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Abstract

An additive noise channel is considered, in which the distribution of the noise is nonparametric and unknown.

The problem of learning encoders and decoders based on noise samples is considered. For uncoded communication

systems, the problem of choosing a codebook and possibly also a generalized minimal distance decoder (which is

parameterized by a covariance matrix) is addressed. High probability generalization bounds for the error probability

loss function, as well as for a hinge-type surrogate loss function are provided. A stochastic-gradient based alternating-

minimization algorithm for the latter loss function is proposed. In addition, a Gibbs-based algorithm that gradually

expurgates an initial codebook from codewords in order to obtain a smaller codebook with improved error probability

is proposed, and bounds on its average empirical error and generalization error, as well as a high probability

generalization bound, are stated. Various experiments demonstrate the performance of the proposed algorithms. For

coded systems, the problem of maximizing the mutual information between the input and the output with respect to

the input distribution is addressed, and uniform convergence bounds for two different classes of input distributions

are obtained.

Index Terms

additive noise channels, alternating optimization algorithm, entropy estimation, expurgation, generalization bounds,

hinge loss, Gibbs algorithm, minimal distance decoding, mismatch decoding, statistical learning, stochastic gradient

descent.
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I. INTRODUCTION

The additive noise channel is one of the simplest and most widely applicable models in communication and

information theory. The channel output Y ∈ Rd in this model is given by

Y = X + Z (1)

where X ∈ Rd is the input (which is almost always restricted in some way, e.g., to have finite power), and Z ∈ Rd

is the noise, which is assumed to be statistically independent of the input X . As is natural and well-established

[17], [64], the optimization of a communication system for this channel depends on the probability distribution of

the noise: First, via a proper choice of the decoder which minimizes the error probability for a given codebook,

and second, via the proper design of the codebook itself in case of uncoded transmission, or the capacity achieving

input distribution in case of coded transmission. The conventional model further assumes that Z is Gaussian, which

is typically justified by physical phenomena such as thermal noise at the receiver [93], as well as the central-limit

theorem which implies that the accumulated noise from a large number of sources tends to be Gaussian. If such

a model is accurate, then the parameters of the noise distribution1 can be estimated from noise samples obtained

by the receiver when the transmitter is silent, and then used to optimize the system. This method similarly works

whenever the noise density is parametric of sufficiently low dimension. Most often (e.g. [48]), this includes the

design of a training sequence {xtr,i}Ttr
i=1 which is transmitted over the channel over Ttr uses of the channel (1), and

the receiver which knows this sequence uses it to estimate the parameters of the distribution of Z.

Nonetheless, in more complex scenarios encountered in practice – for example in massive multiple-input multiple-

output (MIMO) systems [75] or in ultra low-latency [110] communication – the class of possible noise distributions

may be too rich to allow efficient and faithful parameter estimation under the system constraints, or may be

essentially nonparametric to begin with. Following the statistical learning paradigm [49], [105], [116], a possible

approach is to define a hypothesis class for the encoder (codebooks) and the decoder, and use the samples of the

noise to select a member of the class. The selected decoder in this class is most assuredly mismatched to the noise

distribution and is not a maximum-likelihood decoder for the selected codebook. However, the great advantage of

this approach is that the class of codebooks and decoders may only include encoders/decoders which are feasible

to implement, by design.

In this paper, we focus on learning aspects of this problem, and specifically on the convergence rates of

generalization bounds as a function of the number of noise samples. Nonetheless, we mainly ignore computational

complexity and scalability aspects of the algorithms proposed to perform such learning. Furthermore, as the noise

samples are usually only available at the decoder side, we also mainly sidestep the problem of communicating the

choice of codebook back to the encoder.2 Rather instead, our goal is to explore the statistical learnability of coding

1The covariance matrix, or just the variance in case of white noise.
2This problem is inconsequential in offline design, or when a reliable feedback link of large capacity exists. Analysis of limited feedback

makes the model more complex and is an important topic for further research.
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problems in a distilled and basic form, and highlight basic properties and challenges.

A. Contributions and Outline

Our contributions are of two types – for uncoded and coded systems. For both types we assume that the learner

has n independent samples of the noise Z. For uncoded systems, one-shot use of (1) is assumed, and based on

the noise samples, the learner is required to design a codebook of m codewords, and possibly select a decoder

from a given class in order to minimize a prescribed loss function. It is tacitly assumed that m is reasonably small,

so that the encoder can memorize all codewords (such codebooks are sometimes referred to as multi-dimensional

constellations). For this setup, we show that:

1) Section II: If the class of decoders is comprised of all possible minimal distance decoders with respect to (w.r.t.)

the Mahalanobis distance (parameterized by a covariance matrix), and if the loss function is the standard error

probability, then the generalization error of selecting a codebook of m codewords scales as Õ(m
√

d
n) with

high probability. The result is an error bound which is uniformly applicable to all codebooks and decoders,

and thus for any learning algorithm. Specifically, it holds for the empirical risk minimization (ERM) algorithm.

At the same time, to the best of our knowledge there is no efficient ERM algorithm for this problem. We also

show that the 1√
n

dependency is tight.

2) Section III: If the loss function is replaced by a hinge-type surrogate loss function, which unlike the standard

error probability loss function is a continuous function of the codebook and decoder covariance matrix, then

the generalization error scales at an improved rate of Õ(

√
(d∨m)d

n ) with high probability. Moreover, a heuristic

alternating optimization algorithm is proposed for this problem, and a stochastic gradient descent (SGD) variant

of this algorithm is outlined.

In Section IV, we consider a setup in which a large static codebook of m0 > m codewords is given, and the

noise samples are used to dynamically expurgate this codebook by removing “bad” codewords which cause large

error probability (the decoder is assumed to be a standard minimal distance decoder). Finding the optimal subset

of codewords is a combinatorial optimization optimization problem, which is computationally heavy to solve in

general. We thus propose a randomized Gibbs algorithm for this scenario, which gradually removes codewords with

some randomness. The use of this Gibbs algorithm allows us to obtain a bound on its average generalization error,

which follows directly from an information-theoretic stability analysis of learning algorithms [94], [128]. The bound

scales as O(
√

Tβ
n ∧

Tβ2

4n2 ) where T is the number of steps of the algorithm; the error probabilities conditioned on

each codeword are re-computed after each step before expurgating another subset of k = m0−m
T codewords; and β is

an inverse-temperature parameter which controls the balance between greedy and completely random expurgation.

We also state a high probability generalization bound of order Õ(
√
Tβ
n + 1√

n
) which is a direct implication of the

uniform-stability property [13] of the Gibbs algorithm, and the recent results of [33], [34]. The choice of T and k

is dictated by the available computational power, whereas the value of β may be arbitrary optimized.
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For coded systems, we focus in Section V on the problem of finding the input distribution which maximizes

the mutual information I(X;X + Z), or, equivalently, the output differential entropy h(X + Z). The use of the

mutual information as a performance measure may be justified by the theoretical existence of universal decoding

rules which are able to achieve communications rates arbitrarily close to the mutual information despite lack of

knowledge of the noise distribution [79] (see also the survey in [65]).3 Evidently, this problem is closely related to the

problem of differential entropy estimation (surveyed in [120]; see also [46] and references therein for a more recent

account), but here the goal is to maximize the entropy, rather than to estimate it. This can be achieved by showing

a empirical convergence of an estimator hn(X +Z) based on the noise samples which is uniform in allowed class

input distributions. The methods used here to achieve this is to control the difference between differential entropies

by some statistical distance between distributions, and specifically, between the true and empirical distributions.

We thus consider two types of sets of conditions and show that:

1) If the set of input distributions is regular in the sense defined in [92], has finite second moment, and has

absolutely bounded differential entropy, and if the norm of the noise is sub-Gaussian, then with high probability

|h(X+Z)−h(X+Ẑn)|= Õ(n−1/(d∨4)) uniformly for all possible input distributions, where Ẑn is the empirical

measure of the noise samples.

2) If the support of X is fixed to m points {x1, . . . , xm} ⊂ Rd (an atomic distribution), and so the input

distribution is determined by weights {aj}j∈[m] such that aj = P[X = xj ], then a similar uniform high

probability bound can be obtained using a plug-in kernel density estimator (KDE) for the noise density. The

final convergence rates of the uniform error in differential entropy depend on smoothness assumptions on

the noise densities. For example, for Lipschitz balls [46] of smoothness parameter s ∈ (0, 2] it is given by

O(n−s/(s+d)). Importantly, this rate is dominated by the entropy estimation error, and the additional error due

to the requirement for uniform convergence scales as Õ(
√

m
n ) which is typically negligible.

As evident, the convergence rates in this problem scale exponentially with the dimension, which stems from the

fact that at worst case, the support of the noise distribution may lie in a d-dimensional space. Possible ways to

obtain faster convergence rates are discussed, along with a short summary and other open problems in Section VII.

Proofs are relegated to Appendix A, parameters used in experiments are summarized in Appendix B, and technical

details regarding the implementation of the Gibbs algorithm are provided in Appendix C.

B. Motivation and Context

The remarkable practical success of learning methods of deep neural networks (DNN) [41] architectures in an

assortment of tasks has recently motivated various researchers to consider learning-based design of communication

systems [88]. As surveyed in [44], [56], this idea is not completely new and was proposed as early as the 1990s

3The exact maximal achievable rate using a fixed-structure mismatched decoder (“mismatch capacity”) is unknown to date [103], [109]. A
more complicated alternative to the problem studied here, is to explore generalization bounds which aim to maximize known lower bounds
on the mismatch capacity (for example, the one known as the LM rate [19], [54], [82]).
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by several authors. The approach to this problem is coarsely categorized into either one of two types [88]. The

first type [16], [87], [122] is motivated by the expectation to utilize the powerful computational resources available

for implementation of DNN and their efficient training methods in order to achieve performance competitive to

expert-designed systems. Various recent works have considered this approach, e.g., for random and polar codes

[44], for an unfolded belief propagation algorithm [87], for MIMO communication [102], for low-latency codes

[58], [61] motivated by 5th generation standard [110], for feedback-based communication [60], and for interactive

communication [101].

The second type is closer in spirit to the one taken in this paper, and follows the general learning-theoretic

methodology to refrain from parametric modeling of the data probability distribution [49], [105], [116]. Rather

instead, a hypothesis class is assumed for the required statistical inference goal (e.g., classification, regression),

and data is used to select an optimal hypothesis from this class based on the available data. The application of

this approach in communication-theory related problems is most suitable in scenarios for which channel modeling

is difficult or inaccurate. This includes, e.g., interference, jamming signals non-linearity [104] finite-resolution

quantization (see [88], [121]). The entire end-to-end system is considered as a single DNN, encompassing the

encoder operation, the operation and randomness of the channel, and the decoder operation, and is then typically

trained in an unsupervised manner as an autoencoder [41]. This approach was applied to mutli-user detection in

code-division multiple-access systems [85], and, more recently, to molecular communication systems [31]. In [131],

a receiver architecture including a processing of the input followed by nearest neighbor decoding rule was proposed.

The optimal output processing was identified to be a regression problem, and it was proposed to use the data in

order to choose the processing function to maximize a generalized mutual information (under Gaussian codebooks).

In fact, such an approach seems to be also useful in case a parametric modeling of the channel is reasonably

accurate, but too complex to be utilized, as the dimension of the parameter vector is exceedingly high (e.g., in

massive MIMO systems [75]). As mentioned above, parameter estimation is a common practice to provide channel

state information (i.e., noise distribution) to the decoder, and is usually carried by transmitting a designated training

sequence. However, for high-dimensional parameters, insufficient training time will lead to large variance of the

estimator, and coping this by dimensionality reduction may lead to a large bias. Thus a good variance-bias trade-off

cannot be achieved. Moreover, the estimation step is only secondary to the ultimate goal of reliable decoding of

the data with low error probability. In other words, decoder selection based on parameter estimation is a specific,

indirect, way of selecting a decoder based on noise samples. A more general and direct way is to allow any selection

rule of the decoder based on the noise samples.

Nonetheless, communication theory enjoys a rich expert knowledge in optimizing its main components, and

many practical communication channels do have reasonably faithful parametric representation, which is widely and

successfully used in practice (e.g., [5], [51], [93], [111]). To overcome this high bar and demonstrate the viability

of the learning-based approach, research has focused on obtaining improved or comparable performance (with

improved complexity) to classical communication-theoretic methods. To obtain this goal, they utilize sophisticated
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DNN architectures, which exhibit both remarkable approximation ability [52] as well as generalization to out-of-

sample data. To date, however, the generalization capabilities and the efficiency of training algorithms such as SGD

of DNNs are not fully understood, and challenge general principles in statistics and learning (e.g., [8]). Moreover,

even with refined understanding, the application of any learning methods to a communication problem raises

additional questions: What is the richness of the decoder hypothesis classes? How does the generalization error is

affected by the structure of the code and its data rate? What are useful and proper loss functions? How to properly

regularize the learning process? In this paper, we focus on a stylized and basic version of this problem, with the

prospect that the opportunities and challenges associated with using learning-theoretic methods for communication

systems are illuminated by the analysis of this basic model.

C. Other Related Work

The analysis of decoders which are not fully optimized to the channel statistics distribution is typically studied

under the framework of mismatch decoding. Sharp characterization of the capacity and other fundamental limits

of such decoders is a notoriously difficult and extensively studied open problem in information theory [4], [21],

[39], [55], [63], [65], [82], [103], [108], [109]. In this model, however, the encoder and decoder are assumed to be

completely fixed in advance and are not selected in any way. By contrast, in this work we focus on the selection

of a decoder from a class of decoders using samples of the noise, and specifically, how well this can be done in a

way which generalizes well to out-of-sample noise.

While being somewhat new to channel coding problems, empirical design of encoders is a common practice for

lossy source coding problems, usually via the celebrated Lloyd–Max algorithm [43]. Learning-theoretic analysis of

empirically designed quantizers was carried out during the 1990’s and onward [2], [6], [70]–[73], [83].4 Among var-

ious results, it was established that a distortion redundancy of ε is achievable with n = Õ(d
3m1−2/d

ε2 ) samples, where

here m is the size of quantization codebook (number of reproduction points). The seemingly peculiar dependency

on m, and the optimal minimax tightness of its dependency on n is discussed and established in [6, Thm. 2] (see

also [1]). More recently, this setup was generalized to coding from a general Hilbert space to a finite-dimensional

space, with linear [76] and non-linear [66] mappings. Beyond vector quantization (or clustering), this framework is

general enough to also include principal component analysis, non-negative matrix factorization, dictionary learning

[113], and modern unsupervised representation learning techniques, such as autoencoders. Given that channel coding

(communication) bears both similarities and differences with source coding (mainly quantization), understanding

learning-theoretic questions for channel coding seems feasible, but also requires dedicated effort to handle the

unique features of the latter.

A learning approach that avoids channel modeling and estimation, may be contrasted with the universal decoding

approach prevalent in information theory [20], [65]. Similarly to the learning-based approach, universal methods

avoid explicit estimation of the channel, and aim to find a single decoding rule which does not depend on the

4As an exception to this , a channel coding related problem was considered in [80], which mainly focused on impossibility results.
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unknown channel statistics, yet it is simultaneously nearly optimal for any channel in the class (in a sense which

requires explicit definition, e.g., as in [32]). The universal approach is highly applicable on the theoretical side, but

bares some challenges from the practical side.5 The key problem is that in most problems the universal decoder

obtained is required to compute a metric for all codewords in the codebook, which is typically infeasible due to the

large number of codewords, e.g., [123]. This is true even if the code is structured, e.g., a linear or a convolutional

code, such that optimal or efficient decoding rules, e.g., Viterbi’s decoder [119] or a belief propagation [99] decoder,

can be efficiently implemented when the channel statistics is available. Furthermore, it was shown in [81] that a

universal decoder which aims to compete with a family of low complexity decoders will need to be much more

complex than each of those decoders. Loosely speaking, this is an inherent difficulty for any universal approach

because in some sense, universal decoders implicitly learn the channel statistics and decode the message at the

same time. Hence, they cannot rely on likelihood information that is obtained separately from each channel output,

not even when the channel is known to be memoryless. Similar situation occurs in lossy source coding, for which

[127, Sec. V] states that “low computational complexity is achievable only at the expense of yielding a non-

optimal distortion” (mainly regarding such practical methods which are based on approximate string matching). By

contrast, in a learning-based approach, the class of decoders may be restricted in advance to feasible decoders, and

the available data may then be used to choose the best one from the given class.

D. Main Notation Conventions

We mainly use standard notation or define it before its first use, and here only highlight main conventions. The

standard Euclidean norm for x ∈ Rd is denoted by ‖x‖. The operator norm for a matrix S ∈ Rd×d, viewed as an

operator from Rd to Rd (with both spaces equipped with the Euclidean norm), is denoted by ‖S‖op. The maximal

eigenvalue (resp. minimal) of a symmetric matrix S is denoted by ζmax(S) (resp. ζmin(S)). The d-dimensional

diagonal matrix whose diagonal entries are given by v ∈ Rd is denoted by diag(v) ∈ Rd×d. The zero-centered

Euclidean ball of radius r is denoted by Bd(r) := {x ∈ Rd: ‖x‖≤ r} and the unit sphere is denoted by Sd−1 :=

{x ∈ Rd: ‖x‖= 1}. For n ∈ N+, the set {1, 2, . . . , n} is denoted by [n]. The cardinality of a finite set A is denoted

by |A|. The Hamming distance between x = {x1, . . . , xd}, y = {y1, . . . , yd} ∈ Rd is denoted by dH(x, y) :=

|{i ∈ [d]:xi 6= yi}|. The minimum (resp. maximum) of a, b ∈ R is denoted by a ∧ b (resp. a ∨ b). The (m − 1)-

dimensional probability simplex is denoted by Am−1 := {a = (a1, . . . , am):
∑

j aj = 1, aj ≥ 0}. The indicator of

an event A is denoted by 1{A}. As a general rule, random variables or vectors will be denoted by capital letters

and specific values they may take will be denoted by the corresponding lower case letters. Statistical independence

between random variables X,Y is denoted by X ⊥⊥ Y . Equality of the probability distributions of X,Y is denoted

by X
d
= Y . The Kullback–Leibler (KL) divergence between the probability distributions µ and µ̃ is denoted by

dKL(µ||µ̃). Integrals of probability densities f (which absolutely continuous w.r.t. Lebesgue measure λ) are taken

w.r.t. the Lebesgue measure λ, and this is abbreviated as
∫
f :=

∫
fdλ. The set of Borel probability measures on

5In contrast to the remarkable practical success of universal methods is lossless data compression [132], [133].
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Rd is denoted by P(Rd). For µU , µV ∈ P(Rd), the pth order Wasserstein distance is denoted by Wp(µU , µV ) :=

inf E1/p(‖U − V ‖p) where U ∼ µU and V ∼ µV , and where the infimum is taken over all couplings µUV (i.e.,

joint distributions which agree with the marginal measures of U and V ). A real random variable X is called

σ-sub-Gaussian whenever

σ = ‖X‖ψ2
:= inf

{
t > 0:E exp(X2/t2) ≤ 2

}
<∞. (2)

II. LEARNING UNDER AN ERROR PROBABILITY LOSS FUNCTION

A. Problem Formulation

Consider again the additive noise channel in (1): The input is denoted by X ∈ Rd, the output by Y = X +Z ∈

Rd where X ⊥⊥ Z ∈ Rd, and where for the purpose of matrix multiplication are all taken as column vectors.

The distribution of Z is denoted by µ, and it is assumed that it is completely unknown to the designer of the

communication system. Let ‖x − y‖S :=
√

(x− y)TS(x− y) be the Mahalanobis distance between x, y ∈ Rd

which is parameterized by an inverse covariance matrix S ∈ Sd+ (where Sd+ is the positive-definite cone). The

transmitter chooses a codebook C = {xj}j∈[m] of size |C|= m where xj ∈ Rd for all j ∈ [m], and at each use of

the channel (1), chooses a codeword from C uniformly at random to send over the channel. The decoder employs

a nearest neighbor decoder w.r.t. ‖·‖S , i.e., given a channel output y, the index of the decoded codeword is chosen

as:

ĵ(y) ∈ arg min
j∈[m]

‖xj − y‖S . (3)

Our choice of decoding rule of the form (3) is motivated by the fact that this is the optimal (maximum-likelihood)

rule when Z ∼ N(0, S−1), that is, whenever the noise distribution is Gaussian with covariance matrix S−1. We

stress, however, that we do not assume that the noise Z is Gaussian, and so (3) is chosen for its simplicity, and,

in general, will not be a maximum likelihood decoder. The decision region of the jth codeword is {y: ‖xj − y‖S≤

minj′∈[m]\{j}‖xj′ − y‖S} and the boundary of these decision regions belong to the set of hyperplanes defined by

‖xj − y‖S= ‖xj′ − y‖S for all j 6= j′.

The expected error probability (over the noise distribution) given that the jth codeword was transmitted is then

given by

pµ(C, S | j) := EZ∼µ
[
1

{
min

j′∈[m]\{j}
‖xj + Z − xj′‖S< ‖Z‖S

}]
(4)

= EZ∼µ
[
1

{
min

j′∈[m]\{j}
‖xj − xj′‖2S+2(xj − xj′)TSZ < 0

}]
, (5)

and the expected average error probability by

pµ(C, S) :=
1

m

m∑
j=1

pµ(C, S | j) = EZ∼µ

 1

m

m∑
j=1

1

{
min

j′∈[m]\{j}
‖xj − xj′‖2S+2(xj − xj′)TSZ < 0

} . (6)
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The learning goal related to this formulation is the use of noise samples to design either a codebook C ∈ C ⊂ (Rd)m,

or a decoder inverse covariance matrix S ∈ S ⊂ Sd+, or both, with minimal expected error probability. Here, the

set C, for example, could represent an average power constraint C = {C: 1
m

∑m
j=1‖xi‖2≤ r} for some r > 0, and

the set S may represent a restriction on ‖S‖ for some matrix norm.

Assuming that the codebook/decoder designer is provided with n samples of the noise Z = {Zi}ni=1
i.i.d.∼ µ, the

empirical average error probability (over the n samples {Zi} of the noise) is given by

pZ(C, S) =
1

n

n∑
i=1

1

m

m∑
j=1

1

{
min

j′∈[m]\{j}
‖xj − xj′‖2S+2(xj − xj′)TSZi < 0

}
. (7)

Note that we may write the empirical average error probability as

pZ(C, S) =
1

n

n∑
i=1

`(C, S, Zi) (8)

where the loss function is given by

`(C, S, z) :=
1

m

m∑
j=1

`j(C, S, z) (9)

with

`j(C, S, z) := 1

[
min

j′∈[m],j′ 6=j
‖xj − xj′‖2S+2(xj − xj′)TSz < 0

]
. (10)

Comparison to multiclass classification: Evidently, the problem here resembles multiclass classification, but

as we next discuss, the problems are not equivalent. According to our formulation, the data of the learner are n

noise samples {zi}ni=1. In multiclass classification, each data sample zi should be equipped with a label j ∈ [m],

and the goal of the learner is to output a classifier, whose performance is measured under the 0− 1 loss function,

which equals 1 if and only if the label is erroneously classified. By contrast, in the channel learning problem,

the noise samples {zi}ni=1 are not labeled at all. The learner is required to output a decoder, which is indeed

a multiclass classifier (to one of m classes), but is also required to output a codebook C. The codebook is an

additional requirement from the learner, which is not a part of the multiclass classification problem. Furthermore,

even if C is fixed in advance and is not required to be learned, the problem of learning a channel decoder and

learning a multiclass classifier are still not equivalent. To see this, note that indeed one can synthesize a multiclass

classification problem from {zi}ni=1 and a codebook C by considering an augmented data set {xj + zi}j∈[m], i∈[n]

of mn data samples. Then, as zero loss is incurred when xj + zi is decoded as j ∈ [m], one may synthetically

attribute the label j to all the points {xj + zi}i∈[n]. This indeed results a multiclass classification problem for

the labeled data set {xj + zi, j}j∈[m], i∈[n], and the loss function `(C, S, z) in (9) is equivalent to the 0 − 1 loss

function in multiclass classification. However, in general multiclass classification problems, a data set of mn points

will not have any specific structure, whereas here it is comprised of m translations of the same n noise samples

{zi}ni=1. The difference in the structure of the data set then distinguishes between the two problems. Finally, while

the decoding regions resulting from the decoding rule (3) are indeed hyperplanes, there is no guarantee that a
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multiclass classifier which separates classes in Rd with hyperplanes can be synthesized as a decoding rule in the

form of (3) for some given S. This is simply because S is parameterized by at most O(d2) parameters, whereas a

general such classifier is parameterized by O(m2d) such parameters (d parameters for each hyperplane, and a total

of O(m2) hyperplanes, one for each pair of classes). The above differences between the multiclass classification

problem and the channel coding problem lead to differences in generalization bounds (c.f. the next Theorem 1 with

the generalization bounds for standard multiclass classification [105, Thm. 29.3]).

B. Generalization Error Bounds

As a cornerstone for learning-theoretic analysis of channel codes, we first establish the following upper bound

on the empirical error which is uniform over (C, S):

Theorem 1. Assume that n ≥ d + 1. With probability of at least 1 − δ, for all C ⊂ (Rd)m with |C|= m and

S ∈ Sd+

|pµ(C, S)− pZ(C, S)| ≤ 4m

√√√√2(d+ 1) log
(
en
d+1

)
n

+

√
2 log(2/δ)

n
. (11)

Learning algorithms and ERM: A learning algorithm A: (Rd)n 7→ C×S for this problem obtains data samples Z

as input and outputs AZ ≡ (CZ , SZ). Since the right-hand side (r.h.s.) of Theorem 1 uniformly bounds |pµ(C, S)−

pZ(C, S)|, it also bounds the generalization error for any learning algorithm. For example, a generic learning

algorithm is ERM which chooses (C, S)ERM that is ε-close to infC∈C,S∈S pZ(C, S) for some given ε > 0. The

generalization error |pµ((C, S)ERM)− pZ((C, S)ERM)| is then bounded by Theorem 1. Denote by (C∗, S∗) a pair

which ε-achieve infC,S pµ(C, S). Then, given n = Õ(m
2d+log(1/δ)

ε2 ) samples, it holds with probability larger than

1− δ that

pµ((CZ , SZ)ERM) ≤ pZ((CZ , SZ)ERM) + ε (12)

≤ pZ((C∗, S∗)) + ε (13)

≤ inf
C,S

pZ((C, S)) + 2ε (14)

≤ inf
C,S

pµ(C, S) + 3ε. (15)

In general, however, an efficient algorithm to find or approximate the ERM for this problem seems to be out

of reach. In the next section, we will demonstrate that one of the reasons for that is that the loss function is

discontinuous function of (C, S), and that by properly modifying the loss function, one can propose an algorithm

of reasonable complexity.

Proof outline and interpretation of the bound: The proof uses the known relation between uniform error bounds

and Rademacher complexity [7] of the loss class induced by the samples and the hypothesis class (codebook

and decoder inverse covariance matrix). In accordance, the first term in 11 is an upper bound on the expected

Rademacher complexity, while the second term is a high probability bound on the deviation of the expected
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Rademacher complexity from its expected value. This form is similar to other generalization bounds ,e.g, for binary

classification [105, Theorem 6.8]. In turn, the expected Rademacher complexity is bounded by analyzing the growth

function of the loss class via the Sauer–Shelah lemma, utilizing the fact that the decoding regions are polyhedral, and

the separating regions between any pair of codewords is a d-dimensional hyperplane, whose Vapnik–Chervonenkis

(VC) dimension is bounded by d+1. In fact, any other decoding rule for which the pairwise decision rule is chosen

from a class of binary classifiers of VC dimension d + 1 would lead to the same bound. A common and slightly

different approach to bounding the growth function is to define a proper combinatorial dimension which captures

the behavior of the growth function of the loss class induced by pZ(C, S). This can be done via an analogous

result to the regular Sauer–Shelah lemma (which is aimed for binary classification and uses the VC dimension). The

resulting proof, however, seems to be more complicated than necessary and the result seems to only be (slightly)

worse. Nonetheless, this approach could be useful in other scenarios as we discuss below.

Codebook structure: Theorem 1 does not make any assumptions regarding the structure of the codebook, and

its generalization bound depends linearly on m. We will show in the next section that the modification of the

loss function mentioned above also improves the dependency on the number of codewords to nearly square-root.

However, if the dimension is high d� 1, then useful codebooks typically have m = 2dR � 1 codewords (where

R > 0 is the rate per dimension). Therefore, beyond the standard utilization of structured codebooks for efficient

encoding and decoding, the learning-based approach also requires to utilize the codebook structure for refined

generalization bounds which have better dependency on the number of codewords. Specifically, it is plausible that

for some classes of codes, the combinatorial dimension mentioned above could be much lower than its value for

general, unstructured, codebooks, and this will lead to generalization bounds which have reasonable dependency

on the codebook size.

Learning error exponents: The bound in Theorem 1 represents an additive deviation from the true error

probability. However, the required error probability for various communication could be very low, and in these

cases the interest is shifted to error exponents, i.e., logpµ(C, S). In these cases, a multiplicative deviation bound is

of more importance. However, analysis of the generalization error in this case seems challenging as logpZ(C, S)−

logpµ(C, S) is not an additive function of the losses over zi (see (8)), and log(·) is not a Lipschitz function, so

that |logpZ(C, S)− logpµ(C, S)| cannot be directly bounded by |pZ(C, S)− pµ(C, S)|.

The analysis of learning of structured codes and error exponents remains an open problem. The bound in Theorem

1 is comprised of a term related to the complexity of the hypothesis class (Õ(m
√

d
n)) and a term related only to

the required reliability (O(

√
log(1/δ)

n )). We next show that the O( 1√
n

) dependency cannot be improved, even for a

rather basic setting.

Proposition 2. Let AZ ≡ (CZ , SZ) be an arbitrary learning algorithm for a codebook of two codewords m = 2

over C = Bd(1) and S = {S: ζmin(S) = 1, ζmax(S) ≤ rs} where rs ≤ 2, where ζmax(S) (resp. ζmin(S)) is the
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maximal eigenvalue (resp. minimal) of S.6 Let δ ∈ (0, 1/4) be given. Then,

sup
µ

PZ∼µ⊗n

[
pµ(CZ , SZ)− inf

C,S
pµ(C, S) >

27

100 · rs
·

√
1

n
log

(
1

4δ

)]
≥ δ. (16)

Proof outline: The proof such results is typically based on a reduction to binary hypothesis testing, obtained

by establishing that if a learning algorithm does not implicitly distinguish between the true distribution and an

alternative distribution then the resulting loss is large (even though such identification is not a requirement from the

learner). In standard classification [105, Sec. 28.2] and estimation [112] problems, one postulates a prior probability

on the two distributions, and then the specific structure of the loss function allows to show that the optimal learning

algorithm should operate as if the true distribution is known to be the one more likely out of the two, given the

noise samples. However, in the channel code learning problem, given a posterior distribution on a pair of noise

distributions, the optimal codebook/covariance matrix pair may not match exactly to neither of the distributions, but

rather should provide a “compromise” between the two. In the proof of Proposition 2 we use a pair of Gaussian

distributions, for which the above phenomenon occurs due to the fact Q( 1√
t
) (where Q(·) is the tail distribution

function of the standard normal distribution) is neither convex nor concave on R+. To ensure convexity, it is required

that the variance of the equivalent noise induced by C, S (which moves the codeword towards the boundary of

the two decoding regions) will be bounded by some numerical constant for all C ∈ C, S ∈ S. This explains the

necessity of the perhaps unintuitive condition ζmax(S) ≤ rs in the proposition. If this condition does not hold, that

noise variance could be arbitrarily large which invalidates the required condition for convexity (for the sake of

intuition, consider the codewords x1 = (1, 0) = −x2 and a decoder which sets the boundary between the decoding

regions to be the horizontal axis).

Tightness of the codebook size/dimension in Theorem 1: For classification problems, the tightness of the

hypothesis class complexity related term (the first term in the bound of Theorem 1) is established by a proper

combinatorial dimension (such as VC dimension) D, and then reducing the learning problem to a hypothesis

testing problem involving 2D different distributions. Then again, one needs to show that identifying the correct

distribution is necessary for learning at sufficiently fast rate (e.g., [105, Lemma 28.1]). When m > 2, even finding

the optimal code for a given noise distribution is difficult, and so using this method to show tightness for the

channel codes learning problem seems challenging. Finding alternative methods or showing otherwise that the rate

in Theorem 1 is not tight w.r.t. m is left for future research.

III. LEARNING UNDER A SURROGATE TO THE ERROR PROBABILITY LOSS FUNCTION

A. Problem Formulation

We next propose an upper bound to the error probability loss function and consider it to be a surrogate loss function

to the error probability loss function. We state a uniform convergence result along with a heuristic alternating-
6Since both pµ(C, S) and pz(C, S) are insensitive to scaling of S, the condition on S implied by S is equivalent to a condition on the

condition number of S. The requirement rs ≤ 2 is merely made in order to simplify the exposition, and any other upper bound on rs would
lead to a different constant in the r.h.s. of the inequality defining the event whose probability is bounded below.
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minimization algorithm which attempts to minimize this loss function. The starting point is the trivial inequality

1(t < 0) ≤ (1− t)∨ 0, which leads to the following hinge-type upper bound on the error probability loss function

`j(C, S, z) := 1

[
min

j′∈[m]\{j}

(
‖xj − xj′‖2S+2(xj − xj′)TSz

)
< 0

]
(17)

≤
[
1− min

j′∈[m]\{j}

(
‖xj − xj′‖2S+2(xj − xj′)TSz

)]
∨ 0 (18)

:= `j(C, S, z). (19)

Analogously to (8) and (9), we denote `(C, S, z) := 1
m

∑m
j=1 `j(C, S, z), define p̄Z(C, S) := 1

n

∑n
i=1 `(C, S, Zi),

as well as p̄µ(C, S) = E[`(C, S, Z)].

Scaling of inverse covariance matrix: Unlike the error probability loss function, `j(C, S, z) is not invariant

to scaling of S, and in fact, the maximal eigenvalue of S (i.e., its operator norm) limits the “resolution” of the

decoder to distinguish between two codewords. For illustration, suppose that S = σ · Id where σ > 0. We can then

consider

˜̀
j,σ(C, z) := `j(C, σId, z) =

[
1− σ · min

j′∈[m]\{j}

(
‖xj − xj′‖2+2(xj − xj′)T z

)]
∨ 0 (20)

as a family of loss functions indexed by σ. This loss function can also bound the standard error probability similarly

to (18) using the inequality 1(t < 0) ≤ (1− σt) ∨ 0 which holds for any σ > 0. The larger σ is, the slope of the

straight line defining this loss function will be larger, and the surrogate loss function will more severely penalize

competing codewords on shorter distances. As this amounts to merely scaling of S, we simply set σ = 1, and

continue with the definition in (19).

B. A Generalization Error Bound

The following theorem provides a uniform convergence bound for the surrogate loss function:

Theorem 3. Assume that:

1) PZ∼µ{Z ∈ Bd(1)} = 1.

2) C = (C1)m where C1 = {x ∈ Rd: ‖x‖≤ rx} for some rx ≥ 1.

3) S = {S ∈ Sd+: ζmax(S) ≤ rs} for some rs ≥ 1.

Then with probability of at least 1− δ, for all C ⊂ C and S ∈ S

|p̄µ(C, S)− p̄Z(C, S)| ≤ 112 ·
√

(d ∨m)(d+ 1) log(31 · drsrx)

n
+

√
2r2 log(2/δ)

n
, (21)

where r := 1 ∨ 4rxrs(rx + 1).

Empirical risk minimization: Assume the typical case in which m ≥ d. Repeating (15), n = Õ(dm+log(1/δ)
ε2 )

samples suffice to obtain with high probability a 3ε-approximation for the minimal error probability using ERM.

Specifically, the dependency of the generalization error on the number of codewords has been improved from linear
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in m to nearly square-root. This improved dependency may be attributed to the fact that the loss function `(C, S, z)

is a Lipschitz continuous function of (C, S) (Lemma 14 in Appendix A), and thus “easier” to be minimized

compared to the discontinuous `(C, S, z). This is reflected in the proof outlined next. We also remark that the proof

method used to prove Proposition 2 which shows that n = Õ( log(1/δ)ε2 ) samples are necessary to learn the regular

error probability loss function seems also applicable here.7 The details are omitted.

Proof outline and a comparison to Theorem 1: Similarly to the bound of Theorem 1, the bound (21) on the

generalization error is comprised of a term which bounds the expected Rademacher complexity, and a term which

is a high probability bound on the deviation of the Rademacher complexity from its expectation. The main goal

of the proof is upper bounding the expected Rademacher complexity of the loss class. However, compared to the

standard error probability loss function, here the Lipschitzness of the loss function (Lemma 14 in Appendix A-C)

makes the Rademacher complexity of the induced loss class a maxima of a sub-Gaussian process. Consequently,

bounds on the covering numbers of the loss class can be derived (Lemma 15 in Appendix A-C), which, in turn,

are used in Dudley’s entropy integral to bound the Rademacher complexity (Lemma 17 in Appendix A-C, see, e.g.,

[115, Ch. 5] for a discussion on the chaining argument leading to these bounds). By contrast, in Theorem 1, the

loss function is not Lipschitz, and this enforces to bound the Rademacher complexity by the growth function. In

essence, the growth function is the size of a covering set at scale zero, which is only larger than Dudley’s entropy

integral, which integrates over covering sizes at increasing scales (which are naturally smaller).

Conditions: The conditions in Theorem 3 are made in order to refrain from over-complicating the analysis.

Specifically, analogous conditions to the bounded-noise support and bounded-norm codewords are common in

the statistical-learning literature, and were also made in quantizer-learning papers (e.g., [72]). They are mainly

assumed because for any bounded interval the function t 7→ t2 is Lipschitz continuous, and this allows the control

the supremum of empirical process via contraction methods and concentration inequalities (see a discussion [77,

Sec. 1.1]). It is plausible that these conditions can be removed using the techniques of [69], [77], [78].

Numerical constants in (21): In the derivation of the theorem and its proof, a simple form of the numerical

constants was favored to tightness, and the conditions rx ≥ 1 and rs ≥ 1 are inconsequential and were only made

for this purpose. In accordance, the constant in Theorem 3 can be significantly reduced.

C. Alternating optimization algorithm

Another benefit of using the surrogate loss function `(·) is that it allows to introduce a simple alternating

optimization algorithm to minimize p̄Z(C, S), utilizing the fact that the loss function `j(C, S, zi) is continuous in

(C, S). Nonetheless, p̄Z(C, S) is not a convex function of C – not even for a fixed S – due to the minimization

over j′ ∈ [m]\{j} appearing in (18).8 To circumvent this, we propose the following heuristic. Let us introduce the

7Namely, lower bounding the loss by taking the worst case of the same pair of noise distributions defined in the proof, but modifying
Lemma 10 to match the surrogate loss function.

8For a fixed S, and in case m = 2, so that there is no need to minimize over j′ ∈ [m]\{j}, p̄Z(C, S) is a convex function of C since
`(C, S, z) is a convex function of C by the composition rules of convex/concave functions [14, Ch. 3.2.4]. In general, however, the pointwise
minimum of convex functions is not necessarily convex.
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auxiliary variables A := {α(i)
j,j′}j,j′∈[m],i∈[n] where α(i)

j,j′ ∈ [0, 1] and α
(i)
j,j ≡ 0. For any given data sample zi and

codeword index j ∈ [m], we define, with a slight abuse of notation,

`j(C, S,A, zi) :=
∑
j′∈[m]

α
(i)
j,j′
[
1−

(
‖xj − xj′‖2S+2(xj − xj′)TSzi

)]
, (22)

and would ideally like to set A such that `j(C, S,A, zi) = `j(C, S, zi). To wit, if the clipping operation is active

and `j(C, S, zi) = 0 then α(i)
j,j′ = 0 for all j′. Otherwise, α(i)

j,j′ is arbitrarily supported on

j′ ∈ arg min
j′∈[m]\{j}

(
‖xj − xj′‖2S+2(xj − xj′)TSzi

)
(23)

(for example, uniformly), and satisfies
∑

j,j′∈[m] α
(i)
j,j′ = 1. Clearly, {α(i)

j,j′}j′∈[m] depend on (C, S), and “encode”

the nearest neighbors of xj w.r.t. to the noise sample zi. The idea of the algorithm is to relax this dependency, and

to alternatively update A and (C, S) at each iteration. Given an initial guess (C, S), in the first part of the iteration

the value of A is determined, and in the second part of the iteration, given A the value of (C, S) is optimized,

or just updated by a stochastic gradient step. Given the new guess for (C, S) the second iteration follows in the

same manner, and so on. Let us denote `(C, S,A, zi) = 1
m

∑m
j=1 `j(C, S,A, zi). For p ∈ [m], the gradient given

the sample zi w.r.t. xp, p ∈ [m] is given by

∂`(C, S,A, zi)

∂xp
= − 2

m

∑
j∈[m]

(α
(i)
j,p + α

(i)
p,j)S(xp − xj) + (α

(i)
j,p − α

(i)
p,j)Szi, (24)

and w.r.t. S by

∂`(C, S,A, zi)

∂S
= − 1

m

∑
j,j′∈[m]

α
(i)
j,j′
[
(xj − xj′)(xj − xj′)T + 2(xj − xj′)zTi

]
. (25)

Note that the last gradient may be an asymmetric matrix and does not depend on S. The symmetric matrix Q̃

which maximizes 〈Q̃, ∂
∂S `(C, S,A, zi)〉 is clearly given by Q̃∗ =

1

2
∂
∂S `(C, S,A, zi) +

1

2
[ ∂∂S `(C, S,A, zi)]

T , and so

we choose this to be the update direction. The matrix S is then updated to Ŝ = S − ηQ̃∗ where η > 0 is a step

size. This is a symmetric matrix and can be decomposed as Ŝ =
∑d

q=1 ζqvqv
T
q where {ζq} are the eigenvalues and

vq are the eigenvectors. We then project Ŝ to S̃ ∈ S ⊂ Sd+ as

S̃ =
1

rs
ζmax
∧ 1

d∑
q=1

(µq ∨ 0) · vqvTq (26)

which makes sure that S̃ is a nonnegative definite matrix and that its maximal eigenvalue is less than rs.

Algorithm 1 lists a possible SGD variant of such algorithm. A SGD algorithm is specifically adequate for the

alternating optimization since a small change in (C, S) is not expected to change most of the {α(i)
j,j′}. The inputs

to the algorithm are the noise samples z, initial values for (C, S), and step sizes for their update. For each zi, first

the values of {α(i)
j,j′}j,j′∈[m] are determined according to the current codebook C(i−1) = {x(i−1)j }j∈[m], and second,
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they are updated using the gradients in (24) and (25) (computed based on the single sample zi).

Convergence analysis: A different version of Algorithm 1 of higher computational complexity is a gradient

descent algorithm in which the gradient is averaged over all n samples at each iteration. The resulting algorithm is

then an iterative generalized alternating optimization algorithm [45], which is a descent algorithm for the empirical

surrogate loss p̄Z(C, S). While it is guaranteed that the loss decreases at each iteration, it is not a priori clear that

such algorithm globally converges in the (rather weak) sense that the iterations {C(i), S(i)}∞i=1 tend to a limit for any

given initialization [130]. Furthermore, it is not a priori clear that the sequence of algorithms which are based on

increasing number of samples is consistent in the sense that such algorithm tends as n→∞ to the ideal population

version of this algorithm, which is based on the true distribution of the noise µ (in a manner that can be made precise,

see [100]). Nonetheless, properties of this nature were proved for canonical alternating-minimization algorithms

like the expectation–maximization (EM) algorithm [125] and its variants [45], the Lloyd–Max (k-means) algorithm

[100]. In addition, such properties were recently proved [124] for a quantizer design problem which utilizes a

surrogate loss function similar in spirit to the one studied here. As the analysis there is of technical nature and

it seems that similar ideas can be applied to this paper we do not pursue this direction here. Anyhow, if one has

obtained p̄Z(C(i∗), S(i∗)) below an acceptable threshold for some i∗ ∈ N using Algorithm 1, then the expected

error probability p̄µ(C(i∗), S(i∗)) is bounded as in Theorem 3.

IV. LEARNING BY CODEBOOK EXPURGATION

A. Problem Formulation and the Gibbs Algorithm

In general, finding an optimal codebook is a difficult task even when the noise distribution µ is known. A simple

way to approach this problem is to select the m codewords of the codebook C from a larger super-codebook C0

of m0 > m codewords. Such a process is amenable to practical implementation, since the super-codebook can be

statically chosen in advance, and can be simple or well-structured (such as a grid or a lattice [129]), whereas the

m codewords in the codebook can be chosen dynamically based on the noise statistics. This approach is akin to

both practical coding methods [36], as well as to the the common technique used in the proofs of random coding

bounds on the reliability function of channel coding [38], in which the codebook is expurgated from codewords of

large conditional error probability. We assume in this section, that the decoder inverse covariance matrix is fixed

(say S = Id), and thus omit S from the notation.

Nonetheless, even when µ is known, finding the optimal set of m codewords is a combinatorial optimization

problem, which is computationally heavy when m0 � m. To see this, consider the simpler combinatorial opti-

mization problem of finding the codebook C which minimizes the average pairwise error probability (known as

the union bound estimate)

arg min
C={x1,...,xm}⊂C0

1

m(m− 1)

∑
j1,j2∈[m]:j1 6=j2

pµ(xj1 → xj2), (27)
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Algorithm 1 An SGD algorithm for learning a codebook and a decoder for an additive noise channel

1: input z = {zi}i∈[n], C(0) = {x(0)j }j∈[m] ⊂ (C1)m, S(0), {λ(i)}ni=1, {η(i)}ni=1, rs
2: begin
3: for all 1 ≤ i ≤ n do
4: for all 1 ≤ j ≤ m do
5: J ′∗ ← arg maxj′∈[m]\{j}

[
1− ‖x(i−1)j − x(i−1)j′ ‖2S+2(x

(i−1)
j − x(i−1)j′ )TS(i)zi

]
6: j′∗ ← J ′∗{1} . choose an arbitrary member of J ′∗
7: if 1−

(
‖x(i−1)j − x(i−1)j′∗

‖2S−2(x
(i−1)
j − x(i−1)j′∗

)TS(i)zi

)
< 0 . the clipping in (18) is active

8: for all 1 ≤ j′ ≤ m do
9: α

(i)
j,j′ ← 0

10: end for
11: else
12: for all 1 ≤ j′ ≤ m do
13: α

(i)
j,j′ ← 1[j′ = j′∗]

14: end for
15: end if
16: A(i) ← {α(i)

j,j′}j,j′∈[m]

17: x
(i−1/2)
j ← x

(i−1)
j − λ(i) ∂`(C,S,A

(i),zi)
∂xj

. a gradient update of codeword xp
18: x

(i)
j ← arg minx̃∈C1‖x

(i−1/2)
j − x̃‖S(i) . projection of xp to the feasible set

19: end for
20: S(i−1/2) ← S(i−1) − 1

2
η(i) ∂`(C,S,A

(i),zi)
∂S − 1

2
η(i)

[
∂`(C,S,A(i),zi)

∂S

]T
. a gradient update of S

21: Compute eigenvalue decomposition {(µq, vq)}dq=1 of S(i−1/2) . eigenvalue decomposition
22: S(i) ← 1

rs
ζmax

∧1
∑d

q=1(µq ∨ 0) · vqvTq . projection of S to the feasible set S
23: end for
24: end
25: output (C(n) = {x(n)j }, S(n)).

where pµ(xj1 → xj2) is the error probability of making an error from xj1 to xj2 when these are the only two

codewords in the codebook. The problem (27) is then equivalent to the k-cardinality sub-graph problem [15, Sec.

4] as follows: The m0 codewords of C0 can be taken as the nodes of a complete directed graph, such that the

weight of each edge is pµ(xj1 → xj2). Then,
∑

j1,j2∈[m]:j1 6=j2 pµ(xj1 → xj2) is the total edge weight of the sub-

graph of cardinality m, which only contains the codewords of C as nodes. The problem (27) is then equivalent

to finding a sub-graph of cardinality m with minimal weight. Hence, any algorithm which solves or approximates

the k-cardinality sub-graph problem can be used find the solution to (27). Nonetheless, the k-cardinality sub-graph

problem is NP-hard [29], and the problem of interest here, of finding

C∗ = arg min
C={x1,...,xm}⊂C0

pµ(C) (28)

is only more difficult since the error probability is a more complicated function of the codebook compared to the

average pairwise error probability in (27). Similar observations can be made for the empirical error probability.

A possible greedy relaxation to this optimization problem is to approximate the optimum by gradually removing

codewords from the codebook, say k of them at each step (as will be evident, k is practically expected to be chosen



18

as a small integer). For simplicity of the description we assume henceforth that T := m0−m
k ∈ N+. The general

meta-algorithm is as follows. Initialize with a codebook C0 of m0 codewords. Then, for t = 1, . . . T :

1) Construct candidate codebooks {C [l]
t }l∈[(mt−1

k )] and evaluate the error probability for each candidate p(C
[l]
t ).

2) Choose an index l∗ and set Ct ≡ {C [l∗]
t } according to a selection rule (which is based on the the error

probabilities). Renumber the codewords in Ct by [mt] where mt = mt−1 − k.

The error probabilities computed at the first step may be either according to the true distribution µ or according

to the empirical distribution induced by Z, and the algorithm is termed, respectively, the population algorithm or

empirical algorithm.

A proper choice of a selection rule is a delicate question. For example, a possible variant of such algorithm would

remove the k codewords in Ct which have the maximal conditional error probability p(Ct | j). However, this is

both greedy as well as naive since the decision to remove the codeword x̃ from the codebook should be based on

both types of error events – from x̃ when it is the transmitted codeword to a different (competing) codeword, as

well as the opposite case in which x̃ is decoded but a different codeword was transmitted. Another problem is that

such algorithm depends strongly on the noise samples for the empirical algorithm, and thus might not generalize

well to out-of-sample noise.

To circumvent this problem, we next propose a Gibbs algorithm which randomly removes codewords from the

codebook. Let Ct be a codebook of mt codewords in C, let Q ∈ P(Rd) be a probability reference measure on Rd

whose support includes C, and let β > 0 be an inverse temperature parameter. Given Ct, a Gibbs algorithm chooses

to expurgate the codewords with indices {j1, . . . jk} to obtain Ct+1 with probability

P
[
Ct+1 = Ct\{xj}j∈{j1,...jk} | Z, Ct

]
∝ Q(Ct+1) · exp [−β · pZ(Ct+1)] . (29)

For 0 < β <∞, the algorithm compromises between the two extremes of removing codewords at random according

to the prior distribution Q (β → 0) versus strong dependence on the noise samples (β →∞). The Gibbs algorithm

is listed in Algorithm 2.

Computational load: Note that the computation of pZ(Ct+1) requires not only removing the pZ(Ct | jp),

p ∈ [k] from the averaging operation in the error probability, but should also take into account that the decoder

cannot err to the codewords {xj}j∈{j1,...jk}. This has to be done for each of the
(
mt−1

k

)
candidate codebooks, and so

the choice of k significantly determines the complexity via the required number of candidate codebooks, where the

latter is upper bounded by mk
0 (see further discussion on efficient implementation in Section VI-B). However, once

the algorithm’s parameters are fixed, so is the running time of the algorithm. Furthermore, the algorithm actually

produces codebooks of any size m ≤ m′ ≤ m0, typically with lower error probability for smaller codebook, and

thus the codebook size can be dynamically chosen. We also remark that after being learned by the decoder, the

chosen codebook can be sent back to the encoder via a feedback link using no more than m log2m0 bits.

To analyze the error of the algorithm, we arbitrarily set C0, and let Cµ = (C0, Cµ,1, . . . , Cµ,T ) (resp. CZ =
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Algorithm 2 A Gibbs expurgation algorithm for learning a codebook for an additive noise channel
1: input z = {zi}i∈[n], C0 = {xj}j∈[m0] ⊂ C, β > 0, m ≤ m0 , k | |C0|−m, Q ∈ P(Rd)
2: T ← mo−m

k
3: begin
4: for all 1 ≤ t ≤ T do
5: mt ← mt−1 − k, L←

(
mt−1

k

)
6: Choose an arbitrary enumeration of the L sets {Jl}l∈[L] such that Jl ⊂ [mt−1] and |Jl|= mt for all l ∈ [L]
7: for all 1 ≤ l ≤ L do
8: C

[l]
t ← {xj}j∈Jl .

9: Compute {pz(C
[l]
t )}

10: end for
11: Ψ←

∑L
l=1Q(C

[l]
t ) · exp

[
−β · pz(C

[l]
t )
]

. normalization factor for the Gibbs distribution
12: for all 1 ≤ l ≤ L do
13: pl ← Ψ−1 ·Q(C

[l]
t ) · exp

[
−β · pz(C

[l]
t )
]

14: end for
15: Randomly select l∗ ∼ (p1, . . . , pL). . random choice of codebook
16: Ct ← C

[l∗]
t , and renumber the codewords of Ct by [mt]

17: end for
18: output CT
19: end

(C0, CZ,1, . . . , CZ,T )) be the sequence of random codebooks generated by the population (resp. empirical) Gibbs

algorithm, when both are initialized with C0. Let C∗ ⊂ C0 be the codebook obtained by optimal expurgation, as

in (28). The average excess error probability of the empirical Gibbs algorithm can be decomposed as

E [pµ(CZ,T )− pµ(C∗)] = E [pµ(CZ,T )− pµ(Cµ,T )]︸ ︷︷ ︸
empirical error

+E [pµ(Cµ,T )− pµ(C∗)]︸ ︷︷ ︸
approximation error

(30)

where the expectations are taken w.r.t. both the randomness of Z and the Gibbs algorithm. The empirical error is

a result of using the empirical distribution of Z in lieu of the true distribution µ in the Gibbs algorithm, and as we

shall see is upper bounded by Õ(β
√

T
n ), and vanishes as n→∞. By contrast, the approximation error seems to be

an inevitable price to pay for using using a computationally feasible method (Gibbs algorithm) for (approximately)

solving (28). It cannot be reduced by increasing the number of samples, and seems challenging to quantify due to

its intricate dependency on the noise distribution.

An alternative algorithm: As said, finding C∗ which minimizes pµ(C) in (28) is a combinatorial optimization

problem, and as such it can be tackled using the simulated annealing approach [62]. This approach is based on

local optimization of the codebook. In its naive form, such algorithm is initialized with a the super-codebook C0

of m0 codewords, and a codebook C(1) ⊂ C0 of m codewords. At iteration t ∈ N+, the codebook C(t+1) ⊂ C0 is

chosen as the codebook which minimizes the error probability among all codebooks of size m which are different

from C(t) by k codewords, if such exists, and otherwise the algorithm stops and outputs its current codebook. As

well known, the simulated annealing [59] replaces the “hill-descending” step, with a randomized step which though

it might increase the objective function (error probability), is essential in order to avoid local minima. The same
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algorithm can be used to minimize pZ(C) in the empirical setting, however, as discussed above, this might not

guarantee generalization to out-of-sample noise. Nonetheless, it is easy to see that generalization bounds similar to

Theorems 4 and 5 can be obtained for an algorithm which chooses C randomly from

P [C | Z] ∝ Q(C) · exp [−β · pZ(C)] · 1 [C ⊂ C0: |C|= m] . (31)

Sampling directly from (31) is difficult (since this distribution is supported on
(
m0

m

)
different codebooks and so

it is costly or impossible to compute the required normalization factor), however it can be done indirectly via

the Metropolis–Hastings algorithm [11], [50], [84], which generates a Markov chain whose stationary distribution

approaches that of (31). Nonetheless, the time required to converge to (31) (mixing time) might be large. Analysis of

this method, and experiments which compare its effectiveness with that of Algorithm 2 are left for future research.

B. Generalization Error and Empirical Error Bounds

The next theorem states a bound on the average empirical error, and also provides a bound on the average

generalization error E[pµ(CZ,T )− pZ(CZ,T )].

Theorem 4. Assume that C0 of size |C0| is chosen in a data-independent way, that the Gibbs algorithm is used

with T = m0−m
k ∈ N+ steps, and inverse-temperature β > 0. Also assume that m0 ≥ 2m and

β2
(

log n+
(m0

2
+ 1
)

logm0 − log k
)
≤ n

2
, (32)

Then, the average empirical error is bounded as

E [pµ(CZ,T )− pµ(Cµ,T )] ≤ 3

√
Tβ2 (log n+m0 logm0 − log k)

n
(33)

and the average generalization error is upper bounded as

E [pµ(CZ,T )− pZ(CZ,T )] ≤

√
T

(
β

n
∧ β2

4n2

)
. (34)

Discussion: The average empirical error bound is on the order of O(
√

Tβ2 logn
n ). The proof is based on showing

that |pz(C) − pµ(C)|≤ ε for all possible sub-codebooks C ⊂ C0 with high probability (the
√

log n dependency

can be traced in the proof to a union bound which leads to this result), and using this to bound generalization

error by bounding the KL divergence dKL(PCz,1···Cz,T
||PCµ,1···Cµ,T ) where PCµ,1···Cµ,T (resp. PCz,1···Cz,T

) is the the

joint probability measure of Cµ (resp. CZ). The average generalization error is on the order of O(

√
T
(
β
n ∧

β2

n2

)
),

which, in the standard case β < n is O(
√
T β
n), which decays faster than the average empirical error bound. The

bound is proved by establishing an information-theoretic stability of the Gibbs algorithm, and using the results of

[128] which bounds the generalization error of stable algorithms.

The condition m0 ≥ 2m is only made for simplicity of exposition of the proof. The generalization error can

be used to estimate a bound on pµ(CZ,T ) using pZ(CZ,T ), which in turn can be computed from the data Z. It



21

should be noted, however, that unlike Theorems 1 and 3, the stated bound is on the average error, and has no strong

concentration properties. This is a result of the proof method which relies on the chain rule properties of the KL

divergence (and mutual information) to bound the average error. A bound which holds with high probability will

be presented in what follows. Evidently, both upper bounds in Theorem 4 are monotonically increasing functions

of β, and thus β should be as low as possible in order to minimize the bounds on the empirical and generalization

errors. This can be contrasted with the goal of minimizing pµ(Cµ,T ) (or pZ(CZ,T )) which typically requires β to

be as “large” as possible.

Assuming that β
n → 0 as n → ∞, the average generalization error indicated by Theorem 4 is O(

√
Tβ
n ). This

bound involves averaging on both the randomness of the data samples Z, as well as the randomness of the Gibbs

algorithm. To obtain high probability bounds, we rely on a uniform-stability property of the Gibbs algorithm.9

Specifically, if we assume the stronger condition that Tβ
n → 0 as n → ∞ then a high probability of roughly the

same order can also be obtained. Specifically, for a given algorithm PC|Z,C0
, and a single noise sample z̃ ∈ Rd we

let

qz̃(z) := E [pz̃(C) | Z = z, C0] (35)

be the error probability of z̃ when averaged over a random codebook C that is drawn according to PC|Z=z,C0

(defined via the Gibbs algorithm), and qµ(z) := EZ̃∼µ[qZ̃(z)] as well as qZ̃(z) := 1
n

∑n
i=1 qz̃i(z). We have the

following:

Theorem 5. Assume that Tβ
n → 0 as n → ∞. Then, there exists an absolute n0 ∈ N+ and an absolute constant

c > 0 such that for all n ≥ n0

P

[
qµ(Z)− qZ(Z) > c

(√
Tβ

n
+

1√
n

)
· log

(
n

β
√
T

)
· log n · log

n

δ

]
≤ δ. (36)

Hence, under the condition of Theorem 5, and assuming that β = Ω(
√

n
T ), the high probability bound is Õ(

√
Tβ
n ),

and matches, up to logarithmic factors, the average generalization error bound of Theorem 4.

Discussion: As discussed, the output of the Gibbs algorithm is random due to both the randomness of the

samples and the randomness of the Gibbs mechanism. While the generalization bound of Theorem 4 is averaged

w.r.t. both type of randomness, the bound of Theorem 5 is a high probability bound w.r.t. the samples, but still

averages the Gibbs mechanism. Nonetheless, assuming Tβ
n = o(1) the decay rate of Theorem 4 is recovered (up

to logarithmic terms), and the generalization error is Õ(
√
Tβ
n ) with high probability, and not only on the average.

The bound 36 is proved by establishing that the Gibbs algorithm is a differentially-private algorithm [27] (Lemma

19 in Appendix A-D), which, in turn, implies that it is uniformly stable learning algorithm [13]. Then, the recent

high probability bound on the generalization error of uniformly stable learning algorithms [34] is utilized.

9Recently, [30] proposed to use the Rényi mutual information between the data samples Z and the algorithm output, but the resulting
bounds in this setting are weaker than the ones stated here.
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V. LEARNING INPUT DISTRIBUTIONS WHICH MAXIMIZE MUTUAL INFORMATION

A. Problem Formulation

Communicating at rates which approach the capacity of the additive noise channel (1) requires knowledge of the

noise distribution µZ10 in order to optimize the input distribution which we denote here by µX .11 Thus, whenever

coding across multiple d-dimensional codewords is possible, it is desired to find the input distribution µX which

maximizes the mutual information between the input and the output, or, equivalently, the differential entropy of the

channel output. Typically, to obtain finite mutual information, the set of feasible input distributions is restricted to

some P and so it is required to solve:

arg max
µX∈P

I(X;X + Z) = arg max
µX∈P

h(X + Z) (37)

where we assume that the maximum exists (otherwise, it is required to find an ε > 0 approximation of the

supremum).

Closed-form solutions to (37) are rare, and currently exist only for the simplest classes P , even when the noise

distribution is completely known. For example, for a known Gaussian noise Z ∼ N(0, Id), the optimal input

distribution is Gaussian if P represents an average power constraint, but if an amplitude constraint is also enforced,

to wit

P =
{
µX :PµX (‖X‖≤ AX) = 1, EµX‖X‖≤ dσ2X

}
(38)

then it is only known that the optimal µX is supported on a finite number of concentric shells with isotropic direction

(see [98], [106], [107], and [28] for an overview and recent advances). Finding the optimal support, however, is

not trivial, and requires algorithmic efforts, e.g., the cutting-plane iterative algorithm proposed in [53] for finding

a discrete approximation to the capacity input distribution. Similarly, for the class of input distributions which are

restricted to some m-point codebook C ⊂ Rd whose power is bounded, to wit,

P =
{
µX :EµX‖X‖≤ dσ2X , |supp(µX)|≤ m

}
, (39)

it is only known that for d = 1 the optimal input distribution weakly converges to an equi-lattice when σX →∞

and to a Gaussian quadrature when σX → 0 [89], [126, Sec. IV]. Nonetheless, from an algorithmic point of view,

if the support is restricted to a fixed codebook C = {xj}j∈[m] ⊂ Rd and

P =

µX =

m∑
j=1

ajδxj :EµX‖X‖≤ dσ2X , xj ∈ R ∀j ∈ [m], a ∈ Am−1
 , (40)

10In this section we add the sub-script Z to µ and explicitly µZ , so it will not be confused with the input distribution µX .
11As was considered in previous sections, the design of the decoder is also based on the noise distribution, and in uncoded systems will

affect the error probability. However, in coded systems, and especially in the random coding regime, this can be circumvented in principle
by use of universal decoders which also achieve capacity [65].
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where δx0
= δ(x − x0) and δ(x) is Dirac’s delta function, then the problem of maximizing h(X + Z) over the

weights a (in a feasible subset of Am−1 dictated by the power constraint) is a convex optimization problem and

can be solved using the celebrated Blahut–Arimoto algorithm [3], [9].

Following the approach previously taken in this paper, we focus on the statistical-learning aspect of this prob-

lem, i.e., the difference between empirical and population versions of this optimization problem, when the noise

distribution is unknown, and instead n i.i.d. samples of the noise are available. We consider two classes for input

distributions, and show for each one that an estimator ĥZ(X+Z) to h(X+Z) which is based on the noise samples

converges with high probability to the true value and that the convergence is uniform over the chosen class P .

As in the previous sections, this assures that any algorithm which attempts to maximize ĥZ(X + Z) (that can

be computed from data) will produce h(X + Z) which is not very far from the computed value, where specific

convergence rates depend on the class of input distributions.

B. A General Class of Input Distributions

The first class of input distributions we consider is rather general, but in turn the resulting convergence rate

assured is only Õ(n−1/d) (Theorem 6), and as such deteriorates fast with the dimension d. Following the above

discussion, there is also no known efficient algorithm that finds the maximizing distribution in this class even for

a known noise distribution. Nonetheless, the motivation of deriving such a result is to demonstrate that uniform

convergence is a possible even for quite general classes. The results itself necessitates further discussion, and this

follows its formal statement.

Following [92], we say that a density µX (absolutely continuous w.r.t. Lebesgue measure) is (ψ1, ψ2)-regular for

ψ1 > 0 and ψ2 ≥ 0 if

‖∇ logµX(x)‖≤ ψ1‖x‖+ψ2, ∀x ∈ supp(µX). (41)

We then consider input densities µX which are (ψ1, ψ2)-regular, have a bounded second moment, and have a

absolutely bounded entropy:

P∗(ηX , σX , ψ1, ψ2) :=
{
µX is (ψ1, ψ2)-regular: EµX‖X‖2≤ dσ2X , |h(µX)|≤ ηX

}
. (42)

Theorem 6. Assume that µZ is a probability density on Rd such that A := ‖Z‖ is (
√
dσZ)-sub-Gaussian where

σZ = Ω(n−(d−2)/(4d)). Let Z = (Z1, . . . , Zn)
i.i.d.∼ µZ , and let Ẑn ∼ 1

n

∑n
i=1 δZi denote the empirical distribution

of Z. Then, there exists n0 ∈ N+ and a constant c > 0, both which depend on (d, σX , ηX , ψ1, ψ2, σZ) such that

for all n ≥ n0
max

X∼µX :µX∈P∗(ηX ,σX ,ψ1,ψ2)

∣∣∣h(X + Z)− h(X + Ẑn)
∣∣∣ ≤ c log2 n

n1/(d∨4)
(43)

with probability larger then 1− 1
n .

We proceed with the following discussion.



24

Validity of the estimator: The estimator h(X + Ẑn) in (43) is indeed well-defined. This is because whenever

X has a density µX , so does X + Ẑn ∼ 1
n

∑n
i=1 µX ∗ δZi which is a mixture of n translations of µX .

Conditions on the noise distribution: The assumption σZ = Ω(n−(d−2)/(4d)) is rather mild, and made to

simplify the resulting bound (see Lemma 21).

Conditions on the input distribution: The regularity condition (41) defines a smoothness condition on µX ∈ P∗,

and implies, for example, that the tail of the density cannot decay faster than the tail of a Gaussian density, because

regularity implies

µX(x) ≥ exp

[
−|logµX(0)|−ψ1

2
‖x‖2−ψ2‖x‖

]
. (44)

The finite entropy requirement in P∗ can be assured by controlling |logµX(0)|, since if µX is (ψ1, ψ2)-regular and

E‖X‖2≤ dσ2X then [92, Sec. II]

|h(µX)|≤ |logµX(0)|+ψ2

√
dσX +

ψ1

2
dσ2X , (45)

and this upper bound can be chosen as ηX .

Non-density input classes: Suppose that P̃ := {µ̃X :E‖X‖2≤ dσ2X} is a set of probability measures (which

are not necessarily densities w.r.t. the Lebesgue measure). Now consider the set of smoothed densities

P := {µ̃X ∗ ϕ0,σ: µ̃X ∈ P̃} (46)

where ϕη,σ is the Gaussian density with mean η ∈ Rd and covariance matrix dσ2 · Id. It was shown recently

in [40] that estimating the entropy of a smoothed distribution can be made at a fast rate of eO(d) · O( 1√
n

). The

smoothness operation is also useful here, though not for improving the error rates but rather to allow for general

input distributions. By [92, Prop. 2], any µX ∈ P is (ψ1, ψ2) := log e
dσ2 (3, 4

√
dσX)-regular. Furthermore, |h(µX)| is

bounded because for µX = µ̃X ∗ ϕ0,σ and X̃ ∼ µ̃X , X̃ ⊥⊥W ∼ ϕ0,σ

h(µX) = h(X̃ +W ) ≥ h(W ) =
d

2
log(2πeσ2) := η

(−)
X , (47)

and since Gaussian vector maximizes entropy under a variance constraint

h(µX) = h(X̃ +W ) ≤ d

2
log
(
2πe(σ2 + σ2X)

)
:= η

(+)
X . (48)

Thus, any µX ∈ P∗(ηX , σX , ψ1, ψ2) where ηX = |η(−)X |∨|η
(+)
X | and σX := d(σ2 +σ2X), and the result of Theorem

6 holds for the smoothed class of input densities P . Nonetheless, it seems difficult to make any claims regarding

the loss in mutual information due to the Gaussian smoothing operation (and this is actually the motivation for the

restriction to regular densities in Theorem 6 to begin with).

Proof idea: The absolute difference in differential entropy of a pair of regular densities can be controlled

by the second-order Wasserstein distance [92, Sec. II]. Specifically, assume that both X + Z and X + Ẑn are
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(ψ1, ψ2)-regular densities, then [92, Prop. 1]∣∣∣h(X + Z)− h(X + Ẑn)
∣∣∣ ≤ (ψ1

2

√
E‖X + Z‖2 +

ψ1

2

√
E‖X + Ẑn‖2 + ψ2

)
·W2(µX+Z , µX+Ẑn

). (49)

As discussed in [92], this bound can be considered a reversed version of transportation-information inequalities

[12], [74], [96] which upper bound the Wasserstein distance by the KL divergence (where the latter is related to

entropy difference). Anyway, it follows from (49) that if E‖X + Z‖2 is bounded and if E‖X + Ẑn‖2 is bounded

with high probability, then the decay rate of the error in the entropy follows directly from the decay rate of

W2(µX+Z , µX+Ẑn
). In turn, the dependence of this upper bound on µX can be washed out since Wasserstein

distances are non-increasing under convolution operations, and so W2(µX+Z , µX+Ẑn
) ≤ W2(µZ , µẐn) (as any

coupling of (Z∗, Ẑ∗n) defines a coupling (X+Z∗, X+ Ẑ∗n) for (X+Z,X+ Ẑn)). Given such a bound, the proof is

then completed by using known results [23] on E[W2(µZ , µẐn)] and establishing concentration to this expectation.

The actual proof follows these lines, and uses a truncation argument on the norm of the noise ‖Z‖ to establish

such properties under the milder premise of the theorem.

Relation to source coding (quantization): From its definition, one can anticipate that the Wasserstein distance

of order p would be useful in bounding pth moment of empirical errors. Indeed, a classic result of Pollard [91]

relates the error of a quantizer to the minimal Wasserstein distance between the distribution of the source and any

other distribution supported on a finite number of points equal to the cardinality of the codebook (see also [66,

Sec. 2.2.1]). To wit, let C(m) := {C ⊂ Rd: |C|= m} be all possible codebooks of cardinality m ∈ N, and let

N (m) := {ν ∈ P(Rd): |supp{ν}|= m}. Then, for p ≥ 1 it holds that

inf
C∈C(m)

E
∫

min
x∈C
‖x− Z‖p·dµZ = inf

ν∈N (m)
W p
p (ν, µZ). (50)

In [23], the convergence rates as a function of m of the Wasserstein distance to µZ were studied for the empirical

measure µẐm rather than for the optimal density, i.e., E[W p
p (µẐm , µZ)] instead of the r.h.s. of (50). So, therein the

error of the density estimator is controlled by a Wasserstein distance. Our proof here, exhibits another use of the

empirical Wasserstein distance, as a uniform bound on the error of an entropy estimator. Thus, despite what might

have been apparent from its definition, the role of Wasserstein distance goes beyond bounds on the pth norm.

C. A Finite Support Class of Input Distributions

The second class of input distributions is similar to (40), and seeks to only optimize weights. That is, a codebook

C = {xj}j∈[m] ⊂ Rd is chosen in advance, and the class of input distributions is

P∗∗C :=

µX =

m∑
j=1

ajδxj :a ∈ Am−1
 . (51)

Thus, an input distribution from P∗∗C is equivalent to a probability vector a ∈ Am−1. The problem of maximizing

h(X+Z) over µX ∈ P∗∗C is a concave optimization problem over the convex set Am−1 which, as said, can also be
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solved efficiently using the Blahut–Arimoto algorithm [3], [9]. As we show next it can also be approximated when

the noise distribution is unknown. To this end, consider a kernel κ:Rd → R, and denote by κθ,z its shift by z ∈ Rd

followed by scaling of θ ∈ R+, to wit, κθ,z(x) := κ(x−zθ ). The learning procedure is obtained by maximizing

h(X + Z̃n) where Z̃n = Ẑn + V and V ∼ κθ,0. In other words, µZ̃n is a KDE of µZ of bandwidth θ, i.e.

µZ̃n(z) =
1

nθd

n∑
i=1

κ

(
Zi − z
θ

)
. (52)

To state the result, we denote the second-order differential Rényi entropy by h2(f) := − log
∫
f2. The following

theorem is followed by a discussion on its implications:

Theorem 7. Let C = {xj}j∈[m] ⊂ Rd be given, and let Xa ∼
∑m

j=1 ajδxj for a ∈ Am−1. Let Z = (Z1, . . . , Zn)
i.i.d.∼

µZ , where |h2(µZ)|≤ AZ,2. Let Ẑn ∼ 1
n

∑n
i=1 δZn and assume that µZ is estimated by Z̃n ∼ 1

nθd
∑n

i=1 κθ,Zi where

the kernel density satisfies |h2(κ)|≤ Aκ,2. Then, there exists an absolute constant c > 0 and n0 ∈ N which depend

on (Aκ,2, AZ,2) such that for any given δ > 0,

max
a∈Am−1

∣∣∣h(Xa + Z)− h(Xa + Z̃n)
∣∣∣ ≤ max

a∈Am−1
E
[∣∣∣h(Xa + Z)− h(Xa + Z̃n)

∣∣∣]+ ∆ (53)

with probability larger than 1− δ, where

∆ ≤ c
(
d log

1

h
+ log n+ logm

)√
log 1

δ +m logm+m log n

n
. (54)

Convergence rates and choice of bandwidth: As evident, the bound on the convergence rate in the r.h.s.

of (53) depends on two terms. The convergence rate of the first term hinges on the ability to properly estimate

h(Xa +Z) for any a ∈ Am−1, and more importantly, for any possible noise distribution. This is typically assured

by smoothness assumptions on the possible noise densities, and requires choosing the bandwidth to be θ = n−r for

some r > 0 that depends on the dimension d and smoothness defining parameters. With this choice, the exponent

r only multiplicatively affects the redundancy term ∆ via d log
1

θ
+ log n = (dr + 1) log n. For concreteness, we

may consider the family of noise densities defined by Lipschitz balls, as proposed and analyzed in [46]. Given a

smoothness parameter s ≥ 0 and r = dse, a norm parameter p ∈ [2,∞), and the dimension d, a Lipschitz norm is

defined as follows:

‖µ‖Lip:= ‖µ‖Lp+ sup
t>0

t−sωr(µ, t)p (55)

ωr(µ, t)p := sup
e∈Rd:‖e‖≤1

‖∆r
teµ‖Lp (56)

∆r
θµ(z) =

r∑
k=0

(−1)r−k
(
r

k

)
µ
(
z + (k − r

2
)θ
)
, z ∈ Rd (57)

where ‖µ‖Lp= E1/p[‖X‖p] with X ∼ µ is the Lp norm. The definition ‖µ‖Lip indeed induces a norm, and so, it is

specifically convex. This can be seen from the observation is that ∆r
θ is a linear operator, and that since Lp norm
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are convex functions, it holds for any mixture µ = qµ1 + (1− q)µ2 that

ωr(µ, t)p ≤ sup
e∈Rd:‖e‖≤1

q · ‖∆r
teµ1‖Lp+(1− q)‖∆r

teµ1‖Lp≤ q · ωr(µ1, t)p + (1− q)ωr(µ2, t)p (58)

and consequently

‖µ‖Lip≤ q‖µ1‖Lip+(1− q)‖µ2‖Lip≤ ‖µ1‖Lip∨‖µ2‖Lip. (59)

Generalizing this, we obtain that the density of Xa+Z is only smoother than that of Z in the sense that ‖µXa+Z‖Lip≤

‖µZ‖Lip. Now, following [46], consider the set of densities

Bs,p,d(L) :=
{
µ: ‖µ‖Lip≤ L, supp(µZ) ⊆ [0, 1]d

}
. (60)

Given this definition, it was shown in [46, Thm. 3] that whenever the kernel κ satisfies several regularity assumptions

(non-negativity, unit total mass, zero mean, finite second moment, and compact support ; see [46, Assumption 1])

an upper bound on the entropy estimator can be obtained as follows. Assuming that s ∈ (0, 2], and p ≥ 2, there

exists a constant C > 0 independent of n,L such that if L ≤ ns/d and θ � (Ln)−1/(s+d) then

sup
µ∈Bs,p,d(L)

E
[∣∣∣h(µ)− h(µZ̃n)

∣∣∣] ≤ C (n−s/(s+d)Ld/(s+d) + n−1/2 · logL
)

(61)

where µZ̃n is the KDE as in (52).12 As discussed above, if µZ ∈ Bs,p,d(L) then µX+Z ∈ Bs,p,d(L̃) holds too

for some L̃ (with possibly larger support, which can be re-normalized at the expense of a multiplicative factor in

L that results L̃). Thus, the convergence rates of the first term on the r.h.s. of (53) can be bounded as in (61).

Consequently, for a fixed L, the rate in (53) is determined by the first term on the r.h.s., and equals to O(n−s/(s+d)).

This is valid for any d ≥ 1 and since s ∈ (0, 2] may amount to better rates than Õ(n−1/d) obtained in Theorem

6 whenever s > d
d−1 (assuming d ≥ 5 so that Theorem 6 is valid). Nonetheless, the rate O(n−s/(s+d)) is fastest

when s = 2 and then O(n−2/(2+d)) which, similarly to the O(n−1/d) rate of Theorem 6 also requires a number of

samples which is exponential in the dimension.

Proof outline: The proof is based on a bound on |h(Xa +Z)− h(Xb +Z)| for a, b ∈ Am−1 in terms of the

total variation and chi-square divergence between a and b (Lemma 24). This bound is used to show a bounded-

difference inequality for |h(Xa + Z)− h(Xa + Z̃n)| when one of the samples in Z is changed and consequently

establishes the concentration of this quantity to its mean for a given a ∈ Am−1 via McDiarmid’s inequality. Then,

uniform concentration over Am−1 is established by a covering argument of the simplex w.r.t. the total variation and

chi-square divergence.

12In fact, in [46, Thm. 3], the expectation in the left-hand side of (61) is replaced by E1/2[(h(µ) − h(µ̃n))2] and the corresponding
statement is stronger. Moreover [46, Thm. 3] shows that the rate on the r.h.s of (61) is sub-optimal, and by using a more sophisticated
estimator than (52), one can improve the n−s/(s+d) term in (61) to (n logn)−s/(s+d), and also that this rate is minimax optimal. However,
uniform convergence as in Theorem 7 is more difficult to obtain for that estimator.
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VI. EXPERIMENTS

A. Alternating Optimization for Surrogate Error Probability

Let us denote the projection operator Ψd
r :Rd 7→ Bd(r) by Ψd

r(x) = (‖x‖∧r)
‖x‖ ·x. For brevity, the subscript r will be

omitted when r = 1. This operator will be used to truncate Gaussian noise to have bounded norm so that Theorem

3 will be valid, but with the expectation that it has little affect on the results. For purpose of illustration we begin

with a simple example for d = 2, and then experiment more extensively with in a more complicated setting.13

1) Two-dimensional Gaussian noise: We assume the noise is (projected) Gaussian Z ∼ Ψd(N(0,K)), with

covariance matrix K ∈ Sd+ unknown to the learner. It is assumed that K is chosen such that the projection

operation only affects Z with low probability and thus rather negligible. We further assume that the codewords

of the initial codebook C(0) = (X
(0)
1 , . . . , X

(0)
m ) are randomly drawn X

(0)
j ∼ Ψd

rx

(
N(0, r2x

φxd
· Id)

)
for j ∈ [m]

mutually independently, where rx > 0 is the amplitude constraint, and φx is similarly chosen such that projection

occur with low probability and does not significantly affect the random codebook. With this choice, the mutual

information between X ∈ Rd and Y = X + Z ∈ Rd is approximated by

I(rx) := I(X;Y ) =
1

2
log

det
(
r2x
φxd
· Id +K

)
det(K)

. (62)

The expression in (62) is only approximation since the input distribution is not exactly Gaussian due to the projection

operation, but it is only used to roughly gauge the required power for various codebook sizes. For a codebook of

size m, the minimal required power to obtain negligible error probability in case coding across multiple realizations

are allowed is (approximately) rmin := min{r > 0: I(r) > logm}. Since we are considering only a single use of

the d-dimensional channel, we choose the input power to be rx =
√

Γ · rmin where Γ > 0 is the so-called gap-to-

capacity [35, Ch. 4]. The inverse covariance matrix is initialized as the inverse of the empirical covariance matrix

over the first d samples, to wit, S(0) = · · · = S(d) = (
∑d

i=1 ziz
T
i )−1. The parameters used in the experiment are

detailed in Table I in Appendix B. Fig. 1 displays the output codebook C(n) of a run of Algorithm 1 on a realization

of n noise samples, as well as the Voronoi regions determined by this codebook, and the minimal Mahalanobis

distance rule w.r.t. the output inverse covariance matrix S(n). In addition, the figure also displays the noise samples

used for training superimposed on each of the codewords, i.e., Xj + Zi for all j ∈ [m] and i ∈ [n] (with slightly

different color tone for any j ∈ [m]). Fig. 2 displays the evolution of the empirical error p̄Z(i)(C(i), S(i)) where

Z(i) = (Z1, . . . , Zi) are the noise samples used up to iteration i ∈ [n], and the evolution of p̄Z̃(C(i), S(i)) where

Z̃ = (Z̃1, . . . , Z̃ñ) are validation samples. The samples Z̃ are drawn independently of the training samples Z,

and for simplicity only drawn once for all iterations. The validation average error probability serves as a proxy

to the statistical average loss p̄Z̃(C(i), S(i)) ≈ p̄µ(C(i), S(i)). The same evolution is shown for the standard error

probability loss function. The results displayed in those figures are for a single “successful”, yet representative, run

13Matlab code which implements the learning algorithms proposed in the paper and use in the experiments is available at http://drive.
google.com/open?id=1YSX0cnac7zpviQxjCx_cdjT_zW6zVx3e, and documented at the end of this manuscript.

http://drive.google.com/open?id=1YSX0cnac7zpviQxjCx_cdjT_zW6zVx3e
http://drive.google.com/open?id=1YSX0cnac7zpviQxjCx_cdjT_zW6zVx3e
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Figure 1. A scatter plot of the final codebook C(n) (black filled circles), Voronoi regions w.r.t. the Mahalanobis distance ‖·‖S(n) , and noise
training samples superimposed on the final codebook.
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Figure 2. Left: surrogate error probability p̄Z(i)(C(i), S(i)) – blue dashed, p̄Z̃(C(i), S(i)) – red solid. Right: error probability
pZ(i)(C(i), S(i)) – blue dashed, pZ̃(C(i), S(i)) – red solid

of the algorithm, in which the error probability on the validation samples has decreased by a factor of 4 after about

n = 200 iterations and samples.

2) Gaussian Mixture noise: We consider next the scenario in which the noise Z is comprised of interference from

other digital communication transmitters, in addition to standard Gaussian noise. A common strategy is to avoid

special processing of this interference and treat such interference as noise. It is then also common to assume that the

noise distribution is Gaussian (perhaps with an unknown covariance matrix), which is justified via the central-limit

theorem (in case of large number of interferers), as well as the extremal properties of the Gaussian distribution

(such as minimizing capacity under covariance constraint, e.g. [57], [90], [24, Lemma II.2]). The learning-based

framework proposed here provides a compromise between a worst-case assumption of Gaussian distribution, and a
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detailed parametric characterization of the noise.

To experiment with this approach, we consider k interfering transmitters, where the lth transmitter sends a binary

signal Rl ∼ Uniform{−1, 1}, i.i.d. for l ∈ [s], such that the noiseless interference from transmitted l is received as

Rl · vl where vl ∈ Rd. The noise distribution thus assumed to satisfy

Z
d
= Ψd

[
√
α

(
s∑
l=1

Rl · vl +W

)]
(63)

where W ∼ N(0,KW ) ⊥⊥ (R1, . . . , Rs) with KW ∈ Sd+ being the covariance matrix of the pure Gaussian noise.

The covariance matrix of the noise before projection is then given by K = α
∑
vl ·vTl +αKW , and α is determined

so that the maximal eigenvector of K is at most 1
χZ

for some parameter χZ > 0 (so that the projection does not

significantly affect the noise distribution).

We again assume initial random (projected) Gaussian codebook, where I(r) gauges the gap-to-capacity as

before.14 The experiment parameters are detailed in Table I in Appendix B. Fig. 3 shows graphs that track the

evolution of the loss over iterations, in a similar fashion to Fig. 2. However, in Fig. 3 the losses are averaged

over multiple noise distributions and multiple runs in the following way. First, a noise distribution is chosen where

{vl} are random and chosen as Vl ∼ N(0, Id), and KW is randomly chosen from the Wishart distribution, i.e.,

KW = QQT where the the d2 entries of Q ∈ Sd are independent Qi1i2 ∼ N(0, 1). Then, for each realization

of noise distribution, multiple runs were performed, where in each run a noise realization (both for training and

validation) and a random codebook is drawn, independent of all other runs. Fig. 3 displays an averaging and a

0.8-quantile of 103 runs where the noise distribution was re-drawn every 10 runs. It is apparent that both type

of loss functions follow the same trend and the reduction in the surrogate error probability leads to a reduction

in the ordinary error probability. Convergence is achieved by a few hundred samples. It can also be observed

that the 0.8-quantile is typically less than the average. This indicates that the events where no convergence is

achieved lead to high error, and so can easily be detected, after 100 − 200 samples, which marginally increases

the convergence time. We also remark that the step-sizes are chosen to be the same for all iterations, and were not

thoroughly optimized. In general, the convergence time is longer as the constellation size is bigger. However, the

required number of samples (or iterations) required for convergence does not seem to be significantly vary from the

surrogate and standard error probability loss functions. To further inspect the dependency on the codebook size, we

denote the generalization error for the surrogate and the standard loss functions, respectively, as explicit functions

of the codebook size m:

g(i)m :=
∣∣∣p̄Z̃(C(i), S(i) | m)− p̄Z(C(i), S(i) | m)

∣∣∣ (64)

and

g(i)m :=
∣∣∣pZ̃(C(i), S(i) | m)− pZ(C(i), S(i) | m)

∣∣∣ . (65)

14We use the same metric even though the noise is not Gaussian because Gaussian noise leads to the minimal capacity under a noise
covariance constraint.
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Figure 3. Surrogate p̄Z̃(C(i), S(i)) (left) and standard pZ̃(C(i), S(i)) (right) error probability. Averaged over 103 experiments – solid,
0.8-quantile – dotted.

0 100 200 300 400 500 600 700 800 900 1000

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600 700 800 900 1000

1

1.5

2

2.5

3

3.5

4

Figure 4. Surrogate g(i)m /g
(i)
8 (left) and standard g(i)m /g

(i)
8 (right) generalization error ratio, averaged over 103 experiments.

The dependency on the codebook size can then be found by the ratios g(i)m /g
(i)
m0 and g(i)m /g

(i)
m0 for various values of

m. In Fig. 4, these ratios are computed with m0 = 8, and roughly shows that the dependency of the generalization

error on the codebook size is not different between the surrogate and ordinary error probability. In fact, it seems that

that the dependency is close to square-root in m, as was theoretically obtained for the surrogate error probability

(Theorem 3), rather than to the linear dependence theoretically obtained for the standard error probability (Theorem

1). This can be attributed to the fact that Theorem 1 states a generalization bound which assumes an arbitrary noise

distribution, and the worst case distribution can be significantly worse than the average-case distribution, or worse

than the worst-case distribution within a family of structured distributions such as the Gaussian mixture.

B. Gibbs Algorithm

We repeat the Gaussian mixture noise experiment from Section VI-A2. Here there is no need to constraint the

noise to Bd(1) and the codebook to Bd(rx) and so we omit the projection operation. We choose the reference

measure Q to be the standard Lebesgue measure, so that the codebook at each stage is only chosen based on

its error probability and not affected by other factors such as its average power. The decoder is the standard

minimum Euclidean decoder. To facilitate the computational load of the Gibbs algorithm we take a memoization-

based approach which is detailed in Appendix C. As evident from Fig. 5, practically there is no reason to increase

β beyond β = 1000, and the loss of reducing β beyond that by a factor of 10 is rather mild. The question
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Figure 5. Left: error probability on the validation data pZ̃(C(i)) per iteration – averaged over 2.5 · 103 trials. Right: log error probability
on the validation data logpZ̃(C(i)) – histogram over 2.5 · 103 trials for codebooks of size m = 32.

whether using finite β is merely a theoretical tool to prove generalization bounds or useful in practice remains

open. In principle, the theoretical bounds do not depend on any property of the noise distribution, but rather on

the algorithmic stability of the Gibbs algorithm. Thus, the results are applicable to arbitrary noise distribution, no

matter how complex. In various other experiments we have conducted with Gaussian mixture, there were cases in

which reducing the value of β has improved performance, yet not in a very consistent or statistically significant

way. A noise distribution which is more intricate than Gaussian mixture might leads to finite values of β obtaining

better performance, and a finite value of β universally “protects” against any possible noise distribution.

VII. SUMMARY AND FUTURE RESEARCH

We have considered the problem of empirical design of an encoder and a decoder of a communication system

operating over an additive noise channel, given samples of the noise. We summarize here the main findings and

various open problems for future research.

A bound on the generalization error for the regular error probability loss function was stated, which shows

a O( 1√
n

) dependency on the number of samples. No structure is assumed on the codebook and in turn the

generalization bound depends linearly on the codebook size m. A goal for future research is to settle the dependency

of the generalization bound on the allowed codebook structure and size, via a possibly refined generalization bound

and a proper converse result. Another possibility of obtaining convergence rates faster than O( 1√
n

) is to make

assumptions on the noise distribution. Such rates were established for empirical design of quantizers in [2], [67],

[68]. Future research could derive analogous conditions and bounds for the problem studied in this paper.

It was further shown that the use of a surrogate loss function to the standard error probability loss function

improves the dependency of the generalization error bound on the number of codewords from linear to (nearly)

square root. As evident from the proof, this property essentially follows from the continuity of the loss function in

the design parameters – the codebook and the inverse covariance matrix. Furthermore, an alternating optimization

algorithm was proposed to minimize the empirical loss. At each iteration, a “local” approximation of the loss
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function15 is obtained by “freezing” the nearest neighbors for each codeword in the current codebook and decoder,

and the iteration is completed by optimizing this upper bound. We expect that similar techniques involving surrogate

loss functions and their local approximation could be useful (perhaps with some innovation) to obtain generalization

bounds and empirical loss minimization algorithms for much more complicated scenarios, for example, decoders

which are based on DNN. A goal for future research is to develop and analyze such algorithms. Furthermore,

we have not provided a dedicated analysis of the alternating-minimization SGD algorithm, but rather rely on the

general uniform convergence bound for the surrogate loss function. The uniform convergence bound is oblivious

to the way the algorithm explore the possible input distributions (based on the noise samples), and thus could be

pessimistic when applied to the SGD algorithm. In this case, various stability properties (e.g., [13], [95]) could be

used to obtain sharper generalization bounds, as was done, e.g., in [47].

Another possibility for future research is the analysis of different loss functions. For example, the cross-entropy

loss function is a commonly used surrogate in the practical learning-based design of end-to-end communication

systems (e.g., [31], [87], [121]). Similarly, to the surrogate loss function studied here, it also directly bounds

the standard error probability loss function via Pinsker’s inequality. However, its analysis would differ from the

analysis in this paper mainly as it requires considering a different class of decoders – those which output a posterior

probability distribution on the messages given the channel output. In addition, the cross entropy is not a bounded

loss function, and so analyzing it it requires more elaborate methods compared to the ones used in this paper.

We have then considered a Gibbs algorithm that expurgates large codebooks in order to obtain smaller codebooks

with improved error probability. The randomness in this algorithm, as manifested by the inverse temperature

parameter β, was mainly introduced in order to provably bound the generalization error of such algorithms. In

practice, however, most of our experiments have shown that backing β from infinity does not improve performance.

An open problem is an analytical characterization of the optimal value of β, and identifying cases in which β <∞

improves performance in relevant practical scenarios. Furthermore, finding efficient combinatorial algorithms with

theoretical guarantees for the problem of finding an optimal codebook withing a super-codebook is an interesting

avenue for future research.

Finally, we have considered the problem of maximizing the mutual information I(X;X+Z) over the distribution

of X . We have seen that uniform convergence empirical error rates of Õ(n−1/(d∨4)) are possible, under rather general

regularity conditions on the distribution of Z, and the set of possible distributions for X . Some improvement in the

rate is possible when the input distribution is constrained to a given support of finite cardinality, and smoothness

assumptions on the distribution of Z. However, the required number of samples is still exponential in the dimension

d. Obtaining fast uniform convergence rates seems possible only if the family of input distributions is restricted

or the noise distribution is supported on a low-dimensional manifold. This is left for further research. From a

different angle, improved rates can be obtained by considering a specific algorithm. As was discussed, finding the

optimal input distribution could be a difficult problem even for a known noise distribution. Thus, typically a specific

15Which is also a provably upper bound to the loss function.
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algorithm is used to approximate the optimal input distribution. It is possible that stability-based analysis would be

useful to this setting too.
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APPENDIX A

PROOFS

A. A Preliminary – Uniform Convergence by Rademacher Complexity

We denote the empirical Rademacher complexity of a set Ln ⊂ Rn by

Rad(Ln) :=
1

n
E

[
sup
ln∈Ln

n∑
i=1

Rili

]
, (66)

where ln := (l1, . . . ln) ∈ Rn and Rn := (R1, . . . Rn) ∈ {±1}n are Rademacher random variables (i.e., Ri ∼

Uniform{−1, 1}, i.i.d.).

Proposition 8. Let Z be a data samples space and let H be a hypothesis class. If the loss function `: (H,Z) 7→ R

is absolutely bounded |`(h, z)|≤ r then

P
Z

i.i.d.∼ µ

[⋂
h∈H

{∣∣∣∣∣EZ∼µ [`(h, Z)]− 1

n

n∑
i=1

`(h, Zi)

∣∣∣∣∣ ≤ An(δ)

}]
≥ 1− δ, (67)

where

An(δ) := 4 · E [Rad(LZ)] + r

√
2 ln(2/δ)

n
, (68)

and

LZ = {(`(h, Z1), . . . , `(h, Zn)):h ∈ H} . (69)

Proof: It is well-established that Rademacher complexity uniformly bounds convergence the deviation of

empirical averages from the statistical average [7], and the statement in (67) was made in [105, Thm. 26.5], albeit

without the absolute value inside the probability term, and where the first additive term in An(δ) is 2E[Rad(LZ)].

By repeating the same arguments in [105, Ch. 26] that lead to that theorem, while replacing EZ∼µ [`(h, Z)] −
1
n

∑n
i=1 `(h, Zi) therein with its absolute value, one can obtain that the probability bound in (67) is valid when is

An(δ) replaced with

Ãn(δ) :=
2

n
· E

[
sup
ln∈LZ

∣∣∣∣∣
n∑
i=1

Rili

∣∣∣∣∣
]

+ r ·
√

2 ln(2/δ)

n
. (70)
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But, using the notation −LZ := {(−`(h, Z1), . . . ,−`(h, Zn)):h ∈ H} we have that Ãn(δ) ≤ An(δ) since for any

given Z ∈ (Rd)n

E

[
sup
ln∈LZ

∣∣∣∣∣
n∑
i=1

Rili

∣∣∣∣∣
]

= E

[{
sup

ln∈LZ :
∑n
i=1Rili>0

n∑
i=1

Rili

}
∨

{
sup

ln∈LZ :
∑n
i=1Rili<0

−
n∑
i=1

Rili

}]
(71)

≤ E

[
sup

ln∈LZ :
∑n
i=1Rili>0

n∑
i=1

Rili + sup
ln∈−LZ :

∑n
i=1Rili>0

n∑
i=1

Rili

]
(72)

≤ E

[
sup
ln∈LZ

n∑
i=1

Rili + sup
ln∈−LZ

n∑
i=1

Rili

]
(73)

= E

[
sup
ln∈LZ

n∑
i=1

Rili

]
+ E

[
sup
ln∈LZ

n∑
i=1

(−Ri)li

]
(74)

= 2 Rad(LZ), (75)

where in the last equality we have used Ri
d
= −Ri.

B. The Proofs of Theorem 1 and Proposition 2

Proof of Theorem 1: For a given training set {zi}ni=1, we define the loss vector as

ln(C, S) := (`(C, S, z1), . . . , `(C, S, zn)) (76)

and the loss class as Ln(m) := {ln(C, S):C ∈ (Rd)m, S ∈ Sd+}. We next bound the Rademacher complexity (66)

of Ln(m) and then use Prop. 8. As |Ln(m)|<∞, Massart’s lemma [105, Thm. 26.8] implies that

Rad(Ln(m)) ≤ max
ln∈Ln(m)

‖ln − ln‖
√

2 log|Ln(m)|
n

≤
√

2 log|Ln(m)|
n

, (77)

where ln = 1
|Ln(m)|

∑
ln∈Ln(m) l

n, and the last inequality holds since as ln ∈ [0, 1]n. We further bound |Ln(m)| as

follows. A loss vector ln(C, S) is unequivocally determined by m loss vectors

lnj (C, S) := (`j(C, S, z1), . . . , `j(C, S, zn)) ∈ {0, 1}n (78)

for j ∈ [m]. In turn, each loss vector lnj (C, S) is unequivocally determined by the m − 1 binary classification

vectors

bnj′|j(C, S) = (bj′|j(C, S, z1), . . . , bj′|j(C, S, zn)) (79)

for j′ 6= j, with

bj′|j(C, S, z) = 1
{
‖xj − xj′‖2S+2(xj − xj′)TSz < 0

}
. (80)

Hence, bnj′|j(C, S) is the result of the binary classifier induced by {xj , xj′} and the nearest neighbor decoding rule.

Since this classifier is in fact an affine hyperplane, its VC dimension is upper bounded by d+ 1 [105, Thm. 9.3].
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By the Sauer–Shelah lemma [105, Lemma 6.10], for n ≥ d+ 1∣∣∣{bnj′|j(C, S):C ∈ (Rd)m, S ∈ Sd+}
∣∣∣ ≤ ( en

d+ 1

)d+1

. (81)

Accounting for all pairs j, j′ ∈ [m] we thus obtain

|Ln(m)|≤
(

en

d+ 1

)m2(d+1)

. (82)

Inserting the bound (82) to (77) and using Prop. 8 completes the proof.

Remark 9. Despite (82) being a crude estimate, other bounding techniques such as using Natarajan dimension for

multiclass classification do not yield improved bounds (at least not using using direct arguments). Furthermore,

a seemingly natural way of defining a class of classifiers which determine `j(C, S, z) is as an intersection of m

hyperplanes. For this class, the classic paper [10] (see also [18]) gives a bound of O((d+ 1)m logm) which leads

to a worse bound than the one obtained here.

We now turn to the proof of Proposition 2 which requires a few lemmas. Let Q(t) := P[W > t] where

W ∼ N(0, 1) be the Gaussian tail distribution function. The next lemma states the error probability of a codebook

of two antipodal codewords.

Lemma 10. Let d = 2 and consider a codebook of m = 2 codewords C = (x1, x2) given by x1 = (cosα, sinα)T =

−x2 for some α ∈ [0, π]. Parameterize the decoder inverse covariance matrix by

S =

 cos(β) sin(β)

− sin(β) cos(β)

 s(1) 0

0 s(2)

 cos(β) − sin(β)

sin(β) cos(β)

 (83)

with s(1), s(2) ∈ R+ and β ∈ [0, π]. If Z ∼ N(0, diag(σ2(1), σ2(2))) then,

pµ(C, S) = Q

(
cos2(α+ β)s(1) + sin2(α+ β)s(2)

τ

)
, (84)

where

τ2
(
σ2(1), σ2(2), s(1), s(2), α, β

)
:= σ2(1) · [s(1) cos(β) cos(α+ β) + s(2) sin(β) sin(α+ β)]2

+ σ2(2) · [−s(1) sin(β) cos(α+ β) + s(2) cos(β) sin(α+ β)]2 . (85)

If σ(1) = σ(2) ≡ σ then minα,β,s(1),s(2) pµ(C, S) = Q
(
1
σ

)
is achieved with s(1) = s(2) = 1.

The proof of Lemma 10 is a trivial exercise and thus omitted.

Corollary 11. If s(1) ∧ s(2) ≥ 1 then pµ(C, S) = Q
(
1
τ

)
for some τ ≤ [σ(1) ∧ σ(2)] ·

√
s(1) ∧ s(2).

Proof: We consider three cases. First, if cos(α+ β) = 0 and sin(α+ β) = 1, then by (84) and (85), the error



37

probability is

pµ(C, S) = Q

(
1√

σ2(1) sin2(β) + σ2(2) cos2(β)

)
(86)

≤ Q
(

1

σ(1) ∨ σ(2)

)
(87)

≤ Q

(
1

[σ(1) ∨ σ(2)] ·
√
s(1) ∨ s(2)

)
(88)

where the last equality follows since s(1) ∧ s(2) ≥ 1 is assumed, and since Q(t) is monotonic decreasing in t.

Second, if cos(α + β) = 1 and sin(α + β) = 0 then similar analysis leads to the same result. Third, if both

cos(α + β) 6= 0 and sin(α + β) 6= 0 then since the bound (84) is homogeneous w.r.t. (s(1), s(2)), we will obtain

the same bound for any c · (s(1), s(2)), and thus we may assume that

cos2(α+ β)s(1) + sin2(α+ β)s(2) ≥ 1. (89)

In addition, from (85)

τ2 ≤
[
σ2(1) ∨ σ2(2)

]
×[

s2(1) cos2(β) cos2(α+ β) + s2(2) sin2(β) sin2(α+ β)

+ s2(1) sin2(β) cos2(α+ β) + s2(2) cos2(β) sin2(α+ β)
]

(90)

=
[
σ2(1) ∨ σ2(2)

]
·
[
s2(1) cos2(α+ β) + s2(2) sin2(α+ β)

]
(91)

≤
[
σ2(1) ∨ σ2(2)

]
[s(1) ∨ s(2)] ·

[
s(1) cos2(α+ β) + s(2) sin2(α+ β)

]
. (92)

Substituting this bound in (84), and utilizing the monotonicity of the Q function and the assumption (89) results

pµ(C, S) ≤ Q

(
cos2(α+ β)s(1) + sin2(α+ β)s(2)√

σ2(1) ∨ σ2(2) ·
√
s(1) ∨ s(2) ·

√
s(1) cos2(α+ β) + s(2) sin2(α+ β)

)
(93)

≤ Q

(
1√

σ2(1) ∨ σ2(2) ·
√
s(1) ∨ s(2)

)
. (94)

The next lemma states two properties related to the Q(·) function.

Lemma 12. Q(1/
√
t) is convex on [0, 1/3], and Q

(
1/
√
t
)
−Q (1/

√
s) ≥ 0.145 · (t− s) for 1/6 < s < t < 1/3.

Proof: For the first property, d
dtQ

(
1√
t

)
= 1√

8π
e−1/(2t)t−3/2 by the Leibniz integral rule, and so

d2

dt2
Q

(
1√
t

)
=

1√
8π
e−1/(2t)

[
1

2t7/2
− 3

2t5/2

]
(95)
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which is nonnegative for t ∈ [0, 1/3]. For the second property, using the first property

Q
(

1/
√
t
)
−Q

(
1/
√
s
)

=

∫ t

s

d

dx
Q

(
1√
x

)
· dx (96)

≥ (t− s) · min
x̃∈[1/6,1/3]

d

dx
Q

(
1√
x

)∣∣∣∣
x=x̃

(97)

= (t− s) · d

dx
Q

(
1√
x

)∣∣∣∣
x=1/6

(98)

for which the bound numerically holds.

The following lemma essentially states a large-deviations property of central chi-square random variables.

Lemma 13. Let {Wi, W̃i}i∈[n] be i.i.d., such that Wi ∼ N(0, σ2), W̃i ∼ N(0, σ̃2) with σ2

σ̃2 = 1 − t for some

t ∈ (0, 1) and Wi ⊥⊥ W̃i for all i ∈ [n]. Then

P

[
n∑
i=1

W 2
i >

n∑
i=1

W̃ 2
i

]
>

1

4
exp

[
−3

4
nt2
]
. (99)

Proof: The proof is based on the standard change-of-measure argument. Denote by ϕσ the Gaussian probability

measure on the Borel sets of R of mean zero and variance σ2, and let ν := ϕ⊗2nσ and ν̃ := ϕ⊗nσ ⊗ϕ⊗nσ̃ (which are

probability measures on the Borel sets of R2n). By the tensorization property of the KL divergence and a standard

calculation

dKL(ν||ν̃) = ndKL(ϕσ||ϕσ) + ndKL(ϕσ||ϕσ̃) =
n

2

(
σ2

σ̃2
− 1− log

(
σ2

σ̃2

))
. (100)

Let (W1 . . . ,Wn, W̃1 . . . , W̃n) ∈ R2n be the identity random variable on the space defined above, and define

I = 1[
∑n

i=1W
2
i >

∑n
i=1 W̃

2
i ] ∈ {0, 1}. Under ν, I is Bernoulli with probability of success Eν [I] = 1

2 (by

symmetry), and under ν̃ it is Bernoulli with probability of success given by p := Eν̃ [I], which is the probability

required to be lower bounded. By the data processing inequality for the KL divergence [22, Lemma 4.1], [42,

Corollary 5.2.2]

dKL(ν||ν̃) ≥ dKL

(
(
1

2
,
1

2
)

∥∥∥∥ (p, 1− p)
)
≥ 1

2
log

1

p
− log 2 (101)

and so p ≥ 1
4 exp[−2dKL(ν||ν̃)] which, along with (100), implies that

P

[
n∑
i=1

W 2
i (1) >

n∑
i=1

W̃ 2
i

]
>

1

4
exp

[
−n
(
σ2

σ̃2
− 1− log

(
σ2

σ̃2

))]
. (102)

The proof is completed by bounding the exponent in the last bound. Using a second order Taylor approximation

of log x around x = 1, with a Lagrange form for the remainder, which is valid for, say, [47 , 1], we have∣∣∣∣log(x)−
[
(x− 1)− 1

2
(x− 1)2

]∣∣∣∣ ≤ max
x̃∈[ 4

7
,1]

∣∣∣∣( 1

3x̃3

)
(x− 1)3

∣∣∣∣ ≤ 1

4
(x− 1)2 (103)



39

and so log(x) ≥ (x− 1)− 3
4(x− 1)2 holds for x ∈ [47 , 1]. Hence, if σ2

σ̃2 = 1− t then

σ2

σ̃2
− 1− log

(
σ2

σ̃2

)
≤ 3

4
t2. (104)

Proof of Proposition 2: We first assume that d = 2, and afterwards reduce the d > 2 case to the d = 2 case.

The proof follows the standard reduction to binary hypothesis testing (specifically [105, Sec. 28.2.1]). We consider

a pair of distributions µ± for Z, and begin by showing that a single codebook and inverse covariance matrix pair

cannot simultaneously achieve low pµ(C, S)− infC′,S′ pµ(C ′, S′) for both µ = µ− and µ = µ+.

Let η ∈ (0, 14) to be set later. Under µ+ (resp. µ−) it is assumed that Z ∼ N(0,diag( 1
3rs
, 1−2η3rs

)) (resp.

Z ∼ N(0, diag(1−2η3rs
, 1
3rs

))). Given any (x1, x2), if the Euclidean distance between x1 and x2 is increased, while the

relative angle between them is preserved then the error probability decreases under both µ±. Thus, infC,S pµ±(C, S)

is achieved with x1 = (cos(α±), sin(α±)) = −x2 for some α±, and similarly, it can be assumed that any optimal

algorithm A outputs an codebook of the form x1 = (cos(αz), sin(αz)) = −x2 for some αz. Now, note that S can

be parameterized by (β, s) with s(1) ≡ 1 and s(2) ≡ s in (83). Now, it holds from symmetry that

inf
C,S

pµ+
(C, S) = inf

C,S
pµ−(C, S). (105)

Furthermore, under µ−, it is intuitively clear since the noise variance 1
3rs

of the second dimension is larger than

then one of the first dimension 1−2η
3rs

, it is preferable to choose x1 = x−1 := (1, 0) and x2 = x−2 := (−1, 0), that

is α− = 0. Letting C− = (x−1 , x
−
2 ) we may bound16

inf
C,S

pµ−(C, S)
(a)

≤ inf
S

pµ−(C−, S) (106)

= inf
s≥1,β

pµ−(C−, S) (107)

(b)
= inf

s≥1,β
Q

 cos2(β) + sin2(β)s√
(1−2η)
3rs

·
[
cos2(β) + s sin2(β)

]2
+ 1

3rs
[− sin(β) cos(β) + s cos(β) sin(β)]2

 (108)

(c)

≤ Q

(
1√

(1− 2η)/(3rs)

)
(109)

where (a) follows from the choice C = C−, (b) follows from Lemma 10 by setting α = α− = 0, s(1) = 1,

s(2) = s, σ2(1) = 1−2η
3rs

and σ2(2) = 1
3rs

, and (c) follows from the choice s = 1. Hence,

inf
C,S

pµ−(C, S) = inf
C,S

pµ+
(C, S) ≤ Q

(
1√

(1− 2η)/(3rs)

)
. (110)

In addition, for an arbitrary fixed (C, S) with x1 = (cos(α), sin(α)) = −x2, and S parameterized by (β, s), Lemma

16In fact, C− is also an optimal choice, but this stronger property is not required for the bound.
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10, together with (110), further imply that

max
µ∈{µ±}

[
pµ(C, S)− inf

C′,S′
pµ(C ′, S′)

]
≥ 1

2

[
pµ−(C, S)− inf

C′,S′
pµ−(C ′, S′)

]
+

1

2

[
pµ+

(CZ , SZ)− inf
C′,S′

pµ−(C ′, S′)

]
(111)

=
1

2
Q

(
cos2(α+ β) + sin2(α+ β)s

σ−(α, β, s)

)
+

1

2
Q

(
cos2(α+ β) + sin2(α+ β)s

σ+(α, β, s)

)
−Q

(
1√

(1− 2η)/(3rs)

)
,

(112)

where

σ2−(α, β, s) ≡ τ2
(

1

3rs
,
1− 2η

3rs
, α, β, s

)
, (113)

σ2+(α, β, s) ≡ τ2
(

1− 2η

3rs
,

1

3rs
, α, β, s

)
, (114)

with τ defined in (85). By Corollary 11, it is assured that the arguments of the three Q functions in (112) are at

least
√

3, and so Lemma 12 assures that t 7→ Q(1/
√
t) is convex. By that convexity property

1

2
Q

(
cos2(α+ β) + sin2(α+ β)s

σ−(α, β, s)

)
+

1

2
Q

(
cos2(α+ β) + sin2(α+ β)s

σ+(α, β, s)

)

≥ Q

 cos2(α+ β) + sin2(α+ β)s√
1
2σ

2
−(α, β, s) + 1

2σ
2
+(α, β, s)

 (115)

= Q

(
cos2(α+ β) + sin2(α+ β)s

σ(α, β, s)

)
(116)

≥ Q

(
1√

(1− η)/(3rs)

)
(117)

where

σ2(α, β, s) ≡ τ2
(

1− η
3rs

,
1− η
3rs

, α, β, s

)
, (118)

and the last inequality follows from the last statement of Lemma 10. Combining (112), (117), and the second

property in Lemma 12 leads to

max
µ∈{µ±}

[
pµ(CZ , SZ)− inf

C,S
pµ(C, S)

]
≥ Q

(
1√

(1− η)/(3rs)

)
−Q

(
1√

(1− 2η)/(3rs)

)
≥ 0.145 · η

3rs
≡ ε,

(119)

where the last inequality holds since η ∈ (0, 14) and rs ≤ 2 is assumed. Hence, if we denote L± := pµ±(C, S)−

infC′,S′ pµ±(C ′, S′) then the last display implies that if L+ < ε then L− ≥ ε and vice-versa. Consequently,

1{L+ ≥ ε}+ 1{L− ≥ ε} = 1{L+ > ε}+ 1− 1{L− < ε} > 1. (120)

Thus, a single codebook cannot be simultaneously “good” for both µ±.
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Now, let A be an arbitrary algorithm which outputs Cz, Sz with Cz of the form x1 = (cos(αz), sin(αz)) = −x2
for some αz, which can be assumed without loss of generality (w.l.o.g.) for an optimal algorithm. Denote by f±(z)

the density of µ⊗n± , and denote zi ≡ (zi(1), zi(2)). Further denote the event A := {
∑n

i=1 z
2
i (1) ≥

∑n
i=1 z

2
i (2)} and

its complement by Ac. Then,

sup
µ

PZ∼µ⊗n

[
pµ(CZ , SZ)− inf

C′,S′
pµ(C ′, S′) > ε

]
≥ max

µ∈{µ±}
PZ∼µ⊗n

[
pµ(CZ , SZ)− inf

C′,S′
pµ(C ′, S′) > ε

]
(121)

(a)

≥ 1

2
PZ∼µ⊗n− [L− > ε] +

1

2
PZ∼µ⊗n+

[L+ > ε] (122)

(b)
=

1

2

∫
f−(z) · 1 [L− > ε]1(A) + f+(z) · 1 [L+ > ε]1(A) · dz

+
1

2

∫
f−(z) · 1 [L− > ε]1(Ac) + f+(z) · 1 [L+ > ε]1(Ac) · dz (123)

(c)

≥ 1

2

∫
f−(z) · (1 [L− > ε] + 1 [L+ > ε])1(A) · dz

+
1

2

∫
f+(z) · (1 [L− > ε] + 1 [L+ > ε])1(Ac) · dz (124)

(d)

≥ 1

2

∫
f−(z) · 1(A) · dz +

1

2

∫
f+(z) · 1(Ac) · dz (125)

(e)
=

∫
f−(z) · 1(A) · dz (126)

= PZ∼µ⊗n−

[
n∑
i=1

Z2
i (1) ≥

n∑
i=1

Z2
i (2)

]
(127)

(f)

≥ 1

4
exp

[
−3nη2

]
(128)

(g)
= δ, (129)

where (a) utilizes the definition of L±, (b) utilizes the definition of the event A and f±, (c) follows since f+(z) >

f−(z) if and only if z ∈ A, (d) follows from (120), (e) follows from symmetry, (f) follows from Lemma 13, and

(g) is obtained by setting η =
√

1
3n log 1

4δ while taking n ≥ n0(δ) such that η < 1
4 .

In case d > 2, one may choose µ1 to be zero-mean Gaussian of covariance matrix diag( 1
3rs
, 1−2η3rs

, σ̃, . . . , σ̃) (and

similarly µ2 with the variances of the first two coordinates interchanged), and take an arbitrarily large value of σ̃

so the optimal algorithm will always choose the codewords to lie in the two-dimensional subspace spanned by the

first two coordinates. The problem is then reduced to the d = 2 case.

C. The Proof of Theorem 3

We will need several lemmas. The first lemma characterizes the continuity of the surrogate loss function w.r.t.

(C, S).
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Lemma 14. Suppose that C = {xj}j∈[m] ∈ C, C̃ = {x̃j}j∈[m] ∈ C, and S, S̃ ∈ S satisfy that there exists γx, γs ≥ 0

such that ‖xj − x̃j‖≤ γx for all j ∈ [m] and ‖S − S̃‖op≤ γs. Then, for any z ∈ Bd(1)∣∣∣`(C, S, z)− `(C̃, S̃, z)∣∣∣ ≤ max
j∈[m]

∣∣∣`j(C, S, z)− `j(C̃, S̃, z)∣∣∣ ≤ 8γxrs(rx + 1) + γs(γ
2
x + 4rx). (130)

Proof: For any v, ṽ ∈ Rd, it holds that∣∣∣vTSz − ṽT S̃z∣∣∣ ≤ ∣∣vTSz − ṽTSz∣∣+
∣∣∣ṽTSz − ṽT S̃z∣∣∣ (131)

=
∣∣(v − ṽ)TSz

∣∣+
∣∣∣ṽT (S − S̃) z∣∣∣ (132)

≤ ‖v − ṽ‖·‖S‖op·‖z‖+‖ṽ‖·‖S − S̃‖op·‖z‖, (133)

and ∣∣∣‖v‖2S−‖ṽ‖2S̃∣∣∣ ≤ ∣∣‖v‖2S−‖ṽ‖2S∣∣+
∣∣∣‖ṽ‖2S−‖ṽ‖2S̃∣∣∣ (134)

=

∣∣∣∣(S1/2v
)T (

S1/2v
)
−
(
S1/2ṽ

)T (
S1/2ṽ

)∣∣∣∣+
∣∣∣ṽT (S − S̃)ṽ

∣∣∣ (135)

=

∣∣∣∣(S1/2v + S1/2ṽ
)T (

S1/2v − S1/2ṽ
)∣∣∣∣+

∣∣∣ṽT (S − S̃)ṽ
∣∣∣ (136)

≤ ‖S‖op· (‖v‖+‖ṽ‖) ‖v − ṽ‖+‖ṽ‖2·‖S − S̃‖op, (137)

where S1/2 is the symmetric square root of S. Setting v = xj − xj′ and ṽ = x̃j − x̃j′ the last two displays and the

triangle inequality imply that ∣∣∣(xj − xj′)TSz − (x̃j − x̃j′)T S̃z
∣∣∣ ≤ 2γxrs + 2rxγs (138)

and ∣∣∣‖xj − xj′‖2S−‖x̃j − x̃j′‖2S̃∣∣∣ ≤ 8rxγxrs + γ2xγs (139)

for all j, j′ ∈ [m]. We may now peel the difference between the loss functions. Let us denote

aj,j′(C, S, z) :=
(
‖xj − xj′‖2S+2(xj − xj′)TSz

)
. (140)

Then,∣∣∣`j(C, S, z)− `j(C̃, S̃, z)∣∣∣ (a)≤ ∣∣∣∣ min
j′∈[m]\{j}

aj,j′(C, S, z)− min
j′∈[m]\{j}

aj,j′(C̃, S̃, z)

∣∣∣∣ (141)

(b)

≤ max
j′∈[m]\{j}

∣∣∣aj,j′(C, S, z)− aj,j′(C̃, S̃, z)∣∣∣ (142)

≤ max
j′∈[m]\{j}

{∣∣∣‖xj − xj′‖2S−‖x̃j − x̃j′‖2S̃∣∣∣+
∣∣∣2(x̃j − x̃j′)T S̃z − 2(xj − xj′)TSz

∣∣∣}
(143)

(c)

≤ 8γxrs(rx + 1) + γs(γ
2
x + 4rx), (144)
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where (a) holds since t 7→ [1− t]+ is a 1-Lipschitz function, (b) holds since for any {αj,j′}, {α̃j,j′}∣∣∣∣ min
j′∈[m]\{j}

αj,j′ − min
j′∈[m]\{j}

α̃j,j′

∣∣∣∣ ≤ max
j′∈[m]\{j}

|αj,j′ − α̃j,j′ | , (145)

and (c) holds by utilizing (138) and (139).

We denote by N(S, ‖·‖op, γs) the covering number (e.g. [118, Definition 4.2.2]) of S, for the operator norm and

covering radius γs.

Lemma 15. It holds that

N(S, ‖·‖op, γs) ≤ 2

[
12drs
γs

]d(d+1)

. (146)

Proof: Denote the eigendecomposition of S ∈ Sd+ by S = UΛUT , where U ∈ Rd×d is an orthonormal matrix

and Λ ∈ Rd×d+ is diagonal. Further let ui be the ith eigenvector of S (i.e., the ith column of U ), and λi ∈ [0, rs]

be the ith eigenvalue (i.e., the (i, i) element of Λ). Then, using analogous notation for S̃ ∈ Sd+,

‖S − S̃‖op = ‖UΛUT − Ũ Λ̃ŨT ‖op (147)

≤ ‖UΛUT − U Λ̃UT ‖op+‖U Λ̃UT − Ũ Λ̃ŨT ‖op (148)

≤ max
i∈[d]
|λi − λ̃i|+2dmax

i∈[d]
λ̃i‖ui − ũi‖, (149)

where in (149): The first term is bounded as

‖UΛUT − U Λ̃UT ‖op≤ ‖Λ− Λ̃‖op= max
i∈[d]
|λi − λ̃i|. (150)

The second term is bounded as

‖U Λ̃UT − Ũ Λ̃ŨT ‖op=

∥∥∥∥∥
d∑
i=1

λ̃i
(
uiu

T
i − ũiũTi

)∥∥∥∥∥
op

≤
d∑
i=1

λ̃i
∥∥(uiuTi − ũiũTi )∥∥op ≤

d∑
i=1

2λ̃i‖ui − ũi‖ (151)

since for any v ∈ Sd−1

∣∣vT (uiuTi − ũiũTi ) v∣∣ =
∣∣uTi vvTui − ũTi vvT ũi∣∣ =

∣∣‖ui‖2vvT−‖ũi‖2vvT ∣∣ ≤ 2‖ui − ũi‖, (152)

with the last inequality follows as in (137). Now, let ε = γs
4drs

and let U be an ε-net in the Euclidean distance for

the unit sphere Sd−1 whose size is less than |C|≤ (3ε )
d (whose existence is assured from [118, Corollary 4.2.13]).

Further, let ε0 = γs
2 , and let L be a proper ε0-net in the in the `1 norm for [0, rs] whose size is |L|≤

(
rs
ε0

)
. By

(149), the set{
UΛUT :UTU = Id, U = [u1, . . . , ud], Λ = diag (λ1, . . . , λd), ui ∈ U ⊂ Rd, λi ∈ L, ∀i ∈ [d]

}
(153)

is a γs-cover of S whose size is (|U|·|L|)d (where the dth power follows from allowing an independent choice for

i ∈ [d]), which is less the r.h.s. of (146).
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We say that K ⊂ Rn is a γ-cover of L ⊂ Rn under the metric ‖·‖p, p ∈ [1,∞], if

sup
ln∈L

min
kn∈K

1

n

n∑
i=1

|li − ki|p≤ γp, (154)

where ln = (l1, . . . , ln) and kn = (k1, . . . , kn). The γ-covering number of L ⊂ Rn under the metric ‖·‖p is denoted

by

Np(γ,L) := min {|K|:K is a γ-cover of L} . (155)

The next bound on the empirical Rademacher complexity (66) is well-known (e.g., [97, Thm. 12.4]).

Lemma 16 (Dudley’s entropy integral). For L ⊂ Rn

Rad(L) ≤ inf
α≥0

{
4α+

12√
n

∫ 1

α

√
log N2 (γ,L) · dγ

}
. (156)

With this bound we may obtain the following bound on the empirical Rademacher complexity for the loss class

induced by the surrogate error probability loss function:

Lemma 17. Let z = (z1, . . . , zn) ∈ Rn be given, and consider the loss class

Lz :=
{
`(C, S,z) ∈ Rn+:C ∈ C, S ∈ S

}
⊂ Rn+, (157)

where `(C, S,z) = (`(C, S, z1), . . . `(C, S, zn)). Then, assuming rx ≥ 1 and rs ≥ 1:

Rad(Lz) ≤ 28

√
(d ∨m)(d+ 1) log(31 · drsrx)

n
. (158)

Proof: We will bound the Rademacher complexity of the loss class induced by the surrogate loss function in

(157), using covering arguments and Dudley’s entropy integral. Assume that γx ∈ [0, 1]. Let C̃1 be a γx-net of C1
in the Euclidean norm whose size is less than |C̃1|≤ (3rxγx )d, and whose existence is assured from [118, Corollary

4.2.13], and also let C̃ = (C̃1)m. In addition, let S̃ be a γs-net of S in the operator norm whose size is less than

|S̃|≤ 2(12drsγs
)d(d+1), whose existence is assured from Lemma 15. Then, by Lemma 14, the set

L̃z :=
{
`(C, S,z) ∈ Rn+:C ∈ C̃, S ∈ S̃

}
(159)

is a γ-cover of Lz with

γ = 8γxrs(rx + 1) + γs(γ
2
x + 4rx) (160)

whose size is less than

2

[
12d(rs + 1)

γs

]d(d+1)

·
(

3rx
γx

)m(d+1)

≤
[

72 · d · rsrx
γsγx

](d∨m)(d+1)

(161)

We may next optimize over (γx, γs) to achieve the minimal covering size for any given γ, or alternatively, to

minimize γ in (160) under the size constraint defined by ψ := γxγs > 0, where we assume that ψ < 1. Substituting
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γs = ψ/γx in (160) we obtain

γ ≤ min
γx>0

{
γx (8rs(rx + 1) + ψ) +

4rxψ

γx

}
(162)

= 2
√

(8rs(rx + 1) + ψ) 4rxψ (163)

≤ 20rsrx
√
ψ (164)

where the equality follows since the minimizer of aγx + b/γx over γx ≥ 0 for a, b ∈ R+ is at γx =
√
b/a and the

minimal value is 2
√
ab, and the (generous) inequality using the assumptions rx ≥ 1, rs ≥ 1, and ψ < 1. Hence,

under these assumptions,

ψ = γxγs ≥
γ2

400r2sr
2
x

. (165)

Thus, for a given γ > 0, the logarithm of the cover size is upper bounded as

(d ∨m)(d+ 1) log

[
28800 · dr3sr3x

γ2

]
= a− 2(d ∨m)(d+ 1) log γ (166)

where a := (d ∨m)(d+ 1) log(28800 · dr3sr3x). By Lemma 16,

Rad(Lz) ≤ lim
α→0

12√
n

∫ 1

α

√
a− 2(d ∨m)(d+ 1) log γ · dγ (167)

≤ 12

√
a

n
lim
α→0

∫ 1

α
1− 2(d ∨m)(d+ 1) log γ

2a
· dγ (168)

= 12

√
a

n

[
1 +

(d ∨m)(d+ 1)

a

]
, (169)

where the second inequality follows from
√

1− t ≤ 1 − t/2 for t ∈ (−∞, 1], and the following equality using a

continuity argument implied by limt→0 t · log t = 0. The result follows by inserting back the definition of a and

generously bounding using rx ≥ 1 and rs ≥ 1, and then simplifying.

The proof of Theorem 3 follows immediately:

Proof of Theorem 3: We use Prop. 8 and note that

∣∣`j(C, S, z)∣∣ ≤ 1 ∨ max
j′∈[m],j′ 6=j

(
‖xj − xj′‖2S+

∣∣2(xj − xj′)TSz
∣∣) (170)

≤ 1 ∨
{

4r2xrs + 4rxrs
}

=: r (171)

Bounding the Rademacher complexity using Lemma 17 completes the proof.

D. The Proofs of Theorems 4 and 5

We will utilize the following lemma regarding the KL divergence.

Lemma 18. Let Q be a measure and let l, l̃:X 7→ R be measurable functions on a measurable space X . Further

let P (dx) ∝ Q(dx) · e−βl(x) (resp. P̃ (dx) ∝ Q(dx) · e−βl̃(x)) be the Gibbs measures based on the loss functions l

(resp. l̃). If ‖l − l̃‖∞≤ ε then dKL(P ||P̃ ) ≤ 2βε · {1 ∧ (e2βε − 1)}.
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Proof: For any f, g:X 7→ R+ it holds that EQ[f ]
EQ[g] ≤

∥∥∥fg∥∥∥∞where ‖·‖∞ is the sup norm. Hence,

∣∣∣∣log
P (dx)

P̃ (dx)

∣∣∣∣ = log

e−βl(x)e−βl̃(x)
·
EQ
[
e−βl̃(x)

]
EQ
[
e−βl(x)

]
 ≤ 2βε, (172)

and so it holds that dKL(P ||P̃ ) = EP [log P (dx)

P̃ (dx)
] ≤ 2βε. Furthermore, by [27, Lemma 3.18], it also holds that

dKL(P ||P̃ ) ≤ 2βε · (e2βε − 1).

Proof of empirical error bound of Theorem 4 – (33): Let dTV(µ||µ̃) denote the total variation distance between

the probability measures µ and µ̃. By the variational representation of the total variation and Pinsker’s inequality

[112, Lemma 2.5], for any two measures µ, µ̃ and a function f :X 7→ R with ‖f‖∞≤ 1/2 it holds that

|EX∼µ[f(X)]− EX∼µ̃[f(X)]| ≤ dTV(µ||µ̃) ≤

√
dKL(µ||µ̃)

2 log e
. (173)

We further denote by PCµ,1···Cµ,T (resp. PCz,1···Cz,T
) the joint probability measure of Cµ (resp. CZ), and use standard

notation for their conditional versions. Furthermore, we let C be the set of all possibly expurgated codebooks over

all T steps, i.e., the initial codebook C0, and each of the
(

m0

m0−kt
)

codebooks at the tth stage, for any t ∈ [T ]. There

is a total of

1 +

(
m0

m0 − k

)
+

(
m0

m0 − 2k

)
+ · · ·

(
m0

m

)
(∗)
≤ T

(
m0

m0/2

)
≤ m

m0/2+1
0

k
:= αm0,k (174)

such different codebooks, where (∗) follows from the assumption m0 ≥ 2m. For any δ ∈ (0, 1), define ε =√
1
2n log

αm0,k

δ and the event

E :=

{
z: sup

C∈C
|pz(C)− pµ(C)| < ε

}
. (175)

Hoeffding’s inequality and the union bound then imply that P[E] ≥ 1− δ. For z ∈ E, the definitions of the Gibbs

algorithms (population and empirical versions) and Lemma 18 imply that for any t ∈ [T ] and C ∈ C

dKL

(
PCz,t|Cz,t−1

(· | C)||PCµ,t|Cµ,t−1
(· | C)

)
≤ 2βε ·

(
1 ∧ (e2βε − 1)

)
, (176)

and for z ∈ Ec and any C ⊂ (Rd)mt−1

dKL

(
PCz,t|Cz,t−1

(· | C)||PCµ,t|Cµ,t−1
(· | C)

)
≤ 2β ·

(
1 ∧ (e2β − 1)

)
. (177)

Condition on any given Z = z ∈ E and C0 (implicitly) and averaging over the randomness of the Gibbs algorithm

|E [pµ(Cz,T )− pµ(Cµ,T ) | Z = z]|
(a)

≤

√
dKL(PCz,T

||PCµ,T )

2 log e
(178)

≤

√
dKL(PCz,1···Cz,T

||PCµ,1···Cµ,T )

2 log e
(179)

(b)
=

√∑T−1
t=0 E

[
dKL

(
PCz,t|Cz,t−1

(· | Cz,t−1)||PCµ,t|Cµ,t−1
(· | Cz,t−1)

)]
2 log e

(180)
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(c)

≤

√
2Tβε · (1 ∧ (e2βε − 1))

2 log e
, (181)

where (a) follows from (173) (which holds since pµ(C) ∈ [0, 1]), (b) follows from the chain rule and the Markov

property (PCz,1···Cz,T
= PCz,1

⊗PCz,2|Cz,1
· · · ⊗PCz,T |Cz,T−1

) of Cz conditioned on z and a similar property which

holds for Cµ, and (c) follows from utilizing (176). A similar bound holds for z ∈ Ec with ε replaced by 1. Then,

E [pµ(Cz,T )− pµ(Cµ,T )] = P[Z ∈ E] · E [(pµ(Cz,T )− pµ(Cµ,T )) | Z ∈ E]

+ P[Z ∈ Ec] · E [(pµ(Cz,T )− pµ(Cµ,T )) | Z ∈ Ec] (182)

≤

√
Tβ

log e
·
(√

ε(e2βε − 1) + δ

)
. (183)

The proof of the bound is completed by choosing δ = 1
n , the assumption in (32) implies that 2βε ≤ 1 and using

ex − 1 ≤ (e− 1)x for x ∈ [0, 1] we obtain

E [pµ(Cz,T )− pµ(Cµ,T )] ≤

√
Tβ

log e
·

(√
(e− 1)β

log(nαm0,k)

n
+

1

n

)
(184)

≤

√
4(e− 1)

log e
·
Tβ2 log(nαm0,k)

n
. (185)

We next prove the bounds on the average generalization error. To this end we note that a randomized learning

algorithm A:Z 7→ A is conditional probability distribution PA|Z , where A is the set of possible outputs which is

assumed to be a measurable space. As was shown in [94], [95], [128], the generalization error of learning algorithms

can be controlled by the mutual information between the output hypothesis A ∈ A and the input data, and such a

bound is used here.

Proof of generalization error bound of Theorem 4 – (34): For brevity, let CZ,t be denoted here as Ct. We

use standard information-theoretic notation [17] for entropy and mutual information. Recall that the erasure mutual

information [117] between U and V = (V1, . . . , Vn) is defined as

I−(U ;V ) :=

n∑
i=1

I(U ;Vi | V −i) (186)

where V −i = (V1, . . . , Vi−1, Vi+1, . . . , Vn). To bound the generalization error we analyze the information-theoretic

stability properties of the Gibbs algorithm, and specifically bound the mutual information I(CT ;Z). First note the

the expurgation algorithm can be described as an adaptive composition of algorithms. Specifically, at step t, the

output of the algorithm Ct is a function of Ct−1 and Z and so the Markov relation (C1, . . . , Ct−1)−(Ct,Z)−Ct+1

holds. We then have

I(CT ;Z)
(a)

≤ I
−

(CT ;Z) (187)
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=

n∑
i=1

I(CT ;Zi | Z−i) (188)

(b)

≤
n∑
i=1

I(C1, . . . , CT ;Zi | Z−i) (189)

=

n∑
i=1

T∑
t=1

I(Ct;Zi | Z−i, Ct−1, , . . . , C1) (190)

=

n∑
i=1

T∑
t=1

H(Ct | Z−i, Ct−1, . . . , C1)−H(Ct | Z, Ct−1, . . . , C1) (191)

(c)

≤
n∑
i=1

T∑
t=1

H(Ct | Z−i, Ct−1)−H(Ct | Z, Ct−1) (192)

=

T∑
t=1

I
−

(Ct;Z | Ct−1) (193)

where (a) follows since Z is comprised of n independent random variables and [95, Prop. 1], (b) follows from

the chain rule and non-negativity of mutual information, and (c) follows from the Markov property and since

conditioning reduces entropy. We thus upper bound the erasure mutual information I
−

(Ct;Z | Ct−1). As was

shown in the proof of Lemma 18, for any z, z′ ∈ (Rd)n such that dH(z, z′) = 1,∣∣∣∣log
P [Ct+1 | Z, Ct]
P [Ct+1 | Z ′, Ct]

∣∣∣∣ ≤ 2β

n
. (194)

Derivation similar to the proof of [94, Thm. 4] (see also [95, Thm. 7]) then implies that I−(Ct;Z | Ct−1) ≤ 2β∧ β
2

2n .

As this holds for all t ∈ [T ], (193) thus implies that I(CT ;Z) ≤ T ·(2β∧ β
2

2n) and the Gibbs algorithm is stable in the

mutual information. Since the loss function is the error probability that is bounded to [0, 1] and so is 1
4 -sub-Gaussian,

it follows from [128, Thm. 1] that

E [pµ(CZ,T )− pZ(CZ,T )] ≤

√
T

(
β

n
∧ β2

4n2

)
. (195)

To prove the high probability bound of Theorem 5 we recall that a learning algorithm is termed (ε, η)-differentially-

private [27] if for any measurable set F ⊆ A

dH(z, z′) ≤ 1⇒ PA|Z=z(F ) ≤ eεPA|Z=z′(F ) + η. (196)

Let C0 ⊂ C be a super-codebook of size m0, and let At be the set of its subsets of size mt = m0 − kt, and

T = m0−m
k for some given k (assuming T is integer). For brevity, we suppress C0 from the notation, as it is

assumed that C0 is fixed in advance, and in accordance, the high probability bound of Theorem 5 only refers to

the random draw of the noise samples Z. The Gibbs algorithm CG: (Rd)n 7→ AT is defined by the sequence of
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algorithms {Ct}Tt=1 in (29), as

PCG|z,C0
= PC1|z ⊗ PC2|C1,z ⊗ PC3|C2,z ⊗ · · · ⊗ PCT |CT−1,z. (197)

Lemma 19. CG is a (Tβn , 0)-differentially private algorithm. Furthermore, if 2β
n ≤ 1, then for any η > 0, CG is

an (ε, η)-differentially private algorithm, where

ε =

√
2T log

(
1

η

)
· β
n

+ 4(e− 1)
Tβ2

n2
. (198)

Proof: For any codebook C and z, z′ ∈ (Rd)n such that dH(z, z′) = 1 it holds that

|pz(C|j)− pz′(C|j)| ≤
1

n
(199)

and so also

|pz(C)− pz′(C)| =

∣∣∣∣∣∣ 1

m

∑
j∈[m]

pz(C | j)− pz′(C | j)

∣∣∣∣∣∣ ≤ 1

n
. (200)

This bound along with the definition of the Gibbs algorithm (29) imply that (as in the proof of Lemma 18)∣∣∣∣log
P [Ct+1 | z, Ct]
P [Ct+1 | z′, Ct]

∣∣∣∣ ≤ 2β

n
. (201)

Thus, the algorithm PCt+1|z,Ct is (2βn , 0)-differentially private for all t ∈ [T ]. The algorithm CG is an adaptive

composition [25, Sec. 2.1] of the algorithms (C1, C2, . . . , CT ), for which, in general, Ct depends on the data z

and the previous outputs (C1, . . . , Ct−1) (in this case it only depends on Ct−1 in a nontrivial way). By the simple

composition theorem (e.g., [25, Thm. 3]), CG is (2βTn , 0)-differentially private. Furthermore, under the assumption
2β
n < 1, the advanced composition theorem [25, Thm. 4] implies that for any chosen η > 0, CG is (ε, η)-differentially

private with

ε =

√
2T log

(
1

η′

)
· β
n

+ T
2β

n
(e2β/n − 1) ≤

√
2T log

(
1

η′

)
· β
n

+ 4(e− 1)
Tβ2

n2
(202)

where the inequality follows from ex − 1 ≤ (e− 1)x for x ∈ [0, 1].

We may now turn to the proof of Theorem 5:

Proof of Theorem 5: If PC|Z is (ε, η)-differentially private then for any given z, z′ ∈ (Rd)n such that

dH(z, z′) = 1 it can be verified by standard approximations (or, e.g., [26, Lemma 6]) that for any z̃ ∈ Rd

∣∣qz̃(C(z))− qz̃(C(z′))
∣∣ ≤ eε − 1 + η. (203)

Thus, the algorithm PC|Z is γ-uniformly stable w.r.t. the loss function qz̃(·) ∈ [0, 1], with γ = eε − 1 + η. Then,

[34, Thm 1.1] implies that there exists an absolute constant c > 0 such that

P
[
qµ(CZ,T )− qZ(CZ,T ) > c

(
γ +

1√
n

)
log(n) · log

n

δ

]
≤ δ (204)



50

where qµ(CZ,T ) := E[qZ̃(C(Z))] where Z̃ ∼ µ and independent of Z, and where qZ(CZ,T ) := 1
n

∑n
i=1 qZi

(C(Z)).

By Lemma 19, for the Gibbs algorithm CG, a valid uniform stability parameter is

γ = exp

[√
2T log

(
1

η

)
· β
n

+ 4(e− 1)
Tβ2

n2

]
− 1 + η (205)

for any η > 0. Under the assumption Tβ
n → 0 as n→∞, there exists n0 such that for all n > n0

γ ≤ (e− 1)

√
2T log

(
1

η

)
· β
n

+ 4(e− 1)2
Tβ2

n2
+ η. (206)

Choosing η =
√
Tβ
n , there exists n1 such that for all n > n1

γ ≤

√
18 log

(
n

β
√
T

)
·
√
Tβ

n
. (207)

Inserting into (204) completes the proof.

E. The Proofs of Theorems 6 and 7

To prove Theorem 6, we need a few supporting lemmas. Note that ‖Z‖ has a density µ‖Z‖, and let αµ‖Z‖ :=

inf{α:µ‖Z‖([0, α]) = 1} ∈ (0,∞]. For any given α < αµ‖Z‖ , let U be the following “compressed norm” version

of the noise to maximal norm α, concretely

Uα =

Z, ‖Z‖≤ α

Z
‖Z‖ · V otherwise

(208)

where Z ⊥⊥ V ∼ Uniform[0, α]. The Wasserstein distance from the density µUα to µZ satisfies the following bound:

Lemma 20. Assume that ‖Z‖ is
√
dσZ-sub-Gaussian. Then, for any α ∈ (0, αµ‖Z‖)

W2(µZ , µUα) ≤
√

2(α+
√
dσZ) · e−α2/2dσ2

Z . (209)

Proof: Let (Z∗, U∗) be the coupling defined by (208). Then,

W 2
2 (µZ , µU ) ≤ E‖U∗ − Z∗‖2 (210)

≤ E
[
‖Z‖2·1{‖Z‖> α}

]
(211)

(a)
=

∫ ∞
0

P
[
‖Z‖2·1{‖Z‖> α} > t

]
dt (212)

=

∫ ∞
0

P
[
‖Z‖> α ∨

√
t
]

dt (213)

=

∫ α2

0
P [‖Z‖> α] dt+

∫ ∞
α2

P
[
‖Z‖>

√
t
]

dt (214)

(b)

≤ α2e−α
2/dσ2

Z + 2

∫ ∞
α2

e−t/dσ
2
Zdt (215)
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= α2e−α
2/dσ2

Z + 2dσ2Ze
−α2/dσ2

Z , (216)

where (a) follows from the integral identity (e.g., [118, Lemma 1.2.1]), and (b) follows from the assumption that

‖Z‖ is (
√
dσZ)-sub-Gaussian.

We next bound the Wasserstein distance W2(µZ , µẐn) where µẐn =
∑n

i=1
1
nδZi is the empirical measure of the

noise samples Z. For the case in which ‖Z‖≤ α almost surely, [66, proof of Thm. 3.1] obtained a high probability

bound on W1(µZ , µẐn) utilizing an upper bound on its expected value from [23] and McDiarmid’s inequality. We

use next similar reasoning and a truncation argument for the more general case which only assumes sub-Gaussian

‖Z‖, and also bound the second-order distance rather than the first-order.

Lemma 21. Let

fd(n) :=


n−1/4, d < 4

n−1/4 · log n, d = 4

n−1/d, d > 4

. (217)

Assume that ‖Z‖ is
√
dσZ-sub-Gaussian. For any given δ ∈ (0, 1), there exists an constant cd > 0 which only

depends on d and n0(σZ , d) such that for any n ≥ n0

W2(µZ , µẐn) ≤ c′dσZ log
n

δ
· fd(n) ≤ c′dσZ log2

(n
δ

)
· n−1/(d∨4) (218)

with probability larger than 1− δ.

Proof: For a given α > 0, let Uα be as in (208) and let µU denote its probability measure, where for brevity,

we omit henceforth in the proof the subscript α. Also let U = (U1, . . . , Un)
i.i.d.∼ µU and let µÛn := 1

n

∑n
i=1 δUi

be its empirical measure.

We first derive a high probability bound on W2(µU , µÛn). To this end, we utilize the fact that ‖U‖≤ α almost

surely, and use a bound on the average Wasserstein distance [37] as follows:

E
[
W2(µU , µÛn)

] (a)

≤
√

E
[
W 2

2 (µU , µÛn)
]

(219)

=
(b)

≤ cd · α


n−1/4, d < 4

n−1/4 · log n, d = 4

n−1/d, d > 4

(220)

= cdα · fd(n), (221)

where (a) follows from Jensen’s inequality, and (b) follows directly from [37, Thm. 1] by taking, in the notation

there, p = 2, q →∞, and cd is a constant which only depends on d.

Now, U 7→ W2(µU , µÛn) satisfies a bounded difference inequality with parameter 2
√
dα
n , just as was noticed in
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[66, proof of Thm. 3.1] for the first-order Wasserstein distance. Hence, by McDiarmid’s inequality [12, Thm. 6.2]

P

[
W2(µU , µÛn)− E

[
W2(µU , µÛn)

]
> α

√
2d

n
log

2

δ

]
≤ δ

2
, (222)

and so (221) and (222) imply that with probability larger than 1− δ/2

W2(µU , µÛn) ≤ cdα · fd(n) + α

√
2d

n
log

2

δ
. (223)

We now choose α > 0 to be large enough so that W2(µÛn , µẐn) = 0 with probability larger than 1− δ/2. To this

end, consider the coupling (Zi, Ui) defined by (208) for all i ∈ [n]. Then,

W2(µÛn , µẐn) ≤

√√√√ 1

n

n∑
i=1

‖Zi − Ui‖2. (224)

So, if Zi = Ui for all i ∈ [n] then this upper bound is zero. Since P[‖Z‖>
√
dα] ≤ exp[− c0α2

σ2
Z

] for some absolute

constant c0 > 0, it holds for α = σZ√
c0

√
d log 2n

δ that

P

[
n⋂
i=1

{Zi = Ui}

]
= P

[
n⋂
i=1

{‖Zi‖≤ α}

]
≥
[
1− e−

c0α
2

dσ2
Z

]n
≥ 1− δ

2
(225)

(the last inequality can be verified using the basic inequality xr ≤ 1 + r(x − 1) for x = 1 − δ/2 > 0 and

r = 1
n ∈ [0, 1]).

Consequently, combining the triangle inequality and Lemma 20, (223), and (225), that there exists n0(σZ , d)

such that for all n ≥ n0

W2(µZ , µẐn) ≤W2(µZ , µUα) +W2(µUα , µÛα,n) +W2(µÛn , µẐn) (226)

=
σZ
√
dδ√

2n
+ cd

σZ√
c0

√
d log

2n

δ
· fd(n) +

σZ√
c0

√
2d

n
· log

(
2n

δ

)
· log

(
2

δ

)
(227)

≤ c′dσZ · log
(n
δ

)
· fd(n) (228)

with probability larger than 1− δ, where c′d > 0 is a constant which only depends on d.

We next bound the change in the entropy of the output Y = X + Z when the noise is replaced by its truncated

version Uα. To this end we remind the reader the following simple bounds on the differential entropy of a mixture

distribution (see, e.g., [86]).

Lemma 22. Let {νj}j∈[m] be a set of density functions such that |h(νj)|< ∞ for all j ∈ [m], and consider the

mixture distribution f =
∑m

j=1 ajνj where a ∈ Am−1 is a probability vector. Then,

m∑
j=1

ajh(νj) ≤ h(f) ≤
m∑
j=1

ajh(νj) +H(a) (229)

where H(a) := −
∑m

j=1 aj log aj is the (discrete) entropy of a.
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Proof: Let J ∈ [m] be a random variable such that P[J = j] = aj , and Xj ∼ νj , where (J,X1, . . . , Xm) are

pairwise independent. Then the left inequality follows from h(f) = h(XJ) ≥ h(XJ | J), and the right inequality

from H(J) ≥ I(XJ ; J) = h(XJ)− h(XJ | J).

Lemma 23. Suppose that E‖X2‖≤ dσ2X , |h(X)|≤ ηX , and ‖Z‖ is
√
dσZ-sub-Gaussian. Then, for any α ∈

(0, αµ‖Z‖)

|h(X + Uα)− h(X + Z)| ≤ (2qηX) ∨
(
qd log

[
4πe

(
(σ2X + (d−1α2) ∨ (cq−1σ2Z)

)])
+ Hbin(q) (230)

where q = P[‖Z‖> α], c > 0 is an absolute constant, and Hbin(t) := −t log t− (1− t) log(1− t) for t ∈ (0, 1) is

the binary entropy function.

Proof: Consider the set S = {Z ∈ Rd: ‖Z‖< α}. Let µZ|S be the measure µZ conditioned on the set S, i.e.,

the measure uniquely defined by

µZ|S(B ∩ S) =
µZ(B ∩ S)

µZ(S)
(231)

for any Borel set of Rd. Then, µX+Z = (1 − q) · µZ|S ∗ µX + q · µZ|Sc ∗ µX where q = µZ(Sc). Similarly,

µX+U = (1− q) · µZ|S ∗ µX + q · ν ∗ µX where ν is defined via the truncation operation (208). Thus, both µX+Z

and µX+U are mixtures of two components, and so Lemma 22 implies that

|h(X + Uα)− h(X + Z)| ≤ q · |h(ν ∗ µX)− h(ν ∗ µX)|+ Hbin(q) (232)

≤ q · |h(ν ∗ µX)|+ q ·
∣∣h(µZ|Sc ∗ µX)

∣∣+ Hbin(q). (233)

We bound each of the entropies in the last display in a similar fashion. Let V ∼ ν such that X ⊥⊥ V . Then,

since Gaussian random vector whose covariance matrix is proportional to the identity matrix maximizes differential

entropy under variance constraint (as easily follows, e.g., from Hadamard’s inequality [17, Thm. 17.9.2])

h(ν ∗ µX) = h(X + V ) (234)

≤ d

2
log(2πeE[

1

d
‖X + V ‖2]) (235)

≤ d

2
log

(
4πeE[

1

d
‖X‖2+1

d
‖V ‖2]

)
(236)

≤ d

2
log(4πe(σ2X + d−1α2]). (237)

Since also h(X + V ) ≥ h(X + V | V ) = h(X | V ) = h(X) ≥ −ηX we obtain

|h(ν ∗ µX)| ≤ ηX ∨
d

2
log(4πe(σ2X + d−1α2]). (238)

Note that conditioned on ‖Z‖> α, the density of Z is µZ|Sc . Now, using the assumption that ‖Z‖ is (
√
dσZ)-sub-
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Gaussian, there exists an absolute constant c > 0 such that

E
[
‖Z‖2| ‖Z‖> α

]
=

E
[
‖Z‖2·1{‖Z‖> α}

]
q

≤
E
[
‖Z‖2

]
q

≤
cdσ2Z
q

. (239)

Thus, we obtain, similarly to the bound on |h(ν ∗ µX)| that

∣∣h(ν ∗ µZ|Sc)
∣∣ ≤ ηX ∨ d

2
log
(
4πe(σ2X + cq−1σ2Z)

)
. (240)

We may now prove Theorem 6.

Proof of Theorem 6: Let Z1, . . . , Zn be n independent samples from µZ . By the assumption that ‖Z‖ is
√
dσZ-sub-Gaussian, there exists a minimal absolute constant c > 0 such that if αn = cασZ

√
2d log n2

2 then

q ≡ qn := P[‖Z‖> αn] ≤ 1

2n2
. If cα < 1/

√
2 we will increase it in the definition of αn to some arbitrary

cα >
1√
2
. Then, by the union bound, max1≤i≤n‖Zi‖≤ αn with probability larger than 1 − 1

2n
. We will assume

from this point onward that this event holds.

For any X ∼ µX ∈ P∗ it holds that∣∣∣h(X + Z)− h(X + Ẑn)
∣∣∣ ≤ |h(X + Z)− h(X + Uαn)|+

∣∣∣h(X + Uαn)− h(X + Ẑn)
∣∣∣ =: G1 +G2. (241)

Analysis of G1: Since qn ≤
1

2n2
≤ 1

2 and as − log(1− t) ≤ t for t ∈ (0, 1/2), we may bound

Hbin(qn) ≤ Hbin

(
1

2n2

)
=

log(2n2)

2n2
−
(

1− 1

2n2

)
log

(
1− 1

2n2

)
≤ 2 log n+ log(2e)

2n2
. (242)

Substituting this bound in Lemma 23, we deduce that there exists n0 ∈ N and C0 > 0, both which depend on

(d, σ2X , ηX , σ
2
Z), such that

G1 ≤ C0
log n

n2
. (243)

Indeed, to evaluate the asymptotic order of the term inside the parenthesis in (230), we note that q 7→ q log q−1 is

monotonic increasing on [0, 14 ] and so max0≤q≤n−2 q log q−1 = 2 logn
n2 for n ≥ 2.

Analysis of G2: By definition ‖Uαn‖≤ αn, and under the high probability assumption, ‖Ẑn‖≤ αn holds too.

It was shown in [92, Prop. 3] that if V = B + W where B ⊥⊥ W , ‖B‖< σ2d with probability 1, and W is

(ψ1, ψ2)-regular, then µV is (ψ1, ψ2 + ψ1σ
√
d)-regular. Since µX is (ψ1, ψ2)-regular by assumption, it holds that

both X+Uαn and X+ Ẑn are (ψ1, ψ̃2)-regular with ψ̃2 := ψ2 +ψ1cασZ
√

4d log n. Then, by [92, Prop. 1], it holds

with probability larger than 1− 1
n that

G2 ≤
(
ψ1

√
E[‖X + Ẑn‖2] + ψ1

√
E[‖X + Uαn‖2] + ψ̃2

)
·W2(µX+Ẑn

, µX+Uαn ). (244)

To bounds the r.h.s. of (244), we note that with probability larger than 1 − 1
2n there exists a constant C1(d, σZ)
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such that

W2(µX+Ẑn
, µX+Uαn )

(a)

≤ W2(µẐn , µUαn ) (245)
(b)

≤ W2(µẐn , µZ) +W2(µZ , µUαn ) (246)
(c)

≤ c′dσZ log2(4n2) · n−1/(d∨4) +
√

2(αn +
√
dσZ)e−α

2
n/2dσ

2
Z (247)

(d)

≤ C1(d, σZ)
log2 n

n1/(d∨4)
, (248)

where (a) follows since Wasserstein distance is non-increasing under a convolution operation,17 (b) follows from

the triangle inequality, (c) follows from Lemmas 20 and 21, and (d) utilizes the assumptions cα > 1√
2

and

σZ = Ω(n−(d−2)/(4d)) to show that
√

2(αn +
√
dσZ)e−α

2
n/2dσ

2
Z = o(n−1/d).

Substituting the bound (248), as well as E[‖X + Ẑn‖2] ≤ 2dσ2X + 2α2
n and E[‖X + Uαn‖2] ≤ 2dσ2X + 2α2

n, in

(244), and then using (243) and (248) back in (241) implies that there exists a constant C2 > 0 which depends on

(d, σX , ηX , ψ1, ψ2, σZ) such that

sup
X:µX∈P∗

∣∣∣h(X + Z)− h(X + Ẑn)
∣∣∣ ≤ C2

log2 n

n1/(d∨4)
(249)

with probability larger than 1− 1
n , and completes the proof.

We now turn to prove Theorem 7. The next lemma bounds the difference in the differential entropy of two

mixtures which have the same component densities but perhaps different mixing weights. The bound is given in

terms of the total variation and chi-square distance between the weights of the two densities, and also depends on

the maximum second-order Rényi entropy of the component densities.

Lemma 24. Let {νj}j∈[m] be a set of density functions such that |h2(νj)|≤ Aν,2 for all j ∈ [m] (where h2(·) is the

second-order differential Rényi entropy). Consider the mixture distributions f =
∑m

j=1 ajνj and g =
∑m

j=1 bjνj

where a, b ∈ Am−1 are probability vectors. If minj∈[m] bj ≥ ε then

|h(f)− h(g)| ≤ dH(a, b) · dχ2(a, b) + 2(log
1

ε
+Aν,2) · dTV(a, b). (250)

Proof: By the triangle inequality and the fact the chi-square divergence dominates the KL divergence (e.g.

[112, Lemma 2.7])

|h(f)− h(g)| ≤
∣∣∣∣−∫ f log f +

∫
f log g

∣∣∣∣+

∣∣∣∣−∫ f log g +

∫
g log g

∣∣∣∣ (251)

= dKL(f, g) +

∣∣∣∣∫ (g − f) log g

∣∣∣∣ (252)

≤ dχ2(f, g) +

∣∣∣∣∫ (g − f) log g

∣∣∣∣ . (253)

17Namely, if X ⊥⊥ Z1 and X ⊥⊥ Z2 and let U = X + Z1 and V = X + Z2. Then, Wp(µU , µV ) ≤Wp(µZ2 , µZ1).
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We obtain the desired bound by bounding each of the terms in the last equation separately. For the first term, using

Cauchy–Schwarz inequality,

dχ2(f, g) =

∫ (∑
j:aj 6=bj (aj − bj)νj

)2∑
bjνj

(254)

≤
∫ (∑

j:aj 6=bj
(aj−bj)√

bj

√
bjνj

)2

∑
j:aj 6=bj bjνj

(255)

≤
∫ ∑

j:aj 6=bj

(aj − bj)2

bj
·
∑

j:aj 6=bj bjν
2
j∑

j:aj 6=bj bjνj
(256)

= dχ2(a, b)

∫
·
∑

j:aj 6=bj bjν
2
j∑

j:aj 6=bj bjνj
(257)

= dχ2(a, b) ·
∫

max
j∈[m]:aj 6=bj

νj (258)

≤ dχ2(a, b) ·
∑

j∈[m]:aj 6=bj

∫
νj (259)

= dχ2(a, b) · dH(a, b). (260)

For the second term, it holds by Jensen and Cauchy–Schwarz inequalities that∫
νj log

(∑
l

blνl

)
≤ log

(∑
l

bl

∫
νjνl

)
≤ log

(
max
l

∫
νjνl

)
≤ max

l

1

2
log

(∫
ν2j

∫
ν2l

)
≤ Aν,2. (261)

Since Rényi entropies are decreasing functions of their order18 it holds that h(νj) ≥ h2(νj) and so∫
νj log

(∑
l

blνl

)
≥
∫
νj log (bjνj) = − log

1

ε
− h(νj) ≥ − log

1

ε
−Aν,2. (262)

The upper bound then follows from combining the above two bounds and∣∣∣∣∫ (g − f) log g

∣∣∣∣ =

∣∣∣∣∣∣
∑
j

(bj − aj)
∫
νj log

(∑
l

blνl

)∣∣∣∣∣∣ ≤
∑
j

|bj − aj |·

∣∣∣∣∣
∫
νj log

(∑
l

blνl

)∣∣∣∣∣ . (263)

The next lemma provides an upper bound on the second-order Rényi entropy of Z̃n.

Lemma 25. Suppose that Z̃n ∼ 1
θd
∑n

i=1 aiκθ,Zi := µZ̃n , where |h2(κ)|≤ Aκ,2, ai ≥ ε > 0 for all i ∈ [n], and

θ < 1. Then,

|h2(Z̃n)|≤ AZ̃,2 := Aκ,2 + d log
1

θ
+ 2 log

1

ε
. (264)

18For example, [114, Eq. (3) and Thm. 3] state this for densities with finite support and proves this by a related property for the Rényi
divergence, but the result holds for general densities and can be proved similarly to the discrete case.
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Proof: By Jensen’s inequality∫
µ2
Z̃n

=

∫ (
1

θd

n∑
i=1

aiκθ,Zi

)2

≤ 1

θ2d

n∑
i=1

ai

∫
κ2θ,Zi ≤

1

θ2d

∫
κ2
(z
θ

)
dz =

1

θd

∫
κ2 ≤ eAκ,2

θd
. (265)

Furthermore,∫
µ2
Z̃n

=

∫ (
1

θd

n∑
i=1

aiκθ,Zn

)2

≥ ε2

θ2d

∫ (
max
i∈[n]

κθ,Zi

)2

≥ ε2

θ2d
max
i∈[n]

∫
(κθ,Zi)

2 ≥ ε2e−Aκ.2

θd
. (266)

The results then follows by combining both bounds.

The next lemma states that the entropy difference |h(Xa +Z)− h(Xa + Z̃n)| concentrates fast around its mean

value.

Lemma 26. Let ε > 0 be given. Let Γ(Z) := |h(Xa +Z)−h(Xa + Z̃n)| where Xa ∼
∑m

j=1 ajδxj and aj ≥ ε > 0

for all j ∈ [m], and Z̃n ∼ 1
nθd
∑n

i=1 κθ,Zi where |h2(κ)|≤ Aκ,2. Then, for any δ1 ∈ (0, 1)

Γ(Z) ≤ EΓ(Z) +

√
(6 + 2 log n+AκC )2

2n
log

1

δ1
(267)

with probability larger than 1− δ1, where

AκC := Aκ,2 + d log
1

θ
+ 2 log

1

ε
. (268)

Proof: Let z(0), z(1) ∈ Rd be such that dH(z(0), z(1)) ≤ 1, and further let Z̃(l)
n ∼ 1

nθd
∑n

i=1 κθ,z(l)i
for

l = 0, 1 be the corresponding KDEs of µZ , and assume w.l.o.g. that z(0)i = z
(1)
i for all i ∈ [n − 1]. Let z =

(z
(0)
1 , z

(0)
2 , . . . , z

(0)
n , z

(1)
n ) ∈ Rn+1 and denote

q(0) =

(
1

n
, . . . ,

1

n
,

1

n
, 0

)
∈ [0, 1]n+1 (269)

q(1) =

(
1

n
, . . .

1

n
, 0,

1

n

)
∈ [0, 1]n+1 (270)

q(1/2) =

(
1

n
, . . . ,

1

n
,

1

2n
,

1

2n

)
∈ [0, 1]n+1 (271)

such that Ẑ(l)
n ∼

∑n+1
i=1 q

(l)
i δzi for l = 0, 1. Further denote the “codebook kernel” κC := 1

θd
∑m

j=1 ajκθ,xj , which,

by Lemma 25, satisfies that |h2(κC)|≤ AκC for AκC in (268). Then, for V d
= X + θU ∼ κC where U ∼ κ and

U ⊥⊥ X , it holds that∣∣∣Γ(z(0))− Γ(z(1))
∣∣∣ (a)≤ ∣∣∣h(X + Z̃(0)

n )− h(X + Z̃(1)
n )
∣∣∣ (272)

=
∣∣∣h(V + Ẑ(0)

n )− h(V + Ẑ(1)
n )
∣∣∣ (273)

(b)

≤
∣∣∣h(V + Ẑ(0)

n )− h(V + Ẑ(1/2)
n )

∣∣∣+
∣∣∣h(V + Ẑ(1/2)

n )− h(V + Ẑ(1)
n )
∣∣∣ (274)

(c)

≤ 4

n
+

2

n
(log(2n) +AκC ), (275)
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where (a) follows from the reverse triangle inequality, (b) follows from the triangle inequality, and (c) follows

by bounding the two terms in the same manner using Lemma 24. Specifically, for the first term, we set ε =
1

2n
and νi = κC,zi (which is a shift of κC by Zi) and ai = qi for i ∈ [n + 1] and note that q(1/2) � q(0), and

dTV(q(0), q(1/2)) = 1
2n , dχ2(q(0), q(1/2)) = 1

n , and dH(q(0), q(1/2)) = 2.

Now, the function Γ(z) satisfies
1

n
(6 + 2 log n + AκC )-bounded-difference property, and so the stated result

follows from McDiarmid’s inequality (bounded differences inequality) [12, Thm. 6.2] which implies that for any

t ≥ 0

P [Γ(Z) > EΓ(Z) + t] ≤ exp

[
− 2nt2

(6 + 2 log n+AκC )2

]
. (276)

We may now prove the theorem.

Proof of Theorem 7: Let ε > 0 be given such that m2ε < 1 and consider an ε-net for [0, 1] given by

F = {ε, 2ε, . . . , 1} where we assume that ε−1 is integer. In addition, consider a net Am−1ε ⊂ Am−1 constructed

by a quantization of a ∈ Am−1 to b ∈ Am−1ε in the following way. Assume for the sake of notational simplicity

that a is ordered such that a1 ≤ a2 ≤ · · · ≤ am. The first m − 1 coordinates of a are rounded upwards so that

bj = min{b ∈ F : b ≥ aj} for any j ∈ [m − 1], and bm = 1 −
∑m

j=1 aj ∈ F . So, by construction bj ≥ ε for all

j ∈ [m−1], and since by the ordering assumption am ≥
1

m
must hold, the condition m2ε < 1 and the quantization

definition imply that bm > ε also holds. The number of possible probability vectors b obtained in this way is at

most |Am−1ε |≤
(
1
ε

)m. Furthermore, if a is mapped to b ∈ Am−1ε then

dTV(a, b) =
1

2

m∑
j=1

|aj − bj | ≤ mε, (277)

and

dχ2(a, b) =

m∑
j=1

(aj − bj)2

bj
≤

m−1∑
j=1

ε2

ε
+
m2ε2

ε
≤ 2m2ε. (278)

Hence, for any a ∈ A there exists b ∈ Am−1ε such that dTV(a, b) ≤ mε and dχ2(a, b) ≤ 2m2ε.19

Let a ∈ Am−1 be mapped to b ∈ Am−1ε . Then,∣∣∣h(Xa + Z)− h(Xa + Z̃n)
∣∣∣

≤ |h(Xa + Z)− h(Xb + Z)|+
∣∣∣h(Xb + Z)− h(Xb + Z̃n)

∣∣∣+
∣∣∣h(Xa + Z̃n)− h(Xb + Z̃n)

∣∣∣ (279)

:= G1 +G2 +G3. (280)

Analysis of G1: By the assumption on the Rényi entropy of µZ and Lemma 24 with νj(z) = µZ(z−xj) it holds

that

G1 ≤ 2m3ε+ 2(log
1

ε
+AZ,2)mε. (281)

19In other words, Am−1
ε is an mε-cover of Am−1 in the total variation distance and an (2m2ε)-”cover” of Am−1 in the chi-square

divergence (the latter statement, however, is not rigorous since the chi-square divergence is not symmetric and thus not a metric).



59

Analysis of G2: Take δ1 = δ
|Am−1
ε | , and denote Γb(Z) := |h(Xb+Z)−h(Xb+ Z̃n)|. Since bj ≥ ε for all j ∈ [m],

Lemma 26 and the union bound assure that

P

 ⋂
b∈Am−1

ε

Γb(Z) < EΓb(Z) +

√
(6 + 2 log n+AκC )2

2n
log

1

δ1


 ≥ 1− δ, (282)

where AκC is as in (268). Thus, given that this event holds, for any b ∈ Am−1ε

G2 ≤ E
[∣∣∣h(Xb + Z)− h(Xb + Z̃n)

∣∣∣]+ (6 + 2 log n+AκC )

√
1

2n
log

1

δ
+
m

2n
log

2

ε
. (283)

Analysis of G3: It holds that Z̃n ∼ 1
nθd
∑n

i=1 κθ,Zi := µZ̃n , and so by Lemma 25∣∣∣h2(µZ̃n)
∣∣∣ ≤ Aκ + 2 log n+ 2d log

1

θ
=: AZ̃,2. (284)

Lemma 24 with νj(z) = µZ̃n(z − xj) implies that

G3 ≤ 2m3ε+ 2

(
log

1

ε
+Aκ,2 + 2 log n+ 2d log

1

θ

)
mε. (285)

From the bounds on G1, G2 and G3 we deduce that it holds with probability larger than 1− δ that

sup
a∈Am−1

∣∣∣h(Xa + Z)− h(Xa + Z̃n)
∣∣∣ ≤ max

b∈Am−1
ε

E
[∣∣∣h(Xb + Z)− h(Xb + Z̃n)

∣∣∣]+ ∆0(ε) (286)

≤ sup
a∈Am−1

E
[∣∣∣h(Xb + Z)− h(Xb + Z̃n)

∣∣∣]+ ∆0(ε), (287)

where

∆0(ε) = 4m3ε+ 2

[
2 log

1

ε
+ 2 log n+ 2d log

1

θ
+AZ,2 +Aκ,2

]
mε

+ (6 + 2 log n+Aκ,2 + d log
1

θ
+ 2 log

1

ε
)

√
1

2n
log

1

δ
+
m

2n
log

2

ε
. (288)

Choosing ε = 1
dnm2

√
me and simplifying20 completes the proof.

APPENDIX B

EXPERIMENTS DETAILS

We denote by Qα :=

 cos(α) sin(α)

− sin(α) cos(α)

 a rotation matrix of angle α.

20The ceiling operation in the choice of ε has a negligible effect on the final result.
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Notation Description Value (Sec. VI-A1) Value (Sec. VI-A2)

d channel dimension 2 4

m codebook cardinality 32 (8, 16, 32, 64)

rs maximal eigenvector of S 10 10

φx input distribution projection parameter 2 2

Γ “gap-to-capacity” parameter 10 20

n number of training samples 2 · 103 2 · 103

Z noise distribution Z ∼ N(0,K)

Z
d
= Ψ

[
α
(∑k

l=1Rl · vl +W
)]

W ∼ N(0,KW )

Rl ∼ Uniform{±1}, i.i.d.
W ⊥⊥ {Rl}

φz noise distribution projection parameter N/A 2

K or KW Gaussian noise covariance matrix K = 10−1 ·QαΛQTα , KW = AAT

Λ :=

[
1 0
0 3

]
, α = 30◦ Ai1i2 ∼ N(0, 1) i.i.d.

{vl}sl=1 interference vectors N/A vl ∼ N(0, Id) i.i.d., s = 5

rx maximal power constraint rx = Γ · rmin

C(0) =
{
X

(0)
j

}m
j=1

initial codebook generation X
(0)
j ∼ N(0,

r2x
χd · Id) i.i.d.

λ(i) ≡ λ SGD step sizes – codeword update 10−1

η(i) ≡ η SGD step sizes – covariance update 10−1

ñ number of validation samples 104 103

total number of runs N/A 103

number of runs per distribution N/A 10

Table I
SGD ALGORITHM EXPERIMENTS PARAMETERS

Notation Description Value (Sec. VI-B)
d channel dimension 4

m codebook cardinality 2 ≤ m ≤ 64

Γ “gap-to-capacity” parameter 10

n number of training samples 102

Z noise distribution Z
d
=
∑k
l=1Rl · vl +W,

W ∼ N(0,KW ), Rl ∼ Uniform{±1}
KW Gaussian noise covariance matrix KW = AAT , Ai1i2 ∼ N(0, 1) i.i.d.
{vl}sl=1 interference vectors vl ∼ N(0, Id) i.i.d., s = 10

rx maximal power constraint rx = Γ · rmin

C(0) =
{
X

(0)
j

}m
j=1

initial codebook generation X
(0)
j ∼ N(0,

r2x
d · Id) i.i.d.

m0 number of initial codewords 64

k number of codewords removed at each stage 1

β inverse temperature parameter (1, 10, 100) · 102

Q(dx) reference measure Lebesgue measure
decoder minimum distance S = Id

ñ number of validation samples 104

total number of runs 2.5 · 103

number of runs per distribution 10

Table II
GIBBS ALGORITHM EXPERIMENT PARAMETERS
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APPENDIX C

MEMOIZATION IMPLEMENTATION OF THE GIBBS ALGORITHM

The main computational task required by Algorithm 2 is an efficient computation of the average error probability

of a codebook. In principle, at each stage of the algorithm, the average error probability should be computed for

any of the candidates codebooks. A possible efficient implementation may compute these error probabilities based

on a pairwise error array computed for the initial codebook C0 = {x1, . . . , xm0
} and the given noise samples.

Specifically, consider the array E ∈ {2[n]}m0×m0 where 2[n] is the power set of [n], such that the (j1, j2)th entry

of E is given by

E(j1, j2) :=
{
i: ‖xj1 − xj2‖2S+2(xj1 − xj2)TSzi < 0

}
. (289)

To wit, this entry E(j1, j2) is the set of noise samples indices such that if for a codebook consisting only the

codewords (xj1 , xj2), the noise sample zi will cause a decoding error when xj1 is transmitted. In accordance,⋃
j2∈[m0]

{E(j1, j2)} ⊂ [n] is the set of noise sample indices such that a decoding error occurs when xj1 is transmitted

and the codebook is C0. The array E can be computed once at initialization of the algorithm, and then the error

probabilities required by Algorithm 2 can be computed based only on this array. At first, for C0 = {x1, . . . , xm0
},

the error probability is given by

pz(C0) =
1

n

n∑
i=1

1

m0

m0∑
j1=1

∣∣∣∣∣∣
⋃

j2∈[m0]

{E(j1, j2)}

∣∣∣∣∣∣ . (290)

The error probability pz(C1) for C1 = C0\(xj1 , . . . , xjk) from C0 can be computed by first removing the rows

indexed by (j1, . . . , jk) and the rows indexed by (j1, . . . , jk) from the array E(j1, j2) and then compute as in (290)

with the new array. The main advantage of this approach is that the array tend to be sparse in the sense that either

|E(j1, j2)| is typically low – when transmitting xj , there is only a relatively a small number of noise samples that

will cause an error. This array become sparser with the steps of the algorithm, and moreover, high signal-to-noise

ratio and high dimension lead to sparser arrays.
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