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A Tight Uniform Continuity Bound for the

Arimoto-Rényi Conditional Entropy and its

Extension to Classical-Quantum States

Michael G Jabbour and Nilanjana Datta

Abstract

We prove a tight uniform continuity bound for Arimoto’s version of the conditional α-Rényi

entropy for the range α ∈ [0, 1). This definition of the conditional α-Rényi entropy is the most natural

one among the multiple forms which exist in the literature, since it satisfies two desirable properties

of a conditional entropy, namely, the fact that conditioning reduces entropy, and that the associated

reduction in uncertainty cannot exceed the information gained by conditioning. Furthermore, it has found

interesting applications in various information theoretic tasks such as guessing with side information

and sequential decoding. This conditional entropy reduces to the conditional Shannon entropy in the

limit α→ 1, and this in turn allows us to recover the recently obtained tight uniform continuity bound

for the latter from our result. Finally, we apply our result to obtain a tight uniform continuity bound for

the conditional α-Rényi entropy of a classical-quantum state, for α in the same range as above. This

again yields the corresponding known bound for the conditional entropy of the state in the limit α→ 1.

Index Terms

Arimoto-Rényi conditional entropy, continuity bound, majorization theory, quantum conditional

Rényi entropy, Shannon theory.

I. INTRODUCTION

In his seminal paper of 1948 [1], Claude Shannon introduced the notion of entropy of a discrete

random variable X as a measure of its uncertainty or equivalently as a measure of the amount of
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information we gain on average when we learn its value. The Shannon entropy plays a key role

in information theory since it characterises the optimal rate of lossless data compression for a

discrete memoryless source. A related entropic quantity or information measure is the conditional

Shannon entropy H(X|Y ), which quantifies the reduction in the uncertainty of a random variable

X when another random variable Y is observed. This and other Shannon information measures

(e.g. the Kullback-Leibler divergence (or relative entropy) and the mutual information) are also

of operational significance since they characterise either optimal rates of information-theoretic

tasks or fundamental limits of certain statistical inference problems. Two fundamental properties

of a conditional entropy (or equivocation), which are indeed satisfied by the conditional Shannon

entropy, are the following:

1) H(X|Y ) ≤ H(X);

2) H(X|Y ) ≥ H(X)− log |Y|, (where Y denotes the alphabet of the random variable Y ).

The above properties are intuitively natural since they ensure that (i) obtaining additional

information (in the form of knowledge of a random variable Y ) can only decrease the uncertainty

of a random variable X , and (ii) this reduction in uncertainty cannot be more than the amount

of information (in bits1) that has been obtained.

In 1960 Alfred Rényi introduced a one-parameter family of entropies [2], Hα(X) (with α ∈

[0, 1)∪ (1,∞)) which generalised Shannon’s definition of entropy and reduced to it in the limit

α → 1. The α-Rényi entropies are of independent relevance in information theory and also

arise naturally in various other branches of mathematics including probability theory, functional

analysis, convex geometry and additive combinatorics. In analogy to the Shannon information

measures, one can define other information measures related to the α-Rényi entropy, e.g. the α-

Rényi divergence and the conditional Rényi entropy of order α. However, unlike the conditional

Shannon entropy, the definition of conditional Rényi entropy is not unique.

The Shannon entropy [1] extends quite naturally to the conditional case by means of con-

ditional probabilities [3]. In contrast, there are multiple ways to define a notion of conditional

Rényi entropy, and several definitions have been proposed in the literature [4]–[12]. However,

some of these definitions are somewhat unsatisfactory since they do not satisfy both of the

desired properties 1 and 2 mentioned above.

1In this paper, we take logarithms to base 2.
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There is, however, one definition of the conditional Rényi entropy which respects both of these

properties, that is, the α-Arimoto-Rényi Conditional Entropy (ARCE) which was introduced by

Arimoto [4]. Furthermore, it is consistent with the conditional Shannon entropy, in the sense

that one recovers the latter from it in the limit α → 1 (a property which does not necessarily

hold for the other definitions in the literature). As a consequence, the ARCE has attracted much

attention from the information theory community.

The ARCE has been proved to be of operational significance in diverse information-theoretic

problems. These include, among others, guessing problems with side information [13]–[16],

sequential decoding [13], task encoding with side information [17], list-size capacity of discrete

memoryless channels with feedback [18], Bayesian M -ary hypothesis testing [19], generalisations

of Fano-type inequalities [20]. See also [21], [22].

Another desirable property of information measures such as entropies and conditional entropies

is continuity. A continuity bound quantifies the amount by which the information measure

changes when the underlying probability distribution changes by a small amount, and hence

provides an estimate of the robustness of the information measure with respect to the probability

distribution. For example, given two probability distributions which are at a total variation

distance of at most ε ∈ (0, 1), a uniform continuity bound for an entropy is a bound on the

difference between their entropies in terms of ε and the alphabet size. It does not depend on the

specifics of the probability distributions themselves. The bound is said to be tight if there exists

a pair of probability distributions for which it is saturated.

The importance of continuity bounds lies in the fact that we usually lack precise knowledge

of the probability distribution and instead only have a rough estimate of it. Hence it is useful to

have tight bounds on the error incurred by approximating the probability distribution. Continuity

bounds are not only of fundamental interest but also have useful applications in information

theory, for example in the study of channel capacities.

Various such continuity bounds have been derived. A tight uniform continuity bound for the

Shannon entropy is attributed to Csiszár, who derived it from Fano’s inequality. See also [23].

However, it seems to have first appeared in a paper by Zhang [24]. A tight uniform continuity

bound for the conditional Shannon entropy was recently derived by Alhejji and Smith [25]. In

the quantum case, Fannes [26] was the first to prove a uniform continuity bound for the von

Neumann entropy, which was later sharpened by Audenaert [27]. It was independently obtained

by Petz [28]. Audenaert’s result provides a tight upper bound on the von Neumann entropy of two
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quantum states of a finite-dimensional system in terms of their trace distance and the dimension

of the underlying Hilbert space. Audenaert also derived tight uniform continuity bounds for

quantum Rényi entropies of order α ∈ [0, 1) (see Appendix of [27]), which covers the case

of classical Rényi entropies. Continuity bounds for a large family of entropies (which included

Rényi entropies in the above range) were derived using different proof techniques in [29]. The

authors of [29] further investigated the case α > 1 using the notion of “majorization flow”

in [30], obtaining a bound which is sharper than previously known bounds. A similar continuity

bound was derived for the conditional von Neumann entropy by Alicki and Fannes [31], which in

turn was later sharpened by Winter [32]. Alhejji and Smith’s result for the conditional Shannon

entropy was extended to the case of the conditional entropy of a classical-quantum state (with

the conditioning being on the classical system) by Wilde [33].

In this paper we study another important property of the ARCE of order α, for the range

α ∈ [0, 1). More precisely, we establish a tight uniform continuity bound on the difference of

the ARCEs of two joint probability distributions pXY and qXY which are close in total variation

distance. See Theorem 1 of Section III below. To prove this result we introduce (i) the notion

of X -majorization, which is a special case of the concept of conditional majorization which

was introduced by Gour et al [34] (here X denotes the alphabet of the random variable X),

and (ii) the notion of a function of a joint probability distribution pXY being marginally Schur

concave, that is, Schur concave under X -majorization. Ideas and techniques from majorization

theory have previously been employed to derive bounds on entropies (see e.g. [35], [36] and

references therein).

We then apply our result to prove a tight uniform continuity bound for the ARCE of order

α, for α ∈ [0, 1), for classical-quantum (c-q) systems, with the conditioning being done on the

classical system. We denote this quantity by Hα(A|Y )ρ, where Y is a classical system (i.e. a

random variable), A is a finite-dimensional quantum system, and ρAY is the c-q state of the

composite system AY (see (6) below). See Theorem 2 of Section III in the paper.

Layout of the paper: We proceed by first introducing the necessary definitions of the relevant

classical and quantum entropies and conditional entropies in Section II. We state our main results

in Section III, and prove them in Section IV. The key notions of X -majorization and marginally

Schur concave functions, which we exploit in our proofs, are introduced in Section IV-A. We

conclude the paper with a discussion and some open problems. Some further tools that we use
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are stated and proved in the Appendix.

II. MATHEMATICAL PRELIMINARIES

A. Classical systems

Let X := {1, 2, · · · , |X |}, and let PX denote the set of probability distributions on X . Let

pX ∈ PX . The Shannon entropy of a variable X with distribution pX is defined as [1]

H(X)p ≡ H(pX) := −
∑
x∈X

pX(x) log pX(x). (1)

The α-Rényi entropy, for α ∈ [0, 1) ∪ (1,∞) is defined as follows:

Hα(X)p :=
1

1− α
log

(∑
x∈X

pαX(x)

)
. (2)

The Shannon and α-Rényi entropies are part of larger set of functions related to the concept of

majorization. Given u ∈ Rd for some dimension d, define u↓ ∈ Rd to be the vector containing

the elements of u arranged in non-increasing order. For u,v ∈ Rd, we say u is majorized by

v, written u ≺ v [37], if
k∑
j=1

u↓j ≤
k∑
j=1

v↓j , ∀k = 1, · · · , d− 1,

and
d∑
j=1

u↓j =
d∑
j=1

v↓j .

(3)

A function f : Rd → R is said to be Schur-convex if f(u) ≤ f(v) for any pair u,v ∈ Rd with

u ≺ v, and it is said to be Schur-concave if (−f) is Schur-convex. The Shannon and α-Rényi

entropies are notable examples of Schur-concave functions when they are taken as functions of

the vectors of probability distributions. An interesting property of majorization is the following:

for u,v ∈ Rd, u ≺ v if and only if there exists a doubly-stochastic matrix D of dimension

d× d such that u = Dv [38]. This property will be useful in our proof.

Now let Y := {1, 2, · · · , |Y|} and let PX×Y denote the set of probability distributions on

X × Y . For a pair of random variables X and Y with joint distribution pXY ∈ PX×Y , the

conditional Shannon entropy H(X|Y )p of X conditioned on Y is defined as

H(X|Y )p := H(pXY )−H(pY )

= −
∑
y∈Y

∑
x∈X

pXY (x, y) log pX|Y (x|y),
(4)
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where pY denotes the marginal distribution of Y .

As mentioned in the Introduction, several definitions of the conditional Rényi entropy have

been proposed in the literature [11], [12]. In this paper we focus on Arimoto’s version of the

conditional Rényi entropy:

Definition 1. For a pair of random variables X and Y with joint distribution pXY ∈ PX×Y , the

α-Arimoto-Rényi conditional entropy, (in short the α-ARCE), for α ∈ [0, 1) ∪ (1,∞) is defined

as follows [4]:

Hα (X|Y )p :=
α

1− α
log

∑
y∈Y

[∑
x∈X

pαXY (x, y)

]1/α . (5)

In the limit α→ 1 it reduces to the conditional Shannon entropy.

Unlike the Shannon and α-Rényi entropies, the α-ARCE is not Schur-concave. However, it

satisfies a weaker notion of Schur concavity which we introduce in Section IV-A and which we

exploit in our proofs. This leads us to introduce the concepts of X -majorization and marginally

Schur-concave functions (see Section IV-A).

Finally, we recall the definition of the total variation distance (TV) between two probability

distributions pXY , qXY ∈ PX×Y : TV(pXY , qXY ) := 1
2

∑
x∈X

∑
y∈Y |pXY (x, y)− qXY (x, y)|.

B. Classical-quantum systems

In this section we consider finite-dimensional bipartite quantum (and classical-quantum) sys-

tems. Their states are given by density matrices, i.e. positive semidefinite operators of unit trace

acting on the Hilbert space associated with the system. The trace distance between two states

ρ and σ of a quantum system is given by 1
2
||ρ − σ||1 where for any operator A, acting on the

Hilbert space of the system, ||A||1 := Tr
√
A†A.

Let us introduce some relevant entropic quantities.

Definition 2. Let ρAB be the density matrix of a bipartite finite-dimensional quantum system

AB. Then for α ∈ [0, 1)∪ (1,∞) the quantum conditional α-Rényi entropy of A given B of the

state ρAB is defined as follows [39]:

Hα (A|B)ρ :=
α

1− α
log Tr

[
(TrA [ραAB])1/α

]
. (6)
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In the limit α→ 1 it reduces to the quantum conditional entropy

H(A|B)ρ := H(ρAB)−H(ρB), (7)

where ρB := TrA [ρAB] denotes the reduced state of the system B, and H(ρ) := −Tr(ρ log ρ)

denotes the von Neumann entropy of the state ρ. The quantity Hα (A|B)ρ can also be expressed

as follows [39], [40]:

Hα (A|B)ρ = sup
σB

(−Dα(ρAB ‖ IA ⊗ σB)) , (8)

where IA denotes the identity operator acting on the system A, the supremum is taken over all

states σB of the system B, and where for two states ρ and σ, Dα(ρ ‖ σ) denotes the quantum

α-Rényi divergence of ρ with respect to σ. The latter is defined as [39]

Dα(ρ ‖ σ) :=
1

α− 1
log Tr

[
ρασ1−α] , (9)

if supp(ρ) ⊆ supp(σ) and Dα(ρ ‖ σ) := +∞ else.

We are interested in the conditional α-Rényi entropy defined in (6) since it can be related to

the α-Arimoto-Rényi conditional entropy when the bipartite system is classical-quantum (c-q)

and the conditioning is made on the classical system. Indeed, consider a finite dimensional c-q

system with density matrix ρAY , where A denotes a quantum system and Y denotes a classical

system of dimension |Y|. We can always write the density matrix as

ρAY =
∑
y∈Y

rY (y)ρyA ⊗ |y〉 〈y|Y , (10)

where rY ∈ PY and {ρyA}y∈Y is a set of quantum states of the system A. For each y ∈ Y ,

consider the spectral decomposition of ρyA:

ρyA =
∑
x∈X

rX|Y (x|y) |φyx〉 〈φyx|A , (11)

where |X | = dA is the dimension of system A and rX|Y is a conditional probability distribution.

We can write the bipartite state as

ρAY =
∑

y∈Y,x∈X

rXY (x, y) |φyx〉 〈φyx|A ⊗ |y〉 〈y|Y , (12)
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where we defined rXY (x, y) = rY (y)rX|Y (x|y) for all x ∈ X , y ∈ Y , so that rXY ∈ PX×Y . In

that case,
Hα (A|Y )ρ

=
α

1− α
log Tr

[(
TrA

[ ∑
y∈Y,x∈X

rαXY (x, y)

× |φyx, y〉 〈φyx, y|AY

])1/α


=
α

1− α
log Tr

( ∑
y∈Y,x∈X

rαXY (x, y) |y〉 〈y|Y

)1/α


=
α

1− α
log Tr

∑
y∈Y

(∑
x∈X

rαXY (x, y)

)1/α

|y〉 〈y|Y


=

α

1− α
log

∑
y∈Y

(∑
x∈X

rαXY (x, y)

)1/α


= Hα (X|Y )r ,

(13)

where |φyx, y〉AY ≡ |φyx〉A ⊗ |y〉Y and Hα (X|Y )r is the classical α-ARCE for a pair of random

variables X and Y with joint probability distribution rXY .

In the limit α→ 1, Hα (A|Y )ρ reduces to the conditional entropy of the c-q state ρAY :

H(A|Y )ρ :=
∑
y

rY (y)H(ρyA), (14)

where H(ρyA) denotes the von Neumann entropy of the quantum state ρyA.

III. MAIN RESULTS

In this section we state our main results, namely, tight uniform continuity bounds for the

α-Arimoto-Rényi conditional entropy (α-ARCE) of a classical joint probability distribution, and

the conditional α-Rényi entropy of a c-q system. In the limit α→ 1, they reduce to the known

bounds for the conditional Shannon entropy and the conditional entropy (of a c-q system). The

first theorem pertains to the α-ARCE.

Theorem 1. Let α ∈ [0, 1), ε ∈ (0, 1− 1
|X | ] and pXY , qXY ∈ PX×Y be such that

TV(pXY , qXY ) ≤ ε. (15)
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Then the following inequality holds:

|Hα (X|Y )p −Hα (X|Y )q |

≤ 1

1− α
log
(
(1− ε)α + (|X | − 1)1−α εα

)
.

(16)

Moreover, the inequality is tight, i.e.,

sup
pXY ,qXY

|Hα (X|Y )p −Hα (X|Y )q |
γ(α, ε, |X |)

= 1, (17)

where γ(α, ε, |X |) denotes the expression on the right hand side of (16).

Remark 1. In the limit α → 1, Theorem 1 yields the corresponding continuity bound for the

conditional Shannon entropy which was derived in [25], and is given by the following: for

any ε ∈ (0, 1 − 1
|X | ], for a pair of probability distributions pXY and qXY in PX×Y for which

TV(qXY , pXY ) ≤ ε:

|H(X|Y )p −H(X|Y )q| ≤ ε log (|X | − 1) + h(ε), (18)

where h(ε) := −ε log ε− (1− ε) log(1− ε) is the binary entropy. This can be easily verified by

a simple use of l’Hôpital’s rule.

Following the ideas used in [33], and making use of the bound stated in Theorem 1, we derive

a tight uniform continuity bound for the conditional α-Rényi entropy of a c-q system, with the

conditioning being on the classical system, and α being in the range [0, 1). This bound is stated

in the following theorem.

Theorem 2. Consider a c-q system AY , where dA denotes the dimension of the quantum system

A, and |Y| denotes the dimension of the classical system Y . Let ρAY and σAY be two states of

AY satisfying
1

2
||ρAY − σAY ||1 ≤ ε. (19)

Then for any α ∈ [0, 1), and ε ∈ (0, 1− 1
dA

] the following inequality holds:

|Hα (A|Y )ρ −Hα (A|Y )σ |

≤ 1

1− α
log
(
(1− ε)α + (dA − 1)1−α εα

)
.

(20)

Moreover, the inequality is tight, i.e.,

sup
ρAY ,σAY

|Hα (A|Y )ρ −Hα (A|Y )σ |
γ(α, ε, dA)

= 1, (21)
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where γ(α, ε, dA) denotes the expression on the right hand side of (20).

Remark 2. By making use of Remark 1, in the limit α → 1 we recover the corresponding

continuity bound for the conditional entropy of a c-q state which was derived in [33], and

is given by the following: for any ε ∈ (0, 1 − 1
dA

], for a pair of finite-dimensional c-q states

ρAY , σAY satisfying (19), the following inequality holds:

|H(A|Y )ρ −H(A|Y )σ| ≤ ε log (dA − 1) + h(ε), (22)

where h(ε) is the binary entropy and H(A|Y )ρ denotes the conditional entropy of the c-q state

ρAY .

IV. PROOF OF THE MAIN RESULTS

A. Proof ingredients: X -majorization and marginally Schur-concave functions

The notion of conditional majorization was introduced in [34]. For completeness, we state

its definition in Appendix A. Here we consider a particular case of conditional majorization,

which we refer to as X -majorization, as it can be understood as majorization applied to the

X -marginals of joint probability distributions pXY ∈ PX×Y . The definition is as follows.

Definition 3. Denote by Rn×l
+ the set of all n × l matrices with non-negative values. Consider

P ∈ Rn×l
+ and Q ∈ Rn×l

+ . We say Q is X -majorized by P and write Q ≺X P if there exist

matrices D(j) and R(j), where j ∈ {1, 2, · · · , l}, such that

Q =
l∑

j=1

D(j)PR(j), (23)

where each D(j) is an n× n doubly-stochastic matrix and each R(j) is an l× l matrix which is

such that
(
R(j)

)
ik

= δikδij,∀i, k ∈ {1, 2, · · · , l}.

Henceforth, we choose to represent a joint probability distribution pXY ∈ PX×Y as a matrix

of dimensions |X | × |Y|, so that its yth column contains the column-vector {pXY (x, y)}x∈X ,

for each y ∈ Y , while its xth row contains the row-vector {pXY (x, y)}y∈Y , for each x ∈ X .

Here we have used the notation {pXY (x, y)}x∈X := (pXY (1, y), pXY (2, y), . . . , pXY (|X |, y)) and

{pXY (x, y)}y∈Y := (pXY (x, 1), pXY (x, 2), . . . , pXY (x, |Y|)). We also denote the column-vector

of conditional probabilities pX|Y (x|y) for a fixed y ∈ Y as

pX|Y=y =
(
pX|Y (1|y), pX|Y (2|y), . . . , pX|Y (|X ||y)

)
. (24)
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Moreover, we use the symbols qXY and pXY to refer to both the joint distributions as well as

their matrix representations.

We now apply our definition of X -majorization to joint probability distributions in PX×Y and

relate it to the “usual” majorization applied to vectors of conditional probabilities. We do so

through the following simple lemma.

Lemma 1. Consider pXY , qXY ∈ PX×Y . Then the following statements are equivalent:

1) qXY ≺X pXY ,

2)
(
qXYR

(y)e|Y|
)
≺
(
pXYR

(y)e|Y|
)

for all y ∈ Y ,

3) qY = pY and qX|Y=y ≺ pX|Y=y for all y ∈ Y .

where e|Y| is a column-vector with |Y| rows with all its elements equal to 1.

Note that point 2 simply means that each column of qXY is majorized by the corresponding

column (same y index) of pXY .

Proof. We first show the equivalence between 1 and 2. Consider qXY ≺X pXY . In that case,

there exist matrices D(z) and R(z), where z ∈ Y , such that

qXY =

|Y|∑
z=1

D(z)pXYR
(z), (25)

where each D(z) is an |X | × |X | doubly-stochastic matrix and each R(z) is a |Y| × |Y| matrix

which is such that
(
R(z)

)
ab

= δabδaz,∀a, b ∈ Y . Using the above equation, for each y ∈ Y ,

qXYR
(y)e|Y| =

|Y|∑
z=1

D(z)pXYR
(z)R(y)e|Y|

= D(y)pXYR
(y)e|Y|,

(26)

so that [38] (
qXYR

(y)e|Y|
)
≺
(
pXYR

(y)e|Y|
)
, ∀y ∈ Y . (27)

Since the doubly-stochastic matrix D(y) appearing in the last equation of (26) depends on y, the

proof can be reversed without any loss of generality, so that 1 and 2 are equivalent. We now

show the equivalence between 2 and 3. Since pXY (x, y) = pY (y)pX|Y (x|y),∀x ∈ X , ∀y ∈ Y ,

and similarly for qXY , according to the definition in (24), we can write, for each y ∈ Y ,

pY (y)pX|Y=y = pXYR
(y)e|Y|,

qY (y)qX|Y=y = qXYR
(y)e|Y|,

(28)
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so that
pY (y) =

∑
x∈X

(
pXYR

(y)e|Y|
)
x
, ∀y ∈ Y ,

qY (y) =
∑
x∈X

(
qXYR

(y)e|Y|
)
x
, ∀y ∈ Y .

(29)

Suppose
(
qXYR

(y)e|Y|
)
≺
(
pXYR

(y)e|Y|
)

for all y ∈ Y . A necessary condition is that qY (y) =

pY (y) for all y ∈ Y , which means that pY = qY . It also means that

qX|Y=y ≺ pX|Y=y, ∀y ∈ Y . (30)

Again, the proof can be reversed without any loss of generality, so that 2 and 3 are equivalent.

We are now in position to define the notion of marginally Schur-concave function.

Definition 4. A function f : Rn×l
+ → R will be called marginally Schur-concave if, for any pair

of matrices P,Q ∈ Rn×l
+ , we have

Q ≺X P ⇒ f(P ) ≤ f(Q). (31)

The function f is said to be marginally Schur-convex if the opposite inequality holds.

We show the following.

Lemma 2. The α-ARCE is marginally Schur-concave for all α ∈ [0, 1) ∪ (1,∞).

Proof. The α-ARCE can be written as

Hα (X|Y )p =
α

1− α
log

(∑
y∈Y

pY (y)||pX|Y=y||α

)
. (32)

We need to show that qXY ≺X pXY implies Hα (X|Y )p ≤ Hα (X|Y )q. From Lemma 1, we have

that qXY ≺X pXY implies pY = qY and qX|Y=y ≺ pX|Y=y, for all y ∈ Y . We distinguish between

the two cases α > 1 and α ∈ [0, 1).

a) Case 1: α > 1.: In this case, the function u 7→ uα is convex for u ∈ [0,∞), so that the

α-norm ||pX|Y=y||α is Schur-convex. Since qX|Y=y ≺ pX|Y=y for all y ∈ Y , this implies that

||pX|Y=y||α ≥ ||qX|Y=y||α, ∀y ∈ Y . (33)

Since pY = qY and 1− α < 0, we end up with

Hα (X|Y )p ≤ Hα (X|Y )q , ∀α > 1. (34)
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b) Case 2: α ∈ [0, 1).: In this case, the function u 7→ uα is concave for u ∈ [0,∞), so

that the α-quasi-norm ||pX|Y=y||α is Schur-concave. Since qX|Y=y ≺ pX|Y=y for all y ∈ Y , this

implies that

||pX|Y=y||α ≤ ||qX|Y=y||α, ∀y ∈ Y . (35)

Since pY = qY and 1− α > 0, we end up with

Hα (X|Y )p ≤ Hα (X|Y )q , ∀α ∈ [0, 1). (36)

Note that Lemma 2 can also be proven by exploiting the fact that X -majorization is a special

case of conditional majorization, and by making use of Theorem 1 of [34], which we state in

the Appendix A as Lemma 3.

Remark 3. Using the same ideas as in the proof of Lemma 2, the conditional Shannon entropy

can be readily verified to be marginally Schur-concave (see also [25]).

B. Proof of Theorem 1

Fix ε ∈ [0, 1 − 1
|X |). Consider two probability distributions pXY and qXY such that their

total variation distance t := TV(pXY , qXY ) is at most equal to ε. We assume, without loss of

generality, that Hα (X|Y )p ≥ Hα (X|Y )q and define ∆Hα := Hα (X|Y )p −Hα (X|Y )q.

The proof of Theorem 1 consists of a series of steps which are described in detail below. The

key idea is to alter the distributions qXY and pXY , in a series of iterative steps such that the

difference Hα (X|Y )p−Hα (X|Y )q never decreases, and the total variation distance also remains

unchanged. As a result of these manipulations, Hα (X|Y )q reduces to zero while Hα (X|Y )p

attains its maximal value under the constraint on the total variation distance, which indeed is the

desired upper bound. Note that our initial steps (Step A and Step B) are similar to those used by

Alhejji and Smith [25]. However, the remaining steps deviate considerably from theirs in order

to deal with the additional complexity of the α-ARCE (compared to the conditional Shannon

entropy). In order to clarify some of the steps of the proof, we consider a 3 × 3 example in

Appendix C.

Step A: Reordering Recall that we chose to represent the probability distributions pXY and

qXY by |X | × |Y| matrices. For convenience, we first arrange the |Y| columns of qXY such that

qY (y) ≥ qY (y + 1), ∀y ∈ Y \ {|Y|} . (37)
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We then do the same permutation of columns of pXY . Note, however, that pY (y) is not necessarily

greater that pY (y + 1). From the form given in (32), one understands that this does not change

the value of the α-ARCE. Now, for the yth column, define the two sets

Iy = {x|qXY (x, y) ≥ pXY (x, y)} ,

Icy = {x|qXY (x, y) < pXY (x, y)} .
(38)

Do the following changes for both pXY and qXY . Within the yth column, if both Iy and Icy are

non-empty, put the elements corresponding to indices in Iy ahead of those corresponding to

indices in Icy . Finally, in both pXY and qXY , order the elements corresponding to indices in Iy

such that

qXY (x+ 1, y) ≤ qXY (x, y), ∀x ∈ Iy \ {|Iy|} , (39)

and do the same for the elements corresponding to indices in Icy , so that we also have

qXY (x+ 1, y) ≤ qXY (x, y), ∀x ∈ Icy \
{
|Icy|
}
. (40)

Note that it does not necessarily mean that

pXY (x+ 1, y) ≤ pXY (x, y), ∀x ∈ Iy \ {|Iy|} , (41)

or,

pXY (x+ 1, y) ≤ pXY (x, y), ∀x ∈ Icy \
{
|Icy|
}
. (42)

These operations correspond to permutations of elements within fixed columns of pXY and qXY ,

in the sense that no element is transferred from one column to a different column. For an

illustration, see Figure 1 of Appendix C.

As a consequence, neither Hα (X|Y )p nor Hα (X|Y )q changes under these operations. Fur-

thermore, the total variation distance between the probability distributions does not change either,

since the exact same permutations have been performed in both pXY and qXY .

Step B: Walking We start by moving probability weights in qXY . Specifically, we will make

qXY less disordered in the sense of X -majorization, by “concentrating” probability weights,

which will decrease the value of Hα (X|Y )q in the process. For all y ∈ Y such that Iy is not
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empty, define the column vectors v(0)(y) := {qXY (x, y)}x∈X and v(i)(y) ≡
{
v
(i)
x (y)

}
x∈X

for

i = 1, · · · , |Iy| − 1 such that

v
(i)
1 (y) = v

(i−1)
1 (y) + [qXY (i+ 1, y)− pXY (i+ 1, y)] ,

v
(i)
i+1(y) = pXY (i+ 1, y),

v(i)
x (y) = v(i−1)

x (y), ∀x ∈ X \ {1, i+ 1} .

(43)

Similarly, for all y ∈ Y such that Iy is empty, define the column vectors u(0)(y) := {qXY (x, y)}x∈X
and u(i)(y) :=

{
u
(i)
x (y)

}
x∈X

for i = 1, · · · , |X | − 1 such that

u
(i)
1 (y) = u

(i−1)
1 (y) + δi,

u
(i)
i+1(y) = u

(i−1)
i+1 (y)− δi,

u(i)
x (y) = u(i−1)

x (y), ∀x ∈ X \ {1, i+ 1} .

(44)

where δi = min
{
u

(i−1)
i+1 (y), pXY (1, y)− u

(i−1)
1 (y)

}
. The above equations model the following

moves in the matrix representing qXY : in columns for which Iy is empty, at each step i =

1, · · · , |X | − 1, we remove a probability weight δi from qXY (i+ 1, y) an add it into qXY (1, y).

We do so as long as the inequality qXY (1, y) ≤ pXY (1, y) is not violated. This is in order to keep

the total variation distance unchanged. Indeed, note that the equations imply that we stop adding

weight into qXY (1, y) either when we reach qXY (1, y) = pXY (1, y), or when qXY (i, y) = 0 for

all i = 2, · · · , |X |. For an illustration, see Figure 2 of Appendix C.

From the first identity in (38) and Lemmas 4 and 5,

v(i)(y) ≺ v(i+1)(y), (45)

at each step i = 1, · · · , |Iy| − 1, for all y ∈ Y , so that

v(0)(y) ≺ v(|Iy |−1)(y), (46)

for all y ∈ Y .

Similarly, we have that

u(0)(y) ≺ u(|X |−1)(y). (47)

Define the matrix q̃XY ∈ PX×Y whose columns are given by the final column-vectors v(|Iy |−1)(y)

when y is such that Iy is non-empty, and the column-vectors u(|X |−1)(y) else, i.e.,

q̃XY (x, y) = v(|Iy |−1)
x (y), ∀x ∈ X , (48)
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for all y such that Iy is non-empty, and

q̃XY (x, y) = u(|X |−1)(y), ∀x ∈ X , (49)

for all y such that Iy is empty. We therefore have that the columns of qXY are majorized by the

corresponding columns of q̃XY , i.e.,(
qXYR

(y)e|Y|
)
≺
(
q̃XYR

(y)e|Y|
)
, ∀y ∈ Y . (50)

According to Lemma 1, it means that qXY ≺X q̃XY , which, using Lemma 2, implies that

Hα (X|Y )q̃ ≤ Hα (X|Y )q . (51)

In other words, Hα (X|Y )q does not increase under the above operations. For the sake of clarity,

we relabel q̃XY as qXY at this point. We therefore now have

∆Hα ≤ Hα (X|Y )p −Hα (X|Y )q . (52)

Define the two sets
J = {y|qXY (1, y) ≥ pXY (1, y)} ,

J c = {y|qXY (1, y) < pXY (1, y)} ,
(53)

(where J c might be empty) and put the columns of J ahead of the columns of J c in both

pXY and qXY . After all these replacements, our joint probability matrices satisfy the following

relations:
qXY (1, y)− pXY (1, y) ≥ 0,

qXY (x, y)− pXY (x, y) ≤ 0, ∀ x ∈ X \ {1} ,
(54)

for all y ∈ J and
qXY (1, y)− pXY (1, y) < 0,

qXY (x, y) = 0, ∀ x ∈ X \ {1} .
(55)

for all y ∈ J c. Note that this implies∑
y∈J

(qXY (1, y)− pXY (1, y)) = t ≡ TV(pXY , qXY ). (56)

Step C: Enlarging We will now apply a complementary operation to pXY , this time making the

probabilities more “spread out” within each column, making the probability distribution more

disordered in the sense of X -majorization, which will now increase the value of Hα (X|Y )p.

In order to do this, we increase the dimensions of (the matrix representing) pXY . The extra
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dimensions which are added will only be exploited in the context of the proof, and will not

influence the result. Note that since we increase the dimension of pXY , we also do the same for

qXY by just appending zeros in the extra dimensions. We do this in order to always compare

matrices of similar dimensions. Denote by P ′ the space of matrices of dimensions (2|X |−1)×|Y|,

and define q′XY and p′XY in P ′ such that

q′XY (x, y) =

qXY (x, y), ∀ x = 1, · · · , |X |,

0, ∀ x = |X |+ 1, · · · , 2|X | − 1,
(57)

for all y ∈ Y , and similarly,

p′XY (x, y) =

pXY (x, y), ∀ x = 1, · · · , |X |,

0, ∀ x = |X |+ 1, · · · , 2|X | − 1,
(58)

for all y ∈ Y . At this point, ∆Hα is upper-bounded by Hα (X|Y )p′ − Hα (X|Y )q′ . Next, we

make p′XY more disordered, therefore increasing the value of Hα (X|Y )p′ , without changing q′XY
and without changing the total variation distance between the two matrices. Construct the matrix

p′′XY in P ′ such that

p′′XY (1, y) = p′XY (1, y), (59)

p′′XY (x, y) = q′XY (x, y), (60)

for all x = 2, · · · , |X | and

p′′XY (x, y) = p′XY (x+ 1− |X |, y)− q′XY (x+ 1− |X |, y), (61)

for all x = |X |+1, · · · , 2|X |−1, for all y ∈ Y . For an illustration, see Figure 3 of Appendix C.

Using Lemmas 5 and 6, we have that each column of p′′XY is majorized by the corresponding

column of p′XY . In other words, using the notations of X -majorization,(
p′′XYR

(y)e|Y|
)
≺
(
p′XYR

(y)e|Y|
)
, ∀ y ∈ Y , (62)

so that according to Lemma 1, p′′XY ≺X p′XY , and using Lemma 2, Hα (X|Y )p′ ≤ Hα (X|Y )p′′ .

We have at this point

∆Hα ≤ Hα (X|Y )p′′ −Hα (X|Y )q′ . (63)

Furthermore, we have

t̃ :=

|Y|∑
y=1

2|X |−1∑
x=|X |+1

p′′XY (x, y) ≤ t. (64)
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In fact, t̃ = t if J c is empty. Equivalently,

t̃ = t−
∑
y∈Jc

(p′XY (1, y)− q′XY (1, y)). (65)

Step D: Bounding the terms individually

Step D.1: Upper bounding Hα (X|Y )p′′ Now, we focus on p′′XY . We have

Hα (X|Y )p′′ =
α

1− α
log

∑
y∈Y

2|X |−1∑
x=1

(p′′XY (x, y))α

1/α


=
1

1− α
log


∥∥∥∥∥∥
2|X |−1∑
x=1

(p′′XY (x, ·))α
∥∥∥∥∥∥
1/α


=

1

1− α
log

∥∥∥∥∥∥
|X |∑
x=1

(p′′XY (x, ·))α

+

2|X |−1∑
x=|X |+1

(p′′XY (x, ·))α
∥∥∥∥∥∥
1/α


≤ 1

1− α
log


∥∥∥∥∥∥
|X |∑
x=1

(p′′XY (x, ·))α
∥∥∥∥∥∥
1/α

+

∥∥∥∥∥∥
2|X |−1∑
x=|X |+1

(p′′XY (x, ·))α
∥∥∥∥∥∥
1/α


≤ 1

1− α
log


∥∥∥∥∥∥
|X |∑
x=1

(p′′XY (x, ·))α
∥∥∥∥∥∥
1/α

+

2|X |−1∑
x=|X |+1

‖(p′′XY (x, ·))α‖1/α


where the inequalities follow from the Minkowski inequality for 1/α > 1, and the monotonicity

of the logarithm. The second term inside the log on the right-hand side of the last inequality is
2|X |−1∑
x=|X |+1

‖(p′′XY (x, ·))α‖1/α =

2|X |−1∑
x=|X |+1

(∑
y∈Y

p′′XY (x, y)

)α

.
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The elements of p′′XY involved in the above equation satisfy (64), so that(
t̃

|X | − 1
, · · · , t̃

|X | − 1

)
≺

(∑
y∈Y

p′′XY (|X |+ 1, y), · · · ,
∑
y∈Y

p′′XY (2|X | − 1, y)

)
,

where both the vectors involved in the above equation contain |X | − 1 elements. Since the

α-quasi-norm is Schur-concave for α < 1 (see proof of Lemma 2), we get that∥∥∥∥∥
(∑
y∈Y

p′′XY (|X |+ 1, y), · · · ,
∑
y∈Y

p′′XY (2|X | − 1, y)

)∥∥∥∥∥
α

≤
∥∥∥∥( t̃

|X | − 1
, · · · , t̃

|X | − 1

)∥∥∥∥
α

,

(66)

or,
2|X |−1∑
x=|X |+1

(∑
y∈Y

p′′XY (x, y)

)α

≤ (|X | − 1)1−α t̃α, (67)

which leads to

Hα (X|Y )p′′

≤ 1

1− α
log


∥∥∥∥∥∥
|X |∑
x=1

(p′′XY (x, ·))α
∥∥∥∥∥∥
1/α

+ (|X | − 1)1−α t̃α

 .

At this point, we define rXY ∈ P such that

rXY (x, y) = p′′XY (x, y), ∀ y ∈ Y , ∀ x ∈ X , (68)

or, using (59), (60) and (61),

rXY (1, y) = p′XY (1, y),

rXY (x, y) = q′XY (x, y), ∀ x = 2, · · · , |X |,
(69)

for all y ∈ Y , so that

Hα (X|Y )p′′

≤ 1

1− α
log


∥∥∥∥∥∥
|X |∑
x=1

(rXY (x, ·))α
∥∥∥∥∥∥
1/α

+ (|X | − 1)1−α t̃α

 .
(70)

Note that
|Y|∑
y=1

|X |∑
x=1

rXY (x, y) = 1− t̃ ≥ 1− t. (71)
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Step D.2: Lower bounding Hα (X|Y )q′ We now turn to q′XY . We have

Hα (X|Y )q′ =
α

1− α
log

∑
y∈Y

 |X |∑
x=1

(q′XY (x, y))α

1/α


=
α

1− α
log

∑
y∈J

 |X |∑
x=1

(q′XY (x, y))α

1/α

+
∑
y∈Jc

 |X |∑
x=1

(q′XY (x, y))α

1/α


=
α

1− α
log

∑
y∈J

 |X |∑
x=1

(q′XY (x, y))α

1/α

+
∑
y∈Jc

q′XY (1, y)

)
where we made use of (55). Define q′′XY ∈ P such that

q′′XY (x, y) = q′XY (x, y)− rXY (x, y), ∀ y ∈ J, x = 1,

q′′XY (x, y) = 0, else.
(72)

The elements of q′′XY are all non-negative as a consequence of (69), (57), (58) and (54).

Furthermore, using (56), we have that ∑
y∈J

q′′XY (1, y) = t. (73)

Using this, we can write

Hα (X|Y )q′ =
α

1− α
log

(∑
y∈J

‖rXY (., y) + q′′XY (., y)‖α

+
∑
y∈Jc

q′XY (1, y)

) (74)
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and using the reverse Minkowski inequality for α < 1, and the monotonicity of the logarithm,

we end up with

exp

(
1− α
α

Hα (X|Y )q′

)
≥
∑
y∈J

‖rXY (., y)‖α +
∑
y∈J

‖q′′XY (., y)‖α +
∑
y∈Jc

q′XY (1, y)

=
∑
y∈J

‖rXY (., y)‖α +
∑
y∈J

q′′XY (1, y) +
∑
y∈Jc

q′XY (1, y)

=
∑
y∈Y

‖rXY (., y)‖α −
∑
y∈Jc

rXY (1, y) + t+
∑
y∈Jc

q′XY (1, y)

using (73). Now, from (69) and (65), we obtain

t+
∑
y∈Jc

q′XY (1, y)−
∑
y∈Jc

rXY (1, y) = t̃, (75)

so that

Hα (X|Y )q′ ≥
α

1− α
log

(∑
y∈Y

‖rXY (., y)‖α + t̃

)
. (76)

Step E: Upper bounding the difference Putting (63), (70) and (76) together, we see that

our initial conditional entropy difference ∆Hα is upper bounded as follows:

∆Hα ≤
1

1− α
[
log
(
R(rXY )α + (|X | − 1)1−α t̃α

)
− log

( [
R(rXY ) + t̃

]α)]
,

where we defined R(rXY ) =
∑

y∈Y ‖rXY (., y)‖α. Since f(u) = uα is concave for u ≥ 0,

α ∈ [0, 1), and f(0) = 0, it is also subadditive, so that

R(rXY ) =
∑
y∈Y

(∑
x∈X

rαXY (x, y)

)1/α

≥
∑
y∈Y

∑
x∈X

rXY (x, y)

= 1− t̃

where we used (71).

Furthermore, t̃ ≤ t ≤ ε ≤ 1− 1/|X |. Using this along with Lemma 7, we have that

∆Hα ≤
1

1− α
[
log
((

1− t̃
)α

+ (|X | − 1)1−α t̃α
)

− log
([

1− t̃+ t̃
]α)]

=
1

1− α
log
((

1− t̃
)α

+ (|X | − 1)1−α t̃α
)
.
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Finally, using Lemma 8 along with the fact that t̃ ≤ ε, we conclude that

∆Hα ≤
1

1− α
log
(
(1− ε)α + (|X | − 1)1−α εα

)
, (77)

which ends the proof of the bound. To see that the inequality is tight, one can consider the

probability distributions whose elements satisfy the following relations:

qXY (1, 1) = 1,

qXY (x, 1) = 0, ∀ x ∈ X \ {1} ,

qXY (x, y) = 0, ∀ x ∈ X ,∀ y ∈ Y \ {1} ,

(78)

and
pXY (1, 1) = 1− ε

pXY (x, 1) =
ε

|X | − 1
, ∀ x ∈ X \ {1} ,

pXY (x, y) = 0, ∀ x ∈ X ,∀ y ∈ Y \ {1} .

(79)

C. Proof of Theorem 2

Our proof is analogous to the proof of the uniform continuity bound for the conditional entropy

of c-q states by Wilde [33]. It relies on the use of a conditional dephasing channel and the data

processing inequality to go from a c-q setting to a classical-classical one. However, the unitality

of the dephasing channel, which was exploited by Wilde in his proof, cannot be used in the case

of the conditional α-Rényi entropy. Instead we use the notion of X -majorization. This allows

us to then employ our Theorem 1 to arrive at the desired result.

Consider the following decompositions for ρAY and σAY :

ρAY =
∑
y∈Y

rY (y)ρyA ⊗ |y〉 〈y|Y , (80)

σAY =
∑
y∈Y

sY (y)σyA ⊗ |y〉 〈y|Y , (81)

where rY , sY ∈ PY and {ρyA}y∈Y and {σyA}y∈Y are sets of states of A. Suppose without loss of

generality that Hα (A|Y )ρ ≤ Hα (A|Y )σ. Define the conditional dephasing channel as

NAY [ωAY ] =
∑

x∈X ,y∈Y

|φyx, y〉 〈φyx, y|ωAY |φyx, y〉 〈φyx, y| , (82)
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where |φyx, y〉 ≡ |φyx〉 ⊗ |y〉 and the states |y〉 and |φyx〉 are defined through (10) and (11). Here

and henceforth we suppress the subscripts A and Y (denoting the subsystems) for notational

simplicity. We have that

NAY [ρAY ] = ρAY , (83)

while

NAY [σAY ] =
∑

y∈Y,x∈X

sY (y)s̃X|Y (x|y) |φyx〉 〈φyx| ⊗ |y〉 〈y| , (84)

where

s̃X|Y (x|y) = 〈φyx|σ
y
A|φ

y
x〉, ∀x ∈ X , ∀y ∈ Y , (85)

so that s̃X|Y is a conditional probability distribution. Now, for each y ∈ Y , consider the spectral

decomposition of σyA:

σyA =
∑
x∈X

sX|Y (x|y) |ψyx〉 〈ψyx| , (86)

where |X | = dA is the dimension of system A, sX|Y is a conditional probability distribution

defined as

sX|Y (x|y) = 〈ψyx|σ
y
A|ψ

y
x〉, ∀x ∈ X ,∀y ∈ Y , (87)

and {ψyx}x∈X is a set of orthonormal states for a fixed value of y ∈ Y . Since for any positive

semi-definite matrix, the vector of diagonal elements in any basis is majorized by the vector of

eigenvalues [37], we have that

s̃X|Y=y ≺ sX|Y=y, ∀y ∈ Y . (88)

Define
sXY (x, y) = sY (y)sX|Y (x|y),

s̃XY (x, y) = sY (y)s̃X|Y (x|y),
∀x ∈ X , y ∈ Y , (89)

so that

s̃Y (y) =
∑
x∈X

s̃XY (x, y) = sY (y) =
∑
x∈X

sXY (x, y), (90)

for all y ∈ Y . Using Lemma 1, we have that

s̃XY ≺X sXY , (91)

so that according to Lemma 2,

Hα (X|Y )s ≤ Hα (X|Y )s̃ , ∀α ∈ [0, 1). (92)
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Now, using (13), we have
Hα (X|Y )r = Hα (A|Y )ρ

≤ Hα (A|Y )σ

= Hα (X|Y )s

≤ Hα (X|Y )s̃ .

(93)

Meanwhile, from data processing inequality for the normalized trace distance,

1

2
||ρAY − σAY ||1 ≥

1

2
‖NAY [ρAY ]−NAY [σAY ]‖1

= TV(rXY , s̃XY ),

(94)

so that

TV(rXY , s̃XY ) ≤ ε. (95)

Using Theorem 1, we have

|Hα (A|Y )ρ −Hα (A|Y )σ |

= Hα (A|Y )σ −Hα (A|Y )ρ

≤ Hα (X|Y )s̃ −Hα (X|Y )r

≤ 1

1− α
log
(
(1− ε)α + (|X | − 1)1−α εα

)
.

(96)

In order to show that the inequality is tight, one can simply consider states that are diagonal in

the same basis and whose matrix elements are given by (78) and (79).

V. DISCUSSION AND OPEN PROBLEMS

In this paper, we have proven tight uniform continuity bounds for the α-Arimoto-Rényi

conditional entropy for α ∈ [0, 1), for joint probability distributions of a pair of discrete random

variables with finite alphabets, as well as for the conditional Rényi entropy for classical-quantum

systems, with the conditioning being on the classical system. In the limit α → 1, our results

yield the corresponding recently obtained bounds for the conditional Shannon entropy and the

conditional entropy of a c-q state, respectively. It is interesting to note that our bound for the

α-ARCE is identical to the one obtained by Audenaert [27] for the unconditional Rényi entropy

(see (7) of the Appendix of [27]). The same is true for the bound obtained by Alhejji and

Smith [25] for the conditional Shannon entropy: it is identical to the bound for the Shannon
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entropy (see [24]). It would be interesting to see whether an intuitive reason for this can be

found.

A natural next step would be to investigate the continuity of the α-conditional Rényi entropy

of bipartite quantum systems or classical-quantum systems with the conditioning being on the

quantum system, for which there are no results even for the quantum conditional entropy. Finding

analogues of our results for α > 1 also remains open.

APPENDIX A

CONDITIONAL MAJORIZATION

The following notion of conditional majorization was introduced by Gour et al in [34].

Definition 5. Denote by Rn×l
+ the set of all n × l matrices with non-negative values. Consider

P ∈ Rn×l
+ and Q ∈ Rn×m

+ . We say Q is conditionally majorized by P , written Q ≺c P , if there

exist matrices D(j) and R(j), where j can run over an arbitrary number of values, such that

Q =
∑
j

D(j)PR(j), (97)

where each D(j) is an n × n doubly-stochastic matrix and each R(j) is an l × m matrix of

non-negative entries, with
∑

j R
(j) row-stochastic.

The following necessary and sufficient condition for conditional majorization was proven by

Gour et al ( see Theorem 1 of [34]):

Lemma 3. Let pXY , qXY ∈ PX×Y . We have that qXY ≺c pXY if and only if for all convex

symmetric functions Φ ∑
y∈Y

pY (y)Φ
(
pX|Y=y

)
≥
∑
y∈Y

qY (y)Φ
(
qX|Y=y

)
. (98)

APPENDIX B

FURTHER TOOLS FOR THE PROOFS

Lemma 4. Consider a vector v ∈ Rn whose elements are non-negative and are arranged in

non-increasing order. For some i ∈ {2, · · · , n} and some s ∈ (0, vi], define the vector v(i) ∈ Rn
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whose elements satisfy the following relations:
v
(i)
1 = v1 + s,

v
(i)
i = vi − s,

v
(i)
j = vj, ∀j ∈ {2, · · · , n} \ {i} .

(99)

Then v ≺ v(i).

Proof. We have that v(i)j ≥ v
(i)
j+1 for all j ∈ {1, · · · , i− 1}. Now, there exists k ∈ {i+ 1, · · · , n}

such that v(i)i ≤ v
(i)
j for all j ∈ {1, · · · , k} and v

(i)
i > v

(i)
j for all j ∈ {k + 1, · · · , n}, so that

the vector v(i)↓ :=
(
v
(i)
1 , · · · , v

(i)
i−1, · · · , v

(i)
k , v

(i)
i , v

(i)
k+1, · · · , v

(i)
n

)T
has its elements arranged in

non-increasing order. In that case,
l∑

j=1

v
(i)↓
j =

l∑
j=1

vj + s >
l∑

j=1

vj, ∀l = 1, · · · i− 1. (100)

Using the equality in the above equation, we have for all l = i, · · · k − 1,
l∑

j=1

v
(i)↓
j =

i−1∑
j=1

vj + s+
l∑
j=i

v
(i)↓
j

=
i−1∑
j=1

vj + s+
l+1∑
j=i+1

vj

=
l∑

j=1

vj + (s− vi) + vl+1

>
l∑

j=1

vj.

(101)

In order to obtain the last inequality in the above set of equations, notice that v(i)i ≤ v
(i)
k , or,

vi − s ≤ vk. Now, l + 1 ≤ k, and since the elements of v are sorted in non-increasing order,

vl+1 ≥ vk, so that vi − s ≤ vl+1, which implies the last inequality in (101). Similarly, using the

last equality in the above equation,
k∑
j=1

v
(i)↓
j =

k−1∑
j=1

v
(i)↓
j + v

(i)↓
k

=
k−1∑
j=1

vj + (s− vi) + vk + (vi − s)

=
k∑
j=1

vj.

(102)
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Finally, using the above equation, we have for all l = k + 1, · · ·n,
l∑

j=1

v
(i)↓
j =

k∑
j=1

v
(i)↓
j +

l∑
j=k+1

v
(i)↓
j

=
k∑
j=1

vj +
l∑

j=k+1

vj

=
l∑

j=1

vj.

(103)

This ends the proof.

Lemma 5. Let v,v′,v⊥ ∈ Rn be three vectors with non-negative entries, such that v and v′ are

in the same subspace whereas v⊥ is in an orthogonal subspace. If v′ ≺ v, then v′+v⊥ ≺ v+v⊥.

Proof. If v′ ≺ v, there exist µj ∈ R such that µj ≥ 0,∀j and
∑

j µj = 1 and permutation

matrices Πj of dimension n such that

v′ =
∑
j

µjΠjv. (104)

The permutations Πj act only on the subspace spanning v and v′. As a consequence,

v′ + v⊥ =
∑
j

µjΠj

(
v + v⊥

)
, (105)

so that v′ + v⊥ ≺ v + v⊥.

Lemma 6. Consider a vector v ∈ Rn+m whose elements are non-negative and satisfy vj = 0

for all j ∈ {n+ 1, · · · , n+m}. For some i ∈ {1, · · · , n}, some j ∈ {n+ 1, · · · , n+m} and

some s ∈ (0, vi], define the vector u ∈ Rn whose elements satisfy the following relations:
ui = vi − s,

uj = s,

uk = vk, ∀k ∈ {1, · · · , n+m} \ {i, j} .

(106)

Then u ≺ v.

Proof. Define the vectors ṽ, ũ and v⊥ ∈ Rn+m whose elements are non-negative and satisfy

the following relations:  ṽi = vi,

ṽk = 0, ∀k ∈ {1, · · · , n+m} \ {i} ,
(107)
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
ũi = vi − s,

ũj = s,

ũk = 0, ∀k ∈ {1, · · · , n+m} \ {i, j} ,

(108)

and 
v⊥i = 0,

v⊥j = 0,

v⊥k = vk, ∀k ∈ {1, · · · , n+m} \ {i, j} .

(109)

Note that v = ṽ + v⊥ and u = ũ + v⊥. Now, we trivially have that ũ ≺ ṽ, so that, using

Lemma 5, u ≺ v.

Lemma 7. Let α ∈ [0, 1), |X | ≥ 1 and t̃ ∈ (0, 1− 1
|X | ]. The function fα,|X |,t̃ : [0,∞) → [0,∞)

defined as

fα,|X |,t̃(u) := log
[
uα + (|X | − 1)1−α t̃α

]
− log

[(
u+ t̃

)α] (110)

is monotonically decreasing for u ≥ 1− t̃.

Proof. We simply compute the derivative

∂

∂u
fα,|X |,t̃(u)

=
∂

∂u

(
log
[
uα + (|X | − 1)1−α t̃α

]
− log

[(
u+ t̃

)α])
=
[
uα + (|X | − 1)1−α t̃α

]−1
αuα−1 − α(u+ t̃)−1

which will be ≤ 0 if and only if

uα−1

uα + (|X | − 1)1−α t̃α
≤ 1

u+ t̃
, (111)

which is easily seen to reduce to the condition

u ≥ t̃/(|X | − 1) (112)

Note that since t̃ ∈ (0, 1− 1
|X | ], we have 1− t̃ ≥ t̃/(|X | − 1). Hence for u ≥ 1− t̃ the required

condition (112) holds.

Lemma 8. Let α ∈ [0, 1) and |X | ≥ 1. The function gα,|X | : (0, 1− 1
|X | ]→ [0,∞) defined as

gα,|X |(u) := (1− u)α + (|X | − 1)1−α uα (113)
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is monotonically increasing in u.

Proof. Again, we simply compute the derivative
∂

∂u
gα,|X |(u) =

∂

∂u

[
(1− u)α + (|X | − 1)1−α uα

]
= −α (1− u)α−1 + (|X | − 1)1−α αuα−1

which is ≥ 0 if and only if the following inequality holds:

(|X | − 1)1−α uα−1 ≥ (1− u)α−1 . (114)

The above inequality can easily be seen to reduce to the following:

((|X | − 1)(1− u)/u)1−α ≥ 1, (115)

which in turn reduces to the condition u ≤ 1− 1
|X | , which holds by the hypothesis of the lemma.

APPENDIX C

ILLUSTRATION OF THE STEPS IN THE PROOF OF THEOREM 1

In this section of the appendix, we consider a simple 3 × 3 example in order to illustrate

the steps in the proof of Theorem 1. In the context of this example, we relabel the matrix qXY

simply as q and its elements as qij . Similarly, we relabel the matrix pXY simply as p and its

elements as pij . The example is illustrated in the three figures given below.

Fig. 1. Step A of the proof of Theorem 1, which corresponds to a reordering of some elements of q and p.
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Fig. 2. Step B of the proof of Theorem 1, in which some probability weights are moved in q, while p remains unchanged. In

this example, we consider that after the moves, we end up with a new matrix q that satisfies q13 < p13, q23 = 0 and q33 = 0.

This will affect Step C, see Figure 3.

Fig. 3. Step C of the proof of Theorem 1, in which we increase the dimensions of q and p, and some probability weights are

moved in p.
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Transactions on Information Theory, vol. 64, no. 6, pp. 4323–4346, 2018.

[15] A. Bracher, E. Hof, and A. Lapidoth, “Guessing attacks on distributed-storage systems,” in Proceedings of the 2015 IEEE

International Symposium on Information Theory. Hong-Kong, China: North-Holland, 2015, p. 1585–1589.

[16] R. Sundaresan, “Guessing under source uncertainty,” IEEE Transactions on Information Theory, vol. 53, no. 1, pp. 269–287,

2007.
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