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Asymptotic Behavior and Typicality Properties of

Runlength-Limited Sequences
Mladen Kovačević and Dejan Vukobratović

Abstract—This paper studies properties of binary runlength-
limited sequences with additional constraints on their Hamming
weight and/or their number of runs of identical symbols. An
algebraic and a probabilistic (entropic) characterization of the
exponential growth rate of the number of such sequences, i.e.,
their information capacity, are obtained by using the methods
of multivariate analytic combinatorics, and properties of the
capacity as a function of its parameters are stated. The second-
order term in the asymptotic expansion of the rate of these
sequences is also given, and the typical values of the relevant
quantities are derived. Several applications of the results are
illustrated, including bounds on codes for weight-preserving
and run-preserving channels (e.g., the run-preserving insertion-
deletion channel), a sphere-packing bound for channels with
sparse error patterns, and the asymptotics of constant-weight
sub-block constrained sequences. In addition, the asymptotics of
a closely related notion—q-ary sequences with fixed Manhattan
weight—is briefly discussed, and an application in coding for
molecular timing channels is illustrated.

Index Terms—Constrained code, constrained sequences, RLL
sequences, constant-weight code, asymptotic rate, typical se-
quences, insertion, deletion, weight-preserving channel, timing
channel, Manhattan weight, analytic combinatorics.

I. INTRODUCTION

IN MOST data recording and communication systems, some

data sequences are more susceptible to errors than others.

Constrained codes are used for the purpose of avoiding such

sequences and thereby reducing the possibility of an erroneous

symbol detection or a synchronization fault. Due to their

usefulness in designing reliable information storage systems,

constrained codes have found applications in hard disk, non-

volatile memories, optical discs, etc. [7], [19], and they are

also projected for usage in future DNA storage systems [8].

This paper is devoted to an important class of constrained

sequences called runlength-limited (RLL) sequences, which

have been widely studied and applied in both line coding and

error control coding contexts [7], [19]. We note, however, that

the methods used in the paper are applicable to a wider class

of constraints; this will be illustrated on the example of the

so-called sub-block constrained sequences.
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The emphasis in the paper is placed on the asymptotic

analysis. By imposing additional constraints on RLL codes,

we shall refine the classical results about the achievable

information rates thereof and obtain more precise asymptotic

statements. In particular, the additional constraints we consider

are: i) the constant-weight constraint, i.e., the requirement that

all the codewords have the same Hamming weight, and ii) the

constant-number-of-runs1 constraint, i.e., the requirement that

all the codewords have the same number of runs of identical

symbols. Constant-weight and bounded-weight codes have

numerous applications in communications (see, e.g., [8], [9],

[14], [15] for a study of constant-weight codes in the context

of runlength constraints). Apart from these, the motivation

behind the above-mentioned constraints that we analyze here

is twofold: 1) on the theoretical side, to quantify precisely

the asymptotic behavior and derive the typical values of the

relevant quantities in RLL sequences, and 2) on the application

side, to exhibit their usefulness in the analysis of various

communication scenarios.

The main results of the paper regarding the asymptotic

properties of RLL sequences are presented in Section II.

These include the asymptotic rates of constant-weight and

constant-number-of-runs RLL codes, probabilistic (entropic)

characterization of the corresponding information capacities,

properties of these capacities as functions of their parameters,

and the typical values of several relevant quantities concerning

RLL sequences. In Section III we describe three examples of

communication scenarios for which the results are relevant:

1) weight-preserving and run-preserving channels (in particu-

lar, the deletion channel with RLL inputs), 2) channels with

sparse error patterns (in which the noise sequences, rather than

the information sequences, are constrained), and 3) channels

with sub-block constrained inputs, which are relevant for,

e.g., simultaneous information and energy transmission. In

Section IV we discuss the asymptotics of q-ary sequences with

fixed Manhattan weight, objects which are, in a sense, dual to

constant-number-of-runs RLL sequences, and we demonstrate

their application in coding for Manhattan-weight-preserving

channels such as the molecular timing channel.

Notation

The Hamming weight of a string/sequence x = x1 · · ·xn ∈
{0, 1}n is denoted by wt(x) = |{i : xi 6= 0}| =∑n

i=1 xi. By

a run of identical symbols in x we always mean a maximal

run, i.e., a substring of identical symbols that is delimited on

1The constant-number-of-runs condition can also be expressed as a
constant-weight condition in a different domain, see Remark 1 ahead.
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both sides either by a different symbol, or by the beginning/end

of the string x. The number of runs in x is denoted by

run(x); for example, the string 0100011 has 4 runs. The string

consisting of ℓ identical symbols a ∈ {0, 1} is denoted by

aℓ. The symbol ⊕ stands for the XOR operation (addition

modulo 2). H(X) ≡ H(P ) = −∑i pi log pi is the Shannon

entropy of a random variable X having probability distribution

P = (pi), and log is the base-2 logarithm. In the Bernoulli

case, P = (p, 1− p), we shall abuse the notation slightly and

write H(p) for H(P ). N = {1, 2, . . .} is the set of natural

numbers. For a subset L ⊆ N and an integer s, we denote by

L + s = {ℓ + s : ℓ ∈ L} the translation of L by s. For two

non-negative real sequences (an) and (bn): 1) an ∼ bn means

limn→∞
an

bn
= 1; 2) an & bn means lim infn→∞

an

bn
> 1;

3) an = O(bn) means lim supn→∞
an

bn
< ∞; 4) an = o(bn)

means limn→∞
an

bn
= 0.

II. ASYMPTOTICS OF RUNLENGTH-LIMITED SEQUENCES

Fix a subset L ⊆ N, |L| > 2. Let SL(n) denote the set

of all sequences of length n that are built from blocks in

{0ℓ : ℓ ∈ L} and {1ℓ : ℓ ∈ L} in an alternating manner,

meaning that a block of zeros is followed by a block of ones

and vice versa. In other words, SL(n) is the set of binary

sequences of length n in which the lengths of all runs of

identical symbols belong to L. These sequences are referred

to as runlength-limited (RLL) sequences2. Hence, L is the

set of lengths of the allowed constituent blocks, the smallest

length being inf L ∈ N, and the smallest upper bound on the

lengths being supL ∈ N ∪ {∞}. We shall assume hereafter

that gcdL = 1. This condition is equivalent to saying that all

but possibly finitely many elements of N can be obtained as

non-negative integer combinations of the elements of L and,

hence, that SL(n) is non-empty for all n > n0. If this is

not the case, the asymptotic statements we shall give remain

valid, but the condition n → ∞ is then to be understood over

the semigroup generated by L. E.g., if L = {2, 4}, then the

RLL sequences defined above are necessarily of even length.

Remark 1. By using the transformation x 7→ x′ defined

by x′
i = xi ⊕ xi−1, i = 1, . . . , n, where we understand that

x0 = 0, the set of RLL sequences is mapped to the set of

sequences with constrained runs of zeros [6]. More precisely,

any two successive ones in x′ are separated by a run of zeros

whose length belongs to the set L − 1 = {ℓ − 1 : ℓ ∈ L}.

Therefore, studying these two types of constraints are essen-

tially equivalent problems. Note also that

wt(x′) =

{

run(x), if x1 = 1

run(x)− 1, if x1 = 0.
(1)

We shall refer back to this fact in Section II-B2.

Binary sequences in which successive ones are separated

by runs of zeros whose lengths are constrained to the set

{d, d + 1, . . . , k}, for some 0 6 d < k 6 ∞, are called

(d, k)-sequences (here by k = ∞ we mean {d, d + 1, . . .}).

In our notation, they correspond to the case L = {d+ 1, d+
2, . . . , k + 1}. N

2In Section II-F we also discuss the more general case when the lengths
of runs of 0’s and those of 1’s have possibly different constraints.

A. Asymptotic Rates of RLL Sequences

The number of RLL sequences, denoted SL(n) = |SL(n)|,
obeys the recurrence relation SL(n) =

∑

ℓ∈L SL(n− ℓ) with

initial conditions SL(0) = 1 and SL(n) = 0 for n < 0,

which implies that SL(n) ∼ cλ−n as n → ∞, where λ
is the unique positive solution of the characteristic equation
∑

ℓ∈L xℓ = 1 (see, e.g., [6], [26]). Therefore, the number of

bits of information such sequences contain equals

logSL(n) = −n logλ+O(1), (2)

and their “capacity”—the exponential growth rate of SL(n)
in base 2—equals limn→∞

1
n logSL(n) = − logλ bits per

symbol. We shall refine this statement below by considering

RLL sequences with additional constraints on their Hamming

weight and the number of runs (building blocks) they contain.

Define

SL(n,w, r) =
{

x ∈ SL(n) : wt(x) = w, run(x) = r
}

(3)

and SL(n,w, r) =
∣

∣SL(n,w, r)
∣

∣. We may assume that

r inf L 6 n 6 r supL (4)

and

⌊r/2⌋ inf L 6 w 6 ⌈r/2⌉ supL, (5a)

⌊r/2⌋ inf L 6 n− w 6 ⌈r/2⌉ supL, (5b)

as otherwise SL(n,w, r) is empty. In the asymptotic regime

n → ∞, w ∼ ωn, r ∼ ρn, for fixed ω, ρ, (4) and (5) imply

that the parameters (ω, ρ) are restricted to the region

1

supL
6 ρ 6

1

inf L
, (6a)

max
{ρ

2
inf L, 1− ρ

2
supL

}

6 ω 6 (6b)

min
{ρ

2
supL, 1− ρ

2
inf L

}

.

This region, depicted in Figure 1, can also be represented as

inf L

inf L+ supL
6 ω 6

supL

inf L+ supL
, (7a)

2

supL
max

{

ω, 1− ω
}

6 ρ 6
2

inf L
min

{

ω, 1− ω
}

, (7b)

where it is understood that supL
inf L+supL = 1 when supL = ∞.

The following statement gives a characterization of the

asymptotic rate, or information capacity, of the RLL sequences

from SL(n,w, r), as well as the second-order term in the

asymptotic expansion of their rate, for any point (ω, ρ) in the

interior of the region (7). For simplicity, here and hereafter,

we write SL(n, ωn, ρn) instead of, e.g., SL(n, ⌊ωn⌋, ⌊ρn⌋).
Theorem 1. Fix any ω ∈

(

inf L
inf L+supL ,

supL
inf L+supL

)

and ρ ∈
(

2
supL max

{

ω, 1− ω
}

, 2
inf L min

{

ω, 1− ω
})

. As n → ∞,

logSL(n, ωn, ρn) = nσL(ω, ρ)− logn+O(1), (8)

where

σL(ω, ρ)

= −(1− ω) logα− ω log β +
ρ

2
log

(

∑

ℓ∈L

αℓ
∑

ℓ′∈L

βℓ′

)

(9)
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Fig. 1: The region of the allowed values (ω, ρ) – relative

Hamming weight and relative number of runs – in binary

sequences with runlengths restricted to a set L ⊆ N (see

(6)). The point (ω⋆, ρ⋆) represents the typical values of these

parameters (see Section II-E ahead).

and (α, β) is the unique pair of positive real numbers satisfy-

ing the equations3

∑

ℓ∈L

(

ℓ− 2(1− ω)

ρ

)

αℓ = 0, (10a)

∑

ℓ∈L

(

ℓ− 2ω

ρ

)

βℓ = 0. (10b)

Proof: The following recurrence relation is valid for all

sufficiently large n,w, r:

SL(n,w, r) =
∑

ℓ∈L

∑

ℓ′∈L

SL(n− ℓ− ℓ′, w − ℓ′, r − 2). (11)

This follows from the fact that every sequence in SL(n,w, r)
can be obtained by appending the blocks 0ℓ and 1ℓ

′

to a

sequence in SL(n− ℓ− ℓ′, w − ℓ′, r − 2), and that the order

in which the two blocks are appended is uniquely determined

by the last symbol of the latter sequence. The statement we

are after can now be derived from the characteristic equation

of the relation (11), namely

G(x, y, z) = 1−
∑

ℓ∈L

∑

ℓ′∈L

xℓ+ℓ′yℓ
′

z2 = 0, (12)

by using the methods of multivariate analytic combinatorics.

In particular, [21, Theorem 1.3] implies that, in the asymptotic

regime under consideration,

logSL(n,w, r) = log

(

α̃−nβ̃−wγ̃−r

n

)

+O(1), (13)

where
(

α̃, β̃, γ̃
)

is the unique triple of positive real numbers

satisfying the system of equations: G(x, y, z) = 0 (see (12)),

3The dependence of α and β on ω, ρ and L is not made explicit for reasons
of notational simplicity.

rx∂G
∂x = nz ∂G

∂z , and ry ∂G
∂y = wz ∂G

∂z , i.e., the positive numbers

α̃, β̃, γ̃ are uniquely determined by
∑

ℓ∈L

∑

ℓ′∈L

α̃ℓ+ℓ′ β̃ℓ′ γ̃2 = 1 (14a)

r
∑

ℓ∈L

∑

ℓ′∈L

(ℓ + ℓ′)α̃ℓ+ℓ′ β̃ℓ′ = 2n
∑

ℓ∈L

∑

ℓ′∈L

α̃ℓ+ℓ′ β̃ℓ′ (14b)

r
∑

ℓ∈L

∑

ℓ′∈L

ℓ′α̃ℓ+ℓ′ β̃ℓ′ = 2w
∑

ℓ∈L

∑

ℓ′∈L

α̃ℓ+ℓ′ β̃ℓ′ . (14c)

As w
n → ω, r

n → ρ, we have α̃ → α, α̃·β̃ → β, γ̃ → γ, where

(α, β, γ) is the unique triple of positive numbers satisfying
∑

ℓ∈L

αℓ
∑

ℓ′∈L

βℓ′ = γ−2 (15a)

ρ
∑

ℓ∈L

ℓαℓ = 2(1− ω)
∑

ℓ∈L

αℓ (15b)

ρ
∑

ℓ′∈L

ℓ′βℓ′ = 2ω
∑

ℓ′∈L

βℓ′ (15c)

((15b) is obtained by subtracting (14c) from (14b)), and then

(13) reduces to

logSL(n, ωn, ρn) = log

(

α−(1−ω)nβ−ωnγ−ρn

n

)

+O(1).

(16)

Now just note that (16) is equivalent to (8) (use (15a) to

express γ in terms of α and β), and (15b)–(15c) to (10).

To find the asymptotic rates of the sequences from

SL(n,w, r) at the points (ω, ρ) lying on the boundary of

the region (7), we turn this into a one-dimensional problem

wherein one of the parameters w, r is a function of the other.

For example, for the case ω ∈
(

inf L
inf L+supL ,

1
2

)

, ρ = 2
inf Lω

(the upper-left boundary in Figure 1), consider the quantity

SL(n, ⌊r/2⌋ inf L, r), which is the number of RLL sequences

in which every run of 1’s is of fixed length inf L. To simplify

the derivation, consider only even r, introduce auxiliary vari-

ables r′ = r
2 and n′ = n − r

2 inf L, and denote S′(n′, r′) =
SL

(

n′ + r′ inf L, r′ inf L, 2r′
)

= SL

(

n, r
2 inf L, r

)

. It is then

easy to see that the bivariate sequence
(

S′(n′, r′)
)

n′,r′
satisfies

the recurrence relation

S′(n′, r′) =
∑

ℓ∈L

S′(n′ − ℓ, r′ − 1), (17)

the characteristic equation of which is

1 =
∑

ℓ∈L

xℓy. (18)

Such a sequence is called a generalized Riordan array [22,

Section 12.2]. It follows from [22, Theorem 12.2.2] that, as

n′ → ∞ and r′ → ∞ with n′

r′ (approximately) constant,

S′(n′, r′) ∼ c√
n′
2−n′ log α̃+r′ log v(α̃), (19)

where v(x) =
∑

ℓ∈L xℓ (see (18)) and α̃ is the unique positive

solution of the equation r′x∂v
∂x = n′v(x), i.e.,

∑

ℓ∈L

(

ℓ− n′

r′

)

α̃ℓ = 0. (20)
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Now recalling what n′, r′, and S′(n′, r′) stand for, we can find

from (19) and (20) the desired asymptotics. By carrying out

a similar analysis for the remaining boundaries of the region

(7), we obtain the following statement.

Theorem 2. As n → ∞, the relation

logSL(n, ωn, ρn) = nσL(ω, ρ)−
1

2
logn+O(1) (21)

holds for:

• ω ∈
(

inf L
inf L+supL ,

1
2

)

, ρ = 2
inf Lω, where

σL

(

ω,
2

inf L
ω

)

= −(1− ω) logα+
ω

inf L
log
∑

ℓ∈L

αℓ

(22)

and α is the unique positive real number satisfying

∑

ℓ∈L

(

ℓ− 1− ω

ω
inf L

)

αℓ = 0; (23)

• ω ∈
(

1
2 ,

supL
inf L+supL

)

, ρ = 2
inf L(1− ω), where

σL

(

ω,
2

inf L
(1 − ω)

)

= −ω logα+
1− ω

inf L
log
∑

ℓ∈L

αℓ

(24)

and α is the unique positive real number satisfying

∑

ℓ∈L

(

ℓ− ω

1− ω
inf L

)

αℓ = 0; (25)

• ω ∈
(

inf L
inf L+supL ,

1
2

)

, ρ = 2
supL(1 − ω), supL < ∞,

where

σL

(

ω,
2

supL
(1 − ω)

)

= −ω logα+
1− ω

supL
log
∑

ℓ∈L

αℓ

(26)

and α is the unique positive real number satisfying

∑

ℓ∈L

(

ℓ− ω

1− ω
supL

)

αℓ = 0; (27)

• ω ∈
(

1
2 ,

supL
inf L+supL

)

, ρ = 2
supLω, supL < ∞, where

σL

(

ω,
2

supL
ω

)

= −(1− ω) logα+
ω

supL
log
∑

ℓ∈L

αℓ

(28)

and α is the unique positive real number satisfying

∑

ℓ∈L

(

ℓ− 1− ω

ω
supL

)

αℓ = 0. (29)

In the last two cases, if supL = ∞ the two boundaries

degenerate into one (ρ = 0), in which case we define

σL(ω, 0) = 0 for all ω ∈
[

inf L
inf L+supL ,

supL
inf L+supL

]

.

At the corner-points of the region (7), we set

σL

(

inf L
inf L+supL ,

2
inf L+supL

)

= σL

(

supL
inf L+supL ,

2
inf L+supL

)

=

σL

(

1
2 ,

1
inf L

)

= σL

(

1
2 ,

1
supL

)

= 0 by continuous extension.

Finally, when it is necessary to assign value to σL(ω, ρ) for

(ω, ρ) outside the region (7), we may write σL(ω, ρ) = −∞.

Example (Unconstrained case). For L = N it is possible

obtain an explicit expression for the capacity. By using the

identities
∑∞

ℓ=1 x
ℓ = x

1−x ,
∑∞

ℓ=1 ℓx
ℓ = x

(1−x)2 , one can solve

(10) to get α = 1− ρ
2(1−ω) , β = 1− ρ

2ω , and hence

σN(ω, ρ) = (1 − ω)H

(

ρ

2(1− ω)

)

+ ωH
( ρ

2ω

)

, (30)

for any ω ∈ [0, 1], ρ ∈ [0, 2min{ω, 1− ω}]. N

B. Weight Only and Run Only Constraints

In this subsection we derive the asymptotic rates of RLL

sequences when only one of the parameters w, r is restricted.

These special cases are arguably more likely to be of relevance

in applications.

1) Constant-Weight RLL Sequences: Define

SL(n,w, ⋆) =
⋃

r

SL(n,w, r)

=
{

x ∈ SL(n) : wt(x) = w
}

,

(31)

and SL(n,w, ⋆) =
∣

∣SL(n,w, ⋆)
∣

∣. Starting from the relation

SL(n,w, ⋆) =
∑

ℓ∈L

∑

ℓ′∈L

SL(n− ℓ− ℓ′, w − ℓ′, ⋆), (32)

and applying [21, Theorem 1.3], as we did in the proof of

Theorem 1, we obtain the following statement.

Theorem 3. Fix ω ∈
(

inf L
inf L+supL ,

supL
inf L+supL

)

. As n → ∞,

logSL(n, ωn, ⋆) = nσL(ω, ⋆)−
1

2
logn+O(1), (33)

where

σL(ω, ⋆) = −(1− ω) logα− ω log β, (34)

and (α, β) is the unique pair of positive real numbers satisfy-

ing the system of equations:
∑

ℓ∈L

αℓ
∑

ℓ′∈L

βℓ′ = 1 (35a)

ω
∑

ℓ∈L

ℓαℓ
∑

ℓ′∈L

βℓ′ = (1 − ω)
∑

ℓ∈L

αℓ
∑

ℓ′∈L

ℓ′βℓ′ . (35b)

We also define σL

(

inf L
inf L+supL , ⋆

)

= σL

(

supL
inf L+supL , ⋆

)

= 0
by continuous extension.

Example (Unconstrained case, continued). For L = N, the

solution to (35) is α = 1 − ω, β = ω, and hence σN(ω, ⋆) =
H(ω), as expected. N

It follows from the relation SL(n,w, ⋆) =
∑

r SL(n,w, r)
and the pigeon-hole principle, that the exponent σL(ω, ⋆),
which represents the information capacity of constant-weight

RLL sequences, can also be obtained as

σL(ω, ⋆) = sup
ρ

σL(ω, ρ). (36)

The capacity of RLL sequences with no weight constraints

can then be obtained as

σL(⋆, ⋆) = sup
ω

σL(ω, ⋆) = sup
ω,ρ

σL(ω, ρ), (37)
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which, as we already know (see (2)), equals

σL(⋆, ⋆) = − logλ, (38)

where λ is the unique positive number satisfying
∑

ℓ∈L

λℓ = 1. (39)

2) Constant-Number-of-Runs RLL Sequences: Define

SL(n, ⋆, r) =
⋃

w

SL(n,w, r)

=
{

x ∈ SL(n) : run(x) = r
}

,

(40)

and SL(n, ⋆, r) =
∣

∣SL(n, ⋆, r)
∣

∣. SL(n, ⋆, r) is the set of all

sequences of length n that are formed by concatenating exactly

r blocks from {0ℓ : ℓ ∈ L} and {1ℓ : ℓ ∈ L} in an alternating

manner. Due to (1), studying the asymptotic behavior of

the sequences from SL(n, ⋆, r) is essentially equivalent to

studying the asymptotic behavior of constant-weight sequences

with constrained runs of zeros.

It is seen from the definition of SL(n, ⋆, r) that the bivariate

sequence
(

SL(n, ⋆, r)
)

n,r
obeys the recurrence relation

SL(n, ⋆, r) =
∑

ℓ∈L

SL(n− ℓ, ⋆, r − 1). (41)

from which the following statement can be obtained in the

same way as in (17)–(20).

Theorem 4. Fix ρ ∈
(

1
supL ,

1
inf L

)

. As n → ∞,

logSL(n, ⋆, ρn) = nσL(⋆, ρ)−
1

2
logn+O(1), (42)

where

σL(⋆, ρ) = − logα+ ρ log
∑

ℓ∈L

αℓ (43)

and α is the unique positive real number satisfying

∑

ℓ∈L

(

ℓ− 1

ρ

)

αℓ = 0. (44)

We also define σL

(

⋆, 1
supL

)

= σL

(

⋆, 1
inf L

)

= 0. The

quantity σL(⋆, ρ) just introduced represents the information

capacity of constant-weight binary sequences in which suc-

cessive ones are required to be separated by runs of zeros

whose lengths are constrained to the set L−1 (see Remark 1).

This exponent was determined in [9] for the special case of

(d, k)-sequences, i.e., for L = {d+ 1, . . . , k + 1}.

Example (Unconstrained case, continued). For L = N, the

solution to (44) is α = 1− ρ, and hence σN(⋆, ρ) = H(ρ), as

expected. N

Analogously to (36), σL(⋆, ρ) can be expressed as

σL(⋆, ρ) = sup
ω

σL(ω, ρ). (45)

As an aside, we note that it is also possible to express the

exponent σL(ω, ρ) in terms of σL(⋆, ρ). To show this, first

note that SL(n, ⋆, r) = 2CL(n, r), where CL(n, r) is the

number of r-part compositions4 of the number n, where the

parts are restricted to the set L (the factor 2 comes from the

fact that, given the lengths of the constituent blocks, the initial

symbol is left to be specified in order to identify the sequence

uniquely). Further note that the quantity SL(n,w, r) can also

be expressed in terms of integer compositions as follows:

SL(n,w, r) =CL(n− w, ⌊r/2⌋) · CL(w, ⌈r/2⌉)
+ CL(n− w, ⌈r/2⌉) · CL(w, ⌊r/2⌋).

(46)

Namely, if an RLL sequence starts with a 1 and is built from r
blocks, then it contains ⌈r/2⌉ blocks of 1’s and ⌊r/2⌋ blocks

of 0’s. The lengths of the blocks of 1’s sum to w, and those

of 0’s sum to n − w. This gives the first summand in (46).

Similarly, the second summand counts the RLL sequences that

start with a 0. We conclude that

SL(n,w, r) =
1

4

(

SL(n− w, ⋆, ⌊r/2⌋) · SL(w, ⋆, ⌈r/2⌉)

+ SL(n− w, ⋆, ⌈r/2⌉) · SL(w, ⋆, ⌊r/2⌋)
)

,

(47)

and therefore

σL(ω, ρ) = (1− ω)σL

(

⋆,
ρ

2(1− ω)

)

+ ωσL

(

⋆,
ρ

2ω

)

, (48)

for every (ω, ρ) in the region (7).

C. Probabilistic Characterization of the Capacity

The capacity function σL(ω, ρ) can also be described by us-

ing probabilistic terminology customary in information theory.

It is known that finding the asymptotic rate of RLL sequences

is equivalent to maximizing the average number of bits (i.e.,

entropy) per symbol at the output of an i.i.d. source with

alphabet L [27, Theorem 1], that is,

σL(⋆, ⋆) = sup
PL

H(L)

E[L]
, (49)

where L denotes a generic random variable taking values in L,

and PL denotes its distribution. It is also known [27] that the

optimal distribution in (49) is P ⋆
L
(ℓ) = λℓ, ℓ ∈ L, where λ is

defined in (39). Since we are imposing additional constraints

on the blocks of 1’s, and therefore also on the blocks of 0’s,

through the Hamming weight, we shall need a slightly different

way of writing (49), namely σL(⋆, ⋆) = supPL0,L1

H(L0,L1)
E[L0+L1]

,

where L0, L1 are independent random variables taking values

in L. The following proposition refines this statement and

gives the corresponding characterization for sequences with

fixed weight and number of runs.

4An m-part composition of the number n, with parts restricted to the set
L ⊆ N, is an m-tuple from Lm summing to n [5].
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Theorem 5. Let L0, L1 denote two generic independent

random variables taking values in L, and let PL0 , PL1denote

their distributions. For every (ω, ρ) in the region (7),

σL(ω, ρ)

= sup
PL0

,PL1
: E[L0]=

2(1−ω)
ρ

,E[L1]=
2ω
ρ

H(L0, L1)

E[L0 + L1]
(50a)

=
ρ

2



 sup
PL0

:E[L0]=
2(1−ω)

ρ

H(L0) + sup
PL1

:E[L1]=
2ω
ρ

H(L1)



 .

(50b)

Proof: That the expressions in (50a) and (50b) are equal

follows from the fact that L0 and L1 are independent and so

H(L0, L1) = H(L0) +H(L1), and that E[L0] + E[L1] =
2
ρ by

the optimization constraint.

Consider a point (ω, ρ) in the interior of the region (7).

The optimal distributions in (50b) are by standard methods

(e.g., Lagrange multipliers, see [3, Section 12.1]) found to

be of the form P ⋆
L0
(ℓ) = c0α

ℓ, P ⋆
L1
(ℓ) = c1β

ℓ, where

c0 =
(
∑

ℓ∈L αℓ
)−1

, c1 =
(
∑

ℓ∈L βℓ
)−1

are the normalizing

constants, and α, β are determined by the conditions

E[L0] = c0
∑

ℓ∈L

ℓαℓ =
2(1− ω)

ρ
, (51a)

E[L1] = c1
∑

ℓ∈L

ℓβℓ =
2ω

ρ
. (51b)

After writing out the entropy of each of these distributions

explicitly, one finds that the expression in (50b) is equal to

that in (9).

For the points (ω, ρ) at the boundary of the region (7) the

analysis is similar, except the optimal distribution in one (or

both) of the suprema in (50b) will be a degenerate distribution

of zero entropy. For example, for ρ = 2
inf Lω, there is only

one distribution on L consistent with the requirement E[L1] =
2ωρ−1 = inf L — the one with P ⋆

L1
(inf L) = 1, P ⋆

L1
(ℓ) = 0

for ℓ 6= inf L. Since H(P ⋆
L1
) = 0, the second summand

in (50b) is equal to zero, and again by applying standard

optimization methods to the first summand, the expression

(50b) is shown to be equal to that in (22). The remaining

cases are analyzed in a similar way.

Informally, the expression in (50) arises as follows. Think of

random RLL sequences obtained by alternately drawing blocks

of zeros and blocks of ones, randomly and independently

of each other (as there is no inherent dependence between

blocks of zeros and ones). For simplicity, assume that the

sequences start with a block of zeros (this convention does not

affect the asymptotic rate). The information capacity of these

sequences, i.e., the number of bits per symbol they contain,

equals
H(L0,L1)
E[L0+L1]

= H(L0)+H(L1)
E[L0]+E[L1]

, where L0, L1 are the random

lengths of the corresponding blocks (to see this, recall that a

block of zeros is necessarily followed by a block of ones, so

for the purpose of determining the capacity one may think of

pairs
(

0L0 , 1L1
)

as elementary building blocks). We are free to

choose the probability distributions PL0 , PL1 so as to maximize

this expression, but these distributions must satisfy the stated

constraints. Namely, since the total number of blocks (runs)

in RLL sequences is required to scale as ∼ρn, the number of

blocks of zeros and the number of blocks of ones both scale

as ∼ ρ
2n. And since the total length of all the blocks of ones,

i.e., the Hamming weight, is required to scale as ∼ ωn, the

average length of blocks of ones should be ω
ρ/2 . Similarly, the

average length of blocks of zeros should be 1−ω
ρ/2 .

The special cases when only the weight or the number of

runs are constrained are easily obtained from Theorem 5.

Corollary 6. Let L0, L1 denote two generic independent

random variables taking values in L, and let PL0 , PL1denote

their distributions. For every ω ∈
[

inf L
inf L+supL ,

supL
inf L+supL

]

,

σL(ω, ⋆) = sup
PL0

,PL1
:E[L1]=ωE[L0+L1]

H(L0, L1)

E[L0 + L1]
. (52)

For ω ∈
(

inf L
inf L+supL ,

supL
inf L+supL

)

, the optimal distributions

in (52) are given by P ⋆
L0
(ℓ) =

(
∑

ℓ∈L αℓ
)−1

αℓ and P ⋆
L1
(ℓ) =

(∑

ℓ∈L βℓ
)−1

βℓ, ℓ ∈ L, where α, β are determined by (35).

Corollary 7. Let L denote a generic random variable taking

values in L, and let PL denote its distribution. For every ρ ∈
[

1
supL ,

1
inf L

]

,

σL(⋆, ρ) = sup
PL:E[L]=ρ−1

H(L)

E[L]
= ρ · sup

PL:E[L]=ρ−1

H(L). (53)

Hence, the requirement that the number of runs scales as

∼ ρn translates, in the probabilistic interpretation, into the

requirement that the average length of the runs be 1/ρ. For

ρ ∈
(

1
supL ,

1
inf L

)

, the optimal distribution in (53) is of the

form P ⋆
L
(ℓ) =

(
∑

ℓ∈L αℓ
)−1

αℓ, ℓ ∈ L, where α is determined

by (44).

D. Properties of the Capacity

We next state some useful properties of the capacity as a

function of its parameters.

Proposition 8. (a) For every fixed ρ ∈
[

1
supL ,

1
inf L

]

, the

mapping ω 7→ σL(ω, ρ) is symmetric, continuous, and

strictly concave on the interval (6b). It attains its maxi-

mum value at ω⋆ = 1/2, and this maximum value equals

σL(1/2, ρ) = σL(⋆, ρ) (see (43)).

(b) For every fixed ω ∈
[

inf L
inf L+supL ,

supL
inf L+supL

]

, the map-

ping ρ 7→ σL(ω, ρ) is continuous and strictly concave on

the interval (7b). It attains its maximum value at

ρ⋆ω = 2

(

∑

ℓ∈L ℓαℓ

∑

ℓ∈L αℓ
+

∑

ℓ′∈L ℓ′βℓ′

∑

ℓ′∈L βℓ′

)−1

, (54)

where (α, β) is the unique pair of positive real numbers

solving the equations
∑

ℓ∈L

αℓ
∑

ℓ′∈L

βℓ′ = 1 (55a)

ω
∑

ℓ∈L

ℓαℓ
∑

ℓ′∈L

βℓ′ = (1 − ω)
∑

ℓ∈L

αℓ
∑

ℓ′∈L

ℓ′βℓ′ , (55b)

and this maximum value equals σL(ω, ρ
⋆
ω) = σL(ω, ⋆)

(see (34)).
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(c) The mapping ω 7→ σL(ω, ⋆) is symmetric, con-

tinuous, and strictly concave on the interval ω ∈
[

inf L
inf L+supL ,

supL
inf L+supL

]

. It attains its maximum value at

ω⋆ = 1/2, and this maximum value equals σL(1/2, ⋆) =
σL(⋆, ⋆) (see (38)).

(d) The mapping ρ 7→ σL(⋆, ρ) is continuous and strictly

concave on the interval ρ ∈
[

1
supL ,

1
inf L

]

. It attains its

maximum value at

ρ⋆ = ρ⋆1/2 =

(

∑

ℓ∈L

ℓλℓ

)−1

, (56)

where λ is the unique positive number satisfying
∑

ℓ∈L λℓ = 1, and this maximum value equals

σL(⋆, ρ
⋆) = σL(⋆, ⋆) (see (38)).

Proof: (a) Since SL(n,w, r) = SL(n, n − w, r) (this

is seen by replacing 0’s with 1’s, and vice versa, in all

sequences), the function σL(ω, ρ) is symmetric in the argu-

ment ω, meaning that σL(ω, ρ) = σL(1 − ω, ρ). Further,

differentiating (9) with respect to ω, and using (10), we get

∂

∂ω
σL(ω, ρ) = log

α

β
, (57)

∂2

∂ω2
σL(ω, ρ) =

1

ln 2

(

1

α

∂α

∂ω
− 1

β

∂β

∂ω

)

. (58)

That the second derivative is negative, and hence that σL(ω, ρ)
is concave in ω, is shown by differentiating (10), upon which

one obtains

1

α

∂α

∂ω
=

− 2
ρ

∑

ℓ∈L αℓ

∑

ℓ∈L

(

ℓ − 2(1−ω)
ρ

)2

αℓ

< 0, (59a)

1

β

∂β

∂ω
=

2
ρ

∑

ℓ∈L βℓ

∑

ℓ∈L

(

ℓ − 2ω
ρ

)2

βℓ

> 0. (59b)

Symmetry and concavity together imply that the maximizer of

ω 7→ σL(ω, ρ) is ω⋆ = 1/2.

(b) Differentiating (9) with respect to ρ, we get

∂

∂ρ
σL(ω, ρ) =

1

2
log

(

∑

ℓ∈L

αℓ
∑

ℓ′∈L

βℓ′

)

, (60)

∂2

∂ρ2
σL(ω, ρ) =

1

ln 2

(

1− ω

ρα

∂α

∂ρ
+

ω

ρβ

∂β

∂ρ

)

. (61)

Equating the first derivative to zero and using (10), we find

that the maximizer ρ⋆ω is defined by the set of equations (54)

and (55). That the expression in (61) is negative, and hence

that σL(ω, ρ) is concave in ρ, is shown by differentiating (10),

upon which one obtains

1

α

∂α

∂ρ
=

− 1
ρ

∑

ℓ∈L ℓαℓ

∑

ℓ∈L

(

ℓ− 2(1−ω)
ρ

)2

αℓ

< 0, (62a)

1

β

∂β

∂ρ
=

− 1
ρ

∑

ℓ∈L ℓβℓ

∑

ℓ∈L

(

ℓ− 2ω
ρ

)2

βℓ

< 0. (62b)

(c) Note that this does not immediately follow from (a)

because σL(ω, ⋆) = σL(ω, ρ
⋆
ω) and ρ⋆ω is itself a function of

ω, but the proof is carried out in a similar way by noting

that SL(n,w, ⋆) = SL(n, n−w, ⋆), and therefore σL(ω, ⋆) =
σL(1− ω, ⋆), and by differentiating (34) and (35).

(d) Since σL(⋆, ρ) = σL(1/2, ρ), this statement follows

directly from (b).

Therefore, the capacity function σL(ω, ρ) is uniquely max-

imized at (ω⋆, ρ⋆), and the maximum value is given by (38).

In other words, sequences of weight 1
2n (which are called

“balanced”) and having ρ⋆n runs achieve the capacity of RLL

sequences with no weight or run constraints, namely

logSL(n, ω
⋆n, ρ⋆n) ∼ logSL(n). (63)

However, comparing (2) with (8), we see that these additional

constraints incur a “penalty” of ∼ logn
n bits per symbol (or

∼ logn
2n in case only one of them is active, see (33) and (42)),

meaning that the convergence to capacity is slower.

The following proposition states how the capacity depends

on L.

Proposition 9. (a) The mapping L 7→ σL(ω, ρ) is strictly

monotone on the lattice of subsets of N, meaning that

σL1(ω, ρ) < σL2(ω, ρ) for any L1 ( L2 ⊆ N and any

(ω, ρ) in the region (7) defined for the set L2. The same

is true for the mappings L 7→ σL(ω, ⋆), L 7→ σL(⋆, ρ),
and L 7→ σL(⋆, ⋆). The corresponding limiting values are

σN(ω, ρ) = (1 − ω)H

(

ρ

2(1− ω)

)

+ ωH
( ρ

2ω

)

, (64)

σN(ω, ⋆) = H(ω), (65)

σN(⋆, ρ) = H(ρ), (66)

σN(⋆, ⋆) = 1. (67)

(b) For every L ⊆ N, s ∈ {− inf L + 1,− inf L + 2, . . .},

ρ ∈
[

1
s+supL ,

1
s+inf L

]

, and ω ∈
[

max
{

ρ
2s + ρ

2 inf L,

1− ρ
2s−

ρ
2 supL

}

,min
{

ρ
2s+

ρ
2 supL, 1−

ρ
2s−

ρ
2 inf L

}]

,

σL+s(ω, ρ) = (1− sρ)σL

(

ω − sρ/2

1− sρ
,

ρ

1− sρ

)

, (68)

σL+s(⋆, ρ) = (1− sρ)σL

(

⋆,
ρ

1− sρ

)

. (69)

(c) For every L ⊆ N, σL+1(⋆, ⋆) < σL(⋆, ⋆). In other words,

σL+s(⋆, ⋆) is a monotonically decreasing function of s ∈
N. The limiting value is lims→∞ σL+s(⋆, ⋆) = 0.

Proof: (a) Consider first the case L 7→ σL(⋆, ρ). For any

ℓ′ /∈ L, we have SL∪{ℓ′}(n, ⋆, r) ⊇ SL(n, ⋆, r), and therefore

σL∪{ℓ′}(⋆, ρ) > σL(⋆, ρ). That the latter inequality is strict

can be seen by considering (44) and noting that α cannot

remain the same as L increases. The monotonicity of L 7→
σL(ω, ρ) now follows from, e.g., (48), and it further implies

the monotonicity of L 7→ σL(ω, ⋆) and L 7→ σL(⋆, ⋆). The

limiting value (64) was found in (30).

(b) Suppose for simplicity that r is even. A one-to-one cor-

respondence between SL(n,w, r) and SL+s

(

n+sr, w+s r
2 , r
)

can be established by extending every run of every sequence

from SL(n,w, r) by s symbols (here adding s symbols to an
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existing run means removing |s| symbols from it if s is nega-

tive). This implies that SL(n,w, r) = SL+s

(

n+sr, w+s r
2 , r
)

,

and hence

σL(ω, ρ) = (1 + sρ)σL+s

(

ω + sρ/2

1 + sρ
,

ρ

1 + sρ

)

. (70)

This is equivalent to (68). By maximizing (68) over ω, we get

(69).

(c) Intuitively the statement is clear because increasing the

lengths of the allowed blocks reduces the number of length-n
sequences that can be built from those blocks. Formally, we

can write
∑

ℓ∈L+s x
ℓ = xs

∑

ℓ∈L xℓ and conclude from (39)

that λ is a monotonically increasing (and hence σL(⋆, ⋆) =
− logλ monotonically decreasing) function of the shift s.

Property (b) implies that one can find the asymptotic rates

σL(ω, ρ) and σL(⋆, ρ) for any L if the rates for the left-most

shift of L (i.e., L + 1 − inf L) are known. For example, the

asymptotic rates of constant-weight (d, k)-sequences can be

determined from those of (0, k − d)-sequences by using (69)

(see Remark 1). Furthermore, by using this property, (64) and

(66), one can obtain an explicit expression for the capacity

for the case L = {d+1, d+2, . . .} (corresponding to (d,∞)-
sequences). Namely, for every ρ ∈

[

0, 1
d+1

]

and ω ∈
[

ρ
2 (d +

1), 1− ρ
2 (d+ 1)

]

, we have

σN+d(ω, ρ) = (1− ω − dρ/2)H

(

ρ/2

1− ω − dρ/2

)

+ (ω − dρ/2)H

(

ρ/2

ω − dρ/2

)

, (71)

σN+d(⋆, ρ) = (1− dρ)H

(

ρ

1− dρ

)

. (72)

E. Typical RLL Sequences

As noted in the previous subsection, RLL sequences of

weight ω⋆n = 1
2n and having ρ⋆n runs (where ρ⋆ was

defined in (56)) achieve the same asymptotic rate as RLL

sequences without additional weight or run constraints (see

(63)), but with a penalty of ∼ logn
n bits per symbol. We wish to

emphasize here that this penalty can be avoided if one relaxes

the conditions w = 1
2n, r = ρ⋆n to w ∼ 1

2n, r ∼ ρ⋆n. To be

more precise, there exists a sub-linear function f(n) = o(n)
such that, as n → ∞,

SL(n) ∼
∑

w,r : |w−ω⋆n|+|r−ρ⋆n|6f(n)

SL(n,w, r). (73)

Therefore, the number of RLL sequences whose weight and

number of runs satisfy5 |w − ω⋆n| + |r − ρ⋆n| > f(n) is

asymptotically negligible with respect to the number of all

RLL sequences. In fact, a stronger statement is true.

5The condition |w−ω⋆n|+ |r−ρ⋆n| > f(n) can be replaced by different
conditions stating that (w, r) is bounded away from (ω⋆n, ρ⋆n) (e.g., using
ℓ2 instead of ℓ1 distance), without affecting the validity of the statement.

Theorem 10. Let ω⋆ = 1/2 and ρ⋆ =
(
∑

ℓ∈L ℓλℓ
)−1

, where

λ is the unique positive number satisfying
∑

ℓ∈L λℓ = 1. There

exists a sub-linear function f(n) = o(n) such that, as n → ∞,

∑

w,r : |w−ω⋆n|+|r−ρ⋆n|>f(n)

SL(n,w, r) = O
(

SL(n)

nlogn

)

.

(74)

Proof: The proof is analogous to that of [9, Lemmas

2 and 3]. From the relation SL(n) =
∑

w,r SL(n,w, r), the

pigeon-hole principle, and the fact that the exponent σL(ω, ρ)
is uniquely maximized at (ω⋆, ρ⋆) (see Proposition 8), we see

that, for any given ǫ > 0, the number of RLL sequences

satisfying |w − ω⋆n|+ |r − ρ⋆n| > ǫn is exponential with an

exponent strictly smaller than the exponent of SL(n) (which

is given in (38)–(39)). More precisely, for every ǫ > 0 there

exists a (sufficiently small) γ(ǫ) > 0 such that, as n → ∞,

∑

w,r : |w−ω⋆n|+|r−ρ⋆n|>ǫn

SL(n,w, r) .
SL(n)

2γ(ǫ)n
. (75)

This further implies that, for every ǫ > 0 and large enough n,

∑

w,r : |w−ω⋆n|+|r−ρ⋆n|>ǫn

SL(n,w, r) <
SL(n)

nlogn
. (76)

Let n0(ǫ) be the smallest positive integer such that (76) holds

for all n > n0(ǫ). Now take an arbitrary sequence (ǫi)
satisfying 1 = ǫ0 > ǫ1 > ǫ2 > · · · and limi→∞ ǫi = 0,

define the function

f(n) = ǫin, n0(ǫi) 6 n < n0(ǫi+1), (77)

and note that (76) and (77) imply (74).

It should be clear from the proof that the statement remains

valid with any subexponential function placed instead of nlogn

(i.e., a function of the form 2g(n) with g(n) = o(n)), and

therefore also with o(·) placed instead of O(·) on the right-

hand side of (74).

We may paraphrase the relations (73) and (74) as follows:

almost all sequences in SL(n) are balanced (in the sense that

their weight is ∼ 1
2n) and have ∼ ρ⋆n runs. For this reason,

we say that ω⋆ = 1/2 is the “typical” relative weight, and

ρ⋆ the “typical” relative number of runs in RLL sequences.

One application of the typicality property (74) that we shall

exhibit in Section III-A is that, in the asymptotic analysis of

the cardinality of optimal codes correcting a given number (t)
of errors, due to the fact that nt = o

(

nlogn
)

, one can assume

without loss of generality that all the codewords have ∼ ρ⋆n
runs and are of weight ∼ 1

2n.

RLL sequences exhibit typicality with respect to other

parameters as well. For example, almost all RLL sequences

(in the sense analogous to (74)) contain ∼β⋆
ℓn runs of length

ℓ ∈ L (i.e., blocks 0ℓ and 1ℓ), where

β⋆
ℓ = λℓρ⋆ =

λℓ

∑

ℓ′∈L ℓ′λℓ′
. (78)

Note that
∑

ℓ∈L β⋆
ℓ = ρ⋆ (see (78) and (39)), as it should

be because ρ⋆ is the total typical number of blocks in se-

quences from SL(n). The easiest way to derive (78) is by
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using the probabilistic interpretation from Section II-C: the

probability of length ℓ under the optimal distribution in (49)

is P ⋆
L
(ℓ) = λℓ, so the expected number of blocks of length ℓ,

in a sequence having ρ⋆n blocks in total, is λℓρ⋆n. Based on

the probabilistic interpretation it is easy to find other typical

values that may be of interest: almost all sequences in SL(n)
have ∼P ⋆

L
(ℓ)P ⋆

L
(ℓ′)ρ⋆n = λℓ+ℓ′ρ⋆n runs of length ℓ that are

followed by a run of length ℓ′; almost all sequences in SL(n)
have ∼ 1

2

∑

ℓ∈L,ℓ>ℓ P
⋆
L
(ℓ)ρ⋆n = 1

2

∑

ℓ∈L,ℓ>ℓ λ
ℓρ⋆n runs of

zeros of length greater than or equal to ℓ (and as many runs

of ones of length greater than or equal to ℓ); etc.

Example (Unconstrained case, continued). For L = N, we

have λ = 1/2, ρ⋆ = 1/2, P ⋆
L
(ℓ) = 2−ℓ, and β⋆

ℓ = 2−ℓ−1, for

any ℓ ∈ N. N

F. Separate Constraints on the Runs of 0’s and 1’s

To conclude this section, we note that the presented results

can be generalized to the case where runs of 0’s and runs

of 1’s have possibly different and independent constraints

[15]. Namely, let SL0,L1(n,w, r) denote the number of binary

sequences of length n, weight w, and containing r runs of

identical symbols, where the length of each run of 0’s (resp.

1’s) belongs to L0 ⊆ N (resp. L1 ⊆ N). Then, for any (ω, ρ)
satisfying

inf L1

inf L1 + supL0
< ω <

supL1

inf L0 + supL1
, (79a)

max

{

2ω

supL1
,
2(1− ω)

supL0

}

< ρ < min

{

2ω

inf L1
,
2(1− ω)

inf L0

}

,

(79b)

we have, as n → ∞,

logSL0,L1(n, ωn, ρn) = nσL0,L1(ω, ρ)− logn+O(1), (80)

where

σL0,L1(ω, ρ) (81)

= −(1− ω) logα− ω log β +
ρ

2
log

(

∑

ℓ∈L0

αℓ
∑

ℓ∈L1

βℓ

)

and (α, β) is the unique pair of positive real numbers satisfying

the equations

∑

ℓ∈L0

(

ℓ− 2(1− ω)

ρ

)

αℓ = 0,
∑

ℓ∈L1

(

ℓ− 2ω

ρ

)

βℓ = 0.

(82)

The remaining statements can be generalized in a similar way.

E.g., in Theorem 5, PL0 and PL1 are probability distributions

over L0 and L1 respectively.

III. APPLICATIONS

In this section we describe three communication scenarios

in which asymptotic properties of RLL sequences are used to

derive the optimal information rates, or bounds thereon.

A. Weight-Preserving and Run-Preserving Channels

Several important classes of communication channels pos-

sess the property of preserving certain qualities of input

sequences, such as their weight or the number of runs they

contain. Examples of weight-preserving channels include the

bit-shift channel [23], which models a scenario in which an

electric charge may leak to one of the neighboring cells,

resulting in the 1 bit that it represents being “shifted” to the

left or to the right, as well as various other channels with

permutation/reordering and timing errors. An example of a

channel that is run-preserving (i.e., that preserves the number

of runs in input sequences) is a sticky-insertion channel [4],

which models a scenario with synchronization errors as a result

of which one or more copies of a symbol may be inserted next

to the original symbol in the input sequence6.

The weight (resp. number of runs) being unaffected by the

channel means that an optimal code can be represented as the

union of optimal constant-weight (resp. constant-number-of-

runs) codes over all possible weights (resp. numbers of runs).

Furthermore, by the discussion in Section II-E, for the purpose

of determining the asymptotic behavior of optimal codes one

may assume with no loss in generality that all the codewords

are typical. These facts together considerably simplify the

analysis (see, e.g., [9]). We illustrate this below on the example

of a deletion channel with RLL inputs.

RLL Insertion/Deletion Channels: Consider the deletion

channel with inputs from SL(n), where L = {d+1, . . . , k+1}.

If the maximum possible number of deleted symbols is t 6 d,

then the channel is run-preserving as it cannot delete entire

runs of identical symbols. This fact was used in [20] to

devise a construction of codes correcting t 6 d deletions. In

the following theorem we give the asymptotic scaling of the

construction from [20], thus obtaining a lower bound on the

cardinality of optimal t-deletion-correcting RLL codes, and

we also derive an upper bound on this quantity. For t = 1 and

k = ∞, the bounds coincide and give the exact asymptotic

scaling of the cardinality of optimal single-deletion-correcting

codes. We emphasize that the presented bounds are also valid

for t > d in the restricted (run-preserving) deletion channel

in which an additional assumption is adopted that the channel

cannot delete all bits from a given run, i.e., that it cannot delete

entire runs.

Denote the size of an optimal t-deletion-correcting code

in the space SL(n) (resp. SL(n, ⋆, r)) by DL(n; t) (resp.

DL(n, r; t)). Thus DL(n, r; t) is the size of an optimal code

having the property that all the codewords contain exactly

r runs. If the channel is run-preserving, it must hold that

DL(n; t) =
∑

r DL(n, r; t).

Theorem 11. Fix t, d, k with 0 6 t 6 d < k 6 ∞, and denote

L = {d+ 1, . . . , k + 1}. As n → ∞,

SL(n)

(ρ⋆n)t
. DL(n; t) .

SL(n)

(ρ⋆n)t
λtt!

(1− λd+1)t
, (83)

6As an aside related to sticky-insertion channels and RLL sequences, we
note that the set SL(n), for L =

{

1

h

(

(h+ 1)j − 1
)

: j ∈ N
}

, constitutes
an optimal zero-error code for the channel in which each individual symbol
may be copied at most h times [10].
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where ρ⋆ =
(
∑k+1

ℓ=d+1 ℓλ
ℓ
)−1

, and λ is the unique positive

number satisfying
∑k+1

ℓ=d+1 λ
ℓ = 1.

For k = ∞ and t = 1,

DL(n; 1) ∼ SL(n)

n

(

d+
1

1− λ

)

. (84)

Proof: The lower bound in (83) can be obtained either by

using the construction from [20], or by generalizing the con-

struction from [16] to (d, k)-constrained inputs and using [1]

(see [12] for details). Either construction implies that, for fixed

t, as n → ∞ and r ∼ ρn, DL(n, r; t) &
1
rtSL(n, ⋆, r). From

this and the typicality properties discussed in Section II-E, we

get

DL(n; t) =

n
∑

r=0

DL(n, r; t) (85a)

>

ρ⋆n+f(n)
∑

r=ρ⋆n−f(n)

DL(n, r; t) (85b)

&
1

(

ρ⋆n+ f(n)
)t

ρ⋆n+f(n)
∑

r=ρ⋆n−f(n)

SL(n, ⋆, r) (85c)

∼ SL(n)

(ρ⋆n)t
. (85d)

The upper bound in (83) is obtained by a packing argument.

Let D ⊆ SL(n) be an optimal code correcting t deletions,

|D| = DL(n; t). Consider a typical codeword x ∈ D having

r ∼ ρ⋆n runs and b ∼ β⋆
d+1n = λd+1ρ⋆n runs of length d+1

(see (78)). Consider the patterns of t deletions such that at

most one deletion occurs in each run of length > d + 2 in

x. The number of different sequences that can be produced

after x is impaired by such a pattern is
(

r−b
t

)

∼ 1
t! (r − b)t ∼

1
t!

(

(1−λd+1)ρ⋆n
)t

, and all such sequences live in SL(n− t)
(since deletions occur in runs of length >d+ 2, the resulting

runs are of length >d+1). Now, since D is assumed to correct

t deletions, the sets of output sequences that can be obtained

in this way from any two distinct codewords must be disjoint.

Therefore,

DL(n; t) ·
((

1− λd+1
)

ρ⋆n
)t

t!
. SL(n− t) ∼ λtSL(n),

(86)

which proves the stated upper bound.

When k = ∞, we have
∑∞

ℓ=d+1 λ
ℓ = λd+1

1−λ = 1 and

ρ⋆−1 =
∑∞

ℓ=d+1 ℓλ
ℓ = d + 1

1−λ . If, in addition, t = 1, the

two bounds from (83) coincide and give (84).

The constant factor in the upper bound in (83) can be

improved for t > 2 by using the fact that a deletion-correcting

code is also an insertion-deletion-correcting code [20] (see [12,

Theorem 4]), but we satisfy ourselves here with the fact that

the two bounds have the same asymptotic scaling, namely

logDL(n; t) = logSL(n)− t logn+O(1)

= n logλ−1 − t logn+O(1),
(87)

where λ is the unique positive number satisfying
∑k+1

ℓ=d+1 λ
ℓ = 1. In words, redundancy of ∼ t logn bits

is necessary and sufficient for achieving communication

resilient to t 6 d deletions. We emphasize again that the

same holds for t > d in the run-preserving deletion channel.

For example, in the unconstrained (L = N) run-preserving

deletion channel we have, for any t > 1,

2n+t

nt
. DN(n; t) .

2n+t

nt
t!, (88)

and hence, for t = 1, DN(n; 1) ∼ 2n+1

n . For comparison, recall

that the size of an optimal code correcting a single deletion

(with no run-preserving assumption) scales as 2n

n [17].

To conclude this subsection, let us reiterate the main idea

behind the above proof: in addition to using the fact that the

channel is run-preserving, we have restricted the analysis to

typical codewords only, a restriction which simplified the proof

while not incurring any loss in generality. In particular, we

have exploited the fact that the sets of output sequences are

of the same size for all codewords having the same number

of runs r, and that we may freely take r ∼ ρ⋆n.

B. Channels with Sparse Error Patterns

Consider the binary symmetric channel (BSC), in which

an output sequence is produced by flipping some of the

symbols/bits in the input sequence, but with an additional

constraint that, in any contiguous segment of d+ 1 bits, only

one bit may be flipped. This channel models a communication

scenario in which the error patterns are “sparse” in the sense

that two input bits may be affected by noise only if they are

sufficiently far apart. Denoting the input, output, and noise

sequences by x,y, e ∈ {0, 1}n, respectively, we can write

y = x ⊕ e, where the requirement that the error patterns are

sparse is equivalent to saying that any two 1’s in the sequence

e are separated by at least d 0’s. In other words, the sequence e

is a (d,∞)-sequence7 (see Remark 1). Hence, in this scenario,

the noise sequences, rather than the information sequences, are

constrained.

Let Vd(n, r) be the number of different output sequences

that can be produced by a given input sequence x ∈ {0, 1}n,

assuming that at most r errors have occurred in the channel,

and define

vd(ρ) = lim
n→∞

1

n
logVd(n, ρn), (89)

for ρ ∈
[

0, 1
d+1

]

.

Lemma 1. For any d ∈ {0, 1, . . .},

vd(ρ) =

{

(1 − dρ)H
(

ρ
1−dρ

)

, 0 6 ρ < 1−λ
1+(1−λ)d

− logλ, 1−λ
1+(1−λ)d 6 ρ 6 1

d+1 ,
(90)

where λ is the unique positive solution of the equation λd+1+
λ− 1 = 0.

Proof: Vd(n, r) is equal to the number of different noise

sequences of length n and Hamming weight 6 r. Since

7Note that not all run-lengths of zeros in e are constrained to the set {d, d+
1, . . .} – the first (if e1 = 0) and the last (if en = 0) run can be shorter.
Since allowing the first and/or the last run to violate the given constraints
does not affect the asymptotic rate of constrained sequences, we do not pay
particular attention to these boundary conditions.
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the noise sequences are (d,∞)-sequences (with boundary

conditions different from those assumed in Remark 1), and

since the boundary conditions do not affect the asymptotic rate,

we conclude that logVd(n, ρn) ∼ log
∑

t6ρn SN+d(n, ⋆, t)
(see Remark 1 and the first paragraph of Section II-B2). We

then have

vd(ρ) = lim
n→∞

1

n
log

ρn
∑

t=0

SN+d(n, ⋆, t) (91a)

= lim
n→∞

1

n
log max

06t6ρn
SN+d(n, ⋆, t) (91b)

= max
τ∈[0, ρ]

σN+d(⋆, τ) (91c)

=

{

σN+d(⋆, ρ), 0 6 ρ < ρ⋆

σN+d(⋆, ⋆), ρ⋆ 6 ρ 6 1
d+1

, (91d)

where (91b) follows from the pigeon-hole principle; (91c)

follows from the definition of σL(⋆, ρ) (see (42) and (43));

and (91d) follows from the fact that the mapping ρ 7→ σL(⋆, ρ)
is concave and maximized at ρ⋆ (see Proposition 8(d)). Now

recall from (72) that the function σL(⋆, ρ) has an explicit form

for L = N + d, namely σN+d(⋆, ρ) = (1 − dρ)H
(

ρ
1−dρ

)

,

simplify (56) to ρ⋆ =
(
∑∞

ℓ=d ℓλ
ℓ
)−1

= 1−λ
1+(1−λ)d , where λ is

the unique positive number satisfying
∑∞

ℓ=d λ
ℓ = λd

1−λ = 1,

and recall from (38) that σN+d(⋆, ⋆) = − logλ.

Denote the maximum cardinality of a code of length n
correcting r errors (as defined above) by Md(n, r). Then,

by the sphere packing argument, we must have Md(n, r) 6
2n

Vd(n,r)
. Consequently, the maximum asymptotic rate of codes

correcting a fraction ρ of errors is upper bounded by

lim
n→∞

1

n
logMd(n, ρn) 6 1− vd(ρ). (92)

For d = 0 (unconstrained BSC), (90) reads

v0(ρ) =

{

H(ρ), 0 6 ρ < 1
2

1, 1
2 6 ρ 6 1,

(93)

and hence (92) reduces to the classical sphere packing bound.

The maximum asymptotic rate of codes correcting a given

fraction ρ of errors is a quantity of fundamental importance

in coding theory, the exact value of which is still unknown

for any non-trivial ρ. Upper bounds better than the sphere-

packing bound are known [18], and the best known lower

bound is the Gilbert–Varshamov bound. Whether arguments

used for deriving these bounds can be applied in our scenario

with sparse error patterns will be investigated elsewhere; the

derivation of (92) was given here only as an illustration.

C. Sub-block Constrained Sequences

We conclude this section by presenting another type of

constrained sequences. Their analysis does not represent an

application of the above results per se, but rather an illustration

that a wider class of problems can be analyzed by using similar

methods.

For fixed ℓb, wb with wb 6 ℓb, define B =
{

x ∈ {0, 1}ℓb :
wt(x) > wb

}

, and consider the set of binary sequences of

length n and weight w obtained by concatenating blocks from

B, namely

Ssec(n,w) =
{

x ∈ B
n
ℓb : wt(x) = w

}

, (94)

where it is assumed that n/ℓb is an integer. (We omit the

parameters ℓb, wb from the notation for reasons of simplicity.)

Denote also, as before, Ssec(n,w) =
∣

∣Ssec(n,w)
∣

∣.

Sequences built from blocks of length ℓb and weight >wb

are called sub-block energy constrained (SEC) sequences,

and they have been studied in the context of simultaneous

information and energy transfer, as well as in several other

applications [24], [25]. From the definition (94) it follows that

the quantity Ssec(n,w) obeys the recurrence relation

Ssec(n,w) =

ℓb
∑

j=wb

(

ℓb

j

)

Ssec(n− ℓb, w − j), (95)

the characteristic equation of which is

1− xℓb

ℓb
∑

j=wb

(

ℓb

j

)

yj = 0. (96)

Applying [21, Theorem 1.3], we obtain the following char-

acterization of the asymptotic rate of constant-weight SEC

sequences.

Theorem 12. Fix ℓb, wb, and ω ∈
(

wb

ℓb
, 1
)

. As8 n → ∞,

log Ssec(n, ωn) = nσsec(ω)− 1

2
logn+O(n), (97)

where

σsec(ω) = −ω log β +
1

ℓb

log

ℓb
∑

j=wb

(

ℓb

j

)

βj , (98)

and β is the unique positive number satisfying
∑ℓb

j=wb

(

ℓb

j

)

(j−
ωℓb)β

j = 0.

We also set σsec(wb/ℓb) = σsec(1) = 0. The exponent

σsec(ω) is a continuous, strictly concave function of ω ∈
[

wb

ℓb
, 1
]

, maximized at

ω⋆ =

∑ℓb

j=wb
j
(

ℓb

j

)

ℓb

∑ℓb

j=wb

(

ℓb

j

)
, (99)

with the maximum being equal to

σsec(ω⋆) =
1

ℓb

log

ℓb
∑

j=wb

(

ℓb

j

)

. (100)

The last equality can also be obtained directly as σsec(ω⋆)
must be equal to the exponential growth rate of SEC se-

quences without the constant-weight requirement, namely

limn→∞
1
n log

∣

∣B
n
ℓb

∣

∣.

The exponential growth rate of the quantity
∑

w>ωn S
sec(n,w) (bounded-weight SEC sequences),

which is also naturally of interest in this context, can be

found from the above by using the fact that σsec(ω) is

uniquely maximized at ω⋆, similarly as in (91).

8The condition n → ∞ is here understood over ℓbN = {ℓbm : m ∈ N}.
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IV. CONSTANT-MANHATTAN-WEIGHT SEQUENCES

There are many scenarios in coding theory where other

definitions of sequence weight are more appropriate than the

Hamming weight, an important example being the ℓ1 (or

Manhattan) weight. We wish to point out here that q-ary se-

quences with fixed ℓ1 weight are, in a sense, dual to sequences

with constrained runs of zeros and that, consequently, their

properties can be inferred from the results of Section II.

Denote Aq = {0, 1, . . . , q − 1},

M q(n,w) =

{

x ∈ An
q :

n
∑

i=1

xi = w

}

, (101)

and Mq(n,w) =
∣

∣M q(n,w)
∣

∣. Interpreting the sequences in

M q(n,w) as n-part compositions of the number w, with

parts restricted to Aq , we can write9 Mq(n,w) = CAq
(w, n).

We can then deduce the following claim from [22, Theorem

12.2.2], in the same way as, e.g., Theorem 4.

Theorem 13. Fix ω ∈
(

0, q − 1
)

. As n → ∞,

logMq(n, ωn) = nµq(ω)−
1

2
logn+O(1), (102)

where

µq(ω) = −ω logα+ log

q−1
∑

i=0

αi, (103)

and α is the unique positive real number satisfying

q−1
∑

i=0

(i − ω)αi = 0. (104)

By continuous extension, we set µq(0) = µq(q − 1) = 0.

Proposition 14. The mapping ω 7→ µq(ω) is continuous,

symmetric, and strictly concave on the interval ω ∈
[

0, q−1
]

.

It is maximized at ω⋆ = q−1
2 , and the maximum is equal to

µq(ω
⋆) = log q. (105)

The “typical” Manhattan weight of a q-ary sequence of

length n → ∞ is ∼ q−1
2 n. The typical number of occurrences

of each of the symbols a ∈ Aq in such a sequence is ∼ 1
qn;

the typical number of non-zero symbols that are followed by

a zero symbol is ∼ q−1
q

1
qn = q−1

q2 n; etc.

Note that we are analyzing here sequences with fixed

Manhattan weight but with no RLL constraints. Deriving the

asymptotics for the case when both these kinds of constraints

are taken into account is also an interesting problem and will

be investigated elsewhere.

9Recall that SL(w, ⋆, n) = 2CL(w,n), but we cannot write here

Mq(n, w) = 1

2
SAq (w, ⋆, n) because 0 ∈ Aq , and in the definition of

SL(·, ·, ·) we have assumed that 0 /∈ L (it is meaningless to speak of runs of
length 0 in this context). However, the fact that 0 ∈ Aq does not affect the
analysis [22]. We note that integer compositions in which 0’s are valid parts
are called weak compositions.

Application: Molecular Timing Channels

In this subsection we present an example of a Manhattan-

weight-preserving channel (that is not Hamming-weight-

preserving) and an application of the typicality properties just

mentioned.

Consider a communication channel described by the follow-

ing assumptions: 1) an input sequence x = x1 · · ·xn ∈ An
q ,

∑n
i=1 xi = w, is thought of as describing w identical particles

transmitted over n time slots, where xi particles are transmit-

ted in the i’th slot; 2) all particles reach the receiver, but their

relative positions at the receiving side may differ from the ones

they had at the moment of transmission, i.e., the delay of each

of the particles may vary with respect to the expected/mean

delay. This channel is meant to model a type of molecular

communication systems [2], [11], and it can also be seen as a

generalization of the bit-shift channel to q-ary alphabets.

Note that every input sequence x can be uniquely repre-

sented by another sequence x̃ ∈ Zw satisfying 1 6 x̃1 6

· · · 6 x̃w 6 n, where x̃j represents the time slot in which

the j’th particle is sent. For example, if x = (2, 1, 0, 2), then

x̃ = (1, 1, 2, 4, 4). A shift by one position of the j’th particle

in x (i.e., its delay being one slot less or one slot greater than

the mean delay) corresponds to a ±1 error on the j’th location

in x̃. We say that t particle shifts (or timing errors) have

occurred in the channel if ‖x̃− ỹ‖1 =
∑w

i=1 |x̃i − ỹi| = t,
where ỹ is the integer representation of the corresponding

received sequence. This representation of input and output

sequences implies that a code correcting t particle shifts can be

constructed from a code in Zw of minimum distance >2t+1
under the Manhattan metric [9].

Let Tq(n; t) (resp. Tq(n,w; t)) denote the cardinality of

an optimal code in An
q (resp. M q(n,w)) correcting t timing

errors. Hence, Tq(n,w; t) is the cardinality of an optimal code

all of whose codewords have Manhattan weight w. Since

the channel is Manhattan-weight-preserving, we must have

Tq(n; t) =
∑

w Tq(n,w; t).

Theorem 15. Fix q > 2 and t > 1. As n → ∞,

qn

nt

2tc(t)

(q − 1)t
. Tq(n; t) .

qn

nt

q2tt!

2t(q − 1)2t
, (106)

where c(1) = 1
2 , c(2) = 1

4 , and c(t) = 1
2t+1 for t > 3.

Proof: As in the proof Theorem 11 (Section III-A), the

idea is to use the fact that the channel is Manhattan-weight-

preserving, and to restrict the analysis to typical codewords

only (which incurs no loss in generality).

As explained above, by using a different (integer) repre-

sentation of input and output sequences, a code correcting t
shifts can be constructed from a code of minimum distance

> 2t + 1 under the Manhattan metric. Since the best known

packing of balls of radius t (in the Manhattan metric) in

Zw has center-density &
c(t)
wt [9, Lemma 10], it follows that

Tq(n,w; t) & Mq(n,w)
c(t)
wt . By using the typicality argument

and letting w ∼ ω⋆n = q−1
2 n, the lower bound in (106)

follows by the same reasoning as in (85).

Let us now establish the upper bound. Let C ⊆ An
q be

an optimal code correcting t timing errors, |C| = Tq(n; t),
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and consider a codeword x ∈ C . Every pattern of t shifts

that can impair x in the channel consists of s right-shifts and

t− s left-shifts, for some s ∈ {0, 1, . . . , t}. We consider only

shifts (from non-empty slots) to slots which are not “full”, i.e.,

which have < q − 1 particles, so that the resulting sequence

at the channel output also belongs to An
q . The typical number

of non-empty slots with a “non-full” slot immediately to their

right is easily shown to be γ⋆n =
(

q−1
q

)2
n, and the same is

true for the number of non-empty slots with a “non-full” slot

immediately to their left. Based on this, one concludes that the

number of different sequences in An
q that can be obtained after

x is impaired by t shifts is (asymptotically) lower-bounded by

&

t
∑

s=0

(

γ⋆n

s

)(

γ⋆n

t− s

)

∼ (γ⋆n)t
2t

t!
. (107)

Since C corrects t shifts by assumption, we must have

Tq(n; t) ·
2t

t!

(

q − 1

q

)2t

nt . qn, (108)

which is what we needed to show.

Consequently, as n → ∞,

logTq(n; t) = n log q − t logn+O(1). (109)
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