
ar
X

iv
:2

00
6.

00
19

1v
1 

 [
cs

.I
T

] 
 3

0 
M

ay
 2

02
0

1

Secrecy Capacity of a Gaussian Wiretap Channel

With ADCs is Always Positive
Seung-Hyun Nam, Student Member, IEEE, and Si-Hyeon Lee, Member, IEEE

Abstract—We consider a complex Gaussian wiretap channel
with finite-resolution analog-to-digital converters (ADCs) at both
the legitimate receiver and the eavesdropper. For this channel,
we show that a positive secrecy rate is always achievable as
long as the channel gains at the legitimate receiver and at the
eavesdropper are different, regardless of the quantization levels
of the ADCs. For the achievability, we first consider the case of
one-bit ADCs at the legitimate receiver and apply a binary input
distribution where the two input points have the same phase when
the channel gain at the legitimate receiver is less than that at the
eavesdropper, and otherwise the opposite phase. Then the result
is generalized for the case of arbitrary finite-resolution ADCs
at the legitimate receiver by translating the input distribution
appropriately. For the special case of the real Gaussian wiretap
channel with one-bit ADCs at both the legitimate receiver and
the eavesdropper, we show that our choice of input distribution
satisfies a necessary condition of optimal distributions for Wyner
codes.

Index Terms—Physical layer security, Gaussian wiretap chan-
nel, analog-to-digital converter (ADC), finite-resolution ADC,
Wyner code.

I. INTRODUCTION

The wiretap channel first studied by Wyner [2] is a canonical

model for physical layer security. In a wiretap channel, a

transmitter wants to send its message reliably to a legitimate

receiver while keeping it secret from an eavesdropper. In

this situation, the fundamental limit of the communication

rate, the secrecy capacity, has been characterized first for a

memoryless degraded wiretap channel [2], and for a general

memoryless wiretap channel [3], in the form of optimization

over probability distributions. If the channel is given precisely,

such optimization problem can be solved analytically for

some cases. For the standard Gaussian wiretap channel, the

optimization problem for the secrecy capacity was solved

exactly, and it was shown that the secrecy capacity is zero

when the signal-to-noise ratio (SNR) at the legitimate receiver

is less than the SNR at the eavesdropper [4], [5].

In practice, the digital wireless communication systems

employ analog-to-digital converters (ADCs) at the receivers.

If the resolutions of the ADCs are high enough and the

wireless channel is modeled as the Gaussian channel, then

the digital communication channel can be treated as the ideal

Gaussian channel. But, high resolution ADCs are power-

expensive because the power consumption of an ADC in-
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creases exponentially in the number of its quantization levels

[6]. Recently, various communication strategies when low-

resolution ADCs are employed at the receivers have been

studied to enable low-power communications. For real and

complex point-to-point Gaussian channels with one-bit ADCs,

the binary phase-shift keying (BPSK) and the rotated quadratic

phase-shift keying (QPSK) were shown to achieve the channel

capacity, respectively [7], [8]. However, the optimal input

distribution is not known for the channel with arbitrary ADCs

because it is difficult to solve the optimization problem to

characterize the capacity analytically. For wiretap channels

with quantizers, [9] analyzed an asymptotic achievable down-

link secrecy rate for a MIMO wiretap channel with digital-

to-analog converters (DACs) at the base station. Also, for a

MIMO wiretap channel where an active eavesdropper tries to

spoil the channel estimation at the base station with one-bit

ADCs, the downlink secrecy rate was studied in [10]. The

previous works are reviewed in a greater detail in Section II-B.

To the best of our knowledge, there have been no information-

theoretic studies on the classical Gaussian wiretap channel

with finite-resolution ADCs at the legitimate receiver and the

eavesdropper.

In this paper, we consider a complex Gaussian wiretap

channel with finite-resolution ADCs at both the legitimate

receiver and the eavesdropper, as a model for the low-power

physical layer secure communication. Intuitively, if the chan-

nel gain at the eavesdropper is higher than that at the legitimate

receiver and the quantization at the eavesdropper is finer than

that at the legitimate receiver, one may think that a positive

secrecy rate would not be achievable because the eavesdropper

observes less distorted signals than the legitimate receiver.

Somewhat surprisingly, by exploiting the quantization effect

due to the ADCs, we show that a positive secrecy rate is

always achievable whenever the channel gains of the legitimate

channel and the eavesdropper channel are not equal. This result

holds regardless of the resolutions and the thresholds of the

ADCs. To show the achievability of a positive secrecy rate,

we first focus on the case of symmetric one-bit ADCs at the

legitimate receiver. For such a case, a binary input distribution

is considered where the two input points have the same phase

when the channel gain at the legitimate receiver is less than

that at the eavesdropper, and otherwise the opposite phase. The

resultant achievable secrecy rate is analyzed by approximating

to Z-channels. Then the result is generalized for the case of

arbitrary finite-resolution ADCs at the legitimate receiver by

translating the input distribution appropriately.

Furthermore, we partially justify our choice of the input

distributions. Our achievability result implies that the channel

http://arxiv.org/abs/2006.00191v1
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is not more capable and hence it is not clear whether we can

set the auxiliary random variable as the channel input variable

in the secrecy capacity expression without loss of optimality.

Because it is tricky to handle the auxiliary random variable

in general, we consider the maximally achievable rate by the

Wyner code in [2]. For a real Gaussian wiretap channel with

one-bit ADCs, we show that the optimal input distribution for

the Wyner code should follow the property of our choice of

input distribution, i.e., if the channel gain at the legitimate

channel is less than that at the eavesdropper channel, the

support of the optimal input distribution should be included in

one of the positive or negative regions, and otherwise it should

not.

The paper is organized as follows. In Section II, we for-

mulate our problem, and then review the related works and

summarize our contribution. The achievability of a positive

secrecy rate is proved in Section III and a necessary condition

for the optimal input distributions for the Wyner code is

presented in Section IV. We conclude this paper with some

discussions in Section V.

A. Notations

If the probability mass function (PMF) or the probability

density function (PDF) is well defined for a probability distri-

bution PX , we use the notation PX to denote the correspond-

ing PMF or PDF, and similarly for the conditional distribution

PY |X=x. The support of a distribution PX is denoted as

S(PX). If X follows a distribution P , EX∼P denotes the

expectation with respect to X , and the subscript is omitted

if it is obvious from the context. We denote E[X · 1{X∈A}]
by E[X ;X ∈ A], where 1 denotes the indicator function. For

given probability distribution PX of a real random variable X ,

P|X| denotes the probability distribution of |X |. For random

variables X,Y, and Z , X − Y − Z denotes a Markov chain,

i.e., X and Z are conditionally independent given Y . The

binary entropy function is denoted as h(·), and fN (x;µ, σ2) is

the PDF of the Gaussian distribution with mean µ and variance

σ2. The function Q(·) is the tail distribution function of the

standard normal distribution,

Q(x) =

∫ ∞

x

fN (u; 0, 1)du.

The sign function, sgn(·), refers

sgn(x) =

{

1, x ≥ 0

−1, x < 0
,

and [x]+ = max{x, 0}. For x ∈ C, R(x) (resp. I(x)) denotes

the real (resp. imaginary) part of x and j denotes
√
−1. The

sets {x ∈ R : x ≥ 0} and {x ∈ R : x ≤ 0} are denoted as R+

and R−, respectively. For integers a and b, [a : b] denotes the

set {a, a+ 1, · · · , b− 1, b}.

II. PROBLEM FORMULATION

In Section III, the positivity of secrecy capacity is shown

first for the case with one-bit ADCs at the legitimate receiver.

Then, the results are generalized to the case with arbitrary

finite-resolution ADCs at the legitimate receiver through some

TX
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Fig. 1: A Gaussian wiretap channel with one-bit ADCs at the

legitimate receiver and finite-resolution ADCs at the eaves-

dropper.

simple manipulation. Hence, for simplicity, we formulate the

problem for the channel with one-bit ADCs at the legitimate

receiver.

A. Model

Consider a memoryless complex Gaussian wiretap channel

with one-bit ADCs at the legitimate receiver and finite-

resolution ADCs at the eavesdropper. The quantization is

assumed to be applied separately for real and imaginary parts.

For the eavesdropper, we assume kR ≥ 2 and kI ≥ 2 quanti-

zation points for the real and imaginary parts, respectively.

The quantization function of the ki-point ADC Qki
(·) for

i ∈ {R, I} is given as

Qki
(x) = yi,l if x ∈ [qi,l−1, qi,l), (1)

for all l ∈ [1 : ki], where (qi,1, · · · , qi,ki−1) ∈ R
ki−1 are

the threshold points, (yi,1, · · · , yi,ki
) ∈ Rki are the output

points, and qi,0 = −∞, qi,ki
= ∞. The threshold points are

assumed to be qi,l−1 < qi,l for all l ∈ [1 : ki], and output

points are distinct. For the ADCs at the legitimate receiver,

we consider one-bit ADCs, and an one-bit ADC corresponds

to the quantization function with only one threshold point 0,

and the output points (−1, 1).
The transmitter sends a channel input X , then the legitimate

receiver and the eavesdropper observe Y1 and Y2, respectively,

which follows the input-output relationship given as

Y1 = sgn(R(w1X + N1)) + j · sgn(I(w1X + N1)), (2)

Y2 = QkR
(R(w2X +N2)) + j · QkI

(I(w2X +N2)), (3)

as depicted in Fig. 1. The complex channel gains w1, w2 are

assumed to be non-zero constants, and known at both the

transmitter and the legitimate receiver. The Gaussian noises

Ni ∼ CN (0, 2) are independent with each other and with X .

Thus, the channel transition probabilities are given as

PY1|X(1± j|x) = Q (−R(w1x)) ·Q (∓I(w1x)) , (4)

PY1|X(−1∓ j|x) = Q (R(w1x)) ·Q (±I(w1x)) , (5)

PY2|X(yR,i + j · yI,l|x)
= (Q (qR,i−1 −R(w2x)) −Q (qR,i −R(w2x))) (6)

· (Q (qI,l−1 − I(w2x)) −Q (qI,l − I(w2x))) ,
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for i ∈ [1 : kR], and l ∈ [1 : kI].
Through n ∈ N channel uses, the transmitter encodes a

uniformly distributed message M ∈ M =
[

1 : 2⌈nR⌉
]

into

the channel input Xn = fn(M) with some encoding function

fn : M → Cn satisfying the average power constraint J > 0,

i.e.,

E

[

1

n

n
∑

i=1

|Xi|2
]

≤ J. (7)

The legitimate receiver decodes M̂ = gn(Y
n
1 ) based on the

observation Y n
1 using a decoding function gn : Cn → M. As

in [2], a secrecy rate R is said to be achievable if there exists

a sequence of {(fn, gn)}n∈N satisfying

lim
n→∞

P{M̂ 6= M} = 0, lim
n→∞

1

n
I(M ;Y n

2 ) = 0. (8)

The secrecy capacity Cs is defined as the supremum of

achievable secrecy rates.

B. Previous Work and Our Contribution

In the following, we review some of previous works on

1) wiretap channels (without ADCs) and 2) (non-wiretap)

channels with ADCs. Then the main contribution of this paper

is summarized.

1) Wiretap Channel: The wiretap channel was first studied

by Wyner in [2], where the secrecy capacity of a degraded

wiretap channel was characterized as

CD
s = sup

PX

I(X ;Y1)− I(X ;Y2). (9)

For a general wiretap channel with the average power con-

straint J , [3] showed that the secrecy capacity is given as

Cs = sup

PU,X :
U−X−(Y1,Y2)

E[X2]≤J

I(U ;Y1)− I(U ;Y2). (10)

We note that it is sufficient to set U = X in (10) for a class

of more capable channels where I(X ;Y1) ≥ I(X ;Y2) for all

PX , which includes the degraded channels [3].

If the legitimate channel and the eavesdropper channel are

Gaussian [4], [5] with average power constraint J , the secrecy

capacity is simplified to

CG
s =

[

log

(

1 +
|w1|2J

2

)

− log

(

1 +
|w2|2J

2

)]+

, (11)

which is achieved by letting U = X and X ∼ CN (0, J) in

(10). This follows from the fact that the Gaussian wiretap

channel is degraded. Hence, a positive secrecy rate of the

Gaussian wiretap channel without ADCs is not achievable

when |w1| ≤ |w2|, which makes sense because the eaves-

dropper observes a signal with a better quality.

2) Channels with ADCs: For a real Gaussian channel with

average power constraint J where the receiver employs a one-

bit ADC, [7] showed that the BPSK with power J achieves

the capacity of

CR,1-bit = 1− h
(

Q
(

|w|
√
J
))

. (12)

Moreover, [7] showed that the capacity for the channel with

a k-point ADC at the receiver can be achieved by a discrete

distribution with at most k + 1 points of support, by apply-

ing Karush-Kuhn-Tucker (KKT) conditions. For a complex

Gaussian channel with component-wise one-bit ADCs at the

receiver, [8] showed that the capacity is given as

CC,1-bit = 2

(

1− h

(

Q

(

|w|
√

J

2

)))

, (13)

and the QPSK with the phase rotation −∠w and power

J achieves the capacity.1 For the aforementioned real and

complex channels with one-bit ADCs, the optimal input distri-

bution was analyzed by exploiting the concavity of the mutual

information I(X ;Y ) in PX , the symmetry of the channel, and

the convexity of h(Q(
√·)) [11].

3) Our Contribution: First, we show that a positive secrecy

rate is achievable whenever |w1| 6= |w2|, no matter what the

thresholds of ADCs are. To show the achievability, we focus

on the Wyner code [2] which achieves I(X ;Y1) − I(X ;Y2)
for input distribution PX . One might expect that if the one-bit

ADCs are at the legitimate receiver, |w1| > |w2|, and PX is set

to the rotated QPSK, which maximizes I(X ;Y1), then it would

be easily shown that a positive secrecy rate is achievable.

However, it is tricky to handle I(X ;Y2) exactly or find a tight

upper bound on it as the number of possible realizations of Y2

is kR · kI. Thus, it is not clear whether such QPSK achieves

a positive secrecy rate in general (if one-bit ADCs are also

employed at the eavesdropper, it can be proved that a positive

secrecy rate is achievable, which is proved in Appendix A).

As a way to avoid this difficulty, we consider a binary input

distribution and analyze the resultant rate by approximating

each of the legitimate and the eavesdropper channels to a Z-

channel.

Second, for a real Gaussian channel with one-bit ADCs,

we find a necessary condition for the optimal distributions for

Wyner code. In contrast to a Gaussian wiretap channel without

ADCs, the sufficiency of U = X in (10) is not straightforward

because our channel is shown to be not capable. Because it is

tricky to handle the auxiliary random variable U in general, we

consider the maximally achievable secrecy rate by the Wyner

code given in (9), which is also used for showing the positivity

of the secrecy capacity. The Wyner code (9) is of practical

interest, because there is a polar code for wiretap channels

[12] which achieves the secrecy rate of I(X ;Y1) − I(X ;Y2)
when PX is set to a binary uniform distribution.2 Also, a

study in [13] shows that the characterization of (9) can be

used to find the secrecy capacity (10) (a detailed discussion is

in Section V).

Even if U = X , the optimal distributions cannot be found

directly by the previous techniques. For our Gaussian wiretap

channel with ADCs, I(X ;Y1) − I(X ;Y2) is not concave in

PX . Therefore, we cannot use the previous techniques [7]

directly for finding the optimal distributions for (9). Moreover,

because the difference between two mutual information terms

1In this paper,
√

J/2 is in (13) instead of
√

J , because we set the variance
of complex Gaussian noise to 2.

2The channel was restricted to a symmetric channel in [12], but it can be
checked that the secrecy rate of I(X; Y1)− I(X; Y2) is also achievable for
any binary-input memoryless discrete wiretap channel.
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is optimized in (9), the technique used for proving the suffi-

ciency of finite support in [7], which relies on some monotonic

property related to a single mutual information term, cannot

be applied directly.

III. ACHIEVABILITY OF A POSITIVE SECRECY RATE

In this section, we show that a positive secrecy rate is

achievable regardless of the quantization levels of the ADCs

as long as |w1| 6= |w2|.
In the following, we focus on the achievability of a positive

secrecy rate without a power constraint. If a positive secrecy

rate is achievable by using possibly very large (but finite)

power, this implies that it is also achievable in the presence of

the power constraint since the transmit power can be adjusted

to satisfy the power constraint by time-burst transmission, i.e.,

use the scheme for 0 < α ≤ J/E[|X |2] fraction of time and

stay idle for the remaining time.

For a channel without power constraint, the Wyner code [2]

with input distribution PX achieves the secrecy rate Rs(PX)
given as

Rs(PX) := I(PX , PY1|X)− I(PX , PY2|X)

= I(X ;Y1)− I(X ;Y2). (14)

The following theorem states that Rs(PX) > 0 for some

PX for the case with one-bit ADCs at the legitimate receiver.

Theorem 3.1: For a Gaussian wiretap channel with one-bit

ADCs at the legitimate receiver and finite-resolution ADCs at

the eavesdropper, there exists PX such that Rs(PX) > 0 and

E[|X |2] < ∞ whenever |w1| 6= |w2|.
This theorem is generalized to the channel with arbi-

trary finite-resolution ADCs at the legitimate receiver in

Corollary 3.3.

Before a precise and rigorous proof, let us first present

the main ideas and intuitions used in the proof. In general,

it is tricky to handle the mutual information I(X ;Y2) exactly,

because it involves a number of terms as the number of

possible realizations of Y2 is kR · kI. To avoid this difficulty,

we choose PX as a binary distribution whose support contains

a point with very large absolute value. For such PX , each of

the legitimate channel and the eavesdropper channel can be

approximated to Z-channels. Since the mutual information for

a Z-channel is decreasing in the crossover probability, it is

sufficient to compare only the crossover probabilities of each

equivalent Z-channels to show Rs(PX) > 0.

To illustrate this intuition, assume that the channel is a real

(instead of complex) channel where the one-bit ADC is at the

legitimate receiver and the k-point ADC is at the eavesdropper.

Suppose w1, w2 > 0, and let PX be a binary distribution given

as

PX(x) =

{

φ if x = a

1− φ if x = b
, (15)

where 0 < φ < 1, and b is sufficiently large. Then, both

PY1|X(1|b) and PY2|X(yk|b) are close to 1, because the

Gaussian noises can be ignored for large b. Equivalently,

X

a

b

Y1

−1

1
1

PY1|X(1|a)

X

a

b yk
1

PY2|X(yk|a)

Y2

else

Fig. 2: The Z-channels equivalent to the original channels

when b → ∞.

PY1|X(−1|b) and PY2|X(yl|b) are close to 0 for all l < k.

Therefore, the conditional entropies are approximated to

H(X |Y1) ≈ PY1
(1) ·H(X |Y1 = 1), (16)

H(X |Y2) ≈ PY2
(yk) ·H(X |Y2 = yk). (17)

The RHS of (16) and (17) are equal to the corresponding

conditional entropies of Z-channels depicted in Fig. 2. Hence,

the original channels can be regarded as the Z-channels

because the mutual informations are preserved. Therefore,

if there exists a which satisfies PY1|X(1|a) < PY2|X(yk|a),
then Rs(PX) > 0 can be achieved by choosing such a in

(15). The existence of such a can be checked graphically in

Fig. 3. Consider first the case of w1 > w2. In Fig. 3-(a),

the blue dashed area and the red solid area correspond to

PY1|X(1|a) and PY2|X(yk|a), respectively. We can show that

there exists a < 0 such that a larger variance of 1/w2
2

overcome the effect of constant gap qk−1/w2 of thresholds

so that PY2|X(yk|a) > PY1|X(1|a). For the case w1 < w2,

in Fig. 3-(b), the blue dashed area and the red solid area

correspond to 1 − PY1|X(1|a) and 1 − PY2|X(yk|a), respec-

tively. Due to the similar reason, we can show that there exists

a > 0 such that 1 − PY1|X(1|a) > 1 − PY2|X(yk|a), i.e.,

PY2|X(yk|a) > PY1|X(1|a).
The intuition from a real channel can be generalized into

a complex channel, but the phases of w1 and w2 should be

considered when converting to equivalent Z-channels. Let PX

be a binary distribution with phase Φ, i.e.,

PX(x) =

{

φ if x = aejΦ

1− φ if x = bejΦ
, (18)

where 0 < φ < 1, a, b ∈ R, and b is sufficiently large. If

∠(wiX) = Φ + ∠wi is a multiple of π/2 for some i = 1, 2,

then Yi given X = bejΦ does not converge to one point as

b increases, because R(wib) or I(wib) becomes 0 in (4)-(6).

Therefore, to apply the Z-channel intuition illustrated for the

real channel, Φ + ∠wi should not be a multiple of π/2 for

i = 1, 2.

Now, even if Φ + ∠wi is not a multiple of π/2 so that Yi

converges to one point as b increases for i = 1, 2, comparing

the crossover probabilities of equivalent Z-channels is not

simple. Let θ := ∠(w2X) = Φ+∠w2, and ∆ := ∠w1 − ∠w2,

so that θ + ∆ = ∠(w1X). To analyze the equivalent Z-

channels, we need to specify the quantized points ȳi such that

PYi|X(ȳi|bejΦ) ≈ 1 for sufficiently large b. Because ȳ1 and
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(a) w1 > w2 > 0

(b) w2 > w1 > 0

Fig. 3: For given any given (w1, w2, qk−1), w1 6= w2, there

exists a which satisfies PY1|X(1|a) < PY2|X(yk|a) because

the tail of the PDF of a Gaussian distribution is steeper as its

variance increases.

ȳ2 depend on θ+∆ and θ, respectively, the crossover proba-

bilities pi = PYi|X(ȳi|aejΦ) also depend on such phases. For

example, assume θ (or Φ, equivalently) is set to θ ∈ (0, π/2).
Then, we have ȳ2 = yR,kR

+ j · yI,kI
, and

p2 = Q (qR,kR−1 − |w2|a cos θ)
·Q (qI,kI−1 − |w2|a sin θ) . (19)

However, as ȳ1 depends on ∆, the proof should be done

considering four possible cases, i.e., ȳ1 ∈ {1 ± j,−1 ± j}.

Moreover, for each case of ȳ1 ∈ {1 ± j,−1 ± j}, some

complicated calculation is required to find a satisfying p1 < p2
through the triangle inequalities related to both θ and ∆.

To simplify the analysis, we choose θ (or Φ, equivalently)

to satisfy

θ +∆ = mπ/2− θ if (m− 1)π/2 ≤ ∆ < mπ/2, (20)

θ

θ

θ

∆

Re

Im

w1 · ae
j(Φ−∆)w1 · ae

jΦ

Fig. 4: The relation between θ and ∆ for m = 2 in (20). By

the symmetry, (21) holds.

for m ∈ Z. Then, p2 is given as (19) because 0 < θ ≤ π/4,

and p1 can be shown to be given as follows for all ∆:

p1 = PY1|X

(

1 + j
∣

∣

∣
aej(Φ−∆)

)

= PY1|X

(

1 + j
∣

∣

∣
aej(θ−∠w1)

)

. (21)

The above equation implies that we can treat ȳ1 as 1 + j by

regarding the input as aej(θ−∠w1), and do not need to prove

the theorem separately for all ȳ1 ∈ {1± j,−1± j}. This can

be understood graphically, as in Fig. 4. In this figure, the real

and imaginary axes correspond to the threshold lines of the

one-bit ADCs at the legitimate receiver, and θ+∆ ∈ (π/2, π).
Therefore, ȳ1 = −1 + j. The crossover probability p1 is the

probability that Y1 = −1 + j when the black circle plus N1

is the input of the quantization. Because N1 is the circular

symmetric Gaussian noise, p1 is equal to the probability that

Y1 = 1 + j when the red square plus N1 is the input of the

quantization. Similar interpretation is available for all m ∈ Z.

Now, because θ is the only phase to consider to analyze p1
and p2 in (19) and (21), respectively, the condition for a to

satisfy p1 < p2 can be found easily.

A precise proof for Theorem 3.1 is given in the following.

Proof of Theorem 3.1: Let us first prove the theorem for

the real channel with one-bit ADC at the legitimate receiver

and k-point ADC at the eavesdropper, and then generalize it

for the complex channel.

1) Real channel

The input-output relationships for a real channel are given

as

Y1 = sgn(w1X +N1), (22)

Y2 = Qk(w2X +N2), (23)

where Ni ∼ N (0, 1). Let PX be a binary distribution given

as

PX(sgn(w2) · a) = φ, PX(sgn(w2) · b) = 1− φ, (24)

for some a, b ∈ R, and φ ∈ (0, 1).
Let us first derive the limit values of the mutual information

terms when b tends to infinity:

lim
b→∞

I(X ;Y2) = H(X)− lim
b→∞

H(X |Y2) (25)

= h(φ)− lim
b→∞

PY2
(yk) ·H(X |Y2 = yk) (26)

= h(φ)− (1− φ+ φp2) · h
(

1− φ

1− φ+ φp2

)

(27)

= h(φ(1 − p2))− φh(p2), (28)
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where

p2 = PY2|X(yk|sgn(w2) · a) = Q(qk−1 − |w2|a). (29)

Here, (26) follows from the continuity of PY2|X(·|sgn(w2)b)
in b, lim

b→∞
PX|Y2

(sgn(w2)b|yl) = 0 when l < k, and (28) is

from the following equations:

H(φp, 1− φ, φ− φp) = h(φ) + φh(p)

= h(φ(1− p)) + (1− φ+ φp)h

(

1− φ

1− φ+ φp

)

. (30)

Similarly, we can derive

lim
b→∞

I(X ;Y1) = h (φ(1 − p1))− φh (p1) , (31)

where

p1 = PY1|X(sgn(w1w2)|sgn(w2) · a) = Q(−|w1|a). (32)

Then, we get

lim
b→∞

Rs(PX) = fφ(p1)− fφ(p2), (33)

where fφ(p) := h(φ(1 − p))− φh(p).
The function fφ(p) corresponds to the mutual information

between input and output of the Z-channel with crossover

probability p when the input follows Bern(φ). Thus, it de-

creases in p.

Lemma 3.2: For 0 < φ < 1, fφ(p) is decreasing on

p ∈ (0, 1).
The above lemma can be proved easily by checking the

derivative of fφ(p). Then, (29), (32), (33), Lemma 3.2, and

the monotonicity of Q(x) implies that lim
b→∞

Rs(PX) > 0 if

(|w2| − |w1|)a > qk−1. (34)

Because |w1| 6= |w2|, there exists a satisfying (34). Now, due

to the continuity of Rs(PX) in b, we conclude that there exist

φ, a, and b < ∞ such that Rs(PX) > 0.

2) Complex channel

Let PX be a binary distribution

PX(aejΦ) = φ, PX(bejΦ) = 1− φ, (35)

0 < φ < 1, and a, b,Φ ∈ R. For a simple parameterization,

let θ := Φ + ∠w2, and ∆ := ∠w1−∠w2. Then, the transition

probabilities (4)-(6) can be represented as

PY1|X(1± j|xejΦ) = Q(−|w1|x cos(θ +∆))

·Q(∓|w1|x sin(θ +∆)), (36)

PY1|X(−1± j|xejΦ) = Q(|w1|x cos(θ +∆))

·Q(∓|w1|x sin(θ +∆)), (37)

PY2|X(yR,i + j · yI,l|xejΦ)
= (Q (qR,i−1 − |w2|x cos θ)−Q (qR,i − |w2|x cos θ))
· (Q (qI,l−1 − |w2|x sin θ)−Q (qI,l − |w2|x sin θ)) , (38)

where x ∈ {a, b}.

For given ∆, choose θ (or Φ, equivalently) such that (20)

is satisfied. Similar to the real case, let us evaluate the limit

values of the mutual information terms as b tends to infinity.

Because 0 < θ ≤ π/4 under the condition (20), we have

lim
b→∞

PX|Y2
(bejΦ|yR,i + j · yI,l) = 0, (39)

for i 6= kR or l 6= kI. Thus, the limit value of I(X ;Y2) is

given as

lim
b→∞

I(X ;Y2) = fφ(p2), (40)

where

p2 = Q (qR,kR−1 − |w2|a cos θ)
·Q (qI,kI−1 − |w2|a sin θ) . (41)

For the limit value of I(X ;Y1), let ȳ1 be the point such that

lim
b→∞

PY1|X(ȳ1|bejΦ) = 1. (42)

Because mπ/2− π/4 ≤ θ +∆ < mπ/2,

ȳ1 =
√
2
(

cos
(mπ

2
− π

4

)

+ j · sin
(mπ

2
− π

4

))

. (43)

Then, we have

lim
b→∞

I(X ;Y1) = fφ(p1), (44)

where p1 is given as

p1 = PY1|X(ȳ1|aejΦ) (45)

= Q
(

−
√
2|w1|a cos

(mπ

2
− π

4

)

cos
(mπ

2
− θ
))

(46)

·Q
(

−
√
2|w1|a sin

(mπ

2
− π

4

)

sin
(mπ

2
− θ
))

= Q (−|w1|a (t cos θ + (1− t) sin θ)) (47)

·Q (−|w1|a ((1 − t) cos θ + t sin θ))

= Q(−|w1|a cos θ)Q(−|w1|a sin θ), (48)

where t = cos(mπ/2)
2
, and the last equality follows from

t ∈ {0, 1}.

By Lemma 3.2, lim
b→∞

Rs(PX) = fφ(p1) − fφ(p2) > 0

if p1 < p2. From (41), (48), and the monotonicity of Q(·),
p1 < p2 holds if

{

qR,kR−1 − |w2|a cos θ < −|w1|a cos θ
qI,kI−1 − |w2|a sin θ < −|w1|a sin θ

, (49)

or equivalently,
{

qR,kR−1 < (|w2| − |w1|)a cos θ
qI,kI−1 < (|w2| − |w1|)a sin θ

. (50)

Because cos θ, sin θ > 0, and |w2| − |w1| 6= 0, there exists a
which satisfies the above inequalities. Now, by the continuity

of Rs(PX) in b, we conclude that there exist φ, a and b < ∞
such that Rs(PX) > 0.

Theorem 3.1 is generalized for a channel with arbitrary

finite-resolution ADCs at the legitimate receiver as follows.

Corollary 3.3: For a Gaussian wiretap channel with finite-

resolution ADCs at both the legitimate receiver and the

eavesdropper, there exists PX such that Rs(PX) > 0 and

E[|X |2] < ∞ whenever |w1| 6= |w2|.



7

Proof: Let us first assume arbitrary 2-point ADCs at

the legitimate receiver with threshold points cR and cI
for the real and imaginary parts, respectively, and finite-

resolution ADCs at the eavesdropper with threshold points

qR = (qR,1, · · · , qR,kR−1) and qI = (qI,1, · · · , qR,kI−1) for

the real and imaginary parts, respectively. Now, let

X̃ = X + cR/w1 + j · cI/w1. Note that X̃ is a translated

version of X . Hence it can be shown that if PX achieves

a positive secrecy rate Rs > 0 when the symmetric one-

bit ADCs are at the legitimate receiver and finite-resolution

ADCs with the threshold points qR − R
(

w2

w1

(cR + j · cI)
)

and qI − I
(

w2

w1
(cR + j · cI)

)

are at the eavesdropper, then

PX̃ achieves the same secrecy rate Rs for the initially as-

sumed channel. Therefore, we can conclude that a positive

secrecy rate is achievable when arbitrary 2-point ADCs are at

the legitimate receiver and finite-resolution ADCs are at the

eavesdropper.

Now, suppose finite-resolution ADCs at the legitimate re-

ceiver with threshold points cR and cI, which contain cR
and cI, respectively. Then, by the data processing inequality,

a positive secrecy rate is also achievable. Because arbitrary

cR, cI, qR, and qI are assumed, we conclude that a positive

secrecy rate is achievable as long as |w1| 6= |w2| for arbitrary

finite-resolution ADCs at both the legitimate receiver and at

the eavesdropper.

Remark 1: For |w2| ≈ 0, intuitively the achievability

scheme used in the proof with almost all pairs of (a, b)
will achieve a positive secrecy rate, but (50) says that it

is guaranteed only for a less than some constant even if

|w2| = 0. This seemingly counter-intuitive result is because

lim
b→∞

lim
|w2|→0

Rs(PX) 6= lim
|w2|→0

lim
b→∞

Rs(PX) in general. Tak-

ing the limit |w2| → 0 first means ignoring the eavesdropper

channel first. In this case, lim
|w2|→0

Rs(PX) = I(X ;Y1), so

every pair of (a, b) achieves a positive secrecy rate. On the

other hand, taking the limit b → ∞ first means applying the

Z-channel intuition first. In this case, as long as |w2| > 0,

lim
b→∞

Rs(PX) > 0 is not guaranteed for some a.

IV. ON THE OPTIMAL DISTRIBUTIONS FOR THE WYNER

CODE

In Section III, it is shown that a binary distribution PX

such that two input points have the same phase if |w1| < |w2|
and otherwise the opposite phase achieves a positive secrecy

rate, when the one-bit ADCs are at the legitimate receiver.

The following theorem states that for a real Gaussian wiretap

channel with one-bit ADCs at both the legitimate receiver

and the eavesdropper, this choice of the phase is a necessary

condition for the optimal distributions P ∗
X for the Wyner code,

i.e.,

Rs(P
∗
X) = sup

PX :E[X2]≤J

Rs(PX). (51)

Theorem 4.1: For a real Gaussian wiretap channel with one-

bit ADCs, if |w1| < |w2|,

S(P ∗
X) ⊂ R+ or S(P ∗

X) ⊂ R−. (52)

If |w1| > |w2|,
S(P ∗

X) 6⊂ R+ \ {0} and S(P ∗
X) 6⊂ R− \ {0}. (53)

The following lemma plays a key role to prove the above

theorem.

Lemma 4.2: For a real Gaussian wiretap channel with one-

bit ADCs at both the legitimate receiver and the eavesdropper,

if |w1| < |w2|,
Rs

(

P|X|

)

≥ Rs(PX), (54)

and if |w1| > |w2|,
Rs

(

P|X|

)

≤ Rs(PX), (55)

for all PX which satisfies E[X2] < ∞. If X is not a constant,

then each equality holds if and only if S(PX ) ⊂ R+ or

S(PX) ⊂ R−.

Proof of Lemma 4.2: First note that the sign of wi does

not affect the mutual information terms as follows:

I(X ;Yi) = h(E[Q(wiX)])− E[h(Q(wiX))] (56)

= h(1− E[Q(−wiX)])− E[h(1−Q(−wiX))] (57)

= h(E[Q(−wiX)])− E[h(Q(−wiX))]. (58)

Therefore, we assume w1, w2 > 0 without loss of generality.

To prove the lemma, it is sufficient to consider the sign of

Rs(P|X|)−Rs(PX). Both the distributions, PX and P|X|,

induce the same conditional entropies because

H(Yi|X) = E[h(Q(wiX))] (59)

= E[h(Q(wiX));X > 0] + E[h(Q(wiX));X ≤ 0] (60)

= E[h(Q(wiX));X > 0] + E[h(Q(−wiX));X ≤ 0] (61)

= E[h(Q(wi|X |))] (62)

= EX∼P|X|
[h(Q(wiX)]. (63)

Therefore, the difference becomes

Rs(P|X|)−Rs(PX)

= h(E[Q(w1|X |)])− h(E[Q(w1X)]) (64)

− {h(E[Q(w2|X |)])− h(E[Q(w2X)])}
= F (w1)− F (w2), (65)

where F (w) := h(E[Q(w|X |)])− h(E[Q(wX)]).
Let us define c(w) and d(w) as

c(w) =
1

2
(E[Q(w|X |)] + E[Q(wX)]) (66)

= E[Q(wX);X > 0] +
1

2
E[Q(−wX);X ≤ 0] (67)

+
1

2
E[Q(wX);X ≤ 0]

= E[Q(wX);X > 0] +
1

2
PX(R−), (68)

and

d(w) =
1

2
(E[Q(wX)]− E[Q(w|X |)]) (69)

=
1

2
(E[Q(wX);X ≤ 0]− E[Q(−wX);X ≤ 0]) (70)

= E[Q(wX);X ≤ 0]− 1

2
PX(R−). (71)
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Then, the function F (·) can be represented as

F (w) = h(c(w) − d(w)) − h(c(w) + d(w)). (72)

By the monotonicity of Q(·), it can be checked

that c(w) is non-increasing, d(w) is non-decreasing, and

0 ≤ d(w) < c(w) ≤ 1/2 for w > 0. The strictly inequality

d(w) < c(w) follows from E[X2] < ∞. Furthermore, the

following lemma can be proved easily by deriving the partial

derivatives.

Lemma 4.3: For 0 < d < c < 1/2, h(c− d) − h(c+ d) is

strictly increasing in c for fixed d, and strictly decreasing in

d for fixed c.
Hence, from the above lemma and the monotonicity of c(w)

and d(w), it follows that F (w) is decreasing in w, which

proves (54) and (55).

Now let us check the equality conditions in (54) and (55).

Suppose X is not a constant. Then, at least one of c(w) and

d(w) is strictly monotonic in w > 0. Hence, F (w) remains

constant if and only if c(w) = 1/2 or d(w) = 0 for all w > 0.

The equality conditions follow from the fact that c(w) = 1/2
if and only if S(PX) ⊂ R−, and d(w) = 0 if and only if

S(PX) ⊂ R+.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1: Because sup
PX :E[X2]≤J

Rs(PX) > 0

by Theorem 3.1, X is not a constant. Since P ∗
X is the

optimal distribution, the inequality (54) should be equality

when |w1| < |w2| for P ∗
X . Therefore, (52) follows from the

equality condition in Lemma 4.2.

For |w1| > |w2|, suppose S(P ∗
X) ⊂ R+ \ {0}. Choose

x ∈ S(P ∗
X) which is not the maximum, and define P ′

X as

P ′
X(A) = P ∗

X(−(A ∩ [−x, 0))) + P ∗
X(A ∩ (x,∞)), (73)

for every Borel set A ⊂ R. Then, P ′
|X| = P ∗

X , and S(P ′
X)

is not the subset of R+ or R−. By the equality condition in

Lemma 4.2, Rs(P
∗
X) < Rs(P

′
X), which contradicts to the

optimality of P ∗
X . Therefore, S(P ∗

X) 6⊂ R+ \ {0}. Similarly,

it can be shown that S(P ∗
X ) 6⊂ R− \ {0}.

V. CONCLUSION AND DISCUSSIONS

In this paper, we showed that a positive secrecy rate is

always achievable for a Gaussian wiretap channel with ADCs,

as long as the channel gains are not the same. For the achiev-

ability, we first showed the achievability for the case when

the one-bit ADCs are at the legitimate receiver. For such a

case, we employed binary channel inputs with the same phase

or opposite phase depending on the channel conditions, and

analyzed the achievable rate by approximating the resultant

channels to Z-channels. Then the result was generalized for the

channel with arbitrary finite-resolution ADCs at the legitimate

receiver through some simple manipulation. Moreover, for a

real Gaussian wiretap channel with one-bit ADCs, such phase

condition used for the achievability was shown to satisfy a

necessary condition for the optimal input distribution for the

Wyner code.

The Wyner code we considered in this paper can be applied

to practical digital communication systems. As we mentioned

in Section II-B, the polar code in [12] for wiretap channel

achieves Rs(PX) for binary uniform input distribution PX . As

our achievability holds for uniform distribution, i.e., φ = 1/2
in (24), the code in [12] with the modulation which we

used in the proof of Theorem 3.1 can be used for a secure

communication system in practice.

A potential future work of interest would be to characterize

the exact secrecy capacity and the optimal distributions which

achieve it. In Section II-B, we mentioned that the solution of

(9) would be helpful for analyzing the secrecy capacity. Our

expectation comes from the fact that

I(U ;Y1)− I(U ;Y2) = I(X ;Y1)− I(X ;Y2)

+ [I(X ;Y2|U)− I(X ;Y1|U)] , (74)

for U − X − (Y1, Y2), as in [13]. Now, let P ∗
X denote a

distribution achieving (9) and {P̃ i
X : i = 1, 2, · · · } denote

the set of distributions achieving sup
PX

I(X ;Y2)− I(X ;Y1). If

P ∗
X can be represented as a weighted sum of P̃ i

X ’s, i.e., there

exists {θi} such that θi ≥ 0,
∑

i

θi = 1 and

P ∗
X =

∑

i

θiP̃
i
X , (75)

the secrecy capacity is given by

Cs = max
PX

[I(X ;Y1)− I(X ;Y2)]

+ max
PX

[I(X ;Y2)− I(X ;Y1)]. (76)

Therefore, the characterization of the optimal distributions

which achieve (9) can be used to find the secrecy capacity.

In this work, we provided a necessary condition for the

optimal distributions which achieve (9). One possible way

to find more necessary conditions is to apply Karush-Kuhn-

Tucker (KKT) conditions. There have been some studies

on necessary conditions for the optimal support using KKT

conditions [7], [14], [15] for point-to-point channels, where

the cardinality of the optimal support is bounded. The KKT

conditions that used for point-to-point channels [15, Theorem

10] can be modified for wiretap channels. Precisely, if P ∗
X is

that of (51), there exists λ ≥ 0 such that following conditions

are satisfied:

λ(EX∼P∗
X
[X2]− J) = 0, (77)

i(x;P ∗
X , PY1|X)− i(x;P ∗

X , PY2|X)− λ(x2 − EX∼P∗
X
[X2])

≤ Rs(P
∗
X), (78)

for all x ∈ R, and equality holds if x ∈ S(P ∗
X).3 We expect

that it would be possible to find a stronger condition by

combining KKT conditions and Theorem 4.1 in our work.

APPENDIX A

For a complex Gaussian wiretap channel with one bit ADCs

at both the legitimate receiver and the eavesdropper, let us

show that the QPSK aligned to the legitimate channel achieves

a positive secrecy rate whenever |w1| > |w2|.
3In our channel, only necessity is guaranteed because Rs(PX ) is not

concave in PX .
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In this channel, the transition probabilities are given by

PYi|X(1± j|x) = Q(−R(wix))Q(∓I(wix)), (79)

PYi|X(−1± j|x) = Q(R(wix))Q(∓I(wix)), (80)

for i = 1, 2. Let PX(x) = 1/4 for x ∈ QPSKJ · e−j∠w1 ,

where

QPSKJ :=

√

J

2
· {1± j,−1± j}. (81)

Then, it can be shown that H(Yi) = 2 for i = 1, 2 from

PYi|X(yi|x) = PYi|X(yi · ej·π/2|x · ej·π/2), (82)

for all i ∈ {1, 2}, x ∈ C, and yi ∈ {1± j,−1± j}. Then, the

mutual informations are given as

I(X ;Y1) = 2

(

1− h

(

Q

(

|w1|
√

J

2

)))

, (83)

I(X ;Y2) = 2−H(Y2|X) (84)

= 2− h
(

Q
(

|w2|
√
J cos(∆)

))

(85)

− h
(

Q
(

|w2|
√
J sin(∆)

))

,

where ∆ = ∠w1 −∠w2. Because h
(

Q
(√·
))

is convex [11],

we have

I(X ;Y2) ≤ 2

(

1− h

(

Q

(

|w2|
√

J

2

)))

. (86)

Therefore, from (83) and (86),

Rs(PX)

≥ 2

(

h

(

Q

(

|w2|
√

J

2

))

− h

(

Q

(

|w1|
√

J

2

)))

> 0, (87)

if |w1| > |w2|.
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