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Abstract—Network localization is capable of providing accu-
rate and ubiquitous position information for numerous wireless
applications. This paper studies the accuracy of cooperative
network localization in large-scale wireless networks. Based on
a decomposition of the equivalent Fisher information matrix
(EFIM), we develop a random-walk-inspired approach for the
analysis of EFIM, and propose a position information routing
interpretation of cooperative network localization. Using this
approach, we show that in large lattice and stochastic geometric
networks, when anchors are uniformly distributed, the average
localization error of agents grows logarithmically with the recip-
rocal of anchor density in an asymptotic regime. The results are
further illustrated using numerical examples.

Index Terms—Network localization, wireless network, effi-
ciency of cooperation, asymptotic analysis, information inequal-
ity.

I. INTRODUCTION

NETWORK LOCALIZATION is a key enabler of various

wireless applications requiring location-awareness [1]–

[3], including Internet-of-things [4]–[7], autonomous vehicles

[8]–[10], and big data [11]–[13]. In most outdoor environ-

ments, global navigation satellite system (GNSS) can pro-

vide meter-level accuracy for various location-based services,

however, their performance are severely degraded in harsh

environments such as urban canyons, underground and indoor

scenarios. Exploiting the cooperation among nodes, network

localization can provide satisfactory positioning performance

in these GNSS-denied environments [14]–[16].

Nodes in network localization fall into two categories:

agents with unknown positions and anchors with precisely

known positions. To elaborate further, anchors are usually

used to model base stations in cellular networks, road-side

units in vehicular networks, leading nodes in unmanned aerial

vehicle swarms, and access points in wireless local area

networks. Agents are widely used to model devices requesting

positioning services, such as users in cellular networks and

vehicles in vehicular networks.

Typically, agents communicate with neighboring nodes,

and infer their positions using some signal metrics ex-
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tracted from received signals including time-of-arrival (TOA),

time-difference-of-arrival (TDOA), and angle-of-arrival (AOA)

[17]–[27]. TOA and TDOA can be obtained by measuring the

propagation delay of the received signal, which can provide

ranging information between nodes. AOA is a metric charac-

terizing the incoming direction of the received signal, which

can be obtained using directional antennas or antenna arrays.

TOA- and TDOA-based network localization algorithms have

been well studied in the literature. Recently, driven by the

application of massive multiple-input multiple-output (MIMO)

technology in the forthcoming new generation of wireless sys-

tems, techniques combining ranging and bearing information

have also been studied [28]–[30].

In the classical non-cooperative scheme, network localiza-

tion is performed using only anchor-agent communication.

By contrast, the emerging scheme of cooperative network

localization also incorporates agent-agent communications. In-

tuitively, the inter-agent measurements provide additional posi-

tion information, and hence has the potential of improving the

localization accuracy and preventing the outage of localization

services, which has been verified empirically by many existing

works [18], [31]–[33]. However, these results are based on

the performance of specific localization algorithms, which

cannot reflect the essential relation between the localization

performance and network parameters.

In order to gain more insights into the cooperative local-

ization scheme, some performance limits have been studied

[34]–[42]. These limits have been exploited to address network

operation tasks such as power allocation [43], [44]. The tool

of squared position error bound (SPEB), which gives a lower

bound for the position mean-squared error (MSE) using the

inverse of equivalent Fisher information matrix (EFIM) [45]–

[47], are used extensively in these works.

Apart from finding applications in network operation tasks,

performance limits are also important in their own rights for

understanding the efficiency of cooperation among agents.

This could help us to determine whether the accuracy improve-

ment introduced by agent cooperation is worth the additional

system complexity. Especially, scaling laws of the localization

accuracy are particularly desirable for massive networks, since

obtaining the performance limits explicitly for these networks

would be computationally expansive. However, closed-form

expressions of the performance limits are only proposed for

some specific network topologies [48], and existing results on

the asymptotic localization performance in general large-scale

networks are mostly qualitative [49]–[52]. Especially, there is

a lack of investigation into the localization accuracy scaling

laws in multi-hop networks. For these networks, traditional

triangulation techniques fail to provide reliable localization

services, whereas cooperative network localization becomes
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TABLE I
COMPARISON BETWEEN THE ERROR SCALING LAWS PROPOSED IN THIS PAPER AND THOSE DEVELOPED IN EXISTING CONTRIBUTIONS.

Original

Contribution
Scheduling Measurement Type Anchor Deployment Error Scaling (as Na → ∞)

[45] Constant density Converges to a constant

[53]

Fully
cooperated
(optimal)

Distance only
(Nt = 1)

Located in the
innermost circle

Quadratic in the number of hops
from the anchors

Logarithmic in the radial direction;
Quadratic in the tangential direction

This paper Single anchor

Logarithmic in the radial direction;
Unbounded in the tangential direction

Both distance and
angle (Nt > 2)

Logarithmic in both directions

Distance only or both
distance and angle

(Nt = 1 or Nt > 2)
Density → 0

Logarithmic in (anchor density)−1

[54]–[56] Sequential
At least proportional to the square

root of (anchor density)−1

particularly useful. The essential difficulty of the asymptotic

analysis lies in the information coupling phenomenon [48],

because of which the EFIM does not possess a block-diagonal

structure, and is intractable to be inverted analytically.

Recently, we have developed a framework for understanding

the scaling laws of relative and absolute synchronization errors

in large networks [57]. The network synchronization problem

share some similarities with the cooperative localization prob-

lem. Especially, they both rely on the pairwise measurement

between adjacent nodes. However, it is not straightforward to

apply the results in [57] to the cooperative localization prob-

lem, since the analysis method therein relies on the fact that

the local parameter (i.e., the delay) in network synchronization

is a scalar, while the location parameters are typically vectors.

In this paper, we generalize the framework proposed in

[57] to aid the asymptotic analysis of network localization.

In particular, we develop a random walk interpretation of

the EFIM for location parameters, by introducing generalized

random walks having matrix-valued “pseudo-probabilities”.

This enables us to depict the asymptotic localization perfor-

mance quantitatively. For better clarity of illustration, we have

summarized the asymptotic error scaling laws proposed in this

paper, and contrasted them to the existing ones in Table I.

The contributions of this paper are summarized as follows.

• We propose a decomposition of the EFIM, based on

which we propose the concepts of nominal position

information (NPI) and efficiency of cooperation (EoC) to

characterize the information coupling between an agent

and its neighbors.

• We develop a random walk interpretation of the EoC.

Inspired by this interpretation, we describe quantitatively

an intuition of “position information routing” for network

localization.

• We show that in large lattice and stochastic geometric net-

works1, the average position MSE of agents grows only

1In this paper, we consider the theoretical models of lattice and stochastic
geometric networks instead of real-world networks, since massive cooperative
location-aware networks typically consist of mobile nodes, and hence do not
have fixed topologies. These models are also widely used in other research
works that analyze large-scale wireless networks [58]–[68].

logarithmically with the reciprocal of anchor density in

an asymptotic regime, if anchors are distributed uniformly

in the network.

• We show that for the concentric multi-hop network model

considered in [53] where each node is equipped with

a single antenna, the directional position error bound

(DPEB) [45] grows logarithmically on the direction to the

centroid of that region, while it increases quadratically

on the orthogonal direction.

The rest of this paper is organized as follows. Section II for-

mulates the network localization problem, specifies the system

model, and describes the general form of EFIM. In Section

III we conduct a random-walk-inspired analysis of EFIM, and

present the position information routing interpretation. Section

IV develops expressions for the asymptotic behavior of EFIM

and SPEB in large lattice and stochastic geometric networks.

We further discuss the practical implications of our results in

Sec. V. The analytical results are illustrated in Section VI, and

the conclusions are drawn in Section VII.

Notations: Throughout this paper, a, a, A, and A represent

random variables (scalars), random vectors, random matrices

and random sets, respectively; Their realizations, or the cor-

responding deterministic quantities, are denoted by a, a, A,

and A, respectively. The m-by-n matrix of zeros (resp. ones)

is denoted by 0m×n (resp. 1m×n). The m-dimensional vector

of zeros (resp. ones) is denoted by 0m (resp. 1m). The m-by-

m identity matrix is denoted by Im. Qn ∈ R
2n×2 denotes a

matrix given by [I2 I2 . . . I2]
T. These subscripts are omitted

if they are clear from the context. E
M,N
ij denotes a M × N

matrix with all zeros but a 1 on the (i, j)-th entry, which is

simplified as EN
ij when M = N . The notation [·]i,j denotes the

(i, j)-th 2× 2 sub-matrix of its argument; [·]r1:r2,c1:c2 denotes

a submatrix obtained by extracting the (2r1 − 1)-th to the

(2r2)-th row and the (2c1−1)-th to the (2c2)-th column of its

argument. [·]† denotes the Moore-Penrose pseudo inverse of

its argument, while [·]H denotes the Hermitian transpose of its

argument. tr{·} stands for the trace of a square matrix. The

Kronecker product between matrices A and B is denoted by

A ⊗ B. ‖x‖p denotes the lp norm, which represents the l2
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norm by default when the subscript is omitted. u(ϕ) denotes

a unit vector [cosϕ sinϕ]T, and Jr(ϕ) := u(ϕ)u(ϕ)T. The

function 1{·} takes the value 1 if its argument as a logical

expression is true, and 0 otherwise. The notation min(i)(S)
denotes the i-th smallest element in the set S.

The notation Ex{·} denotes the expectation with respect to

x, and the subscript is removed when there is no confusion.

The functions fx(x) and fx(x, θ) denote the probability den-

sity function (PDF) of x and the PDF of x parameterized by

θ, respectively. We also define the following function

b̄m(z, a(θ1, θ2, θ3), θ1, θ2) :=
∂ ln fz(z; a(θ1, θ2, θ3))

∂θ1

· ∂ ln fz(z; a(θ1, θ2, θ3))

∂θT
2

.

Some frequently-used Bachmann-Landau notations are given

as follows.

a(n) = O(b(n)) lim supn→∞ a(n)(b(n))−1 < ∞
a(n) = Ω(b(n)) lim infn→∞ a(n)(b(n))−1 > 0
a(n) = Θ(b(n)) a(n) = O(b(n)) and a(n) = Ω(b(n))

II. SYSTEM MODEL AND EVALUATION OF EFIM

Consider a network with Na agents and Nb anchors.

The indices of agents and anchors constitute sets Na =
{1, 2, . . . , Na} and Nb = {Na + 1, Na + 2, . . . , Na + Nb},

respectively. The position of node i is denoted by pi =
[pxi pyi]

T. The vector containing positions of all nodes is

denoted by pall = [pT
1 pT

2 . . . pT
Na+Nb

]T, and especially for

agents we denote p = [pT
1 pT

2 . . . pT
Na

]T. The angle from

node i to j is denoted by ϕij .

In general, all relative position measurements between node

i and j are measurements of the displacement vector dij :=
pi−pj . In this paper, we assume in particular that each node

i is equipped with an array of Nt antennas.2 The received

signals at node j from node i can be modeled as

rij(t) = Nt

Np∑

l=1

α
(l)
ij aja

H
i si(t− τ

(l)
ij ) + zij(t) (1)

where Np denotes the number of propagation paths, si(t) =
[si1(t) si2(t) . . . siNt(t)]

T denotes a set of orthonormal

transmitting waveforms, ai is the unit array steering vector

of node i, α
(l)
ij is the amplitude of the received signal of the l-

th path, and zij(t) denote the noise modeled as white complex

Gaussian processes. The propagation delay of the l-th path τ
(l)
ij

is given by c−1d
(l)
ij where c is the signal propagation speed

and d
(l)
ij represents the length of the l-th propagation path. We

denote by r the concatenated vector of the Karhunen-Loeve

expansions of all rij(t). We assume that there is a line-of-sight

(LOS) path corresponding to l = 1 for each link, meaning that

τ
(1)
ij = c−1‖pi − pj‖.

We denote the receiver sensitivity of each node i by prs,i,
below which the receiving power is not sufficient for success-

ful signal detection. For simplicity, we say that node i is in

the measurement range of node j (and denote this relation as

2Our results can also be applied to the case in which nodes are equipped
with different number of antennas after minor modifications.

i ∈ Nj), if we have α2
ij‖pi − pj‖−γ 6 prs,j where γ is the

path loss exponent and αi,j denotes the signal amplitude of

the LOS path; otherwise node j cannot receive measurements

from node i. The connectivity between nodes can then be

described using a graph Gnet = {Vnet, Enet}, where the vertex

set Vnet = Na ∪ Nb, and Enet is the set of edges given by

Enet := {(i, j)|i ∈ Vnet, j ∈ Vnet, i ↔ j}

where i ↔ j means i ∈ Nj (or j ∈ Ni) holds. Naturally, the

connectivity between agents constitutes another graph, denoted

by Gagt.

Apart from the agents’ positions, there are also some

unknown channel parameters denoted by η. In light of this, we

consider θ = [pT ηT]T as the complete vector of parameters.

For any unbiased estimator p̂ of p, the MSE matrix of p̂

satisfies

E
{
(p− p̂)(p− p̂)T

}
< J−1

e (p)

where Je(p) is the EFIM for p with respect to θ. To further

characterize the performance limit of a specific agent i, we

define the SPEB of agent i as

sp{pi} := tr
{
J−1
e (pi)

}

and the DPEB of agent i along the direction of u as [45]

dp{pi;u} := uTJ−1
e (pi)u.

Using SPEB, we have E{‖pi − p̂i‖2} > sp{pi}. Using

DPEB, the position error along the direction of u can be

bounded by E{‖uT(pi − p̂i)‖2} > dp{pi;u}.

According to [45, Theorem 1], the EFIM for p can be

written as

Je(p) = D −A (2)

where D := diag(D1, . . . ,DNa) with Di given by Di =∑
i↔j Jij , and

A := −
∑

i↔j,i∈Na,j∈Na

ENa

ij ⊗ Jij .

Matrix Jij denotes the contribution of measurement rij to the

position information of agent i (as well as j) given by

Jij = E
{
b̄m(rij , [dij κij ],pi,pj)

}
(3)

where κij denotes nuisance parameters related to channel

condition, transmission power, signal waveform, etc.

We further assume that the power transmitted from each

antenna is identical in every single node. Under previous

assumptions, it is known that in far-field environments, Jij

can be approximately decomposed as follows [35, Corollary

1]

Jij ≈ N2
t

(
ξ̃ij,rJr(ϕij) + ξ̃ij,tJr

(
ϕij +

π

2

))
(4)

where ξ̃ij,r := piβ
2ξij , ξ̃ij,t := pif

2
c ξijGij‖dij‖−2, pi

is the transmission power of node i, β is the transmitted

signal bandwidth, ξij is given by ξij = ζij‖dij‖−γ with

ζij being the ranging coefficient [69] determined by channel

and waveform parameters, and Gij denotes the squared array

aperture function (SAAF) determined by the shapes of the
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arrays equipped on nodes. When Nt = 1, (4) can be simplified

as

Jij ≈ ξ̃ij,rJr(ϕij). (5)

In general, Gij is determined by the orientations of node i
and j. As a special case, Gij is a constant with respect to

orientations in the case of uniformly oriented array (UOA)

[35, Definition 4]. When Nt = 1, we have Gij = 0, and

hence (4) reduces to (5).

III. INFORMATION COUPLING AND

RANDOM-WALK-INSPIRED ANALYSIS

To obtain the desired MSE lower bound, we have to take

the inverse of the EFIM for p derived in Section II, which is a

rather difficult task due to the notorious information coupling

phenomenon. To alleviate this difficulty, in this section we

propose a decomposition of EFIM inspired by the theory of

random walk on graphs.

A. Information Coupling and EFIM Decomposition

In a non-cooperative network, it is well-known that the

EFIM for agent i can be expressed as [46]

Je(pi) = Di =
∑

j∈Nb

Jij (6)

due to the block-diagonal structure of the EFIM for p. Here,

the second equality follows from the fact that agents can

only communicate with anchors in non-cooperative networks.

Unfortunately, this simple formula does not hold for cooper-

ative networks since the corresponding EFIMs are not block-

diagonal.

Intuitively, for any agent i in a cooperative network, the

neighboring agents can be viewed as “weak anchors” in the

sense that they provide less position information, due to their

position uncertainty. Hence we may have

Je(pi) = DiXi 4 Di

where the matrix Xi depicts the overall efficiency that agent

i utilizes the position information obtained from neighboring

nodes. Formally speaking, we have the following result.

Theorem 1: When the inverse of Je(p) exists, the EFIM of

agent i can be decomposed as

Je(pi) = Di(I +∆i)
−1 ∀i ∈ Na (7)

where ∆i :=
∑∞

n=1 T
(n)
ii < 0 with T

(n)
ij given by the

following recursion

T
(n)
ij =

Na∑

k=1

T
(n−1)
ik T

(1)
kj (8)

where

T
(1)
ij =





D−1
i Jij , i 6= j, i /∈ Nb;

I2, i = j, i ∈ Nb;

02×2, otherwise.

(9)

Proof: Please refer to Appendix I.

Considering the similarity between (6) and the definition

of Di, matrix Di can be interpreted as the nominal position

information provided by agent i’s neighbors when information

Agent 1

Agent 2

Agent 3

Agent 4

Anchor 5

Anchor 6

Anchor 7

1

1

1

d
−1

1
J15 d−1

1 J17d
−

1
1

J
1
2d

−
1

2
J
2
1

d−1
2 J25

d
−1

2
J27

d
−
1

2

J2
3

d−1
2 J24d −

12

J
2
6

d
−
1

3

J3
2

d
−

1

3
J
3
5

d−1
3 J36

d−1
4 J42

d
−
1

4

J46

d
−

1
4

J
4
7

Fig. 1. The transition diagram portraying the random walk characterized by
(11b) and (11c). The quantities next to the edges represent the corresponding
transition probability.

coupling is ignored, and hence we give the following defini-

tion.

Definition 1 (Nominal Position Information): The nominal

position information (NPI) of agent i is defined as Di.

Since EFIM characterizes the effective position information

acquired by a certain agent, it can be seen from (7) that

the term (I +∆i)
−1 quantifies the efficiency of cooperation

between agent i and its neighbors, and can be viewed as a

generalized version of the efficiency of cooperation (EoC)

defined in [57]. Note that EoC satisfies 0 4 (I +∆i)
−1 4 I

due to the non-negativity of ∆i, implying that the information

coupling among agents will lead to degeneration of cooper-

ation efficiency. As an extreme case, when all neighboring

nodes of agent i are anchors, there is no coupling between

agent i and its neighbors, and thus we have (I +∆i)
−1 = I

and Je(pi) = Di.

To simplify further discussions, we will denote

T := D−1A (10)

in the rest of this paper.

Remark 1: Most of the results in this subsection have their

analogue in [57]. However, it should be noted that the EoC

in this paper is a matrix instead of a scalar. Furthermore, the

quantity T
(n)
ij defined in (8) corresponds to the n-step transi-

tion probability in [57], but now it can no longer be viewed

formally as a probability, since it is a matrix. Fortunately, as

we shall discuss in more detail in Sec. III-C, these matrix-

valued quantities can still be regarded as probabilities in a

certain sense, and some classical results in the random walk

theory can still be applied.

B. Random-Walk-Inspired Formalism: The 1-D Toy Example

The EoC characterizes the effect of information coupling.

In fact, if we can obtain the EoC of an agent i, we can readily

compute its EFIM using (7) without inverting the whole EFIM

for p. However, (8) and (9) are still rather intricate, and hence

it is not clear that how EoC is related to other characteristics of

the network. To facilitate understanding, we first consider the

toy example of 1-D cooperative localization, in which all nodes
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locate along a line. Although this example is much different

from real-world scenarios, the technique used in the analysis

will be similar in spirit to those applied in the generic case.

In this simplified scenario, quantities such as Di, Jij and

∆i are all scalars, and hence we denote them as di, Jij and

∆i, respectively. Using the definition (10), the equations (7),

(8) and (9) can be rewritten as

Je(pi) =
di

1 + ∆i
∀i ∈ Na (11a)

T n = T n−1T (11b)

Tij =





d−1
i Jij , i 6= j, i /∈ Nb;

1, i = j, i ∈ Nb;

0, otherwise.

(11c)

respectively, where Tij denotes the (i, j)-th entry of matrix T .

In addition, we will denote the (i, j)-th entry of T n as T
(n)
ij .

Due to the non-negativity of Fisher information, the term Tij

is non-negative, and satisfies
∑

j∈Ni
Tij = 1 according to the

definition of D. In light of this, we may regard matrix T as the

transition probability matrix of a random walk, as portrayed

in Fig. 1.

From Fig. 1 we can see that anchors correspond to the

absorbing states of the random walk, since the probability of

staying at any state representing an anchor is 1. The quantity

∆i can now be expressed as

∆i =

∞∑

n=1

[T n]i,i (12)

which can be interpreted as the sum over all n-step returning

probabilities from node i to itself, where n = 1, 2, . . . ,∞. In

light of (12), we can rewrite the EoC of any agent i as

1

1 + ∆i
= 1− Fii (13)

where Fii is the hitting probability from node i to itself

[70, Sec. 1.6]. To elaborate a little further, Fii denotes the

probability that the random walk starting from i would ever

return to i. Formally, we have

Fii := P{xt = i, ∃t > 0|x0 = i}
where xt denotes the state of the random walk at time step

t. The equation (13) is a classical result in the random walk

theory [70, Sec. 1.5].

Another important fact about one-dimensional random

walks is that they are always recurrent when there is no

absorbing states [71, Sec. 28], meaning that we have Fii = 1
for all i ∈ Na if there is not any anchor in the network.

This implies that when there are some anchors, the hitting

probability Fii satisfies

Fii +
∑

j∈Nb

FNb∪{i}(i, j) = 1 (14)

where FNb∪{i}(i, j) denotes the probability that the random

walk starting from i would ever reach the set Nb ∪ {i} at

least once, and that it is at state j when it reaches Nb ∪ {i}
for the first time. In other words, (14) can be interpreted as

that a random walk starting from i would always reach the set

Nb ∪ {i} at least once.

Agent i

Agent Anchor

Route 1

Route 3

Route 2

Fig. 2. Graphical illustration of the “position information routing” interpreta-
tion. Here the ineffective route (route 1) does not include anchors, and hence
does not provide agent i with any position information. However, effective
routes (routes 2 and 3) do provide position information.

Combining (13) and (14), we have

1

1 + ∆i
=

∑

j∈Nb

FNb∪{i}(i, j) (15)

and hence

di = di
∑

j∈Nb

FNb∪{i}(i, j)

︸ ︷︷ ︸
Je(pi)

+diFii. (16)

Intuitively, we may now interpret EoC as the “position in-

formation routing” efficiency of an agent. To elaborate, (16)

shows that the NPI of agent i consists of two parts: effective

information (i.e., Je(pi)) coming from effective routes that

start from agent i and arrive at anchors before returning to

agent i, and ineffective information coming from ineffective

routes that returns to agent i before visiting any anchor, as

portrayed in Fig. 2. Since agent i does not have a priori

position information, it cannot provide itself any information

via ineffective routes. By contrast, anchors do provide position

information via effective routes.

C. Random-Walk-Inspired Formalism: The 2-D Scenario

In this subsection, we generalize the discussions in Sec.

III-B to the more practical 2-D scenario, and develop the “po-

sition information routing” interpretation of EoC. To elaborate,

the quantities Di, Jij , T
(1)
ij and ∆i have a strong resemblance

to their 1-D counterparts, except that they are 2× 2 matrices.

In particular, the term T
(1)
ij satisfies the (slightly modified)

normalization property of
∑

j∈Ni
T

(1)
ij = I2. However, it does

not satisfy the non-negativity property. Although T
(1)
ij does

not constitute a properly defined probability measure, in the

following discussions, we will show that many results in the

classical random walk theory, including (13), can be obtained

in a similar form by treating T
(1)
ij as pseudo-probability.

To formalize these ideas, we will use the notations defined

in Table II hereafter. Using these notations, matrix T
(n)
ij can

be expressed as

T
(n)
ij =

∑

ω∈Ωi,j
n

T (n)
ω . (17)
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TABLE II
NOTATIONS RELATED TO THE PSEUDO-PROBABILITIES.

Notation Definition Interpretation

Ωi,j
n

{
ω|ω ∈ Z

n+1, ω1 =
i, ωn+1 = j, ωk ∈ Na ∪
Nb, k = 1, 2, . . . , n+1

}

The set of all possible
sequences of node indices of
length n+ 1 that start with i

and end with j.

Ωi,j
n (S)

{ω|ω ∈ Ωi,j
n , ωk /∈

S ∀2 6 k 6 n}

A subset of Ωi,j
n comprising

the sequences that exclude
the nodes in the set S

(except i and j).

T
(n)
ω

T
(1)
ω1ω2

. . .T
(1)
ωnωn+1

The pseudo-probability of a
random walk in the original

network travelling from i to j
following path ω given by
ω = [ω1 ω2 . . . ωn+1]T.

T̃
(n)
ω

T̃
(1)
ω1ω2

. . . T̃
(1)
ωnωn+1

The pseudo-probability of a
random walk in the auxiliary

network travelling from i to j
following the path ω.

Furthermore, we may have the following result by simply

imitating (13).

Proposition 1: The EoC of agent i (I + ∆i)
−1 can be

rewritten as (as long as it exists)

(I +∆i)
−1 = I − Fii (18)

where Fij is defined as Fij :=
∑∞

n=1 F
(n)
ij with

F
(n)
ij :=

∑

ω∈Ωi,j
n ({j})

T (n)
ω . (19)

Proof: Please refer to Appendix II-A.

Apparently, Fij is an analogue of the hitting probability,

and hence will be referred to as the hitting pseudo-probability

hereafter. Following a similar line of reasoning as in the one-

dimensional case, next we will show the recurrence of the

“pseudo-random walk” in the absence of anchors. To formulate

this idea, we define the an auxiliary network of the original

network, in which there is no anchor.

Definition 2 (Auxiliary Network): The auxiliary network is

obtained by treating all anchors in the original network as

agents, for which the EFIM takes the following form

J̃e(pall) = D̃ − Ã ∈ R
2(Na+Nb)×2(Na+Nb) (20)

where D̃ := diag(D1, . . . ,DNa+Nb
) is an analogue of D but

includes the NPIs of nodes in Nb (previously anchors).

Similar to the matrix T in the original network, in the

auxiliary network we define

T̃ = D̃−1Ã. (21)

With these definitions we are able to show the recurrence of

the random walk over auxiliary networks.

Proposition 2 (Recurrence of Finite Auxiliary Networks):

For any network in which there is no anchor (including the

auxiliary network) with Na + Nb < ∞, if the graph Gnet is

connected, we have Fii = I2 for all i ∈ Na.

Proof: Please refer to Appendix II-B.

Similar to the formula Fii = 1 in the one-dimensional case,

Fii = I2 can be interpreted as “the random walk starting from

i returns almost surely”, in the sense of pseudo-probability.

Moreover, with the following definition

FS(i, j) =
∞∑

n=1

∑

ω∈Ωi,j
n (S)

T̃ (n)
ω (22)

we may obtain

Fii +
∑

j∈Nb

FR̃i
(i, j) = I2, ∀i ∈ Na (23)

using Proposition 1 and 2, where R̃i := {i} ∪ Nb. Thus the

EFIM for pi can be written as

Je(pi) =
∑

j∈Nb

DiFR̃i
(i, j), ∀i ∈ Na. (24)

Now we can see that in the 2-D scenario, we may have a

similar “position information routing” interpretation of EoC.

Indeed, using (22) and the definitions in Table II, we can derive

the following result from (24)

Di=
∑

j∈Nb

∞∑

n=1

∑

ω∈Ωi,j
n (R̃i)

DiT̃
(n)
ω

︸ ︷︷ ︸
Je(pi)

+

∞∑

n=1

∑

ω∈Ωi,i
n (R̃i)

DiT̃
(n)
ω

(25)

which takes a similar form as (16).

IV. LARGE-SCALE NETWORKS

In this section, we develop asymptotic expressions for

EoC (hence EFIM) in certain types of large-scale networks,

using the method introduced in Sec. III. Especially, we are

interested in the asymptotic EoC of agents as their distances

to the nearest anchors increase. Intuitively, EoC should be

decreasing with the distance to the nearest anchors. This may

be interpreted as an error propagation behavior, which is

a major issue in cooperative networks. To elaborate, when

anchors are spatially sparse, the agents being next to anchors

are likely to have the best localization accuracy, while those

being far from anchors may perform worse since they have to

rely entirely on neighboring agents that are themselves subject

to position uncertainty.

For simplicity, in this section we consider the case where

nodes are equipped with UOAs when Nt > 2, and hence the

orientations of nodes do not have an impact on the results.3

A. Large Lattice Networks

We first investigate the asymptotic EoC in large lattice

networks. The notion “lattice networks” considered here refers

to networks in which agents are located in a connected

subset of the space Z
2. They may be regarded as highly

simplified models of real-world large-scale wireless networks,

but one can typically obtain insightful results therefrom due

3For UOAs, this implies Nt > 3. When nodes are equipped with other
types of arrays, if their orientations can be modeled as independently uniform
distributed random variables, the results in this section can still serve as looser
lower bounds of the expected position MSE due to Jensen’s inequality.
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to their symmetry. In particular, by saying a lattice network is

“large”, we mean a network satisfying the following technical

conditions.

Condition 1: We consider a finite lattice network within an

expanding rotational symmetric region centered at the origin 0.

The network tends to an infinite lattice network in the sense

that Dnet → ∞, where Dnet := max{j,k}⊆Na∪Nb
‖djk‖ is

the network diameter. The centroid of the network does not

change as it expands. Whenever we say the distance between

two nodes ‖dij‖ → ∞, its rate of growth is lower than that

of Dnet, i.e., ‖dij‖ = o(Dnet).

To elaborate on our method of analysis, we take a brief look

back on the 1-D toy example. For an infinitely large lattice

network, it is known that the n-step transition probability T
(n)
ij

tends to be the probability density function of a Gaussian

distribution as n → ∞ [71, Sec. 7], taking the following form

T
(n)
ij ∼ 1√

2πnσ2
exp

{
− 1

2nσ2
(pi − pj)

2
}

(26)

where σ2 is a constant. The desired asymptotic behavior of

EoC can then be derived by calculating the asymptotic hitting

probabilities with the help of (26).

In its essence, (26) is a result of the celebrated central

limit theorem, which may be derived using the technique of

characteristic function [71, Sec. 7]. In light of this, we may

follow a similar line of reasoning in the analysis of the 2-

D scenario, while bearing in mind some technical differences

between transition probabilities and pseudo-probabilities. To

prevent the paper from being crammed with technical details

that are not directly related to the main topic, here we will

only present the main results, while the technicalities will be

deferred to Appendix III.

We first present the simple case where there is only a single

anchor ν located at the origin of the network, namely we have

pν = 0. Using the notations introduced in Sec. III-C, we have

R̃i = {ν, i} for any agent i.

1) Single Anchor, Nt > 2: When Nt > 2, each agent is

able to obtain both angular and distance information from its

neighbors. In this case, we have the following result on the

asymptotic behavior of EFIM.

Proposition 3 (Position Information Path Loss): For lattice

networks satisfying Condition 1, when ν is the only anchor,

for the Nt > 2 case, the SPEB of agent i scales as

sp{pi} = Θ(log ‖diν‖) (27)

as ‖diν‖ → ∞, if ‖diν‖ = o(Dnet/2− ‖pi‖).
Proof: Please refer to Appendix IV-A.

Proposition 3 implies that the position information an agent

acquired decreases logarithmically with the distance to the

anchor in an asymptotic regime, as long as agent i is closer to

the anchor than the network edge (as implied by the condition

‖diν‖ = o(Dnet/2− ‖pi‖)). This may be viewed as a law of

position information path loss. An interesting fact is that the

path loss of the receiving signal power does not have an effect

on the order of position information path loss. We will revisit

this fact in Sec. IV-B.

2) Single Anchor, Nt = 1: When Nt = 1, each agent is

only able to receive distance information from its neighbors.

Next we show that when there is only a single anchor in the

network, this will prevent agents from obtaining the position

information on the direction perpendicular to that from them

to the anchor.

Proposition 4 (Range-only Position Information Path Loss):

For lattice networks satisfying Condition 1, when ν is the only

anchor, for the Nt = 1 case, the EFIM of agent i is a rank-1

matrix given by

Je(pi) = λiνJr(ϕiν ). (28)

The term λiν satisfies

λiν = Θ
(
(log ‖diν‖)−1

)
(29)

as long as ‖diν‖ = o(Dnet/2− ‖pi‖).
Proof: Please refer to Appendix IV-B.

The fact that Je(pi) is rank-1 agrees with our intuition

that the network suffers from rotational ambiguity when there

is only one anchor. In fact, according to the discussions in

Appendix IV-B, (28) holds in any network (i.e., not limited to

lattice networks) where there is only a single anchor ν, while

the asymptotic behavior of λiν may vary.

3) Uniformly Distributed Anchors: Next we investigate

the scenario where anchors are uniformly distributed on a

lattice with constant density λanc. Specifically, the positions

of anchors take the following form

pi = (λanc)
− 1

2 [k l]T, k ∈ Z, l ∈ Z, ∀i ∈ Nb. (30)

Since anchors are spread out over the entire network area, it

may not be insightful to investigate the SPEB of a certain

agent, and hence we consider the average SPEB of agents.

To relate the previous results in the single anchor case to

the multi-anchor scenario considered here, we first conceive a

simple EFIM lower bound. Specifically, for any agent i, the

projection of its EFIM on an arbitrary direction corresponding

to the unit vector u, i.e., uTJe(pi)u, can be bounded from

below by

uTJe(pi)u > max
j∈Nb

uTJ(j)
e (pi)u (31)

where the notation J
(j)
e (pi) denotes the EFIM when anchor

j is the only anchor in the network. To elaborate, it is clear

that introducing new anchors into the network leads to a non-

negative contribution to Je(p), and hence to Je(pi), ∀i ∈ Na.

Therefore, using the definition of positive-semidefiniteness we

have

uT
(
Je(pi)− max

j∈Nb

J(j)
e (pi)

)
u > 0

yielding (31). With the help of (31), we generalize the results

in the single anchor case as follows.

Proposition 5: For lattice networks satisfying Condition 1,

when anchors are distributed as (30), the average SPEB of

agents in the “interior area” Iǫ of the network scales as

1

|Iǫ|
∑

pi∈Iǫ

sp{pi} = Θ(logλ−1
anc) (32)
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as λanc → 0+ for any constant ǫ > 0, if λ
− 1

2
anc = o(Dnet). The

area Iǫ is defined as Iǫ := {pi|‖pi‖ < (1−ǫ)Dnet/2, i ∈ Na}.

Proof: Please refer to Appendix IV-C.

Note that Proposition 5 is valid for both Nt > 2 and

Nt = 1. Intuitively, though a single anchor can only provide

position information on a specific direction in the Nt = 1 case,

uniformly distributed anchors can provide position information

from all directions. Therefore, in light of (31), the asymptotic

average SPEB can be bounded as (32).

B. Stochastic Geometric Networks

Stochastic geometric networks are networks in which nodes

are uniformly distributed within a specific region B ⊆ R
2.

Nodes in such networks constitute binomial point processes

[58]–[62]. Compared to lattice networks, they are better mod-

els for practical wireless networks, and have been widely

applied to model cellular networks, unmanned aerial vehicle

networks, and terrestrial vehicular networks [62]–[65]. In

particular, agents in networks employing cooperative local-

ization are typically mobile devices, and hence the stochastic

geometric modelling is often preferable to its deterministic

counterpart. However, stochastic geometric networks no longer

possess the translation-invariant property we relied substan-

tially on for proving the results in Sec. IV.

Nevertheless, some recent works indicate that large random

geometric graphs (RGGs) are in some sense “asymptotically

equivalent” to lattice graphs [72]. In light of this, in this

subsection, we extend some of the results in Section IV-A

to stochastic geometric networks. For technical reasons, we

assume that the networks satisfy the following condition.

Condition 2: We consider stochastic geometric networks

which remains to be connected as |Rnet| → ∞ with prob-

ability 1− o(N−1
a ) as |Rnet| → ∞.

1) Single anchor: Consider a stochastic geometric network

with a single anchor ν. Since the nodes are randomly lo-

cated within the network area, it may be difficult to depict

the asymptotic SPEB of any single agent. Instead, we will

characterize the average SPEB of agents within a certain

area. Specifically, we consider a ring-shaped region Sν(R, r)
centered at pν given by

Sν(R, r) :=
{
x
∣∣∣R− r

2
≤ ‖x− pν‖ 6 R+

r

2
, x ∈ R

2
}

where r is a positive constant. Roughly speaking, Sν(R, r)
contains all agents having distance approximately R to the

anchor.

Theorem 2: For a stochastic geometric network satisfying

Condition 2, if R → ∞ as |Rnet| → ∞ but RN−1
a → 0, when

Nt > 2, the average SPEB of the agents within Sν(R, r) scales

as
1

|Aν(R, r)|
∑

pi∈Sν(R,r)

sp{pi} = Θ
(
logR

)
(33)

with probability approaching 1 as Na → ∞, where Aν(R, r)
denote the set of agents located in Sν(R, r). For the Nt = 1
case, with probability approaching 1 we also have

1

|Aν(R, r)|
∑

pi∈Sν(R,r)

(
u(φiν )

TJe(pi)u(φiν)
)−1

= Θ
(
logR

)
.

(34)

… …

Agent Anchor Inter-Layer Link Intra-Layer Link

Fig. 3. Illustration of the concentric network model considered in [53]. Agents
in the first layer can communicate with anchors directly, while those in the
nth layer (n > 1) are n hops away from anchors.

Proof: Please refer to Appendix V.

In extended networks, it is known that if the agents do

not cooperate, the Fisher information an anchor provides for

an agent is proportional to the received signal-to-noise ratio

(SNR) [46], which typically exhibits a polynomial decay as the

distance between these two nodes increases due to the path loss

of receiving power. In contrast, Theorem 2 indicates that with

cooperation among agents, the rate of position information

path loss is only logarithmic, showing the great superiority of

cooperative localization over its non-cooperative counterpart.

2) Uniformly Distributed Anchors: Now we consider the

case that anchors constitute a binomial point process in the net-

work region Rnet with intensity λanc. As the network region

Rnet expands, λanc → 0 slowly such that λ−1
anc = o(|Rnet|),

namely there remains at least a constant number of anchors

in the network. We assume for convenience that the network

region Rnet is a circular area with diameter Dnet. For such

networks, we have the following result.

Proposition 6: The average SPEB of agents in the “interior

area” Iǫ of the network scales as

1

|Iǫ|
∑

pi∈Iǫ

sp{pi} = O(log λ−1
anc) (35)

with probability approaching 1 as Na → ∞, for any constant

ǫ > 0. The area Iǫ is defined as Iǫ := {pi|‖pi‖ < (1 −
ǫ)Dnet/2, i ∈ Na}.

Proof: Please refer to Appendix VI.

For a given anchor intensity λanc, the distance from a “typi-

cal agent” to the nearest anchor would be at the order of λ
− 1

2
anc.

In light of this, the logarithmic error scaling in Proposition 6

follows intuitively from Theorem 2, since the average SPEB

of “typical agents” would increase logarithmically with their

distances to the nearest anchors.

V. DISCUSSIONS

In this section we discuss the practical implications of our

results, and relate them to some existing works.
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A. Error Propagation in Concentric Multi-hop Wireless Net-

work Model

In the paper [53], the performance limit of cooperative

localization in a concentric multi-hop wireless network model

(for which Nt = 1) is investigated using methods from

stochastic geometry. In this network model, anchors locate

in the innermost circular area of the network, while agents

locate in the outer ring-shaped area, as illustrated in Fig. 3. It

is shown in [53] that the expected SPEB of an agent i scales as

Θ(‖diĀ‖2), where diĀ is the distance from pi to the network

center.

Using the methods proposed in this paper, we can obtain

further insights into the asymptotic localization performance

in this network. More precisely, from (31) and Theorem 2,

we see that the expected DPEB on the direction from pi to

the network center scales as Θ(log ‖diĀ‖), which is a far

lower increasing rate than Θ(‖diĀ‖2) in [53]. This implies that

the DPEB on the orthogonal direction scales as Θ(‖diĀ‖2).
Intuitively, since anchors are confined within a small region,

the network is subject to large rotational uncertainty, which

leads to the Θ(‖diĀ‖2) error scaling.

In summary, for concentric networks where Nt = 1, when

our main interest is to estimate the distance from agent i
to the network center, we can expect an error scaling of

Θ(log ‖diĀ‖) instead of Θ(‖diĀ‖2).

B. Trade-off Between Communication Complexity and Local-

ization Accuracy

Typical distributed cooperative localization algorithms in-

clude Bayesian message-passing-based methods [18] and dis-

tributed convex optimization-based methods [20]. These meth-

ods may attain near-optimal localization accuracy, but they

generally require iterative information exchange among agents,

leading to considerable delay and communication overhead.

By contrast, sequential multi-hop localization methods, as

exemplified by DV-hop-based methods [54], work in a layer-

by-layer manner and do not require iterations. Basically, DV-

hop-based methods consist of a distance estimation stage and

a position estimation stage. In the first stage, the distances

between each pair of agent and anchor that are n hops from

each other are approximated by the sum of all “raw” distance

estimates in each hop. The “raw” distance estimates can be

obtained by ranging techniques or from range-free metrics

such as average hop-distance [55] and number of common

neighbors [56]. In the second stage, the positions of all

agents are estimated locally based on the anchor-agent distance

estimates via standard non-cooperative localization algorithms,

e.g., weighted least squares.

Naturally, it is of great interest whether the relative simplic-

ity of DV-hop-based methods comes with the cost of accuracy

degradation. For simplicity, we assume that the initial distance

estimates for each hop have errors with constant variance, and

are mutually independent. Thus for any agent i, the MSEs

of the final distance estimates are at least proportional to

the number of hops between i and the nearest anchors. This

implies that for a given anchor density λanc, the average

localization MSE is at least linear in λ
− 1

2
anc. By contrast, from

Proposition 6 we see that for the same λanc, the optimal

localization MSE is at most logarithmic in λ−1
anc.

In summary, in large networks where anchors are sparse, the

localization accuracy of DV-hop-based methods are far from

optimal, in the sense that their average localization MSE scales

as Ω(λ
− 1

2
anc), as opposed to the optimal scaling O(log λ−1

anc).
This can be regarded as an accuracy penalty due to their low

communication overhead. For a more in-depth analysis on the

trade-off between communication complexity and localization

accuracy, one may have to resort to rate-distortion methods

[73].

C. Reducing the Complexity of Network Operation Techniques

in Massive Cooperative Localization Networks

Network operation techniques, including power allocation

and node placement methods, have been introduced to co-

operative localization networks to improve the localization

performance [43], [44]. For massive networks, the pseudo-

probability analysis in Appendix III may be used to derive

low-complexity optimization algorithms for network operation

tasks.

In particular, for a stochastic geometric network, a general

network operation problem may be formulated as follows

min
x

C(x) := Ep{tr
{
J
−1
e (p)

}
} (36)

where x denotes the parameters to be optimized, which corre-

sponds to the power allocation coefficients in power allocation

problems, or the positions of anchors in anchor placement

tasks. In practice, one may approximate the expectation opera-

tion in (36) by Monte Carlo sampling, and obtain the following

objective function

C̃(x) =
1

Ns

Ns∑

n=1

tr
{
J−1
e

(
p(n)

)}
(37)

where p(n) denotes the n-th sample of the random vector p,

and Ns represents the number of samples. The minimization of

C̃(x) can then be solved by means of gradient-based methods,

or gradient-free methods such as the Nelder-Mead algorithm

[74]. In either case, we assume that the optimization algorithm

requires K evaluations of the objective function C̃(x).4 A

naive method is to directly compute the objective function

(37), which involves inversion of the 2Na × 2Na matrices

J−1
e

(
p(n)

)
. In this case, the computational complexity of the

entire optimization algorithm is thus O(KNsN
3
a ), which could

be prohibitive for massive networks having large Na.

Alternatively, we may rearrange the objective function as

C̃(x) =
1

Ns

Ns∑

n=1

Na∑

i=1

tr
{
J−1
e

(
p
(n)
i

)}

=
1

Ns

Ns∑

n=1

Na∑

i=1

tr
{
D

(n)
i (I − F

(n)
ii )

} (38)

where the notations having superscript (n) denote the cor-

responding quantities in the n-th network sample. In the

4In gradient-based methods, the gradient can be approximately computed
using a fixed number of objective function evaluations.



COOPERATIVE LOCALIZATION IN MASSIVE NETWORKS 10

following discussion, we will omit the superscript when there

is no confusion. Under this formulation, the complexity is

given by O(KNsNaF ), where F denotes the complexity

of computing the matrix Fii. According to Theorem 3 in

Appendix III-B, the complexity of computing Fii is dominated

by computing the (2Nb + 1)× (2Nb + 1) matrix P−1

R̃i

. Note

that the matrix PR̃i
can be partitioned as

PR̃i
=

[
[PR̃i

]
1,1

[PR̃i
]
1,2:Nb+1

[PR̃i
]
2:Nb+1,1

PNb

]
.

The complexity of computing P−1

R̃i

can be reduced by ex-

ploiting the partitioned structure. Specifically, the inverse of

the matrix PNb
can be computed in advance, and reused

when computing PR̃i
for different i. Finally, for massive

networks, the 2 × 2 blocks in PR̃i
may be approximated

by the asymptotic formula in Proposition 9. We now see

that the complexity of the entire optimization algorithm is

given by O[KNs(NaN
2
b +N3

b)], which is substantially lower

than the O(KNsN
3
a ) complexity of the naive approach when

Nb ≪ Na.

VI. NUMERICAL RESULTS

In this section we illustrate some results we obtained with

numerical examples.

A. Illustration of the Proposed Scaling Laws

In this subsection, we provide numerical results demon-

strating the scaling laws of localization error discussed in

Sec. IV. Unless stated otherwise, the parameters take the

following values by default in all simulations. The path loss

exponent γ = 3, signal bandwidth β = 10MHz, the ranging

coefficient (defined after (4)) ζij = 1 for all i ↔ j, the carrier

frequency fc = 2GHz, and the SNR measured at 1m from the

transmitting antenna is 40 dB. All nodes locate in a disk with

diameter Dnet, and the node density is 2.5 × 10−3 m−2. For

the Nt > 2 case, we consider the scenario where Nt = 3 and

antennas are arranged in a uniform circular array with diameter

0.3m. Receivers on the nodes are able to detect signals when

SNR > −15 dB.

First we investigate the law of position information path

loss in both lattice and stochastic geometric networks under

the Nt > 2 case. Fig. 4 illustrates the SPEB of agents in the

single anchor scenario. A single anchor locates at the network

centroid (0m, 0m), and the network diameter Dnet varies from

500m to 2000m. For stochastic geometric networks, the results

are averaged over 1000 network snapshots. As implied by

Proposition 3 and Theorem 2, in both types of networks, the

SPEB of agents grows logarithmically as the distance from

the anchor increases, except that there is sudden increment in

SPEB at the network edge since the agents at network edge

can only communicate with fewer neighbors.

To further illustrate the network boundary effect, we con-

sider the case where there are “holes” in the network region

that do not contain any node. This could be related to practical

scenarios where the network region contains large obstacles.

In particular, we consider a stochastic geometric network with

10
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1.8

2.3

Lattice Networks

Stochastic Geometric Networks

Distance to Anchor [m]

Dnet =500, 1000, 2000m

Fig. 4. SPEB as a function of the distance to the single anchor in lattice and
stochastic geometric networks under the Nt > 2 case for varying network
diameter Dnet.
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Fig. 5. Illustration of a stochastic geometric network containing four circular
“holes”, each with radius rh = 100m. The crosses represent agents, while a
single anchor marked by a circle locating at the center of the network region.

Dnet = 1000m containing four circular holes centered at

(300m, 300m), (300m, 700m), (700m, 300m), and (700m,

700m), respectively. Each hole has radius rh. A single anchor

locates at the network centroid (500m, 500m). An instance of

the network is shown in Fig. 5. Under previous assumptions,

we portray the relationship between the SPEB of agents and

their distances to the anchor is shown in Fig. 6. We observe

that when the distance to the anchor is larger than a threshold

(around 150m), the SPEB of agents in networks containing

holes starts to deviate from that of the network without holes.

Especially, the deviation is exacerbated when rh is larger, since

the boundary effect caused by the holes becomes stronger as

rh increases.

Next we illustrate the asymptotic behavior of network

average SPEB in the uniformly distributed anchor scenario.

We consider the Nt = 1 case in both lattice and stochastic ge-

ometric networks. In lattice networks, anchors are distributed

according to (30), while in stochastic geometric networks they

form a binomial point process with the same intensity λanc.

For such networks with diameter Dnet = 2000m, the average
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Fig. 6. SPEB vs. the distance to the single anchor in stochastic geometric
networks with Dnet = 1000m under the Nt > 2 case containing four circular
“holes” with various radius rh.
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Fig. 7. Network average SPEB as a function of the reciprocal of anchor

density λ−1
anc in lattice and stochastic geometric networks where anchors are

uniformly distributed under the Nt = 1 case.

SPEB of all agents in the networks are shown in Fig. 7. Results

for stochastic geometric networks are averaged over 1000
network snapshots. It can be seen that the average SPEB grows

logarithmically as the reciprocal of density λ−1
anc increases, as

indicated by Propositions 5 and 6. The abrupt increment of

average SPEB when λ−1
anc is large is due to the network edge

effect, which is more significant when there are fewer anchors

in the network.

We then demonstrate the impact of path loss exponent γ on

the SPEB of agents in lattice networks. Here we focus on the

single anchor scenario, and two different values of network

diameter are considered: Dnet = 1000m and Dnet = 2000m.

The path loss exponent γ varies from 3 to 3.5, and the SPEB

as a function of the distance to the anchor is plotted in Fig.

8. Similar to Fig. 4, all SPEBs grows logarithmically as the

distance to network centroid increases, except for those agents

located at the network edge. However, the slope of these curves

are different. As γ increases, agents receive less information

from their neighbors, and hence the SPEB increases faster.

Finally, we illustrate the localization performance under the

10
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5
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Distance to Anchor [m]

γ=3.5

γ=3.25

γ=3

Fig. 8. SPEB as a function of the distance to the single anchor in lattice
networks under the Nt = 2 case for varying path loss exponent γ.
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Fig. 9. The radial and tangential DPEB in lattice networks with varying
network diameter Dnet under the Nt = 1 case. Left: radial DPEB; right:
tangential DPEB.

Nt = 1 case in the concentric network model discussed in

Sec. V-A. We consider lattice networks in which around the

network centroid, four anchors are located at (±20m, 0m) and

(0m,±20m), respectively. The DPEBs of agents in networks

with Dnet varying from 500m to 2000m are illustrated in Fig.

9. Here, radial DPEB refers to the DPEB on the direction from

an agent to the network centroid, while tangential DPEB refers

to the DPEB on the orthogonal direction. It can be seen that the

radial DPEB grows in a similar way as the SPEB in the Nt > 2
case illustrated in Fig. 4. In addition, the tangential SPEB

increases quadratically as the distance to the network centroid

increases. These results are consistent with Proposition 3 and

the discussions in Sec. V-A.

To better illustrate the behavior of DPEB when Nt = 1,

Fig. 10 shows the error ellipses in both lattice and stochastic

geometric networks. For better demonstration, only part of the

networks is shown in the figure. The error ellipse of agent i
is defined as the set of point x satisfying

(x− pi)
TJe(pi)(x− pi) = 1.

Here the network diameter Dnet = 500m. Three anchors
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(a) Lattice Network (b) Stochastic Geometric Network

Fig. 10. Error ellipses of agents in lattice and stochastic geometric networks
in the constant anchor region scenario when Nt = 1. Positions of anchors
are marked with “x”.

locate at a corner of the scene, marked by “x” in Fig. 10. From

the figure it is clear that the tangential DPEB contribute most

to the SPEB of agents, in either lattice networks or stochastic

geometric networks. Furthermore, the length of major axes of

the ellipses increase linearly with the distance to the anchors,

as implied by Proposition 3 and the discussions in Sec. V-A.

B. Comparison with Actual Algorithms

In this subsection, we compare the proposed error scaling

laws with actual algorithms. In particular, we consider two al-

gorithms, including a centralized algorithm (which is expected

to be near-optimal) and a sequential algorithm.

For the simulations presented in this subsection, we consider

the practical scenario of a wireless sensor network employing

pairwise received signal strength (RSS) and AOA measure-

ments. Specifically, we assume that the network resides in a

disk with diameter Dnet = 400m, in which a single anchor

locates at the network center. Agents are randomly distributed

in the network region with density 3 × 10−3m−2. The RSS

measurements are obtained according to the channel model in

the “park” scenario described in [75], given by

yRSS
ij = PT − L0 − 10γ log10(‖dij‖d−1

0 ) + nshadow (39)

where dij is the displacement vector between node i and j,

PT = 5dBm denotes the transmitting power, L0 = 31dB de-

notes the path loss at the reference distance d0 = 1m, γ = 3.69
represents the path loss exponent [75], and nshadow models

the shadowing effect, which follows a zero-mean Gaussian

distribution with standard deviation σRSS = 1.42dB [75]. The

bearing measurement errors are modelled as zero-mean von

Mises distributed random variables with standard deviation

σAOA = 5 degree [76]. Each node can acquire pairwise

measurements with neighbors within range Rmax = 43m,

corresponding to a receiver sensitivity of −100dBm [75].

For the centralized algorithm, we consider an iterative

approximate maximum likelihood (AML) estimator, which

approximates the likelihood function corresponding to the each

pairwise measurement as 2-D Gaussian distributions, with an

iterative refinement on the estimates of measurement vari-

ances. Spefically, in the ℓ-th iteration, the likelihood function

for a pair of nodes i and j is approximated as follows

g(ℓ)
αij ,rij (αij , rij ;pi,pj)

∝ exp
{
− 1

2
(pi−pj−d̂ij)

TUijΛ
(ℓ)
ij UT

ij (pi−pj−d̂ij)
}

(40)

where d̂ij = rij [cosαij sinαij ]
T is an estimate of the

displacement vector dij between node i and j based on the

range and bearing measurements, the unitary matrix Uij is

given by

Uij =

[
cosαij − sinαij

sinαij cosαij

]

and the diagonal matrix Λ
(ℓ)
ij denotes the estimate of

the measurement variances at the ℓ-th iteration, given by

diag
(
(σ̂

(ℓ)
r,ij)

−2, (σ̂
(ℓ)
t,ij)

−2
)
. The estimates σ̂

(ℓ)
r,ij and σ̂

(ℓ)
t,ij are

given by

σ̂
(ℓ)
r,ij =

ln 10σRSS

10γ
·
∥∥∥p̂(ℓ−1)

i,AML − p̂
(ℓ−1)
j,AML

∥∥∥

σ̂
(ℓ)
t,ij = σAOA ·

∥∥∥p̂(ℓ−1)
i,AML − p̂

(ℓ−1)
j,AML

∥∥∥
(41)

where p̂
(ℓ−1)
i,AML denotes the position estimate of node i in the

(ℓ − 1)-th iteration. For ℓ = 1, the estimates σ̂
(1)
r,ij and σ̂

(1)
t,ij

are obtained by replacing

∥∥∥p̂(ℓ−1)
i,AML − p̂

(ℓ−1)
j,AML

∥∥∥ in (41) with

the range estimate rij . The bearing estimate αij is obtained

directly using the AOA measurement, while the range estimate

rij is computed as

rij = 10(PT−L0−yRSS
ij )(10γ)−1 · d0.

After some manipulations, one could rearrange the like-

lihood function of p into the following standard form of

Gaussian Markov random fields

gα,r(α, r;p) ∝ exp
{
− 1

2
pTP

(ℓ)p+
(
h
(ℓ)

)T
p
}

where P
(ℓ)

denotes the precision matrix5, h
(ℓ)

represents

the linear coefficients, while α and r represent the vectors

containing all bearing and range measurements, respectively.

The closed-form AML estimate at the ℓ-th iteration can thus

be obtained as

p̂
(ℓ)
AML =

(
P

(ℓ)
)−1

h
(ℓ). (42)

A straightforward computation of the matrix
(
P
(ℓ)

)−1
would

require centralized operations, which may be unrealistic for

large networks. Fortunately, some distributed algorithms such

as Gaussian belief propagation are shown to be capable of

obtaining the solution in (42) [77], and hence may be viewed

as distributed implementations of the AML estimator.

As for the sequential algorithm, we consider a sequential

and non-iterative implementation of the aforementioned AML

estimator. To elaborate, the agents that can directly obtain

measurements with the anchor, which will be referred to

as the “1-hop agents”, estimate their positions in the first

5We are slightly abusing the notations here. Please do not confuse the
precision matrix with the potential kernel discussed in Appendix III-B.
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Fig. 11. The MSE of the iterative AML estimator and the sequential estimator,
as functions of the distance to the single anchor located at the network
centroid. The averaged SPEB is also plotted as a benchmark.

round. In the subsequent rounds of the algorithm, e.g. the n-th

round, the n-hop agents estimate their positions based on their

measurements with the (n− 1)-hop agents that are treated as

“virtual anchors”. More precisely, the sequential estimator for

agent i is

p̂i,Seq = P
−1
i hi (43)

where Pi ∈ R
2×2 and hi ∈ R

2 are constructed using the

measurements between agent i and its neighboring virtual

anchors. To avoid iteration, the estimate of the measurement

variances of each pair of nodes i and j is fixed at its initial

value Λ
(1)
ij .

The localization MSE of an agent i based on the iterative

AML estimator, as well as that of the sequential estimator, is

illustrated in Fig. 11 as a function of the distance between pi

and the anchor. The results are averaged over 1000 network

snapshots, and the averaged SPEB given by

1

Nsnapshot ·Na

Nsnapshot∑

n=1

Na∑

i=1

sp{pi,n}

is also presented as a benchmark. Here, Nsnapshot = 1000 is

the number of snapshots, and pi,n denotes the true position

of agent i in the n-th snapshot. We may observe from the

figure that the sequential estimator exhibits approximately a

linear error scaling with respect to the distance to the network

centroid (i.e. the anchor), which is far from the average SPEB.

This corroborates our discussion in Sec. V-B.

To observe the performance of the iterative AML estimator

more closely, we provide a zoomed-in view of the curves in

Fig. 12. As it can be seen from the figure, the AML estimator

exhibits a similar asymptotic behavior to the averaged SPEB

in the sense that it grows logarithmically as the distance to the

network centroid increases. The residual error, which appears

to be constant (with respect to the distance to the network

centroid), can be interpreted as a performance penalty due to

the approximation.

To conclude, these simulation results suggest that the lower

bounds of localization error that we proposed are likely to

10
1

10
2

Distance to the Anchor [m]

0.4

0.8

1.2

1.6

2
Iterative AML Estimator

Averaged SPEB

Fig. 12. Comparison between the MSE of the iterative AML estimator and
the corresponding averaged SPEB, as functions of the distance to the anchor.

be attainable by actual algorithms. Especially, from the local-

ization performance of the iterative AML estimator we could

observe the logarithmic scaling law that we have predicted in

the theoretical analysis. The sequential estimator is not capable

of attaining the bounds, but it exhibits an error scaling behavior

as expected in Sec. V-B.

VII. CONCLUSION

This paper provides a new approach to understanding the

effect of cooperation among agents in cooperative network

localization. By introducing the NPI-EoC decomposition of

EFIM, we develop a random-walk-inspired formalism for the

treatment of EoC. We provide an interpretation of this analysis,

showing that the EoC among nodes can be regarded as the effi-

ciency of position information routing from anchors to agents.

Moreover, following this line of reasoning we show that in

large lattice and stochastic geometric networks, the SPEB of

an agent scales logarithmically as the reciprocal of anchor

density increases, and interpret this result as a consequence of

position information path loss. The scaling laws of localization

performance proposed in this paper provide a new set of

insights into the network localization problem from a network-

level perspective, and can serve as guidelines to network

deployment and operation tasks in large-scale networks.

APPENDIX I

PROOF OF THEOREM 1

Proof: Denoting T = D−1A, from (2) matrix Je(p) can

be rewritten as

Je(p) = D(I − T ). (44)

Expanding (I − T )−1 as a matrix power series, the inverse

EFIM can be expressed as

J−1
e (p) =

(
I +

∞∑

n=1

T n

)
D−1. (45)
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The power series converges as long as the inverse of Je(pi)
exists. Hence the EFIM for agent i takes the following form

Je(pi) = Di

(
I +

∞∑

n=1

[T n]i,i

)−1

. (46)

Comparing (7) and (46), it now suffices to showing that

∞∑

n=1

[T n]i,i =
∞∑

n=1

T
(n)
ii (47)

for all i, j ∈ Na and that ∆i < 0. Note that the matrix T can

be expressed as

T =
∑

i/∈Nb

∑

j↔i

(
ENa

ij ⊗ (D−1
i Jij)

)
. (48)

We can construct another matrix T ∈ R
2(Na+Nb)×2(Na+Nb)

using T
(1)
ij as

T =
∑

i∈Na∪Nb

∑

j∈Na∪Nb

ENa+Nb
ij ⊗ T

(1)
ij (49)

which can be partitioned as

T =

[
T

∑
i∈Na

∑
j∈Nb

E
Na,Nb

ij ⊗ T
(1)
ij

02Nb×2Na I2Nb

]
.

(50)

By this construction we have [T n]i,j = T
(n)
ij . Furthermore,

from (50) we have [T n]1:Na,1:Na = T n, which implies (47).

Now note that J−1
e (pi) = (I+∆i)D

−1
i is a real symmetric

matrix, and that J−1
e (pi) < D−1

i . It then follows that ∆i < 0,

which completes the proof.

APPENDIX II

PROOF OF RESULTS IN SECTION III-C

A. Proposition 1

Proof: Expressing T
(n)
ij in terms of Ωi,j

n , we have

T
(n)
ij =

∑

ω∈Ωi,j
n

T (n)
ω

=

n∑

m=1

∑

α∈Ωi,j
m ({j})

T (m)
α

∑

β∈Ωj,j

n−m

T
(n−m)
β

=

n∑

m=1

F
(m)
ij T

(n−m)
jj .

(51)

Therefore ∆i can be written as

∆i =

∞∑

m=1

F
(m)
ii

∞∑

n=m

T
(n−m)
ii = Fii(I +∆i). (52)

Hence we have I +∆i = I +Fii(I +∆i) implying (18).

B. Proposition 2

Proof: To prove Fii = I2, it is equivalent to show that

both eigenvalues of
∑m

n=0 T̃
(n)
ii tend to infinity as m → ∞.

A sufficient condition is that limn→∞ T̃
(n)
ii is full-rank. From

(20) and (21) we see that

I − T̃ = D̃−1J̃e(pall) (53)

implying that the eigenspace of T̃ corresponding to eigenvalue

1 is the null space of D̃−1J̃e(pall). Thus, as long as matrix

D̃−1J̃e(pall) is rank-deficient, the matrix limit T̃∞ exists,

with its eigenvalues being either 1 or 0. In light of this,

the column space of T̃∞ is the null space of D−1J̃e(pall).
Since there is no anchor in the auxiliary network, matrix

D−1J̃e(pall) is indeed rank-deficient with deficiency of at

least 2 (corresponding to two-dimensional translation [78]).

Therefore, as long as the network is finite, the null space of

D−1J̃e(pall) is at least two-dimensional.

More precisely, when only the range information is available

(corresponding to Nt = 1), the null space of J̃e(pall) is known

to be 3-dimensional, spanned by the vectors [78]

v1 ∝ [1 0 . . . 1 0]T, v2 ∝ [0 1 . . . 0 1]T,

v3 ∝ [u(φ1 + π/2)T . . . u(φNa+Nb
+ π/2)T]T

(54)

where φi is the angle from node i to the network centroid.

Furthermore, the null space of J̃e(pall) is spanned by v1 and

v2 when both range and bearing information is available. In

either case, limn→∞ T̃
(n)
ii = D−1

i can be seen to be the

product of two full-rank matrices hence is full-rank, and the

proof is completed.

APPENDIX III

THE PSEUDO-RANDOM WALK FORMALISM

A. Additional Notations

To facilitate the analysis, we define

HS(i, j) =






FS(i, j), i /∈ S;

I2, i ∈ S, i = j;

02×2, i ∈ S, i 6= j.

(55)

In addition, the quantity FS(i, j) will also be used extensively

in the analysis, and hence we reproduce its definition here as

FS(i, j) =
∞∑

n=1

∑

ω∈Ωi,j
n (S)

T̃ (n)
ω . (56)

We may also rearrange HS(i, j) and FS(i, j) in a compact

matrix form as

HS =
∑

i∈Na∪Nb

∑

j∈S
ENa+Nb

ij ⊗HS(i, j)

FS =
∑

i∈Na∪Nb

∑

j∈S
ENa+Nb

ij ⊗ FS(i, j) .
(57)
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FR̃i
(k, l) =





[
P−1

R̃i

]
m,n

−
(∑

j∈R̃i

[
P−1

R̃i

]
min(j)(R̃i),m

)
Z−1

R̃i

(∑
j∈R̃i

Dn

[
P−1

R̃i

]
n,min(j)(R̃i)

)
, m 6= n;

I2 +
[
P−1

R̃i

]
n,n

−
(∑

j∈R̃i

[
P−1

R̃i

]
min(j)(R̃i),n

)
Z−1

R̃i

(∑
j∈R̃i

Dn

[
P−1

R̃i

]
n,min(j)(R̃i)

)
m = n.

(65)

B. Potential Kernel

For the asymptotic analysis task considered in this paper,

the central problem is to characterize the position information

an agent i received from an anchor j as a function of

their relative displacement dij . Intuitively, the amount of

position information should decrease with ‖dij‖, exhibiting

a “position information path loss” behavior. According to

previous analysis, this problem amounts to expressing the

pseudo-probabilities FR̃i
(i, j) as functions of dij . In classical

random walk theory, such a task relies on the construction

of potential kernels [79]. In this subsection, we construct

analogous quantities.

First we note that

J̃e(pall) = D̃(I − T̃ ) (58)

where matrix I − T̃ is an analogue of the random walk

normalized graph Laplacian [80]. It is clear that I − T̃ is

non-invertible, but we may calculate its generalized inverse.

Lemma 1: We have

(I − T̃∞)HS = lim
n→∞

{Pn(FS − IS)} (59)

where Pn = G̃n −Gn, Gn =
∑n

k=0 T̃
k, and

G̃n =
∑

{i,j}⊆Na∪Nb

ENa+Nb
ij ⊗

(
[Gn]i,i D

−1
i Dj

)
. (60)

Proof: Using the additional notations in Sec. III-A, and

after some manipulations, one can obtain

(T̃ − I)HS = FS − IS (61)

where IS =
∑

i∈S ENa+Nb

ii ⊗ I2. Multiplying Gn from the

left at both sides of (61) and taking limit n → ∞, we have

MS −HS = − lim
n→∞

{
Gn(FS − IS)

}
(62)

where MS = T̃∞HS . Note that (61) implies T̃∞(FS−IS) =
0, and thus the matrix limit in (62) does exist. For the Nt >

2 case, because the relative measurements in the network is

invariant under two-dimensional translation, we have

QTJ̃e(pall) = 0, J̃e(pall)Q = 0 (63)

where J̃e(pall) satisfies (58). Now, in light of (63), we can

construct a matrix G̃n as in (60) satisfying G̃n(FS−IS) = 0.

Therefore with Pn := G̃n −Gn we have

HS −MS = lim
n→∞

{
Pn(FS − IS)

}
. (64)

Thus the proof is completed.

In Lemma 1, we are essentially trying to construct a gen-

eralized inverse for I − T̃ . To elaborate, if P := limn→∞ Pn

exists, −P can serve as a valid generalized inverse. Then we

can solve a system of linear equations for the desired quantity

FS . Indeed, the limit on the right hand side of (59) does exist

as long as T̃∞ exists. However, a subtle fact is that this does

not imply the existence of limn→∞ Pn. Fortunately, this is

true when Nt > 2, for which we have the following result.

Theorem 3: When Nt > 2, for k = min(m)(R̃i) and

l = min(n)(R̃i), the term FR̃i
(k, l) can be expressed as (65),

where matrix PR̃i
is given by

[
PR̃i

]
k,l

= [P ]m,n, ZR̃i
=∑

{a,b}⊆R̃i
Da

[
P−1

R̃i

]
min(a)(R̃i),min(b)(R̃i)

is a normalization

constant, and

P =
∑

{a,b}⊆Na∪Nb

ENa+Nb

ab ⊗
{ ∞∑

p=0

(
T̃ (p)
aa D−1

a Db−T̃
(p)
ab

)}
.

(66)

Proof: We shall first show that the matrix limit P =
limn→∞ Pn exists for the case Nt > 2, and hence

HS −MS = P (FS − IS). (67)

First we use the definition of Gn and obtain

[
PD−1

]
i,j

=

∞∑

n=0

(
T̃

(n)
ii D−1

i − T̃
(n)
ij D−1

j

)
. (68)

Matrix P exists if the series in (68) converges for every pair

(i, j). It is clear from (63) that

lim
n→∞

∥∥T̃ (n)
ii D−1

i − T̃
(n)
ij D−1

j

∥∥
2
= 0

holds for all i and j. Moreover, it can be shown that∥∥T̃ (n)
ii D−1

i −T̃
(n)
ij D−1

j

∥∥
2

exhibits a linear rate of convergence

as n → ∞, since ‖T̃ n − T̃∞‖2 converges to zero linearly as

n → ∞. Therefore, we can conclude that matrix P does exist.

Now, restricting the rows and columns of the matrices in

(67) to the elements in the index set S, we can construct 2|S|×
2|S| matrices FS,S ,HS,S ,PS ,MS,S and DS as

[PS ]i,j=[P ]k,l , HS,S=I2|S|, [MS,S ]i,j=[MS ]k,l ,

[FS,S ]i,j=[FS ]k,l , [DS ]i,j=[D]k,l
(69)

where k = min(i)(S) and l = min(j)(S). Thus using (67) we

obtain

FS,S − I = P−1
S (I −MS,S). (70)

From (70) we also have QTDSP
−1
S (I − MS,S) = 0, and

hence

MS,S = Q
(
QTDSP

−1
S Q

)−1
QTDSP

−1
S . (71)

Substituting (71) into (70) we obtain

FS,S=I+P−1
S −P−1

S Q
(
QTDSP

−1
S Q

)−1
QTDSP

−1
S (72)

yielding (65) after some manipulations.

The matrix [PR̃i
]k,l resembles the potential between m and

n in classical random walk theory in the sense that, as will

be illustrated in Section IV, it is a function of solely dmn in

infinite lattice networks. It is also important in finite networks,
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since PR̃i
∈ R

2(Nb+1)×2(Nb+1) and {Di}i∈Na∪Nb
retain all

the necessary information to describe the information coupling

between agent i and other nodes. Typically, the number of

anchors Nb is far less than the number of agents Na, and thus

the dimensionality of PR̃i
is far lower than that of Je(p).

Therefore, it is much simpler to derive EoC using PR̃i
instead

of manipulating Je(p) directly.

C. Infinite Lattice Networks: Pseudo-Characteristic Function

We now give the asymptotic expressions of EoC in infinitely

large lattice networks. Thanks to the symmetry of these

networks, we are able to perform harmonic analysis on infinite

lattice networks since the underlying graph Gnet is invariant

with respect to translation. Since we have assumed that nodes

are equipped with UOAs when Nt > 2 which implies that Jij

only depends on dij , the singular EFIM J̃e(pall) built upon

Gnet should also be translation-invariant. In this regard, we can

define pseudo-characteristic functions on auxiliary networks.

Definition 3 (Pseudo-Characteristic Function): The pseudo-

characteristic function of an auxiliary network associated with

an infinite lattice network is defined as

Φ(ϑ) =
∑

x∈Z2

T̃1(0,x)e
xTϑ (73)

where T̃k(0,x) = T̃
(k)
ij for pi = 0 and pj = x, and  is

the imaginary unit
√
−1. We define the notation T̃k(0,x) to

emphasize that it is a function of not only the indices of agents,

but also their positions.

To ensure that Theorem 3 is applicable, we first show

the recurrence of the random walk on the auxiliary network

of infinite lattice networks, using the pseudo-characteristic

function.

Proposition 7: For any auxiliary network (or original net-

work without anchor) of infinite lattice networks, we have

Fii = I2 for all i ∈ Na.

Proof: Using the pseudo-characteristic function we have

∞∑

n=0

T̃n(0,0) =
1

2π

∫

C
(I −Φ(ϑ))−1dϑ

We only need to show that the integral does not converge. We

consider a decomposition as follows

1

(2π)2

∫

C
(I −Φ(ϑ))−1dϑ =

1

2π2

∫

C
‖ϑ‖−2Σ−1

2 (ϑ)dϑ

+
1

(2π)2

∫

C
Ψ̃ (ϑ)dϑ

(74)

where Ψ̃ := (I −Φ(ϑ))−1 − 2‖ϑ‖−2Σ−1
2 . For the first term

on the right hand side of (74), note that c1I 4 Σ−1
2 (ϑ) 4

c2I holds for all ϑ where c1 = (maxϑ λmax(Σ2(ϑ)))
−1 and

c2 = (minϑ λmin(Σ2(ϑ)))
−1 are positive constants, and that

∫

C
‖ϑ‖−2dϑ =

∫ 2π

0

dφ

∫ π

0

r−1dr

does not converge. Therefore, to prove this proposition, it is

now sufficient to show that Ψ̃ (ϑ) is integrable. Taking the

spectral norm of Ψ̃ , we have

‖Ψ̃ (ϑ)‖2 =
∥∥∥(I −Φ(ϑ))−1 −

(‖ϑ‖2
2

Σ2(ϑ)
)−1∥∥∥

2

6 ‖(I − Φ(ϑ))−1‖2 ·
∥∥∥

2

‖ϑ‖2Σ
−1
2 (ϑ)

∥∥∥
2

·
∥∥∥(I −Φ(ϑ)) − ‖ϑ‖2

2
Σ2(ϑ)

∥∥∥
2
.

(75)

To bound the term ‖(I − Φ(ϑ))−1‖2, note that T̃1(0,x)
is Hermitian in infinite lattice networks, and thus using (80)

one can verify that Φ(ϑ) is also Hermitian for any ϑ. Hence

‖(I − Φ(ϑ))−1‖2 is in fact [λmin(I − Φ(ϑ))]−1. From the

symmetry of T̃1(0,x), i.e., T̃1(0,x) = T̃1(0,−x), we have

Φ(ϑ) = ℜ{Φ(ϑ)} =
∑

x∈Z2

T̃1(0,x) cos(x
Tϑ).

Since T̃1(0,x) is positive semi-definite for all x and positive

definite for some x, we can bound matrix I − Φ(ϑ) from

below as

I −Φ(ϑ) < 2π−2
∑

‖x‖6K

(xTϑ)2T̃1(0,x)

= ‖ϑ‖2Φc

(76)

for all ϑ satisfying ‖ϑ‖ 6 πK−1, where Φc is a constant

positive definite matrix with respect to ϑ. For the case ‖ϑ‖ >
πK−1, we also have

I −Φ(ϑ) < K2π−2‖ϑ‖2Φmin, (77)

where Φmin := minϑ∈{ϑ|‖ϑ‖>πK−1}{I−Φ(ϑ)} ≻ 02×2. The

minimum is in taken the sense of Löwner partial ordering [81,

Sec. 2.4].

Combining (76) and (77), we see that ‖(I −Φ(ϑ))−1‖2 6

c3‖ϑ‖−2 for some constant c3 > 0, and hence for some

constant c4 > 0, (75) can be further simplified as

‖Ψ̃ (ϑ)‖2 6 c4‖ϑ‖−4
∥∥∥(I −Φ(ϑ))− ‖ϑ‖2

2
Σ2(ϑ)

∥∥∥
2
.

Denote Ẽx{f(x)} =
∑

x∈Z2 f(x)T̃1(0,x), and note that

‖ϑ‖Σ2(ϑ) = Ẽx{(xTϑ)2} and Ẽx{x} = 02×2, using Taylor

expansion we obtain

∥∥∥(I −Φ(ϑ)) − ‖ϑ‖2
2

Σ2(ϑ)
∥∥∥
2

6

∥∥∥Ẽx

{∣∣∣ex
Tϑ − 1− xTϑ− 1

2
(xTϑ)2

∣∣∣
}∥∥∥

2

6 c5‖ϑ‖2+δ‖Σ2+δ(ϑ)‖2

(78)

for some constant c5 > 0 and δ > 0, where Σa(ϑ) :=
Ẽx{|xT(ϑ/‖ϑ‖)|a}. From the system model in Section II we

see that Σa always exists for a > 0 and is positive definite

with finite norm. Furthermore, it does not depend on the norm

‖ϑ‖. Hence the proof is completed.

By application of the pseudo-characteristic function, we can

rewrite Theorem 3 in a simpler form in the case of infinite

lattice networks. To achieve this, first note that in infinite
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F̃R̃i
(k, l) =





[
P−1

R̃i

]
m,n

−
[
P−1

R̃i

](m)
(
QTP−1

R̃i

Q
)−1 ([

P−1

R̃i

](n))T

, m 6= n;

I2 +
[
P−1

R̃i

]
n,n

−
[
P−1

R̃i

](n) (
QTP−1

R̃i

Q
)−1 ([

P−1

R̃i

](n))T
m = n.

(79)

lattice networks the matrix D is proportional to the identity

matrix I, and thus we have the following corollary.

Corollary 1: In infinite lattice networks, for k =
min(m)(R̃i) and l = min(n)(R̃i), if Nt > 2, FR̃i

(k, l) can

be expressed as (79), where P
(m)

R̃i

:=
∑Nb+1

j=1

[
P−1

R̃i

]
i,j

.

Proof: In infinite lattice networks, for any node i, the

neighboring nodes are symmetrically distributed around pi.

Using the UOA assumption we have Di = Dj ∝ I2 holds

for all nodes i and j, and this corollary follows directly from

Theorem 3.

From Corollary 1 it is clear that FR̃i
(k, l) can be expressed

solely in terms of the inverse of the potential kernel, i.e., P−1

R̃i

,

in infinite lattice networks. Matrix P can now be rewritten as

P = lim
n→∞

{
Gn(0,0)⊗ (11T)−Gn

}

where Gn(x,y) :=
∑n

k=0 T̃k(x,y) and Gn :=
∑n

k=0 T̃
k
q ,

and each of the 2× 2 blocks of P can be expressed in terms

of the following matrix limit

P (x,y) := lim
n→∞

n∑

k=0

(
T̃k(0,0)− T̃k(x,y)

)
. (80)

Due to the translation-invariance of infinite lattice networks,

P (x,y) is in fact a function of x − y. Hence [PR̃i
]k,l is

a function of solely dmn, where k = min(m)(R̃i) and l =
min(n)(R̃i). We will show this in the following proposition

using the pseudo-characteristic function.

Proposition 8: Matrix limit P (x,y) can be expressed in

terms of the pseudo-characteristic function Φ(ϑ) as

P (x,y) =
1

(2π)2

∫

C
(I −Φ(ϑ))

−1 (
1−e(x−y)Tϑ

)
dϑ (81)

where C := {ϑ|‖ϑ‖ 6 π}.

Proof: Using the definition of characteristic function, for

Φ2(ϑ) we have

Φ2(ϑ) =
∑

x∈Z2

∑

z∈Z2

T̃1(0,x)T̃1(0, z)e
(x+z)Tϑ.

But in infinite lattice networks, we have T̃1(0, z) = T̃1(x,x+
z), and thus

Φ2(ϑ) =
∑

y∈Z2

T̃2(0,y)e
yTϑ

where y = x+ z. Repeating this iteration and taking Fourier

transform from both sides, we obtain

T̃n(x,y) =
1

(2π)2

∫

C
Φn(ϑ)eϑ

T(x−y)dϑ.

Therefore, from the definition of P (x,y) (80), we see that it

can be expressed as

P (x,y) =
∞∑

k=0

(
T̃k(0,0)− T̃k(x,y)

)

=
1

(2π)2

∫

C

(
1− eϑ

T(x−y)
) ∞∑

k=0

Φk(ϑ)dϑ

=
1

(2π)2

∫

C
(I −Φ(ϑ))−1

(
1− eϑ

T(x−y)
)
dϑ

(82)

hence the proof is completed.

With Proposition 8, the asymptotic behavior of P (x,y) can

be described as follows.

Proposition 9 (Asymptotic Behavior of P (x,y)): As ‖x−
y‖ → ∞, we have

λm(P (x,y)) = Θ
(
log

‖x− y‖
maxϑ λmax(Σ2(ϑ))

)
, ∀m ∈ {1, 2}

(83)

where Σ2(ϑ) := ‖ϑ‖−2
∑

x∈Z2(xTϑ)2T̃1(0,x). The term

maxϑ λmax(Σ2(ϑ)) is a constant with respect to ‖diν‖ but

increases with the path loss exponent γ.

Proof: We first decompose P (x,y) into

P (x,y) =
1

(2π)2

∫

C

(
1− e(x−y)Tϑ

)
(I −Φ(ϑ))−1dϑ

=
1

2π2

∫

C

1− cos((x− y)Tϑ)

‖ϑ‖2 Σ−1
2 (ϑ)dϑ

+
1

(2π)2

∫

C

(
1− e(x−y)Tϑ

)
Ψ̃ (ϑ)dϑ.

(84)

For the first term on the right hand side of (84), we have

∫

C

(
1− cos((x− y)Tϑ)

)
‖ϑ‖−2dϑ

∼
∫ 2π

0

dφ

∫ π

0

(
1− cos(‖x− y‖r sinφ)

)
r−1dr

∼ ln ‖x− y‖

where φ is the angle between x− y and ϑ. The second term

on the right hand side of (84) can be simplified as

1

(2π)2

∫

C

(
1− e(x−y)Tϑ

)
Ψ̃ (ϑ)dϑ =

1

(2π)2

∫

C
Ψ̃ (ϑ)dϑ

due to the Riemann-Lebesgue Lemma in Fourier analysis.

Therefore, since Ψ̃ (ϑ) is integrable, the proof is completed.

In Appendix IV, Proposition 9 will be used to investigate

the asymptotic characteristics of EFIM when there is a single

anchor in the network.
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APPENDIX IV

PROOFS OF RESULTS IN SECTION IV-A

A. Proof of Proposition 3

Proof: We use Theorem 3 to simplify the analysis. Since

there is only one anchor, PR̃i
is a 4× 4 matrix given by

PR̃i
=

[
02×2

[
PR̃i

]
1,2[

PR̃i

]
2,1

02×2

]
. (85)

Since ‖diν‖ = o(Dnet), when the network is sufficiently large,

we have Di = Dν ∝ I2. Hence from (65) and (85) we have

FR̃i
(i, ν) =

1

2

[
PR̃i

]−1

2,1
.

According to (24), the EFIM for agent i can be rewritten as

sp{pi} = tr

{
2
(
Di

[
PR̃i

]−1

2,1

)−1
}

∝ tr

{[
PR̃i

]

2,1

}
.

(86)

From Proposition 9 we see that

tr

{ ∞∑

n=0

(
T̃ (n),inf
νν − T̃

(n),inf
νi

)}
= Θ(log ‖pν − pi‖)

where T̃
(n),inf
ij denotes T̃

(n)
ij in an infinite lattice network. Now

it suffices to show that

lim
Dnet→∞

[
PR̃i

]

2,1
= lim

Dnet→∞

∞∑

n=0

(
T̃ (n)
νν − T̃

(n)
νi

)

=

∞∑

n=0

(
T̃ (n),inf
νν − T̃

(n),inf
νi

)
.

Note that we have T̃
(n),inf
ij = T̃

(n)
ij as long as the random

walk cannot reach the network edge from node i in n steps.

Thus

lim
Dnet→∞

∞∑

n=0

(
T̃ (n)
νν − T̃

(n)
νi

)
−

∞∑

n=0

(
T̃ (n),inf
νν − T̃

(n),inf
νi

)

= lim
m→∞

∞∑

n=m

((
T̃ (n)
νν − T̃ (n),inf

νν

)
−
(
T̃

(n)
νi − T̃

(n),inf
νi

))

where m = ⌈R−1
max(Dnet/2 −max{‖pi‖, ‖pν‖})⌉ and Rmax

is the maximum communication range between nodes. Since

‖diν‖ = o(Dnet/2 − ‖pi‖), as the network expands, the

distance between i and ν is negligible compared with their

distance from the network edge, implying that m → ∞ as

Dnet → ∞. Thus the proof is completed.

B. Proof of Proposition 4

Proof: When Nt = 1, since only information on the

relative distances can be obtained, it is known that the null

space of J̃e(pall) is 3-dimensional, spanned by [78]

v1 ∝ [1 0 . . . 1 0]T, v2 ∝ [0 1 . . . 0 1]T,

v3 ∝ [u(φ1 + π/2)T . . . u(φNa+1 + π/2)T]T
(87)

where φi is the angle from node i to the network centroid.

Next we show that these vectors also span the row space of

the matrix T̃∞D̃−1. Multiplying T̃∞ from the right at both

sides of (58), we have

J̃e(pall)T̃
∞ = D̃(I − T̃ )T̃∞

= 0.
(88)

Using the definition of T̃

T̃ = D̃−1Ã

we obtain

T̃T = DT̃D̃−1. (89)

Combining (88) and (89), we have

DT̃∞D̃−1J̃e(pall) = 0 (90)

implying that the rows of T̃∞D̃−1 can be written as linear

combinations of the vectors given in (87). Therefore, from

(87) we see that T̃
(∞)
ii D−1

i − T̃
(∞)
iν D−1

ν is rank-1, thus the

following quantity

T̃
(∞)
ii D−1

i Dν − T̃
(∞)
iν = (T̃

(∞)
ii D−1

i − T̃
(∞)
iν D−1

ν )Dν (91)

is also rank-1, and its row space is spanned by ui,ν which is a

unit vector on the direction of (u(φi+π/2)−u(φν+π/2))Dν .

In the proof of Lemma 1 we have shown that

HR̃i
−MR̃i

= lim
n→∞

{
Pn(FR̃i

− IR̃i
)
}
. (92)

Under the case where |R̃i| = 2, we have

[Pn]R̃i
=

[
02×2

[
Pn

]
i,ν[

Pn

]
ν,i

02×2

]

where [Pn]R̃i
denote the matrix obtained by restricting Pn to

the set R̃i, and

[
Pn

]
i,ν

=

n∑

k=1

(
T̃

(k)
ii D−1

i Dν − T̃
(k)
iν

)
(93)

and vice versa for
[
Pn

]
ν,i

. Since the left hand side of (92)

does exist, from (91), (92) and (93) we have

XDR̃i
(FR̃i,R̃i

− I) = 0

where

X =

[
0 T̃

(∞)
ii D−1

i − T̃
(∞)
iν D−1

ν

T̃
(∞)
νν D−1

ν − T̃
(∞)
νi D−1

i 0

]
.

Since FR̃i,R̃i
− I is a 4 × 4 matrix while XDR̃i

is rank-3,

FR̃i,R̃i
− I has to take the following form

FR̃i,R̃i
− I = −mD−1

R̃i

(vi,ν ⊗ [1 − 1]T)(vi,ν ⊗ [1 − 1]T)T

(94)

where m is a positive scalar and vi,ν := u(φi) − u(φν).
Therefore, the EFIM for agent i is given by

Je(pi) = DiF (i, ν) = mJr(ϕiν).

To investigate the asymptotic behavior of m, note that from

(92) we have

I −MR̃i,R̃i
= P

(r)

R̃i

(FR̃i,R̃i
− I) (95)
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where P
(r)

R̃i

:=limn→∞[Pn]R̃i
U , U = [uT

i,ν uT
i,ν ]

T[uT
i,ν uT

i,ν ].

As the network expands, P
(r)

R̃i

will tends to PR̃i
U , where PR̃i

is the matrix P in infinite lattice networks restricted to the

set R̃i. Hence, these two matrices have the same asymptotic

behaviors, implying that m scales as m = Θ(log ‖diν‖) as

long as both i and ν are far from the network edge as discussed

in Sec. IV-A. Thus the proof is completed.

C. Proof of Proposition 5

Proof: We first prove the O(log λ−1
anc) scaling, and then

proceed to the Ω(log λ−1
anc) scaling.

1) Upper Bound: The average SPEB in the Nt = 1 case

provides a natural upper bound for that in the Nt > 2 case.

Hence we only consider the Nt = 1 case here.

Since anchors are distributed according to (30), for any

agent i, in each of the following two areas

Ah(i) := {x| cos2 ϕx,pi
> ch}, Av(i) := {x| sin2 ϕx,pi

> cv}

the nearest anchor is within range O(λ
− 1

2
anc) of agent i, where

ch and cv are constants in (1/2, 1), and ϕx,pi
is the angle

from x to pi. Therefore, for any agent i that is far from the

network edge, i.e., satisfying λ
− 1

2
anc = o(Dnet/2 − ‖pi‖), we

have sp{pi} = O(log λ−1
anc) using Propositions 1 and 4.

2) Lower Bound: Similar to the upper bound, it suffices to

consider the Nt > 2 case here. Since anchors are distributed

according to (30), agents in the following area

Asq :=
{
x = [x1 x2]

T
∣∣∣x1 ∈

((
k +

1

4

)
λ
− 1

2
anc,

(
k +

3

4

)
λ
− 1

2
anc

)
,

x2 ∈
((

l +
1

4

)
λ
− 1

2
anc,

(
l +

3

4

)
λ
− 1

2
anc

)
, k ∈ Z, l ∈ Z

}

are at least 1/4λ
− 1

2
anc away from anchors. We can construct

a lower bound for the SPEB of any agent i in Asq, by

considering the case where all nodes that are at least 1/4λ
− 1

2
anc

away from agent i are anchors. This implies that random walks

started from i in the original network do not return if they once

arrive a place at least 1/4λ
− 1

2
anc away from pi. Hence we have

I − Fii <

m∑

n=0

T̃n(0,0) =
1

(2π)2

∫

C

m∑

n=0

Φn(ϑ)dϑ (96a)

∼ 1

(2π)2

∫

C
‖ϑ‖−2(I −Φm(ϑ))Σ−1

2 (ϑ)dϑ (96b)

where we have applied techniques used in the proof of

Proposition 9, and m = ⌊(2Rmax)
−1λ

− 1
2

anc⌋. Note that (78)

implies that

lim
m→∞

Φm(ϑm− 1
2 ) = lim

m→∞

(
I − ‖ϑ‖2

2m
Σ2(ϑ)

)m

= exp
{
− ‖ϑ‖2

2
Σ2(ϑ)

}
.

Thus with the substitution α =
√
mϑ we can rewrite the right

hand side of (96b) as

1

(2π)2

∫
√
nC

‖α‖−2(I − e−
‖α‖2

2 Σ2(α))Σ−1
2 (α)dα.

Using again the arguments in the proof of Proposition 9, we

have

∥∥∥
∫

C
‖ϑ‖−2(I−Φm(ϑ))Σ−1

2 (ϑ)dϑ
∥∥∥
2
∼

∫ √
mπ

0

1− e−
r2

2

r
dr

(97)

as λanc → 0+. Note that the right hand side of the last line

of (97) scales as Θ(logλ−1
anc). Since the number of agents in

the area Asq is proportional to the number of total agents, the

proof is completed.

APPENDIX V

PROOF OF THEOREM 2

Proof: For the single anchor case, we have R̃i = {i, ν}.

For any agent i (i < ν by definition), consider the equation

(72) in Sec. III-B

FS,S = I + P−1
S − P−1

S Q(QTDSP
−1
S Q)−1QTDSP

−1
S

which can be rewritten as follows for stochastic geometric

networks and S = R̃i

FR̃i,R̃i
=I+P

−1

R̃i

− P
−1

R̃i

Q(QTDR̃i
P

−1

R̃i

Q)−1QTDR̃i
P

−1

R̃i

.

(98)

Note that we have FR̃i
(i, ν) = [FR̃i,R̃i

]1,2, and

PR̃i
=

[
02×2

[
PR̃i

]
1,2[

PR̃i

]
2,1

02×2

]

The submatrices on the diagonal of PR̃i
are 02×2, as can be

seen from the definition of matrix P

P =
∑

{i,j}⊆Na∪Nb

ENa+Nb
ij ⊗

{ ∞∑

n=0

(
T̃

(n)
ii D−1

i Dj−T̃
(n)
ij

)}

in which for diagonal blocks (i.e., i = j), we have [P ]i,i =∑∞
n=0

(
T̃

(n)
ii D−1

i Di − T̃
(n)
ii

)
= 02×2. To simplify the no-

tation, we denote
[
P
−1

R̃i

]
1,2

by Ki,ν and
[
P
−1

R̃i

]
2,1

by Kν,i,

whereas denote
[
PR̃i

]
1,2

by Pi,ν and
[
PR̃i

]
2,1

by Pν,i. From

(66) we have Pi,ν = Kν,i. Thus

PR̃i
=

[
02×2 Pi,ν

Pν,i 02×2

]
, P

−1

R̃i

=

[
02×2 Ki,ν

Kν,i 02×2

]
. (99)

The terms P
−1

R̃i

Q and QTDR̃i
can be written as

P
−1

R̃i

Q =

[
Ki,ν

Kν,i

]
, QTDR̃i

= [Di Dν ] (100)

Substituting (100) into (98), we have

FR̃i,R̃i
= I +

[
02×2 Ki,ν

Kν,i 02×2

]
−
[

Ki,ν

Kν,i

]

(DiKi,ν +DνKν,i)
−1[Di Dν ]P

−1

R̃i

=

[
I2 Ki,ν

Kν,i I2

]
−
[

Ki,ν

Kν,i

]

(DiKi,ν +DνKν,i)
−1[DνKν,i DiKi,ν ]

For the desired term FR̃i
(i, ν), we have

FR̃i
(i, ν) = Ki,ν

(
I − (DiKi,ν +DνKν,i)

−1DiKi,ν

)

= Ki,ν

(
DiKi,ν +DνKν,i

)−1

DνKν,i
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Note that the expression of P
−1

R̃i

above implies Pi,ν = Kν,i,

the inverse of FR̃i
(i, ν) takes the following form

F
−1

R̃i

(i, ν) =
(
Ki,ν

(
DiKi,ν +DνKν,i

)−1

DνKν,i

)−1

= Pi,νD
−1
ν

(
DiKi,ν +DνKν,i

)
Pν,i

=
(
I + Pi,νD

−1
ν DiKi,ν

)
Pν,i

= Pν,i

(
I +Ki,νPi,νD

−1
ν Di

)
.

Now let us consider the convergence from F
−1

R̃i

(i, ν) to 2Pν,i

using the following inequality
∥∥∥Pν,i(Ki,νPi,νD

−1
ν Di − I)

∥∥∥

6 ‖Pν,i‖
(
‖I−D

−1
ν Di‖+‖Ki,ν‖‖Pi,ν−Pν,i‖

∥∥D−1
ν Di

∥∥
)

(101)

Here, ‖ · ‖ can be any submultiplicative matrix norm. From

(101) it is clear that we have to show the convergence from

Di to Dν and that from Pi,ν to Pν,i. Apparently, this requires

us to quantify the similarity between RGG and lattice graphs.

To this end, we first introduce the concept of minimax lattice

matching error [82].

Definition 4 (Minimax Lattice Matching Error): Consider a

set SL of N lattice points arranged as a
√
N×

√
N array within

a square in R
2 with area A. For any set SR of N uniformly

random distributed points, the minimax lattice matching error

ε is the minimum length such that there exists a one-to-one

mapping from SR to SL in the square, for which the distance

between every matched pair does not exceed ε.

Intuitively, if the minimax lattice matching error ε tends

to zero, the stochastic geometric network would have an

almost identical structure as that of lattice networks, and hence

the corresponding average SPEB may also exhibit similar

asymptotic behaviors. According to [82], for any stochastic

geometric networks containing N → ∞ nodes, if the network

keeps connected with probability approaching 1 as its area

|Rnet| → ∞, we have ε→ 0 with probability at least 1−N−1.

Next, we proceed to analyze the relation between T̃
(1)

iν in

the stochastic geometric network and T̃
(1)
jµ in the minimax

matched lattice network, where j and µ correspond to the

matched nodes of i and ν, respectively. Note that

‖T̃(1)

iν − T̃
(1)
jµ ‖

‖T̃(1)

iν ‖
6 ‖I −D−1

j JjµJ
−1
iν Di‖

which implies that T̃
(1)

iν converges to T̃
(1)
jµ if D−1

j JjµJ
−1
iν Di

converges to I.

We first show that the eigenvalues of JjµJ
−1
iν converge to

1 for all matched pairs (i, j). Since JjµJ
−1
iν is a 2× 2 matrix,

using (4) we can derive its eigenvalues by directly solving the

eigenvalues equations, and obtain

λ1=
ξ̃iν,r

ξ̃jµ,r
· 1

2d2

{
(d2d2L + 1) sin2 θ+(d2+d2L) cos

2 θ

+

√[
(d2d2L+1) sin

2 θ+(d2+d2L) cos
2 θ

]2−4d2d2L
} (102)

λ2=
ξ̃iν,r

ξ̃jµ,r
· 1

2d2

{
(d2d2L+1) sin2 θ+(d2 + d2L) cos

2 θ

−
√[

(d2d2L+1) sin
2 θ+(d2+d2L) cos

2 θ
]2−4d2d2L

} (103)

where d is the distance between node i and ν, dL is the

distance between j and µ, and θ is the angle between diν
and djµ. Denoting the minimax lattice matching error by ε,

using the triangle inequality we see that |d− dL| 6 2ε. Thus

for all pairs (i, ν) satisfying ε = o(d), we have dL = d+o(d).
From (102) and (103) we can now see that both λ1 and λ2

tend to 1 with probability6 exceeding 1 − 1/Na. As for the

eigenvectors, we observe that

Jjµ = UjµΛjµU
T
jµ, Jiν = UiνΛiνU

T
iν (104)

where Λjµ and Λiν tend to I2 according to previous discus-

sions. Thus it now suffices to show that ‖I − UT
jµUiν‖ →

0. This is equivalent to showing that cos(ϕjµ) cos(φiν) +
sin(ϕjµ) sin(φiν ) → 1, which is further equivalent to showing

that θ→ 0. The latter is straightforward for all pairs satisfying

ε = o(d), and hence we have ‖I −D−1
j Di‖ → 0.

Since Di =
∑

k∈Ni
Jdik , we see that the eigenvalues

of D−1
j Di also tends to 1 for all matched pairs (i, j) as

the maximum communication range satisfies ε = o(Rmax).
Following a similar line of reasoning as (104), we can also

show that the eigenvectors of D−1
j and Di tend to be identical.

Therefore, for pairs (i, ν) satisfying ε = o(d), T̃
(1)

iν converges

to T̃
(1)
jµ . As the network expands, such pairs will be dominantly

many and hence we have the convergence from T̃
(n)

iν to T̃
(n)
jµ

for any finite n. Consequently, we can now conclude that

‖Pi,ν − Pj,µ‖ tends to zero.

An important corollary of the previous analysis is that both

‖Pi,ν −Pν,i‖ and ‖I −DiD
−1
ν ‖ tend to zero. In light of this,

from (101) we can now work on the simpler term of 2Pi,ν .

To finish the proof, it now suffices to show that

tr{∑pi∈Sν

(
Pi,νD

−1
i − Pj,µD

−1
j

)
}

tr{∑pi∈Sν
Pi,νD

−1
i }

→ 0.

For each 4-tuple (i, j, ν, µ), we have

‖Pi,νD
−1
i − Pj,µD

−1
j ‖ · ‖Pi,νD

−1
i ‖−1

6 ‖I −DiD
−1
j ‖+ ‖Di‖‖D−1

j ‖‖Kν,i‖‖Pi,ν − Pj,µ‖
which indeed tends to zero since ‖Kν,i‖ → 0.

Similar arguments can also be applied to the Nt = 1 case,

except that one has to work with the Moore-Penrose pseudo-

inverse of P
(r)

R̃i

. With similar manipulations we can obtain (34),

thus the proof is completed.

APPENDIX VI

PROOF OF PROPOSITION 6

Proof: For any agent i in the interior area of the network,

we consider the areas Ah(i) and Av(i) defined as (we use

upright letters since they are now random sets)

Ah(i) := {x| cos2 ϕx,pi
> ch}

Av(i) := {x| sin2 ϕx,pi
> cv}.

(105)

6For simplicity, we shall omit the statement of “with probability 1−1/Na”
in the rest of this proof.
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Since anchors form a binomial point process, the probability

that there is no anchor within range R from pi in Ah(i) is

given by

p0,h(R) = (|Rnet|− 2 cos−1(
√
ch)πR

2)Nb |Rnet|−Nb . (106)

Choosing R = kλ
− 1

2
anc, we have

p0,h(kλ
− 1

2
anc) =

(
1− 2k2(π cos−1(

√
ch))

|Rnet|λanc

)|Rnet|λanc

(107)

and lim|Rnet|→∞ p0,h(kλ
1
2
anc) = e−2kπ cos−1(

√
ch). Therefore,

for R = Ω(λ
− 1

2+ǫ
anc ) where ǫ > 0 can be arbitrarily small, we

have p0,h(R) → 0 as the network expands. Similar arguments

also applies to Av(i). By application of union bound, we see

that with probability approaching 1, there are anchors in both

Ah(i) and Av(i) which are within range O(λ−1
anc) of pi. Thus

using Theorem 2, we can conclude that the average SPEB of

agents in the interior area of the network scales as O(log λ−1
anc).
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