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Abstract—Just as rank-metric or Gabidulin codes may be used
to construct rate–diversity tradeoff optimal space–time codes,
a recently introduced generalization for the sum-rank metric—
linearized Reed–Solomon codes—accomplishes the same in the
case of multiple fading blocks. In this paper, we provide the
first explicit construction of minimal delay rate–diversity optimal
multiblock space–time codes as an application of linearized Reed–
Solomon codes. We also provide sequential decoders for these
codes and, more generally, space–time codes constructed from
finite field codes. Simulation results show that the proposed
codes can outperform full diversity codes based on cyclic division
algebras at low SNRs as well as utilize significantly smaller
constellations.

Index Terms—Rank-metric codes, space–time codes, sum-rank
codes, wireless communication.

I. INTRODUCTION

THIS paper builds upon a line of work which considers
the design of space–time codes that optimally trade off

diversity for rate at a fixed constellation size. Our primary
contributions are as follows:

1) By replacing Gabidulin codes [2] in known rate–diversity
optimal space–time code constructions [3]–[7] with linearized
Reed–Solomon codes [8], we obtain the first explicit con-
struction of minimal delay rate–diversity optimal multiblock
space–time codes. This provides the first general solution to a
problem first posed in [9] and [7].

2) We provide sequential maximum likelihood (ML) de-
coders for these codes. More generally, we show that many
sequential decoding strategies for space–time codes [10]–[16]
that are typically thought to be only applicable to codes with
a linear dispersion form [17] can in some cases be effectively
adapted for use with the proposed codes and similarly con-
structed codes [3]–[6].

3) Facilitated by these ML decoders, we provide an em-
pirical study of the performance of the proposed codes in
simulation as well as related codes [3]–[6] which had not been
previously decoded for large codebook sizes. This demon-
strates that these codes can outperform full diversity codes
[18]–[21] based on cyclic division algebras (CDAs) [22] at
low SNRs and using smaller constellations.

We emphasize that the latter two contributions cover new
ground in the single-block setting as well. Apart from the
primary contributions, we consolidate some results and ob-
servations occurring in some of the previous literature on
the rate–diversity optimal space–time coding problem [3]–
[7], [9] and attempt to situate these lines work within the
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broader literature on space–time coding. We particularly note
that this paper contains the first error performance comparison
of codes designed for rate–diversity tradeoff optimality with
codes designed for diversity–multiplexing tradeoff optimality.

The remainder of this paper is organized as follows: Sec-
tion II establishes the setting, introduces the rate–diversity
optimal multiblock space–time coding problem, and briefly
surveys prior work on the problem. Section III discusses the
relevance of the rate–diversity perspective and provides an
alternative interpretation of the rate–diversity tradeoff to aid
in comparing with codes designed from other perspectives.
Section IV provides the proposed code construction after
introducing the required technical ingredients which are rank-
metric-preserving maps [3]–[7], [23] and linearized Reed–
Solomon codes [8]. The error performance of the proposed
codes is studied in simulation in Section V with the subject of
their decoding deferred to Section VI. Section VII concludes
the paper with some suggestions for future work.

II. SETTING, PROBLEM STATEMENT, AND BASIC RESULTS

A. Channel Model

Adopting the setting and conventions of [7], we consider a
multiple-input multiple-output (MIMO) Rayleigh block-fading
channel with nt transmit antennas, nr receive antennas, and L
fading blocks per codeword each static for duration T . An L-
block nt×T space–time code X is a finite subset of Cnt×LT of
cardinality greater than or equal to two. A codeword X ∈ X is
a complex nt×LT matrix X =

[
X1 X2 · · · XL

]
which

partitions into L sub-matrices X1, X2, . . . , XL of dimensions
nt × T referred to as sub-codewords. For ` = 1, 2, . . . , L, Y`
is the nr × T received matrix given by

Y` = ρH`X` +W` (1)

where H` is the nr × nt channel matrix and W` is the
nr × T noise matrix with both having iid circularly-symmetric
complex Gaussian entries with unit variance. The codeword X
is sampled uniformly at random from a code X and the real
scalar parameter ρ is chosen to satisfy

E
[
‖ρX‖2F

]
= ρ2

L∑
`=1

E
[
‖X`‖2F

]
= L · T · SNR. (2)

We further have ML decoding at the receiver with perfect
channel knowledge in the sense that all channel matrix realiza-
tions are known and all channel model parameters are known.
In particular, define the ML decision X̂ by

X̂ = argmin
X′∈X

L∑
`=1

‖Y` − ρH`X
′
`‖2F (3)
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and define the probability of error Pe by

Pe = Pr
(
X̂ 6= X

)
. (4)

The decoding problem to be considered in Section VI is
that of solving (3) and each simulation curve in Section V
provides the codeword error rate (CER) which is a Monte
Carlo estimate of Pe as a function of SNR.

Throughout this paper, we will use ᵀ for the matrix trans-
pose, † for the Hermitian transpose, and (·)ij to denote the
ijth entry of a matrix.

Definition 1 (Transmit Diversity Gain). An L-block nt × T
space–time code is said to achieve a transmit diversity gain of
d if, for a channel with nr receive antennas, we have

lim
SNR→∞

logPe(SNR)

log SNR
= −nrd. (5)

Theorem 1 (Sum-Rank Criterion [7], [9], [24]–[28]). An L-
block nt×T space–time code X achieves a transmit diversity
gain of d if and only if

d = min
X,X′∈X
X 6=X′

L∑
`=1

rank(X` −X ′`). (6)

Proof. This follows from combining the pairwise error prob-
ability upper bounds of [24], [26] with the lower bounds of
[27], [28] and then sandwiching the probability of error via
the union bound. For a detailed proof, see [29].

Theorem 1 thus provides an equivalent definition of transmit
diversity gain as a property of the code used. The recognition
of the quantity (6) as a criterion for space–time code design
first occurs in [24], [26] and the multiblock generalization
which we adopt was first recognized in [7], [9], [25]. The
equivalence to Definition 1 follows from [27], [28] which
provide the required lower bound and state this equivalence.

From (6), we have that the transmit diversity gain d is an
integer satisfying 1 ≤ d ≤ L ·min{nt, T}. Codes for which
d = L · min{nt, T} are referred to as being full diversity.
Moreover, codes for which T = nt are referred to as being
minimal delay.

A constellation A is defined as a finite subset of C of car-
dinality greater than or equal to two. Let A be a constellation.
An L-block nt × T space–time code X will be said to be
completely over A if X is a subset of Ant×LT . The term
completely over is adopted from [22] and emphasizes that
codeword entries are constrained to belong to A.

Definition 2 (Rate). For some fixed constellation A, the rate
R of an L-block nt × T space–time code X completely over
A is defined by

R =
1

LT
log|A| |X | . (7)

The term channel use will refer to a use of the underlying
MIMO channel so that a codeword is transmitted across
LT channel uses and this rate is interpreted as the average
information rate in symbols per channel use.

B. The Rate–Diversity Tradeoff and Some Consequences

The following theorem first appears in [7], [9] and is a
generalization of the well-known tradeoff for the case of L = 1
appearing in [26], [30]. It follows from a Singleton bound [31]
argument.

For the remainder of this section, we will let A be some
fixed but arbitrary constellation.

Theorem 2 (Rate–Diversity Tradeoff [7], [9]). Let X be an
L-block nt× T space–time code completely over A with rate
R and achieving transmit diversity gain d. Then,

R ≤ nt −
d− 1

L
·max

{nt
T
, 1
}

. (8)

A space–time code is said to be rate–diversity optimal if (8)
holds with equality. A rate–diversity pair (R, d) for which (8)
holds with equality (in which case specifying one of R or d
specifies the other) will be said to be an optimal rate–diversity
pair. The rate–diversity optimal multiblock space–time coding
problem is that of constructing families of space–time codes
capable of achieving any optimal rate–diversity pair (R, d)
with d a positive integer satisfying 1 ≤ d ≤ L ·min{nt, T}.
We will be particularly interested in codes that are not full
diversity. As will be seen shortly, the extremes of this tradeoff
are relatively uninteresting.

The remainder of this section will consider what happens
for some special cases of the parameters L, nt, T , and d. The
results which follow will not play a role in the main code
construction to be provided in Section IV which will admit
arbitrary values for these parameters. However, they are worth
noting both as basic consequences of Theorem 2 and for the
purposes of contextualizing the problem at hand.

Remark. Let X = Ant×LT be an L-block nt×T space–time
code completely over A. It is easy to see that this code, which
corresponds to uncoded signalling, achieves the optimal rate–
diversity pair (R, d) corresponding to d = 1. Thus, restrictions
to d > 1 are without elimination of interesting cases.

Solutions to the single-block, i.e., L = 1, rate–diversity
optimal space–time coding problem are provided in [3]–[7],
[30], [32], [33], hence we shift our attention to the multiblock,
i.e., L > 1, problem. There are three special cases in which the
multiblock problem is solved by a straightforward adaptation
of a solution to the single-block problem. These cases are
• d = L ·min{nt, T}, full diversity;

• T ≥ Lnt, wide sub-codewords or very slow fading; and

• nt ≥ LT , tall sub-codewords or very fast fading.
These three special cases are hence implicitly solved. We
show this in the next three propositions which deal with
the construction of optimal multiblock codes assuming that
optimal single-block codes are at hand.

In the case of d = L · min{nt, T}, the only possibility
admitted by (6) is that all sub-codeword differences corre-
sponding to distinct codewords are full rank. Thus, as noted
in [9] and as will be seen shortly, repetition of a full diversity
single-block optimal code is optimal. On the other hand, in the
case of d < L ·min{nt, T}, (6) admits a combinatorially vast
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space of possibilities for the ranks of the differences of the
sub-codewords and repetition of any single-block code only
allows for the one where all the ranks in the sum in (6) are
equal. Repetition in this case hence yields a lower rate than
is possible and is suboptimal. More precisely, we have the the
following proposition:

Proposition 3 (Repetition Constructions). Let X̃ be a rate–
diversity optimal 1-block nt × T space–time code completely
over A achieving the (optimal) rate–diversity pair (R̃, d̃). Let
X be the L-block nt× T space–time code completely over A
with L > 1 obtained by horizontally concatenating L copies of
each codeword of X̃ and achieving rate–diversity pair (R, d).
Then, R = R̃/L, d = Ld̃, and X is rate–diversity optimal if
and only if d̃ = min{nt, T}.
Proof. Since |X | = |X̃ | , it is immediate from Definition 7 that
R = R̃/L. Moreover, noting that the sub-codewords of X are
identical and are the codewords of X̃ , it is straightforwardly
verified that d = Ld̃. Next, note that by the rate–diversity
optimality of X̃ , we have

R̃ = nt − (d̃− 1) ·max
{nt
T
, 1
}

= nt ·
(

1− d̃

min{nt, T}

)
+ max

{nt
T
, 1
}

.

We then have by (8)

R =
R̃

L
=
nt
L
·
(

1− d̃

min{nt, T}

)
+

1

L
·max

{nt
T
, 1
}

≤ nt
1
·
(

1− d̃

min{nt, T}

)
+

1

L
·max

{nt
T
, 1
}

= nt −
d− 1

L
·max

{nt
T
, 1
}

with equality if d̃ = min{nt, T}. Conversely, equality implies
that d̃ = min{nt, T} by the L > 1 assumption.

We now proceed to the cases of T ≥ Lnt and nt ≥ LT
which can be addressed with what we term slicing construc-
tions to be described in the next two propositions. The first
slicing construction to be described in Proposition 4 first
occurs in [7], [25]. Proposition 5 is a space–time coding
analogue of a result in [34]. Both are based on the simple
fact that

rank

([
A
B

])
≤ rank(A) + rank(B)

for arbitrary matrices A and B over any field having the same
number of columns. Similarly, we have

rank
([
A B

])
≤ rank(A) + rank(B) (9)

for matrices A and B with the same number of rows.

Proposition 4 (Horizontal Slicing Construction [7], [25]).
Let X̃ be a rate–diversity optimal 1-block Lnt × T space–
time code completely over A with L > 1 and let X be the
L-block nt×T space–time code completely overA obtained by
horizontally slicing the codewords of X̃ into L sub-codewords

of dimensions nt × T . If T ≥ Lnt, then X is rate–diversity
optimal.

Proof. Let (R̃, d̃) be the rate–diversity pair achieved by X̃
and (R, d) be the rate–diversity pair achieved by X . By the
rate–diversity optimality of X̃ , we have R̃ = Lnt − d̃ + 1
and since |X | = |X̃ | , we have R = R̃/L = nt − (d̃ − 1)/L.
Noting that T ≥ Lnt ≥ nt, it suffices to show that d = d̃.
Rearranging the rate–diversity tradeoff (8) for X , we have
d ≤ Lnt − LR + 1 = d̃. Let X,X ′ ∈ X be a codeword pair
such that d =

∑L
`=1 rank(X` −X ′`). Then,

d =

L∑
`=1

rank(X` −X ′`)

≥ rank



X1 −X ′1
X2 −X ′2

...
XL −X ′L




≥ d̃

since the vertically concatenated sub-codewords of X are a
codeword of X̃ by definition.

We can similarly show the following:

Proposition 5 (Vertical Slicing Construction). Let X̃ be
a rate–diversity optimal 1-block nt × LT space–time code
completely over A with L > 1 and let X be the L-block
nt × T space–time code completely over A obtained by
vertically slicing the codewords of X̃ into L sub-codewords
of dimensions nt × T . If nt ≥ LT , then X is rate–diversity
optimal.

We conjecture that the converses of Propositions 4 and 5
are also true. Weaker versions of the converse statements can
be found in [29]. Essentially, we cannot expect slicing to
work beyond the special cases of T ≥ Lnt and nt ≥ LT
because this technique inherently relies on the unnecessarily
strong requirement of linear independence across different
sub-codeword matrices. As a result, sub-codewords must be
sufficiently wide or sufficiently tall so that linear independence
across them can be imposed without a rate penalty.

We seek a rate–diversity optimal family of multi-
block space–time codes capable of achieving any opti-
mal rate–diversity pair (R, d) with d an integer satisfying
1 ≤ d ≤ L ·min{nt, T} for any L, T , and nt. To the best
of the authors’ knowledge, no such codes exist in the prior
literature; existing constructions are either non-explicit or by
slicing, thus requiring T ≥ Lnt or nt ≥ LT .

C. Existing Rate–Diversity Optimal Constructions

In [7], Lu and Kumar provide for L = 1 and T ≥ nt
a rate–diversity optimal family for any optimal rate–diversity
pair. The construction is based on a mapping which takes a
collection of maximum rank distance codes over finite fields,
namely Gabidulin codes [2], to a space–time code which
inherits the rank of differences properties of the underlying
finite field codes. In the case of L > 1 and T ≥ Lnt, Lu and
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Kumar further provide a rate–diversity optimal family for any
optimal rate–diversity pair by horizontal slicing as described
in Proposition 4. We digress briefly to outline the connection
to this paper. Looking at the slicing as being done for the
underlying finite field code, the need for T ≥ Lnt occurs
precisely due to a limitation of rank-metric or Gabidulin codes
which is overcome by sum-rank or linearized Reed–Solomon
codes [8]. Once linearized Reed–Solomon codes are at hand,
tools in the literature for obtaining space–time codes from
codes over finite fields can be adopted and a multiblock rate–
diversity optimal family allowing for T < Lnt will follow.
Analogous results hold for the case of T < nt and nt < LT
by applying the appropriate matrix transpositions.

Single-block rate–diversity optimal families are also de-
scribed in [3]–[6], [30], [32], [33]. These are again based
on starting with rank-metric or Gabidulin codes and using
different mappings from finite fields to constellations that
are rank-metric-preserving in some sense. By Propositions
3, 4, and 5, these can be used readily to obtain multiblock
rate–diversity optimal codes in the three special cases to
which they pertain. Moreover, a large number of single-block
constructions are available in the literature some of which
may be rate–diversity optimal for some specific points on
the tradeoff curve, usually the point of full diversity. They
can therefore potentially be used to construct rate–diversity
optimal multiblock codes in the aforementioned special cases.
The reader is referred to the summary of prior constructions in
[7] for details. Nonetheless, our focus shall be the unexplored
case of nt ≤ T < Lnt and 1 < d < Lnt where the methods
for adapting single-block constructions fail.

Additionally, other lines of work provide non-explicit con-
structions of space–time codes via design criteria that are more
amenable to algebraic constructions or computer search con-
structions. In [35] and [36], translations of the rank distance
over complex field criterion of (6) to rank criteria over finite
fields or finite rings are considered in the single-block case. In
[9], the work of [35] is extended to provide algebraic criteria
for the design of rate–diversity optimal multiblock codes with
BPSK and QPSK constellations and a few examples found by
exhaustive or empirical searches are provided.

III. OTHER PERSPECTIVES

In this section, we examine the relevance of the rate–
diversity perspective and provide a framework for comparing
the codes to be constructed with other codes in the space–
time coding literature. For the purposes of comparing differ-
ent space–time codes constructed in different manners and
designed for different criteria, we will define some more
meaningful notions of rate. The bits per channel use (bpcu)
rate Rb of an L-block nt × T space–time code X is defined
by

Rb =
1

LT
log2|X |. (10)

The bits per channel use per transmit antenna (bpcu/tx) rate
Rb/tx of an L-block nt × T space–time code X is defined by

Rb/tx =
1

ntLT
log2|X | =

Rb

nt
. (11)

A. Unconstrained Transmission Alphabets

An L-block nt×T space–time code X is said to be a linear
dispersion code [17]1 if it can be expressed as

X =

{
ntLT∑
i=1

aiAi

∣∣∣∣∣ a1, a2, . . . , antLT ∈ Ain

}
(12)

where A1, A2, . . . , AntLT ∈ Cnt×LT are referred to as dis-
persion matrices and Ain is a constellation which we refer
to as the input constellation. The significance of such codes
is that the detection problem (3) can be converted into an
equivalent standard MIMO detection problem. In particular,
one can easily show that the channel (1) can be converted into
one with an ntLT × 1 transmitted vector with entries from
the input constellation, an nrLT × ntLT effective channel
matrix obtained as a function of the channel matrices and the
dispersion matrices, and an nrLT × 1 received vector. This
allows them to be decoded using the same methods used for
ML MIMO detection (see, e.g., [37]), most notably sphere
decoding [10]–[12]. More generally, a wide class of sequential
decoding algorithms become readily applicable [13]. The
codes to be introduced in this paper are not linear dispersion
code and their decoding will be the subject of Section VI.

Note that a linear dispersion code is not completely over
the input constellation Ain. The codeword entries are linear
combinations of symbols from Ain and thus belong to a larger
constellation. This constellation is usually not of any concern
in the literature dealing with such codes and is sometimes
referred to as being unconstrained. However, such language is
merely an artifact of the code construction method and nothing
prevents us from analyzing these codes from a rate–diversity
tradeoff perspective. Every space–time code is completely
over some constellation. The smallest such constellation is the
union of the entries of all the codewords

A =
⋃
X∈X

{(X)ij | i ∈ {1, 2, . . . , nt}, j ∈ {1, 2, . . . , LT}} .

and can accordingly be used to define the rate. Linear disper-
sion codes are usually constructed to be full diversity in which
case the rate would satisfy

R =
Rb

log2 |A|
≤ 1

L
·max

{nt
T
, 1
}

(13)

and the code would be rate–diversity optimal if and only if
this held with equality.

Moreover, linear dispersion codes can be constructed to both
be full diversity and to have |Ain|ntLT distinct codewords.
Examples include certain codes constructed from CDAs [22]
as well as all of the codes in [18]–[21] that will be used as
empirical error performance baselines in this paper. Regardless
of whether or not we have rate–diversity optimality, we will
have a bpcu rate of

Rb = nt · log2 |Ain|.
Furthermore, such codes can be constructed with the input

constellationAin being arbitrarily large. Thus, they can provide
full diversity with an arbitrarily large bpcu rate. Another

1We have slightly modified the definition from that of [17].
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notable example of codes allowing for this is the codes of
[38].

Given that such codes exist, there is no tradeoff between
bpcu rate and diversity if the constellation size is not con-
strained. Indeed, if our only interest is in maximizing bpcu
rate and diversity, the rate–diversity tradeoff is irrelevant since
we can always impose full diversity. In such a setting, it
is typical to design for diversity–multiplexing tradeoff [39]
optimality. This typically amounts to asking slightly more of
a full diversity linear dispersion code. In particular, in the
case of minimal delay linear dispersion codes constructed
from CDAs, it suffices to impose that the code has a non-
vanishing determinant property [40], [41]. This amounts to
being able to bound the magnitude of the determinant of the
codeword differences (or product of the determinants of sub-
codeword differences in the multiblock case) away from zero
independently of Rb.

The codes to be introduced in this paper are neither designed
for diversity–multiplexing optimality nor naturally amenable
to an analysis of this tradeoff. However, this is not to suggest
that it is not possible or that we are dealing with a fundamen-
tally different kind of a code. For example, in [42], bounds on
the diversity–multiplexing tradeoff for similarly constructed
codes are obtained. Nonetheless, the only relevance of the
diversity–multiplexing tradeoff to this paper is that the codes
to be used as performance baselines in this paper happen
to be optimal with respect to this tradeoff. The baseline
codes have been chosen based on the fact (to the best of the
authors’ knowledge) that they are the only explicitly described
multiblock codes admitting a feasible decoder. In any case,
such codes are standard benchmarks in the single-block setting
as well.

We will now consider two situations in which the rate–
diversity tradeoff might be relevant. In particular, we will
consider situations where we might be interested in codes that
are not full diversity. These situations are:
• The size or nature of the constellation is of concern.
• The low-SNR error performance is of concern.

Importantly, we argue that when a space–time coded system
is scaled in a natural way, both of these issues necessarily
become of practical concern.

We begin with the first situation. It is well-known that large
constellations are associated with implementation challenges.
For example, [43], [44] consider transmitter-side quantization
as well as peak-to-average power ratio issues arising from
the constellations produced by certain linear dispersion codes.
Receiver-side quantization issues which are exacerbated by
large constellations are studied in [45], [46]. Moreover, in
[47], techniques for reducing the signalling complexity, i.e.,
constellation size, for CDA-based linear dispersion codes are
provided. However, as will be seen in the next section, such
an issue is inherent to full diversity codes.

B. A Signalling-Complexity Perspective

Consider an L-block nt × T space–time code completely
over some constellation A with rate R and transmit diversity
gain of d satisfying 1 ≤ d ≤ L · min{nt, T}. Next, take the
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ε
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ε =
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ε = 0.25

ε = 0.75

Lnt

|A
|

Fig. 1. Constellation size lower bounds for T ≥ nt, Rb/nt = 2, and
d = d(1− ε)Lnte

diversity gain to be a (1 − ε) fraction of the total available
diversity gain. In particular, fix some ε satisfying 0 ≤ ε < 1
and let d = d(1− ε) · L ·min{nt, T}e. Consider further fixing
Rb/tx = Rb/nt.

Multiplying both sides of the rate–diversity tradeoff (8) by
1/nt, we get

Rb/tx

log2 |A|
≤ 1− d(1− ε) · L ·min{nt, T}e

L ·min{nt, T}
+

1

L ·min{nt, T}
≤ ε+

1

L ·min{nt, T}
hence

|A| ≥ exp

(
Rb/tx ln 2

ε+ 1
L·min{nt,T}

)
.

Thus, we have a lower bound on the constellation size which
we will view as a function Fε of L ·min{nt, T}, i.e., define

Fε(L ·min{nt, T}) = exp

(
Rb/tx ln 2

ε+ 1
L·min{nt,T}

)
. (14)

This gives the constellation size obtained by a rate–diversity
optimal code (provided that (1 − ε) · L · min{nt, T} is an
integer) and is also the smallest constellation size possible.

Observe that for ε = 0, we have

F0(L ·min{nt, T}) = exp
(
L ·min{nt, T} ·Rb/tx ln 2

)
(15)

and for ε > 0, we have

Fε(L ·min{nt, T}) < exp

(
Rb/tx ln 2

ε

)
. (16)

We now consider scaling the system in L ·min{nt, T}. This
has two very natural interpretations:

The first is to take nt and T to be fixed and L to be
growing. In this case, a fixed Rb/tx corresponds to a fixed
Rb. Thus, we are scaling the system in the number of fading
blocks L being coded across with a fixed bpcu rate Rb and
improving reliability in (1− ε) ·L. We then see that we have
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exponential growth of the constellation size in L for ε = 0
and a constellation size that is bounded independently of L at
best for ε > 0.

The second is to take L to be fixed and nt to be growing
with T ≥ nt. The T ≥ nt requirement is needed to obtain the
transmit diversity gain afforded by nt transmit antennas and
is standard in diversity–multiplexing literature. Moreover, the
bpcu rate Rb = Rb/tx ·nt grows linearly with nt so as to match
the rate of uncoded independent signalling on each antenna.
This is also as would be the case for families of diversity–
multiplexing optimal linear dispersion codes. Again, we have
exponential growth of the constellation size in nt for ε = 0
and potentially bounded constellation size otherwise.

Fig. 1 plots constellation size lower bounds for Rb/tx = 2
and T ≥ nt. They can be interpreted from either of the points
of view just discussed. From this, we see that full diversity
codes necessitate exponential growth in the constellation size.
On the other hand, by giving up only a fixed fraction of the
total available diversity gain, a bounded constellation size is
possible2.

C. Low-SNR Error Performance

Recall that diversity gain is only a characterization of the
error performance in the limit of large SNR. In [49], it is
argued that a full diversity requirement becomes increasingly
less important as the total available diversity gain increases.
Analytical arguments and simulation evidence are provided
with trellis codes and in a single-block setting. In particular,
it may be the case that a code which is not full diversity
code has relatively few codeword pairs for which the sum
of ranks (6) is minimal. With that said, we will not attempt
to analyze the distance distributions of the proposed codes
nor connect them to rate–diversity optimality. Rather, we will
simply demonstrate in simulation that the proposed codes can
have good low-SNR performance.

Finally, we remark that what constitutes a low SNR is
relative and one need not be nominally interested in low-SNR
performance to back away from full diversity codes. We can
replace the term low with finite in the previous discussion
and it will hold. This will also be reflected by the simulation
results.

IV. CODE CONSTRUCTION

This section will begin with the required background on
sum-rank codes after which we define linearized Reed–
Solomon codes in Section IV-B. Following this, we provide
some background and results regarding rank-metric-preserving
maps in Section IV-C which are applied in Section IV-D to
yield the main code construction.

A. Background on Sum-Rank Codes

The sum-rank metric was introduced in the context of
multishot network coding in [50]. We shall define it adopting

2In actuality, the code construction will require |A| > L (see Definition
7 in Section IV-B). Whether this bound is fundamental is connected to some
open problems. The reader is referred to the relevant discussions at the end
of [48].

the more recent framework of [34], [48]. The space–time
coding analogue of the sum-rank metric occurring in (6)
appears earlier in [7], [9], [25]. We will use the terms metric
and distance interchangeably.

The finite field with q elements (with q a prime power) will
be denoted by Fq . We adopt the convention that Fsq = F1×s

q .
The extension field Fqm forms an m-dimensional vector

space over the base field Fq . Therefore, there exists a vector
space isomorphism between Fqm and Fmq . We will accordingly
define a matrix representation of the elements of Fsqm with
respect to some choice of basis. Let B = (β1, β2, . . . , βm) be
an ordered basis of Fqm over Fq . Then, any c ∈ Fsqm can be
written as

c =
[∑m

i=1 βici1
∑m
i=1 βici2 · · · ∑m

i=1 βicis
]

=

m∑
i=1

βi
[
ci1 ci2 · · · cis

]
=

m∑
i=1

βici

where ci =
[
ci1 ci2 · · · cis

]
∈ Fsq contains the ith

coordinates of the representations of the s elements of Fqm
in c in terms of the basis B for i = 1, 2, . . . ,m.

Definition 3 (Matrix Representation Map [34]). Let B =
(β1, β2, . . . , βm) be an ordered basis of Fqm over Fq . The
matrix representation of any c ∈ Fsqm with respect to B is
given by the matrix representation map MB : Fsqm −→ Fm×sq

defined by

MB

(
m∑
i=1

βici

)
=


c11 c12 · · · c1s
c21 c22 · · · c2s

...
...

. . .
...

cm1 cm2 · · · cms


where c =

∑m
i=1 βici and ci =

[
ci1 ci2 · · · cis

]
∈ Fsq

for i = 1, 2, . . . ,m.

For some fixed positive integer N , we define a
sum-rank length partition [34] as a choice of a positive in-
teger L and ordered positive integers r1, r2, . . . , rL such
that N = r1 + r2 + · · ·+ rL. For a fixed sum-rank length
partition, any c ∈ FNqm can be partitioned as

c =
[
c(1) c(2) · · · c(L)

]
where c(`) ∈ Fr`qm for ` = 1, 2, . . . , L. Moreover, it shall be
understood that any c ∈ FNqm partitions this way once a sum-
rank length partition has been specified.

Remark. The matrix representation map is Fq-linear. In
particular, for any A,B ∈ Fs×tq and c,d ∈ Fsqm , we have

MB(cA+ dB) = MB(c)A+MB(d)B.

Furthermore, for any a, b ∈ Fq and c,d ∈ Fsqm , we have

MB(ac + bd) = aMB(c) + bMB(d).

Definition 4 (Sum-Rank Metric [34], [48], [50]). Let
B = (β1, β2, . . . , βm) be an ordered basis of Fqm over Fq and
fix a sum-rank length partition N = r1 + r2 + · · ·+ rL so that
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any c ∈ FNqm partitions as c =
[
c(1) c(2) · · · c(L)

]
with

c(`) ∈ Fr`qm for ` = 1, 2, . . . , L. The sum-rank weight is the
function wSR : FNqm −→ N defined by

wSR(c) =

L∑
`=1

rank(MB(c(`)))

for any c ∈ FNqm . The sum-rank metric (or distance) is the
function dSR : FNqm × FNqm −→ N defined by

dSR(c,d) = wSR(c− d)

=

L∑
`=1

rank(MB((c− d)(`)))

=

L∑
`=1

rank(MB(c(`))−MB(d(`))).

for any c,d ∈ FNqm .

In what follows, unless otherwise stated, we shall as-
sume some fixed but arbitrary sum-rank length partition
N = r1 + r2 + · · ·+ rL for some fixed positive integer N for
the purposes of defining sum-rank distances and weights. The
reader should keep in mind the dependency of these quantities
on the sum-rank length partition which we suppress for brevity.
On the other hand, we need not specify a basis since the rank
of a matrix representation is independent of the choice of basis.

Remark. The subadditivity of rank, i.e., that for a pair
of equal-sized matrices A and B over any field, we have
rank(A + B) ≤ rank(A) + rank(B) can be used to verify
that the sum-rank metric is indeed a metric.

Observe that when the sum-rank length partition is
r1 = r2 = · · · = rN = 1 (with L = N ), the sum-rank distance
recovers Hamming distance [51] since the zero column vector
is the only column vector of rank zero. We denote Hamming
distance by dH. At the other extreme of sum-rank length
partition N = r1 (with L = 1), the sum-rank distance
becomes the rank distance [2] which we denote by dR. In
this sense, the sum-rank metric generalizes the Hamming and
rank metrics. Our particular notion of rank distance, i.e., as a
metric on vector spaces over extension fields, was first studied
by Gabidulin in [2]. A related notion of rank distance occurs
earlier in [52].

We define the minimum sum-rank distance of a code
C ⊆ FNqm , denoted dSR(C), as

dSR(C) = min
c,d∈C
c 6=d

dSR(c,d)

= min
c,d∈C
c 6=d

L∑
`=1

rank(MB(c(`))−MB(d(`))).

A code C ⊆ FNqm is said to be linear if it is a k-dimensional
subspace of the vector space FNqm over the field Fqm . Adopting
the standard concise notation, such a code will be said to be
an [N, k]qm code where the square brackets emphasize the
linearity.

Theorem 6, which follows, is analogous to Theorem 2, the
rate–diversity tradeoff, and may be proven in a similar manner.

Theorem 6 (A Generalized Singleton Bound [8], [34]). For
any code C ⊆ FNqm , we have

|C| ≤ qm(N−dSR(C)+1). (17)

Moreover, if C is an [N, k]qm code, this is equivalent to

k ≤ N − dSR(C) + 1. (18)

Reiterating, it is implicit that all claims made about sum-
rank distance are true for a fixed but arbitrary choice of sum-
rank length partition. Codes which achieve (17) with equality
are said to be maximum sum-rank distance (MSRD). When the
sum-rank length partition is chosen so that the sum-rank metric
becomes the Hamming metric, (17) becomes the classical
Singleton bound [31] achieved by classical Reed–Solomon
codes [53]. MSRD thus becomes equivalent to maximum
distance separable (MDS). When the sum-rank length partition
is chosen so that the sum-rank metric becomes the rank metric,
being MSRD becomes equivalent to being maximum rank
distance (MRD) which is achieved by Gabidulin codes [2].

By (9), it is easy to see that for any c,d ∈ FNqm , we have

dR(c,d) ≤ dSR(c,d) ≤ dH(c,d). (19)

One can further see that for any C ⊆ FNqm , we have

dR(C) ≤ dSR(C) ≤ dH(C). (20)

Straightforwardly generalizing this, we get the following result
from [34]:

Proposition 7 (Refinement Preserves Sum-Rank [34]). Denote
by dcoarse

SR the sum-rank metric for the sum-rank length partition
N =

∑L
`=1 r`. Let r` =

∑L`

i=1 r`i for ` = 1, 2, . . . , L. Denote
by dfine

SR the sum-rank metric for the sum-rank length partition
N =

∑L
`=1

∑L`

i=1 r`i. For any code C ⊆ FNqm , we have that

dcoarse
SR (C) ≤ dfine

SR (C). (21)

A crucial aspect of Theorem 6 is that we have the same
bound regardless of the choice of sum-rank length partition—
coarsening the metric does not lead to a codebook size penalty.
Theorem 7 thus results in the following:

Corollary 7.1. Let dcoarse
SR and dfine

SR be as previously defined.
If C ⊆ FNqm is MSRD with respect to dcoarse

SR , then it is also
MSRD with respect to dfine

SR .

As special cases of this corollary, we have the following:
• If C ⊆ FNqm is MRD, then C is MSRD for any sum-rank

length partition.
• If C ⊆ FNqm is MSRD, then C is MDS.
So, if C ⊆ FNqm is MRD, then dR(C) = dSR(C) = dH(C) =

N− logqm |C|+1 making it MSRD and MDS. In light of this,
it is natural to ask why one might use an MSRD code over
an MRD code. The answer lies in the following results from
[34]:

Theorem 8 (Extension Degree Bound [34]). Let C ⊆ FNqm
be an MSRD code for the sum-rank length partition
r1 = r2 = · · · = rL = N/L and let dSR(C) > 1, then

m ≥ N

L
. (22)
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Corollary 8.1. If C ⊆ FNqm is MRD and dR(C) > 1, then
m ≥ N .

Thus, MRD codes impose a larger field extension degree. In
particular, for the purposes of our space–time code construc-
tion, in the case of T ≥ nt, we will let m = T and N = Lnt.
Corollary 8.1 then becomes the requirement that T ≥ Lnt for
constructions based on MRD codes such as those in [7], [25].
In the case of T ≤ nt, we will let m = nt and N = LT in
which case Corollary 8.1 becomes an nt ≥ LT requirement
for constructions based on MRD codes.

Linearized Reed–Solomon codes, to be introduced in the
next subsection, are a recently introduced [8] family of linear
MSRD codes which can achieve the field extension degree
bound (22) with equality. This will enable multiblock space–
time codes constructed from them to achieve T = nt, or more
generally, any relationship between T and nt.

We conclude this section with some comments on generator
matrices. A generator matrix of an [N, k]qm code is a full
rank matrix G ∈ Fk×Nqm whose row space is the code. A
systematic generator matrix is one of the form G =

[
Ik P

]
where Ik ∈ Fk×kqm denotes the k × k identity matrix and
P ∈ Fk×(N−k)

qm . Clearly, any linear code has a generator matrix
which is some column permutations away from a systematic
one. While column permutations change the row space and
hence the code, they are isometries of the Hamming and rank
metrics making systematicity a non-issue when these are the
metrics of interest. However, it is easy to see that column
permutations are not in general isometries of the sum-rank
metric.

With that said, this will be a non-issue because for any
MSRD code, there exists a systematic generator matrix and,
more generally, a generator matrix with the k columns of
Ik occurring anywhere in it. This follows from the fact that
MSRD codes are MDS and these are well-known properties
of MDS codes (see, e.g., [54]).

B. Linearized Reed–Solomon Codes

Linearized Reed–Solomon codes were recently introduced
by Martı́nez-Peñas in [8]. These codes are closely connected
to skew polynomial evaluation codes [55]–[57]. Their signifi-
cance to us should be clear at this point so we will limit our
task in this section to providing the definition.

In particular, we will provide a specialization of the defini-
tion of linearized Reed–Solomon codes in [8] which is suffi-
cient for the purposes of our space–time code construction.

We begin by specializing the sum-rank length partition
to r1 = r2 = · · · = rL = N/L maintaining this henceforth.
Define the field automorphism σ : Fqm −→ Fqm by σ(a) = aq

for all a ∈ Fqm .

Definition 5 (Truncated norm [34]). Define Ni : Fqm −→ Fqm
by

Ni(a) = σi−1(a)σi−2(a) · · ·σ(a)a.

for all a ∈ Fqm and all i ∈ N.

Definition 6 (Linear Operator (Composition) [8], [34]).
For some fixed a ∈ Fqm , define the Fq-linear operator
Dia : Fqm −→ Fqm by

Dia(b) = σi(b)Ni(a)

for all b ∈ Fqm and all i ∈ N.

Remark. We have D1
a(b) = σ(b)a and D1

a ◦ Dia = Di+1
a for

all i ∈ N.

For an [N, k]qm code with generator matrix G ∈ Fk×Nqm ,
it shall be understood that the generator matrix partitions
according to the sum-rank length partition as

G =
[
G1 G2 · · · GL

]
with G` ∈ Fk×N/Lqm for ` = 1, 2, . . . , L referred to as sub-
codeword generators.

Definition 7 (Linearized Reed–Solomon Code (Special Case)
[8]). Let q > L, m ≥ N/L, α be a primitive element of Fqm ,
and B = (β1, β2, . . . , βm) be an ordered basis of Fqm over
Fq . A linearized Reed–Solomon code is an [N, k]qm code with
sub-codeword generators

G` =


β1 β2 · · · βN/L

D1
α`−1(β1) D1

α`−1(β2) · · · D1
α`−1(βN/L)

D2
α`−1(β1) D2

α`−1(β2) · · · D2
α`−1(βN/L)

...
...

. . .
...

Dk−1
α`−1(β1) Dk−1

α`−1(β2) · · · Dk−1
α`−1(βN/L)


for ` = 1, 2, . . . , L.

Theorem 9 (MSRD Property [8]). An [N, k]qm linearized
Reed–Solomon code C achieves k = N − dSR(C) + 1.

C. Background on Rank-Metric-Preserving Maps

A variety of methods [3], [5]–[7], [23], [32], [35], [36] exist
for obtaining space–time codes from codes over finite fields.
We set aside those focused on binary fields because linearized
Reed–Solomon codes are only interesting when nonbinary due
to the q > L requirement. We further set aside those which do
not lead to explicit constructions. This leaves over the methods
in [3]–[7]. In [6], the authors propose a framework which
encompasses as special cases mappings to the Gaussian [3],
[4] and Eisenstein [5] integers and find that, with the exception
of when a small PSK constellation is required, the method in
[7] is outperformed. We accordingly define a notion of rank-
metric-preserving map only general enough to subsume these
important special cases.

Definition 8 (Rank-Metric-Preserving Map). Let q be a prime
power, A be a constellation of size q, and φ : Fq −→ A be
a bijection. Define φ̃ : Fnt×T

q −→ Ant×T to be the corre-
sponding entrywise map which is the bijection defined, for
all C ∈ Fnt×T

q , by (φ̃(C))ij = φ((C)ij) for i = 1, 2, . . . , nt
and j = 1, 2, . . . , T . The map φ is said to be rank-metric-
preserving if

rank(φ̃(C)− φ̃(D)) ≥ rank(C −D)

for all C,D ∈ Fnt×T
q , C 6= D.
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Fig. 2. Some Gaussian and Eisenstein integers in the complex plane

We will next introduce the Gaussian and Eisenstein integers
and recall some useful properties. Some will be essential to
the encoding and decoding procedures for the proposed codes
and others will be relevant to answering existential questions.

In what follows, ı will denote the imaginary unit and ω will
denote the primitive cube root of unity

ω = exp

(
2πı

3

)
= −1

2
+ ı

√
3

2
.

The Gaussian integers which we denote by G are defined
by [58]

G = Z[ı] = {a+ bı | a, b ∈ Z}.
Noting that as a real vector space, C is isomorphic to R2,
we see that, additively, G is isomorphic to the square lat-
tice Z2 ⊆ R2, i.e., the set of integral linear combinations
of
[
1 0

]ᵀ
and

[
0 1

]ᵀ
. The Eisenstein integers which we

denote by E are defined by [58]

E = Z[ω] = {a+ bω | a, b ∈ Z}.
Additively, E is isomorphic to the hexagonal lattice in R2

spanned by the integral linear combinations of
[
1 0

]ᵀ
and[

−1/2
√

3/2
]ᵀ

.
Additively and multiplicatively, the Gaussian and Eisenstein

integers share many of the properties of the usual integers Z.
In particular, they are archetypal examples of rings other than
Z that are not fields and admit a Euclidean division [59], [60].
This allows finite fields to be easily constructed as their residue
classes just as the prime field Fp can be constructed as a set
of residue classes of the usual integers Z/pZ.

In what follows, we will make claims and provide defi-
nitions involving both the Gaussian and Eisenstein integers.
Some will apply to both and some will be specific to one or
the other. We will use Λ to refer to any one of G or E when
the definition or result applies to both.

We define a quantization function QΛ : C −→ Λ as in [61]
by

QΛ(z) = argmin
λ∈Λ

|z − λ| (23)

for all z ∈ C. We will comment later on the well-definedness
of this function. Importantly, the quantization can be per-
formed efficiently for the sets under consideration. For Λ = G,
we have, for all z ∈ C, [62]

QG(z) = [Re{z}] + ı [Im{z}]

where [·] denotes the usual operation of rounding to the nearest
integer. For Λ = E, we have the following algorithm from
[61]: For any z ∈ C, compute

λ1 = [Re{z}] +
√
−3

[
Im{z}√

3

]
λ2 = [Re{z − ω}] +

√
−3

[
Im{z − ω}√

3

]
+ ω

which are the nearest points to z in two sets which partition
E. We then have

QE(z) = argmin
λ∈{λ1,λ2}

|z − λ|.

We will be interested in quantization to a sub-lattice Λ′ ⊆ Λ
obtained as Λ′ = ΠΛ where Π ∈ Λ \ {0}. In this case, we
have

QΛ′(z) = QΠΛ(z) = Π ·QΛ

( z
Π

)
for all z ∈ C. Finally, given Λ and Π ∈ Λ \ {0}, we define a
modulo function modΠΛ : Λ −→ Λ as in [5] by

modΠΛ(z) = z −QΠΛ(z)

= z −Π ·QΛ

( z
Π

)
for all z ∈ Λ. The modulo function provides a unique
representative of the coset in the quotient ring Λ/ΠΛ to which
any z ∈ Λ belongs. Consider the constellation AΠΛ obtained
as

AΠΛ = {modΠΛ(z) | z ∈ Λ}.
It can be shown (see, e.g., [5], [62]) that

|AΠΛ| = |Λ/ΠΛ| = |Π|2.

Moreover, by the fact that if Π = rs for some r, s ∈ Λ, then
|Π|2 = |r|2|s|2, we have the following:

Proposition. If |Π|2 is prime in Z, then Π is prime in Λ.

If we take Π to be a prime in Λ, then Λ/ΠΛ will be
isomorphic to F|Π|2 and the same will be true of the con-
stellation AΠΛ under the appropriate arithmetic. Note that
the converse of the previous proposition is not true; primes
in Λ corresponding to non-prime squared absolute value can
exist and will allow for isomorphisms to finite fields of prime
power sizes (refer to, e.g., [5], [6], [61]). However, we will
limit ourselves to prime fields for simplicity. Importantly,
constellations corresponding to prime Π give rise to rank-
metric-preserving maps. We will proceed to give some useful
properties of these constellations.

Proposition 10. If z ∈ Λ, then z ∈ AΠΛ if and only if
modΠΛ(z) = z. Equivalently, if z ∈ Λ, then z ∈ AΠΛ if
and only if QΛ(z/Π) = 0.

We now briefly digress to address a technicality. In order
for Proposition 10 to be true, we must either have there be no
lattice points on the boundary of the Voronoi region of zero
for the quantizer QΠΛ or we should choose tie-breaking rules
for (23) carefully as to guarantee that the modulo function
yields unique coset representatives. In this paper, we will not
be considering constellations where this is an issue. We refer



10

|Π|2 Π |Π|2 Π
5 2 + 1ı 97 9 + 4ı
13 3 + 2ı 101 10 + 1ı
17 4 + 1ı 109 10 + 3ı
29 5 + 2ı 113 8 + 7ı
41 5 + 4ı 157 6 + 11ı
53 7 + 2ı 241 4 + 15ı
61 6 + 5ı 257 1 + 16ı
73 8 + 3ı 373 7 + 18ı
89 8 + 5ı 389 10 + 17ı

TABLE I
SOME GAUSSIAN PRIMES

|Π|2 Π |Π|2 Π
7 3 + 1ω 73 9 + 1ω
13 4 + 1ω 79 10 + 3ω
19 5 + 2ω 97 11 + 3ω
29 5 + 2ω 103 11 + 2ω
31 6 + 1ω 109 12 + 5ω
37 7 + 3ω 127 13 + 6ω
43 7 + 1ω 241 15 + 16ω
61 9 + 4ω 271 9 + 19ω
67 9 + 2ω 277 12 + 19ω

TABLE II
SOME EISENSTEIN PRIMES

the reader to [63] for a treatment of this fine point since it is
otherwise important.

Observe that for any Π = a + bı ∈ G \ {0}, we have
|Π|2 = |a+ bı|2 = a2 +b2, and for any Π = a+bω ∈ E\{0},
we have |Π|2 = |a+ bω|2 = a2− ab+ b2. In light of this, the
following classical results of number theory will characterize
the constellation sizes that we can obtain if we insist that |Π|2
is prime in Z. The first can be found in [59] and the second
can be found in [64].

Theorem. Let p be a prime in Z greater than 2. Then, p =
a2 + b2 for some a, b ∈ Z if and only if p = 4n+ 1 for some
n ∈ Z.

Theorem. Let p be a prime in Z greater than 3. Then, p =
a2 − ab+ b2 for some a, b ∈ Z if and only if p = 3n+ 1 for
some n ∈ Z.

Thus, we are restricted to constellations of prime size p
where p is 4n + 1 for Gaussian integer constellations or or
3n + 1 for Eisenstein integer constellations for some n ∈ Z.
When p = 12n+1 for some n ∈ Z, we can choose between a
Gaussian and Eisenstein integer constellation. The Eisenstein
integers are more densely packed making them preferable
absent any other considerations.

It can be shown (see, [5], [6]) that {0, 1, . . . , |Π|2 − 1} are
a complete set of coset representatives so that we have

AΠΛ = {modΠΛ(z) | z ∈ {0, 1, . . . , |Π|2 − 1}}.

Finally, we have the following theorem:

Theorem 11 (Part of Robert Breusch’s Extension of Bertrand’s
Postulate [65]). There is at least one prime p of the form
p = 4n+ 1 for some n ∈ Z and at least one prime p′ of the
form p′ = 3n′ + 1 for some n′ ∈ Z between m and 2m for
any m ≥ 7.

This means that for any desired constellation size, we can
always find a constellation which is at worst twice the size of
what is required. Importantly, this will imply the existence of
codes close to the constellation size lower bounds in Fig. 1
for arbitrary parameters.

The following theorem consolidates results from [3]–[6],
[23].

Theorem 12 (Gaussian [3], [4], [6], [23] and Eisenstein [5],
[6] Integer Maps Are Rank-Metric-Preserving). Let Λ be G or
E. Let Π be a prime in Λ with |Π|2 a prime in Z. Let F|Π|2 =

Z|Π|2 = {0, 1, . . . , |Π|2 − 1}. The map φ : F|Π|2 −→ AΠΛ

defined by φ(z) = modΠΛ(z) for all z ∈ F|Π|2 and evaluated
in C is rank-metric-preserving.

A detailed proof of this theorem would be essentially
identical to the proof of a very similar theorem for Λ = E
occurring in [5] so we will omit it.

Finally, we consider another kind of rank-metric preserving
map which occurs as a special case of the code construction
technique in [7]. The proof of the main result in [7] can be
seen to encompass a proof of the following theorem:

Theorem 13 (p-PSK Map Is Rank-Metric-Preserving [7]).
Let Fp = Zp = {0, 1, . . . , p − 1} with p a prime. The map
φ : z 7→ exp

(
ı2πz
p

)
evaluated in C is rank-metric-preserving.

D. Rate–Diversity Optimal Multiblock Space–Time Codes

We now provide explicit constructions of rate–diversity
optimal multiblock space–time codes which arise as a straight-
forward consequence of what has been discussed thus far. For
the cases of T ≥ nt and T ≤ nt, we name the constructions
Sum-Rank A (SRA) and Sum-Rank B (SRB) respectively. In the
case of T = nt, the constructions differ by a transposition of
the sub-codewords and SRB will be preferable for convenience
in the decoding procedure.

Proposition 14 (SRA Construction). Fix positive integers
nt, T , L, d, and q with T ≥ nt, d ≤ Lnt, and q a
prime power satisfying q > L. Let A be a constellation
of size q and let φ : Fq −→ A be a rank-metric-preserving
map with φ̃ : Fnt×T

q −→ Ant×T the corresponding entrywise
map. Let B = (β1, . . . , βT ) be an ordered basis of FqT
over Fq and MB : Fnt

qT
−→ FT×nt

q be a matrix representa-

tion map. Let G1, . . . , GL ∈ F(Lnt−d+1)×nt

qT
be the sub-

codeword generators of an [Lnt, Lnt − d+ 1]qT linearized
Reed–Solomon code. Then, the L-block nt × T space–time
code XSRA completely over A defined by

XSRA ={[
φ̃(MB(uG1)ᵀ) · · · φ̃(MB(uGL)ᵀ)

] ∣∣∣ u ∈ FLnt−d+1
qT

}
has transmit diversity gain d and is rate–diversity optimal.

Proof. We have |XSRA| = qT (Lnt−d+1) yielding rate R =
nt − (d− 1) · L−1 so that (R, d) is an optimal rate–diversity
pair. We then have

d = Lnt − LR+ 1

≥ min
u,v∈FLnt−d+1

qT

u6=v

L∑
`=1

rank(φ̃(MB(uG`)
ᵀ)− φ̃(MB(vG`)

ᵀ))

≥ min
u,v∈FLnt−d+1

qT

u6=v

L∑
`=1

rank(MB(uG`)
ᵀ −MB(vG`)

ᵀ)

= min
u,v∈FLnt−d+1

qT

u6=v

L∑
`=1

rank(MB(uG`)−MB(vG`)) = d
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where the first inequality is by the rate–diversity tradeoff
(Theorem 2) and the last equality is by the MSRD property
of linearized Reed–Solomon codes (Theorem 9). Therefore,
XSRA achieves the rate–diversity pair (R, d).

We can similarly show the following:

Proposition 15 (SRB Construction). Fix positive integers nt,
T , L, d, and q with T ≤ nt, d ≤ LT , and q a prime
power satisfying q > L. Let A be a constellation of size q
and let φ : Fq −→ A be a rank-metric-preserving map with
φ̃ : Fnt×T

q −→ Ant×T the corresponding entrywise map. Let
B = (β1, . . . , βnt) be an ordered basis of Fqnt over Fq and
MB : FTqnt −→ Fnt×T

q be a matrix representation map. Let
G1, . . . , GL ∈ F(LT−d+1)×T

qnt be the sub-codeword generators
of an [LT,LT − d+ 1]qnt linearized Reed–Solomon code.
Then, the L-block nt × T space–time code XSRB completely
over A defined by

XSRB ={[
φ̃(MB(uG1)) · · · φ̃(MB(uGL))

] ∣∣ u ∈ FLT−d+1
qnt

}
has transmit diversity gain d and is rate–diversity optimal.

A consequence of the underlying codes in the SRA and
SRB constructions being MDS is the following:

Corollary. Let X be an L-block nt × T SRA or SRB code
completely over A with X sampled uniformly at random
from X . Then, (X)ij is uniformly distributed over A for
i = 1, . . . , nt, j = 1, . . . , LT and we have

E
[
‖X‖2F

]
=
ntLT

|A|
∑
a∈A
|a|2.

We can also interpret these constructions in terms of the
signalling complexity perspective provided in Section III-B.
In particular, we have the following:

Corollary. Fix positive integers nt, T , and L. Fix some Rb/tx

and some ε satisfying 0 ≤ ε < 1. Let

B = max{7, L+ 1, dFε(L ·min{nt, T})e} (24)

where Fε is as defined in (14). Then, there exists a constel-
lation A ⊂ G (or A ⊂ E) such that B ≤ |A| < 2B and an
L-block nt×T space–time code completely over A achieving
a transmit diversity gain of d = b(1− ε) · L ·min{nt, T}c
and a bpcu/tx rate of at least Rb/tx.

As will be seen later in Fig. 9, it will usually be the case
for the parameters of interest that the L+ 1 in (24) does not
come into play. Consequently, we will be able to construct
codes near the constellation size lower bounds in Fig. 1.

We conclude this section by commenting briefly on con-
nections to other constructions. In the case of T ≥ Lnt, we
can replace linearized Reed–Solomon codes with Gabidulin
codes and, by Corollary 7.1, we will have a rate–diversity
optimal code which coincides with a special case of the
multiblock construction in [7] when a p-PSK map (Theorem
13) is used. Moreover, in the case of L = 1, linearized Reed–
Solomon codes become Gabidulin codes and these codes will
become identical to those in [3], [4] when a Gaussian integer
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Fig. 3. Performance of coding across L = 2 fading blocks of a 2×2 MIMO
channel

constellation is used and identical to those in [5] when an
Eisenstein integer constellation is used.

V. SIMULATIONS

In this section, we study the performance of the proposed
codes under ML decoding in comparison to competing codes.
We defer the description of the decoders which were used to
obtain the simulation results to Section VI.

For the entirety of this section, we will have nr = nt = T .
We will refer to Gaussian and Eisenstein integer constellations
of size p as p-Gauss. and p-Eis. constellations respectively.

A. The Case of L = 2

We begin with the case of coding across two fading blocks
with nt = 2 and consider a bpcu/tx rate of 2. Since the
proposed codes require certain prime constellation sizes, they
will not exactly achieve this bpcu/tx rate. We will typically
choose constellations so that the bpcu rate is at least what is
required. Moreover, the total available transmit diversity gain
in this case is Lnt = 4.

A variety of codes are considered and the codeword error
rate (CER) versus SNR curves are provided in Fig. 3. We also
provide all of the corresponding constellations in Figures 4
and 5. We will proceed to describe these codes.

We provide two d = 4 CDA-based 2-block linear dispersion
codes as a reference both using 4-QAM input constellations
to achieve a bpcu rate of 4. One is due to Lu [18] and the
other is due to Yang and Belfiore [19]. We then provide our
SRA construction with d = 3 and a 17-Gauss. constellation
to achieve a bpcu rate of 4.09. It can be seen that the SRA
code performs worse but the gap is less than 1 dB at a CER
of 10−4. In exchange, the constellation size is significantly
smaller as can be seen in Figures 4 and 5. Moreover, we see
from (13) that the code due to Yang and Belfiore [19] is also
rate–diversity optimal hence the smaller constellation than that
of Lu [18].
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We further provide as a reference the performance of a
single-block full diversity linear dispersion code, namely the
Golden Code [41]. It is used in our two-block channel in two
ways. The first is with sending independent codewords in each
fading block with a 4-QAM input constellation to achieve a
bpcu rate of 4 and d = 2. We refer to this code, which is the
Cartesian product of two Golden Codes, as Golden Ind. This
yields the performance of coding across a single fading block
as the code was designed for. We further provide the result of
repeating a Golden Code codeword in each fading block. This
is referred to as Golden Rep. This represents a trivial way of
obtaining a full diversity, i.e., d = 4 code. To compensate for
the rate loss, we use a 16-QAM input constellation to obtain
a bpcu rate of 4. As can be seen in Fig. 3, this code performs
quite poorly which verifies, in some sense, the nontriviality
of the other d = 4 and d = 3 codes intended for multiblock
channels.

Note that the Golden Ind and Golden Rep codes are multi-
block codes constructed from the single-block Golden Code
and can be analyzed as such. In particular, one can verify that
the Golden Rep code is rate–diversity optimal. On the other
hand, the Golden Ind code is not rate–diversity optimal. It has
a rate of 1 while the maximum possible for d = 2 is 1.5.
Again, this is in an L = 2 setting and would not be true if we
were analyzing the Golden Code itself as a single-block code.

In light of this, we consider a rate–diversity optimal d = 2
code, particularly our SRA code with a 7-PSK constellation
achieving a bpcu rate of 4.21. This performs comparably to
the Golden Ind code. The higher bpcu rate achieved with
a 7-PSK constellation is due to its rate–diversity optimality.
Alternatively, we can interpret it as a result of exploiting the
possibilities admitted by the sum-rank metric. For example,
rather than always needing rank-distance-2 sub-codewords in
at least one fading block which is the case for the Golden
Ind code, rank-distance-1 sub-codewords may be transmitted
in the first fading block provided that rank-distance-1 or rank-
distance-2 sub-codewords occur in the next fading block.
Indeed, such combinations do occur in the codebook.

Next, we consider increasing the bpcu/tx rate to 4 which
corresponds to a bpcu rate of 8. This is achieved by using
16-QAM input constellations for the CDA-based codes of Lu
[18] and Yang and Belfiore [19]. We compare these to our SRB
codes with d = 3 and a few different constellations. The results
and constellations for our codes are provided in Figures 6 and
7. The constellations for the competing codes cannot be easily
plotted or found in this case, but the constellation size lower
bound says that they should have a size of at least 2LntRb/tx =
216 = 65536 points. In this case, the performance gap between
our codes and the competing codes becomes worse, but our
constellation sizes are again significantly smaller. Besides this,
the results are self-explanatory and the better point density of
the Eisenstein integers is evident.

B. The Case of L = 4

We now consider increasing L to 4 with nt = 2 and a
bpcu/tx rate of 2. In this case, the total available transmit
diversity gain is Lnt = 8.
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Fig. 5. Constellations for proposed codes

We provide the performance of a 4-block d = 8 CDA-based
linear dispersion code due to Yang and Belfiore [19]. From
our construction, we provide d = 5 and d = 4 SRB codes.
Notably, our d = 5 code outperforms the d = 8 code with no
sign of a closing performance gap over the range of simulated
SNRs. Moreover, the d = 8 code has a constellation with at
least 65536 points compared to 17 for our d = 5 code.

In Fig. 9, we provide constellation size lower bounds for
nt = 2 and Rb/tx = 2 as a function of L and some of the
constellation sizes achieved by the codes discussed thus far.
This also shows when the |A| ≥ L + 1 requirement of our
construction might come into play.

C. The Case of L = 1

We now consider the case of L = 1. In this case, our SRA
and SRB constructions recover the known space–time code
constructions in [3]–[6] based on Gabidulin codes. However, in
these works, no ML decoding techniques apart from exhaustive
search are provided and there is consequently no ability to
compare the performance of the codes to high-rate linear
dispersion codes. Facilitated by the decoding techniques which
will be introduced in Section VI, we are able to decode these
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Fig. 7. Constellations for proposed codes

codes for the first time at sufficiently high bpcu rates to enable
such a comparison.

In the case of nt = 2, our codes have little to offer since the
only options for the diversity gain are 2 which is full diversity
and 1 which is achieved by uncoded signalling. Therefore, we
skip to nt = 3 in which case we have a total available diversity
gain of nt = 3. We consider target bpcu/tx rates of 2 and 3
and compare to the Perfect 3 × 3 codes from [20] using 4-
HEX and 8-HEX input constellations which are also defined
in [20]. The results are provided in Fig. 10. In this case, there
are no admissible constellation sizes for our construction that
get us close enough to the desired rate so the comparisons are
not very fair. Nonetheless, one can see that the performances
are close and our codes, as usual, have a constellation size
advantage.
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We proceed to the case of nt = 4 where we compare to
the Perfect 4 × 4 code from [20]. We further compare to a
code which improves upon this one which we refer to as
Improved 4 × 4. This code is from [21] which also credits
[66]. We consider a target bpcu/tx rate of 2 which corresponds
to a bpcu rate of 8 and 4-QAM input constellations for the
competing codes. In this case, our d = 3 code with a 17-
Gauss. constellation outperforms both codes all the way up to
a CER of 10−6 and with a bpcu rate and constellation size
advantage. On the other hand, a closing performance gap can
be seen due to the diversity gain difference. Furthermore, the
fact that the CERs for our code are only provided for high
SNRs foreshadows another issue: this is that they can have a
higher decoding complexity.
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VI. DECODING

In this section, we provide an ML decoder for the proposed
codes which combines ideas from the sequential decoding
of linear block codes, optimal MIMO detection, and sphere
decoding of linear dispersion codes. For concreteness of expo-
sition, we describe a single family of decoders. However, in the
process, we provide methods for more generally adapting some
of the known techniques for the decoding of linear dispersion
codes to both our codes and identically or similarly constructed
space–time codes such as those of [3]–[5], [7]. The decoders to
be considered are based on tree search algorithms which have
good average-case complexity at high SNRs and exponential
worst-case complexity in the codeword dimensions, as is
typical.

While we will comment extensively on how the decoding
problem for the proposed codes compares to the decoding

problem for the competing linear dispersion codes, we will not
attempt to quantify the difference in computational complexity.
Rather, we will have the less ambitious goal of providing a
starting point for decoding and giving a sense of the challenges
involved in comparison to linear dispersion codes. The central
point to be made regarding this matter is as follows: There is
one fundamental advantage and one fundamental disadvantage
in the decoding problem for an SRA/SRB code in comparison
to the decoding problem for a comparable linear dispersion
code. The fundamental advantage is that the effective channel
matrix when decoding the SRA/SRB code is block diagonal
and there are many ways to exploit this. The fundamental
disadvantage is that the tree structure for the SRA/SRB code is
inherently worse. In particular, we must perform the decoding
over a larger alphabet and over a search space with unfavorable
boundaries. We also note that this point as well as the entire
content of this section applies in the single-block, i.e., L = 1
setting as well.

The extent to which the advantage can compensate for
the disadvantage is an open question and depends on the
code parameters. Nonetheless, the advantage can certainly be
exploited enough to make the decoding feasible. Moreover,
this question neglects the potential benefits of smaller constel-
lations to the implementation complexity so is not necessarily
the pertinent question from an engineering perspective.

A. Summary of Existing Decoders

We begin by commenting on existing methods for decoding
the proposed codes. In [5], the authors consider a suboptimal
algebraic decoding technique for Gabidulin-based space–time
codes which is, in principle, adaptable to SRA/SRB codes
via the associated algebraic decoding methods for linearized
Reed–Solomon codes [48], [67], but the performance is quite
far from ML. To the best of the authors’ knowledge, there has
been no other attempt at decoding space–time codes similar
to the proposed codes aside from that in [5] and exhaustive
search. With that said, the decoding methods to be proposed
generalize existing methods in fairly straightforward ways. The
methods to be built upon will be referred to as they occur in
the upcoming development of a decoder.

B. The Vanilla Stack Decoder

In this subsection, we will describe a generic decoding
technique and apply it to the decoding of the SRB code in
the special case of nr = nt with a focus on Gaussian or
Eisenstein integer constellations. We will stick to this special
case to simplify notation and exposition but we will comment
on how deviations from this special case can be handled later.

We will begin by considering a general formulation of a
minimum cost path finding problem on a tree. Our decoding
problem will turn out to be a special case of this problem.
The initial algorithm to be described which we refer to as a
vanilla stack decoder is essentially a MIMO analogue of the
Zigangirov–Jelinek stack decoding algorithm [68], [69]. Later
on, it will evolve into an analogue of a stack decoder with
variable bias-term (VBT) metric [70] which itself constitutes
an instance of the A* algorithm [71]. The fundamental ideas
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here are well-known and are constantly rediscovered in the
literature. While the aforementioned literature was the starting
point for the development of the proposed decoder, the closest
pre-existing decoders to what we will describe are likely to be
found in the sections in [37] relating to ML MIMO detection
and the approaches described in [12], [13].

Following the introduction of the vanilla stack decoder, we
will build upon it with improvements that exploit structure
that is more specific to the decoding problem and to the
code. These improvements will be quantified in simulations
in Section VI-F.

We will now consider the problem of generically decoding a
tree code. In this subsection and the others that will follow, we
will make use the of the language and notation of strings rather
than vectors. Adjacent symbols (or characters) will represent
concatenated strings rather than multiplication in C unless
otherwise indicated or suggested by context.

Consider a code S of length n over a q-ary alphabet A =
{a1, a2, . . . , aq}. That is, some S ⊆ An with |S| > 1. Any
codeword s ∈ S is a string of length n so that s = s1s2 · · · sn
where s1, s2, . . . , sn ∈ A. Denote by A∗ the Kleene closure
of A. This is the set of all strings of any length over A. That
is,

A∗ = {ε, a1, . . . , aq, a1a1, . . . , a1aq, a2a1, a2a2, a2a3, . . . }
where ε here denotes the empty string which is the identity
element of concatenation. That is, εa = aε = a. The length of
a string will be denoted by |·| and the empty string has length
zero, i.e., |ε| = 0.

Denote by S∗ the set of all prefixes of codewords in S. That
is,

S∗ = {p ∈ A∗ | pt ∈ S for some t ∈ A∗}.
Note that A∗ is an infinite set while S∗ is finite. Observe that
if p ∈ S∗ and |p| = n, then p ∈ S.

Denote by ℘(A) the power set of A. This is the set of all
subsets of A. Define the function E : S∗ −→ ℘(A) by

E(p) = {a ∈ A | pa ∈ S∗}. (25)

Thus, given a prefix of a codeword, this function gives us the
set of all possible candidates for the next character. Observe
that if p ∈ S∗ and pb ∈ S for some b ∈ A, then b ∈ E(p).
Moreover, if p ∈ S, then E(p) = ∅.

Assuming that we can easily compute this function for our
code, i.e., that we can easily enumerate the elements of this set,
we can easily construct a representation of our code as a q-ary
tree of depth n. Each node represents a prefix of a codeword
and the leaf nodes correspond to the codewords. In particular,
we can label the root node by ε. Its children at depth 1 are
then labelled by the elements of E(ε) = {a ∈ A | a ∈ S∗}.
Given a child c at depth 1, we can find its children at depth
2 as E(c) = {a ∈ A | ca ∈ S∗}, and so on.

Consider n functions fi : Ai −→ R≥0 for i = 1, 2, . . . , n.
Define the cost function C : S −→ R≥0 by

C(a1a2 · · · an) = f1(a1) + f2(a1a2) + · · ·+ fn(a1a2 · · · an)

=

n∑
j=1

fj(a1a2 · · · aj) (26)

for all a1a2 · · · an ∈ S (with a1, a2, . . . , an ∈ A). We
refer to such a function as a causal cost function. Given
such a function, we can replace it by one which is extended
to arbitrary length prefixes. Define the extended causal cost
function C : S∗ −→ R≥0 for arguments of length i by

C(a1a2 · · · ai) = f1(a1) + f2(a1a2) + · · ·+ fi(a1a2 · · · ai)

=

i∑
j=1

fj(a1a2 · · · aj) (27)

for all a1a2 · · · ai ∈ S∗ (with a1, a2, . . . , ai ∈ A) for
i = 1, 2, . . . , n. Observe that the function can now be defined
recursively for each argument by

C(a1a2 · · · ai) = C(a1a2 · · · ai−1) + fi(a1a2 · · · ai)

and

C(a1) = f1(a1)

for i = 2, 3, . . . , n.
Suppose that we are interested in solving

min
s∈S

C(s).

A problem of this form can be solved by a best-first tree
search algorithm like the Zigangirov–Jelinek stack decoding
algorithm [68], [69]. Traditionally, these algorithms are used
in the context of binary codes (|A| = 2) and where the
cost function is simple. In particular, we usually have no
dependence on previous symbols in the additive decomposition
of the cost function. That is, fi(a1a2 · · · ai) = gi(ai) for some
gi : A −→ R≥0. Fortunately, the generalization to allow for
arbitrary causal cost functions is effortless.

We will now describe this algorithm. The algorithm will
make use of a priority queue data structure. This is a stack
with push and pop operations. However, rather than having
a last-in first-out (LIFO) order, the elements are paired with
priority measures and sorted accordingly so that the element
with the highest priority comes out first. Each entry in our
priority queue will be a codeword prefix p ∈ S∗ and a priority
measure which will be its cost C(p). The highest priority
element will be the one with the smallest cost. The algorithm
can now be described very simply:

• Start by pushing every a ∈ E(ε) onto the priority queue
with its respective cost C(a) = f1(a).

• Pop an element from the priority queue which will consist
of a prefix p and its priority measure C(p).

• For every t ∈ E(p), push pt onto the priority queue with
its priority measure C(pt) = C(p) + f|p|+1(pt).

• Repeat the previous two steps until a prefix s with |s| = n
is popped.

For a proof that this algorithm works, i.e., terminates and
yields the minimum cost codeword, the reader is referred to
[29]. Alternatively, the reader may simply recognize this as an
instance of a standard best-first search algorithm like A* [71].
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Application to the Decoding of the Proposed Codes: We
now proceed to the application of this to the decoding of our
space–time codes. We can associate an nt × LT codeword
matrix with a length-LTnt string via the bijection defined by:

x1 xnt+1 . . . x(LT−1)nt+1

x2 xnt+2 . . . x(LT−1)nt+2

...
...

. . .
...

xnt x2nt . . . xLTnt

 7→ x1x2 · · ·xLTnt
.

Our code X is thus in bijection with a code S as defined in
the previous section. We will also use a similar representation
for our receive matrix which will also be nt × LT since we
are assuming that nr = nt.

The first order of business is to find the function E. Since
the underlying code is MDS, this is easy. Let k be the dimen-
sion of the linearized Reed–Solomon code (k = LT − d + 1
for the SRB construction) and assume that we are using a
systematic generator matrix. Then, for all p ∈ S∗ such that
|p| < knt, we have E(p) = A. On the other hand, for any
p ∈ S∗ with |p| ≥ knt, the entire remaining symbols are
parity symbols which can be computed from the first knt
symbols so we have |E(p)| = 1, i.e., there is only one possible
continuation of the prefix. Fig. 12 illustrates the structure of
the resulting code tree.

It remains to verify that the cost function has the appropriate
form. This is merely a matter of performing QL decomposi-
tions. Recall our convention that X =

[
X1 X2 · · · XL

]
.

For ` = 1, 2, . . . , L, we have

‖Y` − ρH`X`‖2F = ‖Ỹ` − L`X`‖2F
where ρH` = Q`L` and Ỹ` = Q†`Y` where Q` is a unitary
matrix and L` is a lower-triangular matrix. Moving forward,
we will drop the tilde from the Ỹ`. Denote by `(j) the index
of the fading block corresponding the jth column of X , i.e.,

`(j) =

⌊
j − 1

T

⌋
+ 1

for j = 1, 2, . . . , LT . For m = 1, 2, . . . , ntLT , define the
functions gm : Am−b

m−1
nt
cnt −→ R≥0 by

gm(xbm−1
nt
cnt+1xbm−1

nt
cnt+2 · · · xm) =∣∣∣∣∣∣∣ym −

m∑
k=bm−1

nt
cnt+1

(
L`(bm−1

nt
c+1)

)
m−bm−1

nt
cnt,k−bm−1

nt
cnt

xk

∣∣∣∣∣∣∣
2

We then have (see [29] for details)

C(x1x2 · · ·xLTnt
)

=

L∑
`=1

‖Y` − L`X`‖2F

=

LTnt∑
m=1

gm(xbm−1
nt
cnt+1xbm−1

nt
cnt+2 · · · xm)

=

LTnt∑
m=1

fm(x1x2 · · · xm)

where

fm(x1x2 · · · xm) = gm(xbm−1
nt
cnt+1xbm−1

nt
cnt+2 · · · xm)

for m = 1, 2, . . . , LTnt. Thus, we have a causal cost function
as required and the vanilla stack decoder is fully specified. In
fact, we have something better than what we needed. Each
function in the additive decomposition of the cost function
depends on at most nt previous terms rather than at most
LTnt previous terms.

Alternatively, we can interpret this as the effective channel
matrix being block diagonal with lower-triangular blocks. In
particular, we can express the cost function as

C(x1x2 · · ·xLTnt
) = ‖y −Hx‖22 (28)

where (recalling that nr = nt) x,y ∈ CntLT are given by

x =
[
x1 x2 · · · xntLT

]ᵀ
y =

[
y1 y2 · · · yntLT

]ᵀ
and H ∈ CntLT×ntLT is given by

H =



L1

. . .
L1

L2

. . .
L2

. . .
LL


(29)

where each L` ∈ Cnt×nt for ` = 1, 2, . . . , L occurs T
times on the diagonal of the matrix. On the other hand, the
general case of a causal cost function depending on all LTnt
past terms corresponds to the matrix H simply being lower-
triangular.

Comparison to the Decoding of Linear Dispersion Codes:
As previously mentioned, the decoding problem for a linear
dispersion code can be converted into a standard MIMO
detection problem for an ntLT × 1 vector over the input con-
stellation with an ntLT ×ntLT channel (assuming nr = nt).
In particular, suppose that we have an L-block nt × T linear
dispersion code as defined in (12) with dispersion matrices
A1, A2, . . . , AntLT ∈ Cnt×LT . Denote by a

(j)
i the jth column

of the ith dispersion matrix so that

Ai =
[
a

(1)
i a

(2)
i · · · a

(LT )
i

]
for i = 1, 2, . . . , ntLT . One can then verify that the cost
function can be placed into the form of (28) by taking
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Fig. 12. Structure of the code tree
resulting from a systematic gener-
ator matrix

Fig. 13. Structure of the code tree
resulting from a linear dispersion
code or uncoded signalling

S = AntLT
in (which is in bijection with the code) and taking

H ∈ CntLT×ntLT to be

H = ρ



H1a
(1)
1 H1a

(1)
2 · · · H1a

(1)
ntLT

H1a
(2)
1 H1a

(2)
2 · · · H1a

(2)
ntLT

...
...

. . .
...

H1a
(T )
1 H1a

(T )
2 · · · H1a

(T )
ntLT

H2a
(T+1)
1 H2a

(T+1)
2 · · · H2a

(T+1)
ntLT

H2a
(T+2)
1 H2a

(T+2)
2 · · · H2a

(T+2)
ntLT

...
...

. . .
...

HLa
(LT )
1 HLa

(LT )
2 · · · HLa

(LT )
ntLT


. (30)

Observe now that the problem of minimizing (28) is itself a
special case of our decoding problem so that the algorithm just
developed is readily applicable. In particular, we substitute 1
for L and T and substitute ntLT for nt. We can then lower-
triangularize the channel as before to get a causal cost function
or equivalently, a new effective channel

H = L1 (31)

where L1 ∈ CntLT×ntLT is lower-triangular. Thus, one key
difference between the decoding problems for the proposed
codes and linear dispersion codes is in the effective channels
(29) for the proposed codes and (31) for linear dispersion
codes. Apart from the obvious ways in which the block
diagonal structure of (29) is better such as reduced cost of
QL decompositions, we will see that there are many more
significant advantages. We also emphasize that this structural
benefit still holds in the case of single-block coding (i.e.,
L = 1).

On the other hand, since S = AntLT
in for a linear dispersion

code, we will have a tree structure as in Fig. 13. The major
advantage in the decoding of linear dispersion codes is that
the decoding can be performed over the input constellation
which will generally be smaller than the constellation for an
equal bpcu rate SRB code. Observe that Figures 12 and 13
represent codes of equal size and hence equal bpcu rate but
the latter has a smaller outdegree.

The key principle behind sequential decoding is that of
pruning the tree of unpromising paths via the priority measure
to avoid an exhaustive search. This is easier to do in the case
of a tree like that in Fig. 13 rather than Fig. 12. In fact, for
Fig. 12, the length of the long legs relative to the depth up
to which we have a full tree is proportional to the diversity

gain. In the case of full diversity, the tree constitutes only long
legs stemming from the root node and no meaningful pruning
is possible; the vanilla stack decoder becomes an exhaustive
search.

The proposed codes are thus inherently disadvantaged from
a tree structure perspective and the closer they operate to
full diversity, the closer the decoding complexity becomes to
exhaustive search. Moreover, the tree structure is always worse
for any diversity gain greater than 1 hence for any nontrivial
code. With that said, we have seen that they do not need to be
close to full diversity to perform well and we have the block
diagonal effective channel advantage which can compensate
to some extent for the tree structure disadvantage.

In the coming subsections, we will proceed to provide
improvements upon the vanilla stack decoder. These im-
provements will typically involve some extra computations or
pre-computations that offer diminishing returns as the SNR
increases.

C. Future Costing

We now consider an improvement upon the vanilla stack
decoder via the A* algorithm [71]. We adopt some of the
terminology associated with A*. The idea is to add to the
cost associated with a prefix a lower bound on the cost of any
possible continuation of that prefix—the future cost. The hope
is that this will cause more paths to be pruned early on in the
decoding procedure.

Consider n heuristic functions hi : Ai −→ R≥0 for i =
1, 2, . . . , n. Define the modified extended causal cost function
C ′ : S∗ −→ R≥0 by

C ′(a1a2 · · · ai) = C(a1a2 · · · ai) + hi(a1a2 · · · ai)
for all a1a2 · · · ai ∈ S∗ (with a1, a2, . . . , ai ∈ A) for i =
1, 2, . . . , n. The heuristic functions are said to be admissible
if

hi(a1 · · · ai) ≤ min
b1···bn∈S

b1···bi=a1···ai

fi+1(b1 · · · bi+1) + · · ·+fn(b1 · · · bn)

(32)
for all a1a2 · · · ai ∈ S∗ (with a1, a2, . . . , ai ∈ A) for i =
1, 2, . . . , n− 1 and

hn(a1 · · · an) = 0

for all a1 · · · an ∈ S.
We claim that if the cost function in the vanilla stack de-

coder is replaced with a modified extended causal cost function
with admissible heuristics, the algorithm still terminates and
yields the minimum cost codeword. For a proof of this, again,
the reader may simply recognize this as an instance of A* [71]
or refer to [29].

Application to the Decoding of the Proposed Codes: The
utility of a heuristic relies critically on the complexity of
its evaluation. Solving the minimization in (32) for every
a1a2 · · · ai ∈ S∗ for i = 1, 2, . . . , n is just as hard as the
decoding problem that we are trying to solve to start with.
We instead hope to find lower bounds on that minimization
that are sufficiently easy to compute. The particular topic of
obtaining such bounds in the context of sphere decoding is
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studied extensively in [15]. The same topic is studied in [16]
in the context of MIMO detection with an A* algorithm and
the authors arrive at a bound equivalent to one appearing in
[15]. The techniques from these works are more or less readily
applicable to our decoder. In particular, one might need to relax
the constellation constraints to Λ = G or Λ = E in which case
the appropriate quantization functions can be applied to get
constant-time solutions to 1-dimensional detection problems.
This has the effect of slightly loosening the resultant bounds.

However, there is one way in which our problem differs
from those considered in [15], [16] that we can exploit. This
is in that we have a block diagonal lower-triangular effective
channel matrix (29) rather than a dense lower-triangular ef-
fective channel matrix (31). This gives the proposed codes a
decoding advantage in the particular area of A* heuristics. We
interject to elaborate.

Comparison to the Decoding of Linear Dispersion Codes:
Earlier, we showed that our cost function additively decom-
poses into functions which depend on at most the past nt
terms

fm(x1x2 · · · xm) = gm(xbm−1
nt
cnt+1xbm−1

nt
cnt+2 · · · xm)

for m = 1, 2, . . . , LTnt.
On the other hand, in the decoding of linear dispersion

codes, it is neither feasible nor intended that the codeword
be considered directly in the decoding process due to the
enormous constellation size. Rather, they are intended to be
decoded over their input constellation. For this to be done,
the channel matrices must be combined with the generator
matrices leading to an ntLT × ntLT effective channel (30)
acting on a single ntLT×1 vector with symbols from the input
constellation. After lower-triangularizing the channel, the cost
function thus ends up taking the most general form (26) with
dependence on the past ntLT symbols.

The implication this has for heuristics is that they need to
be constantly re-computed on the fly as nodes are explored
since the minimization depends on the previous symbols. This
strongly restricts the complexity allowed for these heuristics.
Naive choices lead to complexity equivalent to that of simply
visiting the nodes that we are trying to prune. In contrast, if
the cost function breaks up as it does for the proposed codes,
we get heuristics that can be pre-computed and are identical
for any prefix. For example, we can solve the column-by-
column MIMO detection problem or find a lower bound on
its cost and this only has to be done once. The fact that it
only has to be done once means that heuristics that would
otherwise be useless, like solving a lower-dimensional version
of the same decoding problem under consideration, are now
potentially useful.

Application to the Decoding of the Proposed Codes Con-
tinued: We require that our heuristic satisfies

hi(x1 · · ·xi) ≤ min
z1···zn∈S

z1···zi=x1···xi

LTnt∑
j=i+1

fj(z1 · · · zj) (33)

for i = 1, 2, . . . , LTnt − 1 and hLTnt(x1 · · ·xLTnt) = 0. As
previously mentioned, such heuristics can be found in [15],
[16]. However, we will shift our interest to heuristics that

do not depend on x1 · · ·xi in which case we can use more
complex heuristics (in the sense of computational complexity),
that are conceptually trivial. In particular, simply solving
smaller versions of the decoding problem under consideration.

Firstly, we can remove the codeword constraint for the
purposes of the lower-bounding (33). That is,

min
z1···zn∈S

z1···zi=x1···xi

LTnt∑
j=i+1

fj(z1 · · · zj)

≥ min
z1···zn∈ALTnt

z1···zi=x1···xi

LTnt∑
j=i+1

fj(z1 · · · zj).

We further would like that our heuristic does not depend on
x1 · · ·xi. We can remove the appropriate number of terms
from the beginning of the sum:
LTnt∑
j=i+1

fj(z1 · · · zj) ≥
LTnt∑

j=b i−1
nt
cnt+nt+1

fj(z1 · · · zj)

=

LTnt∑
j=b i−1

nt
cnt+nt+1

gj(zb j−1
nt
cnt+1 · · · zj)

(34)

where we have
⌊
i−1
nt

⌋
nt + nt + 1 ≥ i + 1 and (34) depends

on zb i−1
nt
cnt+nt+1 · · · zLTnt .

There are three points that must be noted now. The first is
that we can break up the sum (34) in any way we like and
lower-bound its minimization by the term-by-term minimiza-
tion of the broken up sum. The second is that we can lower-
bound any terms trivially by 0. This allows us to obtain lower-
bounds which consist of MIMO detection problems of any
size, i.e, with 1×1 to nt×nt channels. The third is that these
do not need to be computed for every i = 1, 2, . . . , LTnt − 1
(this a separate matter from independence of x1 · · ·xi). The
same heuristic will be shared by ranges of i and the heuristics
for larger i just involve fewer terms of (34) so are obtained
by subtracting components of the heuristic for smaller i.

For example, for i = 1, we can break down (34) into
LT − 1 terms corresponding to the last LT − 1 columns of
the codeword X:

2nt∑
j=nt+1

gj(zb j−1
nt
cnt+1 · · · zj) +

3nt∑
j=2nt+1

gj(zb j−1
nt
cnt+1 · · · zj)

+ · · ·+
LTnt∑

j=(LT−1)nt+1

gj(zb j−1
nt
cnt+1 · · · zj). (35)

Minimizing each of these constitutes a standard MIMO detec-
tion problem with an nt×nt channel. These can be solved by
another instance of the decoder we are describing—perhaps a
more vanilla one to give us LT − 1 minima. The heuristic for
i = 1, 2, . . . , nt would be the sum of these LT − 1 minima.
For i = nt + 1, . . . , 2nt, it would be the sum of the last
LT − 2 of these minima, and so on. This is in direct analogy
to obtaining the cost of symbol-by-symbol hard decisions in
the VBT metric decoder described in [70]. In fact, with nt = 1
it would be precisely that but with a fading channel.
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As previously mentioned, we need not solve an nt × nt
problem, we can solve a 1 × 1 problem which would corre-
spond to replacing (35) by the first term in each sum and costs
almost nothing. The SNR and the codebook size will deter-
mine whether the computational effort put into computing the
heuristic is made up for by a reduction of the complexity of the
main tree search. For example, in obtaining the nt = 4, L = 1
simulation result in the previous section, it was found that
solving the nt×nt problem was worthwhile and significantly
reduced the overall complexity.

Finally, note that we can mix and match heuristics such
as those described here and those intended for dependence
on x1 · · ·xi. Generally, if our codeword X is short and wide,
we can get sufficiently tight heuristics which do not depend on
the previous symbols, but if the codeword is tall and narrow, it
might only be worthwhile to consider heuristics which depend
on x1 · · ·xi and simply apply the approaches in [15], [16].

Moreover, completely separately from this point, we can
use the computationally less expensive heuristics in [15], [16]
to lower-bound the terms of (35) rather than outright solve
the minimizations. For example, we can consider the bound
in [15] termed the eigenbound which is also independently
arrived at in [16]. Take some M ∈ Cnt×nt and u,v ∈ Cnt

with M invertible and let λmin be the smallest eigenvalue of
the positive definite matrix M†M . Then, one can easily show
that [15]

‖Mu− v‖22 ≥ λmin‖u−M−1v‖22.

We can then perform the minimization over u ∈ Ant

component-wise. We can simplify this further by relaxing the
minimization to over u ∈ Λnt with Λ = G or E and use the
appropriate quantization function.

D. Spherical Bounding

We consider using a spherical bound stack decoder first
proposed in [14]. This decoder is essentially a best-first
variation on the depth-first sphere decoder [10], [11] which
is a commonly used decoder for linear dispersion codes. The
spherical bounding idea is to pick a threshold T and restrict
the search to the s ∈ S satisfying C(s) ≤ T . If there are no
codewords satisfying C(s) ≤ T , increase T and start over.
Clearly, if we find the minimum cost codeword among the
codewords whose cost is less than or equal to T , then it must
be the minimum cost codeword among all codewords so the
resulting decoder is still ML.

The modification to the basic algorithm is simply as follows:
Rather than pushing pt onto the stack for every t ∈ E(p), we
push pb onto the stack for every

b ∈ {t ∈ E(p) | f|p|+1(pt) ≤ T − C(p)}. (36)

There is now a possibility that the priority queue size will
decrease because something popped might not be replaced.
Nonetheless, one can simply increase T and start over should
the priority queue become empty. It can again be verified that
the resulting algorithm works. Moreover, combining this with
future costing is also straightforward.

The challenge now is in enumerating the elements of the
set in (36). In the case of |p| < knt, we have E(p) = A
so we must find the constellation points t ∈ A for which
f|p|+1(pt) ≤ T −C(p). The naive way would be to go through
all of the constellation points and compare to the threshold.
However, this would give us only a space complexity reduc-
tion. In order to obtain a time complexity reduction, this must
be done without going through all of the constellation points
every time. We will start by showing that this problem amounts
to finding the constellation points that lie in a circle in the
complex plane.

Let p = x1 . . . x|p|, define h by

h =

(
L
`(b |p|nt

c+1)

)
|p|+1−b |p|nt

cnt,|p|+1−b |p|nt
cnt

, (37)

and define u by

u =

y|p|+1−
|p|∑

k=b |p|nt
cnt+1

(
L
`(b |p|nt

c+1)

)
|p|+1−b |p|nt

cnt,k−b |p|nt
cnt

xk.

One can then verify that

f|p|+1(pt) = |u− ht|2

which leads to

|u− ht|2 ≤ T − C(p).

This is equivalent to
|t− c| ≤ r (38)

where

r =

√
T − C(p)

|h| (39)

and
c =

u

h
.

We seek to enumerate the constellation points t ∈ A satisfying
(38). At this point, we interject to comment on what happens
in the case of linear dispersion codes.

Comparison to the Decoding of Linear Dispersion Codes:
When a linear dispersion code is used with a QAM input
constellation which is a Cartesian product of PAM constella-
tions, the channel model is usually converted into an equivalent
real-valued model. Finding the constellation points which
satisfy (38) reduces to the trivial problem of enumerating
the integers on an interval. For this reason, most of the
literature concerned with the decoding of linear dispersion
codes works with real-valued models. In contrast, we do not
have that option and cannot readily apply the existing spherical
bounding procedures.

Spherical Bounding Continued: We will now provide pro-
cedures for finding Gaussian and Eisenstein integer con-
stellation points in a circle without necessarily exhaustively
going through all |A| points. The procedures will be simple
and applicable to arbitrary Gaussian or Eisenstein integer
constellations. They might not necessarily be the most efficient
possible procedures, but they will be efficient enough to realize
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Fig. 14. Finding Gaussian integer constellation points in a circle; the hollow
circles are the Gaussian integers that are visited
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Fig. 15. Finding Eisenstein integer constellation points in a circle; the hollow
circles are the Eisenstein integers that are visited

the task at hand which is obtaining the constellation points
satisfying (38) in a small fraction of |A| steps (averaging over
high SNRs). Figures 14 and 15 provide visualizations of these
procedures.

We start by considering the problem of finding the points in
Λ which are inside the circle where Λ = G or Λ = E. Denote
by Rcircle

Λ (c, r) the set of lattice points inside the circle defined
by (38), i.e.,

Rcircle
Λ (c, r) = {z ∈ Λ | |z − c| ≤ r}.

We start with the case of Λ = G. Rectangular subsets of
G can be naturally enumerated. We can start by finding the
smallest square which contains the circle and then shrinking
it so that the edges are aligned with G. Let

imin = dRe{c} − re
imax = bRe{c}+ rc
jmin = dIm{c} − re
jmax = bIm{c}+ rc

and denote by Rrectangle
G (c, r) the set

Rrectangle
G (c, r) =

{i+ ıj | i, j ∈ Z, imin ≤ i ≤ imax, jmin ≤ j ≤ jmax}.
One can verify that Rcircle

G (c, r) ⊆ Rrectangle
G (c, r). We can

then enumerate the elements of Rcircle
G (c, r) by enumerating

the elements of Rrectangle
G (c, r) and rejecting the z ∈ G for

which |z − c| > r.

In the case of Λ = E, parallelogram regions are naturally
enumerated. We can similarly find a parallelogram which
contains the circle and align it with E in a manner that
guarantees that no points inside the circle are missed. Denote
by Rparallelogram

E (c, r) the set

Rparallelogram
E (c, r) =i0 + j0

ı
√

3

2
+ i+ j(ω + 1)

∣∣∣∣∣∣
i, j ∈ Z

0 ≤ i ≤ imax

0 ≤ j ≤ jmax


where i0, j0, imax, and jmax are as follows:

j0 =

⌈
Im{c} − r

√
3

2

⌉

i0 =

{⌊
Re{c} − r

√
3
⌋

if j0 is even⌊
Re{c} − r

√
3− 0.5

⌋
+ 0.5 if j0 is odd

jmax =

⌊
Im{c}+ r

√
3

2

⌋
− j0

imax =
⌈
Re{c}+ r

√
3
⌉
− Re{ξ} if Im{ξ}

√
3

2

is even⌈
Re{c}+ r

√
3− 0.5

⌉
+ 0.5− Re{ξ} if Im{ξ}

√
3

2

is odd

where ξ = i0 + j0
ı
√

3

2
+ jmax(ω + 1).

It can be verified that Rcircle
E (c, r) ⊆ Rparallelogram

E (c, r). As
before, we can enumerate the elements of Rcircle

G (c, r) by
enumerating the elements of Rparallelogram

E (c, r) and rejecting
the z ∈ E for which |z − c| > r.

The next task is to restrict the points in Rcircle
Λ (c, r) to the

points that belong to our constellation A = AΠΛ. Obviously, it
would defeat the purpose of the algorithm if we were to have
to compare them to each point in A. Fortunately, Proposition
10 gives us a constant-time deterministic set membership test
for checking whether some z ∈ Λ belongs to AΠΛ. We can
find AΠΛ ∩ Rcircle

Λ (c, r) by simply rejecting the z ∈ Λ for
which QΛ(z/Π) 6= 0 during the enumeration.

One issue remains. When the SNR is low, the radius r
is frequently large enough for the circle to cover an area
larger than the area covered by the constellation aside from
the possibility of the circle being entirely outside of the con-
stellation. Consequently, at low SNRs, this algorithm would
lead to a higher average complexity than that of exhaustively
going through all of the points in A. Therefore, we must add
a further step which is the enforcement of the boundaries
of the constellation so that the worst-case complexity is
comparable to enumeration by exhaustive search. We propose
that this be done in simplest possible way which is by en-
forcing a rectangular boundary around the constellation. This
is achieved by modifying the parameters of the rectangle and
parallelogram regions to prevent them from extending further
outside this rectangular boundary enclosing the constellation
than is necessary. In the case of rectangle regions, this is
trivial. In the case of parallelogram regions, it is a matter
of elementary geometry which we will omit to detail. Further
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refinement of the procedure offers diminishing returns because
if the SNR is low enough for the circles to consistently stretch
far beyond the constellation, there would not be any benefit
to spherical bounding to begin with.

For completeness, we specify an initial choice of threshold.
We start with

T = α ·
L∑
`=1

E
[
‖W`‖2F

]
where the initial value of α is a manually tuned parameter.
Whenever the search fails, we add δ to α where δ is also
a manually tuned parameter. Justification for such a form of
threshold can be found in [72].

E. Permutations

Spatial Permutations: We have some freedom in permuting
the rows of the sub-codewords of X and hence the order in
which the symbols within a column are detected. In particular,
let P1, P2, . . . , PL be some nt×nt permutation matrices. We
then have ρH`X` = (ρH`P`)(P

−1
` X`). We can take ρH`P`

as our channel matrix and perform the QL decomposition
ρH`P` = Q`L` for ` = 1, 2, . . . , L. We refer to such permu-
tations as spatial permutations. For the purposes of decoding
our codes, the modification to the algorithm is straightforward:
We can perform the decoding as usual but must undo the
permutation when computing the parity symbols as well as
at the end of the decoding procedure.

The topic of spatial permutations is studied extensively in
[12], [13]. The goal is usually to choose a permutation which
leads to the matrices L1,L2, . . . ,LL having properties which
result in a more efficient tree search. For example, from (37)
and (39), we see that having large magnitude coefficients on
the diagonals of these matrices leads to smaller radii in the
spherical bounding procedure. We will consider the use of a
simple heuristic proposed in [12] which is to sort the columns
of the channel matrices in descending order of 2-norm.

Temporal Permutations: We have the freedom to permute
the columns of X arbitrarily and hence detect the columns of
the codeword in any order. This is enabled by the fact that
the underlying code is MDS. Once a permutation has been
chosen, the modification to the algorithm is straightforward:
• Permute the columns of Y accordingly as well as their

associations with the different channel matrices (via `(j)).
• Permute the columns of the generator matrix used for

generating the code tree accordingly and systematize it.
• Decode as usual and apply the inverse permutation to the

columns of the resulting codeword.
It remains to determine how to choose a temporal permuta-

tion. We propose that we use the permutation which puts the
columns of Y into descending order of 2-norm as is consistent
with the principle of detecting the most reliable parts of the
codeword first.

Comparison to the Decoding of Linear Dispersion Codes:
In the case of linear dispersion codes, the effective codeword
is an ntLT × 1 vector and there is no option for temporal
permutations, we can only do spatial permutations. Moreover,
since we have one large ntLT×ntLT effective channel matrix

rather than several nt × nt matrices, the number of possible
spatial permutations is larger and the choice among them is
important as is illustrated in [12], [13], [73].

It is worth noting that [73] argues that spatial permutations
should be chosen as a function of both the channel matrix and
the received signal vector and provides a relatively complex
method for doing so. On the other hand, for the proposed
codes, the block diagonal structure allows us to use the
received signal to influence the detection order trivially via
the proposed temporal permutation.

The General Case

We have developed an algorithm and a variety of improve-
ments that are readily applicable to the decoding of SRB codes
in the case of nr = nt. The case of nr > nt is handled in the
same way with the QL decomposition for rectangular matrices
applied. This results in an immaterially different cost function.
The reader is referred to [12], [13] for details.

On the other hand, the case of nr < nt involves some
challenges. A sphere decoder for the case of nr < nt is
proposed in [74] and the reader is also referred to [12] for
some comments on this matter. In this case, the first term in
the causal cost function depends on nr − nt symbols rather
than one. To use a stack decoder, we must begin by pushing
all prefixes of length nr−nt onto the priority queue incurring
exponential complexity in nr−nt. Depth-first decoders might
be more natural in this case. Nonetheless, the challenge of
nr > nt is not unique to the proposed codes and the techniques
we provided for spherical bounding can be used to develop
depth-first strategies.

Finally, we have the topic of SRA codes. In the case
where there is no sub-codeword which contains both parity
and information rows, all of the same decoding techniques
apply readily. When this is not the case, it is not immediately
apparent how to appropriately enumerate the codewords, (i.e.,
compute the E function (25)). A standard but not necessarily
very efficient way of dealing with this is by removing the
codeword constraints and checking at the end of the decoding
procedure if the answer is a valid codeword. If the answer
is not a valid codeword, the search is continued. Checking
whether the codeword is valid can be done efficiently by
representing the code as the null space of a parity-check matrix
rather than the row space of a generator matrix.

F. Decoding Complexity Simulations

In this subsection, we examine the relative complexities
of the proposed decoding strategies as a function of SNR in
simulation. We consider the case of nr = nt = T = L = 2
and a d = 3 SRB code with a 271-Eis. constellation achieving
a bpcu rate of 8.08. The CER versus SNR curve for this code
was provided in Section V-A in Fig. 6.

The spherical bounding parameters are α = 1.75 and
δ = 0.25. Moreover, the future costing is done by using
the eigenbound to lower-bound the cost of the column-by-
column MIMO detection problem where the component-wise
minimization is performed with constellation constraints.
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Fig. 16. Average number of code tree nodes visited versus SNR
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Fig. 17. Average peak stack size versus SNR

Fig. 16 plots the average number of code tree nodes visited
as a function of SNR which is a proxy for the time complexity.
In counting the number of nodes visited, we count all of the
Eisenstein integers in the parallelogram occurring in the spher-
ical bounding procedure as visited nodes even though some
of them are not constellation points and are, strictly speaking,
not part of the code tree. Nonetheless, they effectively act like
virtual code tree nodes that are visited and rejected. Thus, the
inefficiency of relaxing the circle constraint to a parallelogram
constraint is accounted for. Moreover, the visit count is not
reset if the tree search starts over due to the bounding threshold
being too small.

Fig. 17 plots the average peak stack (or priority queue)
size as a function of SNR which is a proxy for the space
complexity. The peak is referring to the fact that the tree search
might be repeated several times due to too small a bounding

threshold.
The results are self-explanatory so our comments will be

brief. Firstly, note that the simulations start at an SNR which
is already quite high—corresponding to a CER of less than
10−4. The reason is that the vanilla stack decoder is infeasible
at lower SNRs. One can expect larger gaps between the
successive improvements at lower SNRs. Moreover, this is
only one example and the relative significance of the various
decoder improvements depends on the channel, code, and
decoder parameters. For example, complex future costing
heuristics were crucial to the decoding of the nt = 4, L = 1
code simulated in Section V-C whereas here, they appear to
be insignificant because a simple loose bound is used.

VII. CONCLUDING REMARKS

In this paper, we studied space–time codes based on rank
and sum-rank metric codes from both the perspectives of
of coding-theoretic optimality properties and empirical error
performance. We demonstrated that such codes can have
competitive performance relative to codes designed for other
criteria aside from utilizing significantly smaller constellations.
Moreover, we demonstrated that such codes can be feasibly
decoded with new challenges and opportunities arising from
the decoding problem. Apart from the obvious ways in which
these investigations can be extended, we suggest the following
broad questions for future work:

1) Suboptimal decoding was not considered in this paper
and the decoding complexity remains relatively high. It could
be interesting to consider whether the lattice reduction ap-
proach of Puchinger et al. in [5] could be usefully combined
with the proposed sequential decoding strategies.

2) We have demonstrated that the proposed codes can
sometimes outperform full diversity codes even at higher
SNRs. Yet, the rate–diversity optimality criterion for which
the codes were constructed is not necessarily of any relevance
to this error performance. In light of this, it could be interesting
to consider other ways of designing good codes that are not
full diversity.
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[34] U. Martı́nez-Peñas and F. R. Kschischang, “Universal and dynamic
locally repairable codes with maximal recoverability via sum-rank
codes,” IEEE Trans. Inf. Theory, vol. 65, no. 12, pp. 7790–7805, Dec.
2019.

[35] A. R. Hammons and H. El Gamal, “On the theory of space–time codes
for PSK modulation,” IEEE Trans. Inf. Theory, vol. 46, no. 2, pp. 524–
542, Mar. 2000.

[36] Y. Liu, M. P. Fitz, and O. Y. Takeshita, “A rank criterion for QAM
space–time codes,” IEEE Trans. Inf. Theory, vol. 48, no. 12, pp. 3062–
3079, Dec. 2002.

[37] S. Yang and L. Hanzo, “Fifty years of MIMO detection: The road to
large-scale MIMOs,” IEEE Commun. Surv. Tut., vol. 17, no. 4, pp. 1941–
1988, 4th Quart. 2015.

[38] H. El Gamal and M. O. Damen, “Universal space–time coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 5, pp. 1097–1119, May 2003.

[39] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental
tradeoff in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49,
no. 5, pp. 1073–1096, May 2003.

[40] P. Elia, K. R. Kumar, S. A. Pawar, P. V. Kumar, and H.-F. Lu, “Explicit
space–time codes achieving the diversity–multiplexing gain tradeoff,”
IEEE Trans. Inf. Theory, vol. 52, no. 9, pp. 3869–3884, Sep. 2006.

[41] J.-C. Belfiore, G. Rekaya, and E. Viterbo, “The Golden Code: A 2 × 2
full-rate space–time code with nonvanishing determinants,” IEEE Trans.
Inf. Theory, vol. 51, no. 4, pp. 1432–1436, Apr. 2005.

[42] P. Elia, P. V. Kumar, S. A. Pawar, K. R. Kumar, B. S. Rajan, and H.-F. Lu,
“Diversity–multiplexing tradeoff analysis of a few algebraic space–time
constructions,” in Proc. Allerton Conf. Commun., Control, and Comput.,
Monticello, IL, USA, 2004.

[43] J. Harshan and E. Viterbo, “On the robustness of algebraic STBCs to
coefficient quantization,” in Proc. Aust. Commun. Theory Workshop,
Wellington, New Zealand, 2012.

[44] ——, “Integer space–time block codes for practical MIMO systems,”
IEEE Wireless Commun. Lett., vol. 2, no. 4, pp. 455–458, Aug. 2013.

[45] Y. Wu, L. M. Davis, and A. R. Calderbank, “Finite precision analysis
for space–time decoding,” IEEE Trans. Signal Process., vol. 57, no. 12,
pp. 4861–4870, Dec. 2009.
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