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Abstract

The Hadamard Extension of a matrix is the matrix consisting of all Hadamard products of subsets of
its rows. This construction arises in the context of identifying a mixture of product distributions on binary
random variables: full column rank of such extensions is a necessary ingredient of identification algorithms.
We provide several results concerning when a Hadamard Extension has full column rank.

1 Introduction

The Hadamard product for row vectors v = (uy,...,ug), v = (vy,...,v;) is the mapping ® : RF x R¥ — R¥
given by

U@V = (Ugvy, ..., URVE)

The identity for this product is the all-ones vector 1. We associate with vector v the linear operator vg = diag(v),
a k x k diagonal matrix, so that
uU-vo =vQOuU.

Throughout this paper m is a real matrix with row set [n] := {1,...,n} and column set [k]; write m; for a row
and m’ for a column.
As a matter of notation, for a matrix  and nonempty sets R of rows and C' of columns, let Q|% be the restriction

of @ to those columns and rows (with either index omitted if all rows or columns are retained).

Definition 1. The Hadamard Extension of m, written H(m), is the 2" x k matrix with rows mg for all S C [n],
where, for S = {i1,... i}, mg =m;, ©---©my,; equivalently m% = [],.¢ m}. (In particular my = 1.)

This construction has arisen recently in learning theory [3] [8] where it is essential to source identification for a
mixture of product distributions on binary random variables. We explain the connection further in Section
Motivated by this application, we are interested in the following two questions:

(1) If H(m) has full column rank, must there exist a subset R of the rows, of bounded size, such that H(m|g)
has full column rank?

(2) In each row of m, assign distinct colors to the distinct real values. Is there a condition on the coloring that
ensures H(m) has full column rank?

In answer to the first question we show in Section [2}

Theorem 2. If H(m) has full column rank then there is a set R of no more than k — 1 of the rows of m, such
that H(m|g) has full column rank.
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Considering the more combinatorial second question, observe that if m possesses two identical columns then the
same is true of H(m), and so it cannot be full rank. Extending this further, suppose there are three columns C'
in which only one row r has more than one color. Then Rowspace H(m|“) is spanned by 1| and r|¢, so again
H(m) cannot be full rank. Motivated by these necessary conditions, set:

Definition 3. For a matrix @ let NAE(Q) be the set of nonconstant rows of @ (NAE="“not all equal”); let
£(Q|%) = INAE(Q|9)|—|C|; and let 2(Q) = minczpe(Q|9). If£(Q) > —1 we say Q satisfies the NAE condition.

In answer to the second question we have the following:

Theorem 4. If m satisfies the NAE condition then

(a) There is a restriction of m to some k — 1 rows R such that €(m|g) = —1.

(b) H(m) is full column rank.
(As a consequence also H(ml|g) is full column rank.)

Apparently the only well-known example of the NAE condition is when m contains & — 1 rows which are iden-
tical and whose entries are all distinct. Then the vectors mgp, myy, myy 9y,...,myy . 1) form a nonsingular
Vandermonde matrix. This example shows that the bound of £ — 1 in @}is best possible.

For another example in which the NAE condition ensures that rank H(m) = k, take the (k —1)-row matrix with
m! =1 for i < j and m} = 1/2 for ¢ > j. Here the NAE condition is only minimally satisfied, in that for every
¢ < k there are ¢ columns C s.t. ¢(m|) = —1.

For k > 3 the NAE condition is no longer necessary for H(m) to have full column rank. E.g., for k = 2¢. the
¢ x k “Hamming matrix” m] = (—1)7 where j is an (-bit string j = (j1,..., /), forms H(m) = the Fourier
transform for the group (Z/2)* (often called a Hadamard matrix), which is invertible. Furthermore, almost all
(in the sense of Lebesgue measure) [lgk] X k& matrices m form a full-rank H(m). (This is because det H(m)
is a polynomial in the entries of m, and the previous example shows the polynomial is nonzero.) Despite this
observation, the Vandermonde case, in which k£ — 1 rows are required, is very typical, as it is what arises in
H(m) for a mixture model of observables X; that are iid conditional on a hidden variable.

2 Some Theory for Hadamard Products, and a Proof of Theorem

For v € R* and U a subspace, extend the definition ve, to
ve(U)={u- vy :u e U}

and introduce the notation
ve(U) = span{U Uvg (U)}.

We want to understand which subspaces U are invariant under vg. Let v have distinct values Ay > ... > Ay
for ¢ < k. Let the polynomials p,; (i =1,...,¢) of degree £ — 1 be the Lagrange interpolation polynomials for
these values, so py, () = 6;; (Kronecker delta). Let B(v) denote the partition of [k] into blocks B(v);) = {j :
vj = Ai}. Let V{;) be the space spanned by the elementary basis vectors in B(v)(;), and P(; the projection onto
V(i) w.r.t. standard inner product. We have the matrix equation

Po,i(Ve) = Puy.

The collection of all linear combinations of the matrices P(;) is a commutative algebra, the B(v) projection
algebra, which we denote Ap,). The identity of the algebra is I =3 P;.

Definition 5. A subspace of R respects B(v) if it is spanned by vectors each of which lies in some Viiy-

For U respecting B(v) write U = span(|JU;)) for Uy € Viyy. Let Dy = (U(i))L N Vis). Then (U(i))l =
Dy @ B;2 V-



Lemma 6. Subspace UL respects B(v) if U does.

Proof. In general, (span(W UW'))* = W-nW'*. So U+ = N\(Upu))* =@ D). O
Lemma 7. Subspace U respects B(v) iff U = @(PU).

Proof. (<): Because this gives an explicit representation of U as a direct sum of subspaces each restricted to
some V(;). (=): By definition U is spanned by some collection of subspaces V(’l) C V4); since these subspaces
are necessarily orthogonal, U = @ V(’l) Moreover, since P;) annihilates V/;y, j # i, and is the identity on V(;),
it follows that each V(’l) = PyU. O

Theorem 8. Subspace U is invariant under vg iff U respects B(v).

Proof. (<): It suffices to show U* is invariant under vg. By the previous lemma, it is equivalent to suppose
that UL respects B(v). So let d € U+ and write d = Y. d;,d; € D¢y. Then v ©® d; = Nid; € D). So
vOd= Z'UQdi € @D(i) =U"t.

(=): If U = v5(U) then these also equal v (vg(U)), etc., so U is an invariant space of Ap(,), meaning, aU C U
for any a € Ap(,). In particular for a = Py). So U O @(P;U). On the other hand, since ) Py = I,
U= (> Puy)UCB(PyU). SoU = @(P;)U). Now apply Lemma O

The symbol C is reserved for strict inclusion.

Lemma 9. If S,T C [n] and RowspaceH(m|s) C Rowspace H(m|gur), then there is a row t € T such that
Rowspace H(m|s) C Rowspace H(m|gyug})-

Proof. Without loss of generality S, T are disjoint. Let 7/ C T be a smallest set s.t. 35" C S s.t. mg: @ mps ¢

RowspaceH(mg). Select any ¢ € T” and write mgr © my» = mg/ © myp/_gy © m;. By minimality of 77,
mg © mp gy € RowspaceH(mg). But then mgss ©® my € Rowspace H(mgy(}), so Rowspace H(m|g) C
Rowspace H(m|gy 43 ). O
Theorem [2] is now a consequence of Lemma [9] O

It follows from Theorem that we can check whether rank H(m) = & in time O(n)* by computing rank H(m|s)
for each S € (k[f]l)

3 Combinatorics of the NAE Condition: Proof of Theorem @

Recall we are to show: @ Ifg(m) > —1 then m has a restriction to some k — 1 rows on which € = —1.

Proof. We induct on k. The (vacuous) base-case is k = 1. For k > 1, we induct on n, with base-case n = k — 1.

Supposing the Theorem fails for k, kK > 1, let m be a k-column counterexample with least n. Necessarily every
row is in NAE(m), and n > k—1 > 1. We will show m has a restriction m’ to n — 1 rows, for which £(m’) > —1;
this will imply a contradiction because, by minimality of m, m’ has a restriction to & — 1 rows on which € = —1.

If £(m) > 0 then we can remove any single row of m and still satisfy € > —1.

Otherwise, Z(m) = —1, so there is a nonempty S such that [NAE(m|)| = |S| — 1; choose a largest such S. It
cannot be that S = [k] (as then n = k — 1). Arrange the rows NAE(m|®) as the bottom |S| — 1 rows of the
matrix. As discussed earlier, for the NAE condition one may regard the distinct real values in each row of m
simply as distinct colors; relabel the colors in each row above NAE(m|®) so the color above S is called “white.”
(There need be no consistency among the real numbers called white in different rows.) See Figure

Due to the maximality of |S|, there is no white rectangle on ¢ columns and n — |S| — £ + 1 rows inside
[k]—S
[n]-NAE(m|%)
to the columns [k] — S, and left vertices corresponding to the rows [n] — NAE(m|®), with non-white cells being
edges, then any subset of the right vertices of size £ > 1 has at least £ + 1 neighbors within the left vertices.

m| for any ¢ > 1. That is to say, if we form a bipartite graph on right vertices corresponding
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Figure 1: Argument for Theorem @ Upper-left region is white. Entries (¢, f(¢)) are not white.

By the induction on k (since S # ), for the set of columns [k] — S there is a set R” of k —|S|— 1 rows such that
é(mwglfs) = —1. Together with the rows of NAE(m|®) this amounts to at most k — 2 rows, so since n > k,
we can find two rows outside this union; delete either one of them, leaving a matrix m’ with n — 1 rows. This
matrix has the rows NAE(m|®) at the bottom, and n — |S| remaining rows which we call R’. The lemma will

follow by showing that £(m’) > —1.

In m’, the induced bipartite graph on right vertices [k] — S and left vertices R’ has the property that any right
subset of size £ > 1 has a neighborhood of size at least £ in R’. Applying Hall’s Marriage Theorem, there is an
injective f : [k] — S — R’ employing only edges of the graph.

Now consider any set of columns T, T = T} U Ty, Ty C [k] — S,T> C S. We need to show that e(m|T) > —1.
Let Ry = NAE(m|™) N R”, Ry = NAE(m|"2) C NAE(m|®), and note that |Ry| > |Ty| — 1, |Ra| > |Ty| — 1. If
T, = () we simply use R;. Likewise if T} = ), we use Rs.

If both Ty and T} are nonempty, NAE(m|"2) C NAE(m|®), and |[NAE(m|”2)| > |T,| — 1. Now use the matching
f. The set of rows f(T}) lies in R’ and is therefore disjoint from NAE(m|?2). Moreover since Ty # (), every
entry (t,j) for t € T, j € R’ is white. On the other hand due to the construction of f, for every ¢ € T; the entry
(t, f(t)) is non-white. Therefore every row in f(71) is in NAE(m|T1YT2). So [INAE(m|T1VT2)| > Ty — 1 + |Ty].
Thus #(m’) > —1. O

4 From NAE to Rank: Proof of Theorem @

Recall we are to show: [][(b)} H(m) has full column rank if €(m) > —1.

Proof. The case k =1 is trivial. Now suppose k > 2 and that Theorem @ holds for all ¥’ < k. Any constant
rows of m affect neither the hypothesis nor the conclusion, so remove them, leaving m with at least kK — 1 rows.
Now pick any set, C', of k— 1 columns of m. By Theorem there are some k — 2 rows of m, call them R’, on
which (m|$,) = —1. Let v be a row of m outside R'. Call the rows of m apart from v, R”. Since R” contains



R, by induction dim Rowspace H(m|%,,) = k — 1. Therefore U := Rowspace H(m|p~) C R* is of dimension at
least k — 1. We claim now that dimU = k.

Suppose to the contrary that dimU = k — 1. If vo(U) C U then as proven earlier in Theorem [8) U respects
B(v). Since v is nonconstant, B(v) is a partition of [k] into £ > 2 nonempty blocks B(v);), and U = @le Ug)
with Uy = P;)Ug). So there is some ig for which U,y C V,y; specifically, Uy = Vi) for all i # g, and
dim U,y = dim V{;,y — 1. Since |B(v)(,)| < k, we know by induction that the rows of H(m) span V(; ). Thus
in fact U = R¥. (Further detail for the last step: let w € R¥. Since the rows of H(m) span Viio), there is a
w' € Rowspace H(m) s.t. P yw' = Py, w. Moreover since Uy = Vi;) for all i # ig, there is a w” € U s.t.
w" = (I = Py))(w —w'). Then w' 4+ w"” € Rowspace H(m), and w’ 4+ w" = w.) O

5 Motivation

Consider observable random variables X, ..., X, that are statistically independent conditional on H, a hidden
random variable H supported on {1,...,k}. (See causal diagram.)
H

The most fundamental case is that the X; are binary. Then we denote m{ = Pr(X; = 1|H = j). The model
parameters are m along with a probability distribution (the mixture distribution) © = (my,...,7) on H.

Finite mixture models were pioneered in the late 1800s in [I3] [I4]. The problem of learning such distributions
has drawn a great deal of attention. For surveys see, e.g., [5 [, [T} 12]. For some algorithmic papers on discrete
X, see [9, [, 7, 2] 6], [II [15] 10, B, [§]. The source identification problem is that of computing (m, ) from the
joint statistics of the X;. Put another way, the problem is to invert the multilinear moment map

e (m,m) — R2"
p(m,m)s =Pr(Xg=1) where S Cn|, Xg= s X;
=mg - 7'('T

The last line shows the significance of H(m) to mixture model identification, since mé =Pr(Xg =1|H = ).

Connection to rank H(m). In general y is not injective (even allowing for permutation among the values of
H). For instance it is clearly not injective if m has two identical columns (unless 7 places no weight on those).
More generally, and assuming all 7; > 0, it cannot be injective unless H(m) has full column rank.

One sufficient condition for injectivity, due to [I6], is that there be 2k — 1 “separated” observables X;; X; is
separated if all m] are distinct, or in our terminology, if no color recurs in m;. (Further [§], one can lower
bound the distance between p(m, 7) and any p(m’,7’) in terms of min; ; [m] —m] | and the distance between
(m,7) and (m’,7").)

A weaker sufficient condition for injectivity of u, due to [§], is that for every i € [n] there exist two disjoint sets
A, B C [n] — {i} such that H(m|4) and H(m|z) have full column rank. (It is not known whether two disjoint
such A, B are strictly necessary, but the implied n < 2k — 1 is in general best possible [15].)
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