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Monotonicity of the Trace–Inverse of

Covariance Submatrices and

Two-Sided Prediction
At present, the future is just as important as the past.

Anatoly Khina, Arie Yeredor, and Ram Zamir

Abstract

It is common to assess the “memory strength” of a stationary process by looking at how fast the normalized

log–determinant of its covariance submatrices (i.e., entropy rate) decreases. In this work, we propose an alternative

characterization in terms of the normalized trace–inverse of the covariance submatrices. We show that this sequence

is monotonically non-decreasing and is constant if and only if the process is white. Furthermore, while the entropy

rate is associated with one-sided prediction errors (present from past), the new measure is associated with two-sided

prediction errors (present from past and future). This measure can be used as an alternative to Burg’s maximum-

entropy principle for spectral estimation. We also propose a counterpart for non-stationary processes, by looking at

the average trace–inverse of subsets.

Index Terms

Maximum entropy, prediction, minimum mean square error, causality.

I. INTRODUCTION

The entropy rate of a stationary process {X1,X2,X3, . . .} is given by the limit limn→∞Hn of the normalized

joint differential entropy h(⋅) of n consecutive samples:

Hn ≜
1

n
h(X1, ...,Xn). (1)

It is well known that Hn is monotonically non-increasing in n, and is constant if and only if (iff) the process is

memoryless [has independent and identically distributed (i.i.d.) samples] [1, Sec. II-B], [2, Ch. 17.6]. Furthermore,

the difference

Dn ≜H1 −Hn
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is equal to the Kullback–Leibler (KL) divergence [2, Ch. 2.3] between the n-dimensional distribution of the process

and the n-dimensional distribution of a memoryless process with the same marginal. If the process is Gaussian,

then Dn simplifies to [2, Ch. 8.4]

DG
n =

1

2
log

Var{X1}

∣Cn∣
1/n

, (2)

where Cn is the nth order covariance matrix of the process, ∣Cn∣ denotes its determinant, and Var{X1} is the

variance of X1 (and of any other sample, by stationarity). This non-negative quantity is zero iff the nth order

covariance Cn is proportional to the identity matrix In, i.e., the vector (X1, . . . ,Xn) is white. Thus, DG
n can be

thought of as a measure of the memory strength (“distance from whiteness”) which increases with n for a process

with memory [1, Th. 27], [2, Th. 17.9.6], as implied by the monotonicity of Hn (1).

The quantity DG
n has two additional interesting interpretations: The first follows from writing the trace and the

determinant of Cn as the sum and product, respectively, of its eigenvalues λ1, ..., λn:

DG
n =

1

2
log

1
n ∑

n
i=1 λi

(∏
n
i=1 λi)

1/n
, (3)

i.e., it is half the logarithm of the arithmetic-to-geometric means ratio of the eigenvalues, which is zero iff the

eigenvalues are equal by the arithmetic mean–geometric mean inequality (recall that the eigenvalues of a covariance

matrix are real and non-negative). The second follows from the chain rule for entropies, i.e., from writing the joint

differential entropy as the sum of conditional differential entropies:

nHn= h(X1) + h(X2∣X1) +⋯ + h(Xn∣Xn−1,Xn−2, . . . ,X1),

where, in the Gaussian case, the terms are associated with prediction minimum mean square errors (MMSEs) of

increasing order. Thus, DG
n may be viewed as the mean prediction gain

DG
n =

n

∑
i=1

1

2
log

Var{Xi}

E2(i∣{i − 1, i − 2, . . . ,1})
, (4)

where E2(i∣{i − 1, i − 2, . . . ,1}) is the ith order linear prediction MMSE of Xi given {Xi−1,Xi−2, . . . ,X1}, and,

therefore, DG
n is zero iff the prediction MMSEs are all equal to Var{X1}.

Jaynes’ maximum entropy (MaxEnt) principle [3] and its specialization to spectral estimation by Burg [4], [2,

Ch. 12.6] dictate that, for given k + 1 consecutive autocorrelation constraints

E{Xi+`Xi} = c`, ` ∈ {0,1,2, . . . , k}, (5)

a zero-mean Gaussian autoregressive (AR) process of order k, AR(k), maximizes the entropy Hn for all n ≥ k. This

process, thus, minimizes the memory strength (“distance from whiteness”) DG
n under the given k + 1 correlation

constraints (5).

In this work, an alternative measure of the memory strength of a stationary process—the trace of the inverse of

a covariance matrix (also referred to as the precision matrix [5, Lib. II, Sec. III]) is considered. The trace–inverse

(Tin) is a common measure of confidence in data reliability analysis (see, e.g., [6] and references therein), where

it is usually sought to be maximized; various approaches have been proposed for bounding [7] or for explicitly

estimating [8] or calculating [9] this quantity in different contexts (albeit, not in the context of stationary processes).
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By borrowing and employing this measure for consecutive samples of discrete-time stochastic stationary processes,

we unveil interesting dual relationships to the ones above, where the Tin plays the role of the log–determinant (2),

arithmetic-to-harmonic means ratio replaces the arithmetic-to-geometric means ratio (3), and two-sided prediction

(TSP) [10, Ch. I.10], [11]–[15] plays the role of the usual one-sided prediction (OSP) (4).

In particular, the Tin of n consecutive samples of a stationary process, normalized by n, is shown to be

monotonically non-decreasing with n, and constant iff the process is white. Furthermore, a new criterion for spectral

estimation/completion is proposed, seeking the minimization of the Tin as an indication of maximized uncertainty

(poor “reliability”) of the process, reminiscent of the notion of entropy in this context. This minimum Tin (MinTin)

criterion is shown to yield a different solution, in general, from the familiar MaxEnt (Gaussian AR) solution of

Burg.

The rest of the paper is organized as follows. In the following subsection we introduce our notations. We state

the main result of this work—the monotonicity of the normalized Tin—-in Sec. II. We then provide proofs of the

main result using two different approaches which elucidate different insights—via MMSE estimation and via AR

modeling, in Secs. III and IV, respectively. We introduce a MinTin criterion for spectral estimation/completion and

contrast this criterion with the MaxEnt criterion in Sec. V. Finally, we derive parallel results for non-stationary

processes in Sec. VI, and conclude the paper with a discussion in Sec. VII.

A. Notation

E, Var, (⋅)T , and (⋅)∗ denote the expectation, variance, transpose, and complex conjugation operations, respec-

tively. j =
√
−1 is the imaginary unit.

Denote the natural, integer, and real numbers by N, Z, and R, respectively. Denote the set of the smallest n ∈ N

natural numbers by [n] ≜ {1, . . . , n}, and this set with i ∈ N removed—by [n/i] ≜ [n]/{i}, where ‘/’ denotes the

set difference operation.

We denote matrices by uppercase boldface roman letters (A), and column vectors—by (lowercase or uppercase)

boldface italic or Greek letters (v, X , µ). In denotes the identity matrix of size n.

∣A∣ and ∣S∣ denote the determinant of the matrix A and the cardinality of the set S, respectively.

Denote XS = (Xi1 ,Xi2 , . . . ,Xi∣S∣)
T , where S ⊂ Z, i` ∈ S for all ` ∈ [∣S∣] such that i1 < i2 < ⋯ < i∣S∣.1

Denote by CS ≜ E{XSX
T
S } the autocovariance matrix of a zero-mean random vector XS where S ⊂ Z, ∣S∣ < ∞,

and—by CS1,S2 ≜ E{XS1X
T
S2

} the cross-covariance matrix between XS1 and XS2 , where S1,S2 ⊂ Z, and

∣S1∣, ∣S2∣ < ∞.

With some abuse of notation, we further denote Cn ≜ C[n], Ci,S ≜ C{i},S, and Ci,i ≜ C{i},{i}, where n ∈ N,

i ∈ Z, and S ⊂ Z. Note that the matrix C1 is a scalar and Ci,S is a (row) vector, and therefore they will be denoted

C1 and Ci,S, respectively.

The (i, j) element of a matrix A will be denoted by [A]i,j , and its principal upper-left n × n submatrix—by

[A]
[n],[n].

1If S is a countably infinite set, then the requirement ` ∈ [∣S∣] is replaced with ` ∈ N and no maximal index (paralleling i
∣S∣ in the finite-set

S case) exists.
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Denote by E2(i∣S) the MMSE achievable by linear estimation (LMMSE) in estimating Xi given XS for i ∈ Z,

S ⊂ Z. For a set S ⊂ Z, ∣S∣ < ∞, this LMMSE is known to be given by [16, Ch. 7.3]:

E2(i∣S) = Ci,i −Ci,SC−1
S C

T
i,S . (6)

For a zero-mean, wide-sense stationary (WSS) process {Xk ∣k ∈ Z}, we further define the following:

● The covariance sequence

c` ≜ E{Xi+`Xi} ∀` ∈ Z.

In particular, c0 denotes the variance of the process;

● The power spectral density (spectrum)

S (ej2πf) ≜
∞

∑
`=−∞

c`e
−j2πf`

(assuming convergence of the sum for all f ∈ R).

● The OSP LMMSE—the LMMSE in “predicting” the present given the entire past—

←Ð
E2

≜ E2(i∣{` < i∣` ∈ Z}) = E2(i∣i − 1, i − 2, . . .);

The TSP LMMSE—the LMMSE in predicting the present given the entire past and future—

←→
E2

≜ E2(i∣Z/{i}) = E2(i∣ . . . , i − 2, i − 1, i + 1, i + 2, . . .). (7)

Note that, due to the stationarity of the process, both the OSP and the TSP LMMSEs do not depend on i; similarly,

Cn denotes the covariance of any n consecutive samples of the process.

The (real-valued) eigenvalues of an n × n symmetric matrix A, non-increasingly ordered, will be denoted by

λ↓1(A) ≥ λ↓2(A) ≥ ⋯ ≥ λ↓n(A).

We use the conventions 1/0 ≜ ∞, and—by extension—trace{A−1
} ≜ ∞ for a singular PSD matrix A.

II. TRACE–INVERSE FOR STATIONARY PROCESSES

Let {Xk ∣k ∈ Z} be a zero-mean WSS process. We define the normalized trace–inverse of Cn (the covariance

matrix of any n consecutive samples) as follows.

Definition 1 (Normalized trace–inverse). The normalized Tin of order n is defined as

Mn ≜
1

n
trace{C−1

n } .

We are now ready to state the main result of this work; two alternative proofs thereof (providing different

insights, as explained in the sequel) are provided in Secs. III and IV, using MMSE estimation tools and AR

modeling, respectively.

Theorem 1 (Normalized-Tin monotonicity). The sequence {Mn∣n ∈ N} is monotonically non-decreasing. Namely,

for all n ∈ N,

Mn ≤Mn+1, (8)
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with equality in (8) iff either Cn+1 = c0 ⋅ In+1, in which case M1 =M2 = ⋯ =Mn+1 = 1/c0 (note that an equality

for all n ∈ N holds iff {Xk} is white); or Cn is singular, in which case Mn =Mn+1 = ∞.

By Th. 1, the sequence {Mn∣n ∈ N} is monotonically non-decreasing, meaning that its minimum and maximum

are M1 = 1/c0 and M∞ ≜ limn→∞Mn, respectively, where we shall see in Sec. III that the latter equals the

reciprocal of the MMSE achievable by linear prediction of the present given the entire future and past.

III. PROOF OF TH. 1 VIA MMSE ESTIMATION

In this section, we prove Th. 1 using MMSE-estimation tools and matrix properties by reinterpreting the diagonal

elements of C−1
n as the reciprocals of the LMMSEs in estimating the different Xi’s given the rest.

The following are well known results and can be found, e.g., in [17, Ch. 0.7].

Lemma 1 (Partitioned-matrix inversion). Let A be an invertible matrix of dimensions n×n, partitioned as follows.

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A11 A12

A21 A22

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where the submatrix Aij is of dimensions ni ×nj for i, j ∈ [2], and ni ∈ [n] such that n1 +n2 = n. Assume further

that A11 and A22 are invertible. Then,

A−1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(A/A22)
−1

−A−1
11A12 (A/A11)

−1

−A−1
22A21 (A/A22)

−1
(A/A11)

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where A/Aii ≜ Ajj −AjiA−1
ii Aij is the Schur complement of Aii in A [17, Ch. 0.8] for i, j ∈ [2] and i ≠ j, and its

inverse is further equal, by the matrix inversion lemma, to

(A/Aii)
−1

= (Ajj −AjiA−1
ii Aij)

−1

= A−1
jj +A−1

jj Aji (A/Ajj)
−1 AijA−1

jj .
(9)

The following result is due to Hesley and Griffiths [11], first proved by Kay, using Lagrange multipliers [12].

We provide an alternative proof for completeness, using Lem. 1.

Lemma 2 (Inverse-covariance diagonal via LMMSE). Assume Cn is invertible. Then, the diagonal elements of its

inverse are given by the reciprocals of the LMMSEs in estimating the corresponding Xi’s given the rest:

[C−1
n ]

i,i
=

1

E2(i∣ [n/i])
, i ∈ [n]. (10)

Proof: The first diagonal element of C−1
n is equal to

[C−1
n ]

1,1
= (C1,1 −C1,[n/1]C−1

[n/1]C
T
1,[n/1])

−1
(11a)

=
1

E2(1∣ [n/1])
, (11b)

where (11a) holds by Lem. 1 and (11b) follows from (6). By rearranging the entries of X[n], one arrives at a

similar expression for the ith (i ∈ [n]) diagonal element of C−1
n :

[C−1
n ]

i,i
= (Ci,i −Ci,[n/i]C−1

[n/i]C
T
i,[n/i])

−1
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=
1

E2(i∣ [n/i])
.

Corollary 1 (Tin via LMMSEs). Mn, the normalized Tin of order n, is equal to the mean of the reciprocals of

the LMMSEs of the corresponding Xi’s given the rest:

Mn =
1

n

n

∑
i=1

1

E2(i∣ [n/i])
.

Proof: If Cn is singular, there exists i ∈ [n] such that Xi is a linear combination of X[n/i]. Thus, E2(i∣ [n/i]) =

0 and Mn = ∞ by our conventions (recall Sec. I-A).

For an invertible Cn, the result follows from Lem. 2 by summing all the diagonal elements (10) and dividing by

n.

The following lemma is an immediate consequence of the stationarity of the process and the fact that adding

more measurements cannot increase the LMMSE.

Lemma 3 (LMMSE monotonicity). The following relations hold for all n ∈ N and i ∈ [n]:

E2(i∣ [n/i]) ≥ E2(i∣ [n + 1/i]), (12a)

E2(i∣ [n/i]) ≥ E2(i + 1∣ [n + 1/i + 1]). (12b)

Proof: In (12a), Xn+1 is added to the set X[n/i], whereas in (12b), X0 is added to the same set, followed by

an index-shift, which is immaterial due to stationarity.

We are now ready to prove Th. 1.

Proof of Th. 1: Invertible covariance matrices: Assume that Cn and Cn+1 are invertible. Since at least one

of the elements of a (non-empty) set is at least as large as its mean, there exists an index ` ∈ [n] such that

1

E2(`∣ [n/`])
≥

1

n

n

∑
i=1

1

E2(i∣ [n/i])
(13a)

=Mn . (13b)

This allows us to arrive at the desired result:

(n + 1)Mn+1 =
n+1

∑
i=1

1

E2(i∣ [n + 1/i])
(14a)

=
`−1

∑
i=1

1

E2(i∣ [n + 1/i])
+

1

E2(`∣ [n + 1/`])
+

n+1

∑
i=`+1

1

E2(i∣ [n + 1/i])
(14b)

≥
`−1

∑
i=1

1

E2(i∣ [n/i])
+Mn +

n

∑
i=`

1

E2(i∣ [n/i])
(14c)

= (n + 1)Mn, (14d)

where (14a) and (14d) are due to Lem. 2, and (14c) follows from Lem. 3 and (13).

Singular covariance matrices: If Cn is singular, then, by Lem. 2 and our convention (recall Sec. I-A), Mn = ∞,

and therefore, by Lem. 3, Mn+1 = ∞, and (8) holds with equality. If Cn is invertible but Cn+1 is not, then, by

Lem. 2, Mn < ∞ but Mn+1 = ∞, and the inequality (8) strictly holds.
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Equality condition: The proof of the equality condition is technical and is therefore relegated to App. A. An

alternative short proof is provided in Sec. IV.

IV. PROOF OF TH. 1 VIA AUTOREGRESSIVE MODELING

In this section, we provide additional insights by proving Th. 1 using results for autoregressive (AR) processes

that enable to obtain explicit expressions for Mn. As we shall see, although the process {Xi} may not be an AR

process, in general, there exists an AR process of order up to n that is consistent with any admissible covariance

matrix Cn+1 by virtue of the Yule–Walker equations [16, Ch. 12]; thus, it suffices to prove Th. 1 for this AR

process.

Consider a zero-mean stationary AR process {Xi}, i.e., a process that can be represented as
p

∑
`=0

a`Xi−` =Wi ∀i ∈ Z, (15a)

or, equivalently, as

Xi = −

p

∑
`=1

a`Xi−` +Wi ∀i ∈ Z, (15b)

where {Wi} is a sequence of uncorrelated random variables with zero-mean and variance σ2
W , p ∈ N is the order

of the AR process assuming ap ≠ 0, a0 = 1, and {a`∣a` ∈ R, ` ∈ [p]} are the process coefficients; the process is

assumed stable, i.e., the poles of the polynomial

A(z) =
p

∑
`=0

a`z
−`

are assumed to lie strictly inside the unit circle [18, Ch. 10]. Such a process is denoted by AR(p).

All elements of C−1
n can be explicitly represented in terms of the process coefficients {ai} for p ≤ n, as was

proved in [19], [20] (see also [21], [22]). We next provide an alternative proof that relies on the Gohberg–Semençul

formula [23] for the inverse of the covariance matrix of an AR process.

Theorem 2 (Inverse covariance of AR models). Assume a WSS AR process (15) of order p ∈ [n]. Then, the elements

of its inverse autocovariance matrix C−1
n are given as

[C−1
n ]

i,j
σ2
W =

i−1

∑
`=0

a`a`+j−i −
n+i−j

∑
`=n+1−j

a`a`+j−i, 1 ≤ i ≤ j ≤ n;

[C−1
n ]

j,i
= [C−1

n ]
i,j
, i, j ∈ [n];

where a` = 0 for p < ` ≤ n.

Proof: We prove the theorem for p < n in here, and relegate the extension for p = n to App. B.

Denote by v the first column of C−1
n , i.e., the vector v ≜ [v0 v1 ⋯ vn−1]

T

that satisfies

Cnv = [1 0 ⋯ 0]
T

. (16)

Note that v0 = ∣Cn−1∣/∣Cn∣ by Cramer’s rule [17, Ch. 0.8.3]. Thus, v0 ≠ 0 since Cn and therefore also Cn−1 are

invertible.
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Then, according to the Gohberg–Semençul formula [23] for symmetric matrices [24]–[26], C−1
n is equal to

C−1
n =

1

v0
(VVT −UUT ) , (17)

where V and U are lower-triangular Toeplitz matrices of dimensions n × n, v is the first column of V, and

u ≜ [0 vn−1 vn−2 ⋯ v1]
T

is the first column of U.

Now note that since the process is a WSS AR process, it satisfies the Yule–Walker equations [16, Ch. 12]

Cn [a0 a1 ⋯ ap 0 ⋯ 0]
T

= σ2
W [1 0 ⋯ 0]

T

(18)

That is, the first column of C−1
n —v of (16)—is given by v = σ−2W [a0 a1 ⋯ ap 0 ⋯ 0]

T

. Substituting this

v in (17) concludes the proof.

Moreover, averaging the diagonal elements of C−1
n in Th. 2 yields the following explicit expression for the

normalized Tin Mn.

Corollary 2 (Tin of AR models). For an AR process of order p ≤ n, Mn, the normalized Tin (Def. 1), is equal to

Mn =
1

σ2
W

n

∑
`=0

(1 −
2`

n
)a2` ,

where, by convention, a` = 0 for ` > p.

We now have all the necessary tools for the second proof of Th. 1 (for non-singular Cn and Cn+1).

Proof of Th. 1: Assume that Cn and Cn+1 are invertible (for the case of singular Cn+1 or Cn see the proof in

Sec. III). Let Cn+1 be some autocovariance matrix of n+1 consecutive samples of a zero-mean WSS process. Then,

one can (uniquely) construct an AR process whose coefficients {a0, . . . , an} are determined by the Yule–Walker

equations (18). Then, according to Corol. 2,

σ2
W (Mn+1 −Mn) =

n

∑
`=0

(1 −
2`

n + 1
)a2` −

n

∑
`=0

(1 −
2`

n
)a2`

=
2

n(n + 1)

n

∑
`=1

`a2` ,

where in the expression for Mn+1 we substituted an+1 = 0 since the order of the AR process is smaller than or

equal to n.

Thus, Mn+1 ≥Mn, with equality iff all the AR process coefficients but a0 are zero, i.e., iff X[n] is white.

V. MINTIN VERSUS MAXENT COMPLETION

In this section, we introduce a spectrum (equivalently, covariance) MinTin completion criterion and contrast this

criterion with Burg’s MaxEnt criterion. We first derive the infinite-order MinTin completion given Cm in Sec. V-A,

followed by a derivation of the finite-order MinTin completion out of all possible AR(m) processes in Sec. V-B;

both the infinite- and finite-order MinTin completions are shown to be different, in general, from Burg’s MaxEnt

completion.
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A. Infinite-order Prediction and Completion

We start by deriving an explicit expression for M∞ and
←→
E2 (7) in Lem. 4, followed by a comparison thereof

to M1 and
←Ð
E2. We then use a MinTin criterion to complete the entire covariance function (equivalently, spectrum)

given its first L values, and compare the resulting MinTin spectrum to Burg’s MaxEnt spectrum.

Lemma 4 (Infinite-order normalized Tin). The infinite-order normalized Tin, M∞ ≜ limn→∞Mn, is equal to the

reciprocal of the TSP LMMSE
←→
E2 (7)—the LMMSE in predicting Xi given the entire past and future, {X`∣` ∈

Z/{i}}—and is given by

M∞ =
1
←→
E2

(19a)

= ∫

1/2

−1/2

df

S (ej2πf)
. (19b)

Proof: Assume first that
←→
E2

> 0, or, equivalently, that 1/
←→
E2

< ∞. Assume further, for simplicity, that n is even.

To prove (19a), by Corol. 1 and the symmetry around the center i = n/2 of the diagonal, the normalized Tin may

be expressed as

Mn =
1

n/2

n/2

∑
i=1

1

E2(i∣ [n/i])
. (20)

Now, since 1/
←→
E2

< ∞, the (positive) summands inside the sums in (20) converge to 1/
←→
E2 as n (equivalently, k)

goes to infinity, and hence so does Mn. A similar argument applies when n is odd.

Formula (19b) is known from [10, Ch. I.10], [12], [13], and follows from the facts that the Tin of a matrix is

the sum of reciprocals of its eigenvalues and that the spectrum of Cn, {λ↓i(Cn)∣i ∈ [n]}, converges to the power

spectral density S (ej2πf) of the process [27, Ch. 10] (see also [12] for a different proof via AR modeling).

Assume now that
←→
E2

= 0. Then, by (20), Mn goes to infinity. On the other hand, there is at least one eigenvalue

in the spectrum of Cn that tends to zero, or equivalently, an eigenvalue of C−1
n that goes to infinity, and hence the

integral in (19b) equals infinity.

Remark 1. M∞ equals the reciprocal of the harmonic mean of the spectrum S by (19b), while M1 = 1/c0 equals

the reciprocal of the arithmetic mean of the latter since c0 = ∫
1/2

−1/2 S (ej2πf)df . Thus, the inequality M1 ≤ M∞

between the extremes of Th. 1 follows immediately from the arithmetic mean–harmonic mean inequality.

The OSP LMMSE
←Ð
E2—the LMMSE in predicting the present given the entire past—equals the geometric mean

of the spectrum by the first Szegö limit theorem [28], [27, Ch. 10.8]:

←Ð
E2

= exp{∫

1/2

−1/2
logS (ej2πf)} . (21)

By Lem. 4, the TSP LMMSE
←→
E2—the LMMSE in predicting the present given the entire past and future—equals

the harmonic-mean of the spectrum (19b).

Comparing the two, the TSP LMMSE is evidently less than or equal to the OSP LMMSE, by the geometric mean–

harmonic mean inequality, and the two are equal iff the spectrum S is constant, i.e., iff the process {Xn} is white,
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meaning that the past and the future cannot help in (linearly) predicting the present. Or, using the prediction-gain

terms, and denoting the limit of DG
n (2), (4) as n→∞ by

←Ð
DG
∞

, we have:

←Ð
DG
∞
=

1

2
log

Var{X1}
←Ð
E2

=
1

2
∫

1/2

−1/2
log

c0
S (ej2πf)

df

≤
1

2
log∫

1/2

−1/2

c0
S (ej2πf)

df =
1

2
log

Var{X1}
←→
E2

≜
←→
DG
∞
,

(22)

with equality iff the process is white, i.e., S (ej2πf) = c0 ∀f , in which case
←Ð
DG
∞
=
←→
DG
∞
= 0, where

←Ð
DG
∞

and
←→
DG
∞

are the OSP and TSP gains, respectively,

Theorem 3 (Infinite-order MinTin completion). Given a PD matrix Cm for m ∈ N (equivalently, given admissible

{c0, c1, . . . cm−1}), the minimal M∞ that is consistent with Cm is attained by a zero-mean WSS process with power

spectral density of the form

S (ej2πf) =
1

√

∑
m−1
`=0 λ` cos(2π`f)

(23a)

=
γ

∏
m−1
k=1 ∣1 − ξke−j2πf ∣

, (23b)

for the set {λ` ∈ R∣` + 1 ∈ [m]} (alternatively, γ ∈ R+ and the set {ξk ∈ C∣k ∈ [m − 1]}) for which the constraints

∫

1/2

−1/2
S (ej2πf) cos(2π`f)df = c`, ` + 1 ∈ [m], (24)

are satisfied.

Remark 2. If Cm is singular (PSD but not PD), then Mm = ∞, so by Th. 1 the minimal M∞ is infinite as well.

Proof: Due to the stationarity of the process, the given covariance matrix Cm of m consecutive samples of

the process is equivalent to the constraints E{Xi+`Xi} = c` for ` = 0,1, . . .m − 1. By applying the inverse Fourier

transform, these constraints are equivalent, in turn, to (24). Now, by solving the constrained calculus of variations

problem (with variable end points) [29, Chs. 6 and 12], [30, Ch. 4] of minimizing (19b) under the m integral

constraints (24), one arrives at (23a); the details may be found in App. C. The alternative representation (23b)

easily follows by direct substitution.

We note that the spectrum that achieves the infinite-order MinTin (23) under the autocorrelation constraints (24)

is different, in general, from Burg’s AR(m− 1) MaxEnt solution under the same constraints. According to Lem. 4,

the former minimizes the MMSE in estimating the present given the entire past and future (TSP), whereas the latter

minimizes the MMSE of the present given only the entire past (OSP). The MaxEnt and MinTin solutions may be

further thought of as the closest to a white process in terms of the OSP gain
←Ð
DG
∞

and the TSP gain
←→
DG
∞

(22),

respectively, given the constraints.

We term a WSS process with spectrum S (ej2πf) of the shape (23) a “Root-AR” (RAR) process of order m− 1

[denoted RAR(m−1)]. Note that, interestingly, any AR(p) process can be regarded as a particular case of a RAR(2p)

process: Consider an AR(p) process and let σ2
W and {ξ̄k ∣k ∈ [p]} denote the variance of its excitation noise and the

p poles of its associated polynomial A(z), respectively. Now consider a set of 2p poles {ξk ∣k ∈ [2p]}, such that

ξk = ξp+k = ξ̄k for all k ∈ [p]. By using these 2p poles with γ = σ2
W (and m = 2p+1) in (23b), we obtain a spectrum
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of a RAR(2p) process that equals the spectrum of the original AR(p) process. Note that, as a consequence, given

2p + 1 covariance values c0, c1, . . . c2p that happen to correspond to an AR(p) process, this AR(p) process would

actually be a RAR(2p) process satisfying the constraints in (24), and would therefore be the “MinTin-optimal”

process given these 2p + 1 covariance values, which (being an AR process) also happens to coincide with the

“MaxEnt-optimal” process in this case. Naturally, the same holds if the order of this AR process is smaller than p.

This intriguing property is also reflected in Th. 6 in the sequel.

Remark 3. If nonconsecutive values of the covariance function, {c`∣` + 1 ∈ S ⊂ [m]}, are given in Th. 3, only the

corresponding {λ`∣` + 1 ∈ S ⊂ [m]} may be different from zero with the rest equalling zero. This parallels the results

for Burg’s maximum entropy [4] (or equivalently the maximum MMSE given the entire past) with nonconsecutive

constraints [31].

We conclude this section by proving that the infinite-order maximum Tin (MaxTin) completion is always infinite.

Theorem 4 (Infinite-order MaxTin completion). Given a PSD covariance matrix Cm for m ∈ N (equivalently, given

admissible {c0, c1, . . . cm−1}), the maximal M∞ that is consistent with Cm is infinite.

Note first that If Cm is singular, then Mm = ∞, so by Th. 1 the maximal M∞ is infinite as well. To prove Th. 4

for a nonsingular Cm, we essentially need to show that the given covariance sequence can be continued (with an

admissible continuation) in a way that leads to a singular covariance matrix Cn for some n > m. To this end, we

first show that given any invertible Cm there is a zero-mean moving-average (MA) process that is consistent with

it.

A zero-mean MA process {Xi} is a process that can be represented as

Xi =

q

∑
`=0

b`Wi−`, (25)

where the “excitation noise” {Wi} is a sequence of uncorrelated random variables with zero mean and variance σ2
W ,

q ∈ N is the order of the MA process assuming bq ≠ 0, b0 = 1, and {b`∣b` ∈ R, ` ∈ [q]} are the process coefficients.

Such a process is denoted by MA(q).

Theorem 5 (MA modeling with a given covariance). Given a PD covariance matrix Cm for m ∈ N (equivalently,

given corresponding admissible {c0, c1, . . . cm−1}), there exists an MA process (25) that is consistent with it.

We provide a constructive proof of Th. 5 in App. D.

To prove Th. 4, we construct a matching MA(q) process that is consistent with Cm and is guaranteed to exist

by Th. 5. Then, by replacing the excitation noise {Wi} of this MA process with a periodic excitation noise with

a long enough period (at least m + q), such that the random variables within each period are uncorrelated, the

result follows. Alternatively, the desired result can be achieved by passing the matching MA(q) process through a

linear time-invariant (LTI) filter with impulse response h` = 1
√

2
(δ` + δ`−m−q) with δ` denoting the Kronecker delta

function. The detailed proof of Th. 4 is available in App. E.
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B. Finite-order Prediction and Completion

Given Cp+1, Burg’s MaxEnt principle in estimating the spectrum [equivalently, maximizing (21)], yields a zero-

mean Gaussian AR process (15) of order up to p, i.e., a spectrum of the form

S (ej2πf) =
σ2
W

∑
p
k=0 λk cos(2πkf)

, (26)

with λ0 = ∑
p
`=0 a

2
` and λk = 2∑

p−k
`=0 a`a`+k for k ∈ [p], where the coefficients {a1, . . . ap} and σ2

W (recall that a0 = 1)

are uniquely determined by the Yule–Walker equations (18).

The resulting OSP LMMSE (21) reduces, for AR models, to

←Ð
E2

= σ2
W .

By recalling that an AR(p) process is a Markov process of order p,2 and comparing the expressions for the diagonal

entries of C−1
n in Lem. 2 and Th. 2, we arrive at

←→
E2

=
σ2
W

∑
p
`=0 a

2
`

,

which, as expected, is less than or equal to
←Ð
E2, since a0 = 1 (see also [12], [15]).

As implied by Th. 3, the MinTin (RAR) spectrum (23) is shaped like the square root of a MaxEnt (AR) spectrum

(26) but with different {λk} values, and is hence different from the MaxEnt spectrum solution (23), in general.

Somewhat surprisingly, Burg’s AR MaxEnt solution is not even the MinTin solution within the class of AR processes

of order p + 1 (or smaller).

More specifically, assume that a PD covariance matrix Cp+1 (equivalently, {c0, c1, . . . cp}) is given, matching

[via the Yule–Walker equations (18)] an AR(p) process with coefficients a0 = 1, a1, . . . , ap, with ap ≠ 0 (we shall

address the possible but less likely case where Cp+1 can be matched by an AR process of a lower order, namely

with ap = 0, later on). Then, among all AR processes of orders smaller than or equal to p + 1, consistent with the

specified covariance values:

● The process maximizing the OSP LMMSE is well-known (by Burg’s MaxEnt solution) to be the same AR(p)

process, which implies that its next covariance value is given by cMaxEnt
p+1 ≜ −∑

p
`=1 a`cp+1−`.

● However, the process maximizing the TSP LMMSE is an AR(p + 1) process, whose next covariance value is

specified in the following Theorem.

Theorem 6 (Worst TSP MMSE of finite-order AR models). Assume a PD covariance matrix Cp+1 for p − 1 ∈ N

(equivalently, given corresponding admissible {c0, c1, . . . cp}) and denote the parameters of the implied AR(p)

process σ2
W and a0 = 1, a1, . . . , ap, assuming ap ≠ 0. Then, among all AR processes of orders up to p+1, consistent

with the specified covariance values, the process maximizing the TSP LMMSE is a zero-mean WSS AR(p+1) process,

whose next covariance value is given by

cMaxTSP
p+1 ≜ cMaxEnt

p+1 + (α − sign(α)
√
α2 − 1)σ2

W , (27)

2For a Markov process of order p, the immediate p past steps and p future steps constitute a sufficient statistic for the present.
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where

cMaxEnt
p+1 ≜ −

p

∑
`=1

a`cp+1−` and α ≜
∑
p
`=0 a

2
`

∑
p
`=1 a`ap+1−`

. (28)

The proof of Th. 6 is available in App. F.

Remark 4. Eqs. (27) and (28) of Th. 6 are still applicable in case the sequence c0, c1, . . . cp happens to match an

AR(p′) process with p′ < p, namely when ap, and possibly also ap−1, ap−2, . . . ap′+1, vanish. In that case, the MaxEnt

spectrum (and therefore also the MaxEnt completion) still corresponds to the same AR(p′) process. However, an

interesting distinction applies to the MinTin completion in such a case: If p′ > p/2, then the MinTin completion

still corresponds to an AR(p + 1) process. However, if p′ ≤ p/2, then the denominator in (28) vanishes, α becomes

infinite, and the correction term in (27) vanishes, so that the MinTin completion cMaxTSP
p+1 coincides with the MaxEnt

completion cMaxEnt
p+1 , and both correspond to an AR(p′) process. This is in nice agreement with the fact (discussed

in Subsection V-A above) that the implied RAR(p) process corresponds to an AR(p′) process iff p ≥ 2p′.

An interesting observation is that the same covariance value cMaxTSP
p+1 also minimizes the Tin of the augmented

covariance matrix Cp+2 given Cp+1, as stated in the following theorem, whose proof is available in App. G.

Theorem 7 (Finite-order AR-model MinTin completion). Assume a PD covariance matrix Cp+1 for p − 1 ∈ N

(equivalently, assume corresponding admissible {c0, c1, . . . cp}) and denote the parameters of the implied AR(p)

process σ2
W and a0 = 1, a1, . . . , ap, assuming ap ≠ 0. Denote by cMinTin

p+1 the value cp+1 that minimizes the Tin of

the implied Cp+2. Then, cMinTin
p+1 = cMaxTSP

p+1 , where cMaxTSP
p+1 was specified in Th. 6.

Note that this property, although rather appealing, is somewhat surprising, since the TSP LMMSE of an AR(p+1)

process maximized in Th. 6 is not directly related to any of the (reciprocal) LMMSEs along the diagonal of C−1
p+2,

and in fact, the property stated in Th. 7 does not necessarily involve an AR(p + 1) process.

Given Cp of a WSS process, the expression provided by Ths. 6 and 7 only identifies the single next covariance

value cMinTin
p (or cMaxTSP

p ) that minimizes the Tin of the implied Cp+1 [or maximizes the TSP LMMSE of

the implied AR(p) process]. Unfortunately, however, it falls short of providing the full (infinite) completion of

the covariance sequence for the process that minimizes M∞ (equivalently, maximizes the TSP LMMSE). Th. 3

provides the spectrum of this process, but does not admit a closed-form solution of the associated parameters

{λ`∣` + 1 ∈ [p + 1]}, let alone the resulting covariance sequence.

A possible approach for trying to approximate the full (infinite) covariance sequence is to compute the subsequent

covariance values recursively (using the expression from Th. 6), advancing one step at a time. However, this “greedy”

approach will not retrieve the exact full covariance sequence: For example, given the first p + 1 covariance values

(c0, . . . , cp), the first of the two additional covariance values defining the AR(p+2) process that maximizes the TSP

LMMSE would generally be different from cMaxTSP
p+1 of (27).

We illustrate the difference between the TSP LMMSE of the MinTin solution of Th. 3, the recursive (“greedy”)

application of Th. 6, and Burg’s MaxEnt solution in the following example.
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Fig. 1: The three covariance sequences completing the four given values of c0 = 1, c1 ≈ 0.6054, c2 ≈ 0.1324 and

c3 ≈ 0.0904.

Example 1. Since the parameters of the MinTin spectrum (prescribed by Th. 3) do not admit a closed-form solution,

we constructed an optimal-MinTin spectrum of order 3 [RAR(3), see (23b)] with predefined coefficients,

S (ej2πf) =
γ

∣1 − ξ1e−j2πf ∣∣1 − ξ∗1e−j2πf ∣∣1 − ξ2e−j2πf ∣
. (29)

We chose ξ1 = 0.97ej0.4π , ξ2 = 0.99, and set γ (numerically) so as to ensure unit-power (γ ≈ 0.4062 for our choice

of ξ1 and ξ2), leading to c0 = 1, c1 ≈ 0.6054, c2 ≈ 0.1324 and c3 ≈ 0.0904, which we obtained from the inverse

Discrete-Time Fourier Transform (iDTFT) of S (ej2πf) by numerical integration.

Fig. 1 illustrates the three different completions of this covariance sequences: Burg’s MaxEnt completion (28);

the sequence obtained by recursive (greedy) application of (27) of Th. 6 for p = 1,2, . . .; and the infinite-order

MinTin (MaxTSP) sequence of Th. 3 obtained from the iDTFT of S (ej2πf) of (29).

Fig. 2 shows the respective reciprocal normalized Tin M−1
n (the harmonic mean of the TSP LMMSEs) of Cn

vs. n for the covariance sequences depicted in Fig. 1. As expected, for n = 5 the recursive (“greedy”) MinTin
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5
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30

Fig. 2: The reciprocal normalized Tin values M−1
n versus n, corresponding to the three sequences in Fig. 1. The

three zoomed-in inserts are positioned around n = 5, n = 6 and n = 30, and all have the same vertical span of

∼ 0.0026.

completion of (27) attains the largest possible M−1
5 (largest possible harmonic mean of the five TSP LMMSEs

in C5), as guaranteed by Th. 7. Even for n = 6, the recursive completion still “outperforms” the infinite-order

MinTin [RAR(3)] completion, since the latter is only asymptotically “optimal” (in terms of minimum Tin)—as

indeed observed from the plots at the higher values of n. Note, though, that the differences between the values of

M−1
n between the recursive completion sequence and the infinite-order MinTin covariance sequence are very small,

and are only observed in the zoomed-in inserts in Fig. 2.

Fig. 3 illustrates the differences between the MaxEnt (Burg’s) spectrum and the optimal MinTin (RAR) spectrum

(both subject to the first 4 covariance values specified above), on three different scales: Linear, Logarithmic and

Inverse. Interestingly, while the MaxEnt spectrum appears more “flat” (“white”) than the MinTin spectrum on the

Linear and Logarithmic scales, the converse is true for the inverse scale.
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Fig. 3: The maxEnt and MinTin spectra in linear, log and inverse scales.

VI. TRACE–INVERSE FOR NON-STATIONARY PROCESSES

In this section, we part with the stationarity assumption and assume a general zero-mean process {Xi} (not

necessarily WSS). We derive a monotonicity result for non-stationary processes in the spirit of Th. 1 (and akin to

those of [1, Sec. II-B], [2, Ch. 17.6] for average entropies and average conditional entropy rates).

Definition 2. The normalized k-out-of-n Tin, M (n)
k , is defined as the per-symbol average of the Tins of the

autocovariance matrices of all possible k-element subsets of X[n]:

M
(n)
k ≜

1

(
n
k
)

∑
S⊆[n]∶∣S∣=k

1

k
trace{C−1

S } .

Theorem 8 (Monotonicity of normalized-Tin of subsets). The sequence {M
(n)
k ∣k ∈ [n]} is monotonically non-

decreasing in k ∈ [n] for a fixed n ∈ N. Namely,

M
(n)
k ≤M

(n)
k+1, ∀n ∈ N, ∀k ∈ [n − 1]. (30)



17

Remark 5. The inequality (30) does not specialize to (8) even when the process {Xk} is WSS.

Proof: The following set of inequalities proves Th. 8.

M
(n)
k+1 ≜

1

(
n
k+1

)
∑

S⊆[n]∶∣S∣=k+1

1

k + 1
trace{C−1

S } (31a)

=
1

(
n
k+1

)
∑

S⊆[n]∶∣S∣=k+1

1

k + 1
∑
i∈S

1

E2(i∣S/{i})
(31b)

≥
1

(
n
k+1

)
∑

S⊆[n]∶∣S∣=k+1

1

k + 1
∑
i∈S

1

k
∑

`∈S/{i}

1

E2(i∣S/{i, `})
(31c)

=
1

(
n
k+1

)

1

k + 1
∑

S⊆[n]∶∣S∣=k

1

k
∑
i∈S

(n − k)
1

E2(i∣S/{i})
(31d)

=
1

(
n
k
)

∑
S⊆[n]∶∣S∣=k

M
(n)
k , (31e)

where (31a) is by Def. 2, (31b) and (31e) follow from Lem. 2, (31c) follows from Lem. 3, (31d) follows from

rearranging the terms and noting that every reciprocal-LMMSE term in the double-summation in (31d) appears

(n − k) times in the triple-summation in (31c).

VII. DISCUSSION

In this work, the normalized Tin was shown to be intimately related to two-sided prediction and monotonically

non-decreasing with the order, similarly to the joint (differential) entropy which is monotonically non-increasing.

Furthermore, MinTin serves as an alternative criterion to the widely used MaxEnt criterion (that is associated with

one-sided prediction) for spectrum estimation/completion. The MinTin criterion may be used as a basis in research

domains where the cost of a system with causal constraints is put up against its non-causal counterpart (causal

versus non-causal regret), e.g., sequential universal compression, online least-square estimation and control; as well

as domains where non-causal operation is possible, e.g., B-frames in video coding. See also the discussion in [32]

in the context of performance measures for frames.

Finally, we note that extending the fully-observable (“pure prediction”) scenario considered in this manuscript to

a partially-observable one is an interesting direction for future research.

APPENDIX A

PROOF OF EQUALITY CONDITION IN TH. 1 VIA

MMSE ESTIMATION

Assume that Cn and Cn+1 are invertible (the cases of singular Cn and/or Cn+1 have been treated separately in

Sec. III). To attain equality in (8), (13a) must hold with equality for all ` ∈ [n], whereas (14c) suggests further that

1

E2(i∣ [n/i])
=

1

E2(k∣ [n + 1/k])
=Mn

for all i ∈ [n] and k ∈ [n + 1]; by Lem. 2, this implies

trace{[C−1
n+1][n+1/i],[n+1/i]} = trace{C−1

[n+1/i]} ,∀i ∈ [n + 1]. (32)
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We shall next prove that (32) holds iff the vector X[n+1] is white. To this end, we shall first prove that

trace{[C−1
n+1][n],[n]} ≥ trace{C−1

n } (33)

with equality iff Cn+1,[n] = 0T , i.e., iff Xn+1 is uncorrelated with X[n].

By Lem. 1, the upper-left n × n submatrix of C−1
n is equal to

[C−1
n+1][n],[n] = (Cn −CT

n+1,[n]C
−1
n+1,n+1Cn+1,[n])

−1
,

or, equivalently,

Cn = ([C−1
n+1][n],[n])

−1
+C−1

n+1,n+1C
T
n+1,[n]Cn+1,[n].

Now note that Cn is PD, ([C−1
n+1][n],[n])

−1
is PSD being an estimation-error covariance matrix (and hence so is

its inverse), and C−1
n−1,n−1C

T
n+1,[n+1/n+1]Cn+1,[n+1/n+1] is rank-one PSD. Hence,

λ↓i (([C
−1
n+1][n],[n])

−1
) ≤ λ↓i (Cn) , i ∈ [n],

where at least one of the inequalities is strict unless C−1
n+1,n+1C

T
n+1,[n]Cn+1,[n] = 0 [17, Corollary 4.3.9], i.e., unless

Cn+1,[n] = 0T . Summing the reciprocal eigenvalues for the traces of the respective inverses, we obtain (33) with

equality iff Cn+1,[n] ≡ Cn+1,[n+1/n+1] = 0T .

By the same arguments and after rearranging the entries of the vector X[n+1], one arrives at

trace{[C−1
n+1][n+1/i],[n+1/i]} ≤ trace{C−1

[n+1/i]} , i ∈ [n + 1],

with equality iff Ci,[n+1/i] = 0. Thus, for (32) to hold, the entries of X[n+1] must be uncorrelated. Recalling that

{Xi} is a WSS process with variance c0, concludes the proof.

APPENDIX B

PROOF OF TH. 2 FOR p = n

We are left with deriving explicit expressions for the elements of C−1
p in terms of the process coefficients

{a`∣` ∈ [p]} and σ2
W . To this end, let us consider C−1

p+1 first. Note that with n = p+ 1, we can readily use the result

of Th. 2 which we have already proved for p < n. To simplify the exposition, we also assume, w.l.o.g., the scaling

convention c0 = 1 (any different scaling can then be accounted for in σ2
W ).

Note further that Cp+1 admits the four-blocks structure

Cp+1 =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

Cp C[p],p+1

CT
[p],p+1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

so, using Lem. 1, we may write

C−1
p+1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Q−1
−Q−1C[p],p+1

−CT
[p],p+1Q−1 1 +CT

[p],p+1Q−1C[p],p+1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (34)

where Q ≜ Cp+1/1 = Cp −C[p],p+1C
T
[p],p+1, implying

Cp = Q +C[p],p+1C
T
[p],p+1,
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which in turn implies, by (9) (this special case is also known as the Sherman–Morrison formula; see, e.g., [17,

Ch. 0.7]),

C−1
p = Q−1

−
(Q−1C[p],p+1)(Q−1C[p],p+1)

T

1 +CT
[p],p+1Q−1C[p],p+1

.

This relation can be used to obtain explicit expressions for the elements of C−1
p based on C−1

p+1 (34) as follows:

● The elements of Q−1 can be readily read off the upper-left p × p block of C−1
p+1.

● The vector Q−1C[p],p+1 can be readily read off the upper p elements of the last column of C−1
p+1.

● 1 +CT
[p],p+1Q−1C[p],p+1 is simply the lower-right element of C−1

p+1.

Consequently, we have

[C−1
p ]

i,j
= [C−1

p+1]i,j
−

[C−1
p+1]i,p+1

[C−1
p+1]j,p+1

[C−1
p+1]p+1,p+1

. (35)

Note now that, according to Th. 2 (with p < n), we have

[C−1
p+1]i,p+1

σ2
W =

i−1

∑
`=0

a`a`+p+1−i −
i

∑
`=1

a`a`+p+1−i

= a0ap+1−i − aiap+1 = ap+1−i, ∀i ∈ [p + 1]

(since a0 = 1 and ap+1 = 0), and, in particular,

[C−1
p+1]p+1,p+1

σ2
W = a0 = 1.

Substituting into (35), we get

[C−1
p ]

i,j
σ2
W = [C−1

p+1]i,j
σ2
W − ap+1−iap+1−j

=
i−1

∑
`=0

a`a`+j−i −
p+1+i−j

∑
`=p+2−j

a`a`+j−i − ap+1−iap+1−j

=
i−1

∑
`=0

a`a`+j−i −
p+i−j

∑
`=p+1−j

a`a`+j−i,

which is exactly the expression of Th. 2 for p = n, where in the last transition the change in the upper limit in the

second sum is due to the fact that a` = 0 for ` > p, and the change in the lower limit accounts for the subtraction

of the additional term ap+1−iap+1−j .

APPENDIX C

DETAILED PROOF OF THE MINIMIZER OF M∞ IN TH. 3

Necessity: Assume that the power spectral density S (ej2πf) (simply denoted S in here for brevity) that minimizes

(19b) under the n integral constraints (24) is continuously differentiable.3 Then, by [29, Th. 1, Sec. 12], [30, Ch. 4.2],

it is an (unconstrained) extremum of the functional

J [S] ≜ ∫
1/2

−1/2
L (f,S)df, (36)

3A minimizing power spectral density exists as it is bounded below by, e.g., M1 = C−11 by Th. 1 and a spectrum that satisfies the constraints

(24) by, e.g., an appropriate autoregressive process (recall Sec. IV) whose coefficients may be determined via the Yule–Walker equations (18).
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where L is the Lagrangian

L (f,S) ≜
1

S
+
n−1

∑
k=0

λkS cos(2πkf), (37)

and therefore the first variation of J (36) must equal zero, i.e., L must satisfy the Euler–Lagrange equation

BL

BS
=
d

df

BL

BS′
(38)

for some Lagrange multipliers {λk ∈ R∣k + 1 ∈ [n]} that are determined from the constraints (24) and variable

end-point conditions

BL

BS′

RRRRRRRRRRRf=±1/2

= 0, (39)

where S′ denotes the derivative of S with respect to f . For L of (37), Eq. (38) reduces to

−
1

S2
+
n−1

∑
k=0

λk cos(2πkf) = 0,

or, equivalently, to (23a), and the conditions of (39) are trivially satisfied. To satisfy the conditions for being an

extremum of the problem, the resulting S should not be an extremum of any of the constraints (24), i.e., it need

not satisfy (38) and (39) with respect to S (ej2πf) cos(2πkf) in lieu of L for any k + 1 ∈ [n], which is indeed the

case.

Sufficiency: Since M∞ is bounded from below, e.g., by M1, but is unbounded from above by Th. 4, we conclude

that the derived extremum is indeed a minimum. Alternatively, one may easily verify by direct calculation that the

second variation [29, Ch. 24, Th. 2] of the functional J (36) is equal to

δ2J[h] = ∫
1/2

−1/2

2h2 (ej2πf)

S3 (ej2πf)
df

and is strongly positive at the minimizing solution S (23).4

APPENDIX D

PROOF OF TH. 5

Consider the Toeplitz symmetric matrix C̃m, whose first-row elements are given by

[C̃m]
1,`+1

=
k

k − `
[Cm]1,`+1 , ` + 1 ∈ [m], (40)

where k ∈ N is a large enough constant, k ≥m, such that C̃m is PD. Such a value of k must exist: By Gershgorin’s

Circle theorem [17, Ch. 6], which can be used to bound the perturbation of the eigenvalues of a matrix by the total

perturbation of its rows, the fact that Cm is PD implies that C̃m (40) is PD as well if the perturbation is small

enough, namely, if k is large enough.

Therefore, there exists a zero-mean WSS AR process (15) that is consistent with C̃m and whose coefficients can

be found via the Yule–Walker equations (18). Finally, obtain an MA process of order k − 1 (25) by multiplying

4δ2J[h] is strongly positive if there exists κ > 0 such that δ2J[h] ≥ κ ∥h∥2 for all h.
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the autocovariance function of this AR process by a triangular (Bartlett–Fejér) window of support size 2k−1, such

that its autocovariance matrix CMA
m is equal to Cm since

[CMA
m ]

1,`+1
=
k − `

k
[C̃m]

1,`+1
= [Cm]1,`+1 , ∀` + 1 ∈ [m],

as desired, where the second equality is due to (40). Note that the autocovariance function of the resulting

MA process is admissible, since its Fourier Transform (spectrum) is the convolution of the spectrum of the AR

process with the Fourier transform of the triangular window, and since both are non-negative functions, so is their

convolution.

APPENDIX E

PROOF OF TH. 4

By Th. 5, there exists a matching MA(q) process with some coefficients {b0, b1, . . . bq}, such that the covariance

of m consecutive samples thereof is Cm.

Now, by exciting the same MA filter (whose impulse response is h` = b` for ` = 0,1, . . . q and h` = 0 otherwise)

by an (m+q)-periodic excitation noise Wi (in lieu of the standard white excitation noise), such that {Wi∣i ∈ [L+q]}

are mutually uncorrelated, with zero mean and variance σ2
W , the resulting periodic process satisfies the covariance

constraint Cm but has M∞ = ∞ by periodicity and Lem. 4.

Alternatively, by passing the matching MA(q) process through an LTI filter with impulse response h` = 1
√

2
(δ` + δ`−m−q)

with δ` denoting the Kronecker delta function, one attains a new zero-mean MA process of order m + q with

coefficients

b̃` =
1

√
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b`, ` = 0,1, . . . q;

b`−m−q, ` =m + q,m + q + 1, . . .m + 2q;

0, otherwise.

Clearly, the covariance of m consecutive samples of this process is Cm. Furthermore, the PSD of this process is

equal to that of the original MA process multiplied by 1 + cos(2πf(m + q)), and hence, by Lem. 4, M∞ = ∞ for

this process.

APPENDIX F

PROOF OF TH. 6

To simplify the exposition, we define the following vectors:

cp ≜ [Cp+1][p+1],1 = [c0 c1 ⋯ cp]
T

,

c̄p ≜ [Cp+1][p+1/1],1 = [c1 c2 ⋯ cp]
T

,

¯̄cp ≜ [Cp+1][p],p+1 = [cp cp−1 ⋯ c1]
T

.

Likewise, let us define

a ≜ [1 a1 ⋯ ap]
T

,
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ā ≜ [a1 a2 ⋯ ap]
T

,

¯̄a ≜ [ap ap−1 ⋯ a1]
T

.

Due to the Yule–Walker equations (18) we have σ2
W = aT cp, so we can write the TSP LMMSE of the AR(p)

process (recall Lem. 4) as

←→
E2
p ≜

σ2
W

∑
p
`=0 a

2
`

=
aT cp

aTa
=
c0 + ā

T c̄p

1 + āT ā
=
c0 − c̄

T
p C−1

p c̄p

1 + c̄Tp C−2
p c̄p

, (41)

where for eliminating ā in the last transition we substituted the Yule–Walker relation ā = −C−1
p c̄p.

Moving to an AR(p + 1) process, our goal is to choose cp+1 so as to maximize its TSP LMMSE
←Ð→
E2
p+1. To this

end, we shall express cp+1 as cp+1 = cMaxEnt
p+1 + µ and maximize w.r.t. µ. Let us denote

c̄p+1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1

⋮

cp

cp+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≜

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1

⋮

cp

cMaxEnt
p+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

⋮

0

µ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≜ c̃p+1 +µ.

The TSP LMMSE for this AR(p + 1) process is then given by substituting p with p + 1 in (41):

←Ð→
E2
p+1 =

c0 − c̄
T
p+1C−1

p+1c̄p+1

1 + c̄Tp+1C−2
p+1c̄p+1

(42a)

=
c0 − (c̃p+1 +µ)

TC−1
p+1(c̃p+1 +µ)

1 + (c̃p+1 +µ)TC−2
p+1(c̃p+1 +µ)

(42b)

(note that Cp+1 is still fully available from the given covariance values up to cp). The key observation for proceeding

now, is that since c̃p+1 continues the original AR(p) process, we have

C−1
p+1c̃p+1 = −

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ā

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(where ā still relates to the original AR(p) process), so exploiting the mostly-zeros structure of µ, the LMMSE

expression simplifies into

←Ð→
E2
p+1 =

c0 + ā
T c̄p − µ

2 [C−1
p+1]p+1,p+1

1 + āT ā + 2µ [C−2
p+1c̃p+1]p+1 + µ

2 [C−2
p+1]p+1,p+1

. (43)

To obtain the elements involving the inversion of Cp+1, we first partition the (symmetric) inverse as

C−1
p+1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Q q

qT q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where Q is some (p−1)×(p−1) matrix, q is some (p−1)×1 vector and q is some scalar. Using the Yule–Walker

equations (18) (applied to the original AR(p) process), we have

Cp+1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

¯̄a

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

σ2
W

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,
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or equivalently,
⎡
⎢
⎢
⎢
⎢
⎢
⎣

q

q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= C−1
p+1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= σ−2W

⎡
⎢
⎢
⎢
⎢
⎢
⎣

¯̄a

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

so we identify:

[C−1
p+1]p+1,p+1

= q = σ−2W ,

[C−2
p+1c̃p+1]p+1 = −[C−1

p+1 [ā 0]]
p+1

= −qT ā = −σ−2W (¯̄aT ā),

[C−2
p+1]p+1,p+1

= qTq + q2 = σ−4W (¯̄aT ¯̄a + 1) = σ−4W (aTa).

By substituting in (43), we get (using c0 + āT c̄p = aT cp and 1 + āT ā = aTa)

←Ð→
E2
p+1 =

aT cp − σ
−2
W µ

2

aTa − 2(¯̄aT ā)σ−2W µ + (aTa)σ−4W µ
2
.

By reparametrizing µ̃ ≜ σ−2W ⋅ µ, we obtain

←Ð→
E2
p+1 =

aT cp − σ
2
W ⋅ µ̃2

aTa − 2(¯̄aT ā)µ̃ + (aTa)µ̃2

=
aT cp(1 − µ̃

2)

aTa(µ̃2 − 2α−1µ̃ + µ̃2)

(where we have used σ2
W = aT cp and where

α ≜
aTa
¯̄aT ā

=
∑
p
`=0 a

2
`

∑
p
`=1 a`ap+1−`

as defined in the Theorem), to be maximized w.r.t. µ̃. Straightforward calculations show that the maximizing solution

is given by

µ̃ = α − sign(α)
√
α2 − 1,

which concludes the proof by retrieving µ = µ̃ ⋅ σ2
W .

APPENDIX G

PROOF OF TH. 7

Using the notations defined in App. F, we partition Cp+2 and its inverse as follows, using Lem. 1.

Cp+2 =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

Cp+1 ¯̄cp+1

¯̄cTp+1 c0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

or equivalently,

C−1
p+2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Q−1 q

qT q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where

Q = Cp+1 −
1

c0
¯̄cp+1¯̄c

T
p+1,
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and

q =
1

c20
(c0 + ¯̄cTp+1Q−1¯̄cp+1)

(the value of q is irrelevant here). Therefore, trace{C−1
p+2} = trace{Q−1

} + q. We use (9) (which reduces to the

Sherman–Morrison formula [17, Ch. 0.7] in this case) to obtain Q−1:

Q−1
= C−1

p+1 +
(C−1

p+1
¯̄cp+1)(C−1

p+1
¯̄cp+1)

T

c0 − ¯̄cTp+1C−1
p+1

¯̄cp+1
.

Note also that

¯̄cTp+1Q−1¯̄cp+1 = ¯̄cTp+1C−1
p+1

¯̄cp+1 +
(¯̄cTp+1C−1

p+1
¯̄cp+1)

2

c0 − ¯̄cTp+1C−1
p+1

¯̄cp+1
,

so that we can now express the full Tin as

trace{C−1
p+2} = trace{C−1

p+1} +
(C−1

p+1
¯̄cp+1)

T (C−1
p+1

¯̄cp+1)

c0 − ¯̄cTp+1C−1
p+1

¯̄cp+1

+
1

c20
(c0 + ¯̄cTp+1Q−1¯̄cp+1) (44a)

= trace{C−1
p+1} +

¯̄cTp+1C−2
p+1

¯̄cp+1

c0 − ¯̄cTp+1C−1
p+1

¯̄cp+1

+
1

c20

⎛

⎝
c0 + ¯̄cTp+1C−1

p+1
¯̄cp+1 +

(¯̄cTp+1C−1
p+1

¯̄cp+1)
2

c0 − ¯̄cTp+1C−1
p+1

¯̄cp+1

⎞

⎠
(44b)

= trace{C−1
p+1} +

1 + ¯̄cTp+1C−2
p+1

¯̄cp+1

c0 − ¯̄cTp+1C−1
p+1

¯̄cp+1
. (44c)

Noting that, due to the bisymmetry5 of Cp+1 and its inverse, we have ¯̄cTp+1C−i
p+1

¯̄cp+1 = c̄Tp+1C−i
p+1c̄p+1 (i = 1,2),

we identify the last term in (44c) (affected by c̄p+1) as the reciprocal of
←Ð→
E2
p+1 (42a). Therefore, the vector c̄p+1

minimizing trace{C−1
p+2} (subject to complying with the given covariance values) is the same c̄p+1 that maximizes

←Ð→
E2
p+1 under the same constraint, and therefore the optimal solution for the only free variable cp+1 in that vector is

the same as in Th. 6.
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