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Shortened linear codes from APN and PN functions

Can Xiang, Chunming Tang and Cunsheng Ding

Abstract

Linear codes generated by component functions of perfect nonlinear (PN) and almost perfect nonlinear (APN)

functions and the first-order Reed-Muller codes have been an object of intensive study in coding theory. The

objective of this paper is to investigate some binary shortened codes of two families of linear codes from APN

functions and some p-ary shortened codes associated with PN functions. The weight distributions of these shortened

codes and the parameters of their duals are determined. The parameters of these binary codes and p-ary codes are

flexible. Many of the codes presented in this paper are optimal or almost optimal. The results of this paper show

that the shortening technique is very promising for constructing good codes.

Index Terms

Linear code, shortened code, PN function, APN function, t-design

I. INTRODUCTION

Let GF(q) denote the finite field with q = pm elements, where p is a prime and m is a positive integer.

A [v, k, d] linear code C over GF(q) is a k-dimensional subspace of GF(q)v with minimum (Hamming)

distance d. Let Ai denote the number of codewords with Hamming weight i in a code C of length v.

The weight enumerator of C is defined by 1+A1z+A2z2 + · · ·+Avzv. The sequence (1,A1, . . . ,Av) is

called the weight distribution of C and is an important research topic in coding theory, as it contains

crucial information about the error correcting capability of the code. Thus the study of the weight

distribution has attracted much attention in coding theory and much work focuses on the determination of

the weight distributions of linear codes (see, for example, [14], [15], [16], [17], [35], [33], [39], [40], [46],

[47]). Denote by C⊥ and (A⊥
0 ,A

⊥
1 , . . . ,A

⊥
ν ) the dual code of a linear code C and its weight distribution,

respectively. The Pless power moments [28], i.e.,

ν

∑
i=0

itAi =
t

∑
i=0

(−1)iA⊥
i

[

t

∑
j=i

j!S(t, j)qk− j(q−1) j−i

(

ν− i

ν− j

)

]

, (1)

play an important role in calculating the weight distributions of linear codes, where A0 = 1, 0 ≤ t ≤ ν
and S(t, j) = 1

j! ∑
j
i=0(−1) j−i

(

j
i

)

it . A code C is said to be a t-weight code if the number of nonzero Ai in

the sequence (A1,A2, · · · ,Av) is equal to t. A [v,k,d] code over GF(q) is said to be distance-optimal if

no [v,k,d′] code over GF(q) with d′ > d exists, dimension-optimal if no [v,k′,d] code over GF(q) with

k′ > k exists, and length-optimal if no [v′,k,d] code over GF(q) with v′ < v exists. A linear code is said to

be optimal if it is distance-optimal, or dimension-optimal, or length-optimal, or meets a bound for linear

codes.
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Let C be a [ν,k,d] linear code over GF(q) and T a set of t coordinate positions in C . We use C T

to denote the code obtained by puncturing C on T , which is called the punctured code of C on T . Let

C (T ) be the set of codewords of C which are 0 on T . We now puncture C (T ) on T , and obtain a linear

code CT , which is called the shortened code of C on T . The following lemma plays an important role in

determining the parameters of the punctured and shortened codes of C .

Lemma 1. [28, Theorem 1.5.7] Let C be a [ν,k,d] linear code over GF(q) and d⊥ the minimum distance

of C⊥. Let T be any set of t coordinate positions. Then the following hold:

• (CT )
⊥ =

(

C⊥)T
and

(

C T
)⊥

=
(

C⊥)
T

.

• If t < min{d,d⊥}, then the codes CT and C T have dimension k− t and k, respectively.

The shortening and puncturing techniques are two important approaches to constructing new linear

codes. Very recently, Tang et al. obtained some ternary linear codes with few weights by shortening and

puncturing a class of ternary codes in [37]. Afterwards, they presented a general theory for punctured

and shortened codes of linear codes supporting t-designs and generalized the Assmus-Mattson theorem in

[38]. Liu et al. studied some shortened linear codes over finite fields in [32]. However, till now not much

work about shortened codes has been done and it is in general hard to determine the weight distributions

of shortened codes. Motivated by these facts, we investigate some shortened codes of linear codes from

almost perfect nonlinear (APN) and perfect nonlinear (PN) functions, and determine their parameters in

this paper. Many of these shortened codes are optimal or almost optimal.

The rest of this paper is arranged as follows. Section II introduces some notation and results related to

group characters, Gauss sums, t-designs and linear codes from APN and PN functions. Section III gives

some general results about shortened codes. Section IV investigates some shortened codes of binary linear

codes from APN functions. Section V studies some shortened codes of two classes of special linear codes

from PN functions. Section VI concludes this paper and makes concluding remarks.

II. PRELIMINARIES

In this section, we briefly recall some results on group characters, Gauss sums, t-designs, and linear

codes from APN and PN functions. These results will be used later in this paper. We begin this section

by fixing some notation throughout this paper.

• p is a prime and p∗ = (−1)(p−1)/2 p for odd prime p.

• ζp = e
2π

√
−1

p is the primitive p-th root of unity.

• q is a power of p.

• GF(q)∗ = GF(q)\{0}.

• Trq/p is the trace function from GF(q) to GF(p).
• SQ and NSQ denote the set of all squares and nonsquares in GF(p)∗, respectively.

• η and η̄ are the quadratic characters of GF(q)∗ and GF(p)∗, repsectively. We extend these quadratic

characters by letting η(0) = 0 and η̄(0) = 0.

A. Group characters and Gauss sums

An additive character of GF(q) is a nonzero function χ from GF(q) to the set of nonzero complex

numbers such that χ(x+ y) = χ(x)χ(y) for any pair (x,y) ∈ GF(q)2. For each b ∈ GF(q), the function

χb(x) = ζ
Trq/p(bx)
p (2)

defines an additive character of GF(q). When b = 0, χ0(x) = 1 for all x ∈ GF(q), and χ0 is called the

trivial additive character of GF(q). The character χ1 in (2) is called the canonical additive character
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of GF(q). It is well known that every additive character of GF(q) can be written as χb(x) = χ1(bx) [31,

Theorem 5.7]. The orthogonality relation of additive characters is given by

∑
x∈GF(q)

χ1(ax) =

{

q for a = 0,
0 for a ∈ GF(q)∗.

The Gauss sum G(η,χ1) over GF(q) is defined by

G(η,χ1) = ∑
x∈GF(q)∗

η(x)χ1(x) = ∑
x∈GF(q)

η(x)χ1(x) (3)

and the Gauss sum G(η̄, χ̄1) over GF(p) is defined by

G(η̄, χ̄1) = ∑
x∈GF(p)∗

η̄(x)χ̄1(x) = ∑
x∈GF(p)

η̄(x)χ̄1(x), (4)

where χ̄1 is the canonical additive character of GF(p).
The following four lemmas are proved in [31, Theorems 5.15, 5.33, Corollary 5.35] and [16, Lemma

7], respectively.

Lemma 2. [31] Let q = pm and p be an odd prime. Then

G(η,χ1) = (−1)m−1(
√
−1)(

p−1
2 )2m√q

=

{

(−1)m−1√q for p ≡ 1 (mod 4),
(−1)m−1(

√
−1)m√q for p ≡ 3 (mod 4).

and

G(η̄, χ̄1) =
√
−1

( p−1
2 )2√

p =
√

p∗.
Lemma 3. [31] Let χ be a nontrivial additive character of GF(q) with q odd, and let f (x) = a2x2+a1x+
a0 ∈ GF(q)[x] with a2 6= 0. Then

∑
x∈GF(q)

χ( f (x)) = χ(a0−a2
1(4a2)

−1)η(a2)G(η,χ).

Lemma 4. [31] Let χb be a nontrivial additive character of GF(q) with q even and f (x)= a2x2+a1x+a0 ∈
GF(q)[x], where b ∈ GF(q)∗. Then

∑
x∈GF(q)

χb( f (x)) =

{

χb(a0)q if a2 = ba2
1,

0 otherwise.

Lemma 5. [16] Let p be an odd prime. If m ≥ 2 is even, then η(x) = 1 for each x ∈ GF(p)∗. If m ≥ 1 is

odd, then η(x) = η̄(x) for each x ∈ GF(p).

Let e be a positive integer and (a,b) ∈ GF(q)2, define the exponential sum

Se(a,b) = ∑
x∈GF(q)

χ1

(

axpe+1 +bx
)

. (5)

Then we have the following five known results.

Lemma 6. [12] Let e be a positive integer and m be even with gcd(m,e) = 1. Let p = 2, q = 2m and

a ∈ GF(q)∗. Then

Se(a,0) =

{

(−1)
m
2 2

m
2 if a 6= α3t for any t,

−(−1)
m
2 2

m
2 +1 if a = α3t for some t,

where α is a generator of GF(q)∗.
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Lemma 7. [8] Let e,h be positive integers and m be even with gcd(m,e) = 1. Let p = 2, q = 2m and

a ∈ GF(q)∗. Then

∑
b∈GF(q)∗

(Se(a,b))
h =

{

(2m −1)2
m
2 ·h if h is even and a 6= α3t for any t,

(2m−2 −1)2(
m
2 +1)·h if h is even and a = α3t for some t,

where α is a generator of GF(q)∗.

Lemma 8. [9] Let p be an odd prime, q = pm, and e be any positive integer such that m/gcd(m,e) is

odd. Suppose a ∈ GF(q)∗ and b ∈ GF(q)∗. Let xa,b be the unique solution of the equation

ape

xp2e

+ax+bpe

= 0.

Then

Se(a,b) =

{

(−1)m−1√qη(−a)χ1(−ax
pe+1
a,b ), if p ≡ 1 mod 4,

(−1)m−1
√
−1

3m√
qη(−a)χ1(−ax

pe+1
a,b ), if p ≡ 3 mod 4.

Lemma 9. [44] Let the notation and assumptions be the same as those in the previous lemma. Write

∆ = ∑c∈GF(p)∗ Se( ac, bc). Then we have the following results.

• If m is odd, then

∆ =











0, if Trq/p(a(xa,b)
pe+1) = 0,

η(a)η(Trq/p(a(xa,b)
pe+1))

√
q
√

p∗, if p ≡ 1 mod 4 and Trq/p(a(xa,b)
pe+1) 6= 0 ,

η(a)η(Trq/p(a(xa,b)
pe+1))

√
−1

3m√
q
√

p∗, if p ≡ 3 mod 4 and Trq/p(a(xa,b)
pe+1) 6= 0 .

• If m is even, then

∆ =















−(p−1)η(a)
√

q, if p ≡ 1 mod 4 and Trq/p(a(xa,b)
pe+1) = 0,

η(a)
√

q, if p ≡ 1 mod 4 and Trq/p(a(xa,b)
pe+1) 6= 0,

−
√
−1

m
(p−1)η(a)

√
q, if p ≡ 3 mod 4 and Trq/p(a(xa,b)

pe+1) = 0,√
−1

m
η(a)

√
q, if p ≡ 3 mod 4 and Trq/p(a(xa,b)

pe+1) 6= 0.

Lemma 10. [44] Let p be an odd prime, m and e be positive integers such that m/gcd(m,e) is odd. Let

q = pm. Define

N̂0(a,b) = ♯{x ∈ GF(q) : Trq/p(axpe+1 +bx) = 0}.
Then we have the following results.

• If a = 0 and b = 0, then N̂0(a,b) = q.

• If a = 0 and b 6= 0, then N̂0(a,b) = pm−1.

• If a 6= 0 and b = 0, then

N̂0(a,b) =











pm−1 if m is odd,
1
p

(

q− (p−1)η(a)
√

q
)

, if m is even and p ≡ 1 mod 4,
1
p

(

q−
√
−1

m
(p−1)η(a)

√
q
)

, if m is even and p ≡ 3 mod 4.

• If a 6= 0 and b 6= 0, then N̂0(a,b) =
1
p
(q+∆), where ∆ was given in Lemma 9.
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B. Combinatorial t-designs and related results

Let k, t and v be positive integers with 1 ≤ t ≤ k ≤ v. Let P be a set of v ≥ 1 elements, and let B
be a set of k-subsets of P . The incidence structure D = (P ,B) is said to be a t-(v,k,λ) design if every

t-subset of P is contained in exactly λ elements of B . The elements of P are called points, and those of

B are referred to as blocks. We usually use b to denote the number of blocks in B . A t-design is called

simple if B has no repeated blocks. A t-design is called symmetric if v = b and trivial if k = t or k = v.

When t ≥ 2 and λ = 1, a t-design is called a Steiner system and traditionally denoted by S(t,k,v).
Linear codes and t-designs are companions. A t-design D= (P ,B) induces a linear code over GF(p)

for any prime p. Let P = {p1, . . . , pν}. For any block B ∈ B , the characteristic vector of B is defined by

the vector cB = (c1, . . . ,cν) ∈ {0,1}ν, where

ci =

{

1, if pi ∈ B,
0, if pi 6∈ B.

For a prime p, a linear code Cp(D) over the prime field GF(p) from the design D is spanned by the

characteristic vectors of the blocks of B, which is the subspace Span{cB : B ∈ B} of the vector space

GF(p)ν. Linear codes Cp(D) from designs D have been studied and documented in the literature (see, for

example, [1], [17], [41], [42]).

On the other hand, a linear code C may induce a t-design under certain conditions, which is formed by

supports of codewords of a fixed Hamming weight in C . Let P (C ) be the set of the coordinate positions

of C , where #P (C ) = v is the length of C . For a codeword c = (ci)i∈P (C ) in C , the support of c is defined

by

Supp(c) = {i : ci 6= 0, i ∈ P (C )}.
Let Bw(C ) = {Supp(c) : wt(c) = w and c ∈ C}. For some special C , (P (C ),Bw(C )) is a t-design. In this

way, many t-designs are derived from linear codes (see, for example, [1], [18], [19], [20], [25], [26],

[29], [36], [41], [42]). A major approach to constructing t-designs from linear codes is the use of linear

codes with t-homogeneous or t-transitive automorphism groups (see [14, Theorem 4.18]). Another major

approach to constructing t-designs from codes is the use of the Assmus-Mattson Theorem [3], [28]. The

following Assmus-Mattson Theorem for constructing simple t-designs was developed in [2].

Theorem 11. Let C be a linear code over GF(q) with length ν and minimum weight d. Let d⊥ denote

the minimum weight of the dual code C⊥ of C . Let t (1 ≤ t < min{d,d⊥}) be an integer such that there

are at most d⊥− t weights of C in the range {1,2, . . . ,ν− t}. Then the following hold:

• (P (C ),Bk(C )) is a simple t-design provided that Ak 6= 0 and d ≤ k ≤ w, where w is defined to be

the largest integer satisfying w ≤ ν and

w−
⌊

w+q−2

q−1

⌋

< d.

• (P (C⊥),Bk(C
⊥)) is a simple t-design provided that A⊥

k 6= 0 and d⊥ ≤ k ≤ w⊥, where w⊥ is defined

to be the largest integer satisfying w⊥ ≤ ν and

w⊥−
⌊

w⊥+q−2

q−1

⌋

< d⊥.

We will need the following results about the punctured and shortened codes of C documented in [38,

Lemma 3.1,Theorem 3.2] .

Lemma 12. [38] Let C be a linear code of length ν and minimum distance d over GF(q) and d⊥ the

minimum distance of C⊥. Let t and k be two positive integers with 0 < t < min{d,d⊥} and 1 ≤ k ≤ ν− t.
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Let T be a set of t coordinate positions in C . Suppose that (P (C ),Bi(C )) is a t-design for all i with

k ≤ i ≤ k+ t. Then

Ak(C
T ) =

t

∑
i=0

(ν−t
k

)(

k+i
t

)(

t
i

)

( ν−t
k−t+i

)(ν
t

) Ak+i(C ).

Theorem 13. [38] Let C be a [ν, k̄,d] linear code over GF(q) and d⊥ be the minimum distance of C⊥.

Let t be a positive integer with 0 < t < min{d,d⊥}. Let T be a set of t coordinate positions in C . Suppose

that (P (C ),Bi(C )) is a t-design for any i with d ≤ i ≤ ν− t. Then the shortened code CT is a linear

code of length ν− t and dimension k̄− t. The weight distribution (Ak(CT ))
ν−t
k=0 of CT is independent of the

specific choice of the elements in T . Specifically,

Ak(CT ) =

(

k
t

)(ν−t
k

)

(ν
t

)(ν−t
k−t

)Ak(C ).

C. Linear codes from APN and PN functions

Let m, m̃ be two positive integers with m ≥ m̃ and F be a mapping from GF(pm) to GF(pm̃). Define

δF = max{δF(a,b) : a ∈ GF(pm)∗,b ∈ GF(pm̃)},
where δF(a,b) = #{x ∈ GF(pm) : F(x+a)−F(x) = b}, a ∈ GF(pm) and b ∈ GF(pm̃). The function F(x)
is called PN function if δF = pm−m̃, and it is called APN function if m = m̃ and δF = 2. From the above

definition one immediately sees that F(x) is PN if and only if F(x + a)−F(x) is balanced for each

a ∈ GF(pm)∗. Currently, all known PN and APN functions over GF(pm) are summarized in [4], [6], [7],

[10], [11], [13], [14], [22], [45]. It is known that PN and APN functions are very important functions for

constructing linear codes with good parameters (see, for example, [5], [34], [43], [44]).

Let q = pm and let C denote the linear code of length q defined by

C =
{

(

Trq/p(a f (x)+bx+ c)
)

x∈GF(q)
: a,b,c ∈ GF(q)

}

, (6)

where f (x) is a polynomial over GF(q). Then we can regard GF(q) as the set of the coordinate positions

P (C ) of C . It is known that C has dimension 2m+1 and the weight distribution in Table I when p = 2,

m ≥ 5 is odd and f (x) = xs is an APN function, where s takes the following values [14].

• s = 2e +1, where gcd(e,m) = 1 and e is a positive integer.

• s = 22e −2e +1, where e is a positive integer and gcd(e,m) = 1.

• s = 2(m−1)/2 +3.

• s = 2(m−1)/2 +2(m−1)/4 −1, where m ≡ 1 ( mod 4 ).
• s = 2(m−1)/2 +2(3m−1)/4 −1, where m ≡ 3 ( mod 4 ).

When f (x) = x2e+1, p= 2 and m≥ 4 is even with gcd(e,m)= 1, the code C defined in (6) has dimension

2m+1 and the weight distribution in Table II [14].

TABLE I

THE WEIGHT DISTRIBUTION OF C FOR m ODD

Weight Multiplicity

0 1

2m−1 −2(m−1)/2 (2m −1)2m−1

2m−1 (2m −1)(2m+1 −2m +2)

2m−1 +2(m−1)/2 (2m −1)2m−1

2m 1

It is known that the code C defined in (6) has dimension 2m+1 and a few weights when p is an odd

prime and f (x) = xs is a PN function. If s takes the following values [14], [30]
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TABLE II

THE WEIGHT DISTRIBUTION OF C FOR m EVEN

Weight Multiplicity

0 1

2m−1 −2m/2 (2m −1)2m−2/3

2m−1 −2(m−2)/2 (2m −1)2m+1/3

2m−1 2(2m −1)(2m−2 +1)

2m−1 +2(m−2)/2 (2m −1)2m+1/3

2m−1 +2m/2 (2m −1)2m−2/3

2m 1

• s = 2,

• s = pe +1, where m/gcd(m,e) is odd,

• s = (3e +1)/2, where p = 3, e is odd and gcd(m,e) = 1,

then f (x) = xs is a PN and also planar function, Trq/p(β f (x))) is a weakly regular bent function [23],

[27] for any β ∈ GF(q)∗ , and the code C defined in (6) has four or six weights [30].

Let f (x) be a function from GF(q) to GF(p), the Walsh transform of f at a point β ∈ GF(q) is defined

by

W f (β) = ∑
x∈GF(q)

ζ
f (x)−Trq/p(βx)
p .

The function f (x) is said to be a p-ary bent function, if |W f (β)|= p
m
2 for any β ∈ Fq. A bent function

f (x) is weakly regular if there exists a complex u with unit magnitude satisfying W f (β) = up
m
2 ζ

f ∗(β)
p for

some function f ∗(x). Such function f ∗(x) is called the dual of f (x). A weakly regular bent function f (x)
satisfies

W f (β) = ε
√

p∗
m

ζ
f ∗(β)
p ,

where ε = ±1 is called the sign of the Walsh Transform of f (x). Let R F be the set of p-ary weakly

regular bent functions with the following two properties:

• f (0) = 0; and

• f (ax) = ah f (x) for any a ∈ GF(p)∗ and x ∈ GF(q), where h is a positive even integer with gcd(h−
1, p−1) = 1.

We will need the following results about p-ary weakly regular bent functions in [39].

Lemma 14. [39] Let β ∈ GF(q)∗ and f (x) ∈ R F with W f (0) = ε
√

p∗m
. Define

N f ,β = #{x ∈ GF(q) : f (x) = 0 and Trq/p(βx) = 0}.
If f ∗(β) = 0, then

N f ,β =

{

pm−2 + εη̄m/2(−1)(p−1)p(m−2)/2, if m is even;

pm−2, if m is odd.

Lemma 15. [39] Let β ∈ GF(q)∗ and f (x) ∈ R F with W f (0) = ε
√

p∗m
. Let

Nsq,β = #{x ∈ GF(q) : f (x) ∈ SQ and Trq/p(βx) = 0},
and

Nnsq,β = #{x ∈ GF(q) : f (x) ∈ NSQ and Trq/p(βx) = 0}.
We have the following results.

• If m is even and f ∗(β) = 0, then

Nsq,β = Nnsq,β =
p−1

2

(

pm−2 − εη̄m/2(−1)p(m−2)/2
)

.
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• If m is odd and f ∗(β) = 0, then

Nsq,β =
p−1

2

(

pm−2 + ε
√

p∗m−1
)

and

Nnsq,β =
p−1

2

(

pm−2 − ε
√

p∗m−1
)

.

III. SHORTENED BINARY LINEAR CODES WITH SPECIAL WEIGHT DISTRIBUTIONS

In this section, we give some general results on the shortened codes of linear codes with the weight

distributions in Tables I and II.

Let T be a set of t coordinate positions in C (i.e., T is a t-subset of P (C )). Define

ΛT,w(C ) = {Supp(c) : c ∈ C , wt(c) = w, and T ⊆ Supp(c)}.
and λT,w(C ) = #ΛT,w(C ).

We will consider some shortened code CT of C for the case m ≥ 4 and t ≥ 1 .

A. Shortened linear codes holding t-designs

Let p = 2 and q = 2m. Notice that if a binary code C has length 2m and the weight distribution in

Table I (resp. Table II), then the code C holds 3-designs (resp. 2-designs) ([14], [21]). The following two

theorems are easily derived from Theorem 13, Tables I and II, and we omit their proofs.

Theorem 16. Let m ≥ 5 be odd, and C be a binary linear code with length 2m and the weight distribution

in Table I. Let T be a t-subset of P (C ). We have the following results.

• If t = 1, then the shortened code CT is a [2m −1,2m,2m−1 −2(m−1)/2] binary linear code with the

weight distribution in Table III.

• If t = 2, then the shortened code CT is a [2m −2,2m−1,2m−1 −2(m−1)/2] binary linear code with

the weight distribution in Table IV.

• If t = 3, then the shortened code CT is a [2m −3,2m−2,2m−1 −2(m−1)/2] binary linear code with

the weight distribution in Table V.

TABLE III

THE WEIGHT DISTRIBUTION OF CT FOR m ODD AND t = 1

Weight Multiplicity

0 1

2m−1 −2(m−1)/2 2(m−5)/2(2m −1)(2+2(1+m)/2)

2m−1 −1+2m−1 +22m−1

2m−1 +2(m−1)/2 2(m−5)/2(2m −1)(−2+2(1+m)/2)

Example 17. Let m = 5 and T be a 1-subset of P (C ). Then the shortened code CT in Theorem 16 is a

[31,10,12] binary linear code with the weight enumerator 1+310z12 +527z16 +186z20. The code CT is

optimal. The dual code of CT has parameters [31,21,5] and is optimal according to the tables of best

known codes maintained at http://www.codetables.de.

Example 18. Let m = 5 and T be a 2-subset of P (C ). Then the shortened code CT in Theorem 16 is a

[30,9,12] linear code with the weight enumerator 1+190z12 +255z16 +66z20. The code CT is optimal.

The dual code of CT has parameters [30,21,4] and is optimal according to the tables of best known codes

maintained at http://www.codetables.de.

http://www.codetables.de
http://www.codetables.de
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TABLE IV

THE WEIGHT DISTRIBUTION OF CT FOR m ODD AND t = 2

Weight Multiplicity

0 1

2m−1 −2(m−1)/2 2(m−7)/2(−4+22+m +2(1+3m)/2)

2m−1 −1+22m−2

2m−1 +2(m−1)/2 2(m−7)/2(4−22+m +2(1+3m)/2)

TABLE V

THE WEIGHT DISTRIBUTION OF CT FOR m ODD AND t = 3

Weight Multiplicity

0 1

2m−1 −2(m−1)/2 −2(m−3)/2 +3 ·2(3m−7)/2 +2m−3 +22m−4

2m−1 (−1+2m−2)(1+2m−1)

2m−1 +2(m−1)/2 2(m−3)/2 −3 ·2(3m−7)/2 +2m−3 +22m−4

Example 19. Let m = 5 and T be a 3-subset of P (C ). Then the shortened code CT in Theorem 16 is

a [29,8,12] binary linear code with the weight enumerator 1+114z12 +119z16 +22z20. The code CT is

optimal. The dual code of CT has parameters [29,21,3] and is almost optimal according to the tables of

best known codes maintained at http://www.codetables.de.

Theorem 20. Let m≥ 4 be even, and C be a binary linear code with length 2m and the weight distribution

in Table II. Let T be a t-subset of P (C ). We have the following results.

• If t = 1, then the shortened code CT is a [2m−1,2m,2m−1−2m/2] binary linear code with the weight

distribution in Table VI.

• If t = 2, then the shortened code CT is a [2m −2,2m−1,2m−1 −2m/2] binary linear code with the

weight distribution in Table VII.

TABLE VI

THE WEIGHT DISTRIBUTION OF CT FOR m EVEN AND t = 1

Weight Multiplicity

0 1

2m−1 −2m/2 1/3 ·2−3+m/2(2+2m/2)(−1+2m)

2m−1 −2(m−2)/2 1/3 ·2m/2(−1+2m/2)(1+2m/2)2

2m−1 (2m −1)(1+2m−2)

2m−1 +2(m−2)/2 1/3 ·2m/2(−1+2m/2)2(1+2m/2)

2m−1 +2m/2 1/3 ·2−3+m/2(−2+2m/2)(−1+2m)

Example 21. Let m = 4 and T be a 1-subset of P (C ). Then the shortened code CT in Theorem 20 is a

[15,8,4] linear code with the weight enumerator 1+15z4 +100z6 +75z8 +60z10 +5z12. This code CT is

optimal. Its dual C⊥
T has parameters [15,7,5] and is optimal according to the tables of best known codes

maintained at http://www.codetables.de.

http://www.codetables.de
http://www.codetables.de
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TABLE VII

THE WEIGHT DISTRIBUTION OF CT FOR t = 2 AND m EVEN

Weight Multiplicity

0 1

2m−1 −2m/2 1/3 ·2m/2−4(2+2m/2)(2m +21+m/2 −2)

2m−1 −2(m−2)/2 1/3 ·2m/2−1(1+2m/2)(2m +2m/2 −2)

2m−1 (2m−1 −1)(1+2m−2)

2m−1 +2(m−2)/2 1/3 ·2m/2−1(−1+2m/2)(2m −2m/2 −2)

2m−1 +2m/2 1/3 ·2m/2−4(4+21+m/2 +23m/2 −22+m)

Example 22. Let m = 4 and T be a 2-subset of P (C ). Then the shortened code CT in Theorem 20 is a

[14,7,4] binary linear code with the weight enumerator 1+11z4 +60z6 +35z8 +20z10 + z12. This code

CT is optimal. Its dual C⊥
T has parameters [14,7,4] and is optimal according to the tables of best known

codes maintained at http://www.codetables.de.

B. Several general results on shortened codes

Lemma 23. Let m ≥ 5 be odd (resp., m ≥ 4 be even), and C be a binary linear code with the length

2m and the weight distribution in Table I (resp., Table II). Then the dual code C⊥ of C has parameters

[2m,2m−2m−1,6].

Proof. The weight distribution in Table I (or II) means that the dimension of C is 2m+1. Thus, the dual

code C⊥ of C has dimension 2m−2m−1. Since the code length of C is 2m, from the weight distribution

in Table I (or II) and the first seven Pless power moments in (1), it is easily obtain that A6(C
⊥)> 0 and

Ai(C
⊥) = 0 for any i ∈ {1,2,3,4,5}. The desired conclusions then follow .

Theorem 24. Let m ≥ 4, and C be a binary linear code with length 2m and the weight distribution in

Table I for odd m and Table II for even m. Let T be a 4-subset of P (C ) and λT,6(C
⊥) = λ, then λ = 0

or 1. Furthermore, we have the following results.

(I) If m ≥ 5 is odd and λ = 0, then the shortened code CT is a [2m−4,2m−3,2m−1−2(m−1)/2] binary

linear code with the weight distribution in Table VIII.

(II) If m ≥ 5 is odd and λ = 1, then the shortened code CT is a [2m−4,2m−3,2m−1−2(m−1)/2] binary

linear code with the weight distribution in Table IX.

TABLE VIII

THE WEIGHT DISTRIBUTION OF CT FOR λ = 0

Weight Multiplicity

0 1

2m−1 −2(m−1)/2 −2(m−3)/2 +2m−3 +22m−5 +2(3m−5)/2

2m−1 −1−2m−2 +4m−2

2m−1 +2(m−1)/2 2(m−3)/2 +2m−3 +22m−5 −2(3m−5)/2

Proof. By the definition of ΛT,6(C
⊥), we have

λ = λT,6(C
⊥) = #

{

Supp(c) : c ∈ C⊥, wt(c) = 6 and T ⊆ Supp(c)
}

.

http://www.codetables.de
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TABLE IX

THE WEIGHT DISTRIBUTION OF CT FOR λ = 1

Weight Multiplicity

0 1

2m−1 −2(m−1)/2 3×2m−4 −2(−3+m)/2 +2−5+2m +2(−5+3m)/2

2m−1 2−4(−8+2m)(2+2m)

2m−1 +2(m−1)/2 3×2m−4 +2(−3+m)/2 +2−5+2m −2(−5+3m)/2

If λ≥ 2, there would be Supp(c1),Supp(c2)∈ΛT,6(C
⊥). Then c1+c2 ∈C⊥ and the weight wt(c1+c2)≤ 4.

This is a contradiction to the minimum distance 6 of C⊥ in Lemma 23. Thus, λ = 0 or 1.

We treat the weight distribution of CT according to the value of λ as follows.

(I) The case that λ = 0 and m is odd.

By Lemma 23, the minimum distance of C⊥ is 6. Thus,

A1

(

(

C⊥
)T
)

= A2

(

(

C⊥
)T
)

= 0, A1

(

(CT )
⊥
)

= A2

(

(CT )
⊥
)

= 0 (7)

and the shortened code CT has length n= 2m−4 and dimension k = 2m−3 from λT,6(C
⊥)= 0 and Lemma

1. By definition and Lemma 23, we have Ai (CT ) = 0 for i 6∈ {0, i1, i2, i3}, where i1 = 2m−1 − 2(m−1)/2,

i2 = 2m−1 and i3 = 2m−1 +2(m−1)/2. Therefore, from (7) and (1), the first three Pless power moments






Ai1 +Ai2 +Ai3 = 22m−3 −1,
i1Ai1 + i2Ai2 + i3Ai3 = 22m−3−1(2m −4),
i21Ai1 + i22Ai2 + i23Ai3 = 22m−3−2(2m −4)(2m−4+1).

yield the weight distribution in Table VIII. This completes the proof of (I).

(II) The case that λ = 1 and m is odd.

The proof is similar to that of (I). Since λT,6(C
⊥) = 1 and the minimum distance of C⊥ is 6, from

Lemma 1 we have

A1

(

(

C⊥
)T
)

= 0, A2

(

(

C⊥
)T
)

= 1,

A1

(

(CT )
⊥
)

= 0, A2

(

(CT )
⊥
)

= 1. (8)

Then the desired conclusions follow from (8), the definitions and the first three Pless power moments of

(1). This completes the proof.

Lemma 25. Let m ≥ 4 be even, and C be a binary linear code with length 2m and the weight distribution

in Table II. Let T be a 3-subset of P (C ). Suppose λT,6(C
⊥) = λ, then A1

(

(

C⊥)T
)

= A2

(

(

C⊥)T
)

= 0,

A3

(

(

C⊥)T
)

= λ and A4

(

(

C⊥)T
)

= 2 · (2m−2−1)2 −3λ.

Proof. By Lemma 23, the minimum distance of C⊥ is 6. Thus, from #T = 3 and the definition of λT,6(C
⊥),

we have A1

(

(

C⊥)T
)

= A2

(

(

C⊥)T
)

= 0 and A3

(

(

C⊥)T
)

= λ. Note that the code C has length 2m and

dimension 2m+1. By Lemma 23, Table II and the first seven Pless power moments of (1), we have

A6(C
⊥) =

1

45
·2m−4(2m −4)2(2m−1).

Further, from Theorem 11, Lemmas 12 and 23, we conclude deduce that (P (C⊥),B6(C
⊥)) is a 2-design

and

A4

(

(

C⊥
){t1,t2}

)

=

(

6
2

)

(

q
2

) ·A6(C
⊥) =

2

3
· (2m−2−1)2
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for any {t1, t2} ⊆ P (C ). Let T = {t1, t2, t3}. Since #T = 3 and the minimum distance of C⊥ is 6, an easy

computation shows that

A4

(

(

C⊥)T
)

= ∑1≤i< j≤3

(

A4

(

(

C⊥){ti,t j}
)

−λT,6(C
⊥)
)

=
(

3
2

)

(

A4

(

(

C⊥){t1,t2}
)

−λ
)

.

Then the desired conclusions follow.

Theorem 26. Let m≥ 4 be even, and C be a binary linear code with length 2m and the weight distribution

in Table II. Let T be a 3-subset of P (C ). Suppose λT,6(C
⊥) = λ, then the shortened code CT is a

[2m−3,2m−2,2m−1 −2m/2] binary linear code with the weight distribution in Table X.

Proof. The proof is similar to that of Theorem 24. From Lemma 1 and #T = 3, the shortened code CT

has length n = 2m −3 and dimension k = 2m−2. By definition and the weight distribution in Table II,

we have Ai (CT ) = 0 for i 6∈ {0, i1, i2, i3, i4, i5}, where i1 = 2m−1 −2m/2, i2 = 2m−1 −2(m−2)/2 , i3 = 2m−1,

i4 = 2m−1 + 2(m−2)/2 and i5 = 2m−1 + 2m/2. Moreover, from Lemmas 1 and 25 we have A1

(

(CT )
⊥
)

=

A2

(

(CT )
⊥
)

= 0, A3

(

(CT )
⊥
)

= λ and A4

(

(CT )
⊥
)

= 2 · (2m−2 −1)2 −3λ. Therefore, the first five Pless

power moments of (1) yield the weight distribution in Table X. This completes the proof.

TABLE X

THE WEIGHT DISTRIBUTION OF CT FOR λT,6(C
⊥) = λ

Weight Multiplicity

0 1

2m−1 −2m/2 1/3 ·2m/2−5(8+23+m/2 +23m/2 +22+m +12λ)

2m−1 −2(m−2)/2 1/3 ·2m/2−3((2+2m/2)(−8+3 ·2m/2 +21+m)−6λ)

2m−1 −1+4m−2

2m−1 +2(m−2)/2 1/3 ·2m/2−3((−2+2m/2)(−8−3 ·2m/2 +21+m)+6λ)

2m−1 +2m/2 1/3 ·2m/2−5(−8+23+m/2 +23m/2 −22+m −12λ)

IV. SHORTENED LINEAR CODES FROM APN FUNCTIONS

Let p = 2 and q = 2m. In this section, we study some shortened codes CT of linear codes C defined

by (6) and determine their parameters for the case that f (x) is an APN monomial function x2e+1. It is

known that C has the weight distribution in Tables I (resp. Tables II) when m is odd (resp. m is even).

Let T be a t-subset of P (C ) := GF(q). We will consider some shortened codes CT of C for the cases

t = 3 or 4.

A. Some shortened codes for the case t = 4 and m odd

We notice that it is difficult to determine the value of λT,6(C
⊥) in Theorem 24 for general APN function

f . We will determine λT,6(C
⊥) for APN function f (x) = x2e+1. To this end, the following lemma will be

needed.
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Lemma 27. Let e and m ≥ 4 be positive integers with gcd(m,e) = 1. Let q = 2m and {x1,x2,x3,x4} a

4-subset of GF(q). Denote Si = xi
1 +xi

2 +xi
3 +xi

4. Let N be the number of solutions (x,y) ∈ GF(q)2 of the

system of equations










x + y = S1,

x2e+1 + y2e+1 = S2e+1,

#{x1,x2,x3,x4,x,y} = 6.

(9)

Then N = 2 if S1 6= 0 and Trq/2

(

S2e+1

S2e+1
1

+1

)

= 0 , and N = 0 otherwise.

Proof. Let us denote by C the linear code from f (x) = x2e+1 given in (6). By Lemma 23, the minimum

weight of the dual code C⊥ is equal to 6. Consequently, (9) is equivalent to the following system of

equation
{

x + y = S1,

x2e+1 + y2e+1 = S2e+1.
(10)

Substituting y = x+S1 into the second equation of (10) leads to

x2e+1 +(x+S1)
2e+1 +S2e+1

= x2e+1 +(x2e

+S2e

1 )(x+S1)+S2e+1

= S1x2e

+S2e

1 x+S2e+1
1 +S2e+1

= 0. (11)

We claim that S1 6= 0 if N 6= 0. On the contrary, suppose that N 6= 0 and S1 = 0. Now (11) clearly forces

S2e+1 = 0. It follows that the four coordinate positions x1,x2,x3,x4 give rise to a codeword of weight 4

of C⊥. This contradicts the fact that the minimum weight of C⊥ equals 6. Therefore S1 6= 0 if N 6= 0. In

particular, N = 0 if S1 = 0.

When S1 6= 0, Equation (11) is equivalent to

S1x2e
+S2e

1 · x+S2e+1
1 +S2e+1

S2e+1
1

=

(

x

S1

)2e

+
x

S1
+1+

S2e+1

S2e+1
1

= 0. (12)

If S1 6= 0 and Trq/2

(

S2e+1

S2e+1
1

+1

)

6= 0, it may be concluded that there is no solution in GF(q) to Equation

(12). Thus N = 0.

If S1 6= 0 and Trq/2

(

S2e+1

S2e+1
1

+1

)

= 0, we see that Equation (12) has exactly two different solutions

x,x+S1 ∈ GF(q) from gcd(m,e) = 1. This means that Equation (10) has exactly two different solutions

(x,x+S1) and (x+S1,x) in GF(q)2. Therefore N = 2. This completes the proof.

Lemma 28. Let e and m ≥ 4 be positive integers with gcd(m,e) = 1. Let q = 2m, f (x) = x2e+1 and C
be defined in (6). Let T = {x1,x2,x3,x4} be a 4-subset of P (C ) . Then λT,6(C

⊥) = 1 if ∑4
i=1 xi 6= 0 and

Trq/2

(

∑4
i=1 x2e+1

i /(∑4
i=1 xi)

2e+1 +1
)

= 0, and λT,6(C
⊥) = 0 otherwise.

Proof. By definition, the dual code C⊥ of C has minimum distance 6. By definition we have λT,6(C
⊥)= N

2!
,

where N was defined in Lemma 27. Then the desired conclusions follow from Lemma 27.

By Theorem 24 and Lemma 28, we have the following theorem, which is one of the main results in

this paper.
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Theorem 29. Let m ≥ 5 be odd and e be a positive integer with gcd(m,e) = 1. Let q = 2m, f (x) = x2e+1

and C be defined in (6). Let T = {x1,x2,x3,x4} be a 4-subset of P (C ) . Then CT has the weight distribution

of Table VIII if ∑4
i=1 xi 6= 0 and Trq/2

(

∑4
i=1 x2e+1

i /(∑4
i=1 xi)

2e+1
)

= 1, and Table IX otherwise.

Example 30. Let m = 5, q = 25 and α be a primitive element of GF(q) with minimum polynomial

α5 +α2 + 1 = 0. Let e = 1 and T = {α1,α2,α4,α5}. Then γ = α17, Trq/2

(

γ̄
γ3

)

= 0 and λT,6(C
⊥) = 0,

where γ = α1 +α2 +α4 +α5 and γ̄ = α3 +α6 +α12 +α15. The shortened code CT in Theorem 29 is a

[28,7,12] binary linear code with the weight enumerator 1+66z12+55z16+6z20. The code CT is optimal

according to the tables of best known codes maintained at http://www.codetables.de.

Example 31. Let m = 5, q = 25 and α be a primitive element of GF(q) with minimal polynomial α5 +

α2 +1 = 0. Let e = 1 and T = {α1,α2,α3,α4}. Then γ = α24, Trq/2

(

γ̄
γ3

)

= 1, and λT,6(C
⊥) = 1, where

γ = α1 +α2 +α3 +α4 and γ̄ = α3 +α6 +α9 +α12. The shortened code CT in Theorem 29 is a [28,7,12]
binary linear code with the weight enumerator 1+68z12+51z16+8z20. The code CT is optimal according

to the tables of best known codes maintained at http://www.codetables.de.

B. Some shortened codes for the case t = 3 and m even

For any T = {x1,x2,x3} ⊆ P (C ), we notice that it is difficult to determine the value of λ in Theorem

26. We will study a class of special linear codes C from the APN monomial functions x2e+1 defined by

(6). In the following, we will determine the value of λ and the parameters of the shortened code CT . We

need the result in the following lemma.

Lemma 32. Let e be a positive integer, m be even with gcd(m,e) = 1, and q = 2m. Let N̂ be the number

of solutions (x1,x2,x3) ∈ GF(q)3 of the system of equations
{

x1 + x2 + x3 = a,

x2e+1
1 + x2e+1

2 + x2e+1
3 = b,

(13)

where a,b ∈ GF(q) and a2e+1 6= b. Then N̂ = 2m +(−2)m/2 −2 if a2e+1 +b is not a cubic residue, and

N̂ = 2m +(−2)m/2+1 −2 if a2e+1 +b is a cubic residue.

Proof. Replacing x1 with x+a, x2 with y+a and x3 with z+a, we have
{

x + y + z = 0,

x2e+1 + y2e+1 + z2e+1 = a2e+1 +b.
(14)

Substituting z = x+ y into the second equation of (14) yields to

x2e

y+ y2e

x = a2e+1 +b. (15)

Thus, N̂ equals the number of solutions (x,y) ∈ GF(q)2 to Equation (15).

Since a2e+1 +b 6= 0, replacing y with xy′ in Equation (15) gives

x2e

y′+ y′2
e

x = x2e+1y′+ y′2
e

x2e+1 = x2e+1(y′+ y′2
e

) = a2e+1 +b. (16)

A rearrangement of Equation (16) yields

y′+ y′2
e

= (a2e+1 +b)x−(2e+1). (17)

Then

Tr
(

(a2e+1 +b)x−(2e+1)
)

= 0. (18)

http://www.codetables.de
http://www.codetables.de
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Further, from Lemma 6 we get

#
{

x ∈ GF(q)∗ : Tr
(

(a2e+1 +b)x−(2e+1)
)

= 0
}

= #
{

x ∈ GF(q)∗ : Tr
(

(a2e+1 +b)x(2
e+1)

)

= 0
}

=
1

2
· ∑

u∈GF(2)
∑

x∈GF(q)∗
(−1)Tr(u(a2e+1+b)x(2

e+1))

=
1

2

(

q−2+ ∑
x∈GF(q)

(−1)Tr((a2e+1+b)x(2
e+1))

)

=







1
2

(

q−2+(−1)m/22m/2
)

, if a2e+1 +b is not a cubic residue,

1
2

(

q−2− (−1)m/22m/2+1
)

, if a2e+1 +b is a cubic residue.
(19)

Since gcd(m,e) = 1, it follows easily that if Tr
(

(a2e+1 +b)x−(2e+1)
)

= 0, where x ∈ GF(q)∗, then there

exactly exist two y′ in GF(q) satisfying y′+y′2
e
= (a2e+1+b)x−(2e+1). Then the desired conclusions follow

from Equation (19).

Theorem 33. Let e be a positive integer and m ≥ 4 be even with gcd(m,e) = 1. Let q = 2m, f (x) = x2e+1

and C be defined in (6). Let T = {x1,x2,x3} be a 3-subset of P (C ). Then

λ = λT,6(C
⊥) =







1
6

(

q−2+(−1)m/22m/2
)

−1, if a2e+1 +b is not a cubic residue

1
6

(

q−2− (−1)m/22m/2+1
)

−1, if a2e+1 +b is a cubic residue,
(20)

where a = ∑3
i=1 xi and b = ∑3

i=1 x2e+1
i . Moreover, the shortened code CT is a [2m−3,2m−2,2m−1−2m/2]

binary linear code with the weight distribution in Table X.

Proof. By definition, the code C has parameters [2m,2m+1,2m−1 −2m/2] and the weight distribution in

Table II. By Lemma 23, the minimum distance of C⊥ is 6. Consider the system of equations given by
{

x + y + z = a,

x2e+1 + y2e+1 + z2e+1 = b.
(21)

Since (x1,x2,x3) must be the solution (x,y,z)∈GF(q)3 of Equation (21), by definition we have λT,6(C
⊥) =

N̂
3!
− 1, where N̂ was defined in Lemma 32. Then the desired conclusions follow from Lemma 32 and

Theorem 26.

Example 34. Let m = 4, q = 24 and α be a primitive element of GF(q) with minimal polynomial α4 +
α + 1 = 0. Let e = 1 and T = {α1,α2,α4}. Then (α1 +α2 +α4)3 + (α3 +α6 +α12) = 1, λ = 0 and

the shortened code CT in Theorem 26 is a [13,6,4] binary linear code with the weight enumerator

1+7z4 +36z6 +15z8 +4z10 + z12. This code CT is optimal. Its dual C⊥
T has parameters [13,7,4] and is

optimal according to the tables of best known codes maintained at http://www.codetables.de.

Example 35. Let m = 4, q = 24 and α be a primitive element of GF(q) with minimal polynomial α4 +
α+ 1 = 0. Let e = 1 and T = {α2,α5,α7}. Then (α2 +α5 +α7)3 +(α6 +α15 +α21) = α11, λ = 2 and

the shortened code CT in Theorem 26 is a [13,6,4] binary linear code with the weight enumerator

1+8z4+34z6+15z8+6z10. This code CT is optimal. Its dual C⊥
T has parameters [13,7,3] and is almost

optimal according to the tables of best known codes maintained at http://www.codetables.de.

http://www.codetables.de
http://www.codetables.de
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C. Some shortened codes for the case t = 4 and m even

Let T = {x1,x2,x3,x4} be a 4-subset of P (C ). Magma programs show that the weight distributions

of CT for the codes C from APN functions are very complex. Thus, it is difficult to determine their

parameters in general. In this subsection, we will study a class of special linear codes C with the weight

distribution in Table II and determine the parameters of CT for certain 4-subsets T in Theorem 38.

In order to determine the parameters of CT , we need the next two lemmas.

Lemma 36. Let m ≥ 4 be even and q = 2m. Define

R(3,i) = #
{

x ∈ GF(q)∗ : Trq/2(x) = i and x is a cubic residue
}

R̄(3,i) = #
{

x ∈ GF(q)∗ : Trq/2(x) = i and x is not a cubic residue
}

,

where i = 0 or i = 1. Then


























R(3,0) =
1
6

(

2m−2+(−2)m/2+1
)

,

R(3,1) =
2m−1

3
− 1

6

(

2m −2+(−2)m/2+1
)

,

R̄(3,0) = (2m−1 −1)− 1
6

(

2m −2+(−2)m/2+1
)

,

R̄(3,1) =
2m

3
− (−2)m/2

3
.

Proof. By definition, we get

R(3,0) =
1

3
·#{x ∈ GF(q)∗ : Trq/2(x

3) = 0}

=
1

6
∑

z∈GF(2)
∑

x∈GF(q)∗
(−1)zTrq/2(x

3)

=
1

6

(

q−2+ ∑
x∈GF(q)

(−1)Trq/2(x
3)

)

.

Then the value of R(3,0) follows from Lemma 6. Note that there are
q−1

3
cubic residues in GF(q)∗. This

gives

#{x ∈ GF(q)∗ : Trq/2(x) = 0}= q

2
−1.

Then the desired conclusions follow from










R(3,0)+ R̄(3,0) =
q
2
−1,

R(3,0)+R(3,1) =
q−1

3
,

R̄(3,0)+ R̄(3,0) =
2(q−1)

3
.

This completes the proof.

Lemma 37. Let m ≥ 4 be even, e be a positive integer with gcd(m,e) = 1, and q = 2m. Let N(0,1) be the

number of solutions (x,y,z,u) ∈ GF(q)4 of the system of equations










x +y +z +u = 0,

x2e+1 +y2e+1 +z2e+1 +u2e+1 = 1,

#{x,y,z,u} = 4.

(22)

Then N(0,1) = q
(

q−2− (−1)m/22m/2+1
)

.
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Proof. Let us first observe that (22) is equivalent to the following system of equations
{

x +y +z +u = 0,

x2e+1 +y2e+1 +z2e+1 +u2e+1 = 1.
(23)

Set S j = x j +y j + z j +u j, where x,y,z,u ∈ GF(q) and j is a positive integer. An easy computation shows

that

N(0,1) =
1

q2 ∑
a,b,x,y,z,u∈GF(q)

χ1(bS1)χ1 (a(S2e+1 −1))

=
1

q2 ∑
a,b∈GF(q)

χ1(−a)

(

∑
x∈GF(q)

χ1

(

ax2e+1 +bx
)

)4

=
1

q2



 ∑
a∈GF(q)

χ1(−a)

(

∑
x∈GF(q)

χ1

(

ax2e+1
)

)4

+

∑
a∈GF(q)∗

∑
b∈GF(q)∗

χ1(−a)

(

∑
x∈GF(q)

χ1

(

ax2e+1 +bx
)

)4




=
1

q2

(

q4 +
(

R(3,0)−R(3,1)

)

2m+4 +
(

R̄(3,0)− R̄(3,1)

)

2m+

(

R(3,0)−R(3,1)

)(

23m+2 −22m+4
)

+
(

R̄(3,0)− R̄(3,1)

)

(2m−1)22m
)

,

where R(3,0),R(3,1), R̄(3,0) and R̄(3,1) were defined in Lemma 36 and the last equality holds due to Lemmas

6 and 7. Then the desired conclusions follow from Lemma 36.

Theorem 38. Let m ≥ 4 be even and e be a positive integer with gcd(m,e) = 1. Let q = 2m, f (x) = x2e+1

and C be defined in (6). Let T = GF(4) =
{

0,1,w,w2
}

⊆ GF(q), where w is a generator of GF(4)∗. Then

the shortened code CT is a [2m −4,2m−3,2m−1 −2m/2] binary linear code with the weight distribution

in Table XI.

TABLE XI

THE WEIGHT DISTRIBUTION OF CT IN THEOREM 38

Weight Multiplicity

0 1

2m−1 −2m/2 1/3 ·2m/2−6
(

−16+23m/2 −2m+1(−4+(−1)m/2)−24+m/2(−1+(−1)m/2)
)

2m−1 −2(m−2)/2 1/24 ·
(

2m/2+2 +2m
)(

2m +(−1)m/22m/2 −2
)

2m−1 −1+22m−5 − (−1)m/223m/2−4

2m−1 +2(m−2)/2 1/24 ·
(

−2m/2+2 +2m
)(

2m +(−1)m/22m/2 −2
)

2m−1 +2m/2 1/3 ·2m/2−6
(

16+23m/2 −2m+1(4+(−1)m/2)+24+m/2(1+(−1)m/2)
)

Proof. By Lemma 23, C is a [2m,2m+1,2m−1−2m/2] binary code with the weight distribution in Table

II and the minimum distance of C⊥ is 6. Note that λT,6(C
⊥) = 0 by Lemma 28 and the definition of T .

Thus, the minimum distance of
(

C⊥)T
is at least 3. This means that

A1

(

(

C⊥
)T
)

= A2

(

(

C⊥
)T
)

= 0. (24)
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Further, from Theorem 33 and the definition of T , we have

λT̂ ,6(C
⊥) =

1

6

(

q−2− (−1)m/22m/2+1
)

−1 (25)

for any T̂ = {x̂1, x̂2, x̂3} ⊆ T . Therefore,

A3

(

(

C⊥
)T
)

=

(

4

3

)

·
(

1

6

(

q−2− (−1)
m
2 2

m
2 +1
)

−1

)

. (26)

Note that the solutions of the system (22) have symmetrical property and (x,y,z,u) = (0,1,w,w2) is a

solution of the system (22). From Lemma 37 we get

λT,8(C
⊥) =

N(0,1)

4!
−1−

(

4

3

)

·λT̂ ,6(C
⊥), (27)

where N(0,1) was defined in Lemma 37 and λT̂ ,6(C
⊥) was given in (25). By the proof of Lemma 25, we

have

A4

(

(

C⊥
){x̄1,x̄2}

)

=
2

3
· (2m−2−1)2, (28)

where {x̄1, x̄2} ⊆ T . It is obvious that for any {x̄1, x̄2} ⊆ T there exist only two 3-subsets T̄ of T such

that {x̄1, x̄2} ⊆ T̄ ⊆ T . By definition we have

A4

(

(

C⊥
)T
)

=

(

4

2

)

·
(

A4

(

(

C⊥
){0,1})

−2λT̂ ,6(C
⊥)

)

+λT,8(C
⊥), (29)

where T̂ = {0,1,w}. Combining Equations (25), (27) and (28) with Equation (29) yields

A4

(

(

C⊥
)T
)

= 4
(

2m−2 −1
)2 − 8

3

(

2m −2− (−1)m/22m/2+1
)

+
N(0,1)

24
+15. (30)

Note that the shortened code CT has length 2m−4 and dimension 2m−3 due to #T = 4 and Lemma 1.

By definition and the weight distribution in Table II, we have that Ai (CT ) = 0 for i 6∈ {0, i1, i2, i3, i4, i5},

where i1 = 2m−1 − 2m/2, i2 = 2m−1 − 2(m−2)/2 , i3 = 2m−1, i4 = 2m−1 + 2(m−2)/2 and i5 = 2m−1 + 2m/2.

Using Lemma 1 and Equations (24), (26) and (30) and applying the first five Pless power moments of

(1) yields the weight distribution in Table XI. This completes the proof.

Example 39. Let m = 4 and e = 1. Then the shortened code CT in Theorem 38 is a [12,5,4] binary

linear code with the weight enumerator 1+ 3z4 + 24z6 + 3z8 + z12. This code CT is optimal. Its dual

C⊥
T has parameters [12,7,4] and is optimal according to the tables of best known codes maintained at

http://www.codetables.de.

V. SHORTENED LINEAR CODES FROM PN FUNCTIONS

In this section, we study some shortened linear codes from certain PN functions and determine their

parameters.

Let p be odd prime and q = pm. Let f (x) = x2 and C be defined by (6). Note that we index the

coordinators of the codewords in C with the elements in GF(q). It is known that the code C is a [q,2m+1]
linear code with the the weight distribution given in [30]. Note that the code C is affine invariant, and

thus holds 2-designs. Then the following theorem is easily derived from the parameters of the codes C
in [30] and Theorem 13, and we omit its proof.

Theorem 40. Let p be an odd prime, m and t be positive integers. Let q = pm, f (x) = x2 and C be defined

in (6). Suppose T is a t-subset of P (C ) := GF(q). We have the following results.

• It t = 1, then the shortened code CT is a [pm − 1,2m] linear code with the weight distribution in

Table XII (resp., Table XIV) when m is odd (resp., even).

http://www.codetables.de
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TABLE XII

THE WEIGHT DISTRIBUTION OF CT FOR m ODD AND t = 1

Weight Multiplicity

0 1

pm−1(p−1) (pm −1)(1+ pm−1)

pm−1(p−1)− p
m−1

2 1/2 · (p−1)p(m−3)/2(pm −1)
(

p+ p(1+m)/2
)

pm−1(p−1)+ p
m−1

2 1/2 · (p−1)p(m−3)/2(pm −1)
(

−p+ p(1+m)/2
)

TABLE XIII

THE WEIGHT DISTRIBUTION OF CT FOR m ODD AND t = 2

Weight Multiplicity

0 1

pm−1(p−1) p2m−2 −1

pm−1(p−1)− p
m−1

2 (p−1)
(

−p(m−1)/2 + p2m−2 +2p(3m−3)/2
)

/2

pm−1(p−1)+ p
m−1

2 (p−1)
(

p(m−1)/2 + p2m−2 −2p(3m−3)/2
)

/2

• It t = 2, then the shortened code CT is a [pm−2,2m−1] linear code with the weight distribution in

Table XIII (resp., Table XV) when m is odd (resp., even).

Example 41. Let m = 3, p = 3 and T be a 1-subset of P (C ). Then the shortened code CT in Theorem

40 is a [26,6,15] linear code with the weight enumerator 1+312z15 +260z18 +156z21. This code CT is

optimal. Its dual C⊥
T has parameters [26,20,4] and is optimal according to the tables of best known codes

maintained at http://www.codetables.de.

Example 42. Let m = 4, p = 3 and T be a 1-subset of P (C ). Then the shortened code CT in Theorem 40

is a [80,8,48] linear code with the weight enumerator 1+1320z48 +2400z51 +80z54 +1920z57 +840z60.

This code CT is optimal. Its dual C⊥
T has parameters [80,72,4] and is optimal according to the tables of

best known codes maintained at http://www.codetables.de.

Example 43. Let m = 5, p = 3 and T be a 2-subset of P (C ). Then the shortened code CT in Theorem 40

is a [241,9,153] linear code with the weight enumerator 1+8010z153 +6560z162 +5112z171. This code

CT is optimal. Its dual C⊥
T has parameters [241,232,3] and is optimal according to the tables of best

known codes maintained at http://www.codetables.de.

Example 44. Let m = 4, p = 3 and T be a 2-subset of P (C ). Then the shortened code CT in Theorem

40 is a [79,7,48] linear code with the weight enumerator 1+528z48 +870z51 +26z54 +552z57 +210z60.

This code CT is almost optimal. Its dual C⊥
T has parameters [79,72,3] and is almost optimal according

to the tables of best known codes maintained at http://www.codetables.de.

In the following, we will consider the shortened code CT of C for the case T = GF(p). In order to

determine the parameters of CT , we need the next lemmas.

Lemma 45. [24] Let q = pm with p an odd prime. Then

♯{a ∈ GF(q)∗ : η(a) = 1 and Trq/p(a) = 0}

=







pm−1−1−(p−1)p
m−2

2 (
√
−1)

(p−1)m
2

2
, if m is even,

pm−1−1
2

, if m is odd.

http://www.codetables.de
http://www.codetables.de
http://www.codetables.de
http://www.codetables.de
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TABLE XIV

THE WEIGHT DISTRIBUTION OF CT FOR m EVEN AND t = 1

Weight Multiplicity

0 1

(p−1)
(

pm−1 − p(m−2)/2
)

pm/2−1
(

p+ pm/2 −1
)

(pm −1)/2

(p−1)pm−1 − p(m−2)/2 (p−1)pm/2−1
(

pm/2 −1
)(

1+ pm/2
)2

/2

(p−1)pm−1 pm −1

(p−1)pm−1 + p(m−2)/2 (p−1)pm/2−1
(

pm/2 −1
)2(

1+ pm/2
)

/2

(p−1)(pm−1 + p(m−2)/2) pm/2−1
(

−p+ pm/2 +1
)

(pm −1)/2

TABLE XV

THE WEIGHT DISTRIBUTION OF CT FOR m EVEN AND t = 2

Weight Multiplicity

0 1

(p−1)
(

pm−1 − p(m−2/)2
)

pm/2−2
(

pm/2 −1
)(

−1+ p+ pm/2
)(

p+ pm/2
)

/2

(p−1)pm−1 − p(m−2)/2 (p−1)pm/2−2
(

1+ pm/2
)(

−p+ pm/2 + pm
)

/2

(p−1)pm−1 pm−1 −1

(p−1)pm−1 + p(m−2)/2 (p−1)pm/2−2
(

−1+ pm/2
)(

−p− pm/2 + pm
)

/2

(p−1)
(

pm−1 + p(m−2)/2
)

pm/2−2
(

pm/2 +1
)(

1− p+ pm/2
)(

pm/2 − p
)

/2

and

♯{a ∈ GF(q)∗ : η(a) =−1 and Trq/p(a) = 0}

=







pm−1−1+(p−1)p
m−2

2 (
√
−1)

(p−1)m
2

2
, if m is even,

pm−1−1
2

, if m is odd.

Lemma 46. [24] Let q = pm with p an odd prime and (a,b) ∈ GF(q)2. Denote

N0(a,b) = ♯{x ∈ GF(q) : Trq/p(ax2 +bx) = 0}. (31)

Then the following results follow.

• If m is odd, then

N0(a,b) =






















pm, if (a,b) = (0,0),

pm−1, if a = 0, b 6= 0, or a 6= 0, Trq/p(
b2

4a
) = 0,

pm−1 + p
m−1

2 (−1)
(p−1)(m+1)

4 , if a 6= 0, Trq/p(
b2

4a
) 6= 0, η(a)η̄

(

−Trq/p(
b2

4a
)
)

= 1,

pm−1 + p
m−1

2 (−1)
(p−1)(m+1)+4

4 , if a 6= 0, Trq/p(
b2

4a
) 6= 0, η(a)η̄

(

−Trq/p(
b2

4a
)
)

=−1.

(32)
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• If m is even, then

N0(a,b) =







































pm if (a,b) = (0,0),
pm−1, if a = 0, b 6= 0,

pm−1 +(p−1)p
m−2

2 (−1)
m(p−1)+4

4 , if a 6= 0, Trq/p(
b2

4a
) = 0, η(a) = 1,

pm−1 +(p−1)p
m−2

2 (−1)
m(p−1)

4 , if a 6= 0, Trq/p(
b2

4a
) = 0, η(a) =−1,

pm−1 + p
m−2

2 (−1)
m(p−1)

4 , if a 6= 0, Trq/p(
b2

4a
) 6= 0, η(a) = 1,

pm−1 + p
m−2

2 (−1)
m(p−1)+4

4 , if a 6= 0, Trq/p(
b2

4a
) 6= 0, η(a) =−1.

(33)

Lemma 47. Let q = pm with p an odd prime and a ∈ GF(q)∗. Define f (x) = Trq/p(− 1
4a

x2). Then the dual

of f (x) is f ∗(x) = Trq/p(ax2) and the sign of the Walsh transform of f (x) is

ε = η(a)(−1)m−1+ q−1
2 .

Proof. Note that f (x) is a weakly regular bent function. By definition and Lemma 3, we have

W f (β) = ∑
x∈GF(q)

ζ
Trq/p(− 1

4a
x2)−Trq/p(βx)

p = ζ
Trq/p(aβ2)
p ·η

(

− 1

4a

)

G(η,χ) = ζ
f ∗(β)
p · ε ·

√

p∗
m
.

Then the desired conclusions follow from Lemma 2.

Lemma 48. Let q = pm with p an odd prime, a ∈ GF(q)∗ and e be any positive integer such that

m/gcd(m,e) is odd. Define f (x) = Trq/p(axpe+1). Then the dual of f (x) is f ∗(β)=Trq/p

(

−a
(

xa,−β

)pe+1
)

and the sign of the Walsh transform of f (x) is

ε =

{

(−1)m−1+ q−1
2 η(a), if p ≡ 1 mod 4,

(−1)
q−1

2 +1η(a), if p ≡ 3 mod 4,

where β ∈ GF(q) and xa,−β is the unique solution of the equation

ape

xp2e

+ax+(−β)pe

= 0.

Proof. The proof is similar to that of Lemma 47, and we omit it here. Note that f (x) is a weakly regular

bent function. Then the desired conclusions follow from the definitions and Lemma 8.

Lemma 49. Let q = pm with p an odd prime, a ∈ GF(q)∗, γ ∈ GF(p) and e be any positive integer such

that m/gcd(m,e) is odd. Define

Ñγ = #
{

b ∈ GF(q) : Trq/p(b) = 0 and Trq/p

(

ax
pe+1
a,b

)

= γ
}

where xa,b is the unique solution of the equation ape
xp2e

+ax+bpe
= 0. If Trq/p(a) = 0, then

Ñγ =



































pm−2 + εη̄m/2(−1)(p−1)p(m−2)/2, if γ = 0 and m is even,

pm−2, if γ = 0 and m is odd,
p−1

2

(

pm−2 − εη̄m/2(−1)p(m−2)/2
)

, if γ 6= 0 and m is even,

p−1
2

(

pm−2 + ε
√

p∗m−1
)

, if γ ∈ SQ and m is odd,

p−1
2

(

pm−2 − ε
√

p∗m−1
)

. if γ ∈ NSQ and m is odd,

where ε was given in Lemma 48.

Proof. By the definition of xa,b, we have

ape

x
p2e

a,b +axa,b +bpe

=
(

ap−e

xa,b

)p2e

+axa,b +bpe

= 0.
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This gives

Trq/p

(

(ap−e

+a)xa,b +b
)

= 0.

Since ape
xp2e

+ax is a linear permutation polynimial over GF(q), we have

Ñγ = #
{

x ∈ GF(q) : Trq/p(axpe+1) = γ and Trq/p

(

(ap−e

+a)x
)

= 0
}

. (34)

Note that x = 1 is the unique solution of the equation

ape

(x)p2e

+ax+(−ap−e −a)pe

= 0.

By Lemma 48, we get

f ∗(ap−e

+a) = Trq/p(−a) = 0 (35)

where f ∗ is the dual of Trq/p(axpe+1). By Equations (34) and (35), the desired conclusions follow from

Lemmas 14, 15 and 48.

Theorem 50. Let p be an odd prime and m be a positive integer. Let q = pm, f (x) = x2 and C be

defined in (6). Let T = GF(p). Then the shortened code CT is a [pm− p,2m−2] linear code. If m is odd,

the weight distribution of CT is given in Table XVI, where B = (−1)
q−1

2 +
(p−1)(m−1)

4 p(m−1)/2; if m ≥ 2 is

even, the weight distribution of CT is given in Table XVII, where B1 =
pm−1−1−(p−1)p

m−2
2 (

√
−1)

(p−1)m
2

2
and

B2 = (−1)
q+1

2 +
m(p−1)

4 (p−1)p(m−2)/2.

TABLE XVI

THE WEIGHT DISTRIBUTION OF CT FOR m ODD

Weight Multiplicity

0 1

pm−1(p−1) (pm−1 −1)(pm−2 +1)

pm−1(p−1)− p
m−1

2 (−1)
(p−1)(m+1)

4
pm−1−1

2 · (p−1)(pm−2 +B)

pm−1(p−1)+ p
m−1

2 (−1)
(p−1)(m+1)

4
pm−1−1

2 · (p−1)(pm−2 −B)

TABLE XVII

THE WEIGHT DISTRIBUTION OF CT FOR m EVEN

Weight Multiplicity

0 1

pm−1(p−1) pm−1 −1

pm−1(p−1)− (p−1)p
m−2

2 (−1)
m(p−1)+4

4 B1 · (pm−2 +B2)

pm−1(p−1)− (p−1)p
m−2

2 (−1)
m(p−1)

4 (pm−1 −1−B1) · (pm−2 −B2)

pm−1(p−1)− p
m−2

2 (−1)
m(p−1)

4 B1 · (pm−1 − pm−2 −B2)

pm−1(p−1)− p
m−2

2 (−1)
m(p−1)+4

4 (pm−1 −1−B1) · (pm−1 − pm−2 +B2)

Proof. Denote

H =
{

(a,b) ∈ GF(q)2 : Trq/p(a) = Trq/p(b) = 0
}

. (36)

By definition, the shortened code CT has length pm − p. The desired conclusion on the dimension of CT

will be clear after the weight distribution of CT is settled below.
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Since T = GF(p), the weight distribution of CT is the same as the subcode

C (T ) =
{

(

Trq/p(ax2 +bx)
)

x∈GF(q)
: (a,b) ∈ H

}

. (37)

For each (a,b) ∈ H, define the corresponding codeword

c(a,b) =
(

Trq/p(ax2 +bx)
)

x∈GF(q)
∈ C (T ).

Then the Hamming weight of c(a,b) is

wt(c(a,b)) = q−N0(a,b)

where N0(a,b) was defined in Equation (31). We discuss the value of wt(c(a,b)) in the following two

cases.

(I) The case that m is odd.

From Equation (32), we get

wt(c(a,b)) = q−N0(a,b)

=































0, if (a,b) = (0,0)

pm−1(p−1), if a = 0 and b 6= 0, or a 6= 0 and Trq/p(
b2

4a
) = 0

pm−1(p−1)− p
m−1

2 (−1)
(p−1)(m+1)

4 , if a 6= 0,Trq/p(
b2

4a
) 6= 0, η(a)η̄

(

−Trq/p(
b2

4a
)
)

= 1

pm−1(p−1)+ p
m−1

2 (−1)
(p−1)(m+1)

4 , if a 6= 0,Trq/p(
b2

4a
) 6= 0, η(a)η̄

(

−Trq/p(
b2

4a
)
)

=−1

=



















0, with 1 time,
pm−1(p−1), with (pm−1 −1)(pm−2 +1) times,

pm−1(p−1)− p
m−1

2 (−1)
(p−1)(m+1)

4 , with
pm−1−1

2
· (p−1)(pm−2+B) times,

pm−1(p−1)+ p
m−1

2 (−1)
(p−1)(m+1)

4 , with
pm−1−1

2
· (p−1)(pm−2−B) times,

when (a,b) runs through H, where

B = (−1)m−1+ q−1
2 ·
√

p∗
m−1

= (−1)
q−1

2 +
(p−1)(m−1)

4 p(m−1)/2

and the frequency is obtained from Lemmas 14, 15, 45 and 47. We first compute the frequency Aw of the

nonzero weight w, where

w = pm−1(p−1)− p
m−1

2 (−1)
(p−1)(m+1)

4 .

Then

Aw = ♯{(a,b) ∈ H : a 6= 0, Trq/p

(

b2

4a

)

6= 0, η(a)η̄

(

−Trq/p

(

b2

4a

))

= 1}.

Clearly, the number of a ∈ GF(q)∗ such that Trq/p(a) = 0 and η(a) = 1, is n̄a =
pm−1−1

2
by Lemma 45; if

we fix a with Trq/p(a)= 0 and η(a) = 1, the number of b such that Trq/p(b) = 0 and η̄(−Trq/p(
b2

4a
)) = 1, is

n̄b =
p−1

2
(pm−2 +(−1)m−1+ q−1

2 ·√p∗m−1
) by Lemmas 15 and 47. Meanwhile, the number of a ∈ GF(q)∗

such that Trq/p(a) = 0 and η(a) = −1, is n̂a = pm−1−1
2

by Lemma 45; if we fix a with Trq/p(a) = 0

and η(a) = −1, the number of b such that Trq/p(b) = 0 and η̄(−Trq/p(
b2

4a
)) = −1, is n̂b =

p−1
2
(pm−2 +

(−1)m−1+ q−1
2 ·√p∗m−1

) by Lemmas 15 and 47. Hence,

Aw = n̄an̄b + n̂an̂b =
pm−1 −1

2
(p−1)

(

pm−2 +(−1)m−1+ q−1
2 ·
√

p∗
m−1
)

.

The frequencies of other nonzero weights can be similarly derived.
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(II) The case that m is even.

From Equation (33), we get

wt(c(a,b)) = q−N0(a,b)

=















































0, if (a,b) = (0,0)

pm−1(p−1), if a = 0, b 6= 0

pm−1(p−1)− (p−1)p
m−2

2 (−1)
m(p−1)+4

4 , if a 6= 0, Trq/p(
b2

4a
) = 0, η(a) = 1

pm−1(p−1)− (p−1)p
m−2

2 (−1)
m(p−1)

4 , if a 6= 0, Trq/p(
b2

4a
) = 0, η(a) =−1

pm−1(p−1)− p
m−2

2 (−1)
m(p−1)

4 , if a 6= 0, Trq/p(
b2

4a
) 6= 0, η(a) = 1

pm−1(p−1)− p
m−2

2 (−1)
m(p−1)+4

4 , if a 6= 0, Trq/p(
b2

4a
) 6= 0, η(a) =−1

=







































0, with 1 time,
pm−1(p−1), with pm−1 −1 times,

pm−1(p−1)+(p−1)p
m−2

2 (−1)
m(p−1)

4 , with B1 · (pm−2 +B2) times,

pm−1(p−1)− (p−1)p
m−2

2 (−1)
m(p−1)

4 , with (pm−1 −1−B1) · (pm−2−B2) times,

pm−1(p−1)− p
m−2

2 (−1)
m(p−1)

4 , with B1 · (pm−1 − pm−2 −B2) times,

pm−1(p−1)+ p
m−2

2 (−1)
m(p−1)

4 , with (pm−1 −1−B1) · (pm−1− pm−2 +B2) times,

where (a,b) runs through H, B1 =
pm−1−1−(p−1)p

m−2
2 (

√
−1)

(p−1)m
2

2
,

B2 = (−1)m−1+ q−1
2 η̄m/2(−1) · (p−1)p(m−2)/2 = (−1)

q+1
2 +

m(p−1)
4 (p−1)p(m−2)/2,

and the frequency is easy to obtain from Lemmas 14, 15, 45 and 47. The weight distribution of CT can

be handled in much the same way as the case that m is odd. Details are omitted here.

By the above two cases, the weight distributions in Tables XVI and XVII follow. This completes the

proof.

Example 51. Let m = 3 and p = 3. Then the shortened code CT in Theorem 50 is a [24,4,15] linear

code with the weight enumerator 1+48z15+32z18. This code CT is optimal. Its dual C⊥
T has parameters

[24,20,3] and is optimal according to the tables of best known codes maintained at http://www.codetables.de.

Example 52. Let m = 4 and p = 3. Then the shortened code CT in Theorem 50 is a [78,6,48] linear code

with the weight enumerator 1+240z48+240z51+26z54+192z57+30z60. This code CT is almost optimal.

Its dual C⊥
T has parameters [78,72,2] and is almost optimal according to the tables of best known codes

maintained at http://www.codetables.de.

Theorem 53. Let p be an odd prime, m and e be positive integers such that m/gcd(m,e) is odd. Let

q = pm, f (x) = xpe+1 and C be defined in (6). Let T = GF(p). Then the parameters of the shortened code

CT are the same as that of CT in Theorem 50.

Proof. The proof is similar to that of Theorem 50. Recall that the code C has length q and dimension

2m+1. By definition, the shortened code CT has length pm− p. The desired conclusion on the dimension

of CT will be clear after the weight distribution of CT is settled below. Since T = GF(p), the weight

distribution of CT is the same as the code

C (T ) =

{

(

Trq/p(axpe+1 +bx)
)

x∈GF(q)
: (a,b) ∈ H

}

, (38)

where H was defined by (36).

http://www.codetables.de
http://www.codetables.de
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For each (a,b) ∈ H, define the corresponding codeword

c(a,b) =
(

Trq/p(axpe+1 +bx)
)

x∈GF(q)
∈ Ĉ .

Then the Hamming weight of c(a,b) is

wt(c(a,b)) = q− N̂0(a,b), (39)

where N̂0(a,b) was defined in Lemma 10.

We determine the value of wt(c(a,b)) and its frequencies according to the parity of m and the residue

of p modulo 4 as follows.

• (I) m is odd and p ≡ 1 mod 4.

• (II) m is odd and p ≡ 3 mod 4.

• (III) m is even and p ≡ 1 mod 4.

• (IV) m is even and p ≡ 3 mod 4.

Next we only give the proof for the case (I) and omit the proofs for the other there cases whose proofs

are similar.

Suppose that m is odd and p ≡ 1 mod 4. From Equation (39) and Lemma 10, we get

wt(c(a,b)) = q− N̂0(a,b)

=























0, if (a,b) = (0,0)
pm−1(p−1), if ab = 0,(a,b) 6= (0,0)

or ab 6= 0,Trq/p(a(xa,b)
pe+1) = 0

pm−1(p−1)− pm/2−1
√

p∗ if ab 6= 0,Trq/p(a(xa,b)
pe+1) 6= 0,η(a)η(Trq/p(a(xa,b)

pe+1)) = 1

pm−1(p−1)+ pm/2−1
√

p∗ if ab 6= 0,Trq/p(a(xa,b)
pe+1) 6= 0,η(a)η(Trq/p(a(xa,b)

pe+1)) =−1

=



















0, with 1 time,
pm−1(p−1), with (pm−1 −1)(pm−2 +1) times,

pm−1(p−1)− p
m−1

2 , with
pm−1−1

2
· (p−1)(pm−2 +B) times,

pm−1(p−1)+ p
m−1

2 , with
pm−1−1

2
· (p−1)(pm−2 −B) times,

when (a,b) runs through H, where B = (−1)m−1+ q−1
2 ·√p∗m−1

and the frequency is obtained by Lemmas

45 and 48 . As an example, we just compute the frequency Aw of the nonzero weight w, where

w = pm−1(p−1)− p
m−1

2 .

Thus

Aw = ♯{(a,b) ∈ H : ab 6= 0,Trq/p(a(xa,b)
pe+1) 6= 0,η(a)η(Trq/p(a(xa,b)

pe+1)) = 1}.

Clearly, the number of a∈GF(q)∗ such that Trq/p(a)= 0 and η(a)= 1, is n̄a =
pm−1−1

2
by Lemma 45; if we

fix a with Trq/p(a) = 0 and η(a) = 1, the number of b such that Trq/p(b) = 0 and η(Trq/p(a(xa,b)
pe+1)) =

1, is n̄b =
p−1

2

(

pm−2 +(−1)m−1+ q−1
2 ·√p∗m−1

)

by Lemma 49. Meanwhile, the number of a ∈ GF(q)∗

such that Trq/p(a) = 0 and η(a) = −1, is n̂a = pm−1−1
2

by Lemma 45; if we fix a with Trq/p(a) = 0

and η(a) = −1, the number of nonzero b such that Trq/p(b) = 0 and η(Trq/p(a(xa,b)
pe+1)) = −1, is

n̂b =
p−1

2

(

pm−2 +(−1)m−1+ q−1
2
√

p∗m−1
)

by Lemma 49. Hence,

Aw = n̄an̄b + n̂an̂b =
pm−1 −1

2
· (p−1)

(

pm−2 +(−1)m−1+ q−1
2 ·
√

p∗
m−1
)

.

The frequencies of other nonzero weights can be similarly derived. This completes the proof of the weight

distribution of Table in XVI for the case m odd and p ≡ 1 mod 4.
The proofs of the other three cases are similar. The desired conclusions follow from Equation (39),

Lemmas 10, 45 and 49. This completes the proof.
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VI. CONCLUDING REMARKS

In this paper, we mainly investigated some shortened codes of linear codes from PN and APN functions

and determined their parameters. The obtained codes have a few weights and many of these codes are

optimal or almost optimal. Specifically, the main contributions are summarized below.

• For any binary linear code C with length q= 2m and the weight distribution in Table I, we determined

the weight distributions of the shortened codes CT for #T ∈ {1,2,3} (see Theorem 16) and gave a

general result on the shortened codes CT with #T = 4 in Theorem 24. Meanwhile, when m is odd,

the parameters of the shortened codes CT of a class of binary linear codes from APN functions were

determined in Theorem 29.

• For any binary linear code C with length q = 2m and the weight distribution in Table II, we settled

the weight distributions of the shortened codes CT with #T ∈ {1,2} (see Theorem 20) and developed

a general result on the shortened codes CT with #T = 3 in Theorem 26. Further, the parameters

of the shortened codes CT from certain APN functions were determined for #T = 3 and #T = 4 in

Theorems 33 and 38.

• Two classes of p-ary shortened codes CT from PN functions were presented and their parameters

were also determined in Theorems 50 and 53, where p is an odd prime.

Furthermore, the parameters of the shortened codes look new.

In addition to the works in [32] and this paper, other linear codes with good parameters may be produced

with the shortening technique. However, it seems hard to determine the weight distributions of shortened

and punctured codes in general. The reader is cordially invited to join the adventure in this direction.
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