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QUATERNARY LINEAR CODES AND RELATED BINARY

SUBFIELD CODES

YANSHENG WU, CHENGJU LI, AND FU XIAO

Abstract. In this paper, we mainly study quaternary linear codes and their binary

subfield codes. First we obtain a general explicit relationship between quaternary

linear codes and their binary subfield codes in terms of generator matrices and defin-

ing sets. Second, we construct quaternary linear codes via simplicial complexes and

determine the weight distributions of these codes. Third, the weight distributions

of the binary subfield codes of these quaternary codes are also computed by em-

ploying the general characterization. Furthermore, we present two infinite families

of optimal linear codes with respect to the Griesmer Bound, and a class of binary

almost optimal codes with respect to the Sphere Packing Bound. We also need to

emphasize that we obtain at least 9 new quaternary linear codes.

1. Introduction

Let Fqm be the finite field with qm elements, where q is a power of a prime and m is

a positive integer. Given an [n, k] linear code C over Fqm, Ding and Heng [4] recently

constructed a new linear code C(q) over Fq with respect to C, which is called a subfield

code. In the paper, the authors mainly developed the general theory of subfield codes,

investigated subfield codes of two families of ovoid codes, and presented some new

and optimal subfield codes. After that, there have been literature on subfield codes

of combinatorial codes ([7, 9]); MDS codes ([8, 16]), and some other linear codes

([10, 17, 18, 21, 22]). We record a table here (Table 1) for the convenience of the

reader. In the table, we list some optimal linear subfield codes with respect to the

Griesmer Bound or the Sphere Packing Bound.

Based on the generic construction for linear codes, Hyun et al. [14] constructed

some infinite families of binary optimal linear codes by choosing the defining set as the

complement of some simplicial complexes. A more general situation was considered

by Hyun et al. [13] by using posets, and they presented some optimal and minimal

binary linear codes not satisfying the condition of Ashikhmin-Barg [1]. Recently,

Zhu and Wei [23] constructed quaternary linear codes via simplicial complexes and

presented an infinite family of minimal optimal quaternary linear codes with respect

to the Griesmer bound.
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Table 1. Optimal linear subfield codes

Reference q-Ary [n, k, d] Code #Weight Bound Result

[4] q-ary [q2 + 1, 4, q2 − q] 2 Griesmer bound Thm.1.1

[7]
binary [2m + 2, 2m −m, 4] Sphere Packing Thm.11

p-ary [pm + 1, pm − 2m, 4] Sphere Packing Thm.16

[8]

binary [2m + 1, 2m −m, 3] Sphere Packing Thm.VII. 4

p-ary

[pm + 1, pm + 1− 2m, 3] Sphere Packing Thm.VI.7

[pm + 1, pm −m, 3] Sphere Packing
Thm.V.1

[pm + 1, m+ 1, pm−1(p− 1)] 3 Griesmer bound

[9] binary

[2m+s + 2s − 2m, 2m+s + 2s − 2m −

2m − 2−m, 4]

Sphere Packing Thm.12

[2m + 2, 2m − 2m, 6] Sphere Packing Thm.18

[10] q-ary

[q2 − 1, 4, q2 − q − 2] 5 Griesmer bound
Thm.6

[q2 − 1, q2 − 5, 4] Sphere Packing

[q2, 4, q2 − q − 1] 4 Griesmer bound
Thm.9

[q2, q2 − 4, 4] Sphere Packing

[21] binary

[22m + 2, 2m + 1, 22m−1] 4 Griesmer bound
Thm.1

[22m + 2, 22m − 2m + 1, 3] Sphere Packing

[22m + 1, 2m + 1, 22m−1] 3 Griesmer bound
Thm.2

[22m + 1, 22m − 2m, 3] Sphere Packing

From the argument of Xiang in [20] and the generic construction for linear codes,

each linear code can be expressed as the defining code CD with a defining setD. Due to

the key role in estimating the error-correcting capability of codes, weight distributions

is an important research topic in coding theory. Motivated by the above work, we

ask the following questions:

1) What is the relationship between quaternary linear codes and their binary subfield

codes ? Namely for the generic construction of linear codes, what is the relationship

between defining sets of quaternary linear codes and the binary subfield codes ?

2) Can we obtain more optimal quaternary linear codes and determine their weight

distributions ?

3) Can we obtain more optimal the binary subfield linear codes of quaternary linear

codes and determine their weight distributions ?

The basic questions above are the major motivation of this paper. First, we find

a direct approach to deal with the relationship between quaternary linear codes and

their binary subfield codes. Second, we will follow the idea in [14], and use simplicial

complexes to construct quaternary linear codes. Weight distributions of these qua-

ternary codes are determined when those simplicial complexes are generated by one

or two maximal elements. Third, we also compute weight distributions of the binary

subfields code of these quaternary codes. In addition, we present several classes of
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optimal and almost optimal linear codes and some examples of linear codes with

optimal parameters. By Magma, we obtain at least 9 new quaternary linear codes.

The rest of this paper is organized as follows. In Section 2, we recall some bounds

on linear codes, some concepts of simplicial complexes, and generating functions. In

Section 3, we will deal with the relationship between quaternary linear codes and their

binary subfield codes. We will compute the weight distributions of some quaternary

codes and their binary subfield codes in Sections 4 and 5. Furthermore, we obtain

two classes of optimal linear codes and a class of almost optimal binary codes. In

Section 6, we present some new quaternary linear codes and conclude the paper.

2. Preliminaries

2.1. Two bounds of linear codes.

Let C be an [n, k, d] linear code over Fq. Assume that there are Ai codewords in C

with Hamming weight i for 1 ≤ i ≤ n. Then C has weight distribution (1, A1, . . . , An)

and weight enumerator 1+A1z+ · · ·+Anz
n. Moreover, if the number of nonzero Ai’s

in the sequence (A1, . . . , An) is exactly equal to t, then the code is called t-weight.

The [n, k, d] code C is called distance optimal if there is no [n, k, d + 1] code (that

is, this code has the largest minimum distance for given length n and dimension k),

and it is called almost optimal if an [n, k, d+1] code is distance optimal (refer to [11,

Chapter 2]).

Next we recall two well-known bounds on linear codes.

Lemma 2.1. (Griesmer Bound [6]) For a given [n, k, d] linear code over Fq, there is

a bound as follows:
k−1
∑

i=0

⌈

d

qi

⌉

≤ n,

where ⌈·⌉ is the ceiling function.

We say that a linear code is a Griesmer code if it meets the Griesmer bound with

equality. One can verify that Griesmer codes are distance optimal.

Lemma 2.2. (Sphere Packing Bound [11]) For a given [n, k, d] linear code over Fq,

there is a bound as follows:

⌊ d−1

2 ⌋
∑

i=0

(

n

i

)

(q − 1)i ≤ qn−k,

where ⌊·⌋ is the floor function.

When we have a code for which equality in the above bound is ture, the code is

called perfect. One can verify that perfect codes are also distance optimal.
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2.2. The generic construction of linear codes.

Let m be a positive integer, q be a prime power, and (Vm, ·) be an m-dimensional

vector space over Fq, where · denotes an inner product on Vm. For a linear code of

length n over Fq, there is a generic construction as follows:

CD = {(x · d1, x · d2, . . . , x · dn) : x ∈ Vm} (2.1)

where D = {d1, . . . , dn} ⊆ Vm. The set D is called the defining set of the code CD. If

the set D is properly chosen, the code CD may have good parameters. The following

two situations are common:

(1) When Vm = Fqm , x · y = Trqm/q(xy) for x, y ∈ Fqm and Trqm/q is the trace

function from Fqm to Fq. In this case, the corresponding code CD in Equation (2.1)

is called a trace code over Fq. This generic construction was first introduced by Ding

et al. [3].

(2) When Vm = F
m
q , x · y =

∑m
i=1 xiyi for x = (x1, . . . , xm),y = (y1, . . . , ym) ∈ F

m
q .

This standard construction in Equation (2.1) can be also found in [11].

2.3. Simplicial complexes and generating functions.

Let F2 be the finite field with two elements. Assume that m is a positive integer.

The support supp(v) of a vector v ∈ F
m
2 is defined by the set of nonzero coordinates.

The Hamming weight wt(v) of v ∈ F
m
2 is defined by the size of supp(v). For two

subsets A,B ⊆ [m], the set {x : x ∈ A and x /∈ B} and the number of elements in

the set A are denoted by A\B and |A|, respectively.

For two vectors u,v ∈ F
m
2 , we say v ⊆ u if supp(v) ⊆ supp(u). We say that a

family ∆ ⊆ F
m
2 is a simplicial complex if u ∈ ∆ and v ⊆ u imply v ∈ ∆. For a

simplicial complex ∆, a maximal element of ∆ is one that is not properly contained

in any other element of ∆. Let F = {F1, . . . , Fl} be the family of maximal elements

of ∆. For each F ⊆ [m], the simplicial complex ∆F generated by F is defined to be

the family of all subsets of F .

Let X be a subset of Fm
2 . Hyun et al. [2] introduced the following m-variable

generating function associated with the set X :

HX(x1, x2, . . . , xm) =
∑

u∈X

m
∏

i=1

xui

i ∈ Z[x1, x2, . . . , xm],

where u = (u1, u2, . . . , um) ∈ F
m
2 and Z is the ring of integers.

The following lemma plays an important role in determining the weight distribu-

tions of the quaternary codes defined in Equation (2.1).

Lemma 2.3. [2, Theorem 1] Let ∆ be a simplicial complex of Fm
2 with the set of

maximal elements F . Then

H∆(x1, x2, . . . , xm) =
∑

∅6=S⊆F

(−1)|S|+1
∏

i∈∩S

(1 + xi),
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where ∩S denotes the intersection of all elements in S. In particular, we also have

|∆| =
∑

∅6=S⊆F

(−1)|S|+12|∩S|.

There is a bijection between F
m
2 and 2[m] being the power set of [m] = {1, . . . , m},

defined by v 7→ supp(v). Throughout this paper, we will identify a vector in F
m
2 with

its support.

Example 2.4. Let ∆ be a simplicial complex of F4
2 with the set of maximal elements

F = {(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)}. Then

H∆(x1, x2, x3, x4) =
∏

i∈{1,2}

(1 + xi) +
∏

i∈{3,4}

(1 + xi) +
∏

i∈{2,3}

(1 + xi)− (1 + x2)− (1 + x3)

= 1 + x1 + x2 + x3 + x4 + x1x2 + x2x3 + x3x4.

and |∆| = 8.

3. Relationship between quaternary codes and the subfield codes

For the finite field F4, as we known F4
∼= F2[x]/〈x

2 + x + 1〉, where x2 + x + 1 is

the only irreducible polynomial of degree two in F2[x]. Let w be an element in some

extend field of F2 such that w2 + w + 1 = 0. Then F4 = F2(w) and for each u ∈ F4

there is a unique representation u = a + wb, where a, b ∈ F2. Let m be a positive

integer, and F
m
4 be the set of m-tuples over F4. Any vector x ∈ F

m
4 can be written as

x = a+ wb, where a,b ∈ F
m
2 .

From the argument of Xiang in [20], any quaternary linear code of length n can be

also expressed as the code CD in Equation (2.1), where D = {d1,d2, . . . ,dn} ⊆ F
m
4

and m is some positive integer.

The following result plays an important role in the research of the subfield codes.

Lemma 3.1. [4, Theorem 2.4] Let C be an [n, k] linear code over Fqm with generator

matrix

G =













g11 g12 . . . g1n
g21 g22 . . . g2n
...

...
. . .

...

gk1 gk3 . . . gkn













.

Let {α1, α2, . . . , αm} be a basis of Fqm over Fq. Then the subfield code C(q) with

respect to C has a generator matrix

G(q) =













G
(q)
1

G
(q)
2
...

G
(q)
k













,
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where each G
(q)
i is defined as













Trqm/q(gi1α1) Trqm/q(gi2α1) . . . Trqm/q(ginα1)

Trqm/q(gi1α2) Trqm/q(gi2α2) . . . Trqm/q(ginα2)
...

...
. . .

...

Trqm/q(gi1αm) Trqm/q(gi2αm) . . . Trqm/q(ginαm)













.

In Lemma 3.1, let q = 2, m = 2 and {α1 = 1, α2 = w} be a basis of F4 over F2.

Assume that gij = g
(0)
ij + wg

(1)
ij , where g

(0)
ij , g

(1)
ij ∈ F2. Hence Tr4/2(gijα1) = g

(1)
ij and

Tr4/2(gijα2) = g
(0)
ij + g

(1)
ij . Then we have the following theorem.

Theorem 3.2. Let C be an [n, k] linear code over F4 with generator matrix G =

G1 + wG2, where w ∈ F4 with w2 + w + 1 = 0 and G1, G2 are two matrices over F2.

Then the binary subfield code C(2) with respect to C has a generator matrix

G(2) =

(

G2

G1 +G2

)

.

Moreover, if the quaternary code C has the defining set D = D1+wD2 with D1, D2 ⊆

F
m
2 , then the binary subfield code C(2) with respect to C has defining set:

D(2) = {(d2,d1 + d2) : d1 ∈ D1,d2 ∈ D2}.

Remark 3.3. There is a well-known the Plotkin construction, for linear codes from

old codes which is documented in [15]. By Theorem 3.2, the subfield construction of

quaternary codes includes the Plotkin construction.

We give the following example to illustrate Theorem 3.2.

Example 3.4. Let C be a [4, 2] linear code over F4 with defining set D = D1+wD2,

where D1 = {(0, 1), (1, 0)} and D2 = {(0, 1), (1, 1)}. Then its generator matrix is

(

w 0 1 + w 1

1 + w 1 + w w w

)

=

(

0 0 1 1

1 1 0 0

)

+ w

(

1 0 1 0

1 1 1 1

)

.

By Lemma 3.1, the binary subfield code C(2) with respect to C has a generator matrix

G(2) =











1 0 1 0

1 1 1 1

1 0 0 1

0 0 1 1











.

By Theorem 3.2, D(2) = {(1, 1, 1, 0), (0, 1, 0, 0), (1, 1, 0, 1), (0, 1, 1, 1)}.
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4. Weight distributions of quaternary codes

In this section, we will construct some quaternary codes via simplicial complexes

and determine their weight distributions.

Let D1, D2 be two subsets of Fm
2 and D = D1 + wD2 ⊆ F

m∗
4 , where F

m∗
4 is the

set of non-zero element of Fm
4 and w ∈ F4 such that w2 + w + 1 = 0. We define a

quaternary code as follows:

CD = {cD(a) = (a · d)d∈D : a ∈ F
m
4 }. (4.1)

First of all, from Equation (4.1), it is easy to check that the code CD is a quaternary

linear code. The length of the code CD is |D|. If a = 0, then the Hamming weight of

the codeword cD(a) is equal to wt(cD(a)) = 0. Next we assume that a 6= 0. Suppose

that a = α + wβ, d = d1 + wd2, where α = (α1, . . . , αm),β = (β1, . . . , βm) ∈ F
m
2 ,

d1 ∈ D1, and d2 ∈ D2. Then

wt(cD(a)) = wt(((α+ wβ) · (d1 + wd2))d1∈D1,d2∈D2
)

= wt((αd1 + w(αd2 + βd1) + w2βd2)d1∈D1,d2∈D2
)

= wt((αd1 + βd2 + w(βd2 +αd2 + βd1))d1∈D1,d2∈D2
).

By the definition of Hamming weight of vector x = y + wz ∈ F
m
4 with y, z ∈ F

m
2 ,

wt(x) = 0 if and only if y = z = 0. Hence

wt(cD(a)) = |D| −
∑

d1∈D1

∑

d2∈D2

(
1

2

∑

y∈F2

(−1)(αd1+βd2)y)(
1

2

∑

z∈F2

(−1)(αd2+β(d1+d2))z)

= |D| −
1

4

∑

d1∈D1

∑

d2∈D2

(1 + (−1)αd1+βd2)(1 + (−1)αd2+β(d1+d2))

=
3

4
|D| −

1

4
(
∑

d1∈D1

(−1)αd1)(
∑

d2∈D2

(−1)βd2)

−
1

4
(
∑

d1∈D1

(−1)βd1)(
∑

d2∈D2

(−1)(α+β)d2)

−
1

4
(
∑

d1∈D1

(−1)(α+β)d1)(
∑

d2∈D2

(−1)αd2).

For a subset P of Fm
2 and u ∈ F

m
2 , let us define χu(P ) =

∑

v∈P (−1)uv. Then

wt(cD(a)) =
3

4
|D|

−
1

4
[χα(D1)χβ(D2) + χβ(D1)χα+β(D2) + χα+β(D1)χα(D2)]. (4.2)

Let Dc = F
m∗
4 \D and δ be the Kronecker delta function. Then

wt(cDc(a)) =
3

4
(|Dc| − 22mδ0,a)

+
1

4
[χα(D1)χβ(D2) + χβ(D1)χα+β(D2) + χα+β(D1)χα(D2)].
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By Equation (4.2), we have

wt(cDc(a)) = 3× 22m−2(1− δ0,a)− wt(cD(a)). (4.3)

Recall that there is a bijection between F
m
2 and 2[m] being the power set of [m] =

{1, . . . , m}, defined by v 7→ supp(v). For a subset D ⊆ F
m
4 , we use D∗ to denote the

set D\{0}.

From the proof of [13, Theorem 5.3], we derive the following lemma, which is need

in computing weight distributions of the codes.

Lemma 4.1. [13] For two subsets A,B of [m], we set

U1 = {u ∈ F
m
2 : u ∩ (A ∪B) = ∅},

U2 = {u ∈ F
m
2 : u ∩ A = ∅, u ∩ (B\A) 6= ∅},

U3 = {u ∈ F
m
2 : u ∩ B = ∅, u ∩ (A\B) 6= ∅},

U4 = {u ∈ F
m
2 : u ∩ (A\B) 6= ∅, u ∩ (A ∩B) = ∅, u ∩ (B\A) 6= ∅},

U5 = {u ∈ F
m
2 : u ∩ (A ∩B) 6= ∅}.

Then we have

|U1| = 2m−|A∪B|, |U2| = 2m−|A| − 2m−|A∪B| = 2m−|A∪B|(2|B\A| − 1),

|U3| = 2m−|B| − 2m−|A∪B| = 2m−|A∪B|(2|A\B| − 1),

|U4| = 2m−|A∪B|(2|A\B| − 1)(2|A\B| − 1),

|U5| = 2m−|A∩B|(2|A∩B| − 1).

Proposition 4.2. Let A,B be two subsets of [m] and D = ∆A + w∆B ⊂ F
m
4 . Then

CD∗ in Equation (4.1) is a [2|A|+|B| − 1, |A ∪ B|, 2|A|+|B|−1] quaternary code and its

weight distribution is presented in Table 2.

Table 2. Weight distribution of the code in Proposition 4.2

Weight Frequency

0 1

2|A|+|B|−1 3(2|A\B|+|B\A| − 1)

3× 2|A|+|B|−2 4|A∪B| − 1− 3(2|A\B|+|B\A| − 1)

Proof. It is easy to check that the length of the code CD∗ is |D∗| = 2|A|+|B| − 1. To

compute the weights and frequencies, we need to introduce the following notation.
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For X a subset of Fm
2 , we use ψ(u|X) to denote a Boolean function in m-variable,

and ψ(u|X) = 1 if and only if u
⋂

X = ∅. For a vector u = (u1, . . . , um) ∈ F
m
2 and a

nonempty simplicial complex ∆A, by Lemma 2.3 we have

∑

x∈∆A

(−1)u·x = H∆A
((−1)u1, (−1)u2 , . . . , (−1)um) =

∏

i∈A

(1 + (−1)ui)

=
∏

i∈A

(2− 2ui) = 2|A|
∏

i∈A

(1− ui) = 2|A|ψ(u|A). (4.4)

Suppose that a = α+ wβ. By Equations (4.2) and (4.4)

wt(cD∗(a)) = wt(cD(a)) =
3

4
|D|

−2|A|+|B|−2[ψ(α|A)ψ(β|B) + ψ(β|A)ψ(α + β|B) + ψ(α + β|A)ψ(α|B)].

Let T = ψ(α|A)ψ(β|B) +ψ(β|A)ψ(α + β|B) +ψ(α + β|A)ψ(α|B). We divide the

proof into the following cases:

(1) T = 3. In this case we have wt(cD∗(a)) = 0 and

ψ(α|A) = ψ(α|B) = ψ(β|A) = ψ(β|B) = ψ(α + β|A) = ψ(α + β|B) = 1,

which is equivalent to

α ∩ (A ∪B) = ∅ and β ∩ (A ∪B) = ∅.

By Lemma 4.1, the number of such a = α+ wβ is 4m−|A∪B|.

(2) T = 2. Without loss of generality, suppose that ψ(α|A)ψ(β|B) = 0. We have
{

ψ(β|A)ψ(α + β|B) = 1

ψ(α + β|A)ψ(α|B) = 1
⇐⇒

{

β ∩ A = (α + β) ∩B = ∅

α ∩B = (α + β) ∩A = ∅.

We have α∩A 6= ∅ or β∩B 6= ∅. Note that the support of the vector α + β is equal

to (supp(α) ∪ supp(β))\(supp(α) ∩ supp(β)). From α ∩ A 6= ∅ and β ∩ A = ∅, we

have (α + β) ∩A 6= ∅, which is a contradiction with (α + β) ∩A = ∅. Similarly, we

derive (α + β) ∩ B 6= ∅ from β ∩ B 6= ∅. Hence there is no a = α + wβ such that

T = 2.

(3) T = 1. In this case we have wt(cD∗(a)) = 2|A|+|B|−1. If α ∈ U1 in Lemma 4.1,

then T = 1 if and only if β ∈ U2 ∪ U3. If α ∈ U2 and β ∈ U1 ∪ U3, then T = 1. If

α ∈ U2 and β ∈ U2, then T = ψ(α + β|B) = 1 if and only if α + β ∩ B = ∅, which

is equivalent to supp(α) ∩ B = supp(β) ∩ B. If α ∈ U3 and β ∈ U1, then T = 1.

If α ∈ U3 and β ∈ U3 ∪ U4, then T = 1 if and only if supp(α) ∩ A = supp(β) ∩ A.

If α ∈ U4 and β ∈ U2, then T = 1 if and only if supp(α) ∩ B = supp(β) ∩ B. By

Lemma 4.1, the number of such a = α+ wβ is

3× 4m−|A∪B|(2|A\B|+|B\A| − 1).

(4) T = 0. In this case we have wt(cD∗(a)) = 3 × 2|A|+|B|−2. By Lemma 4.1, the

number of such a = α+ wβ is 4m−|A∪B|[4|A∪B| − 1− 3(2|A\B|+|B\A| − 1)].

This completes the proof. �
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Corollary 4.3. Let A be a subset of [m] and D = F
m
2 + w∆A ⊂ F

m
4 or D =

∆A +wFm
2 ⊂ F

m
4 . Then CD∗ is a [2m+|A|− 1, m, 2m+|A|−1] two-weight quaternary code

and its weight distribution is presented in Table 3.

Table 3. Weight distribution of the code in Corollary 4.3

Weight Frequency

0 1

2m+|A|−1 3× (2m−|A| − 1)

3× 2m+|A|−2 22m − 1− 3× (2m−|A| − 1)

Theorem 4.4. Let A,B be two subsets of [m] and D = ∆A+w∆B ⊂ F
m
4 . Then CDc

in (4.1) is a [4m−2|A|+|B|, m, 3×22m−2−3×2|A|+|B|−2] quaternary code and its weight

distribution is presented in Table 4. Moreover, the code CDc is a Griesmer code.

Table 4. Weight distribution of the code in Theorem 4.4

Weight Frequency

0 1

3× 22m−2 − 3× 2|A|+|B|−2 4m−|A∪B|[4|A∪B| − 1− 3(2|A\B|+|B\A| − 1)]

3× 22m−2 − 2|A|+|B|−1 4m−|A∪B| × 3(2|A\B|+|B\A| − 1)

3× 22m−2 4m−|A∪B| − 1

Proof. By Equation (4.3), we have the weight distribution of the code.

By the Griesmer bound, we have

m−1
∑

i=0

⌈

3(22m−2 − 2|A|+|B|−2)

4i

⌉

=
m−1
∑

i=0

3× 22m−2

4i
−

m−1
∑

i=0

⌊

3× 2|A|+|B|−2

4i

⌋

= 3× 22m−2 + 3× 22m−4 + · · ·+ 3

−(3 × 2|A|+|B|−2 + 3× 2|A|+|B|−4 + · · ·+X + Y ),

where X = 3 and Y = 0 if |A|+ |B|−2 is even; and X = 6 and Y = 1 if |A|+ |B|−2

is odd. Then
m−1
∑

i=0

⌈

3(22m−2 − 2|A|+|B|−2)

4i

⌉

=
3× 22m−2 − 3× 1

4

1− 1
4

−
3× 2|A|+|B|−2 −X × 1

4

1− 1
4

− Y

= 22m − 1− (2|A|+|B| − 1) = 4m − 2|A|+|B|.

This completes the proof. �
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The following are examples of Proposition 4.2 and Theorem 4.4.

Example 4.5. Let m = 4, A = {1, 2, 3}, and B = {3, 4}.

(1) The code CD∗ in Proposition 4.2 is a two-weight quaternary [31, 4, 16] linear

code with weight enumerator 1 + 21z16 + 234z24. In fact, the optimal quaternary

linear code has parameter [31, 4, 22], according to [5].

(2) The code CDc in Theorem 4.4 is a two-weight quaternary [224, 4, 168] linear code

with weight enumerator 1 + 21z168 + 234z176. According to [5], the code is optimal.

Example 4.6. Let m = 4, A = {2, 3}, and B = {3, 4}.

(1) The code CD∗ in Proposition 4.2 is a two-weight quaternary [15, 3, 8] linear code

with weight enumerator 1 + 9z8 + 54z12. In fact, the optimal quaternary linear code

has parameter [15, 3, 11], according to [5].

(2) The code CDc in Theorem 4.4 is a three-weight quaternary [240, 4, 180] linear

code with weight enumerator 1 + 216z180 +36z184 +3z192. According to [5], the code

is optimal.

Next we consider the case of a simplicial complex with two maximal elements.

Proposition 4.7. Let ∆ be a simplicial complex with two maximal elements A,B ⊆

[m]. Let D = ∆+w∆ ⊂ F
m
4 . Then CD∗ in (4.1) is a [(2|A|+2|B|−2|A∩B|)2−1, |A∪B|]

quaternary code and its weight distribution is presented in Table 5.

Table 5. Weight distribution of the code in Proposition 4.7

Weight Frequency

0 1

2|A|(3× 2|A|−2 + 2|B| − 2|A∩B|) 3(2|A\B| − 1)

2|B|(2|A| + 3× 2|B|−2 − 2|A∩B|) 3(2|B\A| − 1)

(2|A| + 2|B|)(3× 2|A|−2 + 3× 2|B|−2 − 2|A∩B|) 3(2|A\B| − 1)(2|B\A| − 1)
3
4
2|A|(2|A| + 2|B|+1 − 2|A∩B|+1) (2|A\B| − 1)(2|A\B| − 2)

3
4
2|B|(2|A|+1 + 2|B| − 2|A∩B|+1) (2|B\A| − 1)(2|B\A| − 2)

3
4
(2|A| + 2|B| − 2|A∩B|)2 − 1

4
(2|A| − 2|A∩B|)(2|B| −

2|A∩B|) + 1
4
2|A∩B|(2|A| + 2|B| − 2|A∩B|+1)

6(2|A\B| − 1)(2|B\A| − 1)

3
4
(2|A| + 2|B| − 2|A∩B|)2 + 1

4
2|A∩B|(2|A|+1 − 3× 2|A∩B|) 3(2|A\B| − 1)(2|B\A| −

1)(2|B\A| − 2)
3
4
(2|A| + 2|B| − 2|A∩B|)2 + 1

4
2|A∩B|(2|B|+1 − 3× 2|A∩B|) 3(2|A\B| − 1)(2|B\A| −

1)(2|A\B| − 2)
3
4
(2|A| + 2|B|)(2|A| + 2|B| − 2|A∩B|+1) (2|A\B| − 1)(2|B\A| −

1)(2|A\B| − 2)(2|B\A| − 2)
3
4
(2|A| + 2|B| − 2|A∩B|)2 4|A∪B| − 4|A\B|+|B\A|

Proof. It is easy to check that the length of the code CD∗ is |D∗| = (2|A| + 2|B| −

2|A∩B|)2 − 1.
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By Lemma 2.3

χu(∆) =
∑

x∈∆

(−1)u·x = H∆((−1)u1 , (−1)u2 , . . . , (−1)um)

=
∏

i∈A

(1 + (−1)ui) +
∏

i∈B

(1 + (−1)ui)−
∏

i∈A∩B

(1 + (−1)ui)

= 2|A|ψ(u|A) + 2|B|ψ(u|B)− 2|A∩B|ψ(u|A ∩B). (4.5)

Suppose that a = α+ wβ. By Equations (4.2) and (4.5)

wt(cD∗(a)) = wt(cD(a)) =
3

4
|D|

−
1

4
[χα(∆)χβ(∆) + χβ(∆)χα+β(∆) + χα+β(∆)χα(∆)].

By Lemma 4.1,

χα(∆) =



























2|A| + 2|B| − 2|A∩B|, if α ∈ U1,

2|A| − 2|A∩B|, if α ∈ U2,

2|B| − 2|A∩B|, if α ∈ U3,

−2|A∩B|, if α ∈ U4,

0, if α ∈ U5.

Due to the above value distribution, we determine the location of α + β in the

following table.

α

α+ β β
U1 U2 U3 U4 U5

U1 U1 U2 U3 U4 U5

U2 U2 U1 or U2 U4 U3 or U4 U5

U3 U3 U4 U1 or U3 U2 or U4 U5

U4 U4 U3 or U4 U2 or U4 U1 or U2 or U3 or U4 U5

U5 U5 U5 U5 U5

It needs to be further pointed out that if α,β ∈ U4, then

α+ β ∈



















U1, if supp(α) ∩ A = supp(β) ∩ A, supp(α) ∩ B = supp(β) ∩ B,

U2, if supp(α) ∩ A = supp(β) ∩ A, supp(α) ∩ B 6= supp(β) ∩ B,

U3, if supp(α) ∩ A 6= supp(β) ∩ A, supp(α) ∩ B = supp(β) ∩ B,

U4, if supp(α) ∩ A 6= supp(β) ∩ A, supp(α) ∩ B 6= supp(β) ∩ B.

Let T = χα(∆)χβ(∆) + χβ(∆)χα+β(∆) + χα+β(∆)χα(∆). Suppose that α ∈ U1.

If β ∈ U1, then T = 3(2|A| + 2|B| − 2|A∩B|)2. If β ∈ U2, Then T = 2(2|A| + 2|B| −

2|A∩B|)(2|A|−2|A∩B|)+(2|A|−2|A∩B|)2. If β ∈ U3, Then T = 2(2|A|+2|B|−2|A∩B|)(2|B|−

2|A∩B|)+(2|B|−2|A∩B|)2. If β ∈ U4, Then T = 2(2|A|+2|B|−2|A∩B|)(−2|A∩B|)+(2|A∩B|)2.

If β ∈ U5, Then T = 0.
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Similarly, we can determine the values of T under the condition of α ∈ Ui, i =

2, 3, 4, 5. Then the results follow from Lemma 4.1. �

Remark 4.8. By massive computation, weight distributions of quaternary codes

can be also determined in the case of D = D1 + wD2, where D1 is generated by

two maximal elements A,B ⊆ [m] and D2 is generated by two maximal elements

C, F ⊆ [m].

For some special sets A,B, we obtain some few-weight quaternary codes.

Corollary 4.9. Let ∆ be a simplicial complex with two maximal elements A,B ⊆

[m]. Let D = ∆+ w∆ ⊂ F
m
4 .

(i) If A ∩ B = ∅ and |A| = |B| = 1, then CD∗ in Proposition 4.7 is a three-weight

[8, 2, 5] quaternary code and its weight enumerator 1 + 6z5 + 6z7 + 3z8.

(ii) If A ∩ B = ∅ and |A| = |B| > 1, then CD∗ in Proposition 4.7 is a six-weight

[(2|A|+1 − 1)2 − 1, 2|A|] quaternary code and its weight distribution is presented in

Table 6.

Table 6. Weight distribution of the code in Corollary 4.9 (ii)

Weight Frequency

0 1

2|A|(3× 2|A|−2 + 2|A| − 1) 6(2|A| − 1)

2|A|+1(3× 2|A|−1 − 1) 3(2|A| − 1)2

3× 2|A|−1(3× 2|A|−1 − 1) 3(2|A| − 1)(2|A| − 2)

11× 22|A|−2 − 2|A|+1 6(2|A| − 1)2

3× 22|A| − 3× 2|A| + 2|A|−1 6(2|A| − 1)2(2|A| − 2)

3× 2|A|(2|A| − 1) (2|A| − 1)2(2|A| − 2)2

(iii) If A ∩B 6= ∅, |A| = |B|, and |A\B| = |B\A| = 1, then CD∗ in Proposition 4.7

is a four-weight [9× 22|A|−2 − 1, |A|+ 1] quaternary code and its weight distribution

is presented in Table 7.

Table 7. Weight distribution of the code in Corollary 4.9 (iii)

Weight Frequency

0 1

22|A|−2 + 22|A| 6

22|A|+1 3

26× 22|A|−4 6

27× 22|A|−4 4|A|+1 − 16

Similar to Theorem 4.4, we have the following theorem.
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Theorem 4.10. Let ∆ be a simplicial complex with two maximal elements A,B ⊆

[m]. Let D = ∆+ w∆ ⊂ F
m
4 . Then CDc in (4.1) is a [4m − (2|A| + 2|B| − 2|A∩B|)2, m]

quaternary code and its weight distribution is presented in Table 8.

Table 8. Weight distribution of the code in Theorem 4.10

Weight Frequency

0 1

3× 22m−2 − 2|A|(3× 2|A|−2 + 2|B| − 2|A∩B|) 3(2|A\B| − 1)4m−|A∪B|

3× 22m−2 − 2|B|(2|A| + 3× 2|B|−2 − 2|A∩B|) 3(2|B\A| − 1)4m−|A∪B|

3× 22m−2 − (2|A| + 2|B|)(3× 2|A|−2 + 3×

2|B|−2 − 2|A∩B|)

3(2|A\B| − 1)(2|B\A| − 1)4m−|A∪B|

3× 22m−2 − 3
4
2|A|(2|A| + 2|B|+1 − 2|A∩B|+1) (2|A\B| − 1)(2|A\B| − 2)4m−|A∪B|

3× 22m−2 − 3
4
2|B|(2|A|+1 + 2|B| − 2|A∩B|+1) (2|B\A| − 1)(2|B\A| − 2)4m−|A∪B|

3× 22m−2 − 3
4
(2|A| + 2|B| − 2|A∩B|)2 + 1

4
(2|A| −

2|A∩B|)(2|B| − 2|A∩B|)− 1
4
2|A∩B|(2|A| + 2|B| −

2|A∩B|+1)

6(2|A\B| − 1)(2|B\A| − 1)4m−|A∪B|

3× 22m−2 − 3
4
(2|A| + 2|B| − 2|A∩B|)2 −

1
4
2|A∩B|(2|A|+1 − 3× 2|A∩B|)

3(2|A\B| − 1)(2|B\A| − 1)(2|B\A| −

2)4m−|A∪B|

3× 22m−2 − 3
4
(2|A| + 2|B| − 2|A∩B|)2 −

1
4
2|A∩B|(2|B|+1 − 3× 2|A∩B|)

3(2|A\B| − 1)(2|B\A| − 1)(2|A\B| −

2)4m−|A∪B|

3×22m−2− 3
4
(2|A|+2|B|)(2|A|+2|B|−2|A∩B|+1) (2|A\B| − 1)(2|B\A| − 1)(2|A\B| −

2)(2|B\A| − 2)4m−|A∪B|

3× 22m−2 − 3
4
(2|A| + 2|B| − 2|A∩B|)2 (4|A∪B| − 4|A\B|+|B\A|)4m−|A∪B|

3× 22m−2 4m−|A∪B| − 1

The following is an example of Proposition 4.7 and Theorem 4.10.

Example 4.11. Let m = 4, A = {1, 2, 3}, and B = {3, 4}.

(1) The code CD∗ in Proposition 4.7 is a seven-weight quaternary [99, 4, 36] linear

code with weight enumerator

1 + 3z36 + 9z64 + 6z72 + 192z75 + 18z76 + 9z84 + 18z88.

In fact, the optimal quaternary linear code has parameter [99, 4, 73] and its dual code

has parameters [99, 95, 2], according to [5].

(2) The code CDc in Theorem 4.10 is a seven-weight quaternary [156, 4, 104] linear

code with weight enumerator

1 + 18z104 + 9z108 + 18z116 + 192z117 + 6z120 + 9z128 + 3z156.

In fact, the optimal quaternary linear code has parameter [156, 4, 116] and its dual

code has parameters [156, 152, 2], according to [5].

By Corollary 4.9 and Theorem 4.10, we obtain some few-weight quaternary codes.
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Corollary 4.12. Let ∆ be a simplicial complex with two maximal elements A,B ⊆

[m]. Let D = ∆+ w∆ ⊂ F
m
4 .

(i) If A ∩ B = ∅ and |A| = |B| = 1, then CDc in Theorem 4.10 is a four-weight

[4m − 9, m] quaternary code and its weight enumerator

1+6×4m−2z3×22m−2−5+6×4m−2z3×22m−2−7+3×4m−2z3×22m−2−8+(4m−2−1)z3×22m−2

.

(ii) If A ∩ B = ∅ and |A| = |B| > 1, then CDc in Theorem 4.10 is a seven-weight

[4m − (2|A|+1 − 1)2, m] quaternary code and its weight distribution is presented in

Table 9.

Table 9. Weight distribution of the code in Corollary 4.12 (ii)

Weight Frequency

0 1

3× 22m−2 − 2|A|(3× 2|A|−2 + 2|A| − 1) 6(2|A| − 1)4m−2|A|

3× 22m−2 − 2|A|+1(3× 2|A|−1 − 1) 3(2|A| − 1)24m−2|A|

3× 22m−2 − 3× 2|A|−1(3× 2|A|−1 − 1) 3(2|A| − 1)(2|A| − 2)4m−2|A|

3× 22m−2 − 11× 22|A|−2 − 2|A|+1 6(2|A| − 1)24m−2|A|

3× 22m−2 − 3× 22|A| − 3× 2|A| + 2|A|−1 6(2|A| − 1)2(2|A| − 2)4m−2|A|

3× 22m−2 − 3× 2|A|(2|A| − 1) (2|A| − 1)2(2|A| − 2)24m−2|A|

3× 22m−2 4m−2|A| − 1

(iii) If A ∩ B 6= ∅, |A| = |B|, and |A\B| = |B\A| = 1, then CDc in Theorem 4.10

is a five-weight [4m − 9 × 22|A|−2, m] quaternary code and its weight distribution is

presented in Table 10.

Table 10. Weight distribution of the code in Corollary 4.12 (iii)

Weight Frequency

0 1

3× 22m−2 − 22|A|−2 + 22|A| 6× 4m−|A|−1

3× 22m−2 − 22|A|+1 3× 4m−|A|−1

3× 22m−2 − 26× 22|A|−4 6× 4m−|A|−1

3× 22m−2 − 27× 22|A|−4 (4|A|+1 − 16)4m−|A|−1

3× 22m−2 4m−|A|−1 − 1

5. weight distributions of the subfield codes

In this section, we will determine weight distributions of the binary subfield codes

of those quaternary codes obtained in Section 4.
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Proposition 5.1. Let A,B be two subsets of [m] and D = ∆A + w∆B ⊂ F
m
4 . Then

the subfield code C
(2)
D∗ with respect to CD∗ in Proposition 4.2 is a [2|A|+|B| − 1, |A| +

|B|, 2|A|+|B|−1] one-weight binary linear code.

Proof. By Theorem 3.2, C
(2)
D∗ can be generated by

C
(2)
D∗ = {cD(α,β) = (α · d2 + β · (d1 + d2))d1∈∆A,d2∈∆B

: α,β ∈ F
m
2 }.

Hence

wt(cD∗(α,β)) = wt(cD(α,β)) = |D| −
∑

d1∈∆A

∑

d2∈∆B

(
1

2

∑

y∈F2

(−1)(αd2+β(d1+d2))y)

= |D| −
1

2

∑

d1∈∆A

∑

d2∈∆B

(1 + (−1)αd2+β(d1+d2))

=
1

2
|D| −

1

2
(
∑

d1∈∆A

(−1)βd1)(
∑

d2∈∆B

(−1)(α+β)d2)

= 2|A|+|B|−1(1− ψ(β|A)ψ(α+ β|B)).

This completes the proof. �

Theorem 5.2. Let A,B be two subsets of [m] and D = ∆A +w∆B ⊂ F
m
4 . Then the

subfield code C
(2)
Dc with respect to CDc in Theorem 4.4 is a [22m− 2|A|+|B|, 2m, 22m−1−

2|A|+|B|−1] two-weight binary linear code and its weight distribution is given by

1 + (4m − 22m−|A|−|B|)z2
2m−1−2|A|+|B|−1

+ (22m−|A|−|B| − 1)z2
2m−1

.

Moreover, the code C
(2)
Dc is a Griesmer code.

Proof. Note that Dc = (∆c
A + wFm

2 ) ∪ (∆A + w∆c
B). By Theorem 3.2, C

(2)
Dc can be

generated by

C
(2)
Dc = {cDc(α,β) : α,β ∈ F

m
2 },

where

cDc(α,β) = ((α · d2 + β · (d1 + d2)d1∈∆c
A
,d2∈Fm

2
|(α · f2 + β · (f1 + f2)f1∈∆A,f2∈∆c

B
)).

Hence

wt(cDc(α,β)) = |Dc| −
∑

d1∈∆c
A

∑

d2∈Fm
2

1

2

∑

y∈F2

(−1)(αd2+β(d1+d2))y

−
∑

f1∈∆A

∑

f2∈∆c
B

1

2

∑

z∈F2

(−1)(αf2+β(f1+f2))z

=
1

2
|Dc| −

1

2
(
∑

d1∈∆c
A

(−1)βd1)(
∑

d2∈Fm
2

(−1)(α+β)d2)

−
1

2
(
∑

f1∈∆A

(−1)βf1)(
∑

f2∈∆c
B

(−1)(α+β)f2)

= 22m−1(1− δ0,βδ0,α+β)− 2|A|+|B|−1(1− ψ(β|A)ψ(α+ β|B)).
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Then we have the weight distribution of the code by Proposition 5.1.

By the Griesmer bound, we have

2m−1
∑

i=0

⌈

22m−1 − 2|A|+|B|−1

2i

⌉

=

2m−1
∑

i=0

22m−1

2i
−

2m−1
∑

i=0

⌊

2|A|+|B|−1

2i

⌋

= (22m − 1)− (2|A|+|B| − 1) = 22m − 2|A|+|B|.

This completes the proof. �

Proposition 5.3. Let ∆ be a simplicial complex with two maximal elements A,B ⊆

[m]. Let D = ∆ + w∆ ⊂ F
m
4 . Then the subfield code C

(2)
D∗ with respect to CD∗ in

Proposition 4.7 is a [(2|A| + 2|B| − 2|A∩B|)2 − 1, 2|A ∪ B|] binary code and its weight

distribution is presented in Table 11.

Table 11. Weight distribution of the code in Proposition 5.3

Weight Frequency

0 1

2|A|−1(2|A| + 2|B| − 2|A∩B|) 2(2|A\B| − 1)

2|B|−1(2|A| + 2|B| − 2|A∩B|) 2(2|B\A| − 1)

(2|A|−1 + 2|B|−1)(2|A| + 2|B| − 2|A∩B|) 2(2|A\B| − 1)(2|B\A| − 1)

2|B|−1(2|A|+1 + 2|B| − 2|A∩B|+1) (2|B\A| − 1)2

2|A|−1(2|A| + 2|B|+1 − 2|A∩B|+1) (2|A\B| − 1)2

(2|A|−1 + 2|B|−1)(2|A| + 2|B| − 2|A∩B|+1) (2|B\A| − 1)2(2|B\A| − 1)2

1
2
(2|A| +2|B| − 2|A∩B|)2 − 1

2
(2|A| − 2|A∩B|)(2|B| − 2|A∩B|) 2(2|A\B| − 1)(2|B\A| − 1)

1
2
(2|A| + 2|B| − 2|A∩B|)2 + 1

2
(2|A| − 2|A∩B|)2|A∩B| 2(2|A\B| − 1)(2|B\A| − 1)2

1
2
(2|A| + 2|B| − 2|A∩B|)2 + 1

2
(2|B| − 2|A∩B|)2|A∩B| 2(2|A\B| − 1)2(2|B\A| − 1)

1
2
(2|A| + 2|B| − 2|A∩B|)2 4|A∪B| − 4|A\B|+|B\A|

Proof. By Theorem 3.2, C(2)
D∗ can be generated by

C
(2)
D∗ = {cD(α,β) = (α · d2 + β · (d1 + d2))d1,d2∈∆ : α,β ∈ F

m
2 }.
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Hence

wt(cD(α,β)) = |D| −
∑

d1∈∆

∑

d2∈∆

(
1

2

∑

y∈F2

(−1)(αd2+β(d1+d2))y)

= |D| −
1

2

∑

d1∈∆

∑

d2∈∆

(1 + (−1)αd2+β(d1+d2))

=
1

2
|D| −

1

2
(
∑

d1∈∆

(−1)βd1)(
∑

d2∈∆

(−1)(α+β)d2)

=
1

2
(2|A| + 2|B| − 2|A∩B|)2 −

1

2
TβTα+β,

where Tu = 2|A|ψ(u|A) + 2|B|ψ(u|B)− 2|A∩B|ψ(u|A ∩ B).

By the proof of Proposition 4.7, we prove the results. �

Remark 5.4. It is noted that the subfield code C
(2)
D∗ with respect to CD∗ in Theorem

5.3 has at most seven weights when the sets A,B have the same size.

Theorem 5.5. The dual code of the subfield code C
(2)
D∗ in Proposition 5.3 has min-

imum distance three and it is an almost optimal binary code with respect to the

Sphere Packing Bound.

Proof. By Theorem 3.2, the subfield code C
(2)
D∗ in Proposition 5.3 has the following

defining set:

D(2) = {(d2,d1 + d2) : d1,d2 ∈ ∆} = {g1, g2, . . . , gt},

where t = (2|A| + 2|B| − 2|A∩B|)2. Let G be the 2m× t matrix as follows:

G = [gT
1 gT

2 · · · gT
t ],

where the column vector gT
i denotes the transpose of a row vector gi. Let ek =

(e1, e2, . . . , em) ∈ F
m
2 , where ek = 1 and el = 0 if l 6= k. Suppose that i, j ∈ A ∪ B.

Then it is easy to check that (eTi , e
T
i ), (e

T
j , e

T
j ), and (eTi + eTj , e

T
i + eTj ) are three

different columns of G; therefore, the minimum distance of (C
(2)
D∗)⊥ is 3.

By Proposition 5.3, (C
(2)
D∗)⊥ has parameters

[(2|A| + 2|B| − 2|A∩B|)2 − 1, (2|A| + 2|B| − 2|A∩B|)2 − 1− 2|A ∪B|, 3].

By Sphere Packing Bound, let n = (2|A| + 2|B| − 2|A∩B|)2 − 1, then it is easy to check

that
2
∑

i=0

(

n

i

)

= 1 + n+
n(n− 1)

2
> 22|A∪B|.

This completes the proof. �
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Proposition 5.6. Let ∆ be a simplicial complex with two maximal elements A,B ⊆

[m]. Let D = ∆ + w∆ ⊂ F
m
4 . Then the subfield code C

(2)
Dc with respect to CDc in

Theorem 4.8 is a

[4m − (2|A| + 2|B| − 2|A∩B|)2, 2m, 22m−1 − (2|A|−1 + 2|B|−1)(2|A| + 2|B| − 2|A∩B|)]

binary code and its weight distribution is presented in Table 12.

Table 12. Weight distribution of the code in Proposition 5.6

Weight Frequency

0 1

22m−1 − 2|A|−1(2|A| + 2|B| − 2|A∩B|) 2(2|A\B| − 1)4m−|A∪B|

22m−1 − 2|B|−1(2|A| + 2|B| − 2|A∩B|) 2(2|B\A| − 1)4m−|A∪B|

22m−1−(2|A|−1+2|B|−1)(2|A|+2|B|−2|A∩B|) 2(2|A\B| − 1)(2|B\A| − 1)4m−|A∪B|

22m−1 − 2|B|−1(2|A|+1 + 2|B| − 2|A∩B|+1) (2|B\A| − 1)24m−|A∪B|

22m−1 − 2|A|−1(2|A| + 2|B|+1 − 2|A∩B|+1) (2|A\B| − 1)24m−|A∪B|

22m−1 − (2|A|−1 + 2|B|−1)(2|A| + 2|B| −

2|A∩B|+1)

(2|B\A| − 1)2(2|B\A| − 1)24m−|A∪B|

22m−1 − 1
2
(2|A| + 2|B| − 2|A∩B|)2 + 1

2
(2|A| −

2|A∩B|)(2|B| − 2|A∩B|)

2(2|A\B| − 1)(2|B\A| − 1)4m−|A∪B|

22m−1 − 1
2
(2|A| + 2|B| − 2|A∩B|)2 − 1

2
(2|A| −

2|A∩B|)2|A∩B|

2(2|A\B| − 1)(2|B\A| − 1)24m−|A∪B|

22m−1 − 1
2
(2|A| + 2|B| − 2|A∩B|)2 − 1

2
(2|B| −

2|A∩B|)2|A∩B|

2(2|A\B| − 1)2(2|B\A| − 1)4m−|A∪B|

22m−1 − 1
2
(2|A| + 2|B| − 2|A∩B|)2 (4|A∪B| − 4|A\B|+|B\A|)4m−|A∪B|

22m−1 4m−|A∪B| − 1

Proof. Note that Dc = (∆c + wFm
2 ) ∪ (∆ + w∆c). By Theorem 3.2, C

(2)
Dc can be

generated by

C
(2)
Dc = {cDc(α,β) : α,β ∈ F

m
2 },

where

cDc(α,β) = ((α · d2 + β · (d1 + d2)d1∈∆c,d2∈Fm
2
|(α · f2 + β · (f1 + f2)f1∈∆,f2∈∆c)).
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Hence

wt(cDc(α,β)) = |Dc| −
∑

d1∈∆c

∑

d2∈Fm
2

1

2

∑

y∈F2

(−1)(αd2+β(d1+d2))y

−
∑

f1∈∆

∑

f2∈∆c

1

2

∑

z∈F2

(−1)(αf2+β(f1+f2))z

=
1

2
|Dc| −

1

2
(
∑

d1∈∆c
A

(−1)βd1)(
∑

d2∈Fm
2

(−1)(α+β)d2)

−
1

2
(
∑

f1∈∆

(−1)βf1)(
∑

f2∈∆c

(−1)(α+β)f2)

= 22m−1(1− δ0,βδ0,α+β)−
1

2
(2|A| + 2|B| − 2|A∩B|)2 +

1

2
TβTα+β,

where Tu = 2|A|ψ(u|A) + 2|B|ψ(u|B) − 2|A∩B|ψ(u|A ∩ B). Then the result follows

from Proposition 5.3. �

Remark 5.7. By massive computation, weight distributions of the binary subfield

codes of these quaternary codes can be also determined in the case of D = D1+wD2,

where D1 is generated by two maximal elements A,B ⊆ [m] and D2 is generated by

two maximal elements C, F ⊆ [m].

Remark 5.8. It is noted that the subfield code C
(2)
Dc with respect to CDc in Proposition

5.6 has at most eight weights when the sets A,B have the same size.

The following is an example of Proposition 5.6.

Example 5.9. Let m = 4.

(1) If A = {1, 2} and B = {2, 3}, then the code C
(2)
Dc in Proposition 5.6 is a five-

weight quaternary [220, 8, 104] linear code with weight enumerator

1 + 8z104 + 195z110 + 20z112 + 16z116 + 16z118.

In fact, the optimal binary linear code has parameter [220, 8, 109], according to [5].

(2) If A = {1, 2} and B = {3, 4}, then the code C
(2)
Dc in Proposition 5.6 is a five-

weight quaternary [207, 8, 100] linear code with weight enumerator

1 + 18z100 + 108z102 + 81z104 + 36z108 + 12z114.

In fact, the optimal binary linear code has parameter [207, 8, 102], according to [5].

6. Code comparisons and concluding remarks

To show significant advantages of our codes, in this section, we present two tables.

In Table 13, we list recent works on linear codes over finite fields constructed from

simplicial complexes for the convenience of the reader. Compare with known results,

some quaternary codes and their subfield codes obtained in this work have flexible
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and new parameters. To the best of our knowledge, this is the first paper on the

construction of linear codes over a non-prime field and their subfield codes by using

simplicial complexes.

Table 14 presents optimal quaternary linear codes from two simplicial complexes

∆A and ∆B in Theorem 4.4. In Table 14, ∗ indicates that the corresponding codes

are optimal codes, and “new” are also indicated according to the current data base

[6]. In fact, according to the current data base [6] we find as least 9 new optimal

codes (lengths: 12, 48, 56, 60, 192, 224, 240, 248, 252); even though their parameters

are not new but they are inequivalent to currently best-known linear codes. We

confirmed those results by Magma.

The main contributions of this paper are the following

• A general explicit relationship between quaternary linear codes and their bi-

nary subfield codes in terms of generator matrices and defining sets (Theorem

3.2).

• The determination of weight distributions of four classes of quaternary codes

when these simplicial complexes are all generated by a single maximal element

or two maximal elements (Propositions 4.2, 4.7, and Theorems 4.4, 4.10).

• The determination of weight distributions of four classes of the subfield codes

of those quaternary codes (Propositions 5.1, 5.3, 5.6 and Theorem 5.2).

• Two infinite families of optimal linear codes meeting the Griesmer Bound

(Theorems 4.4, 5.2) and a class of binary almost optimal linear codes with

respect to Sphere Packing Bound (Theorem 5.5).

• At least 9 new optimal quaternary linear codes (Table 14).

Very recently, Hyun et al. [13] extended the construction of linear codes to posets.

It would be interesting to find more optimal quaternary codes by employing posets.

On the other hand, the quaternary linear code in Example 3.4 is

C =

{

(0, 0, 0, 0), (w, 0, 1 + w, 1), (1 + w, 0, 1, w), (1, 0, w, 1+ w),

(1 + w, 1 + w,w, w), (1, 1, 1+ w, 1 + w), (w,w, 1, 1),

(1, 1 + w, 1, 1 + w), (w, 1, w, 1), (1 + w,w, 1 + w,w),

(1 + w, 1, 0, w), (1, w, 0, 1+ w), (w, 1 + w, 0, 1),

(0, w, w, 0), (0, 1+ w, 1 + w, 0), (0, 1, 1, 0)

}

.

It is easy to check that its binary subfield subcode

C|F2 = C ∩ F
4
2 = {(0, 0, 0, 0), (0, 1, 1, 0)}.

We just wonder that whether there is a direct way to compute the binary subfield

subcodes of these quaternary codes obtained in this paper.
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Table 13. Linear codes constructed from simplicial complexes

Reference q-Ary Defining Set [n, k, d] Code #Weight Bound Result

[14] binary

∆∗ [2|A| − 1, |A|, 2|A|−1] 1 Griesmer
Lem.7

F
m
2
\∆

[2m − 2|A|,m, 2m−1 − 2|A|−1] 2 Griesmer

[2m−1,m, 4] Sphere

Packing

Ex.10

[2m − 2
∑s

i=1
2|Ai−1| + s−

1,m, 2m−1 −
∑s

i=1
2|Ai|−1]

Griesmer Coro.21

∆∗
[2|A1|+2

|A2|
−2, |A1∪A2|, 2|A1|−1] 3

Lem.26
[2|A1|+2

|A2|
− 2|A1∩A2| − 1, |A1 ∪

A2|, 2|A1|−1]

4

F
m
2 \∆

[2m − 2|A1| − 2|A2| +

1, m, 2m−1 − 2|A1|−1 − 2|A2−1|]

3 or 4 Griesmer

Thm.27
[2m − 2|A1| − 2|A2| + 2|A1∩A2| −

1, m, 2m−1 − 2|A1|−1 − 2|A2|−1]

4 or 5

[19] binary
∆A\∆B

[2|A| − 2|B|, |A|, 2|A|−1 − 2|B|−1] 2 Griesmer Thm.5

[2|A| − 2|B|, |A|, 2|A| − 2|B| −

|A|,3 or 4]

Thm.6

[23] 4-ary

F
m
4
\∆A +w∆B [(2m − 2|A|)2|B|, m, 3(2m+|B|−2 −

2|A|+|B|−2)]

5 Thm.3.1

F
m
2

+ w∆B [2m+|B|,m, 2m+|B|−1] 2 Coro.3.2

F
m
2 \∆A +wF

m
2 [(2m − 2|A|)2m,m, 3(22m−2 −

2|A|+m−2)]

2 Griesmer Coro.3.3

[12] p-ary F
m
p \∆

[pm − r − 1,m, (p − 1)pm−1 − r] 2 Griesmer Thm.4.1

[pm−2r−2, m, (p−1)pm−1−2r−1] 4 Griesmer Thm.4.4

[pm − 3(r + 1), m, (p− 1)pm−1 −

3r − 2]

5 Griesmer Thm.4.7

[pm − (r + 1)(p − 1), m, (p−

1)pm−1 − (r + 1)p + 2r + 1]

4 Griesmer Thm.4.11

[pm − (r + 1)(p − 2), m, (p−

1)pm−1 − (r + 1)p + 3r + 1]

5 Griesmer Thm.4.14

This paper

4-ary

∆A + w∆B

[2|A|+|B| − 1, |A ∪ B|, 2|A|+|B|−1] 2 Prop.4.2

[(2|A|+2|B|−2|A∩B|)2−1, |A∪B|] ≤ 10 Prop.4.7

F
m
4 \∆A + w∆B

[4m − 2|A|+|B|,m, 3× 22m−2 −

3× 2|A|+|B|−2]

3 Griesmer Thm.4.4

[4m − (2|A| + 2|B| − 2|A∩B|)2, m] ≤ 11 Thm.4.10

binary

∆A + w∆B

[2|A|+|B|−1, |A|+ |B|,2|A|+|B|−1] 1 Prop.5.1

[22m − 2|A|+|B|, 2m] 2 Griesmer Thm.5.2

∆ + w∆

[(2|A|+2|B|−2|A∩B|)2−1, 2|A∪B|] ≤ 10 Prop.5.3

[(2|A|+2|B|−2|A∩B|)2−1, (2|A|+

2|B| − 2|A∩B|)2 − 1− 2|A ∪B|, 3]

Sphere

Packing

Thm.5.5

[4m − (2|A| + 2|B| − 2|A∩B|)2, 2m] ≤ 11 Prop.5.6
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Table 14. Optimal quaternary linear codes from Theorem 4.4

m A B [n, k, d] Code Remark

2 (1, 0)

(1, 0) [12, 2, 9]∗ new

(0, 1) [12, 2, 9]∗

(1, 1) [8, 2, 6]∗

3

(1, 0, 0)

(1, 0, 0) [60, 3, 45]∗ new

(0, 1, 1) [56, 3, 42]∗ new

(1, 1, 1) [48, 3, 36]∗

(0, 1, 1)

(0, 1, 0) [56, 3, 42]∗ new

(0, 1, 1) [48, 3, 36]∗ new

(1, 1, 1) [32, 3, 24]∗

(1, 1, 1)
(0, 1, 0) [48, 3, 36]∗

(0, 1, 1) [32, 3, 24]∗

4

(1, 0, 0, 0)

(1, 0, 0, 0) [252, 4, 189]∗ new

(1, 1, 0, 0) [248, 4, 186]∗ new

(1, 1, 1, 0) [240, 4, 180]∗ new

(0, 0, 1, 1)

(0, 0, 1, 1) [240, 4, 180]∗ new

(0, 1, 1, 1) [224, 4, 168]∗ new

(1, 1, 1, 1) [192, 4, 144]∗ new

(1, 1, 1, 0)

(0, 1, 1, 0) [224, 4, 168]∗ new

(0, 1, 0, 0) [240, 4, 180]∗ new

(1, 1, 1, 0) [192, 4, 144]∗

(1, 1, 1, 1)
(0, 1, 0, 0) [224, 4, 168]∗ new

(0, 0, 1, 1) [192, 4, 144]∗ new
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