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Secure list decoding and its application to bit-string
commitment

Masahito Hayashi Fellow, IEEE

Abstract—We propose a new concept of secure list decoding,
which is related to bit-string commitment. While the conventional
list decoding requires that the list contains the transmitted
message, secure list decoding requires the following additional
security conditions to work as a modification of bit-string com-
mitment. The first additional security condition is the receiver’s
uncertainty for the transmitted message, which is stronger
than the impossibility of the correct decoding, even though the
transmitted message is contained in the list. The other additional
security condition is the impossibility for the sender to estimate
another element of the decoded list except for the transmitted
message. The first condition is evaluated by the equivocation rate.
The asymptotic property is evaluated by three parameters, the
rates of the message and list sizes, and the equivocation rate.
We derive the capacity region of this problem. We show that
the combination of hash function and secure list decoding yields
the conventional bit-string commitment. Our results hold even
when the input and output systems are general probability spaces
including continuous systems. When the input system is a general
probability space, we formulate the abilities of the honest sender
and the dishonest sender in a different way.

Index Terms—list decoding; security condition; capacity re-
gion; bit-string commitment; general probability space

I. INTRODUCTION

RELAXING the condition of the decoding process, Elias
[1] and Wozencraft [2] independently introduced list

decoding as the method to allow more than one element as
candidates of the message sent by the encoder at the decoder.
When one of these elements coincides with the true message,
the decoding is regarded as successful. The paper [3] discussed
its algorithmic aspect. In this formulation, Nishimura [4]
obtained the channel capacity by showing its strong converse
part1. That is, he showed that the transmission rate is less than
the conventional capacity plus the rate of the list size, i.e.,
the number of list elements. Then, the reliable transmission
rate does not increase even when list decoding is allowed
if the list size does not increase exponentially. In the non-
exponential case, these results were generalized by Ahlswede
[5]. Further, the paper [6] showed that the upper bound of
capacity by Nishimura can be attained even if the list size
increases exponentially. When the number of lists is L, the
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1The strong converse part is the argument that the average error goes to 1
if the code has a transmission rate over the capacity.

capacity can be achieved by choosing the same codeword for
L distinct messages.

However, the merit of the increase in the list size was
not discussed sufficiently. To get a merit of list coding, we
need a code construction that is essentially different from
conventional coding. Since the above capacity-achieving code
construction does not have an essential difference from the
conventional coding, we need to rule out the above type of
construction of list coding. That is, to extract a merit of list
decoding, we need additional parameters to characterize the
difference from the conventional code construction, which can
be expected to rule out such a trivial construction.

To seek a merit of list decoding, we focus on bit commit-
ment, which is a fundamental task in information security. It
is known that bit commitment can be realized when a noisy
channel is available [7]. Winter et al [8], [9] studied bit-string
commitment, the bit string version of bit commitment when an
unlimited bidirectional noiseless channel is available between
Alice and Bob, and a discrete memoryless noisy channel
W : X → Y from Alice to Bob, which may be used n times.
They derived the asymptotically optimal rate as n goes to
infinity, which is called the commitment capacity. Since their
result is based on Shannon theory, the tightness of their result
shows the strong advantage of Shannon theoretic approach
to information theoretic security. This result was extended to
the formulation with multiplex coding [10]. However, their
optimal method has the following problems;

(P1) When the number of use of the channel is limited,
it is impossible to send a message with a larger rate
than the commitment capacity.

(P2) Their protocol assumes that the output system Y
is a finite set because they employ the method of
type. However, when a noisy channel is realized
by wireless communication, like an additive white
Gaussian noise (AWGN) channel, the output system
Y is a continuous set.

To resolve the problem (P1), it is natural to relax the
condition for bit-string commitment. Winter et al [8], [9]
imposed strong security for the concealing condition. How-
ever, studies in information theory, in particular, papers for
wire-tap channel, often employs equivocation rate instead of
strong security. In this paper, to relax the condition of bit-
string commitment by using equivocation rate, we consider the
following simple protocol by employing list decoding, where
Alice wants to send her message M ∈ {1, . . . ,M} to Bob.

(i) (Commit Phase) Alice sends her message M to Bob
via a noisy channel. Bob outputs L messages as the
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list. The list is required to contain the message M .
(ii) (Reveal Phase) Alice sends her message M to Bob

via a noiseless channel. If M is contained in Bob’s
decoded list, Bob accepts it. Otherwise, Bob rejects
it.

In order that the protocol with phase (i) and (ii) works for
bit-string commitment, the following requirements need to be
satisfied.

(a) The message M needs to be one of L messages
M1, . . . ,ML output by Bob.

(b) Bob cannot identify the message M at the phase (i).
(c) Alice cannot find another element among L messages

M1, . . . ,ML output by Bob.
The requirement (a) is the condition for the requirement for
the conventional list decoding while the requirements (b) and
(c) correspond to the concealing condition and the binding
condition, respectively and have not been considered in the
conventional list decoding.

In this paper, we propose a new concept of secure list
decoding by adding the requirements (b) and (c). One typical
condition for (b) is the conventional equivocation rate based
on the conditional entropy. In this paper, we also consider
the equivocation rate based on the conditional Rényi entropy
similar to the paper [11], [12]2. Hence, our code can be
evaluated by three parameters. The first one is the rate of the
message size, the second one is the rate of list size, and the
third one is the equivocation rate. Using three parameters, we
define the capacity region. In addition, our method works with
a general output system including a continuous output system,
which resolves the problem (P2) while an extension to such a
general case was mentioned as an open problem in [9].

In the second step, we extend our result to the case with
a general input system including a continuous input system.
We need to be careful in formulating the problem setting
in this case. If Alice is allowed to access infinitely many
input elements in a continuous input system, the conditional
entropy rate H(X|Y ) might be infinity. Further, it is not
realistic for Alice to access infinitely many input elements.
because a realistic modulator converts messages to finite
constellation points in a continuous input system in wireless
communication. Therefore, we need to separately formulate
honest Alice and dishonest Alice as follows. The honest Alice
is assumed to access only a fixed finite subset of a general
input system. But, the dishonest Alice is assumed to access
all elements of the general input system. Under this problem
setting, we derived the capacity region.

In the third step, we propose a conversion method to make a
protocol for bit-string commitment with strong security as the
concealing condition (b) by converting a secure list decoding
code. In this converted protocol, the security parameter for the
concealing condition (b) is evaluated by variational distance in
the same way as Winter et al [8], [9]. In particular, this con-
verted protocol has strong security even with continuous input
and output systems, where the honest Alice and the dishonest

2While the conference paper [13] discussed a similar modification of list
decoding, it did not consider the equivocation rate. In this sense, the content
of this paper is different from that of [13].

Alice has different accessibility to the continuous input system.
In this converted protocol, the rate of message size of the bit-
string commitment is the same as the equivocation rate based
on the conditional entropy of the original secure list decoding
code, which shows the merit of the equivocation rate of a
secure list decoding code. In fact, the bit-string commitment
with the continuous case was treated as an open problem in
the preceding studies [9]. In addition, due to the above second
step, our protocol for bit-string commitment works even when
the accessible alphabet by the honest Alice is different from
the accessible alphabet by the dishonest Alice.

This paper is structured as follows. Section II reviews the
existing results for bit-string commitment. Section III explains
how we mathematically handle a general probability space as
input and output systems including continuous systems. Sec-
tion IV gives the formulation of secure list decoding. Section
V introduces information quantities used in our main results.
Section VI states our results for secure list decoding with a
discrete input system. Section VII explains our formulation of
secure list decoding with general input system and states our
results under this setting. Section VIII presents the application
of secure list decoding to the bit-string commitment with
strong security. Section IX shows the converse part, and
Section X proves the direct part.

II. REVIEW OF EXISTING RESULTS FOR BIT-STRING
COMMITMENT

Before stating our result, we review existing results for bit-
string commitment [8], [9]. Throughout this paper, the base of
the logarithm is chosen to be 2. Also, we employ the standard
notation for probability theory, in which, upper case letters
denote random variables and the corresponding lower case
letters denote their realizations. Bit-string commitment has
two security parameters, the concealing parameter δCON > 0
and the binding parameter δBIN > 0. We denote the message
revealed by Alice in Reveal Phase by M̂ . Let Z1 be all
information that Bob obtains during Commit Phase, and Z2 be
all information that Bob obtains during Reveal Phase except
for M̂ . Here, Z1 contains the information generated by Bob.
After Reveal Phase, Bob makes his decision, ACC (accept)
or REJ (rejection). For this decision, Bob has a function
β(Z1, Z2, M̂) that takes the value ACC or REJ. When Alice
intends to send message M in M to Bob, the concealing and
binding conditions are given as follows.

(CON) Concealing condition with δCON > 0. When Alice
is honest, the inequality

1

2
‖PZ1|M=m − PZ1|M=m′‖1 ≤ δCON (1)

holds for m 6= m′ ∈M.
(BIN) Binding condition with δBIN > 0. We assume that

the message M is subject to the uniform distribution
on M. When Alice and Bob are honest,

Pr(β(Z1, Z2,M) = ACC) ≥ 1− δBIN. (2)

When Bob is honest, the inequality

Pr(β(Z1, z2,m) = ACC, β(Z1, z
′
2,m

′) = ACC)

≤δBIN (3)
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holds for m 6= m′ ∈M and z2, z
′
2.

When the protocol with (i) and (ii) is used for bit-string
commitment, the conditions (a) and (c) guarantee (2) and (3) of
(BIN), respectively, and the condition (b) guarantees (CON).

Now, we denote a noisy channel W from a finite set X
to a finite set Y by using a set {Wx}x∈X of distributions on
Y . Winter et al [8], [9] considered the situation that Alice
and Bob use the channel W at n times and the noiseless
channel can be used freely. Winter et al [8], [9] defined
the commitment capacity as the maximum rate when the
code satisfies Concealing condition with δCON,n and Binding
condition with δBIN,n under the condition that the parameters
δCON,n and δBIN,n approach to zero as n goes to infinity.
They derived the commitment capacity under the following
conditions for the channel W ;

(W1) X and Y are finite sets.
(W2) For any x ∈ X , the relation

min
x∈X

min
P∈P(X\{x})

D

( ∑
x′∈X\{x}

P (x′)Wx′

∥∥∥∥Wx

)
> 0

(4)

holds, where D(P‖Q) is the Kullback-Leibler di-
vergence between two distributions P and Q. This
condition is called the non-redundant condition.

To state their result, we introduce a notation; Given a joint
distribution PX,Y on a discrete set X × Y , we denote the
conditional distribution PX|Y=y under the condition that Y =
y. Then, the conditional entropy H(X|Y ) is given as

H(X|Y )PX,Y :=
∑
y∈Y

PY (y)H(PX|Y=y), (5)

H(PX|Y=y) := −
∑
x∈X

PX|Y=y(x) logPX|Y=y(x). (6)

When the joint distribution PX,Y is given as PX,Y (x, y) =
Wx(y)P (x) by using a distribution P ∈ P(X ), we denote
the conditional entropy H(X|Y )PX,Y by H(X|Y )P . They
showed the following proposition;

Proposition 1 ([8, Theorem 2], [9]): When the channel W
satisfies Conditions (W1) and (W2), the commitment capacity
is given as

sup
P∈P(X )

H(X|Y )P . (7)

�
Many noisy channels are physically realized by wireless

communication, and such channels have continuous output
system Y . Indeed, if we apply discretization to a continuous
output system Y , we obtain a discrete output system Y ′.
When we apply their result to the channel with the discrete
output system Y ′, the obtained protocol satisfies Condition
(BIN) even when Bob uses the continuous output system Y .
However, the obtained protocol does not satisfy Condition
(CON) in general under the continuous output system Y .

In fact, Condition (W2) can be removed and Proposition 1
can be generalized as follows. Therefore, Condition (W2) can
be considered as an assumption for simplifying our analysis.

Proposition 2: Assume that the channel W satisfies Con-
dition (W1). We define X0 ⊂ X as

X0 := argmin
X ′⊂X

{
|X ′|

∣∣∣CH{Wx}x∈X ′ = CH{Wx}x∈X
}
,

(8)

where CHS expresses the convex hull of a set S. Then, the
commitment capacity is given as

sup
P∈P(X0)

H(X|Y )P . (9)

�
Proposition 2 follows from Proposition 1 in the following

way. Due to Condition (W1), the channel W with input
alphabet X0 satisfies Condition (W2) as well as (W1). Hence,
the commitment capacity is lower bounded by (9). Since any
operation with the channel W with input alphabet X can
be simulated with X0. Therefore, the commitment capacity
is upper bounded by (9). Thus, we obtain Proposition 2.

III. VARIOUS TYPES OF CONDITIONAL ENTROPIES WITH
GENERAL PROBABILITY SPACE

We focus on an input alphabet X with finite cardinality,
and denote the set of probability distributions on X by P(X ).
But, an output alphabet Y may have infinite cardinality and
is a general measurable set. In this paper, the output alphabet
Y is treated as a general probability space with a measure
µ(dy) because this description covers the probability space of
finite elements and the set of real values. Hence, when the
alphabet Y is a discrete set including a finite set, the measure
µ(dy) is chosen to be the counting measure. When the alphabet
Y is a vector space over the real numbers R, the measure
µ(dy) is chosen to be the Lebesgue measure. Throughout this
paper, we will use an upper case letter and corresponding
lower case letter to stand for a probability measure and its
density function. When we treat a probability distribution P
on the alphabet Y , it is restricted to a distribution absolutely
continuous with respect to µ(dy). In the following, we use
the lower case p(y) to express the Radon-Nikodym derivative
of P with respect to the measure µ(dy), i.e., the probability
density function of P so that P (dy) = p(y)µ(dy). This kind of
channel description covers many useful channels. For example,
phase-shift keying (PSK) scheme of additive white Gaussian
noise (AWGN) channels satisfies this condition. In addition,
the capacity of AWGN channel with the energy constraint
can be approximately achieved when the input alphabet for
encoding is restricted to a finite subset of the set of real
numbers.

For a distribution P on Y and a general measure Q on Y ,
we define the Kullback–Leibler (KL) divergence D(P‖Q) :=

EP [log p(Y )
q(Y ) ] and Rényi divergence of order α(6= 1) > 0

Dα(P‖Q) := 1
α−1 logEP [(p(Y )

q(Y ) )α−1].
WhenM is a finite set and Y is a general probability space,

the conditional entropy is defined as

H(M |Y ) :=

∫
Y
H(PM |Y=y)p(y)µ(dy). (10)
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This quantity can be written as

H(M |Y ) = −D(PMY ‖IM × PY )

= max
Q∈P(Y)

−D(PMY ‖IM ×Q), (11)

where IM is defined as IM (m) = 1. We focus on the following
type of Rényi conditional entropy Hα(M |Y ) as [14], [15],
[16]

Hα(M |Y ) := max
Q∈P(Y)

−Dα(PMY ‖IM ×Q). (12)

Hα(M |Y ) is monotonically decreasing for α [16, Lemma
7]. Hence, we have H(M |Y ) ≥ Hα(M |Y ) for α > 1.
It is known that the maximum is attained by qα(y) :=

(
∑
m pMY (m,y)α)1/α∫

Y(
∑
m pMY (m,y)α)1/αµ(dy)

[16, Lemma 4]. Hence, when two
pairs of variables (M1, Y1) and (M2, Y2) are independent, we
have the additivity;

Hα(M1M2|Y1Y2) = Hα(M1|Y1) +Hα(M2|Y2). (13)

IV. PROBLEM SETTING

A. Our problem setting without explicit description of coding
structure

To realize the requirements (a), (b), and (c) mentioned in
Section I, we formulate the mathematical conditions for the
protocol for a given channel W from the discrete system
X to the other system Y with integers L < M and security
parameters εA, δC , δD. In the asymptotic regime, i.e., the case
when the channel W is used n times and n goes to infinity,
the integers L and M go to infinity, which realizes the situation
that the security parameters εA, δC , and δD approach to zero.
Hence, when L and M is fixed, the security parameters cannot
be chosen to be arbitrarily small. In the following, we describe
the condition in an intuitive form in the first step. Later, we
transform it into a coding-theoretic form because the coding-
theoretic form matches the theoretical discussion including the
proofs of our main results.

Alice sends her message M ∈ M := {1, . . . ,M} via a
noisy channel with an encoder φ, which is a map from M
to X . Bob outputs the L messages M1, . . .ML. The decoder
is given as the following Ψ; For y ∈ Y , we choose a subset
Ψ(y) ⊂M with |Ψ(y)| = L.

Then, we impose the following conditions for an encoder φ
and a decoder Ψ.

(A) Verifiable condition with εA > 0. Any element m ∈
M satisfies

Pr[m /∈ Ψ(Y )|X = φ(m)] ≤ εA. (14)

(B) Equivocation version of concealing condition with
r > 0. The inequality

H(M |Y ) ≥ r (15)

holds.
(C) Binding condition for honest Alice with δC > 0. Any

distinct pair m′ 6= m satisfies

Pr[m′ ∈ Ψ(Y )|X = φ(m)] ≤ δC . (16)

Now, we discuss how the code (φ,Ψ) can be used for the
task explained in Section I. Assume that Alice sends her mes-
sage M to Bob by using the encoder φ via noisy channel W
and Bob gets the list M1, . . . ,ML by applying the decoder Ψ
at Step (i). At Step (ii), Alice sends her message M to Bob via
a noiseless channel. Verifiable condition (A) guarantees that
her message M belongs to Bob’s list. Hence, the requirement
(a) is satisfied. Equivocation version of concealing condition
(B) forbids Bob to identify Alice’s message at Step (i), hence it
guarantees the requirement (b). In the asymptotic setting, this
condition is weaker than Concealing condition (CON) when
δCON goes to zero and r is smaller than logM. Hence, this
relaxation enables us to exceed the rate (7) derived by [8], [9].
This type of relaxation is often used in wire-tap channel [17].

In fact, if m is Alice’s message and there exists another
element m′(6= m) ∈ M such that Pr[m ∈ Ψ(Y )|X = φ(m)]
and Pr[m′ ∈ Ψ(Y )|X = φ(m)] are close to 1, Alice can
make the following cheating as follows; She sends m′ instead
of m at the phase (ii). Since Condition (C) forbids Alice such
cheating, it guarantees the requirement (c). Hence, it can be
considered as the binding condition for honest Alice. Further,
Bob is allowed to decode less than L messages. That is, L is
the maximum number that Bob can list as the candidates of
the original message. However, Condition (C) assumes honest
Alice who uses the correct encoder φ. Dishonest Alice can
send an element x0 different from φ(m) such that Pr[m ∈
Ψ(Y )|X = x0] and Pr[m′ ∈ Ψ(Y )|X = x0] are close to
1. To cover such a case, we impose the following condition
instead of Condition (C).

(D) Binding condition for dishonest Alice with δD > 0.
For x ∈ X , we define the quantity δ(x,Ψ) as the
second largest value among {Pr[m ∈ Ψ(Y )|X =
x]}Mm=1. Then, any x ∈ X satisfies

δ(x,Ψ) ≤ δD. (17)

In fact, Condition (D) implies that

Pr[m′,m ∈ Ψ(Y )|X = x] ≤ δD. (18)

Eq. (18) can be shown by contradiction due to the following
relation;

Pr[m′,m ∈ Ψ(Y )|X = x]

≤min(Pr[m ∈ Ψ(Y )|X = x],Pr[m′ ∈ Ψ(Y )|X = x])

≤δ(x,Ψ). (19)

The difference between Conditions (C) and (D) are summa-
rized as follows. Condition (C) expresses the possibility that
Alice makes cheating in the reveal phase while she behaves
honestly in the commit phase. Condition (D) expresses the
possibility that Alice makes cheating in the reveal phase when
she behaves dishonestly even in the commit phase. Hence, it
can be considered as the binding condition for dishonest Alice.
Therefore, while the case with honest Alice and honest Bob
is summarized in Fig. 1, the case with dishonest Alice and
honest Bob is summarized in Fig. 2.

We consider another possibility for requirement (b) by
replacing the conditional entropy by the conditional Rényi
entropy of order α > 1.
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Fig. 1. Case with honest Alice and honest Bob. The set of Bob’s decoded
messages contains Alice’s message M . Alice cannot infer other decoded
messages.
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Fig. 2. Case with dishonest Alice and honest Bob. Dishonest Alice chooses
Xn ∈ Xn such that she infers at least two elements in the set of Bob’s
decoded messages. Condition (D) guarantees the non-existence of such an
element Xn ∈ Xn.

(Bα) Rényi equivocation type of concealing condition of
order α > 1 with r. The inequality

Hα(M |Y ) ≥ r (20)

holds.
Now, we observe how to characterize the code constructed

to achieve the capacity in the paper [6]. For this character-
ization, we consider the following code when M′L = M.
We divide the M messages into M′ groups whose group is
composed of L messages. First, we prepare a code (φ′, ψ′)
to transmit the message with size M′ with a decoding error
probability ε′A, where φ′ is the encoder and ψ′ is the decoder.
When the message M belongs to the i-th group, Alice sends
φ′(i). Using the decoder ψ′, Bob recovers i′. Then, Bob
outputs L elements that belongs to the i′-th group. In this
code, the parameter H(M |Y ) is given as log L. Hence, it
satisfies condition (B) with a good parameter. However, the
parameters δC and δD become at least 1 − ε′A. Hence, this
protocol essentially does not satisfy Biding condition (C) nor
(D). In this way, our security parameter rules out the above
trivial code construction.

B. Our setting with coding-theoretic description

To rewrite the above conditions in a coding-theoretic
way, we introduce several notations. For x ∈ X and
a distribution on X , we define the distribution Wx and
WP on Y as Wx(y) := W (y|x) and WP (y) :=∑
x∈X P (x)W (y|x). Alice sends her message M ∈ M :=

{1, . . . ,M} via noisy channel W with a code φ, which
is a map from M to X . Bob’ decoder is described as
disjoint subsets D = {Dm1,...,mL

}{m1,...,mL}⊂M such that
∪{m1,...,mL}⊂MDm1,...,mL

= Y . That is, we have the relation
Dm1,...,mL

= {y|{m1, . . . ,mL} = Ψ(y)}. In the following,
we denote our decoder by D instead of Ψ.

In particular, when a decoder has only one outcome as an
element ofM it is called a single-element decoder. It is given

as disjoint subsets D̃ = {D̃m}m∈M such that ∪m∈MD̃m = Y .
Here, remember that Winter et al [8], [9] assumes the uniform
distribution on M for the message M in Binding condition.

Theorem 1: When the message M is subject to the uniform
distribution on M in a similar way to Winter et al [8], [9],
the conditions (A) – (D) for an encoder φ and a decoder D =
{Dm1,...,mL

}{m1,...,mL}⊂M are rewritten in a coding-theoretic
way as follows.

(A) Verifiable condition.

εA(φ,D) := max
m∈M

εA,m(φ(m), D) ≤ εA (21)

εA,m(x,D) :=1−
∑

m1,...,mL

Wx(Dm1,...,mL
), (22)

where the above sum is taken under the condition
m ∈ {m1, . . . ,mL}.

(B) Equivocation version of concealing condition with
r > 0.

E(φ) := logM− min
Q∈P(Y)

M∑
m=1

1

M
D(Wφ(m)‖Q)

≥r. (23)

(Bα) Rényi equivocation type of concealing condition of
order α > 1 with r.

Eα(φ)

:= logM

− min
Q∈P(Y)

1

α− 1
log

M∑
m=1

1

M
2(α−1)Dα(Wφ(m)‖Q)

≥r. (24)

(C) Binding condition for honest Alice.

δC(φ,D) := max
m∈M

δC,m(φ(m), D) ≤ δC (25)

δC,m(x,D)

:= max
m′( 6=m)∈M

∑
m1,...,mL

Wx(Dm1,...,mL
), (26)

where the above sum is taken under the condition
m′ ∈ {m1, . . . ,mL}.

(D) Binding condition for dishonest Alice. For x ∈ X ,
we define the quantity δD,x(D) as the second largest
value among {(1 − εA,m(x,D))}Mm=1. Then, the
relation

δD(D) := max
x∈X

δD,x(D) ≤ δD (27)

holds.
�

Proof: For any m ∈ M and y ∈ Y , the condi-
tion m ∈ Ψ(y) is equivalent to the condition y ∈
∪m1,...,mL:{m1,...,mL}3m′Dm1,...,mL

. Since∑
m1,...,mL:{m1,...,mL}3m

Wx(Dm1,...,mL
)

=Wx

( ⋃
m1,...,mL:{m1,...,mL}3m

Dm1,...,mL

)
,
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we obtain the equivalence between the conditions (A) and
(C) given in Section IV-A and those given here. In a similar
way, the condition (17) is equivalent to the condition (27),
which implies the desired equivalence with respect to the
condition (D). Since M is subject to the uniform distribution,
(15) and (20) are equivalent to (23) and (24). In fact, since
minQ∈P(Y)

∑M
m=1

1
MD(Wφ(m)‖Q)

=
∑M
m=1

1
MD(Wφ(m)‖

∑M
m=1

1
MWφ(m)) = I(M ;Y ), E(φ)

is calculated as H(M)− I(M ;Y ) = H(M |Y ), and Eα(φ) is
calculated as

2−(α−1)Eα(φ)

= min
Q∈P(Y)

( 1

M

)α−1 M∑
m=1

1

M
2(α−1)Dα(Wφ(m)‖Q)

= min
Q∈P(Y)

M∑
m=1

1

M

∫
Y

( wφ(m)(y)

M

q(y)

)α−1

wφ(m)(y)µ(dy)

= min
Q∈P(Y)

2(α−1)Dα(PMY ‖IM×Q)

=2−(α−1) maxQ∈P(Y)(−Dα(PMY ‖IM×Q))

=2−(α−1)Hα(M |Y ). (28)

Hence, we obtain the desired equivalence for the conditions
(B) and (Bα).

In the following, when a code (φ,D) satisfies conditions
(A), (B) and (D), it is called an (εA, r, δD) code. Also, for a
code (φ,D), we denote M and L by |(φ,D)|1 and |(φ,D)|2.
Also, we allow a stochastic encoder, in which φ(m) is a
distribution Pm on X . In this case, for a function f from
X to R, f(φ(m)) expresses

∑
x f(x)Pm(x).

V. INFORMATION QUANTITIES AND REGIONS WITH
GENERAL PROBABILITY SPACE

A. Information quantities

Section III introduced various types of conditional entropies
with general probability space. This section introduces other
types of information quantities with general probability space.
In general, a channel from X to Y is described as a collection
W of conditional probability measures Wx on Y for all
inputs x ∈ X . Then, we impose the above assumption to Wx

for any x ∈ X . Hence, we have Wx(dy) = wx(y)µ(dy).
We denote the conditional probability density function by
w = (wx)x∈X . When a distribution on X is given by a
probability distribution P ∈ P(X ), and a conditional dis-
tribution on a set Y with the condition on X is given by
V , we define the joint distribution W × P on X × Y by
W × P (B, x) := W (B|x)P (x), and the distribution W · P
on Y by W ·P (B) :=

∑
xW (B|x)P (x) for a measurable set

B ⊂ Y . Also, we define the notations w × P and w · P as
w×P (y, x)µ(dy) := W ×P (dy, x) = wx(y)P (x)µ(dy) and
w ·P (y)µ(dy) := W ·P (dy) =

∑
x∈X wx(y)P (x)µ(dy). We

also employ the notations WP := W · P and wP := w · P .
As explained in Section VI, we denote the expectation and

the variance under the distribution P ∈ P(Y) by EP [ ] and
VP [ ], respectively. When P is the distribution Wx ∈ P(Y)
with x ∈ X , we simplify them as Ex[ ] and Vx[ ], respectively.
This notation is also applied to the n-fold extended setting

on Yn. In contrast, when we consider the expectation on
the discrete set X or Xn, ET expresses the expectation with
respect to the random variable T that takes values in the set
X or the set Xn.

In our analysis, for P ∈ P(X ), we address the following
quantities;

I(X;Y )P

:=D(W × P‖WP × P ) =
∑
x∈X

P (x)D(Wx‖WP ), (29)

Iα(X;Y )P

:= min
Q∈P(Y)

Dα(W × P‖Q× P )

= min
Q∈P(Y)

1

α− 1
log

∫
Y

∑
x∈X

P (x)wx(y)αq(y)−α+1µ(dy)

(a)
=

α

α− 1
log

∫
Y

(∑
x∈X

P (x)wx(y)α
) 1
α

µ(dy), (30)

H(X)P

:=−
∑
x∈X

P (x) logP (x), (31)

where (a) follows from the equality condition of Hölder
inequality [18]. Since in this paper, the conditional distribution
on Y conditioned with X is fixed to the channel W , it is
sufficient to fix a joint distribution P ∈ P(X ) in the above
notation. In addition, our analysis needs mathematical analysis
with a Markov chain U −X − Y with a variable on a finite
set U . Hence, we generalize the above notation as follows.

I(X;Y |U)P :=
∑
u∈U

PU (u)D(W × P‖WP × PX|U=u),

(32)

H(X|U)P := −
∑
u∈U

∑
x∈X

P (x, u) log
P (x, u)

PU (u)
, (33)

and

Iα(X;Y |U)P

:=
∑
u∈U

PU (u) min
Q∈P(Y)

Dα(W × P‖Q× PX|U=u). (34)



7

B. Regions

Then, we define the following regions.

C

:=
⋃

P∈P(U×X )


 R1

R2

R3


∣∣∣∣∣∣∣∣

0 < R1 −R2 < I(X;Y |U)P ,
R3 ≤ R1 − I(X;Y |U)P ,
R1 < H(X|U)P ,
0 < R1, R2, R3


(35)

Cs

:=
⋃

P∈P(U×X )


 R1

R2

R3


∣∣∣∣∣∣∣∣

0 < R1 −R2 < I(X;Y |U)P ,
R3 ≤ H(X|Y U)P ,
R1 < H(X|U)P ,
0 < R1, R2, R3


(36)

Cα

:=
⋃

P∈P(U×X )


 R1

R2

R3


∣∣∣∣∣∣∣∣

0 < R1 −R2 < I(X;Y |U)P ,
R3 < R1 − Iα(X;Y |U)P ,
R1 < H(X|U)P ,
0 < R1, R2, R3

 .

(37)

In the above definitions, there is no restriction for the cardi-
nality of U . Due to the relations

H(X|U)P =
∑
u∈U

PU (u)H(X)PX|U=u
,

H(X|Y U)P =
∑
u∈U

PU (u)H(X|Y )PX|U=u
,

(38)

and I(X;Y |U)P = H(X|U)P −H(X|Y U)P , Caratheodory
lemma guarantees that the cardinality of U can be restricted
to 3 in the definitions of C and Cs. In addition, the condition
R3 < R1 − Iα(X;Y |U)P in the definition of Cα is rewritten
as

2(α−1)Iα(X;Y |U)P < 2(α−1)(R1−R3). (39)

Since the relation 2(α−1)Iα(X;Y |U)P =∑
u∈U PU (u)2(α−1)Iα(X;Y )P |X|U=u holds, Caratheodory

lemma guarantees that the cardinality of U can be restricted
to 4 in the definition of Cα.

To see the relation between two regions C and Cs, we focus
on the inequality

R1 − I(X;Y |U)P <H(X|U)P − I(X;Y |U)P

=H(X|Y U)P (40)

in the region C. Hence, the condition R3 ≤ R1−I(X;Y |U)P
is stronger than the condition R3 ≤ H(X|Y U)P , which
implies the relation;

C ⊂ Cs. (41)

When we focus only on R1 and R3 instead of (R1, R2, R3),
we have simpler characterizations. We define the regions;

C1,3 := {(R1, R3)|∃R2 such that (R1, R2, R3) ∈ C} (42)

Cs,1,3 := {(R1, R3)|∃R2 such that (R1, R2, R3) ∈ Cs} (43)

C1,3
α := {(R1, R3)|∃R2 such that (R1, R2, R3) ∈ Cα}.

(44)

Then, we have the following lemma.
Lemma 1: We have

C1,3 = {(R1, R3) |0 ≤ R1 ≤ log d, 0 ≤ R3 ≤ γ1(R1)}
(45)

C1,3
α = {(R1, R3) |0 ≤ R1 ≤ log d, 0 ≤ R3 ≤ γα(R1)} ,

(46)

and

Cs,1,3

=

{
(R1, R3)

∣∣∣∣0 ≤ R1 ≤ log d, 0 ≤ R3 ≤ max
R≤R1

γ1(R)

}
,

(47)

where d := |X | and

γ1(R1)

:= max
P∈P(U×X )

{H(X|Y U)P |H(X|U)P = R1}, (48)

γα(R1)

:= max
P∈P(U×X )

{R1 − Iα(X;Y |U)P |H(X|U)P = R1}. (49)

When |X | is infinite, the condition ≤ log d is removed in the
above equations. �
Lemma 1 is shown in Appendix A. For the analysis on the
above regions, we define the functions;

γ1,o(R1) := max
P∈P(X )

{H(X|Y )P |H(X)P = R1} (50)

γα,o(R1) := max
P∈P(X )

{R1 − Iα(X;Y )P |H(X)P = R1}.

(51)

Then, we have the following lemma.
Lemma 2: When γ1,o is a concave function, we have

γ1(R1) = γ1,o(R1). When γα,o is a concave function, we
have γα(R1) = γα,o(R1).
Lemma 2 is shown in Appendix B. Using these two lemmas,
we numerically calculate the regions C1,3, Cs,1,3, and C1,3

α as
Fig. 3.

We also define the quantities;

C := sup
(R1,R2,R3)∈C

R3, Cs := sup
(R1,R2,R3)∈Cs

R3, (52)

Cα := sup
(R1,R2,R3)∈Cα

R3. (53)

Then, using (47) and (45), we have the following lemma.
Lemma 3:

C = Cs = max
P∈P(X )

H(X|Y )P , (54)

Cα = max
P∈P(X )

H(X)P − Iα(X;Y )P . (55)

�

VI. RESULTS FOR SECURE LIST DECODING WITH
DISCRETE INPUT

A. Statements of results

To give the capacity region, we consider n-fold dis-
crete memoryless extension W n of the channel W . A se-
quence of codes {(φn, Dn)} is called strongly secure when
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R3

Fig. 3. Numerical plots for C1,3, Cs,1,3 and C1,3α under the binary sym-
metric channel with cross over probability 0.1. Green normal horizontal line
expresses the upper bound of Cs,1,3. Blue normal line expresses the upper
bound of C1,3. Red dashed line expresses the upper bound of C1,31.1 . Black

dotted line expresses the upper bound of C1,31.2 . Other bounds of C1,3 and
Cα,1,3 are R1 = 1 and R3 = 0. We numerically checked that γ1,o, γ1.1,o,
and γ1.2,o satisfy the condition in Lemma 2.

εA(φn, Dn) and δD(Dn) approach to zero. A sequence of
codes {(φn, Dn)} is called weakly secure when εA(φn, Dn)
and δC(φn, Dn) approach to zero. A rate triple (R1, R2, R3)
is strongly deterministically (stochastically) achievable when
there exists a strongly secure sequence of deterministic
(stochastic) codes {(φn, Dn)} such that 1

n log |(φn, Dn)|1
approaches to R1, 1

n log |(φn, Dn)|2 approaches to R2
3, and

limn→∞
1
nE(φn) ≥ R3. A rate triple (R1, R2, R3) is α-

strongly deterministically (stochastically) achievable when
there exists a strongly secure sequence of deterministic
(stochastic) codes {(φn, Dn)} such that 1

n log |(φn, Dn)|1
approaches to R1, 1

n log |(φn, Dn)|2 approaches to R2, and
limn→∞

1
nEα(φn) ≥ R3. A rate triplet (R1, R2, R3) is

(α-)weakly deterministically (stochastically) achievable when
there exists a weakly secure sequence of deterministic
(stochastic) codes {(φn, Dn)} such that 1

n log |(φn, Dn)|1
approaches to R1, 1

n log |(φn, Dn)|2 approaches to R2, and
limn→∞

1
nE(φn) ≥ R3 (limn→∞

1
nEα(φn) ≥ R3). Then,

we denote the set of strongly deterministically (stochastically)
achievable rate triple (R1, R2, R3) by RL(s,d) (RL(s,s)). In the
same way, we denote the set of weakly deterministically
(stochastically) achievable rate triple (R1, R2, R3) by RL(w,d)

(RL(w,s)). The α-version with α > 1 is denoted by RL,α(s,d),
Rα(s,s), R

L,α
(w,d), and Rα(w,s), respectively.

As outer bounds of RL(w,d), R
L
(s,s), and RL(s,d), we have the

following theorem.
Theorem 2: We have the following characterization.

RL(w,d) ⊂ C, RL(s,s) ⊂ Cs, RL(s,d) ⊂ C, (56)

where C expresses the closure of the set C. �
For their inner bounds, we have the following theorem.
Theorem 3: Assume the condition (W2). (i) A rate triplet

(R1, R2, R3) is strongly deterministically achievable when

3The definitions of |(φn, Dn)|1 and |(φn, Dn)|2 are given in the end of
Section IV-B.

there exists a distribution P ∈ P(X ) such that

0 < R1 −R2 < I(X;Y )P , (57)
R1 < H(X)P , (58)
R3 ≤ R1 − I(X;Y )P . (59)

(ii) A rate triplet (R1, R2, R3) is α-strongly deterministically
achievable when there exists a distribution P ∈ P(X ) such
that

0 < R1 −R2 < I(X;Y )P , (60)
R1 < H(X)P , (61)
R3 ≤ R1 − Iα(X;Y )P . (62)

�
In fact, the condition R1 −R2 < I(X;Y )P corresponds to

Verifiable condition (A), the condition I(X;Y )P ≤ R1 −R3

(Iα(X;Y )P ≤ R1 − R3) does to (Rényi) equivocation type
of concealing condition (B), and the condition R1 < H(X)P
does to the binding condition for dishonest Alice (D). Theo-
rems 2 and 3 are shown in Sections IX and X, respectively.
We have the following corollaries from Theorems 2 and 3.

Corollary 1: When Condition (W2) holds, we have the
following relation for G ∈ {(s, d), (w, d)};

RLG = C (63)

and

Cα ⊂ RL,αG . (64)

�
Hence, even when our binding condition is relaxed to

Condition (C), when our code is limited to deterministic codes,
we have the same region as the case with Condition (D).
Proof: It is sufficient to show the direct part. For this aim,
we notice that the following relation for α > α′ > 1;

RL,αG ⊂ RL,α
′

G , ∪α>1Cα = C. (65)

Hence, it is sufficient to show that there exists a strongly
secure sequence of deterministic codes with the rate triplet
(R1, R2, R3) to satisfy

0 < R1 −R2 < I(X;Y |U)P , (66)
R1 < H(X|U)P , (67)
R3 ≤ R1 − Iα(X;Y |U)P (68)

for a given P ∈ P(X × U). There exist distribu-
tions P1, . . . , PU ∈ P(X ) such that U = {1, . . . ,U}
and Pu(x) = P (x,u)

PU (u) for u ∈ U , where PU (u) =∑
x′∈X P (x′, u). Then, we have

∑
u∈U PU (u)I(X;Y )Pu =

I(X;Y |U)P ,
∑
u∈U PU (u)H(X)Pu = H(X|U)P , and∑

u∈U PU (u)Iα(X;Y )Pu = Iα(X;Y |U)P .
For simplicity, in the following, we consider the case with

U = 2. We choose a sequence {(φn,1, Dn,1)} ({(φn,2, Dn,2)})
of strongly secure deterministic codes that achieve the rates
to satisfy (60), (61), and (62) with P = P1(P2). We
denote PU (1) by λ. Then, we define the concatenation
{(φn, Dn)} as follows. We assume that φbλnc,1(φn−bλnc,2)
is a map from M1(M2) to X bλnc (Xn−bλnc). The encoder
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φn is given as a map from (m1,m2) ∈ M1 × M2 to
(φbλnc(m1), φn−bλnc(m2)) ∈ Xn. The decoder Dn is given
as a map from Yn to ML1

1 ×M2
L2 as

Dn(y1, . . . , yn)

:=(Dbλnc,1(y1, . . . , ybλnc), Dn−bλnc,2(ybλnc+1, . . . , yn))
(69)

for (y1, . . . , yn) ∈ Yn. We have εA(φn, Dn) ≤
εA(φbλnc,1, Dbλnc,1)+ εA(φn−bλnc,2, Dn−bλnc,2) because the
code (φn, Dn) is correctly decoded when both codes
(φbλnc,1, Dbλnc,2) and (φn−bλnc,2, Dn−bλnc,2) are correctly
decoded. Alice can cheat the decoder Dn only when Alice
cheats one of the decoders Dbλnc,1 and Dn−bλnc,2. Hence,
δD(Dn) ≤ min(δD(Dbλnc,1), δD(Dn−bλnc,2)). Therefore, the
concatenation {(φn, Dn)} is also strongly secure.

The rate tuples of the code (φn, Dn) is
calculated as |(φn, Dn)|i = |(φbλnc,1, Dbλnc,1)|i +
|(φn−bλnc,2, Dn−bλnc,2)|i for i = 1, 2. Also, using
the additivity property (13), we have Eα(φn) =
Eα(φbλnc,1) + Eα(φn−bλnc,2). Hence, we have shown
the existence of a strongly secure sequence of deterministic
codes with the rate triplet (R1, R2, R3) to satisfy the
conditions (66), (67), and (68) when U = 2. For a general
U, we can show the same statement by repeating the above
procedure.

B. Outline of proof of direct theorem

Here, we present the outline of the direct theorem (Theorem
3). Since limα→1 Iα(X;Y )P = I(X;Y )P , the first part (i)
follows from the second part (ii). Hence, we show only the
second part (ii) in Section X based on the random coding.
To realize Binding condition for dishonest Alice (D), we need
to exclude the existence of xn ∈ Xn and m 6= m′ ∈ Mn

such that 1− εA,m(xn, D) and 1− εA,m′(xn, D) are far from
0. For this aim, we focus on Hamming distance dH(xn, xn′)
between xn = (xn1 , . . . , x

n
n), xn′ = (xn1

′, . . . , xnn
′) ∈ Xn as

dH(xn, xn′) := |{k|xnk 6= xnk
′}|. (70)

and introduce functions {ξx}x∈X to satisfy the following
conditions;

Ex[ξx(Y )] = 0, (71)
ζ1 := min

x 6=x′∈X
Ex′ [−ξx(Y )] > 0, (72)

ζ2 := max
x,x′∈X

Vx′ [ξx(Y )] <∞. (73)

For xn = (xn1 , . . . , x
n
n) ∈ Xn and yn = (yn1 , . . . , y

n
n) ∈ Yn,

we define

ξxn(yn) :=

n∑
i=1

ξxni (yni ). (74)

Then, given an encoder φn mapping Mn to Xn, we impose
the following condition on Bob’s decoder to include the
message m in his decoded list; the inequality

ξφn(m)(Y
n) ≥ −ε1n (75)

holds when Y n is observed. The condition (75) guarantees
that 1− εA,m(xn, D) is small when dH(xn, φn(m)) is larger
than a certain threshold.

As shown in Section X, due to the conditions (71), (72), and
(73), the condition (75) guarantees that the quantity δD(D) is
small. Indeed, we have the following lemma, which is shown
in Section X-A.

Lemma 4: When the condition (W2) holds, there exist
functions {ξx}x∈X to satisfy the conditions (71), (72), and
(73). �

VII. RESULTS FOR SECURE LIST DECODING WITH
CONTINUOUS INPUT

In the previous section, we assume that Alice can access
only elements of the finite set X even when Alice is malicious.
However, in the wireless communication case, the input system
is given as a continuous space X̃ . When we transmit a message
via such a channel, usually we fix the set X of constellation
points as a subset of X̃ , and the modulator converts an element
of input alphabet to a constellation point. That is, the choice
of the set X depends on the performance of the modulator. In
this situation, it is natural that dishonest Alice can send any
element of the continuous space X̃ while honest Alice sends
only an element of X . Therefore, only the condition (D) is
changed as follows because only the condition (D) is related
to dishonest Alice.

(D’) Binding condition for dishonest Alice. For x ∈ X̃ ,
we define the quantity δD′,x(D) as the second largest
value among {(1 − εA,m(x,D))}Mm=1. Then, the
relation

δD′(D) := max
x∈X

δD′,x(D) ≤ δC (76)

holds.

Then, a sequence of codes {(φn, Dn)} is called ulti-
mately secure when εA(φn, Dn) and δD′(Dn) approach to
zero. A rate triple (R1, R2, R3) is (α)-ultimately determin-
istically (stochastically) achievable when there exists a ul-
timately secure sequence of deterministic (stochastic) codes
{(φn, Dn)} such that 1

n log |(φn, Dn)|1 approaches to R1,
1
n log |(φn, Dn)|2 approaches to R2, and limn→∞

1
nE(φn) ≥

R3 (limn→∞
1
nEα(φn) ≥ R3). We denote the set of ulti-

mately deterministically (stochastically) achievable rate triple
(R1, R2, R3) by RL(u,d) (RL(u,s)). The α-version with α > 1

is denoted by RL,α(u,d), R
L,α
(u,s), respectively.

The same converse result as Theorem 2 holds for RL(u,d)

and RL(u,s) because a sequence of ultimately secure codes
is strongly secure. Hence, the aim of this section is to
recover the same result as Theorem 3 for ultimately secure
codes under a certain condition for our channel. The key
point of this problem setting is to exclude the existence of
xn ∈ X̃n and m 6= m′ ∈ Mn such that 1 − εA,m(xn, D)
and 1 − εA,m′(xn, D) are far from 0. For this aim, we need
to assume a distance d on the space X̃ . Then, we may
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consider functions {ξx}x∈X to satisfy the following conditions
in addition to (71);

ζ̂1(r) := inf
x∈X ,x′∈X̃ :d(x,x′)≥r

Ex′ [−ξx(Y )] > 0, (77)

ζ̂2 := sup
x∈X ,x′∈X̃

Vx′ [ξx(Y )] <∞ (78)

for r > 0. It is not difficult to prove the same result as
Theorem 3 when the above functions {ξx}x∈X exist. However,
it is not so easy to prove the existence of the above functions
under natural models including AWGN channel. Therefore, we
introduce the following condition instead of (77) and (78).

(W3) There exist functions {ξx}x∈X̃ to satisfy the follow-
ing conditions in addition to (71);

ζ̄1,t(r)

:=
−1

t
log sup

x∈X ,x′∈X̃ :d(x,x′)≥r
Ex′ [2t(ξx(Y )−ξx′ (Y ))]

>0, (79)
ζ̄2 := sup

x∈X̃
Vx[ξx(Y )] <∞ (80)

for r > 0 and t ∈ (0, 1/2). Indeed, as discussed
in Step 1 of our proof of Lemma 16, when func-
tions {ξx}x∈X̃ satisfy the above conditions and the
difference between two vectors xn′ and xn satisfy
a certain condition, we can distinguish a vector xn′

from xn by using ξx1
+ · · ·+ ξxn .

Notice that ζ̄1,t(r) is monotonically increasing for r.
That is, we have the following theorem.
Theorem 4: Assume the conditions (W2) and (W3). (i) A

rate triplet (R1, R2, R3) is ultimately deterministically achiev-
able when there exists a distribution P ∈ P(X ) such that

0 < R1 −R2 < I(X;Y )P ≤ R1 −R3 ≤ R1 < H(X)P .
(81)

(ii) A rate triplet (R1, R2, R3) is α-ultimately deterministically
achievable when there exists a distribution P ∈ P(X ) such
that

0 <R1 −R2 < I(X;Y )P ≤ Iα(X;Y )P

≤R1 −R3 ≤ R1 < H(X)P . (82)

�
Since RL(u,d) ⊂ R

L
(s,d) and RL(u,s) ⊂ R

L
(s,s), the combina-

tion of Theorems 2 and 4 yields the following corollary in the
same way as Corollary 1.

Corollary 2: When Conditions (W2) and (W3) hold, we
have the following relations

RL(u,d) = C, RL(u,s) ⊂ Cs (83)

and

Cα ⊂ RL,α(u,d) ⊂ R
L,α
(u,s). (84)

�
As an example, we consider an additive noise channel when

X̃ = Rd, which equips the standard Euclidean distance d. The
output system Y is also given as Rd. We fix a distribution PN
for the additive noise N on X̃ . Then, we define the additive

noise channel {W [PN ]x}x∈X̃ as wx(y) := pN (y − x). We
assume the following conditions;

∞ > E0[− logw0(Y )] > −∞ (85)
V0[− logw0(Y )] <∞. (86)

Then, we have the following lemma.
Lemma 5: When the additive noise channel {W [PN ]x}x∈X̃

satisfies (85) and (86), and when ξx is chosen as ξx(y) :=
logwx(y)− E0[logw0(Y )], the condition (W3) holds. �
Proof: Since the range of t in the condition (79) is (0, 1/2),
we assume thwe assume that the real number t belongs to
(0, 1/2) in this proof. The conditions (71) and (80) follow
from (85) and (86), respectively.

−1

t
logEx′ [2t(ξx(Y )−ξx′ (Y ))] = D1−t(Wx′‖Wx). (87)

For an small real number ε < 1/3, we choose r0 > 0 such
that

W0({y ∈ Y|d(y, 0) < r0}) ≤ ε. (88)

We define the function f from Y to {0, 1} such that
f−1({0}) = {y ∈ Y|d(y, 0) < r0}. When x0 satisfies
d(x0, 0) > 2r0, we have

Wx0
◦ f−1({0}) ≤ ε. (89)

Since Wx0
◦ f−1({1}),W0 ◦ f−1({0}) ≤ 1, (88) and (89)

imply that

2−tD1−t(Wx0
◦f−1‖W0◦f−1)

=Wx0
◦ f−1({0})1−tW0 ◦ f−1({0})t

+Wx0
◦ f−1({1})1−tW0 ◦ f−1({1})t

≤εt + ε1−t. (90)

Thus,

D1−t(Wx0 ◦ f−1‖W0 ◦ f−1) ≥ −1

t
log(εt + ε1−t). (91)

When d(x, x′) > 2r0, we have

− 1

t
logEx′ [2t(ξx(Y )−ξx′ (Y ))]

=D1−t(Wx′‖Wx) = D1−t(Wx′−x‖W0)

≥D1−t(Wx′−x ◦ f−1‖W0 ◦ f−1)

≥− 1

t
log(εt + ε1−t) > 0. (92)

Therefore,

inf
x′∈X̃ :d(0,x′)≥r

−1

t
logEx′ [2t(ξ0(Y )−ξx′ (Y ))]

= min
(

inf
x′∈X̃ :r0≥d(0,x′)≥r

−1

t
logEx′ [2t(ξ0(Y )−ξx′ (Y ))],

inf
x′∈X̃ :d(0,x′)>r0

−1

t
logEx′ [2t(ξ0(Y )−ξx′ (Y ))]

)
≥min

(
min

x′∈X̃ :r0≥d(0,x′)≥r
D1−t(Wx′‖W0),

− 1

t
log(εt + ε1−t)

)
. (93)
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Since D1−t(Wx′‖W0) > 0 for x′ 6= 0, the set
{x′ ∈ X̃ |r0 ≥ d(0, x′) ≥ r} is compact, and the
map x′ 7→ D1−t(Wx′‖W0) continuous, we find that
minx′∈X̃ :r0≥d(0,x′)≥rD1−t(Wx′‖W0) > 0. Hence, the quan-
tity (93) is strictly positive.

Since

ζ̄1,t(r) = inf
x∈X ,x′∈X̃ :d(x,x′)≥r

−1

t
logEx′ [2t(ξx(Y )−ξx′ (Y ))]

= inf
x′∈X̃ :d(0,x′)≥r

−1

t
logEx′ [2t(ξ0(Y )−ξx′ (Y ))], (94)

the condition (79) holds.

VIII. APPLICATION TO BIT-STRING COMMITMENT

A. Bit-string commitment based on secure list decoding

Now, we construct a code for bit-string commitment by
using our code (φ,D) for secure list decoding. (i) The previous
studies [8, Theorem 2], [9] considered only the case with a
discrete input alphabet X and discrete output alphabet Y while
a continuous generalization of their result was mentioned as an
open problem in [9]. We allow a continuous output alphabet
Y with a discrete input alphabet X . (ii) As another setting,
we consider the continuous input alphabet X . In this case, it
is possible to make the capacity infinite, as pointed by the
paper [25] in the case of the Gaussian channel. However,
it is difficult to manage an input alphabet with infinitely
many cardinality. Hence, we consider a restricted finite subset
X̃ of the continuous input alphabet X so that honest Alice
accesses only a restricted finite subset X̃ of the continuous
input alphabet X and dishonest Alice accesses the continuous
input alphabet X .

Since the binding condition (BIN) is satisfied by Condition
(D) or (D’), it is sufficient to strengthen Condition (B) to
Concealing condition (CON). For this aim, we combine a hash
function and a code (φ,D) for secure list decoding. A function
f from M to K is called a regular hash function when f is
surjective and the cardinality |f−1(k)| does not depend on
k ∈ K. When a code (φ,D) and a regular hash function f are
given, as explained in Fig. 4, we can naturally consider the
following protocol for bit-string commitment with message set
K. Before starting the protocol, Alice and Bob share a code
(φ,D) and a regular hash function f .

(I) (Commit Phase) When k ∈ K is a message to be sent
by Alice, she randomly chooses an element M ∈
M subject to uniform distribution on f−1(k). Then,
Alice sends φ(M) to Bob via a noisy channel.

(II) (Reveal Phase) From Bob’s receiving information in
Commit Phase, Bob outputs L elements ofM as the
list. Alice sends M to Bob via a noiseless channel.
The list is required to contain the message M . If the
transmitted information via the noiseless channel is
contained in Bob’s decoded list, Bob accepts it, and
recovers the message k = f(M). Otherwise, Bob
rejects it.

The binding condition (BIN) is evaluated by the parameter
δC(φ,D), δD(D), or δD′(D). To discuss the concealing
condition (CON), for a deterministic encoder φ for secure list

Commit Phase

K M Noise

nW

1
, ,M M…

�

Reveal Phase

( , )K M

noiseless channel

1
{ , , }M M M∈

�
…

Accept

Reject

1
{ , , }M M M∉

�
…

Alice Bob

φ
nX

nY
D

f

Fig. 4. Our protocol for bit-string commitment with message set K.

decoding, we define the conditional distribution Pφ,fY |K=k and
the distribution Pφ,fY on Y as

Pφ,fY |K=k :=
∑

m∈f−1(k)

1

|f−1(k)|
Wφ(m) (95)

Pφ,fY :=
∑
m∈M

1

|M|
Wφ(m). (96)

When φ is given as a stochastic encoder by distributions
{Pm}m∈M on X , these are defined as

Pφ,fY |K=k :=
∑

m∈f−1(k)

1

|f−1(k)|
∑
x∈X

Pm(x)Wx (97)

Pφ,fY :=
∑
m∈M

1

|M|
∑
x∈X

Pm(x)Wx. (98)

The concealing condition (CON) is evaluated by the following
quantity;

δE(f, φ) := max
k,k′∈K

1

2
‖Pφ,fY |K=k − P

φ,f
Y |K=k′‖1. (99)

Therefore, we say that the tuple (φ,D, f) is a code for bit-
string commitment based on secure list decoding. Then, we
have the following theorem, which is shown in Section VIII-B.

Theorem 5: For a code (φ,D) of secure list code with
message setM, we assume that the size M = |M| = |(φ,D)|1
is a power of a prime p, i.e., M = pm. Then, for an integer
k and a set K with |K| = pk, there exist a subset K̄ ⊂ K
with |K̄| = pk−1, a subset M̄ ⊂ M with |K̄| = pm−1, and a
regular hash function f from M to K such that f(M̄) = K̄
and

δE(f, φ|M̄) ≤ 3p

p− 1
p
tk

1+t 2−
t

1+tH1+t(M |Y ). (100)

�
For a code (φ,D, f) for bit-string commitment based on

secure list coding, we define three parameters |(φ,D, f)|1 :=
|(φ,D)|1, |(φ,D, f)|2 := |(φ,D)|2, and |(φ,D, f)|3 :=
| Im f | = |K|. To discuss this type of code in the asymptotic
setting, we make the following definitions. A sequence of
codes {(φn, Dn, fn)} for bit-string commitment based on
secure list coding is called strongly (weakly, ultimately) secure
when εA(φn, Dn), δE(fn, φn), and δD(Dn) (δC(φn, Dn),
δD′(Dn)) approach to zero. A rate triple (R1, R2, R3) is
strongly (weakly, ultimately) deterministically achievable for
bit-string commitment based on secure list coding when
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there exists a strongly (weakly, ultimately) secure deter-
ministically sequence of codes {(φn, Dn, fn)} such that
limn→∞

1
n log |(φn, Dn, fn)|i = Ri for i = 1, 2, 3. We de-

note the set of strongly (weakly, ultimately) deterministically
achievable rate triple (R1, R2, R3) for bit-string commitment
based on secure list coding by RB(s,d) (RB(w,d), R

B
(u,d)). We de-

fine strongly (weakly, ultimately) stochastically achievable rate
triple for bit-string commitment based on secure list coding in
the same way. Then, we denote the set of strongly (weakly,
ultimately) stochastically achievable rate triple (R1, R2, R3)
for bit-string commitment based on secure list coding by
RB(s,s) (RB(w,s), R

B
(u,s)). Then, we have

RB(g,d) ⊂ R
B
(g,s). (101)

for g = s, w, u. We obtain the following theorem under the
above two settings.

Theorem 6: (i) Assume that the input alphabet X is discrete.
When Condition (W2) holds, we have the following relations
for G ∈ {(w, d), (s, d)}.

RBG = C, RB(s,s) ⊂ Cs. (102)

(ii) Assume that the input alphabet X is continuous. We choose
a restricted finite subset X̃ of the continuous input alphabet
X . When the channel W with X̃ ⊂ X satisfies Conditions
(W2) and (W3), we have the following relations

RB(u,d) = C, RB(u,s) ⊂ Cs. (103)

�
Also, we define the optimal transmission rate in the above

method as

CBG := sup
(R1,R2,R3)∈RBG

R3 (104)

for G ∈ {(s, d), (w, d), (u, d), (s, s), (w, s), (u, s)}. Then,
Lemma 3, Theorem 6, and (101) imply the relation

CBG = sup
P∈P(X )

H(X|Y )P (105)

for G ∈ {(s, d), (w, d), (u, d), (s, s), (u, s)} under the same
assumption as Theorem 6. Here, we cannot determine only
CB(w,s) because the restriction for Alice is too weak in the
setting (w, s), i.e., Alice is allowed to use a stochastic encoder
and Alice’s cheating is not possible only when Alice uses the
correct encoder. Fig. 5 shows the numerical plot for AWGN
channel with binary phase-shift keying (BPSK) modulation.

Since our setting allows the case with the continuous
input and output systems, Theorem 6 can be considered as
a generalization of the results by Winter et al [8, Theorem
2], [9] while a continuous generalization of their result was
mentioned as an open problem in [9]. Although the paper [25]
addressed the Gaussian channel, it considers only the special
case when the cardinality of the input alphabet is infinitely
many. It did not derive a general capacity formula with a
finite input alphabet and a continuous output alphabet. At least,
the paper [25] did not consider the case when honest Alice
accesses only a restricted finite subset X̃ of the continuous
input alphabet X and dishonest Alice accesses the continuous
input alphabet X .

0 2 4 6 8 10
v0.0

0.2

0.4

0.6

0.8

1.0

Commitment Capacity

Fig. 5. Numerical plot of the commitment capacity for AWGN channel with
BPSK modulation. The vertical axis shows the commitment capacity, and the
horizontal axis shows the noise power of the AWGN channel. x ∈ F2 7→
Y = (−1)x+N , where N subject to the Gaussian distribution with average
0 and variance v.

In addition to Theorem 5, to show Theorem 6, we prepare
the following lemma, which is shown in Section VIII-C.

Lemma 6: When a sequence of codes {(φn, Dn, fn)} for
bit-string commitment based on secure list coding satisfies the
condition δE(fn, φn)→ 0, we have

lim
n→∞

1

n
log |(φn, Dn, fn)|3 ≤ lim

n→∞

1

n
E(φn). (106)

�

Proof of Theorem 6: The converse part of Theorem 6
follows from the combination of Theorem 2 and Lemma 6,
which is shown in Section VIII-C.

The direct part of Theorem 6 can be shown as follows. For
a given α > 1, the combination of Theorem 5 and Corollary 1
implies Cα ⊂ RBG. Taking the limit α→ 1, we have C ⊂ RBG.
In the same way, using Theorem 5 and Corollary 2, we can
show C ⊂ RB(u,d).

B. Randomized construction (Proof of Theorem 5)

To show Theorem 5, we treat the set of messages M as a
vector space Fm

p over the finite field Fp. For a linear regular
hash function f from Fm

p to K := Fk
p and a code φ, we define

the following value;

δ̄E(f, φ) :=
∑
k∈K

1

2|K|
‖Pφ,fY |K=k − P

φ,f
Y ‖1 ≥

1

2
δE(f, φ),

(107)

where the inequality follows from the triangle inequality. We
denote the joint distribution of K and Y by Pφ,fK,Y when K is
assumed to be subject to the uniform distribution on K. Then,
the definition of δ̄E(f, φ) is rewritten as

δ̄E(f, φ) =
1

2
‖Pφ,fK,Y − PK,uni × Pφ,fY ‖1. (108)

In the following, we employ a randomized construction.
That is, we randomly choose a linear regular hash function
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fS from Fm
p to Fk

p, where S is a random seed to identify the
function fS . A randomized function fS is called a universal2
hash function when the collision probability satisfies the
inequality

Pr{fS(m) = fS(m′)} ≤ p−k (109)

for any distinct elements m 6= m′ ∈ Fm
p [19], [20].

When K is subject to the uniform distribution on K, the
stochastic behavior of K can be simulated as follows. First,
M is generated according to the uniform distribution on M.
Then, the obtained outcome K = fs(M) of fs with a fixed
s is subject to the uniform distribution on K. When fS
is a universal2 hash function with a variable S, the Rényi
conditional entropy version of universal hashing lemma [21,
(67)][22, Lemma 27] [16, Proposition 21] implies that

ESδE(fS , φ) ≤ 3

2
|K|

t
1+t 2−

t
1+tH1+t(M |Y ). (110)

Hence, there exists an element s such that

δE(fs, φ) ≤ 3

2
|K|

t
1+t 2−

t
1+tH1+t(M |Y ). (111)

Due to Markov inequality, there exists a subset K̄ ⊂ K with
cardinality |K|/p such that any element k ∈ K̄ satisfies that

1

2
‖Pφ,fsY |K=k − P

φ,fs
Y ‖1 ≤

p

p− 1
δE(fs, φ). (112)

This is because the number of elements that does not satisfy
(112) is upper bounded by p−1

p |K|. Hence, any elements
k, k′ ∈ K̄ satisfy that

1

2
‖Pφ,fsY |K=k − P

φ,fs
Y |K=k′‖1 ≤

2p

p− 1
δE(fs, φ). (113)

The combination of (111) and (113) imply that any elements
k, k′ ∈ K̄ satisfy that

1

2
‖Pφ,fsY |K=k − P

φ,fs
Y |K=k′‖1 ≤

3p

p− 1
|K|

t
1+t 2−

t
1+tH1+t(M |Y ).

(114)

Choosing M̄ to be f−1
s (K̄), we find that (114) is the same as

(100) due to the definition (99).

C. Proof of Lemma 6

To show Lemma 6, we prepare the following proposition.
Proposition 3 ([22, Lemma 30]): Any function f defined

onM and a joint distribution onM×Y satisfy the following
inequality

1

2
‖Pf(M)Y − Pf(M) × PY ‖1

≥ sup
γ≥0

[
PMY

{
log

1

PM |Y (m|y)
< γ

}
− 2γ

| Im f |

]
. (115)

�
We focus on the joint distribution PMY when Al-

ice generates M according to the uniform distribution on
M and chooses Xn as φ(M). Let p be the probability
PMY

{
log 1

PM|Y (m|y) < γ
}

. Then, the conditional entropy
H(M |Y ) is lower bounded as

H(M |Y ) ≥ γ(1− p). (116)

The quantity δE(f, φ) is evaluated as

δE(f, φ) = max
k,k′∈K

1

2
‖Pφ,fY |K=k − P

φ,f
Y |K=k′‖1

≥
∑

k,k′∈K

1

2|K|2
‖Pφ,fY |K=k − P

φ,f
Y |K=k′‖1

≥
∑
k∈K

1

2|K|
‖Pφ,fY |K=k − PY ‖1

=
1

2
‖Pf(M)Y − Pf(M) × PY ‖1

(a)

≥ p− 2γ

| Im f |
, (117)

where (a) follows from Proposition 3. Hence, we have
δE(f, φ) + 2γ

| Im f | ≥ p. Applying this relation to (116), we
have

H(M |Y ) ≥ γ
(
1− δE(f, φ)− 2γ

| Im f |
)
. (118)

Therefore,

γ
(
1− δE(f, φ)− 2γ

|(φ,D, f)|3
)
≤ E(φ). (119)

Choosing γ = log |(φn, Dn, fn)|3 −
√
n, we have

(log |(φn, Dn, fn)|3 −
√
n)(1− δE(fn, φn)− 2−

√
n)

≤E(φn). (120)

Dividing the above by n and taking the limit, we have (106).

IX. PROOF OF CONVERSE THEOREM

In order to show Theorem 2, we prepare the following
lemma.

Lemma 7: For Xn = (X1, . . . , Xn), we choose the joint
distribution PXn . Let Y n = (Y1, . . . , Yn) be the channel
output variables of the inputs Xn via the channel W . Then,
using the chain rule, we have

I(Xn;Y n) =

n∑
j=1

I(Xj ;Yj |Y j−1), (121)

H(Xn) ≤
n∑
j=1

H(Xj |Y j−1). (122)

�
The proof of Lemma 7 is given in Appendix C.
Proof of Theorem 2: The proof of Theorem 2 is composed
of two parts. The first part is the evaluation of R1. The second
part is the evaluation of R1 − R2. The key point of the first
part is the use of (122) in Lemma 7. The key point of the
second part is the meta converse for list decoding [6, Section
III-A].
Step 1: Preparation.
We show Theorem 2 by showing the following relations;

RL(w,d) ⊂ C, (123)

RL(s,s) ⊂ Cs. (124)

because R(s,d) ⊂ C follows from (123). Assume that a
sequence of deterministic codes {(φn, Dn)} is weakly secure.
We assume that Ri := limn→∞

1
n log |(φn, Dn)|i converges
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for i = 1, 2. For the definition of |(φn, Dn)|i, see the end of
Section IV-B. Also, we assume that R3 ≤ limn→∞

1
nE(φn).

Letting M be the random variable of the message, we
define the variables Xn = (X1, . . . , Xn) := φn(M). The
random variables Y n = (Y1, . . . , Yn) are defined as the
output of the channel W n, which is the n times use of the
channel W . Choosing the set U := ∪ni=1{i} × Yi−1, we
define the joint distribution Pn ∈ P(U × X ) as follows;
pn(x, u) := 1

npY i−1,X(yi−1, x) for u = (i, yi−1).
Under the distribution Pn, we denote the channel output by

Y . In this proof, we use the notations Mn := |(φn, Dn)|1 and
Ln := |(φn, Dn)|2. Also, instead of εA(φn, Dn), we employ
ε′A(φn, Dn) :=

∑Mn
m=1

1
Mn
εA,m(φn(m), Dn), which goes to

zero.
Step 2: Evaluation of R1.
When a code (φn, Dn) satisfies δC(φn, Dn) ≤ 1 −
εA(φn, Dn), we have

log |(φn, Dn)|1
(a)

≤H(Xn) + log 2

(b)

≤nH(X|U)Pn + log 2, (125)

where (b) follows from (122) in Lemma 7 and the variable U
is defined in Step 1. Dividing the above by n and taking the
limit, we have

lim sup
n→∞

R1 −H(X|U)Pn ≤ 0. (126)

To show (a) in (125), we consider the following protocol.
After converting the message M to Xn by the encoder
φn(M), Alice sends the Xn to Bob K times. Here, we
choose K to be an arbitrary large integer. Applying the
decoder Dn, Bob obtains K lists that contain up to KLn
messages. Among these messages, Bob chooses M̂ as the
element that most frequently appears in the K lists. When
δC(φn, Dn) < 1− εA,M (φn(M), Dn), the element M has the
highest probability to be contained in the list. In this case,
when K is sufficiently large, Bob can correctly decode M by
this method because 1− εA,M (φn(M), Dn) is the probability
that the list contains M and δC(φn, Dn) is the maximum of
the probability that the list contains m′ 6= M . Therefore, when
δC(φn, Dn) ≤ 1−εA(φn, Dn), the probability εK of the failure
of decoding goes to zero as K → ∞. Fano inequality shows
that H(M |M̂) ≤ εK log |(φn, Dn)|1 + log 2. Then, we have

log |(φn, Dn)|1 − εK log |(φn, Dn)|1 − log 2

≤ log |(φn, Dn)|1 −H(M |M̂)

=I(M ; M̂) ≤ I(M ;Xn) (127)
≤H(Xn), (128)

which implies (a) in (125) with the limit K→∞.
Step 3: Evaluation of R1 −R2.
Now, we consider the hypothesis testing with two distribu-
tions P (m, yn) := 1

Mn
Wn(yn|φn(m)) and Q(m, yn) :=

1
M2
n

∑Mn
m′=1W

n(yn|φn(m′)) on Mn × Yn, where Mn :=

{1, . . . ,Mn}. Then, we define the region D∗n ⊂Mn ×Yn as
∪m1,...,mLn

{m1, . . . ,mLn}×Dm1,...,mLn
. Using the region D∗n

as our test, we define εQ as the error probability to incorrectly
support P while the true is Q. Also, we define εP as the error

probability to incorrectly support Q while the true is P . When
we apply the monotonicity for the KL divergence between P
and Q, dropping the term εP log(1− εQ), we have

− log εQ ≤
D(P‖Q) + h(1− εP )

1− εP
, (129)

where h is the binary entropy, i.e., h(p) := −p log(p) −
(1 − p) log(1 − p). The meta converse for list decod-
ing [6, Section III-A] shows that εQ ≤ |(φn,Dn)|2

|(φn,Dn)|1 and
εP ≤ εA(φn, Dn). Since (122) in Lemma 7 guarantees that
D(P‖Q) = I(Xn;Y n) = nI(X;Y |U)Pn , the relation (129)
is converted to

log
|(φn, Dn)|1
|(φn, Dn)|2

≤ I(Xn;Y n) + h(1− εP )

1− εP

≤nI(X;Y |U)Pn + h(1− εA(φn, Dn))

1− εA(φn, Dn)
(130)

under the condition that εA(φn, Dn) ≤ 1
2 . Dividing the above

by n and taking the limit, we have

lim sup
n→∞

R1 −R2 − I(X;Y |U)Pn ≤ 0. (131)

Step 4: Evaluation of R3.
Since the code φn is deterministic, remembering the definition
of the variable U given in Step 1, we have

log |(φn, Dn)|1 − E(φn) = H(M)−H(M |Y n)

=I(M ;Y n) = I(Xn;Y n) = nI(X;Y |U)Pn . (132)

Dividing the above by n and taking the limit, we have

R1 −R3 ≥ lim sup
n→∞

I(X;Y |U)Pn . (133)

Therefore, combining Eqs. (126), (131), and (133), we obtain
Eq. (123).
Step 5: Proof of Eq. (124).
Assume that a sequence of stochastic codes {(φn, Dn)} is
strongly secure. Then, there exists a sequence of deterministic
encoders {φ′n} such that εA(φ′n, Dn) ≤ εA(φn, Dn) and
δC(φ′n, Dn) ≤ δD(Dn). Since εA(φ′n, Dn) and δC(φ′n, Dn)
go to zero, we have Eqs. (126) and (131). However, the
derivation of (133) does not hold in this case. Since the code
is stochastic, the equality I(M ;Y n) = I(Xn;Y n) does not
hold in general.

Instead of (133), we have the following derivation. Taking
the limit K→∞ in (127), we have

log |(φn, Dn)|1 − log 2 ≤ I(M ;Xn). (134)

Hence,

I(Xn;Y n) = I(XnM ;Y n)

=I(M ;Y n) + I(Xn;Y n|M)

≤I(M ;Y n) +H(Xn|M)

=I(M ;Y n) +H(Xn)− I(Xn;M)

≤I(M ;Y n) +H(Xn)− log |(φn, Dn)|1 + log 2

=H(M)−H(M |Y n) +H(Xn)−log |(φn, Dn)|1 + log 2

= log |(φn, Dn)|1 − log |(φn, Dn)|3
+H(Xn)− log |(φn, Dn)|1 + log 2

=− log |(φn, Dn)|3 +H(Xn) + log 2. (135)
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Hence, we have

log |(φn, Dn)|3 ≤ H(Xn) + log 2− I(Xn;Y n)

=H(Xn|Y n) + log 2 = nH(X|Y U)Pn + log 2 (136)

Dividing the above by n and taking the limit, we have

R3 ≤ lim inf
n→∞

H(X|Y U)Pn . (137)

Therefore, combining Eqs. (126), (131), and (137), we obtain
Eq. (124).

X. PROOF OF DIRECT THEOREM

As explained in Section VI-B, we show only the second
part (ii) based on the random coding. First, we show Lemma
4. Then, using Lemma 4, we show the second part (ii) by
preparing various lemmas, Lemmas 10, 11, 12 and 13. Using
Lemmas 11, and 12, we extract an encoder φn and messages
m that have a small decoding error probability and satisfy
two conditions, which will be stated as the conditions (165)
and (180). Then, using these two conditions, we show that the
code satisfies the binding condition for dishonest Alice (D)
and the equivocation version of concealing condition (B). In
particular, Lemma 10 is used to derive the binding condition
for dishonest Alice (D).

A. Proof of Lemma 4

Step 1: For our proof of Lemma 4, we prepare the following
lemma.

Lemma 8: Let S be a closed convex subset of P(Y). Assume
that a distribution P ∈ P(Y) \ S has the full support Y . We
choose P ′ as

P ′ := argmin
Q∈S

D(Q‖P ). (138)

(i) We have Supp(Q) ⊂ Supp(P ′) for Q ∈ S. (ii) For Q ∈ S,
we have

D(P ′‖P ) ≤ EQ[log p′(Y )− log p(Y )]. (139)

�
Proof: Now, we show (i) by contradiction. We choose Q ∈ S
such that Supp(Q) 6⊂ Supp(P ′). We define the distribution
P̄t := tQ+ (1− t)P ′. Then, we have

D(P̄t‖P ) =
∑
y∈Y

(η(p̄t(y))− p̄t(y) log p(y)), (140)

where η(x) := x log x. The derivative of
∑
y∈Y p̄t(y) log p(y)

for t at t = 0 is a finite value. For y ∈ Supp(P ′), the derivative
of η(p̄t(y)) for t at t = 0 is a finite value. For y ∈ Supp(Q)\
Supp(P ′), the derivative of η(p̄t(y)) for t at t = 0 is −∞.
Hence, the derivative of D(P̄t‖P ) for t at t = 0 is −∞.
It means that there exist a small real number t0 > 0 such
that D(P̄t‖P ) ≤ D(P̄0‖P ) = D(P ′‖P ). Hence, we obtain a
contradiction.

Next, we show (ii). Theorem 11.6.1 of [26] shows the
following.

D(Q‖P ′) +D(P ′‖P ) ≤ D(Q‖P ), (141)

which implies

D(P ′‖P ) ≤ D(Q‖P )−D(Q‖P ′)
=EQ[log p′(Y )− log p(Y )]. (142)

Hence, we obtain (139).
Step 2: We prove Lemma 4 when Y is a finite set and the
support of Wx does not depend on x ∈ X .

For x ∈ X , we define the distribution Px ∈ P(X \ {x}) as

Px := argmin
P∈P(X\{x})

D

( ∑
x′∈X\{x}

P (x′)Wx′

∥∥∥∥Wx

)
(143)

We choose ξx as ξx(y) := logwx(y) − logwPx(y) −
D(Wx‖WPx), which satisfies (71). Applying (ii) of Lemma 8
to the case when S is {

∑
x′′∈X\{x} P (x′′)Wx′′}P∈P(X\{x}),

we have

ζ1 = min
x 6=x′∈X

Ex′ [logwPx(y)− logwx(y)] +D(Wx‖WPx)

≥ min
x 6=x′∈X

D(WPx‖Wx) +D(Wx‖WPx)

= min
x∈X

D(WPx‖Wx) +D(Wx‖WPx) > 0. (144)

Hence, it satisfies (72). Since the support of Wx does not
depend on x ∈ X , the function ξx takes a finite value. Since
Y is a finite set, maxx,y ξx(y) exists. Thus, it satisfies (73).
Step 3: We prove Lemma 4 when Y is a finite set and the
support of Wx depends on x ∈ X .
For an element x ∈ X and a small real number δ > 0, we
define Wx,δ as

wx,δ(y) :=

{
(1− δ)wx(y) for y ∈ Supp(Wx)

δ
| Supp(Wx)|c for y ∈ Supp(Wx)c,

(145)

where Supp(P ) is the support of the distribution P . We define

Px,δ := argmin
P∈P(X\{x})

D(WP ‖Wx,δ). (146)

We choose δ > 0 to be sufficiently small such that

D(WPx,δ‖Wx,δ) > 0 (147)
log(1− δ) + min

P∈P(X\{x})
D(Wx‖WP ) > 0 (148)

for any x ∈ X .
When Supp(Wx) ⊂ ∪x′∈X\{x} Supp(Wx′), we have

Supp(Wx) ⊂ Supp(Px,δ) due to (i) of Lemma 8. Then,

Ex[logwx,δ(Y )− logwPx,δ(Y )]

=D(Wx‖WPx,δ) + log(1− δ)
≥ log(1− δ) + min

P∈P(X\{x})
D(Wx‖WP ) > 0. (149)

Then, we define ξx as

ξx(y) := logwx,δ(y)− logwPx,δ(y)

− Ex[logwx,δ(Y )− logwPx,δ(Y )]. (150)

Then, we have

Ex[ξx(Y )] = 0, (151)
min

x′∈X\{x}
Ex′ [−ξx(Y )] > 0, (152)

max
x′∈X\{x}

Vx′ [ξx(Y )] <∞. (153)
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When Supp(Wx) 6⊂ ∪x′∈X\{x} Supp(Wx′), we have
Supp(Px,δ) = ∪x′∈X\{x} Supp(Wx′) due to (i) of Lemma
8 because Wx,δ has the full support Y . Then, we define ξx as

ξx(y) := logwx,δ(y)− logwPx,δ(y) (154)

for y ∈ Supp(Px,δ), and

ξx(y)

:=−

∑
y∈Supp(Px,δ)

wx(y)(logwx,δ(y)− logwPx,δ(y))

Wx(Supp(Px,δ)c)
(155)

for y ∈ Supp(Px,δ)
c. Then, we have (151), (152), and (153).

Therefore, our functions {ξx}x∈X satisfy the conditions (71),
(72), and (73).
Step 4: We prove Lemma 4 when Y is not a finite set.
Since the channel W satisfies Condition (W2), there exists
a map f from Y to a finite set Y0 such that the channel
W ◦ f−1 = {Wx ◦ f−1}x∈X satisfies Condition (W2), where
Wx ◦ f−1({y0}) := Wx(f−1{y0}) for y0 ∈ Y0. Applying the
result of Step 3 to the channel W ◦ f−1, we obtain functions
{ξx,0}x∈X defined on Y0. Then, for x ∈ X , we choose a
function ξx on Y as ξx(y) := ξx,0(f(y)). The functions
{ξx}x∈X satisfy the conditions (71), (72), and (73).

B. Preparation

To show Theorem 3, we prepare notations and information
quantities. For P ∈ P(X ) and t > 0, we define

GP |x(t) := log(2tP (x) + 1− P (x)) (156)

GP,P ′(t) :=
∑
x∈X

P ′(x) log(2tP (x) + 1− P (x)). (157)

Then, we have the Legendre transformation

L[GP,P ′ ](r) := min
t>0

GP,P ′(t)− tr. (158)

Using the ε-neighborhood Uε,P of P with respect to the
variational distance, we define

LεP (r) := max
P ′∈Uε,P

L[GP,P ′ ](r). (159)

Then, we have the following lemma, which is shown in
Appendix D.

Lemma 9:

lim
δ→+0

L[GP,P ](1− δ) = −H(P ). (160)

lim
ε→+0

LεP (r) = L[GP,P ](r). (161)

�
For α > 1, we choose R1, R2, and R3 to satisfy the

conditions (60), (61), and (62). For our decoder construction,
we choose three real numbers ε1, ε2 > 0 and R4. The real
number R4 is chosen as

I(X;Y )P > R4 > R1 −R2. (162)

Using Lemma 9, we choose ε2 such that

−L[GP,P ](1− ε2) > R1. (163)

Then, we choose ε1 to satisfy

ζ1
ε2
2
− ε1 > 0. (164)

Next, we fix the size of message Mn := 2nR1 , the list size
Ln := 2nR2 , and a number M′n := 2nR4 , which is smaller than
the message size Mn. For xn = (xn1 , . . . , x

n
n) ∈ Xn, we define

wxn(yn) := wxn1 (yn1 ) · · ·wxnn(ynn) for yn = (yn1 , . . . , y
n
n). We

prepare the decoder used in this proof as follows.
Definition 1 (Decoder Dφn ): Given a distribution P on X ,

we define the decoder Dφn for a given encoder φn (a map
from {1, . . . ,Mn} to Xn) in the following way. Using the
condition (75), we define the subset Dxn := {yn|wxn(yn) ≥
M′nw

n
Pn(yn), ξxn(yn) ≥ −nε1}. Then, for yn ∈ Yn, we

choose up to Ln elements i1, . . . , iL′n (L′n ≤ Ln) as the
decoded messages such that yn ∈ Dφn(ij) for j = 1, . . . , L′n.
�

Remember that, for xn = (xn1 , . . . , x
n
n), xn′ =

(xn1
′, . . . , xnn

′) ∈ Xn, Hamming distance dH(xn, xn′) is de-
fined to be the number of k such that xnk 6= xnk

′ in Subsection
VI-B. In the proof of Theorem 3, we need to extract an
encoder φn and elements m ∈Mn that satisfies the following
condition;

dH(φn(m), φn(j)) > nε2 for ∀j 6= m. (165)

For this aim, given a code φn and a real number ε2 > 0, we
define the function ηCφn,ε2 from Mn to {0, 1} as

ηCφn,ε2(m) :=

{
0 when (165) holds
1 otherwise. (166)

As shown in Section X-D, we have the following lemma.
Lemma 10: When a code φ̃n defined in a subset M̃n ⊂Mn

satisfies

dH(φ̃n(m), φ̃n(m′)) > nε2 (167)

for two distinct elements m 6= m′ ∈ M̃n, the decoder Dφ̃n
defined in Definition 1 satisfies

δD(Dφ̃n
) ≤ ζ2

n[ζ1
ε2
2 − ε1]2+

. (168)

�

C. Proof of Theorem 3

Step 1: Lemmas related to random coding.
To show Theorem 3, we assume that the variable Φn(m) for
m ∈ Mn is subject to the distribution Pn independently.
Then, we have the following four lemmas, which are shown
later. In this proof, we treat the code Φn as a random variable.
Hence, the expectation and the probability for this variable are
denoted by EΦn and PrΦn , respectively.

Lemma 11: When

I(X;Y )P > R4 > R1 −R2, (169)

we have the average version of Verifiable condition (A), i.e.,

lim
n→∞

EΦn

Mn∑
m=1

1

Mn
εA,m(Φn, DΦn) = 0. (170)
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�
Lemma 12: For ε2 > 0, we have

lim
n→∞

EΦn

Mn∑
m=1

1

Mn
ηCΦn,ε2(m) = 0. (171)

�
Lemma 13: We choose QP,α ∈ P(Y) as

QP,α := argmin
Q∈P(Y)

Dα(W × P‖Q× P ). (172)

We have

EΦn

Mn∑
i=1

1

Mn
2(α−1)Dα(WΦn(i)‖QnP,α) = 2n(α−1)Iα(X;Y )P .

(173)

�
Step 2: Extraction of an encoder φn and messages m with
a small decoding error probability that satisfies the condition
(165).
We define ε3,n as

ε3,n := 9EΦn

Mn∑
m=1

1

Mn

(
εA,m(φn, DΦn) + ηCΦn,ε2(m)

)
.

(174)

Lemmas 11 and 12 guarantees that ε3,n → 0. Then, there
exists a sequence of codes φn such that

Mn∑
m=1

1

Mn

(
εA,m(φn, Dφn) + ηCφn,ε2(m)

)
≤ ε3,n

3
, (175)

Mn∑
m=1

1

Mn
2(α−1)Dα(Wφn(m)‖QnP,α) ≤ 3 · 2n(α−1)Iα(X;Y |P ).

(176)

Due to Eq. (175), Markov inequality guarantees that there exist
2Mn/3 elements M̃n := {m1, . . . ,m2Mn/3} such that every
element m ∈ M̃n satisfies

εA,m(φn, Dφn) + ηCφn,ε2(m) ≤ ε3,n, (177)

which implies that

εA,m(φn, Dφn) ≤ ε3,n (178)

ηCφn,ε2(m) = 0 (179)

because ηCφn,ε2 takes value 0 or 1. Then, we define a code
φ̃n on M̃n as φ̃n(m) := φn(m) for m ∈ M̃n. Eq. (178)
guarantees Condition (A). Eq. (176) guarantees that∑

m∈M̃n

1

|M̃n|
2(α−1)Dα(Wφ̃n(m)‖Q

n
P,α)

=
∑

m∈M̃n

3

2Mn
2(α−1)Dα(Wφn(m)‖QnP,α)

≤9

2
· 2n(α−1)Iα(X;Y |P ). (180)

Step 3: Proof of the binding condition for dishonest Alice (D).
The relation (179) guarantees the condition

dH(φ̃n(m), φ̃n(m′)) > nε2 (181)

for m 6= m′ ∈ M̃n. Therefore, Lemma 10 guarantees the
binding condition for dishonest Alice (D), i.e.,

δD(Dφ̃n
) ≤ ζ2

n[ζ1
ε2
2 − ε1]2+

. (182)

Step 4: Proof of the equivocation version of concealing
condition (B).

Eq. (180) guarantees that

min
Qn∈P(Yn)

∑
m∈M̃n

1

|M̃n|
2(α−1)Dα(Wφ̃n(m)‖Qn)

≤
∑

m∈M̃n

1

|M̃n|
2(α−1)Dα(Wφ̃n(m)‖Q

n
P,α)

≤9

2
· 2n(α−1)Iα(X;Y )P . (183)

Hence,

lim
n→∞

1

n
Eα(φ̃n) ≥ R1 − Iα(X;Y )P ≥ R3. (184)

D. Proof of Lemma 10

Step 1: Evaluation of Wn
xn(Dxn′).

The conditions (71) and (72) imply that

Exn′ [ξxn ] ≤ −ζ1d(xn, xn′). (185)

The condition (73) implies that

Vxn′ [ξxn ] ≤ nζ2. (186)

Hence, applying Chebyshev inequality to the variable
ξxn(Y n), we have

Wn
xn′(Dxn) ≤Wn

xn′({yn|ξxn(yn) ≥ −nε1})

≤ nζ2
[ζ1d(xn, xn′)− nε1]2+

. (187)

Step 2: Evaluation of smaller value of Wn
xn(Dφ̃n(m)) and

Wn
xn(Dφ̃n(m′)). Since Eq. (167) implies

nε2 < d(φ̃n(m), φ̃n(m′))

≤dH(xn, φ̃n(m)) + dH(xn, φ̃n(m′)), (188)

we have

max([ζ1dH(xn, φ̃n(m))− nε1]+,

[ζ1dH(xn, φ̃n(m′))− nε1]+)

≥[n(ζ1
ε2
2
− ε1)]2+. (189)

Hence, (187) guarantees that

min(Wn
xn(Dφ̃n(m)),W

n
xn(Dφ̃n(m′)))

≤ nζ2

max([ζ1d(xn, φ̃n(m))−nε1]2+, [ζ1d(xn, φ̃n(m′))−nε1]2+)

≤ nζ2
[n(ζ1

ε2
2 − ε1)]2+

=
ζ2

n[ζ1
ε2
2 − ε1]2+

, (190)

which implies the desired statement.
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E. Proof of Lemma 11

We show Lemma 11 by employing an idea similar to [23],
[24]. First, we show the following lemma.

Lemma 14: We have the following inequality;

εA(Φn, DΦn)

≤
Mn∑
i=1

1

Mn

(
WΦn(i)(DcΦn(i)) +

∑
j 6=i

1

Ln
WΦn(i)(DΦn(j))

)
.

(191)

�
Proof: When i is sent, there are two cases for incorrect
decoding. The first case is the case that the received element
y does not belong to DΦn(i). The second case is the case that
there are more than Ln elements i′ to satisfy y ∈ DΦn(i′).
In fact, the second case does not always realize incorrect
decoding. However, the sum of the probabilities of the first
and second cases upper bounds the decoding error probability
εA(Φn, DΦn). Hence, it is sufficient to evaluate these two
probabilities. The error probability of the first case is given
in the first term of Eq. (191). The error probability of the
second case is given in the second term of Eq. (191).

Taking the average in (191) of Lemma 14 with respect to the
variable Φn, we obtain the following lemma. The following
discussion employs the notations EΦn and EXn , which are
defined in the middle of Section V.

Lemma 15: We have the following inequality;

EΦnεA(Φn, DΦn)

≤
∑

xn∈Xn
Pn(xn)

(
Wxn(Dcxn) +

Mn − 1

Ln
WPn(Dxn)

)
.

(192)

�
Applying Lemma 15, we have

EΦnεA(Φn, DΦn)

≤EXnWXn
({
yn
∣∣2−nR4wXn(yn) < wnPn(yn)

})
+ EXnWXn

({
yn
∣∣ξxn(yn) < −nε1

})
+ EXn2n(R1−R2)WPn

({
yn
∣∣

2−nR4wXn(yn) ≥ wPn(yn)
})

(a)

≤EXnWXn
({
yn
∣∣ logwXn(yn)− logwnPn(yn) < nR4

})
+ EXnWXn

({
yn
∣∣ξxn(yn) < −nε1

})
+ EXn2n(R1−R2)2−nR4wXn

({
yn
∣∣

2−nR4wXn(yn) ≥ wPn(yn)
})

≤EXnWXn

({
yn
∣∣∣∣ 1n (logwXn(yn)

− logwPn(yn)) < R4

})
+ EXnWXn

({
yn
∣∣∣∣ 1nξxn(yn) < −ε1

})
+ 2n(R1−R2−R4), (193)

where (a) follows from the relation

WPn
({
yn
∣∣2−nR4wXn(yn) ≥ wPn(yn)

})
≤2−nR4WXn

({
yn
∣∣2−nR4wXn(yn) ≥ wPn(yn)

})
.

The variable 1
n (logwXn(yn) − logwPn(yn)) is the mean

of n independent variables that are identical to the variable
logwX(Y ) − logwP (Y ) whose average is I(X;Y )P > R4.
The variable 1

nξxn(yn) is the mean of n independent variables
that are identical to the variable ξX(Y ) whose average is 0.
Thus, the law of large number guarantees that the first and
the second terms in (193) approaches to zero as n goes to
infinity. The third term in (193) also approaches to zero due
to the assumption (162). Therefore, we obtain Eq. (170).

F. Proof of Lemma 13
Eq. (173) can be shown as follows.

EΦ

Mn∑
i=1

1

Mn
2(α−1)Dα(WΦn(i)‖QnP,α)

=EΦ

Mn∑
i=1

1

Mn

n∏
j=1

EΦn(i)j

[(wΦn(i)j (Y )

qP,α(Y )

)α−1]

=

Mn∑
i=1

1

Mn

n∏
j=1

EΦEΦn(i)j

[(wΦn(i)j (Y )

qP,α(Y )

)α−1]

=

Mn∑
i=1

1

Mn

n∏
j=1

∑
x∈X

P (x)Ex
[( wx(Y )

qP,α(Y )

)α−1]

=

Mn∑
i=1

1

Mn

n∏
j=1

2(α−1)Dα(W×P‖QP,α×P )

(a)
=

Mn∑
i=1

1

Mn

n∏
j=1

2(α−1)Iα(X;Y )P

=

Mn∑
i=1

1

Mn
2n(α−1)Iα(X;Y )P = 2n(α−1)Iα(X;Y )P , (194)

where (a) follows from (30) and (172).

G. Proof of Lemma 12
The outline of the proof of Lemma 12 is the following. To

evaluate the value EΦn

∑Mn
m=1

1
Mn
ηCΦn,ε2(m), we convert it to

the sum of certain probabilities. We evaluate these probabilities
by excluding a certain exceptional case. That is, we show
that the probability of the exceptional case is small and these
probabilities under the condition to exclude the exceptional
case is also small. The latter will be shown by evaluating
a certain conditional probability. For this aim, we choose
ε4, ε5 > 0 such that ε4 := −L[GP,P ](1 − ε2) − R1 and
−Lε5P (1− ε2) > R1 + ε4

2 .
Step 1: Evaluation of a certain conditional probability.
We denote the empirical distribution of xn by P [xn]. That
is, nP [xn](x) is the number of index i = 1, . . . , n to satisfy
xni = x. Hence, when Xn = (Xn

1 , . . . , X
n
n ) are independently

subject to P ,

EXn [2t(n−d(Xn,xn))] = 2
GP |xn1

(t)+···+GP |xnn (t)

=2nGP,P [xn](t). (195)
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We define two conditions An,i and Bn,i for the encoder Φn
as
An,i P [Φn(i)] ∈ Uε5,P .
Bn,i ∃j 6= i, d(Φn(i),Φn(j)|P ) ≤ nε2.

The aim of this step is the evaluation of the conditional
probability PrΦn(Bn,i|An,i) that expresses the probability that
the condition Bn,i holds under the condition An,i.

We choose j 6= i. Markov inequality implies that

PrΦn(j)|Φn(i)

(
d(Φn(i),Φn(j)) ≤ nε2

)
=PrΦn(j)|Φn(i)

(
n− d(Φn(i),Φn(j)) ≥ n(1− ε2)

)
≤EΦn(j)|Φn(i)[2

t(n−d(Φn(i),Φn(j)))]2−tn(1−ε2)

=2nGP,P [Φn(i)](t)−tn(1−ε2), (196)

where PrΦn(j)|Φn(i) and EΦn(j)|Φn(i) are the conditional prob-
ability and the conditional expectation for the random variable
Φn(j) with the fixed variable Φn(i). The final equation
follows from (195). When the fixed variable Φn(i) satisfies
the condition An,i, taking the infimum with respect to s, we
have

PrΦn(j)|Φn(i)

(
d(Φn(i),Φn(j)) ≤ nε2

)
≤2nL[GP,P [Φn(i)]](1−ε2) ≤ 2nL

ε5
P (1−ε2). (197)

Hence,

PrΦn,i,c|Φn(i)(Bn,i)

≤
∑

j(6=i)∈Mn

PrΦn(j)|Φn(i)

(
d(Φn(i),Φn(j)) ≤ nε2

)
≤

∑
j(6=i)∈Mn

2nL
ε5
P (1−ε2) ≤ 2n(L

ε5
P (1−ε2)+R1) ≤ 2−nε4/2,

(198)

where Φn,i,c expresses the random variables {Φn(j)}j 6=i.
Then, we have

PrΦn(Bn,i|An,i) ≤ 2−nε4/2. (199)

Step 2: Evaluation of EΦn

∑Mn
m=1

1
Mn
ηCΦn,ε2(m).

The quantity EΦn

∑Mn
m=1

1
Mn
ηCΦn,ε2(m) can be evaluated as

EΦn

Mn∑
m=1

1

Mn
ηCΦn,ε2(m)

=
1

Mn
EΦn |{i|Bn,i holds. }| =

Mn∑
i=1

1

Mn
PrΦn(Bn,i)

≤
Mn∑
i=1

1

Mn

(
PrΦn(An,i)PrΦn(Bn,i|An,i)

+ (1− PrΦn(An,i))
)

(a)

≤2−nε4/2 +

Mn∑
i=1

1

Mn
(1− Pr(An,i)), (200)

where (a) follows from Eq. (199).
Since P [Φn(i)] converges to P in probability, we have

PrΦn(An,i)→ 1. (201)

Hence, the combination of Eqs. (200) and (201) implies the
desired statement.

XI. PROOF OF THEOREM 4

A. Main part of proof of Theorem 4

Hamming distance dH plays a central role in our proof of
Theorem 3. However, since elements of X̃ \ X can be sent
by dishonest Alice, Hamming distance dH does not work in
our proof of Theorem 4. Hence, we introduce an alternative
distance on X̃n. We modify the distance d on X̃ as

d̄(x, x′) :=
1

ζ3
min(d(x, x′), ζ3), (202)

where

ζ3 := min
x 6=x′∈X

d(x, x′). (203)

Then, we define

d̄H(xn, xn′) :=

n∑
i=1

d̄(xni , x
n
i
′), (204)

which is the same as Hamming distance dH on Xn. Instead
of Lemma 10, we have the following lemma.

Lemma 16: When a code φ̃n defined in a subset M̃n ⊂Mn

satisfies

dH(φ̃n(m), φ̃n(m′)) > nε2 (205)

for two distinct elements m 6= m′ ∈ M̃n, the decoder Dφ̃n
defined in Definition 1 satisfies

δD′(Dφ̃n
) ≤ 2tn(2ε1− ε24 ζ̄1,t(ζ3

ε2
4 )) +

nζ̄2
[nε1]2+

. (206)

�
In our proof of Theorem 4, we choose the real numbers

R4, ε2, ε1. We fix s ∈ (0, 1/2). While we choose R4, ε2 > 0
in the same way as our proof of Theorem 3, we choose ε1 > 0
to satisfy

ε2
4
ζ̄1,t(ζ3

ε2
4

) > 2ε1. (207)

In this choice, the RHS of (206) goes to zero. Since the
conditions (205) and (206) take the same role as the conditions
of Lemma 10, the proof of Theorem 3 works by replacing
Lemma 10 by Lemma 16 as a proof of Theorem 4.

B. Proof of Lemma 16

Step 1: Evaluation of Wn
xn(Dxn′).

As shown in Step 3, when d̄H(xn, xn′) = k, for t ∈ (0, 1
2 ),

we have
−1

t
logEx′ [2t(ξx(Y )−ξx′ (Y ))] ≥ k

2
ζ̄1,t(ζ3

k

2n
). (208)

Applying Markov inequality to the variable 2t(ξx(Y )−ξx′ (Y )),
we have

Wn
xn′({yn|ξxn(yn)− ξxn′(yn) ≥ −2nε1})

=Wn
xn′({yn|2t(ξx

n (yn)−ξxn′ (y
n)) ≥ 2−2tnε1})

≤Ex′ [2t(ξx(Y )−ξx′ (Y ))]22tnε1 ≤ 2t(2nε1−
k
2 ζ̄1,t(ζ3

k
2n )). (209)
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The condition (71) implies that

Exn′ [ξxn′ ] = 0. (210)

The condition (80) implies that

Vxn′ [ξxn′ ] ≤ nζ̄2. (211)

Hence, applying Chebyshev inequality to the variable
ξxn′(Y

n), we have

Wn
xn′({yn|ξxn′(yn) ≤ −nε1}) ≤

nζ̄2
[nε1]2+

. (212)

Hence, we have

Wn
xn′(Dxn)

≤Wn
xn′({yn| − nε1 ≤ ξxn(yn)})

=Wn
xn′({yn| − nε1 ≤ ξxn(yn)− ξxn′(yn) + ξxn′(y

n)})
≤Wn

xn′({yn| − 2nε1 ≤ ξxn(yn)− ξxn′(yn)})

+Wn
xn′

yn
∣∣∣∣∣∣
−nε1 ≤ ξxn(yn)− ξxn′(yn)

+ξxn′(y
n),

−2nε1 > ξxn(yn)− ξxn′(yn)




(a)

≤Wn
xn′({yn| − 2nε1 ≤ ξxn(yn)− ξxn′(yn)})

+Wn
xn′({yn|ξxn′(yn) > nε1})

(b)

≤2t(2nε1−
k
2 ζ̄1,t(ζ3

k
2n )) +

nζ̄2
[nε1]2+

, (213)

where (a) follows from the fact that the conditions −nε1 ≤
ξxn(yn) − ξxn′(y

n) + ξxn′(y
n) and −2nε1 > ξxn(yn) −

ξxn′(y
n) imply the condition ξxn′(yn) > nε1, and (b) follows

from (209) and (212).
Step 2: Evaluation of smaller value of Wn

xn(Dφ̃n(m)) and
Wn
xn(Dφ̃n(m′)). We simplify d(xn, φ̃n(m)) and d(xn, φ̃n(m′))

to k1 and k2. Since Eq. (205) implies

nε2 < d(φ̃n(m), φ̃n(m′)) ≤ k1 + k2, (214)

we have

nε2
2
≤ k3 := max(k1, k2). (215)

Since ζ̄1,t(r) is monotonically increasing for r, (215) yields

min
[
t
(

2nε1 −
k1

2
ζ̄1,t

(
ζ3
k1

2n

))
,

t
(

2nε1 −
k2

2
ζ̄1,t

(
ζ3
k2

2n

))]
≤t
(

2nε1 −max
[k1

2
ζ̄1,t

(
ζ3
k1

2n

)
,
k2

2
ζ̄1,t

(
ζ3
k2

2n

)])
=t
(

2nε1 −
k3

2
ζ̄1,t

(
ζ3
k3

2n

))
≤t
(

2nε1 −
nε2
4
ζ̄1,t

(
ζ3
nε2
4n

))
= tn

(
2ε1 −

ε2
4
ζ̄1,t

(
ζ3
ε2
4

))
.

(216)

Thus,

min[Wn
xn(Dφ̃n(m)),W

n
xn(Dφ̃n(m′))]

(a)

≤ min
[
2t(2nε1−

k1
2 ζ̄1,t(ζ3

k1
2n ))2t(2nε1−

k2
2 ζ̄1,t(ζ3

k2
2n ))
]

+
nζ̄2

[nε1]2+

=2min
[
t(2nε1− k1

2 ζ̄1,t(ζ3
k1
2n )),t(2nε1− k2

2 ζ̄1,t(ζ3
k2
2n ))
]

+
nζ̄2

[nε1]2+
(b)

≤2tn(2ε1− ε24 ζ̄1,t(ζ3
ε2
4 )) +

nζ̄2
[nε1]2+

, (217)

where (a) follows (213), and (b) follows from (216). Eq. (217)
implies (206), i.e., the desired statement of Lemma 16.
Step 3: Proof of (208). To show (208), we consider the
random variable J subject to the uniform distribution Puni,n

on {1, . . . , n}. The quantity 1− d̄(xnJ , x
n
J
′) can be considered

as a non-negative random variable whose expectation is 1− k
n .

We apply the Markov inequality to the variable 1−d̄(xnA, x
n
A
′).

Then, we have∣∣∣{j ∈ {1, . . . , n}∣∣∣d̄(xnj , x
n
j
′) <

k

2n

}∣∣∣
=
∣∣∣{j ∈ {1, . . . , n}∣∣∣1− d̄(xnj , x

n
j
′) > 1− k

2n

}∣∣∣
≤n ·

1− k
n

1− k
2n

≤ n ·
(

1− k

2n

)
= n− k

2
, (218)

where the final inequality follows from the relation between
arithmetic and geometric means. Hence, we have∣∣∣{j ∈ {1, . . . , n}∣∣∣d̄(xnj , x

n
j
′) ≥ k

2n

}∣∣∣ ≥ k

2
. (219)

Since d̄(xnj , x
n
j
′) ≥ k

2n implies d(xnj , x
n
j
′) ≥ ζ3

k
2n , (219)

implies (208).

XII. CONCLUSION

We have proposed a new concept, secure list decoding,
which imposes additional requirements on conventional list
decoding to work as a relaxation of bit-string commitment.
This scheme has three requirements. Verifiable condition (A),
Equivocation version of concealing condition (B), and Binding
condition. Verifiable condition (A) means that the message
sent by Alice (sender) is contained in the list output by Bob
(receiver). Equivocation version of concealing condition (B)
is given as a relaxation of the concealing condition of bit-
string commitment. That is, it expresses Bob’s uncertainty of
Alice’s message. Binding condition has two versions. One is
the condition (C) for honest Alice. The other is the condition
(D) for dishonest Alice. Since there is a possibility that
dishonest Alice uses a different code, we need to guarantee
the impossibility of cheating even for such a dishonest Alice.
In this paper, we have shown the existence of a code to satisfy
these three conditions. Also, we have defined the capacity
region as the possible triplet of the rates of the message and the
list, and the equivocation rate, and have derived the capacity
region when the encoder is given as a deterministic map.
Under this condition, we have shown that the conditions (C)
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and (D) have the same capacity region. However, we have
not derived the capacity region when the stochastic encoder is
allowed. Therefore, the characterization of the capacity region
of this case is an interesting open problem.

As the second contribution, we have formulated the secure
list decoding with a general input system. For this formulation,
we have assumed that honest Alice accesses only a fixed subset
of the general input system and dishonest Alice can access any
element of the general input system. Then, we have shown that
the capacity region of this setting is the same as the capacity
region of the above setting when the encoder is limited to a
deterministic map.

As the third contribution, we have proposed a method
to convert a code for secure list decoding to a protocol
for bit-string commitment. Then, we have shown that this
protocol can achieve the same rate of the message size as the
equivocation rate of the original code for secure list decoding.
This method works even when the input system is a general
probability space and dishonest Alice can access any element
of the input system. Since many realistic noisy channels have
continuous input and output systems, this result extends the
applicability of our method for bit-string commitment.

Since the constructed code in this paper is based on random
coding, it is needed to construct practical codes for secure list
decoding. Fortunately, the existing study [3] systematically
constructed several types of codes for list decoding with
their algorithms. While their code construction is practical,
in order to use their constructed code for secure list decoding
and bit-string commitment, we need to clarify their security
parameters, i.e., the equivocation rate and the binding param-
eter δD for dishonest Alice in addition to the decoding error
probability εA. It is a practical open problem to calculate these
security parameters of their codes.
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APPENDIX A
PROOF OF LEMMA 1

Step 1: Preparation.

We define the functions

γ̄1(R1) := min
P∈P(U×X )

{I(X;Y |U)P |H(X|U)P = R1}

(220)
γ̄1,o(R1) := min

P∈P(X )
{I(X;Y )P |H(X)P = R1} (221)

γ̄α(R1) := min
P∈P(U×X )

{Iα(X;Y |U)P |H(X|U)P = R1}

(222)

κ1(R1) := max{R3|(R1, R3) ∈ C1,3} (223)

κs1(R1) := max{R3|(R1, R3) ∈ Cs,1,3} (224)

κα(R1) := max{R3|(R1, R3) ∈ C1,3
α }. (225)

Then, it is sufficient to show the following relations;

κ1(R1) = R1 − γ̄1(R1) = γ1(R1) (226)
κs1(R1) = max

R≤R1

γ1(R) (227)

κα(R1) = R1 − γ̄α(R1) = γα(R1). (228)

Since the second equations in (226) and (228) follows from
the definitions, it is sufficient to show the first equations in
(226) and (228). From the definitions, we have

C1,3

=
⋃

P∈P(U×X )

{
(R1, R3)

∣∣∣∣ 0 ≤ R3 ≤ R1 − I(X;Y |U)P ,
0 ≤ R1 ≤ H(X|U)P

}
(229)

Cs,1,3

=
⋃

P∈P(U×X )

{
(R1, R3)

∣∣∣∣ 0 ≤ R3 ≤ H(X|Y U)P ,
0 ≤ R1 ≤ H(X|U)P

}
(230)

C1,3
α

=
⋃

P∈P(U×X )

{
(R1, R3)

∣∣∣∣ 0 ≤ R3 ≤ R1 − Iα(X;Y |U)P ,
0 ≤ R1 ≤ H(X|U)P

}
.

(231)

Hence, (230) implies (227). To show (226) and (228), we
derive the following relations from (229) and (231).

κ1(R1) = max
R≤R1

R1 − γ̄1(R) (232)

κα(R1) = max
R≤R1

R1 − γ̄α(R). (233)

Step 2: Proof of (226).
Given R > 0, we choose P (R) :=
argminP∈P(X ){I(X;Y )P |H(X)P = R}. We have
I(X;Y )P (R) = D(W × P (R)‖WP (R) × P (R)) =∑
x∈X P (R)(x)D(Wx‖WP (R)). As shown later, when

P (R)(x′) > P (R)(x), we have

D(Wx′‖WP (R)) ≤ D(Wx‖WP (R)). (234)

We choose x1 and xd such that D(Wx1‖WP (R)) ≤
D(Wx‖WP (R)) ≤ D(Wxd‖WP (R)) or x ∈ X . Given ε > 0,
we define the distribution P (R)ε as

P (R)ε(x1) :=P (R)(x1) + ε, (235)
P (R)ε(xd) :=P (R)(xd)− ε, P (R)ε(x) := P (R)(x) (236)
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for x 6= (x1, xd) ∈ X . We have H(P (R)ε) < H(P (R)) = R.
In particular, when Ro < R is sufficiently close to R, there
exists ε > 0 such that H(P (R)ε) = R0. Then,

γ̄1,o(Ro) = γ̄1,o(H(P (R)ε)) ≤ I(X;Y )P (R)ε

= min
Q

D(W × P (R)ε‖Q× P (R))

≤D(W × P (R)ε‖WP (R) × P (R))

≤D(W × P (R)‖WP (R) × P (R))

=I(X;Y )P (R) = γ̄1,o(R). (237)

Then, we find that γ̄1,o(R) is monotonically increasing for R.
Also, we have

γ̄1(R)

= min
λ∈[0,1],R1,R2∈[0,log d]

{λγ̄1,o(R1) + (1− λ)γ̄1,o(R2)|(∗)}.

(238)

where the condition (∗) is given as λR1 + (1 − λ)R2 = R.
Since γ̄1,o(R) is monotonically increasing for R, (238) guaran-
tees that γ̄1(R) is also monotonically increasing for R. Hence,
(232) yields (226), respectively.
Step 3: Proof of (234).
Assume that there exist x 6= x′ ∈ X such that P (R)(x′) >
P (R)(x) and the condition (234) does not hold. We define the
distribution P̄ (R) as follows.

P̄ (R)(x) := P (R)(x′), P̄ (R)(x′) := P (R)(x), (239)
P̄ (R)(xo) := P (R)(xo) (240)

for xo(6= x, x′) ∈ X . Then,

I(X;Y )P̄ (R) = min
Q

D(W × P̄ (R)‖Q× P̄ (R))

≤D(W × P̄ (R)‖WP (R) × P̄ (R))

≤D(W × P (R)‖WP (R) × P (R)) = I(X;Y )P (R),

which implies (234).
Step 4: Proof of (234).
Instead of γ̄α(R1) and γ̄α,o(R1), we define

γ̄pα(R1) := min
P∈P(U×X )

{2(α−1)Iα(X;Y |U)P |H(X|U)P =R1}

(241)

γ̄pα,o(R1) := min
P∈P(X )

{2(α−1)Iα(X;Y )P |H(X)P = R1}. (242)

Given R > 0, we choose Pα(R) :=
argminP∈P(X ){Iα(X;Y )Pα(R)|H(X)P = R}. We choose
Qα(R) := argminQ∈P(Y)Dα(W ×Pα(R)‖Q×Pα(R)). We
have

2(α−1)Iα(X;Y )P =
∑
x∈X

P (R)(x)2(α−1)Dα(Wx‖Qα(R)). (243)

In the same way as (234), when Pα(R)(x′) > Pα(R)(x), we
have

Dα(Wx′‖WP (R)) ≤ Dα(Wx‖WP (R)). (244)

In the same way as the case with γ̄1,o, we can show that
γ̄pα,o(R) is monotonically increasing for R. Hence, in the same
way as the case with γ̄1, we can show that γ̄pα(R) is mono-
tonically increasing for R. Therefore, γ̄α(R) is monotonically
increasing for R. Hence, (233) yields (228).

APPENDIX B
PROOF OF LEMMA 2

The first statement follows from (38). The second statement
can be shown as follows. Assume that γα,o is a concave
function. We choose

P = argmax
P∈P(U×X )

{R1 − Iα(X;Y |U)P |H(X|U)P = R1}.

(245)

Then, we have

γα(R1)

=R1 − Iα(X;Y |U)P
(a)

≤ R1 −
∑
u∈U

PU (u)Iα(X;Y )PX|U=u

=
∑
u∈U

PU (u)(H(X)PX|U=u
− Iα(X;Y )PX|U=u

)

(b)

≤
∑
u∈U

PU (u)γα,o(H(X)PX|U=u
)

(c)

≤ γα,o(R1),

where (a) follows from the concavity of x 7→ − log x and the
relation

2(α−1)Iα(X;Y |U)P =
∑
u∈U

PU (u)2
(α−1)Iα(X;Y )PX|U=u ,

(b) follows from the definition of γα,o, and (c) follows from
the assumption that γα,o is a concave function. Hence, we
have γα(R1) = γα,o(R1).

APPENDIX C
LEMMA 7

Since we have the Markovian chain Y j−1 −
(Xj−1, Xj+1, . . . , Xn)−Xj − Yj , the relation

I(Xn;Yj |Y j−1) = (Xj ;Yj |Y j−1) (246)

holds. Hence,

I(Xn;Y n) =

n∑
j=1

I(Xn;Yj |Y j−1)

=

n∑
j=1

I(Xj ;Yj |Xj−1), (247)

which implies (121). Since we have the Markovian chain Xj−
Xj−1 − Y j−1, we have

H(Xj |Y j−1)−H(Xj |Xj−1)

=H(Xj |Y j−1)−H(Xj |Xj−1Y j−1)

=I(Xj ;X
j−1|Y j−1) ≥ 0. (248)

Thus,

H(Xn) =

n∑
j=1

H(Xj |Xj−1) ≤
n∑
j=1

H(Xj |Y j−1), (249)

which implies (122).
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APPENDIX D
PROOF OF LEMMA 9

When s is sufficiently large and δ > 0 is small, we have

GP,P (s)− s(1− δ)

=

(∑
x∈X

P (x) log(2sP (x) + 1− P (x))

)
− s(1− δ)

=

(∑
x∈X

P (x)
(
s+ logP (x) + log(1 +

1− P (x)

2sP (x)
)
))

− s(1− δ)

=

(∑
x∈X

P (x)
(
s+ logP (x)

+ loge(2)−1 loge(1 +
1− P (x)

2sP (x)
)
))
− s(1− δ)

∼=
(∑
x∈X

P (x)
(
s+ logP (x) +

1− P (x)

loge(2)2sP (x)

))
− s(1− δ)

=s−H(P ) +

(∑
x∈X

1− P (x)

2s loge(2)

)
− s(1− δ)

=−H(P ) +

(
|X | − 1

2s loge(2)

)
+ sδ. (250)

Under the above approximation, the minimum with respect
to s is realized when 2s = |X |−1

δ . Hence, the minimum is
approximated to −H(P )+δ log( e(|X |−1)

δ ). This value goes to
−H(P ) when δ goes to +0. Hence, we have (160).

Also, we have

GP,P ′(s)− sr

=

(∑
x∈X

P ′(x) log(2sP (x) + 1− P (x))

)
− sr

=

(∑
x∈X

P ′(x)
(
s+ logP (x) + log(1 +

1− P (x)

2sP (x)
)
))

− sr

=

(∑
x∈X

P ′(x)
(
s+ logP (x)

+ loge(2)−1 loge(1 +
1− P (x)

2sP (x)
)
))
− sr. (251)

For each x, the
(
s+ logP (x) + loge(2)−1 loge(1 + 1−P (x)

2sP (x) )
)

is bounded even when s goes to infinity. Hence, we have

lim
P ′→P

max
s>0

GP,P ′(s)− sr = max
s>0

GP,P (s)− sr, (252)

which implies (161).
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