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Abstract—Private information retrieval (PIR) protocols ensure
that a user can download a file from a database without revealing
any information on the identity of the requested file to the servers
storing the database. While existing protocols strictly impose that
no information is leaked on the file’s identity, this work initiates
the study of the tradeoffs that can be achieved by relaxing
the perfect privacy requirement. We refer to such protocols as
weakly-private information retrieval (WPIR) protocols. In par-
ticular, for the case of multiple noncolluding replicated servers,
we study how the download rate, the upload cost, and the access
complexity can be improved when relaxing the perfect privacy
constraint. To quantify the information leakage on the requested
file’s identity we consider mutual information (MI), worst-case
information leakage, and maximal leakage (MaxL). We present
two WPIR schemes, denoted by Scheme A and Scheme B, based
on two recent PIR protocols and show that the download rate
of the former can be optimized by solving a convex optimization
problem. We also show that Scheme A achieves an improved
download rate compared to the recently proposed scheme by
Samy et al. under the so-called ǫ-privacy metric. Additionally, a
family of schemes based on partitioning is presented. Moreover,
we provide an information-theoretic converse bound for the
maximum possible download rate for the MI and MaxL privacy
metrics under a practical restriction on the alphabet size of
queries and answers. For two servers and two files, the bound is
tight under the MaxL metric, which settles the WPIR capacity
in this particular case. Finally, we compare the performance of
the proposed schemes and their gap to the converse bound.

Index Terms—Capacity, information leakage, information-
theoretic privacy, multiple servers, private information retrieval.

I. INTRODUCTION

Private information retrieval (PIR) was introduced in the

computer science literature by Chor et al. in [1], [2]. A PIR

scheme allows a user to retrieve an arbitrary file from a

database that is stored on either a single or multiple servers

without revealing any information about the identity of the

requested file. The efficiency of a PIR scheme is measured in

terms of the total communication load, consisting of both the

upload and download cost for the retrieval of a single file. It

was already shown in the original work of Chor et al. [2] that
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in the case that the database is stored on a single server, all files

need to be downloaded in order to achieve perfect privacy, i.e.,

no information leakage on the identity of the requested file. It

has been extensively studied how to reduce the communication

cost using several copies of the database, see, e.g., [3]–[6].

From an information-theoretic perspective and for many

practical scenarios, the file size is typically much larger

than the size of the queries to all servers. Therefore, rather

than accounting for both the upload and the download cost,

as usually done in the computer science literature, in the

information theory literature efficiency is typically measured

in terms of the download cost, or equivalently, in terms of

the download rate. The download rate—or the PIR rate—is

defined as the ratio between the requested file size and the

average number of downloaded symbols for the retrieval of

a single file. The maximum possible PIR rate of all possible

schemes is called the PIR capacity. The PIR capacity for the

classical PIR model of replicated servers was characterized by

Sun and Jafar [7].

To achieve a lower storage overhead, PIR protocols have

also been considered jointly with coded distributed storage

systems (DSSs), where the data is encoded by a linear code

and then stored on several servers in a distributed manner [8]–

[10]. The case of maximum distance separable (MDS) coded

servers was considered in [11]–[16], while the case of arbitrary

linear coded servers was studied in [17]–[20]. The concept of

PIR has also been extended to several other relevant scenar-

ios, which include colluding servers [11], [17], [19], [21]–

[24], robust PIR with Byzantine or unresponsive servers [21],

[25], [26], multi-round PIR [27], multi-file PIR [28], optimal

download cost of PIR for an arbitrary file size [29], optimal

upload cost of PIR, i.e., the minimum required amount of

query information [30], access complexity of PIR, i.e., the

number of symbols accessed across all servers for the retrieval

of a single file [31], tradeoff between the storage and download

cost of PIR [32], cache-aided PIR [33], [34], PIR with side

information [35]–[39], PIR on graph-based replication sys-

tems [40], [41], PIR with secure storage [42]–[44], functional

PIR codes [45], and private proximity retrieval codes [46].

All of the aforementioned extensions of PIR impose perfect

privacy, i.e., no information leakage. However, this assumption

is quite restrictive and may be relaxed for several practical

applications, as leaking part of the information of the identity

of the requested file is legitimate as long as there is still enough

ambiguity on the file’s identity to meet the privacy requirement

specified by the user. For example, the user may be willing

to share with the servers that the file is a movie (and not

a book or other forms of files), or only the movie’s genre,

whereas keeping private the identity of the movie. Relaxing

the perfect privacy requirement of PIR has been considered

http://arxiv.org/abs/2007.10174v3
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briefly in the computer science literature previously. As early

as in 2002, Asonov et al. [47] introduced the concept of

repudiation as a relaxation of PIR. Their main motivation

was to reduce the preprocessing complexity of queries, while

keeping optimal communication (upload and download) cost

and response time. However, the condition of repudiation can

be achieved even if the server can determine the identity of

the requested file almost surely. Hence, it does not provide

a good level of information-theoretic privacy. More than a

decade later, Toledo et al. [48] adopted a privacy metric based

on differential privacy [49], [50] and traded off privacy for

reduced communication cost. In [48], several schemes that

hide the query identity were proposed and studied. However,

different mechanisms and security assumptions from those of

information-theoretic PIR were considered. Interestingly, the

authors claim that the proposed approaches can be applied

to information-theoretic PIR, but they did not study any

fundamental information-theoretic tradeoffs between informa-

tion leakage and different costs under the considered privacy

metric.

This paper takes a first step away from the perfect privacy

requirement of the information-theoretic PIR framework. Our

goal is to study the tradeoffs between different parameters

of PIR, such as download rate, upload cost, and access

complexity, while relaxing the perfect privacy requirement on

the identity of the desired file. We refer to such a scenario as

weakly-private information retrieval (WPIR). How to properly

measure information leakage has been studied extensively in

the computer science literature, see, e.g., [51] and references

therein. Mutual information (MI) [52]–[54], that captures the

average information leakage between the private data and the

adversary’s observations, maximal leakage (MaxL) [55], [56],

and worst-case information leakage (WIL) [57], are among the

most popular information-theoretic privacy leakage metrics,

along with (local) differential privacy [49], [50], [58], [59].

To the best of our knowledge, using MI as a privacy metric

originates from the domain of genome privacy and was first

considered in [52]. Although, the MI privacy metric has a less

clear operational meaning than MaxL, the presented results for

the MI privacy metric provide fundamental insight into the

tradeoff between download cost and privacy leakage, which

is also valid and complements the presented results for the

other considered privacy metrics. In this work, we consider

the case of replicated noncolluding servers, mainly focusing

on the MI and MaxL privacy metrics. We propose a WPIR

scheme by building upon a PIR protocol recently introduced

in [30] and study its tradeoffs between download rate, upload

cost, and access complexity. In particular, we show that by

relaxing the perfect privacy requirement, the download rate

can be improved beyond PIR capacity.

The main contributions can be summarized as follows:

• We introduce the concept of an (M, n) information

retrieval (IR) scheme for a DSS with n servers storing

M files using a global random strategy vector and a

corresponding scheme, referred to as Scheme A, by

building upon a PIR protocol introduced in [30]. By se-

lecting each entry of the global random strategy according

to a Bernoulli distribution, we provide for the special

case of n = 2 servers closed-form expressions for the

achievable download rate, upload cost, access complexity,

and privacy leakage (see Theorem 3).

• In addition, we adopt the privacy metric introduced in

the related works [60], [61], the so-called ǫ-privacy, and

compare our proposed Scheme A to their leaky PIR

scheme. By using a global random strategy for which

each entry is independent and identically distributed

(i.i.d.) according to a Bernoulli distribution, we show that

Scheme A performs better in terms of download rate for

the case of n = 2 servers.

• By using a time-sharing argument (see Theorem 1 and

the discussion in Section VII), the download rate of

Scheme A can be improved. For both the MI and MaxL

privacy metrics we show that optimizing the download

rate for Scheme A with time-sharing over the global

random strategy can be framed as a convex optimization

problem (see Section VII).

• We provide an information-theoretic converse result for

the maximum possible download rate for an (M, n)
IR scheme for both the MI and MaxL privacy metrics

in Theorems 8 and 10, respectively, under a practical

restriction on the alphabet size of queries and answers.

The converse is derived using a known result between the

entropy difference and the total variation (TV) distance

of two probability distributions (see Lemma 5). For the

special case of (M, n) = (2, 2) the WPIR capacity is

provided in Theorems 9 (assuming that only one of the

two servers can leak) and 11 for the MI and MaxL

privacy metrics, respectively. Moreover, we show that

Scheme A with time-sharing and with each entry of the

global random strategy selected according to a Bernoulli

distribution achieves the WPIR capacity for both privacy

metrics under the above restrictions in this special case.

• Extensive numerical results showing the tradeoff between

download rate, upload cost, access complexity, and pri-

vacy leakage are presented in Section X for Scheme A

(with and without time-sharing). As a comparison, we

also compare with an alternative proposed constant-rate

IR scheme, referred to as Scheme B and based on the

PIR scheme in [17, Lem. 4].

A. Related Work

Independently, the download rate-leakage tradeoff has been

studied by Samy et al. [60] under the name of leaky PIR using

a privacy metric related to differential privacy. The leaky PIR

framework was recently also extended to symmetric PIR [61]

and to the consideration of latent attributes in the single server

case [62]. Symmetric PIR is a variant of PIR where in addition

the user cannot learn anything about the remaining files in

the database when the user retrieves its desired file [63]–

[65]. Moreover, Zhou et al. [66] have recently studied the

same problem under the MaxL privacy metric. Their scheme

builds upon the same PIR protocol as our proposed Scheme A.

Moreover, by allowing for a permutation of the query strategy

across the servers in addition to an arbitrary global random

strategy, improved performance can be achieved. It can be
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shown that their scheme is equivalent to our Scheme A with

time-sharing.

Our companion paper [67] studies the corresponding prob-

lem for the single server setting under both the MI and MaxL

privacy metrics. In particular, by relating the WPIR problem

to rate-distortion theory, the capacity of single-server WPIR

is fully characterized. Lastly, the related work in [68] is also

worth mentioning. In contrast to WPIR, where information

leakage on the identity of the desired file to the servers is

considered, the information leakage of the nondesired files to

the user for classical PIR was studied in [68].

B. Organization of Paper

The remainder of this paper is organized as follows. Sec-

tion II presents the notation, basic definitions, preliminaries,

and the problem formulation. In Section III, we present a

partition scheme which first divides the database into equally-

sized partitions and then uses a given IR scheme to retrieve a

file from the corresponding partition. Section IV presents an IR

scheme built upon the PIR protocol introduced in [30], referred

to as Scheme A, while Section V presents a constant-rate IR

scheme based on the PIR scheme in [17, Lem. 4], referred to as

Scheme B. For both schemes and for two servers we provide

closed-form expressions for the download rate, upload cost,

access complexity, and information leakage under a Bernoulli

global random strategy. In Section IV, using Scheme A to

retrieve files from a partition of the partition scheme is also

analyzed. Based on Scheme A, a WPIR scheme achieving a

better download rate than the leaky PIR scheme under the

ǫ-privacy metric [60], [61] is proposed in Section VI. The

minimization of the information leakage for Scheme A with

time-sharing is considered in Section VII. In particular, we

show that the minimization problem is a convex optimization

problem for both the MI and MaxL privacy metrics. Then,

in Sections VIII and IX we present converse results on the

minimum download cost for both privacy metrics under a prac-

tical restriction on the alphabet size of queries and answers.

Numerical results comparing Schemes A (with and without

time-sharing) and B in terms of download rate, upload cost,

access complexity, and information leakage are presented in

Section X. Finally, some conclusions are drawn in Section XI.

II. PRELIMINARIES

A. Notations

We denote by N the set of all positive integers, [a] ,

{1, 2, . . . , a}, and [a : b] , {a, a+1, . . . , b} for a, b ∈ {0}∪N,

a ≤ b. Vectors are denoted by bold letters, random variables

(RVs) (either scalar or vector) by uppercase letters, and sets by

calligraphic uppercase letters, e.g., x, X , and X , respectively.

Moreover, X c denotes the complement of a set X in a

universe set. The all-zero matrix of dimensions a × b is

represented by 0a×b, or simply by 0 when the dimensions

are not important. For a given index set S, we write XS

and YS to represent
{
X(m) : m ∈ S

}
and

{
Yl : l ∈ S

}
,

respectively. X ⊥⊥ Y means that the two RVs X and Y are

independent. EX [·] denotes the expectation over the RV X .

X ∼ Bernoulli(p) denotes a Bernoulli-distributed RV with

Pr[X = 1] = p = 1−Pr[X = 0] and X ∼ U(S) a uniformly-

distributed RV over the set S. (·)T denotes the transpose of

its argument. The Hamming weight of a binary vector x is

denoted by wH(x), while its support is denoted by χ(x). σ(·)
denotes a left cyclic permutation, while a left cyclic shifts

are obtained through function composition and denoted by

σa(·). The inner product of x and y is denoted by 〈x,y〉.
H(X), H(PX), or H

(
p1, . . . , p|X |

)
represents the entropy of

X , where PX(·) = (p1, . . . , p|X |) denotes the distribution of

the RV X , while I(X ;Y ) is the MI between X and Y (in bits).

Hb(p) , −p log2 p− (1−p) log2 (1 − p) is the binary entropy

function. With some abuse of notation, when the marginal

distribution of either X or Y is assumed fixed and known,

the MI between X and Y is sometimes simply written as

I(X ;Y ) ≡ I(PX|Y ) ≡ I(PY |X).

B. System Model

We consider a DSS with n noncolluding replicated servers,

each storing M independent files X(1), . . . ,X(M), where

each file X(m) =
(
X

(m)
1 , . . . , X

(m)
β

)
T

, m ∈ [M], has length

β, and can be seen as a β × 1 vector over an alphabet X .

Assume that each element of X(m) is chosen independently

and uniformly at random from X . Thus, we have H
(
X(m)

)
=

β log2 |X |, ∀m ∈ [M].
In information retrieval (IR), a user wishes to efficiently

retrieve one of the M files stored in the replicated DSS. Similar

to the detailed mathematical description in [30], we assume

that the requested file index M is a RV and M ∼ U([M]).1

We give the following definition of an IR scheme.

Definition 1. An (M, n) IR scheme C for a DSS with n servers

storing M files consists of:

• A global random strategy S, whose alphabet is S.

• n query-encoding functions φl, l ∈ [n], that generate n
queries Ql = φl(M,S) with alphabet Ql, where query

Ql is sent to server l.
• n answer-length functions ℓl(Ql), with range {0} ∪ N,

that define the length of the answers. ℓl(Ql) is a function

of the query Ql, which is independent of the particular

realization of the files.

• n answer functions

ϕl : Ql ×X βM → Aℓl , l ∈ [n],

that return the answers Al = ϕl(Ql,X
[M]), where A is

the download symbol alphabet.

• n access-number functions δl(Ql), with range {0} ∪ N,

that define the number of symbols accessed by Ql.

This scheme should satisfy the condition of perfect retrievabil-

ity,

H
(
X(M)

∣∣A[n],Q[n],M
)
= 0. (1)

Since a user should be able to generate the queries without

any prior knowledge of the realizations of the files, it is reason-

1Here, we assume for simplicity that the requested file index M is
uniformly distributed. However, this assumption can be lifted, which is
referred to as semantic PIR in the literature [69].
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able to assume that the queries and the files are independent,

i.e.,

I(X [M] ;Q[n]) = 0. (2)

This particular assumption is used in the converse proofs of

Sections VIII and IX (see Appendix G).

Note that a PIR scheme is an (M, n) IR scheme that satisfies

perfect privacy for all servers, i.e., for every m,m′ ∈ [M] with

m 6= m′, the condition

Pr[Ql = ql |M = m] = Pr[Ql = ql |M = m′] (3)

holds for all ql ∈ Ql, l ∈ [n]. The privacy constraint (3) is

equivalent to the statement that M ⊥⊥ Ql. We denote by Q
(m)
l

the query sent to server l if file X(m) is requested, which

is a RV with probability mass function (PMF) P
Q

(m)
l

(ql) ,

Pr[Ql = ql |M = m] = PQl|M (ql|m).
We refer to an (M, n) IR scheme that does not satisfy (3)

as a WPIR scheme, as opposed to a PIR scheme that leaks no

information.

C. Metrics of Information Leakage

In this paper, to measure the information leakage between

M and Ql for an IR scheme, we first consider MI, which mea-

sures the average amount of information about the requested

file index M from the queries Ql. Moreover, we also consider

WIL [57] and MaxL, which is considered a robust information

leakage quantity [56]. For the MI privacy metric, we use the

following theorem to motivate the definition of information

leakage for an (M, n) IR scheme.

Theorem 1 (Time-Sharing Principle for the MI Metric).

Consider an (M, n) IR scheme C , where the leakage of the

l-th server is defined as I(M ;Ql), l ∈ [n]. Then, there exists

an (M, n) IR scheme C with leakage ρ̄ , 1
n

∑
l∈[n] I(M ;Ql)

for every server.

Proof: The theorem is proven by a time-sharing argument.

Assume that the IR scheme C is given by the query-encoding

functions φl, answer functions ϕl, l ∈ [n], and a random

strategy S.

Next, define query-encoding functions φ̄l, answer functions

ϕ̄l, l ∈ [n], and a random strategy ST for an (M, n) IR scheme

C as follows. Given a requested file index M , the user chooses

a T ∼ U([n]) and assigns the query Ql = φ̄l(M,ST ) ,

φσT−1(l)(M,S) = QσT−1(l)(M,S) to the l-th server, l ∈ [n].

The answer functions for C are defined as ϕ̄l

(
Ql,X

[M]
)
,

ϕσT−1(l)

(
φσT−1(l)(M,S),X [M]

)
, l ∈ [n], and hence perfect

retrievability is achieved due to the perfect retrievability of the

IR scheme C .

The MI information leakage of the l-th server is

I(M ;Ql) = H
(
Ql

)
− H

(
Ql

∣∣M
)

= H
(
QσT−1(l)

)
− H

(
QσT−1(l)

∣∣M
)

(a)
=

n∑

t=1

Pr[T = t] I(Qσt−1(l) ;M |T = t)

=
1

n

n∑

l′=1

I(Ql′ ;M), ∀ l ∈ [n],

where (a) follows from the definition of conditional mutual

information.

Theorem 1 indicates that we can always obtain an (M, n)
IR scheme with equal MI leakage at each server by cyclically

shifting the servers’ queries of an existing (M, n) IR scheme

C n times. Such a time-sharing scheme is denoted by C .

Hence, to characterize the overall leakage of a given (M, n)
IR scheme C in terms of MI, we consider the information

leakage metric

ρ(MI)(C ) ,
1

n

∑

l∈[n]

I(M ;Ql). (4)

The WIL of the l-th server is defined as WIL(M ;Ql) ,

H(M) − minql∈Ql
H(M |Ql = ql). The overall WIL of a

given (M, n) IR scheme C is then given as ρ(WIL)(C ) ,

maxl∈[n] WIL(M ;Ql).
Further, given a joint distribution PM,Q, the MaxL from M

to Q is defined as

MaxL(M ;Q) , log2
∑

q∈Q

max
m∈[M]

PQ|M (q|m). (5)

Note that MaxL has a strong connection to the min-entropy

(MinE) privacy metric, which is commonly-used in the com-

puter science literature [55], [70]. MinE is a special case of

the widely known Rényi entropy [71]. The MinE information

leakage and the MaxL privacy metric can be shown to be

equivalent when M is uniformly distributed [56], [70].

We will use (5) as the MaxL privacy metric for the designed

query distribution PQl|M at the l-th server of a WPIR scheme,

which is denoted by

ρ(MaxL)(M,Ql) , MaxL(M ;Ql).

The overall MaxL of a given (M, n) IR scheme C is then

defined to be the worst-case MaxL over all servers:

ρ(MaxL)(C ) , max
l∈[n]

MaxL(M ;Ql).

The following lemma summarizes some useful properties

for both the MI and MaxL privacy metrics.

Lemma 1 ([56, Lem. 1, Cor. 1]). For any joint distribution

PX,Y , we have the following.

1) (Data Processing Inequalities) If the RVs X,Y , and Z
form a Markov chain, then

I(X ;Z) ≤ min{I(X ;Y ), I(Y ;Z)}, and

MaxL(X ;Z) ≤ min{MaxL(X ;Y ),MaxL(Y ;Z)}.

2) Consider a fixed distribution PX . Then, both I(X ;Y ) and

2MaxL(X ;Y ) are convex functions in PY |X .

There are other privacy metrics that can be used to relax

the perfect privacy requirement of PIR. The authors of [60],

[61] introduced the ǫ-privacy metric based on the notion of

(local) differential privacy. Under the setup discussed in this

paper, we define the ǫ-privacy leakage at the l-th server of an

IR scheme C as

ρ(ǫ-P)(M ;Ql) , ln

(
max
ql∈Ql

max
m,m′∈[M]

PQl|M (ql|m)

PQl|M (ql|m′)

)
.
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Similar to the MaxL privacy metric, we also define

ρ(ǫ-P)(C ) , max
l∈[n]

{
ρ(ǫ-P)(M ;Ql)

}

as the ǫ-privacy leakage of a given (M, n) IR scheme C .

Note that ǫ-privacy normally gives a stronger privacy pro-

tection than the MI or MaxL metrics. Moreover, it is worth

mentioning that there is a close relation between MaxL and

differential privacy [49], [50], see, e.g., [70, Thm. 3]. In this

work, although we mainly focus on the MI and MaxL privacy

metrics, we will still use the ǫ-privacy metric to show that our

proposed Scheme A outperforms the schemes from [60], [61]

(see Sections VI and X-B).

Throughout the paper, the information leakage metric of a

WPIR scheme C is denoted by ρ(·)(C ), where the superscript

indicates the leakage metric (MI, WIL, MaxL, or ǫ-P) we

are considering. Moreover, since PM is fixed, we will also

simply write the leakage measure ρ(·)(·, ·) as a function of the

designed query distribution PQl|M of a WPIR scheme. For

example, ρ(MI)(M,Ql) ≡ I(PQl|M ) ≡ ρ(MI)(PQl|M ), l ∈ [n].

D. Download Cost, IR Rate, Upload Cost, and Access Com-

plexity of an (M, n) IR Scheme

For WPIR, in contrast to PIR, the download cost may be

different for the retrieval of different files. Thus, the download

cost can be defined as the expected download cost over all

possible requested files. The download cost of a WPIR scheme

C for the retrieval of the m-th file, denoted by D
(m)(C ), is

defined as the expected length (in bits) of the returned answers

across all servers over all random queries,

D
(m)(C ) , log2|A|

n∑

l=1

E
Q

(m)
l

[
ℓl(Q

(m)
l )

]
,

where Q
(m)
l is the RV with PMF P

Q
(m)
l

(ql) = PQl|M (ql|m).

The overall download cost of an IR scheme C , denoted by

D(C ), is defined as the expected download cost over all files,

i.e.,

D(C ) , log2 |A|EM

[
n∑

l=1

E
Q

(m)
l

[ℓl(Ql)]

]

= log2 |A|
n∑

l=1

EQl
[ℓl(Ql)].

Accordingly, the IR rate of an IR scheme C is defined as

R(C ) ,
β log2 |X |

D(C )
.

The upload cost U(C ) of an IR scheme C is defined as the

sum of the entropies of the queries Q[n],

U(C ) ,

n∑

l=1

H(Ql).

Moreover, the access complexity ∆(C ) of an IR scheme C

is defined as the expected number of accessed symbols across

all servers for the retrieval of a single file,

∆(C ) ,
n∑

l=1

EQl
[δl(Ql)] =

1

M

M∑

m=1

n∑

l=1

E
Q

(m)
l

[δl(Ql)]. (6)

An achievable 4-tuple of an IR scheme is defined as follows.

Definition 2. Consider a DSS with n noncolluding servers

storing M files. A 4-tuple (R,U,∆, ρ) is said to be achievable

with information leakage metric ρ(·) if there exists an (M, n)
IR scheme C such that R(C ) = R, U(C ) = U, ∆(C ) = ∆,

and ρ(·)(C ) = ρ.

We remark that a PIR scheme corresponds to an (M, n)
IR scheme with ρ(·) = 0. It was shown in [7] that for n
noncolluding replicated servers and for a given number of files

M, the PIR capacity, denoted by CM,n, is CM,n =
(
1+ 1/n+

· · ·+ 1/nM−1
)−1

.

III. PARTITION WPIR SCHEME

A simple approach for the construction of WPIR schemes

is to first partition the database into η equally-sized partitions,

each consisting of M/η files where M/η ∈ N,2 and then

use a given (M/η, n) IR scheme to retrieve a file from the

corresponding partition. Obviously, the resulting scheme is

not a PIR scheme, since the servers gain the knowledge of

which partition the requested file belongs to. In this section,

we pursue this approach to construct an (M, n) IR scheme

building on a given (M/η, n) IR scheme as a subscheme.

The partition (M, n) WPIR scheme is formally described as

follows. Assume the requested file X(m) belongs to the j-th

partition, where j ∈ [η]. Then, the query Ql is constructed as

Ql =
(
Q̃l, j

)
∈ Q̃l × [η], l ∈ [n], (7)

where Q̃l is the query of an existing (M/η, n) IR scheme C̃ .

The following theorem states the achievable 4-tuple of the

partition scheme.

Theorem 2. Consider a DSS with n noncolluding servers

storing M files, and let C̃ be an (M/η, n) IR scheme with

achievable 4-tuple
(
R̃, Ũ, ∆̃, ρ̃(·)

)
. Then, the 4-tuple

(
R(C ),U(C ),∆(C ), ρ(·)(C )

)

=
(
R̃, Ũ+ n log2 η, ∆̃, ρ̃(·) + log2 η

)
(8)

is achievable by the (M, n) partition scheme C constructed

from C̃ as described in (7).

Proof: The proof is deferred to Appendix A.

Since a PIR scheme is also an IR scheme, this simple

approach for the construction of WPIR schemes can also be

adapted to use any of the existing (M/η, n) PIR schemes in the

literature as a subscheme. We refer to the partition scheme that

uses a PIR scheme as the underlying subscheme and the query

generation in (7) as a basic scheme and denote it by C
basic

(it gives the 4-tuple as in (8) with ρ̃(·) = 0). In Section IV-B,

we will present another partition WPIR scheme based on our

proposed IR scheme.

2While it is not necessary that each partition has an equal number of files,
for simplicity in this paper we make this assumption.
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TABLE I
THE JOINT PMF OF Q1,Q2 FOR 0 ≤ p ≤ 1

2
, GIVEN M = 1, 2.

P
Q

(1)
1 ,Q

(1)
2

(q1, q2) q2 = (1, 0) q2 = (0, 1) P
Q

(1)
1

(q1)

q1 = (0, 0) 1− p 0 1− p

q1 = (1, 1) 0 p p

P
Q

(1)
2

(q2) 1− p p

(a)

P
Q

(2)
1 ,Q

(2)
2

(q1, q2) q2 = (1, 0) q2 = (0, 1) P
Q

(2)
1

(q1)

q1 = (0, 0) 0 1− p 1− p

q1 = (1, 1) p 0 p

P
Q

(2)
2

(q2) p 1− p

(b)

IV. (M, n) SCHEME A

In [30, Sec. III-B], a PIR scheme that achieves both the min-

imum upload and download cost was proposed. The queries

Q[n] of the scheme in [30, Sec. III-B] are randomly generated

according to a random strategy S = (S1, . . . , SM−1) with

i.i.d. entries according to U([0 : n− 1]).3 In this section, we

introduce an (M, n) WPIR scheme, referred to as Scheme A

and denoted by CA, based on the PIR scheme in [30].

Scheme A can be seen as a generalization of the PIR scheme

in [30] where we lift the perfect privacy condition (3).

For the proposed scheme, assume that X = {0, 1} and the

file size to be β = n − 1. We represent a query by a length-

M vector ql = (ql,1, . . . , ql,M) ∈ Ql ⊆ [0 : n − 1]M. Also,

the realization of S is denoted by a length-(M − 1) vector

s = (s1, . . . , sM−1), sj ∈ [0 : n− 1], j ∈ [M− 1].

Before describing Scheme A in detail for the general case,

for simplicity we first present Scheme A for the case of M = 2
files and n = 2 servers (i.e., both servers 1 and 2 store X(1),

X(2)) in the following example.

Example 1. We illustrate the (2, 2) Scheme A obtained by

adopting a nonuniformly-distributed random strategy S giving

a joint PMF PQ1,Q2(q1, q2) as in Table I. Files X(1) and

X(2) are composed of one stripe each (β = n − 1 = 1).

The answers A1 and A2 are given by
(
A1(q1),A2(q2)

)
=(

X
(1)
q1,1 +X

(2)
q1,2 , X

(1)
q2,1 +X

(2)
q2,2

)
, where X

(m)
0 = 0 for all m ∈

[2].

One can easily verify that perfect retrievability is satisfied

for the above (2, 2) IR scheme. Its IR rate is a function of p
and is given by R(p) = (p + (1 − p) + p)−1 = (1 + p)−1.

Observe that M ⊥⊥ Q1, which implies that I(M ;Q1) =
WIL(M ;Q1) = MaxL(M ;Q1) = 0, i.e., it does not leak

any information on the identity of the retrieved file to the first

server.

3The PIR scheme in [30, Sec. III-B] can be seen as a generalization of the
canonical (2, 2) PIR scheme that was first introduced in [27, Sec. III-B] and
further elaborated in [72], where the authors focused on the minimization of
the storage overhead.
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1
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R
(C

A
)

ρ(MI)

ρ(WIL)

ρ(MaxL)
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Fig. 1. The IR rate R(CA) ∈
[

2
3
, 1

]

of the proposed (2, 2) Scheme A, as a

function of ρ(·). The triangle marks the 2-server PIR capacity for M = 2.

The information leakage is ρ(MI) = 1−Hb(p)
2 , ρ(WIL) = 1 −

Hb(p), and ρ(MaxL) = log2 [2(1− p)] for 0 ≤ p ≤ 1
2 . From

this derivation, it follows that the (2, 2) Scheme A achieves

perfect privacy for p = 1
2 . The IR rate of the (2, 2) Scheme A,

R(CA), is depicted in Fig. 1 as a function of the information

leakage ρ(·). Interestingly, by sacrificing perfect privacy, it is

possible to achieve an IR rate larger than the 2-server PIR

capacity for 2 files. As expected, the IR rate increases with

increasing information leakage.

Now, we describe Scheme A for the general case of M files

and n servers. We assume that the user wants to download

file X(m) and has a random strategy S that takes on values

s ∈ [0 : n− 1]M−1 with PMF PS(s).

1) Query Generation: The query ql ∈ Ql, l ∈ [n], sent to

the l-th server, resulting from the query-encoding function φl,

is defined as

ql =
(
s1, . . . , sm−1, ql,m, sm, . . . , sM−1

)
, (9)

where ql,m ,
(
l− 1−

∑
j∈[M−1] sj

)
mod n. It follows that

Ql =



ql :

(
∑

m′∈[M]

ql,m′

)
mod n = l − 1



. (10)

Note that the PMF of Ql conditioned on the file index M
satisfies P

Q
(m)
l

(ql) = PS(s).

2) Answer Construction: The answer function ϕl maps the

query ql into

Al = ϕl(ql,X
[M]) = X(1)

ql,1
+ · · ·+X(M)

ql,M
, (11)

where X
(m′)
0 = 0 for all m′ ∈ [M]. Further, we see that the

answer-length functions satisfy

ℓl(Ql) =

{
0 if ql = 0,

1 otherwise.
(12)

This completes the construction of the (M, n) Scheme A.

Note that it follows from (11) that A = {0, 1} = X . Moreover,
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using (12), the IR rate of the (M, n) Scheme A, CA, can be

shown to be

R(CA) =
n− 1

1− PQ1(0) + n− 1
. (13)

We also remark that if Scheme A uses a random strategy

S with {Sj}
M−1
j=1 i.i.d. according to U([0 : n− 1]), then it

satisfies (3) and is equivalent to the PIR capacity-achieving

scheme proposed in [30].

3) Perfect Retrievability: For completeness, in the follow-

ing we show that Scheme A satisfies the recovery condition

in (1). From the queries Ql and answers Al, l ∈ [n],
designed as in (9) and (11), respectively, given S = s =
(s1, . . . , sM−1) ∈ [0 : n − 1]M−1 and M = m, the answer

from the l-th server can be re-written as

Al = X(m)
ql,m +

(
m−1∑

m′=1

X(m′)
sm′

+

M∑

m′=m+1

X(m′)
sm′−1

)

, X(m)
ql,m + Z, l ∈ [n].

Since by definition ql,m =
(
l − 1 −

∑M−1
j=1 sj

)
mod n, ql,m

must range thoroughly from 0 to n − 1, and for l′ − 1 =(∑
M−1
j=1 sj

)
mod n, we have Al′ = X

(m)
ql′,m + Z = 0 + Z .

Thus, the user can obtain X
(m)
ql,m = Al−Z , and hence retrieve

{X
(m)
1 , . . . , X

(m)
n−1}.

The following lemma follows immediately from the con-

struction of Scheme A.

Lemma 2. Let {Sj}
M−1
j=1 be i.i.d. and Sj ∼ U([0 : n− 1]) for

Scheme A. Then, it satisfies (3) and is equivalent to the PIR

capacity-achieving scheme proposed in [30].

Proof: See Appendix B.

A. (M, 2) Scheme A With {Sj}
M−1
j=1 i.i.d. According to

Bernoulli(p)

The following result gives an achievable 4-tuple for

Scheme A for the case of two servers and a random strat-

egy S = (S1, . . . , SM−1) with i.i.d. entries according to

Bernoulli(p).

Theorem 3. Consider 0 ≤ p ≤ 1/2. Then, the 4-tuple

(RA,UA,∆A, ρ
(·)
A

)
,

RA =
(
1− (1− p)M−1 + 1

)−1
,

UA = −
M∑

w=0

(
M

w

)
f(w, p) log2 f(w, p),

∆A =
M∑

w=0

w

(
M

w

)
f(w, p),

ρ
(MI)
A = UA/2 − (M− 1)Hb(p),

ρ
(WIL)
A = log2 M−minw∈[0:M]H(Mw), and

ρ
(MaxL)
A = log2

∑

w∈[M]
w : odd

(
M

w

)
(1− p)M−wpw−1

is achievable by the (M, 2) Scheme A with {Sj}
M−1
j=1 i.i.d.

according to Bernoulli(p), where

f(w, p) ,
1

M

(
(M− w)(1 − p)M−w−1pw + w(1 − p)M−wpw−1

)

and Mw is a RV with PMF

PMw (m
′) =






(1−p)M−w−1pw

Mf(w,p) if m′ ∈ [M− w],

(1−p)M−wpw−1

Mf(w,p) if m′ ∈ [M− w + 1 : M].

(14)

Proof: See Appendix C.

B. Partition Scheme A: Using Scheme A as a Subscheme

In Section III, we introduced the concept of adopting an

existing (M/η, n) IR scheme to retrieve a file from a given

partition. In this subsection, unlike (7), where the user sends

different queries for different requested files among all parti-

tions, we use a slightly more sophisticated way to construct a

WPIR scheme by using Scheme A as a subscheme for every

partition. We refer to this scheme as partition Scheme A and

denote it by C
part

A . In the following, we present the query

generation and the answer construction.

1) Query Generation: We consider the j-th partition, Pj ,

j ∈ [η], containing all files of indices (j−1)M/η+1, . . . , jM/η.

Given a requested file with index m = (j − 1)M/η + m′ ∈
Pj , m′ ∈ [M/η], we consider an (M/η, n) Scheme A as a

subscheme for partition Pj . The l-th query ql ∈ Ql, l ∈ [n],
is defined as

ql =
(
01×(j−1)M/η, s1, . . . , sm′−1, ql,(j−1)M/η+m′ ,

sm′ , . . . , sM/η−1,01×(η−j)M/η

)
,

where ql,(j−1)M/η+m′ =
(
l− 1−

∑
j∈[M/η−1] sj

)
mod n. We

remark that it is possible that the user sends the all-zero query

ql = 0 to request different files among all partitions. In this

way, since the uncertainty on the requested file is increased,

it follows that the leakage of C
part

A is slightly smaller than the

leakage of the basic scheme. Moreover, the query alphabet

size is not exactly the same for all servers. In particular, since

for every partition, an (M/η, n) Scheme A consists of n
M/η−1

queries at each server, and only for the first server the all-zero

query 01×M is sent to retrieve any one of the M files, we

have |Q1| = 1 + η
(
n

M/η−1 − 1
)

and |Ql| = η · nM/η−1 for

l ∈ [2 : n].
2) Answer Construction: Similar to Scheme A, the answer

function ϕl maps query ql into Al = ϕl(ql,X
[M]) = X

(1)
ql,1 +

· · ·+X
(M)
ql,M , where X

(m′)
0 = 0 for all m′ ∈ [M]. Further, we

see that ℓl(Ql) satisfies (12).

3) (M, n) Partition Scheme A With {Sj}
M/η−1
j=1 i.i.d. Ac-

cording to U([0 : n− 1]): We focus on a particular (M, n)
partition Scheme A. Since the servers can learn some in-

formation from which partition the requested file belongs

to, in order to have a relatively small leakage of partition

Scheme A, it is reasonable to use Scheme A with {Sj}
M/η−1
j=1

i.i.d. according to U([0 : n− 1]) as a subscheme (i.e., a PIR

subscheme, cf. Lemma 2). Thus, this scheme works for an

arbitrary number of servers n. We have the following result.
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Theorem 4. Let M/η be a positive integer with η ∈ [M− 1].

Then, the 4-tuple
(
RA,P,UA,P,∆A,P, ρ

(·)
A,P

)
,

RA,P =

(
1 +

1

n
+ · · ·+

1

nM/η−1

)−1

,

UA,P = n
[
(M/η − 1) log2 n+ log2 η

]
−

log2 η

nM/η−1
,

∆A,P = (n− 1)M/η,

ρ
(MI)
A,P = log2 η −

log2 η

nM/η
, and

ρ
(WIL)
A,P = log2 η = ρ

(MaxL)
A,P

is achievable by the (M, n) partition Scheme A using

the (M/η, n) Scheme A with {Sj}
M/η−1
j=1 i.i.d. according to

U([0 : n− 1]) as a subscheme.

Proof: See Appendix D.

Let
(
R̃, Ũ, ∆̃, 0

)
be the achievable 4-tuple of the (M/η, 2)

Scheme A with {Sj}
M/η−1
j=1 i.i.d. according to U([0 : n− 1]).

It follows that UA,P = Ũ+2 log2 η−log2 η/nM/η−1 < U(C basic)

and ρ
(MI)
A,P = log2 η − log2 η/nM/η < ρ(MI)(C basic), while RA,P,

∆A,P, ρ
(WIL)
A,P , and ρ

(MaxL)
A,P are identical to those of the basic

scheme C basic in Section III (see the details in Appendix D).

Hence, in the numerical results section, the results of C basic

are not presented.

V. CONSTANT-RATE (M, n) SCHEME B

We propose an alternative WPIR scheme, referred to as

Scheme B and denoted by CB, based on the PIR scheme in

[17, Lem. 4]. Scheme B is constructed as follows. Assume that

β = n− 1 and that the user requests file X(m). The random

strategy S takes the form of a vector S = (S1, . . . , SβM) ∈
X βM of length βM. The query vector Ql ∈ Ql = X βM, of

length βM, is obtained as

Ql = φ(m,S) = S + v
(m)
l ,

where the vector v
(m)
l = (v

(m)
l,1 , . . . , v

(m)
l,βM) is deterministic

and is completely determined by m ∈ [M]. We refer the reader

to [17, Sec. V] for details on the design of v
(m)
l . Briefly, v

(m)
l

is a binary vector, where v
(m)
l,i = 1 denotes that the i-th symbol

is being retrieved from the l-th server. The l-th vector has the

following structure,

v
(m)
l = (01×(m−1)β | ∆l | 01×(M−m)β),

where ∆l, l ∈ [n − 1], is the l-th β-dimensional unit vector,

and ∆n = 01×β . The l-th server responds to its corresponding

query with the answer Al ∈ A = X obtained as Al =

ϕl(Ql,X
[M]) , 〈Ql, (X

(1)
1 , . . . , X

(1)
β , X

(2)
1 , . . . , X

(M)
β )〉.

For the case where {Sj}
βM
j=1 are i.i.d. according to U(X ),

Scheme B achieves perfect privacy, and the scheme reduces

to the PIR scheme in [17, Lem. 4]. Furthermore, similar

to [17, Thm. 2], it can be shown that the scheme achieves

perfect retrievability (see (1)), and since its answer-lengths

are constant for all possible queries of each server, the IR rate

RB of CB is equal to 1 − 1/n, irrespective of the information

leakage ρ(·).

We remark that for the case of multiple replicated non-

colluding servers (uncoded servers), the PIR scheme in [17,

Lem. 4] is equivalent to the original PIR protocol proposed in

[1], [2]. The designed queries and answers of Scheme B result

in a constant rate, while the rate of Scheme A is dependent

on the query distribution (see (13)).

In the following subsections, we consider the binary field

X = {0, 1}.

A. (M, 2) Scheme B With {Sj}Mj=1 i.i.d. According to

Bernoulli(p)

We have the following result.

Theorem 5. Consider 0 ≤ p ≤ 1/2. Then, the 4-tuple(
1/2,UB,∆B, ρ

(·)
B

)
,

UB = −
M∑

w=0

(
M

w

)
g(w, p) log2 g(w, p) +MHb(p),

∆B =

M∑

w=0

w

(
M

w

)(
g(w, p) + h(w, p)

)
,

ρ
(MI)
B = UB/2 −MHb(p),

ρ
(WIL)
B = log2 M− min

w∈[0:M]
H(M ′

w), and

ρ
(MaxL)
B = log2

(
(1− p)M−1p

+
∑

w∈[1:M]

(
M

w

)
(1− p)M−(w−1)pw−1

)

is achievable by the (M, 2) Scheme B with

{Sj}Mj=1 i.i.d. according to Bernoulli(p), where

g(w, p) ,
[
(M−w)(1−p)M−w−1pw+1+w(1−p)M−w+1pw−1

]
/M,

h(w, p) , (1 − p)M−wpw, and M ′
w is a RV with PMF

PM ′
w
(m′) =





(1−p)M−w−1pw+1

Mg(w,p) if m′ ∈ [M− w],

(1−p)M−w+1pw−1

Mg(w,p) if m′ ∈ [M− w + 1 : M].

Proof: The proof is similar to the proof of Theorem 3,

and is omitted for brevity.

In the following subsection, we analyze the (M, 2)
Scheme B with a uniformly-distributed random strategy S.

Note that similarly to partition Scheme A in Section IV-B3,

we can also construct a partition scheme by using Scheme B as

a subscheme for every partition. We omit the analysis since it

is almost the same as for partition Scheme A, and the result for

the (M, n) partition Scheme B with {Sj}
M/η
j=1 i.i.d. according

to U(X ) is very close to the result in Theorem 4.

B. (M, 2) Scheme B With S Uniformly Distributed

We consider the (M, 2) Scheme B with S uniformly

distributed over all length-M binary vectors of weight w.

In other words, S ∼ U(Bw,M), where Bw,M ,
{
s ∈

{0, 1}M : wH(s) = w
}

.

Theorem 6. Given any w ∈ [0 : M]. Then, the 4-tuple(
1/2,UB,U,∆B,U, ρ

(·)
B,U

)
,

UB,U = log2

(
M

w

)
+ y(w,M),
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∆B,U = 1 + 2w(1− 1/M),

ρ
(MI)
B,U =

y(w,M)− log2
(
M

w

)

2
,

ρ
(WIL)
B,U = log2 M

− min{log2 (w + 1), log2 (M− w + 1)}, and

ρ
(MaxL)
B,U = log2

(
M− w

w + 1
+

w

M− w + 1

)

is achievable by the (M, 2) Scheme B with S ∼ U(Bw,M),
where y(w,M) , log2

(
M

w

)
+ log2 M− (M−w) log2 (w+1)/M−

w log2 (M−w+1)/M.

Proof: See Appendix E.

We remark that the analysis of the (M, 2) Scheme A with

S ∼ U(Bw,M−1) can also be done by following the same

approach as for Theorem 6.4 However, since the resulting

performance is much worse than those of the aforementioned

WPIR schemes for the case of n = 2 servers, we omit the

detailed analysis in this paper.

In the rest of the paper, except for the next Section VI and

the numerical results in Section X, we consider only the MI

and MaxL privacy metrics as these are more commonly used

[56].

VI. ǫ-PRIVACY FOR SCHEME A

In this section, we focus on the leakage analysis of the

(M, n) Scheme A under the ǫ-privacy metric. Since the WPIR

rate of the (M, n) Scheme A is equal to (13), irrespective of

the used privacy metric, we only need to focus on the design

of the conditional query distribution P
Q

(m)
l

(ql) at each server.

To compare our results with the works in [60], [61], we first

summarize the achievable rate for a given leakage constraint

ρ ≥ 0 as follows.

Lemma 3 ([61, Eq. (26)]). Consider a DSS with n noncollud-

ing servers storing M files. Then, given an ǫ-privacy leakage

constraint ρ(ǫ-P) ≤ ρ with ρ ≥ 0, the rate

R
(ǫ-P)
LPIR =

(
1 +

nM−1 − 1

(n− 1)(eρ + nM−1 − 1)

)−1

(15)

is achievable. Moreover, the WPIR rate under the ǫ-privacy

metric is bounded from above by

R
(ǫ-P)(C ) ≤

1− 1
neρ

1− 1
(neρ)M

, R
(ǫ-P)
UB . (16)

In [60], [61], the authors proposed the path-based approach

across databases to obtain the achievable download rate R
(ǫ-P)
LPIR

in (15). In the following subsection, we show that it is possible

to achieve a better tradeoff between the ǫ-privacy leakage and

the download rate by using Scheme A.

4The scheme is not equal to that of [30] because of the difference in the
vector space of the random strategy. The former involves all length-(M − 1)
vectors of weight w, while the latter consists of all vectors of length M− 1.

A. (M, 2) Scheme A With {Sj}
M−1
j=1 i.i.d. According to a

Bernoulli-Distributed RV

Theorem 7. Consider 0 < pρ , (1 + eρ)−1 ≤ 1/2 for ρ ≥ 0.

Then, given an ǫ-privacy leakage constraint ρ(ǫ-P) ≤ ρ, the

rate

R
(ǫ-P)
A =

(
1− (1− pρ)

M−1 + 1
)−1

(17)

is achievable by the (M, 2) Scheme A with {Sj}
M−1
j=1 i.i.d.

according to Bernoulli(pρ).

Proof: See Appendix F.

VII. MINIMIZATION OF THE INFORMATION LEAKAGE FOR

SCHEME A WITH TIME-SHARING

A main objective of this work is to determine the optimal

WPIR scheme that leaks the smallest amount of information,

subject to a given IR download cost, upload cost, or access

complexity. Since both the information leakage and the IR

rate can be improved based on the query generation of

Scheme A, our aim is to study the optimal tradeoff between

the information leakage and the download cost for Scheme A.

In the rest of paper, we will mainly focus on the MI and MaxL

privacy metrics.

Following the notion of Theorem 1 for the MI metric, we

can use the time-sharing principle to construct a time-sharing

scheme from Scheme A. In particular, consider the Scheme A

CA with query-encoding functions φl, answer functions ϕl,

and a random strategy S presented in Section IV. We design

the query-encoding functions φ̄l = φσT−1(l)(M,S) and the

answer functions ϕ̄l = ϕσT−1(l)

(
φσT−1(l)(M,S),X [M]

)
of

a given requested file index M to construct the time-sharing

scheme of Scheme A, where T ∼ U([n]). Such a scheme

is referred to as time-sharing Scheme A and denoted by

C A.5 Recall that in Scheme A the query realization ql of

the l-th server, l ∈ [n], belongs to Ql, defined in (10),

from which it follows that all of the query sets Ql are

distinct. The conditional query PMF P
Q

(m)
l

(ql) = PS(s) is

independent of M = m, and the download cost of the (M, n)
Scheme A is 1 − PS(0) + (n − 1) (cf. Section IV). Denote

by zs , PS(s) the PMF of the random strategy S, and

ql \ {m} , (ql,1, . . . , ql,m−1, ql,m+1, . . . , ql,M), m ∈ [M]. By

applying the time-sharing approach, the resulting query set at

the l-th server is Ql = [0 : n− 1]M, and the conditional PMF

of Ql given M = m is

P
Q

(m)
l

(q̄l) =

n∑

t=1

Pr[T = t] Pr
[
Q

(m)
σt−1(l) = q̄l

∣∣∣T = t
]

=
1

n
zs, for s = q̄l \ {m}, q̄l ∈ Ql, (18)

where (18) follows since all query sets in Scheme A are

different. In other words, by using the time-sharing approach,

we obtain a new scheme with a conditional query distribution

at each server equal to
(P

Q
(m)

σ0(l)

(·)

n
, · · · ,

P
Q

(m)

σn−1(l)

(·)

n

)
, (19)

5The time-sharing principle can be applied to any WPIR scheme. However,
here we concentrate only on the time-sharing Scheme A.
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where P
Q

(m)
l

(·) = (p1, . . . , p|Ql|) represents the conditional

query distribution corresponding to PQl|M=m for Scheme A.

Therefore, from (18) or (19) it follows that every server has

identical information leakage for the time-sharing Scheme A

under both the MI and MaxL privacy metrics. Note that the

download cost stays the same as for Scheme A.

For the time-sharing Scheme A, the minimization of the

information leakage ρ(·)(C A) under a download cost constraint

D can be cast as the optimization problem

minimize ρ(·)(C A) (20a)

subject to 1− z0 + (n− 1) ≤ D, (20b)
∑

s∈[0:n−1]M−1

zs = 1. (20c)

A. Optimizing the MI Leakage

In terms of the MI privacy metric, we know from Theorem 1

that the leakage of C A is equal to6

ρ(MI)(C A) = I(M ;Ql)

=
1

n

∑

l′∈[n]

[
H(Ql′)− H(Ql′ |M)

]

=
1

n

∑

l′∈[n]

H(PQl′
)− H

(
(z)s∈[0:n−1]M−1

)

(a)
=

1

n

∑

q̄l∈[0:n−1]M

[(
−

∑
M

m=1 PS(q̄l \ {m})

M

)

· log2

(∑
M

m=1 PS(q̄l \ {m})

M

)]
− H

(
(z)s∈[0:n−1]M−1

)

=
1

n

∑

q̄1∈[0:n−1]M

(
−

M∑
m=1

zq̄1\{m}

M

)
log2

( M∑
m=1

zq̄1\{m}

M

)

− H
(
(z)s∈[0:n−1]M−1

)
, (21)

where (a) holds by the definition of entropy and the fact that⋃n
l=1 Ql = Q1 = [0 : n− 1]M. Hence, (20a) becomes (21).

We remark that the MI objective function I
(
M ;Q1

)
is

convex in PQ1|M
, and PQ1|M

is subject to the following linear

constraints

PQ1|M
(q̄1|m) = PQ1|M

(q̄′
1|m), ∀ q̄1 \ {m} = q̄′

1 \ {m}.

Thus, the optimization problem (20) under MI leakage is

convex. However, it is difficult to have closed-form opti-

mal solutions for (M, n) 6= (2, 2), and hence instead we

present numerical results of the optimized time-sharing (M, 2)
Scheme A for several values of the number of files M in

Section X. Lastly, we would like to emphasize that for any in-

formation leakage metric ρ(·) that is convex in PQ1|M
we end

up with a convex optimization problem for the maximization

of the download rate of the time-sharing Scheme A.

6Note that the MI leakage of Scheme A and that of the corresponding time-
sharing Scheme A is always the same due to the definition of MI leakage in
(4).

B. Optimizing the MaxL

In this subsection, we turn our attention to the minimization

of the MaxL for the proposed (M, n) Scheme A with time-

sharing. Similar to the derivation for the MI metric, by

definition (20a) becomes

ρ(MaxL)(C A) = log2
∑

q̄l∈Ql

max
m∈[M]

zq̄l\{m}

n
.

We remark that as for MI leakage, the time-sharing

Scheme A C A also has identical MaxL at each server. Using

again the fact that the sets Ql are distinct and
⋃n

l=1 Ql = Ql,

we have

ρ(MaxL)(CA) = max
l∈[n]

{
log2

∑

ql∈Ql

max
m∈[M]

PQl|M (ql|m)
}

= log2

{
max
l∈[n]

∑

ql∈Ql

max
m∈[M]

PQl|M (ql|m)

}

≥ log2

{
1

n

∑

l∈[n]

∑

ql∈Ql

max
m∈[M]

PQl|M (ql|m)

}

= ρ(MaxL)(C A).

From Lemma 1 and using a similar argument as in Sec-

tion VII-A, replacing the objective function with 2ρ
(MaxL)(C A)

in (20) gives a convex minimization problem. In Section X

below, we give numerical optimal values for (20) under MaxL

and compare them with the converse results presented next.

We remark here that the minimization of the information

leakage for Scheme A with time-sharing under a download

cost constraint D can also be done for the ǫ-privacy metric.

However, as this work mainly focuses on the MI and MaxL

privacy metrics, we leave the analysis of this minimization of

the ǫ-privacy metric as future work.

VIII. CONVERSE RESULTS FOR MI LEAKAGE

In order to present the converse results of WPIR for the MI

metric, we first introduce the following measure between two

PMFs.

Definition 3. The TV distance between two PMFs PY1 and

PY2 on the same finite alphabet Y is defined as

‖PY1 − PY2‖TV , max
Z⊆Y

|PY1(Z)− PY2(Z)|,

where PY (Z) ,
∑

z∈Z PY (z) is the probability of all real-

izations in the set Z .

Next, we review a useful lemma related to the TV distance,

which was presented in [54, Lem. 2].

Lemma 4. If I(X ;Y ) ≤ ρ, then for any x, x′ ∈ X , we have
∥∥PY |X=x − PY |X=x′

∥∥
TV

≤ 1− 2H−1
b (1− ρ) , δMI.

Here, since we require that δMI ≥ 0, it is easy to see that

we can specify H
−1
b (1− ρ) ∈

[
0, 1

2

]
.

Lastly, we consider a known result between the entropy

difference and the TV distance, which can be derived by using

a probabilistic coupling technique.
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Lemma 5 ([73, Eq. (4)]). If
∥∥PY |X=x − PY |X=x′

∥∥
TV

≤ δMI,

then
∣∣H
(
PY |X=x

)
− H

(
PY |X=x′

)∣∣

≤ δMI log2(|Y| − 1) + Hb(δ
MI) (22)

≤ δMI log2(|Y| − 1) + 1.

Note that in the inequality (22), the upper bound becomes

tight for 0 ≤ δMI ≤ 1− 1/|Y| [74, Thm. 6].7

We remark that under the MI metric, we measure the overall

leakage of a WPIR scheme in an average manner, i.e., ρ(MI) =
1
n

∑
l∈[n] I(M ;Ql). Here, given a leakage constraint ρ(MI) ≤

ρ, we assume that I(M ;Ql) = ρl, ∀ l ∈ [n].
Let us define

ǫMI(Ql,Al) , δMI
l log2(|Ql ×Al| − 1) + 1,

ǫMI(Ql) , δMI
l log2(|Ql| − 1) + 1,

where δMI
l = 1− 2H−1

b (1− ρl) and Al is the alphabet of the

answer Al, l ∈ [n]. We give the following useful lemma.

Lemma 6. Given m 6= m′, where m,m′ /∈ M ( [M− 1], we

have

H(A
(m)
[n] |Q

(m)
[n] ,X

M)

≥ β log2 |X |+
H
(
A

(m′)
[n]

∣∣Q(m′)
[n] ,XM,X(m)

)

n

−

∑n
l=1

[
ǫMI(Ql,Al) + ǫMI(Ql)

]

n
. (23)

Moreover,

H(A
(M)
[n] |Q

(M)
[n] ,X [M−1]) ≥ β log2 |X |. (24)

Proof: The proof is deferred to Appendix G.

Now, we are ready to derive a general lower bound on D.

Since H(A
(m)
l |Q

(m)
l = ql) ≤ log2

∣∣A
∣∣ℓl(ql)

for a given ql ∈
Ql, we have

D
(m) = log2|A|

n∑

l=1

∑

ql∈Ql

P
Q

(m)
l

(ql)ℓl(ql)

≥
n∑

l=1

∑

ql∈Ql

P
Q

(m)
l

(ql)H
(
A

(m)
l

∣∣Q(m)
l = ql

)

=

n∑

l=1

H(A
(m)
l |Q

(m)
l ).

Note that without loss of generality, we can assume that

the conditional entropies H(A
(m)
[n] |Q

(m)
[n] ), m ∈ [M], satisfy

H(A
(1)
[n] |Q

(1)
[n] ) ≤ · · · ≤ H(A

(M)
[n] |Q

(M)
[n] ).

Hence, similar to the recursive procedure used in [7, Sec. V-

A], [12, Sec. VI], the total download cost can be bounded from

below by

D(C )

=
1

M

M∑

m=1

D
(m) ≥

1

M

M∑

m=1

n∑

l=1

H
(
A

(m)
l

∣∣Q(m)
l

)

7The results shown in [73] and [74] assume the variational distance as the
measure between two PMFs. It can be easily shown that the TV distance
is equal to the variational distance divided by 2, i.e.,

∥

∥PY1
− PY2

∥

∥

TV
=

1
2

∑

y∈Y

∣

∣PY1
(y) − PY2

(y)
∣

∣, see, e.g., [75, Lem. 3.12].

(a)

≥
1

M

M∑

m=1

H(A
(m)
[n] |Q

(m)
[n] )

≥
1

M

M∑

m=1

H(A
(1)
[n] |Q

(1)
[n] ) = H(A

(1)
[n] |Q

(1)
[n] )

(b)

≥ β log2 |X |+
H
(
A

(2)
[n]

∣∣Q(2)
[n] ,X

(1)
)

n

−

∑n
l=1

[
ǫMI(Ql,Al) + ǫMI(Ql)

]

n
...

(c)

≥ β log2 |X |+
M−1∑

m=1

[
β log2 |X |

nm

−

∑n
l=1

[
ǫMI(Ql,Al) + ǫMI(Ql)

]

nm

]
, (25)

where (a) holds because conditioning reduces entropy, and

(b)–(c) follow by recursively applying Lemma 6 M times with

M = ∅, {1}, . . . , [M−1], respectively. It is worth mentioning

that under the assumption of perfect privacy, i.e., δMI
l = 0,

∀ l ∈ [n], H(A
(m)
[n] |Q

(m)
[n] ,X

M) in (23) can be bounded from

below by

H(A
(m)
[n] |Q

(m)
[n] ,X

M)

≥ β log2 |X |+
H
(
A

(m′)
[n]

∣∣Q(m′)
[n] ,XM,X(m)

)

n

by bounding (38) using (22) directly in the proof of Lemma 6

(see Appendix G). Following the above recursive steps, it

can then be shown that the same converse results of the PIR

capacity proof in [7, Sec. V-A] can be obtained.

A. A Converse Bound With Restricted Alphabets of Queries

and Answers

The expression in (25) indicates that a general lower bound

on D can be arbitrarily dependent on the choice of the

alphabets of the queries and answers. In this subsection, a

converse bound for WPIR schemes is derived from a practical

design perspective. Note that in the information-theoretic PIR

setup, the upload cost can be ignored as it does not scale with

the file size. Moreover, to have an efficient WPIR scheme, the

downloaded answer size per server should be smaller than or

equal to the entire retrieved file size. Hence, we assume that

|Ql| ≤ α < ∞, (26a)

|Al| ≤ |X |β , (26b)

∀ l ∈ [n], for some positive α ∈ N, i.e., the query sizes are

finite and each answer takes value on a smaller alphabet than

that of the retrieved file.

We first state the following theorem, which gives an upper

bound on the maximum possible WPIR rate for the MI metric.

Theorem 8. Consider an (M, n) WPIR scheme that satis-

fies (26) and with MI leakage ρ(MI) ≤ ρ. Then, the maximum
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possible WPIR rate, denoted by R
(MI)
max , is bounded from above

by

R
(MI)
max ≤

[
1

nM−1
+ 2

M−1∑

m=1

1

nm−1
H

−1
b (1− ρ)

]−1

, R
(MI)
UB .

Proof: Under these assumptions, (25) becomes

D(C )

≥ β log2 |X |+
M−1∑

m=1

[
β log2 |X |

nm
−

n∑

l=1

(
δMI
l log2 (α|X |β)

nm

+
δMI
l log2 α

nm
+

2

nm

)]
. (27)

Dividing (27) by β log2 |X | gives

D(C )

β log2 |X |

≥ 1 +

M−1∑

m=1

[
1

nm
−

n∑

l=1

(
δMI
l log2 α

nmβ log2 |X |
+

δMI
l

nm

+
δMI
l log2 α

nmβ log2 |X |
+

2

nmβ log2 |X |

)]
(28)

β→∞
−−−−→ 1 +

M−1∑

m=1

1

nm
−

M−1∑

m=1

∑n
l=1 δ

MI
l

nm
(29)

= 1 +

M−1∑

m=1

1

nm
−

M−1∑

m=1

∑n
l=1

[
1− 2H−1

b (1− ρl)
]

nm

= 1 +

M−1∑

m=1

1

nm
−

M−1∑

m=1

n

nm
+ 2

M−1∑

m=1

n∑

l=1

H
−1
b (1− ρl)

nm

(a)

≥
1

nM−1
+ 2

M−1∑

m=1

n

nm
H

−1
b

(
1−

1

n

n∑

l=1

ρl

)

(b)

≥
1

nM−1
+ 2

M−1∑

m=1

n

nm
H

−1
b (1− ρ)

=
1

nM−1
+ 2

M−1∑

m=1

1

nm−1
H

−1
b (1− ρ),

where (a) and (b) hold because the inverse binary entropy

function is convex and increasing in [0, 1], respectively.

We remark that in the proof of Theorem 8 (as well as in

the following converse results), the subtlety is to allow the

file size β to go to infinity, such that we can have nontrivial

converse bounds, i.e., R
(·)
UB ≤ 1, for certain cases of (M, n).

We will also discuss the tightness of our proposed converse

results in Section X-C. Note that the converse bound in (28)

is in general trivial when β decreases.

In the following, we prove the largest possible achievable

WPIR rate for the special case of (M, n) = (2, 2) under the

additional constraint that only one of the two servers can leak.

Theorem 9. Consider an (M, n) = (2, 2) WPIR scheme that

satisfies (26) and with MI leakage ρ(MI) ≤ ρ ≤ 1. Then, the

maximum possible WPIR rate is

R
(MI)
max (ρ) =

[
1 + H

−1
b (1− 2ρ)

]−1

under the assumption that only one of the two servers can

leak.

Proof: The achievable scheme is the Scheme A presented

in Example 1. Thus, we only need to prove the converse.

Assume without loss of generality that I(M ;Q1) = ρ1 = 0
and I(M ;Q2) = ρ2 = 2ρ. By definition, δMI

1 = 1−2H−1
b (1−

ρ1) = 0 and we can use the exact same derivation as in

Section VIII-A to obtain from (29)

D(C )

β log2 |X |
≥ 1 +

1

2
−

δMI
2

2

=
3

2
−

1− 2H−1
b (1− 2ρ)

2
= 1 + H

−1
b (1− 2ρ),

as β → ∞, which completes the proof.

IX. CONVERSE RESULTS FOR MAXL

In this section, we present the converse results for the MaxL

metric. Similar to the case of the MI privacy metric, see

Theorem 10 presented here.

Theorem 10. Consider an (M, n) WPIR scheme that satis-

fies (26) and with MaxL ρ(MaxL) ≤ ρ. Then, the maximum

possible WPIR rate, denoted by R
(MaxL)
max , is bounded from

above by

R
(MaxL)
max ≤

[
1 +

M−1∑

m=1

1

nm
−

M−1∑

m=1

2ρ − 1

nm−1

]−1

, R
(MaxL)
UB .

Proof: Similar to the case with the MI privacy metric, we

first make use of the following lemma.

Lemma 7. If MaxL(X ;Y ) ≤ ρ, then for any x, x′ ∈ X , we

have
∥∥PY |X=x − PY |X=x′

∥∥
TV

≤ 2ρ − 1 , δMaxL.

Lemma 7 can be proven by a similar argument as in

[54, App. C]. The proof is provided in Appendix H for

completeness.

Note that for the MaxL metric, we consider the worst-case

MaxL over all servers, i.e., ρ(MaxL) = maxl∈[n] MaxL(M ;Ql).
If the leakage at the l-th server is MaxL(M ;Ql) ≤ ρl, then

we have ρ(MaxL) ≤ maxl∈[n] ρl , ρ. A lower bound on the

download cost can be proven by following the same steps as in

Section VIII. Under the assumptions in (26), and as β → ∞,

(29) becomes

D(C )

β log2 |X |
≥ 1 +

M−1∑

m=1

1

nm
−

M−1∑

m=1

∑n
l=1 δ

MaxL
l

nm

≥ 1 +

M−1∑

m=1

1

nm
−

M−1∑

m=1

nmaxl∈[n] δ
MaxL
l

nm

= 1 +
M−1∑

m=1

1

nm
−

M−1∑

m=1

maxl∈[n] δ
MaxL
l

nm−1

= 1 +

M−1∑

m=1

1

nm
−

M−1∑

m=1

2ρ − 1

nm−1
, (30)

where (30) follows from Lemma 7 and maxl∈[n] δ
MaxL
l =

2maxl∈[n] ρl − 1 = 2ρ − 1.
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In the following theorem we give the maximum achievable

WPIR rate under the MaxL metric for the special case of

(M, n) = (2, 2).

Theorem 11. Consider an (M, n) = (2, 2) WPIR scheme

that satisfies (26) and with MaxL ρ(MaxL) ≤ ρ ≤ 1. Then, the

maximum possible WPIR rate is

R
(MaxL)
max (ρ) =

[
5

2
− 2ρ

]−1

.

Moreover, assuming that only one of the two servers can leak

information, then the maximum possible WPIR rate is

R
(MaxL)
max (ρ) =

[
2− 2ρ−1

]−1
.

Proof: The achievable scheme for the first assertion is

Scheme A with time-sharing. In particular, by applying the

time-sharing principle to Example 1, we get the following

conditional PMF of Q1 given M = m,

PQ̄1|M (q̄1|m) m = 1 m = 2

q̄1 = (0, 0)
1− p

2

1− p

2

q̄1 = (0, 1)
p

2

1− p

2

q̄1 = (1, 0)
1− p

2

p

2

q̄1 = (1, 1)
p

2

p

2

Thus, by definitions we get 2ρ
(MaxL)

= 1/2 + (1 − p), for 0 ≤
p ≤ 1/2, and hence it can be seen that D = 1+ p = 1+ 3/2−

2ρ
(MaxL)

= 5/2 − 2ρ
(MaxL)

. Note that this is also the optimized

time-sharing Scheme A under the MaxL metric for (M, n) =
(2, 2), where the optimal solution for (20) is (z∗0 , z

∗
1) = (2 −

D,D− 1). The converse part is proven by (30), which gives

D(C )

β log2 |X |
≥ 1 +

1

2
−

2ρ − 1

1
=

5

2
− 2ρ

for (M, n) = (2, 2).
Further, the second assertion can be proven by following

the same lines as in the poof of Theorem 9.

X. NUMERICAL RESULTS

This section consists of three subsections. Section X-A

considers the case of two servers and compares the achiev-

able 4-tuples
(
R,U,∆, ρ(·)

)
for the (M, 2) WPIR schemes

proposed in Sections IV-A, IV-B3, V-A, and V-B. Note that

as the performance of C basic in Section III is inferior to

the scheme in Section IV-B3, the results of C basic are not

presented. Section X-B also focuses on the case of two

servers and compares our (M, 2) WPIR scheme proposed in

Section VI-A with the scheme proposed in [60], [61] under

the ǫ-privacy metric. Section X-C presents optimized values

for the download rate for the time-sharing Scheme A by

numerically solving the convex optimization problem in (20)

for both the MI and MaxL privacy metrics and comparisons

with the converse bounds from Theorems 8 and 10.
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Fig. 2. R, U, and ∆ of different WPIR schemes for M = 32, as a function
of ρ(MI) . For M = 32, CM,2 is almost equal to 1/2.

A. (M, 2) WPIR Schemes

Four (M, 2) WPIR schemes presented in Sections IV-A,

IV-B3, V-A, and V-B are illustrated. More specifically,

the 4-tuples
(
RA,UA,∆A, ρ

(·)
A

)
achieved by the (M, 2)

Scheme A with {Sj}
M−1
j=1 i.i.d. according to Bernoulli(p),(

RA,P,UA,P,∆A,P, ρ
(·)
A,P

)
achieved by the (M, n) partition

Scheme A using the (M/η, n) Scheme A with {Sj}
M/η−1
j=1

i.i.d. according to U([0 : n− 1]) as a subscheme,(
1/2,UB,∆B, ρ

(·)
B

)
achieved by the (M, 2) Scheme B

with {Sj}Mj=1 i.i.d. according to Bernoulli(p), and(
1/2,UB,U,∆B,U, ρ

(·)
B,U

)
achieved by the (M, 2) Scheme B

with S ∼ U(Bw,M), are presented for comparison. For

the sake of illustration, the information leakage ρ(MI) is

normalized by log2 M bits, while the upload cost and access

complexity are normalized by 2(M− 1) and M, respectively.

2(M− 1) and M are the upload cost and access complexity

of the PIR capacity-achieving scheme presented in [30] for

the case of two servers. The upload cost 2(M− 1) is optimal

among all so-called decomposable PIR capacity-achieving

schemes [30].8

Fig. 2 presents the results of the four WPIR schemes for

the case of M = 32 files and leakage metric ρ(MI). We can

see that Scheme A yields the best performance in terms of

8Based on [30, Def. 2], all existing PIR schemes in the literature are
decomposable.
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Fig. 3. R, U, and ∆ of different WPIR schemes for M = 32, as a function
of ρ(WIL). Here, RB = 1/2 is not plotted.

download rate, upload cost, and access complexity for all

values of the information leakage. Note that the IR rate of

Scheme B with different S is always equal to 1/2. The results

of the four WPIR schemes for WIL and MaxL are provided

in Figs. 3 and 4, respectively. For WIL, Scheme A performs

best among the four schemes for all values of the information

leakage in terms of download rate, upload cost, and access

complexity. However, for MaxL the partition Scheme A (from

Theorem 4) has a comparable performance to Scheme A with

{Sj}
M−1
j=1 i.i.d. according to Bernoulli(p) (from Theorem 3)

for both download rate and access complexity. In particular,

for ρ(MaxL) = 0.8 it exhibits a slightly higher download rate,

whereas for 0.2 ≤ ρ(MaxL) ≤ 0.8 it achieves a lower access

complexity. On the other hand, it yields a significantly lower

upload cost for all values of the information leakage.

B. ǫ-Privacy for (M, 2) WPIR Schemes

In this subsection, the achievable rates and the upper bound

under the ǫ-privacy metric presented in Section VI are demon-

strated. We evaluate the rate R
(ǫ-P)
LPIR , the upper bound R

(ǫ-P)
UB ,

and the rate R
(ǫ-P)
A in (15), (16), and (17), respectively. Fig. 5

presents the results for the case of M = 3 files. In Fig. 6, the

corresponding curves for (M, n) = (10, 2) are provided. It

can be seen that our proposed (M, 2) Scheme A outperforms

the leaky PIR scheme presented in [60], [61], in terms of

download rate. Note that for the special case of M = 2 files,
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Fig. 4. R, U, and ∆ of different WPIR schemes for M = 32, as a function
of ρ(MaxL). Here, RB = 1/2 is not plotted.
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Fig. 5. The rates R
(ǫ-P)
LPIR

, R
(ǫ-P)
A

, and R
(ǫ-P)
UB

for (M, n) = (3, 2), as a function

of ρ(ǫ-P).

we have R
(ǫ-P)
LPIR = R

(ǫ-P)
A . Moreover, the converse bound R

(ǫ-P)
UB

is in general not tight.

C. Optimized Rates for the Time-Sharing Scheme A

In this subsection, we give the maximum download rate

under a leakage constraint for the time-sharing Scheme A

described in Section VII with both the MI and MaxL privacy

metrics. Since for both metrics optimizing the download rate
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, and R
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for (M, n) = (10, 2), as a

function of ρ(ǫ-P).
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Fig. 7. The optimized rate R̄
(MI)
opt for the time-sharing Scheme A and R
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UB

for (M, n) = (2, 2), as a function of ρ(MI) .
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Fig. 8. The optimized rate R̄
(MI)
opt , RA, and RA,P for (M, n) = (6, 2), as a

function of ρ(MI).

is a convex problem (see (20)), the optimal solutions can be

obtained by using the CVXPY Python-embedded modeling
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0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ(MI) (normalized)

R

RA,P

R̄
(MI)
opt

C6,3

Fig. 9. The optimized rate R̄
(MI)
opt and RA,P for (M, n) = (6, 3), as a function

of ρ(MI) .

language for convex optimization problems [76], [77]. The

optimal corresponding rate obtained from (20) is denoted by

R̄
(·)
opt. Unless specified otherwise, all solutions are numerically

computed. Moreover, if the converse bound R
(·)
UB (see The-

orems 8 and 10) is trivial for all leakage constraints, i.e.,

R
(·)
UB ≥ 1, we do not include it in the figures.

Under the MI privacy metric, Fig. 7 compares the optimal

rate-leakage tradeoff curve for the canonical case of (M, n) =

(2, 2) to the converse bound R
(MI)
UB from Theorem 8, which

shows that in general it is not tight. We remark that the optimal

curve is equal to the curve presented in Example 1, and it

can also be shown that the analytical optimal solution can be

derived directly from (20). In Fig. 8, for (M, n) = (6, 2), the

download rate from Theorems 3 and 4 is plotted as a function

of the information leakage, together with the optimal download

rate R̄
(MI)
opt for the time-sharing Scheme A obtained from (20).

The comparisons show that Scheme A with {Sj}
M−1
j=1 i.i.d. ac-

cording to Bernoulli(p) (from Theorem 3) exhibits a download

rate that is close to being optimal. On the other hand, partition

Scheme A (from Theorem 4) performs quite far from the

optimal tradeoff curve. In Fig. 9, the corresponding curves for

(M, n) = (6, 3) (excluding the curve from Theorem 3, which

assumes n = 2) are presented. Again, partition Scheme A

performs far from the optimal tradeoff curve. Note that for

both (M, n) = (6, 2) and (6, 3) the converse bound from

Theorem 8 is trivial.

In Figs. 10 to 12, the corresponding curves for the MaxL

privacy metric are depicted. In particular, the figures show

results for (M, n) = (3, 2), (6, 2), and (6, 3), respectively.

Note that with the MaxL privacy metric the converse bound

from Theorem 10 is tight for the canonical case of (M, n) =
(2, 2) (see Theorem 11). Hence, in contrast to Fig. 7, where

(M, n) = (2, 2), we use (M, n) = (3, 2) in Fig. 10. From

Fig. 11, for (M, n) = (6, 2), Scheme A with {Sj}
M−1
j=1 i.i.d.

according to Bernoulli(p) (from Theorem 3) exhibits a lower

download rate than partition Scheme A (from Theorem 4),

which is in contrast to the case of MI leakage where partition

Scheme A performs significantly worse (see Fig. 8). Moreover,

the gap to the optimized rate R̄
(MaxL)
opt is higher than with the
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Fig. 10. The optimized rate R̄
(MaxL)
opt for the time-sharing Scheme A and
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UB

for (M, n) = (3, 2), as a function of ρ(MaxL).
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Fig. 11. The optimized rate R̄
(MaxL)
opt , RA, and RA,P for (M, n) = (6, 2), as

a function of ρ(MaxL).

MI privacy metric. For (M, n) = (6, 3), Fig. 12 shows that

the gap in download rate between the optimized rate R̄
(MaxL)
opt

and the rate from partition Scheme A is smaller than with the

MI privacy metric, which indicates that partition Scheme A

performs better with the MaxL privacy metric than with the

MI privacy metric. For both (M, n) = (6, 2) and (6, 3) (as for

the MI privacy metric) the converse bound from Theorem 10

is trivial.

XI. CONCLUSION

We presented the first study of the tradeoffs that can be

achieved by relaxing the perfect privacy requirement of PIR,

referred to as WPIR, for the case of multiple replicated non-

colluding servers. Two WPIR schemes based on two different

PIR protocols, named Scheme A and Scheme B, and a family

of schemes based on partitioning were proposed. The proposed

model shows that by relaxing the perfect privacy requirement,

the download rate, the upload cost, and the access complexity

can be improved. In addition, we showed that Scheme A

achieves an improved download rate compared to the leaky

PIR scheme proposed by Samy et al. under the ǫ-privacy
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Fig. 12. The optimized rate R̄
(MaxL)
opt and RA,P for (M, n) = (6, 3), as a

function of ρ(MaxL).

metric. Under the MI and MaxL privacy metrics and with

a practical restriction on the alphabet size of queries and

answers, we provided an information-theoretic converse bound

on the download rate. For the MaxL privacy metric and for

two servers and two files, the converse bound is tight, giving

the WPIR capacity in this special case. Numerous numerical

results were presented, comparing the performance of the

proposed schemes and their gap to the new converse bound.

Many interesting directions can be studied as future work.

First of all, the derivation of a better converse bound on the

download rate, as well as on the upload cost and the access

complexity, is worth further investigation for general cases

of (M, n). On the other hand, practical variants of WPIR

include colluding, Byzantine, and unresponsive servers, are

all important topics for future research, as well as WPIR for

coded DSSs and WPIR with secure storage.
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APPENDIX A

PROOF OF THEOREM 2

Without loss of generality, denote the requested file index

M by M ≡ (MJ , J), where MJ denotes the requested file

index in the J-th partition. The MI based leakage at the l-th
server, l ∈ [n], is given as

I(M ;Ql) = H(M)− H(M |Ql)

= H(MJ , J)− H(MJ , J |Q̃l, J)

= H(J) + H(MJ |J)− H(MJ |Q̃l, J)
(a)
= H(J) + H(MJ)− H(MJ |Q̃l)

= log2 η + I(MJ ;Q̃l), (31)

where (a) follows since MJ and J are assumed to be uniform

RVs, and hence knowing J does not reveal any information
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about the requested file index MJ . Using (31) in (4) gives

ρ(MI)(C ). Using a similar argument as above, the expressions

for R(C ), U(C ), ∆(C ), ρ(WIL)(C ), and ρ(MaxL)(C ) can be

derived accordingly.

APPENDIX B

PROOF OF LEMMA 2

Observe that if {Sj}
M−1
j=1 are i.i.d. according

to U([0 : n− 1]), then for every m,m′ ∈ [M] with

m 6= m′, it holds that

Pr[Ql = ql |M = m] = Pr[Ql = ql |M = m′] =
( 1
n

)M−1

for all ql ∈ Ql, l ∈ [n]. Moreover, from the answer

construction of (11), the IR rate is

R =
β log2 2

log2 2
∑n

l=1 EQl
[ℓl(Ql)]

=
n− 1[

1− PQ1(0)
]
+
∑n

l=2 EQl
[ℓl(Ql)]

=
n− 1(

1− 1
nM−1

)
+ (n− 1)

=
1− 1

n

1− 1
nM

,

which is equal to the n-server PIR capacity for M files.

APPENDIX C

PROOF OF THEOREM 3

From the theorem statement, the entries {Sj}
M−1
j=1 of the

random strategy S are assumed to be i.i.d. according to

Bernoulli(p), 0 ≤ p ≤ 1
2 . Hence, PQ1(0) = PS(0) =

(1− p)M−1, and we have

R(CA) =
1[

1− (1− p)M−1
]
+ 1

from the general formula in (13).

For the upload cost, access complexity, and the information

leakage metrics, we first derive the PMF of Ql, l = 1, 2. Let

us consider a query ql to the l-th server that has wH(ql) = w.

Due to the query generation, we have

PQl|M (ql|m) =

{
(1− p)M−w−1pw if m ∈ [M] \ χ(ql),

(1− p)M−wpw−1 if m ∈ χ(ql).

(32)

By using the law of total probability, we obtain

PQl
(ql) =

M∑

m′=1

1

M
PQl|M (ql|m

′)

=
1

M

[(
M− w

1

)
· (1− p)M−w−1 · pw

+

(
w

1

)
· (1− p)M−w · pw−1

]

= f(w, p).

From the query generation (see Section IV-1), it follows that

wH(q1) must be even and wH(q2) must be odd for the case

of n = 2 servers, hence, the upload cost is equal to

U(CA) = H(Q1) + H(Q2)

= −
M∑

w=0

(
M

w

)
f(w, p) log2

(
f(w, p)

)
.

Further, by the definition in (6), the access complexity

∆(CA) = ∆A follows.

Moreover, we have

H(Ql |M) =
1

M

M∑

m=1

H(S) = (M− 1)Hb(p), (33)

where (33) holds by the query generation, the fact that the

entropy of i.i.d. RVs is equal to the sum of the individual

entropies, and Sj ∼ Bernoulli(p). Hence, we obtain

ρ(MI) =
H(Q1)− H(Q1 |M) + H(Q2)− H(Q2 |M)

2

=
1

2
UA − (M− 1)Hb(p).

For the WIL metric, applying Bayes’ rule, given M = m
and a query ql with wH(ql) = w, we get

PM|Ql
(m|ql) =

PQl|M (ql|m)
∑M

m′=1 PQl|M (ql|m′)
, (34)

where (34) holds since the requested file index M is assumed

to be uniformly distributed. Finally, since the requested index

m ∈ [M] either belongs to [M] \ χ(ql) or χ(ql), it is not too

difficult to see that

PM|Ql
(m|ql)

=






(1−p)M−w−1pw

(M−w)(1−p)M−w−1pw+w(1−p)M−wpw−1

if m ∈ [M] \ χ(ql),

(1−p)M−wpw−1

(M−w)(1−p)M−w−1pw+w(1−p)M−wpw−1

if m ∈ χ(ql),

(35)

where (35) follows from (32). Note that to compute the entropy

H(M |Ql = ql), we only need to know the conditional PMF

of M given Ql = ql, hence, we can introduce a new RV

Mw ≡ Mql
with wH(ql) = w that has an equivalent PMF

defined as (14). This then gives ρ
(WIL)
A .

Finally, we derive the expression for ρ
(MaxL)
A . From (32), it

follows that

max
m∈[M]

PQl|M (ql|m)

=

{
(1 − p)M−1 if wH(ql) = 0,

(1 − p)M−wpw−1 otherwise.

Moreover,

p
(
2MaxL(M ;Q1) − 2MaxL(M ;Q2)

)

= p(1− p)M−1 +
∑

w∈[2:M]
w : even

(
M

w

)
(1− p)M−wpw

−
∑

w∈[M]
w : odd

(
M

w

)
(1− p)M−wpw

=
∑

w∈[0:M]

(
M

w

)
(1− p)M−w(−p)w
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− (1 − p)M + p(1− p)M−1

=
[
(1− p)− p

]M
− (1− p)M−1(1 − 2p) < 0, (36)

where (36) follows by binomial expansion. Since (36) is

nonpositive when 0 ≤ p ≤ 1/2, the expression for ρ
(MaxL)
A

follows immediately.

APPENDIX D

PROOF OF THEOREM 4

Since the (M/η, n) Scheme A with {Sj}
M/η−1
j=1 i.i.d. ac-

cording to U([0 : n− 1]) is used as a subscheme, from Sec-

tion IV-B1, we have

PQl|M (ql|(j − 1)M/η +m′) =
(
n

M/η−1
)−1

, (37)

j ∈ [η], m′ ∈ [M/η], ∀ ql ∈ Ql, l ∈ [n]. Similar to Appendix C,

we obtain

PQl
(ql)

(a)
=

{
1
M

∑
M

m=1 PQl|M (ql|m) if ql = 0,

1
M

∑
m∈Pj

PQl|M (ql|m) otherwise

=

{
M

M

(
nM/η−1

)−1
if ql = 0,

M/η
M

(
nM/η−1

)−1
otherwise

=

{(
nM/η−1

)−1
if l = 1 and ql = 0,

(
η · nM/η−1

)−1
otherwise,

where (a) holds since in Scheme A the user can send the all-

zero query to the first server to request any file in any partition

group. Since PQ1(0) =
(
nM/η−1

)−1
, using (13) gives

R(C part
A ) =

n− 1[
1−

(
nM/η−1

)−1
]
+ (n− 1)

= RA,P.

For the upload cost, since there are η
[
n

M/η−1− 1
]

equally-

likely nonzero queries in Q1, it can be shown that

H(Q1) =
1

nM/η−1
log2

(
n

M/η−1
)

+ η
[
n

M/η−1 − 1
]
·

1

η · nM/η−1
log2

(
η · n

M/η−1
)

= (M/η − 1) log2 n+ log2 η −
log2 η

nM/η−1
.

Similarly, we have H(Ql) = (M/η − 1) log2 n + log2 η for

all l ∈ [2 : n]. This then gives the expression for U(C part

A ) =
UA,P.

For the access complexity, recall that Scheme A partitions

all M files into equally-sized M/η groups and Scheme A with

{Sj}
M/η−1
j=1 i.i.d. according to U([0 : n− 1]) is treated as a

subscheme for each partition group. Thus, we have

∆(C part

A ) =
n∑

l=1

EQl
[δl(Ql)]

=

n∑

l=1

∑

ql∈Ql

wH(ql)PQl
(ql)

(a)
=

∑

w∈[0:M/η]
w>0

w · η

(
M/η

w

)
(n− 1)w

1

η · nM/η−1

=
∑

w∈[0:M/η]
w>0

w

(
M/η

w

)
(n− 1)w−1 n− 1

nM/η−1

(b)
=

n− 1

nM/η−1
·
(
M/η · n

M/η−1
)
= (n− 1)M/η,

where (a) follows since for each partition group, (10) indicates

that an (M/η, n) Scheme A consists of in total
(
M/η
w

)
(n −

1)w nonzero queries with Hamming weight w in
⋃n

l=1 Ql;

(b) is due to the fact that
∑z

h=0 h
(
z
h

)
· xh−1 = d

dx (1 + x)z =
d
dx

(∑z
h=0

(
z
h

)
xh
)
= z(1 + x)z−1 for some z ∈ N.

For the information leakage metric ρ(MI), similar to (33),

we have

H(Ql |M) = (M/η − 1)H(1/n, . . . , 1/n) = (M/η − 1) log2 n,

l ∈ [n], and hence ρ(MI)(C part

A ) = UA,P/n− (M/η− 1) log2 n =

ρ
(MI)
A,P is achievable.

Under the WIL metric ρ(WIL), if wH(ql) = 0, we obtain

PM|Ql
(m|ql) =

1
M

, ∀m ∈ [M], while PM|Ql
((j − 1)M/η +

m′|ql) =
1

M/η for wH(ql) > 0, j ∈ [η], m′ ∈ [M/η]. Therefore,

we obtain

H(M |Ql = ql) =

{
log2 M if ql = 0,

log2
(
M/η

)
otherwise.

Because log2
(
M/η

)
≤ log2 M for η ∈ [M − 1], the achiev-

ability of ρ(WIL)(C part

A ) = ρ
(WIL)
A,P follows.

For the privacy metric ρ(MaxL), it follows from (37) that

2MaxL(M ;Ql) =
∑

ql∈Ql

max
m∈[M]

PQl|M (ql|m)

= |Ql| ·
(
n

M/η−1
)−1

=

{(
1 + η

(
n

M/η−1 − 1
))

·
(
n

M/η−1
)−1

< η for l = 1,

η · nM/η−1 ·
(
nM/η−1

)−1
= η for l ∈ [2 : n],

which implies that ρ(MaxL)(C part

A ) = log2 η = ρ
(MaxL)
A,P .

APPENDIX E

PROOF OF THEOREM 6

When the user requests the M -th file, the (M, 2) Scheme B

sends Q1 = S + vM and Q2 = S to the respective servers,

where vM is the M -th M-dimensional unit vector. As the

random strategy S ∼ U(Bw,M) is taken, it is not too hard to

see that

PQ1(q1) =





w+1

(Mw)M
if q1 ∈ Bw+1,M,

M−(w−1)

(Mw)M
if q1 ∈ Bw−1,M,

Pr[Q2 = q2] = 1/(Mw ), q2 ∈ Bw,M, and M ⊥⊥ Q2.

Since H(Ql |M) = H(S) = log2
(
M

w

)
, the results of U(CB),

∆(CB), and ρ(MI)(CB) with S ∼ U(Bw,M) can be determined

by a simple deduction.

Moreover, one can also show that

H(M |Q1 = q1) =

{
log2 (w + 1) if q1 ∈ Bw+1,M,

log2
(
M− (w − 1)

)
if q1 ∈ Bw−1,M.
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On the other hand, it can be seen that for q1 ∈ Bw+1,M,

PQ1|M (q1|m) =

{
1/(Mw) if m ∈ χ(q1),

0 otherwise,

and for q1 ∈ Bw−1,M,

PQ1|M (q1|m) =

{
1/(Mw) if m ∈ [M] \ χ(q1),

0 otherwise.

Therefore, from the above we obtain the expressions for ρ
(WIL)
B,U

and ρ
(MaxL)
B,U .

APPENDIX F

PROOF OF THEOREM 7

From (32) in Appendix C, we know that

max
m,m′∈[M]

PQl|M (ql|m)

PQl|M (ql|m′)

=





max
{

(1−p)M−w−1pw

(1−p)M−wpw−1 ,
(1−p)M−wpw−1

(1−p)M−w−1pw

}

if wH(ql) = w ∈ [M− 1],

1 if wH(ql) = 0 or M,

for a given query ql, for an (M, n) Scheme A CA with

{Sj}
M−1
j=1 i.i.d. according to Bernoulli(p), 0 ≤ p ≤ 1

2 . Thus,

it can be easily seen that the ǫ-privacy leakage is equal to

ρ(ǫ-P)(CA) = ln

(
max

{
p

1− p
,
1− p

p
, 1

})

= ln

(
1− p

p

)
.

Hence, to satisfy the leakage constraint ρ(ǫ-P) ≤ ρ, we require

1− p

p
≤ eρ,

which gives the inequality (1+eρ)−1 ≤ p ≤ 1/2 for any ρ ≥ 0.

Finally, to complete the proof, we simply pick pρ , (1+eρ)−1,

and substitute it into (13).

APPENDIX G

PROOF OF LEMMA 6

The lemma can be shown by combining Lemma 5 with a

similar approach to the one of the converse proofs given in

the information theory literature for PIR, see, e.g., [7], [60],

[78]. To make the paper self-contained, we repeat some basic

steps here.

The first objective is to find an upper bound on

the absolute value of the entropy difference H
(
A

(m)
l

∣∣
Q

(m)
l ,XM,X(m)

)
− H

(
A

(m′)
l

∣∣Q(m′)
l ,XM,X(m)

)
subject

to I(M ;Ql) ≤ ρl, ∀ l ∈ [n], where m,m′ /∈ M ( [M− 1].
Observe that
∣∣∣H
(
A

(m)
l

∣∣Q(m)
l ,XM,X(m)

)

− H
(
A

(m′)
l

∣∣Q(m′)
l ,XM,X(m)

)∣∣∣

=
∣∣∣H
(
A

(m)
l ,Q

(m)
l

∣∣XM,X(m)
)
− H

(
Q

(m)
l

∣∣XM,X(m)
)

− H
(
A

(m′)
l ,Q

(m′)
l

∣∣XM,X(m)
)

+ H
(
Q

(m′)
l

∣∣XM,X(m)
)∣∣∣

≤
∣∣∣H
(
A

(m)
l ,Q

(m)
l

∣∣XM,X(m)
)

− H
(
A

(m′)
l ,Q

(m′)
l

∣∣XM,X(m)
)∣∣∣

+
∣∣∣H
(
Q

(m)
l

∣∣XM,X(m)
)
− H

(
Q

(m′)
l

∣∣XM,X(m)
)∣∣∣

=
∣∣∣H
(
Al,Ql

∣∣XM,X(m),M = m
)

− H
(
Al,Ql

∣∣XM,X(m),M = m′
)∣∣∣

+
∣∣∣H
(
Ql

∣∣XM,X(m),M = m
)

− H
(
Ql

∣∣XM,X(m),M = m′
)∣∣∣ (38)

≤ ǫMI(Ql,Al) + ǫMI(Ql), (39)

where the inequality (39) can be justified as follows. Using (2)

and the Markov chain M ⊸−− Ql ⊸−− Al, we have

I(M ;Ql,Al |X
M,X(m))

= I(M ;Ql |X
M,X(m)) + I(M ;Al |Ql,X

M,X(m))︸ ︷︷ ︸
=0

= I(M ;Ql) ≤ ρl.

Hence, (39) follows from Lemmas 4 and 5. In addition, (39)

implies that

H
(
A

(m)
l

∣∣Q(m)
l ,XM,X(m)

)

≥ H
(
A

(m′)
l

∣∣Q(m′)
l ,XM,X(m)

)

−
[
ǫMI(Ql,Al) + ǫMI(Ql)

]
, (40)

for all l ∈ [n].
Now, due to (1) we know that

H
(
A

(m)
[n]

∣∣Q(m)
[n] ,X

M
)

= H
(
X(m),A

(m)
[n]

∣∣Q(m)
[n] ,X

M
)

− H
(
X(m)

∣∣A(m)
[n] ,Q

(m)
[n] ,X

M
)

︸ ︷︷ ︸
=0

= H
(
X(m)

∣∣Q(m)
[n] ,X

M
)
+ H

(
A

(m)
[n]

∣∣Q(m)
[n] ,X

M,X(m)
)

= β log2 |X |+ H
(
A

(m)
[n]

∣∣Q(m)
[n] ,X

M,X(m)
)

− H
(
A

(m)
[n]

∣∣Q(m)
[n] ,X

M,X(m),XMc\{m}
)

︸ ︷︷ ︸
=0

= β log2 |X |+ I
(
A

(m)
[n] ;XMc\{m}

∣∣Q(m)
[n] ,X

M,X(m)
)

= β log2 |X |

+ I
(
A

(m)
[n] ,Q

(m)
[n] ;XMc\{m}

∣∣XM,X(m)
)

(41)

≥ β log2 |X |

+ I
(
A

(m)
l ,Q

(m)
[n] ;XMc\{m}

∣∣XM,X(m)
)

(42)

= β log2 |X |+ H
(
A

(m)
l ,Q

(m)
[n]

∣∣XM,X(m)
)

− H
(
A

(m)
l ,Q

(m)
[n]

∣∣XM,X(m),XMc\{m}
)

= β log2 |X |+ H
(
Q

(m)
[n]

∣∣XM,X(m)
)

︸ ︷︷ ︸
= H

(
Q

(m)

[n]

)
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+ H
(
A

(m)
l

∣∣Q(m)
[n] ,X

M,X(m)
)

− H
(
Q

(m)
[n]

∣∣XM,X(m),XMc\{m}
)

︸ ︷︷ ︸
= H

(
Q

(m)

[n]

)

− H
(
A

(m)
l

∣∣Q(m)
[n] ,X

M,X(m),XMc\{m}
)

︸ ︷︷ ︸
=0

= β log2 |X |+ H
(
A

(m)
l

∣∣Q(m)
[n] ,X

M,X(m)
)

= β log2 |X |+ H
(
A

(m)
l

∣∣Q(m)
l ,XM,X(m)

)
(43)

≥ β log2 |X |+ H
(
A

(m′)
l

∣∣Q(m′)
l ,XM,X(m)

)

−
[
ǫMI(Ql,Al) + ǫMI(Ql)

]
(44)

= β log2 |X |+ H
(
A

(m′)
l

∣∣Q(m′)
[n] ,XM,X(m)

)

−
[
ǫMI(Ql,Al) + ǫMI(Ql)

]
, (45)

for any l ∈ [n], where (41) follows from (2), (42) holds by

the chain rule for MI, and the final inequality (44) is due to

(40).

Thus, summing (45) over all possible l ∈ [n] we have

nH
(
A

(m)
[n]

∣∣Q(m)
[n] ,X

M
)

≥ nβ log2 |X |+
n∑

l=1

H
(
A

(m′)
l

∣∣Q(m′)
[n] ,XM,X(m)

)

−
n∑

l=1

[
ǫMI(Ql,Al) + ǫMI(Ql)

]

≥ nβ log2 |X |+ H
(
A

(m′)
[n]

∣∣Q(m′)
[n] ,XM,X(m)

)

−
n∑

l=1

[
ǫMI(Ql,Al) + ǫMI(Ql)

]
.

The result of (23) then follows by dividing both sides by n.

On the other hand, following a similar derivation as (43),

we can obtain

H
(
A

(M)
[n]

∣∣Q(M)
[n] ,X [M−1]

)

≥ β log2 |X |+ H
(
A

(M)
l

∣∣Q(M)
l ,X(M),X [M−1]

)
︸ ︷︷ ︸

=0

.

This completes the proof of (24).

APPENDIX H

PROOF OF LEMMA 7

We start the proof by defining a set Bx,x′ , {x, x′} with two

arbitrary elements x 6= x′, x, x′ ∈ X , and a subset Zx,x′ ⊆ Y
as {y ∈ Y : PY |X(y|x) ≥ PY |X(y|x′)}. Next, we introduce a

new RV Zx,x′ as

Zx,x′(y) =

{
1 if y ∈ Zx,x′,

0 otherwise.

By (5) we have
∑

z∈{0,1}

max
b∈Bx,x′

PZx,x′ |X(z|b)

=
∑

y∈Zx,x′

PY |X(y|x) +
∑

y∈Zc
x,x′

PY |X(y|x′)

(a)
=
∑

y∈Y

max
b∈Bx,x′

PY |X(y|b)

(b)

≤
∑

y∈Y

max
x∈X

PY |X(y|x) ≤ 2ρ,

where (a) follows by the definition of the subset Zx,x′ , and (b)
holds simply because maximizing over a subset leads to a

smaller value. Moreover, by using the relation between TV

distance and variational distance [75, Lem. 3.12], it follows

that
∥∥∥PZx,x′ |X=x − PZx,x′ |X=x′

∥∥∥
TV

=
1

2

(∣∣∣PZx,x′ |X(1|x)− PZx,x′ |X(1|x′)
∣∣∣

+
∣∣∣PZx,x′ |X(0|x)− PZx,x′ |X(0|x′)

∣∣∣
)

=
1

2

(
∑

y∈Zx,x′

[
PY |X=x(y)− PY |X=x′(y)

]

+
∑

y∈Zc
x,x′

[
PY |X=x′(y)− PY |X=x(y)

]
)

=
1

2

∑

y∈Y

∣∣PY |X=x(y)− PY |X=x′(y)
∣∣

=
∥∥PY |X=x − PY |X=x′

∥∥
TV

.

Therefore, since x, x′ are chosen arbitrarily, Lemma 7 holds

for any alphabets X and Y if we can show that the assertion

is true when X and Y are binary.

To complete the proof, we show that Lemma 7 holds for any

binary RVs X and Y . The proof is quite straightforward: Since

X = Y = {0, 1}, we can define PY |X by a , PY |X(1|0)
and b , PY |X(1|1) with 0 ≤ a, b ≤ 1. Thus, by defini-

tion ‖PY |X=0 − PY |X=1‖TV = |a− b| and MaxL(X ;Y ) =
log2

(
max{1−a, 1−b}+max{a, b}

)
= log2

(
1+|a− b|

)
≤ ρ.

As log2(·) is a strictly increasing function, |a− b| ≤ 2ρ − 1.
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