0,Trσ=1

F
(
IK ⊗ σE , ρfKE

)2

= 1−QPA,f (ρAE).

Lemma 12. For a dual pair of functions f, g, and for a
normalized state ρABE in the standard form, we have

Hmax(f(ZA)|E)ρ +Hmin(XA|B, g(XA))ρ = m. (91)

Proof. We continue to use the notation introduced in the
proof of Lemma 11. In this notation, the random number
K = f(ZA) in PA corresponds to measurement result by
operators (Zfi)A, and the syndrome S = g(XA) in EC
corresponds to that by (Xgj )A. Since these operators, (Zfi)A
and (Xgj )A, commutes with each other for a dual pair f, g,
we can decompose space A into A = A1A2, such that random
variable K equals the result of the z basis measurement
in the m-qubit space A1, and S equals the result of the
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x basis measurement in the n − m qubit space A2, i.e.,
ZA1 = K = f(ZA) and XA2 = g(XA).

In this case, Hmin(X|B,XA2)ρ = Hmin(XA1 |B,XA2)ρ
holds, and the relation (91), which we need to prove, takes
the form

Hmax(ZA1 |E)ρ +Hmin(XA1 |B,XA2)ρ = m. (92)

(i) Suppose that ρAE = ρZAE . In this case, if we measure
|ρ〉ABE = |ρ〉A1A2BE

in the XA2 basis, we obtain

ρA1XA2BE = 2−(n−m)
∑
t

|s̃〉 〈s̃|A2
⊗ |τs〉 〈τs|A1BE

. (93)

Alternatively, if we measure ρA1A2E = ρZA1ZA2E in the XA2

basis, we obtain

ρZA1XA2E = 2−(n−m)IA2
⊗ ρZA1E . (94)

Then if we further trace out B from (93), it should
equal (94) by construction. Thus all |τs〉 are a purifi-
cation of ρZA1E . Hence by applying Lemma 1 to |τs〉
and space A1, we see that Hmin(XA1 |B)τs = m −
Hmax(ZA1 |E)τs = m − Hmax(ZA1 |E)ρ. Also by applying
Proposition 4.6 of Ref. [10], we obtain 2Hmin(XA1 |XA2 ,B)ρ =
2−(n−m)

∑
s 2Hmin(XA1 |B)τs = 2Hmax(ZA1 |E)ρ , which proves

(92).
(ii) Suppose that ρAB = ρXAB . Then we have ρA1A2B =

ρA1XA2B = ρXA1XA2B , with ρABE being the purification of
all these states. By applying Lemma 1 to ρABE and space A1,
we obtain (92).

APPENDIX B
RELATION BETWEEN SECURITY CRITERIA OF PRIVACY

AMPLIFICATION

In section III-A, we introduced quantities QPA,f (ρZAE)
and d1(ρfKE) as the security index for random number K =
f(ZA) in PA. Besides these two quantities, some literature
also use security index for K,

d′1(ρfKE) := min
σ≥0,Tr(σ)=1

∥∥∥ρfKE − 2−mIK ⊗ σE
∥∥∥

1
. (95)

It is straightforward to show that this quantity can be
bounded by QPA,f (ρZAE) as

1−
√

1−QPA,f (ρZAE) ≤ 1

2
d′1(ρfKE) ≤

√
QPA,f (ρZAE),

(96)
if ρ is normalized (see from Eq. (9.110) of Ref. [15]).

It can also be shown that d′1(ρfKE) bounds the conventional
security index d1(ρfKE) as

d′1(ρfKE) ≤ d1(ρfKE) ≤ 2d′1(ρfKE), (97)

if ρ is normalized. The first inequality is immediate from the
definitions of d1(ρfKE) and d′1(ρfKE). The second inequality
can be shown as∥∥∥ρfKE − 2−mIK ⊗ ρE

∥∥∥
≤

∥∥∥ρfKE − 2−mIK ⊗ σE
∥∥∥

+
∥∥2−mIK ⊗ σE − 2−mIK ⊗ ρE

∥∥
=

∥∥∥ρfKE − 2−mIK ⊗ σE
∥∥∥+ ‖ρE − σE‖

≤ 2
∥∥∥ρfKE − 2−mIK ⊗ σE

∥∥∥ , (98)

where the last inequality holds from the monotonicity of the
trace distance.

Inequality (10) of section III-A follows from Eqs. (96) and
(97).

APPENDIX C
A NOTE ON THE CORRESPONDENCE OF STATES

In Sec. IV-A2b, we introduced the procedure T in order to
define the correspondence between the input state ρZAE of
PA, and ρXAB of EC and DC. However, contrary to our naive
expectation, repeating this procedure T twice does not in fact
yield the original state: A straightforward calculation gives

T (T (ρZAE)) = XORz
E′→A(ρZAE ⊗ 2−nIE′), (99)

T (T (ρXAB)) = XORx
B′→A(ρXAB ⊗ 2−nIB′), (100)

where the Hilbert spaces E′ and B′ are of the same size as
A, and XORb

C→A denotes XORing variable C on variable
A in basis b ∈ {z, x}. Note that T (T (ρZAE)) 6= ρZAE and
T (T (ρXAB)) 6= ρXAB .

Here we demonstrate that this fact does not compromise
the correspondence of the two types of states. The basic
observation is that states T (T (ρZAE)) and ρZAE are equiv-
alent as long as one is concerned with the security of PA;
and T (T (ρXAB)) and ρXAB are equivalent as long as the
performance of DC or EC is concerned.

To see this for the case of ρZAE , note that the state
XORz

E′→A(ρZAE ⊗ 2−nIE′) appearing in (99) describes a
classical ensemble of ρZAE where Alice’s classical variable
ZA is shifted (XORed) by a publicly known random variable
E′. Hence performing PA on this state is equivalent to per-
forming it on ρZAE in parallel, where Alice’s random bits k
is shifted by a public constant value f(e′). Since the security
of k cannot be affected by such shift, this situation is clearly
equivalent to PA on ρZAE .

We note that essentially the same argument also holds for
the case of ρXAB in DC and EC.
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