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Multiple Access Channel Resolvability Codes from
Source Resolvability Codes

Rumia Sultana and Rémi A. Chou

Abstract—We show that the problem of code construction for
multiple access channel (MAC) resolvability can be reduced to
the simpler problem of code construction for source resolvability.
Specifically, we propose a MAC resolvability code construction
that relies on a combination of multiple source resolvability codes,
used in a black-box manner, and leverages randomness recycling
implemented via distributed hashing and block-Markov coding.
Since explicit source resolvability codes are known, our results
also yield the first explicit coding schemes that achieve the entire
MAC resolvability region for any discrete memoryless multiple-
access channel with binary input alphabets.

I. INTRODUCTION

The concept of multiple access channel (MAC) resolvability
has been introduced in [3] as a natural extension of channel
resolvability for point-to-point channels [4]. MAC resolvabil-
ity represents a fundamental primitive that finds applications
in a large variety of network information-theoretic problems,
including strong secrecy for multiple access wiretap chan-
nels [5], [6], cooperative jamming [5], semantic security for
multiple access wiretap channels [7], and strong coordination
in networks [8]. These applications are, however, restricted by
the fact that no explicit coding scheme is known to optimally
implement MAC resolvability. Note indeed that [3], [7] only
provide existence results and no explicit code constructions.
The objective of this paper is to bridge this gap by providing
explicit coding schemes that achieve the MAC resolvability
region [7]. While previous works have been successful in
providing explicit coding schemes for channel resolvability
over point-to-point channels,! to the best of our knowledge,
the only known explicit constructions for MAC resolvability
are those of [13]. However, the explicit constructions in [13],
one based on invertible extractors and a second one based
on injective group homomorphisms, are limited to symmetric
multiple access channels, and do not seem to generalize to
arbitrary multiple access channels.

In this paper, we propose a novel approach to the con-
struction of MAC resolvability codes by showing that such
a construction can be reduced to the simpler problem of
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'Explicit constructions based on polar codes for channel resolvability
have been proposed for binary symmetric point-to-point channels [9] and
discrete memoryless point-to-point channels whose input alphabets have prime
cardinalities [10]. Another explicit construction based on injective group
homomorphisms has been proposed in [11] for channel resolvability over
binary symmetric point-to-point channels. Low-complexity, but non-explicit,
linear coding schemes for channel resolvability over arbitrary memoryless
point-to-point channels have also been proposed in [12].

code construction for source resolvability [14]. Since ex-
plicit constructions of source resolvability codes are known,
e.g., [10], our results yield the first explicit construction
of MAC resolvability codes that achieve the entire MAC
resolvability region of arbitrary multiple access channels with
binary input alphabets. More specifically, our approach to the
construction of MAC resolvability codes relies on a combi-
nation of appropriately chosen source resolvability codes, and
leverages randomness recycling implemented with distributed
hashing and a block-Markov encoding scheme. In essence,
the idea of block-Markov encoding to recycle randomness is
closely related to recursive constructions of seeded extractors
in the computer science literature, e.g., [15]. We stress that
our construction is valid independently from the way those
source resolvability codes are implemented. Additionally, to
avoid time-sharing whenever it is known to be unnecessary,
we also show how to implement the idea of rate splitting,
first developed in [16] for multiple access channel coding,
for the MAC resolvability problem with two transmitters.
Note that the main difference with [13], is that our approach
aims to reduce the construction of MAC resolvability codes
to a simpler problem, namely the construction of source
resolvability codes, whereas [13] attempts a code construction
directly adapted to multiple access channels.

The remainder of the paper is organized as follows. The
problem statement is provided in Section II. Our main result
is summarized in Section III. Our proposed coding scheme
and its analysis are provided in Section IV and Section V,
respectively. While our main result focuses on multiple access
channels with two transmitters, we discuss an extension of our
result to an arbitrary number of transmitters in Section VI.
Finally, Section VII provides concluding remarks.

II. PROBLEM STATEMENT AND REVIEW OF SOURCE
RESOLVABILITY

A. Notation

For a,b € R, define [a,b] £ [|a], [b]]NN. The components
of a vector X'V of size N are denoted with superscripts,
ie, XUV 2 (X' X2 ... XN). For two probability dis-
tributions p and ¢ defined over the same alphabet X, the
variational distance V(p,q) between p and ¢ is defined as

V(p,q) £ X crlp(@) —q(a)].

B. Problem Statement

Consider a discrete memoryless multiple access channel
(X x¥,qz1xv,Z), where X = {0,1} = Y, and Z is a finite
alphabet. A target distribution ¢z is defined as the channel



output distribution when the input distributions are ¢x and
qy, i.e.,

Vz€ Z,qz(2) = Z Z QZ\XY(ZWJ/)QX(I)QY(Z/)-

zeEX yey

Definition 1. A (2VF1 2NE2 N code for the memoryless
multiple access channel (X x Y, qz|xy, Z) consists of

(D

o Two randomization sequences Si and Ss independent
and uniformly distributed over S; = [1,2NT1] and
Sy & [1,2NE2], respectively;
o Two encoding functions fi n : S1 — XN and fon :
82 N yN’.
and operates as follows: Transmitters 1 and 2 form f1 n(S1)
and fo, ~N(S2), respectively, which are sent over the channel

(X xV,qz1xv, 2).

Definition 2. (R;, Rs) is an achievable resolvability rate pair

for the memoryless multiple access channel (X XY, qz xy, Z)

if there exists a sequence of (2NT 2NE2 N} codes such that
N1—1>I—I‘,-loo V(ﬁzl:N 5 qZ1:N) = O7

where qzi1n = Hfil qz with qz defined in (1) and Vz'*N €

ZN

9

1:N) A Z gz1:N|XLNY LN (Zl:N|f1,N(31)7 fg’N(Sz)) .

Pgr (=) 2 A
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The multiple access channel resolvability region Ry, is de-
fined as the closure of the set of all achievable rate pairs.

Theorem 1 ( [7, Theorem 1]). We have R,, = R, with

Ry, = |JA{(R1,Re) : I(XY; Z|T) < Ry + Ry,

I(Y; Z|T) < Ry},

pr.ax|T:9v|T

where pr is defined over T 2 [1,|Z|43] and ax|T,qy|T are
such that, for any t € T and z € Z,

qz(z) = Z Z ax|r(zlt)ayr(ylt)az xy (|2, y).

zeEX yeY

Note that reference [7] provides only the existence of a
coding scheme that achieves any rate pair in R, . By contrast,
our goal is to provide explicit coding schemes that can achieve
the region R,, by relying on source resolvability codes,
which are used in a black box manner. The notion of source
resolvability is reviewed next.

C. Review of Source Resolvability

Definition 3. A (2VE N) source resolvability code for
(X, qx) consists of

o A randomization sequence S uniformly distributed over
S £ [1,2NF];
o An encoding function ey : S — XN;
and operates as follows: The encoder forms XEN L& ¢ ~N(S)
and the distribution of X' is denoted by px1:~.

Definition 4. R is an achievable resolution rate for a discrete
memoryless source (X,qx) if there exists a sequence of
(2N N) source resolvability codes such that

lim V(ﬁXl‘quXliN) = Oa (2)

N——+oco
A N . .
where qxi~n = [[;_; ax. The infimum of such achievable
rates is called source resolvability.

Theorem 2 ([4]). The source resolvability of a discrete
memoryless source (X,qx) is H(X).

Note that explicit low-complexity source resolvability codes
can, for instance, be obtained with polar codes as reviewed in
Appendix A.

III. MAIN RESULT

Our main result is summarized as follows.

Theorem 3. The coding scheme presented in Section 1V,
which solely relies on source resolvability codes, used as black
boxes, and two-universal hash functions [17], achieves the
entire multiple access channel resolvability region R, for
any discrete memoryless multiple access channel with binary
input alphabets. Moreover, time-sharing is avoided whenever
it is known to be unnecessary.

As a corollary, we obtain the first explicit construction of
multiple access channel resolvability codes that achieves the
entire multiple access channel resolvability region R, for any
discrete memoryless multiple access channel with binary input
alphabets.

Corollary 1. Since explicit constructions for source resolv-
ability codes and two-universal hash functions are known,
e.g., [17], [18], Theorem 3 yields an explicit coding scheme
that achieves R, for any discrete memoryless multiple access
channel with binary input alphabets.

IV. CODING SCHEME

We explain in Section IV-A that the general construction of
MAC resolvability codes can be reduced to two special cases.
Then, we provide a coding scheme for these two special cases
in Sections IV-B, IV-C.

A. Reduction of the general construction of MAC resolvability
codes to two special cases

Definition 5. For the memoryless multiple access channel
(X X V,qz/xv, Z) we define

Rxy = {(R1,R2) : I(XY;Z) < Ry + Ry,
I(X;Z) <Ry,
I(Y;Z) < Ry},

for some product distribution pxpy on X x ).

To show the achievability of R:}z’ it is sufficient to
show the achievability of Rx y. Indeed, note that if Ry y
is achievable, then COIlV(UpoY Rx,y) is also achievable,
where Conv denotes the convex hull. Hence, R; 2 is achiev-

able because Conv(lJ,,,, Rxy) D Ry, by remarking that



are in Conv({J L Rx y). For

the corner points of R/
(Y; Z|XT§ ) € R’ belongs

instance, the point (I(X; Z|T),I
to Conv(lJ,,, Rx,y) since

(I(X; Z|T),1(Y; Z|XT))
= pr®)I(X; 2T =), I(Y; Z|X,T =1)).
teT

Similarly, all the corner points of R; also belong to
Conv(UpX o R x,v ). Next, we consider two cases to achieve
the region R x y for some fixed distribution pxpy .
o Case 1 (depicted in Figure 1): I(XY;Z) > I(X;Z) +
I(Y;Z). In this case, it is sufficient to achieve the
dominant face D of R x,y, where

DE2{(R,Ry): Ry €[I(X; 2),1(X; Z|Y)],
Ry =I(XY;Z) — Ry}

o Case 2 (depicted in Figure 2): I(XY;Z) = I(X; Z) +
I(Y; Z). In this case, only the corner point C' needs to be
achieved. Note that it is impossible to have (XY Z) <
I(X;Z)+ 1(Y; Z) by independence of X and Y.

B. Encoding Scheme for Case 1

Consider the region Ry y for some product distribution
pxpy on X x Y such that [(XY;Z) > I(X;2)+ 1(Y; Z).
Since R x,y is a contrapolymatroid [19], to achieve the region
Rx,y, it is sufficient to achieve any rate pair (Rp, R2) of
the dominant face D of Rx y. We next show that D can
be achieved through rate-splitting using the following lemma
proved in Appendix C.

Lemma 1. Consider f : Y x Y — )Y, (u,v) — max(u,v),
and form (Y x Y,pu.pv.),e € [0,1], such that py.yv. =

PUPV., PF(U.,V.) = Dy for fixed (y,u), psw. v, (ylu) is a
continuous function of €, and

Uimo = 0=V, 3)
Ue:l = f(Ue:h VYEZl), (4)
Ve—o = f(Ue=0, Ve=o)- @)

The above construction is indeed possible as shown in [16,
Example 3]. Then, we have I(XY;Z) = Ry + Ry + Ry,
where we have defined the functions

Ry :[0,1] = RY e I(X; Z|U,),
Ry :[0,1] = Rt e I(U; 2),
Ry :[0,1] = R* e I(Ve; Z|UX).

Moreover, Ri is continuous with respect to € and

[[(X;2),1(X; Z|Y)] is contained in its image.

When the context is clear, we do not explicitly write the
dependence of U and V with respect to € by dropping the
subscript €.

Fix a point (Ry, R2) in D. By Lemma 1, there exists a joint
probability distribution gy xy z over Y X Y x X x Y x Z such
that Ry = I(X; Z|U), Ry = Ry + Ry with Ry = I(U; 2)
and Ry = I(V; Z|UX). We provide next a coding scheme
that will be shown to achieve the point (R1, R2). The encoding

I(Y; Z|X)

1(Y; 2)

I(X;:Z) I(}(;Z|Y) I{XY;Z) >

Fig. 1: Region Rxy in Case 1:
I(XY;2)> I(X;Z2)+ I(Y; Z).
Ry
A
1(xy;2)|.
1(X; 2) 1(XY: 7) > B

Fig. 2: Region Rxy in Case 2:
I(XY;2)= I(X;Z2)+ I(Y; Z).

scheme operates over k € N blocks of length N and is
described in Algorithms 1 and 2. A high level description of
the encoding scheme is as follows. For the first transmitter,
we perform source resolvability for the discrete memoryless
source (X, ¢x ) using randomness with rate H(X) in Block 1.
Using Lemma 1, we perform rate splitting for the second
transmitter to get two virtual users such that one virtual user
is associated with the discrete memoryless source (), gi7) and
the other virtual user is associated with the discrete memory-
less source (), qy ). Then, we perform source resolvability
with rates H(U) and H(V) for the discrete memoryless
sources(), qu) and (Y, qv ), respectively. For the next encod-
ing blocks, we proceed as in Block 1 using source resolvability
and rate splitting except that part of the randomness is now
recycled from the previous block. More precisely, we recycle
the bits of randomness used at the inputs of the channel in the
previous block that are almost independent from the channel
output. The rates of those bits will be shown to approach
H(X|UZ), HU|Z), HV|UZX) for User 1 and the two
virtual users, respectively.



o The encoding at Transmitter 1 is described in Algorithm 1
and uses
— A hash function Gx : {0,1}" — {0,1}"* chosen
uniformly at random in a family of two-universal
hash functions, where the output length of the hash
function G x is defined as follows

rx £ NH(X|UZ) - e1/2), (6)

where e £ 2(54(N) + &), da4(N) =

log(|V]2|X|+3)4/ % (3 + log N), £ > 0.
— A source resolvability code for the discrete memo-
ryless source (X', gx) with encoder function ex- and
rate H(X) + 521, such that the distribution of the
encoder output px1.~v satisfies V(pxin,gxin) <
d(N), where §(NN) is such that limpy_, 1 o, 6(N) = 0.

In Algorithm 1, the hash function output Ei, i€ [2,K],
with length 7 x corresponds to recycled randomness from
Block ¢ — 1.
o The encoding at Transmitter 2 is described in Algorithm 2
and uses
— Two hash functions Gy; : {0,1}Y — {0,1}"v and
Gy : {0,1}¥ — {0,1}"v chosen uniformly at
random in families of two-universal hash functions,
where the output lengths of the hash functions Gy
and Gy are defined as follows

U £ N(H(U|Z) - 61/2)7
vENHVIUZX) —a/2). (D)

— A source resolvability code for the discrete mem-
oryless source (U,qy) with encoding function €%,
and rate H(U) + %, such that the distribution of
the encoder output pyi.~ satisfies V(pyin, gpin) <
d(N), where §(NN) is such that limpy_, 1 o, 6(N) = 0.

— A source resolvability code for the discrete memory-
less source (V,qy) with encoding function eX; and
rate. H(V') 4+ %, such that the distribution of the
encoder output py.nv satisfies V(pyiv, gyin) <
d(N), where §(NN) is such that limy_, 1 o, 6(N) = 0.

In Algorithm 2, the hash function outputs 51 and E, 1€
[2, k], with lengths ry and ry, respectively, correspond
to recycled randomness from Block ¢ — 1.

The dependencies between the random variables involved in

Algorithms 1 and 2 are represented in Figure 3.

C. Encoding Scheme for Case 2

The encoding scheme for Case 2 is same as the encoding
for Case 1 with the substitutions U < ) and V + Y.

V. CODING SCHEME ANALYSIS
A. Coding Scheme Analysis for Case 1
First, we show that in each encoding Block i € [1, k],
the random variables U}N, V.EN X IN Yy 1N 71N induced
by the coding scheme approximate well the target distribu-
tion ggi:ny N xuNyLNzin. Then, we show that the target
output distribution gzi.xx is well approximated jointly over

Algorithm 1 Encoding algorithm at Transmitter 1 in Case 1

Require: A vector £y of N(H (X)+e€;) uniformly distributed
bits, and for ¢ € [2, k], a vector E; of N(I(X;UZ)+€;)
uniformly distributed bits.

1: for Block ¢ =1 to k do

2:  if ¢ =1 then

3: Define XNV £ eX(E))

4. elseif : > 1 then

5: Define F; & Gx (le_]},)

6: Define X}V £ e])f,(EzHEZ), where || denotes con-
catenation

7. end if

8  Send X}V over the channel

9: end for

Algorithm 2 Encoding algorithm at Transmitter 2 in Case 1

Require: A vector Dy of N(H (U)+¢€;) uniformly distributed
bits, and for ¢ € [2,k], a vector D; of N(I(U;Z) + €1)
uniformly distributed bits. A vector F} of N(H(V)+¢€1)
uniformly distributed bits, and for ¢ € [2, k], a vector F;
of N(I(V;UZX) + €1) uniformly distributed bits.

1: for Block i =1 to k do

2. if ¢ =1 then _

3: Define U}V £ e§ (D) and VEN £ X (Fy)

4. elseif i > 1 then _ _ _

5: Define D; = GU(U V) and F; £ GV(Vl'N)

6: Define UMY 2 ¢{(D;||D;) and VEN £ eV (Fj|F)

7: Define YN £ f(U}N VEN) where f is defined
in Lemma 1

8: end if_

9:  Send Y;'*V over the channel

10: end for

all blocks. To do so, we show that the recycled randomness
E;,D;,F; in Block i € [2,k] that appears in Line 5 of
Algorithms 1 and 2 is almost independent of the channel
output in Block ¢—1. Note that randomness recycling is studied
via a distributed version of the leftover hash lemma stated in
Lemma 17. Finally, we prove that the encoding scheme of
Section IV-B achieves the desired rate-tuple.

For convenience, define £y 2 (), D; 2 (), and Fy 2 (). Let

ﬁE7D7F7xlNU1Nlelele (8)

denote the joint probability distribution of the random vari-
ables E;, D;, Fi, X1 N U1 N V1 N Y1 N and Z1 N created
in Block i € [1, k] of the codmg scheme of Section IV-B.

We first prove in the following lemma that in Block i €
[2, k], if the inputs X}, ULY, VIV of the hash functions
Gx, Gu, Gy, respectively, are replaced by XN, ULV,
VN distributed according to gyivpunvyiy 2 [[Y, axov,
then the output of these hash functions are almost jointly
uniformly distributed.

unif —unif uni
7pF*

Lemma 2. Let p " ,ppy I denote the uniform distri-



Block i+1

‘i

Fig. 3: Dependence graph for the random variables involved
in the encoding for Case 1. N;, ¢ € [1, k], is the channel noise
corresponding to the transmission over Block 7. For Block i €
[2, k], (D, Dy), (Fi, Fy), (Ey, E;) are the random sequences
used at the encoders to form UFN, VN XN respectively.

butions over {0,1}7%, {0,1}"v, {0,1}"V, respectively. Then,

unif unif unif

\% <QGX(Xl:N)GU(Ul:N)GV(VlzN)Zl:N,pE pD pF,
<o),

qzl:N>

where 8O (N) £ 2/N 4 V7275

Proof. Define A = {U,V, X} and, for any S C A, define
Ts = (W)wes. Hence, we have

1:N 1N LN 1L:N
T.A = (X ) U 3 |4 )7
qT}‘:Nzl;N = (xXU:NyL:NyL:NZL:N.

Then, by Lemma 16 in Appendix B, applied to the product dis-
tribution QTN Z1N there exists a subnormalized non-negative
function W N 718 such that, for any S C A,

V(wxl:NUl:Nvl:Nzl:N7lezNUlszl:Nzl:N) < 1/N, (9)
HOO('LUTSl:NzlzN|CIZ1:N) >NH(Ts|Z) — Nés(N), (10)

where the min-entropy Hoo(wryn z1:x|qz1:v) is defined in
Lemma 16 in Appendix B, and §s(N) = log(|Ts| +
3)\/%(3+log N) with Tg is the domain over which Ts is
defined. Next, let qppr define the joint distribution of

E 2 Gx(X™),D £ Gu(U™Y), F£Gy(VIY), (D

where UMY, VN and XUV are distributed according to
quuNyuN x1:~. Then, we have

V(QEDFZLN , p%nzfp%nzfpupnzf

QZI=N)
a
< V(ggprz1n, WgppziN)

unif unif unif

+V(wgprzin, g g PR 4z1n)

(v)
= V(qGX(XLN)GU(UlzN)GV(Vl;N)Zl:N,
U)GX(XI:N)GU(Ul:N)GV(Vl:N)Zl:N)

+V(wgprzin, P%mfp%mfpupmeZhN)

(©)
< V((]XLNULNVLNZLN 5 'lUXl:NUl:NVl:NZl:N)

nif untf unif

+V(wgppzin, 05 5 e azn)

(d) ) ) )
<1/N+ V(wEDle:N7puEnlfpanlfp%nszZ1:N)
unif unif unif )

unif unif uniwal:N,pE pD va qgin

+V(pE Pp "Pp

nif unif unif

(e) w
S 2/N+V(wEDpzl:N,pE pD pF mev)

(%) 2/N n Z 27‘57Hoo(wT§:NZ1:N‘qzl:N)

SCA,S#0

(%) 2/N+ | Y 2rs-NH(Ts|Z)+Nos(N)
SCA,S#D

h
Lo+ Y 2rs NH(TsIZ)+NSAN)
SCA,S#0

where (a) holds by the triangle inequality, (b) holds by (11),
(¢) holds by the data processing inequality, (d) holds by (9)
and the triangle inequality, (e) holds by (9), (f) holds by
Lemma 17 in Appendix B and 75 £ Y ics i similar to the
notation of Lemma 17, (g) holds by (10), (h) holds because
for any S C A, ds(N) < 64(N). Next, we have

Z 9rs—NH(Ts|Z)+Noa(N)
SCA,S#0

(@) <2N(H(X\UZ)—%1)—NH(X\Z)
+ oN(H(U|2)=3)-NH(U|Z)
4 oN(H(V|[UZX)~F)-NH(V|2)
4+ oNH(X|UZ)=F)+N(H(U|2)=F)-NH(XU|Z)
4 oN(HWU|Z)=F)+N(H(V|UZX)~F)-NH(UV|Z)
4 oN(H(V|[UZX)~F)+N(H(X|UZ)~F)-NH(VX|Z)
+ oNH(X|UZ)=F)+N(HU|Z)=F)+NHV|UZX)=F)

X2—NH(XUV\Z)) 3 « 93 NSA(N)

(b) (2—NI(X;U\Z)7N% 49N | o-NI(VUX|Z2)-NF

49 Ne 4 o-Na-NI(ViX|UZ) | 2—1\/3;1

+27NI(V;U|ZX)fNI(X;U|Z)7Nq)% « 93 NSA(N)

© .
< §O(N) —2/N 2t g

where (a) holds by (6) and (7), (b) holds by the definition of
mutual information and the chain rule for entropy, (¢) holds by
the definition of §(°) (V) and because ¢; = 2(64(N)+¢). O

)

We now show that in each encoding block, the random
variables induced by the coding scheme approximate well the
target distribution.

Lemma 3. For Block i € [1,k], we have
V(ﬁU;;NV_1;NX’_1:NYV1:NZ/1:N s quszl:le:Nyl:Nzl:N) < (SZ'(N),

where §;(N) £ 3(§(N) + 6O (N))(3" — 1) + 37F15(N).



Proof. We prove the result by induction. We first prove that
the lemma holds for ¢ = 1. Remark that

(a) ~

- pYII:NlUll:Nvll:N

®)

= qleN‘Ulszl:N

(@]

= qYl:N‘Ulszl:le:N,

pYII:NlUll:NVII:NXllzN

12)

where (a) holds because )?%:N is independent from
(UFN, VN YEN) (b) holds by the construction of Y1V
and Y*V, (c) holds because X'V is independent from
(ULN VN Yy 1NY Next, we have

V(ﬁUll:NV11:NX11:NY11:NZ11:N, qu:Nvl:NXlzNyl:Nzl:N)

@ vz ~

= (pzll:N‘XII:NYII:NpUll:NVll:NXll:NYII:N,
qzlzN‘XI:NYI:N(IUI:NVI:NXI:NYI:N)

Yy, N )
= pUll.Nvll,NXII.NYII.N,(JULNVLNXI,NYI.N

2V )
= pU11.NV11.NX11.N,qu.Nvl.NX1.N

(d) ~ ~

= V(pxll:NpUll:NvllzN,lequUlszl:N)

@ ~

< V(lel:NpUll:Nvll:N,le:NpUllszllzN)
+V(lezNﬁUll:NVII:N,qxl:Nqu:Nvl:N)

(f) <7/~ ~ ~
= V(pxll;N , QXI:N) + V(pUllszvllzN ,qUi:N qvl:N)

9 __ - _
< V(pxll:N,lezN) + V(pUll:vallzN,quszvll:N)
+V(QUI:NﬁVII:N,QUlquvl:N)

= V(ﬁxll:N, QXI:N) + V(ﬁUllzN R quzN) + V(ﬁvllzN R qVI:N)
13)

(h)
< 33(N),

where (a) holds by the two Markov chains (U*Y, V1Y) —
&XLN, Yl:N) _ Zl:N and (U'llzN7 VllzN) _ (Xll:N, Y'll:N) _
le:N, (b) holds because qz1:N|XLNY LN = ﬁzll:N|X11:NY11:N,
(c) holds by (12), (d) holds because X is independent from
(ULN VENY and X1V is independent from (UEN, ViEN),
(e) holds by the triangle inequality, (f) holds because U is
independent from V1V and U{*¥ is independent from V!V,
(g9) holds by the triangle inequality, (k) holds by the source
resolvability codes used at the transmitters because % >
H(X)+ea /2,20 > HU) +e/2, 50 > H(V) + ¢ /2.

Assume now that, for ¢ € [2,k — 1], the lemma holds.
For i € [2,k], consider E;, D;, F; distributed according
to p%mf,p"Dmf,p“me, respectively. Let pxinv,pgin, ppin
denote the distribution of X}V £ eX(E; E;), UMY £
e¥(Di, D;), VN & eX(F,, F;), respectively. Then, for
i€ [1,k—1], we have

V(pU11+1¥‘/11_*_11vX11+1\17y11+11le1+1\11 y quszl:NXlzNyl:NzlzN)
(a)

< Voxyy s axey) +Vupy, i) + Vv, gvin)

b
< Vo, pxpy) + Vpxpy, axov)

+ Vpury,pory) + Vpouy, quin)

+ V(pvuy, pypy) + Vipyy, qvin)

) " N
< 30(N) + V(Pxry, pxry) + V(Pury pory)
FVBvy pryy)

(4) ~ uUng ~ uni
< 35(N) +V(pEi+l’pE' f) +V(pDi+17pD f)

+ V(Br,, pe), (14)

where (a) holds similar to (13), (b) holds by the triangle
inequality, (c) holds by the source resolvability codes used at
the transmitters because %N‘EI =H(X)+e€/2, W =
H(V)+e /2, PAHPL — g (1) 4 ¢, /2, (d) holds by the data
processing inequality. Next, we have

max (V(ﬁEi_H , pUEMf)’ V(ﬁDi+1 ,p%mf), V(ﬁFiH ,p%mf))
< V<5Ei+1Di+1Fi+1 , puEmfp%nzfp%nzf)

(@

< V(pEi+1Di+1Fi+17qGX(XltN)GU(UlzN)GV(Vl:N))

unif unif unzf)

+V(gay (xr™yau NGy (viny: Pg  Pp PR

(0) </~
= V(pGX(X}:N)GU(UI-LN)GV(VZ.LN),
4G5 (X1N) Gy (UTN)Gy (V)
+ V(qGX(XliN)GU(UI:N)GV(VilzN)7p%nlfp%nzfplF’%"lf)
(¢)

< V(ﬁX_l:NU_lsz_lzN R qX1:NU1:NV1:N) + 50 (N)

d
< 6i(N) + 6O (N),

—
=

5)

where (a) holds by the triangle inequality, (b) holds because
Eiy1 £ Gx(X]N),Diy1 £ Gu(UMY), Fipy 2 Gy (VEY)
by Line 5 of Algorithm 1 and Algorithm 2 , (¢) holds by
the data processing inequality and Lemma 2, (d) holds by the
induction hypothesis. By combining (14) and (15), we have

V(NU;:NVLNXLNY;;NZY}J:FJY, QUI:NVI:NXI:NYI:NZI:N)

i+1 Vit i1 Yiga
< 3(3(N) + 6;(N) + 8O (N))
:(51+1(N)

O

The next lemma shows that the recycled randomness in
Block i € [[2, k] is almost independent of the channel output
in Block 7 — 1.

Lemma 4. For i € [2,k], we have
V(pz18 g, D, P P21NDEDF,) < S (N,

where 5" (N) £ 48;_1(N) + 260 (N).

Proof. We have

V@Z}j\l’ E;D;F;» ]321.1;1{ QBEI- D;F; )

(@) unif unif unif)

SV(’ﬁZ}ﬁEiDiFiaﬁZilj\l’pE Pp "Pgp

unif untf unif ~

+V(Dznpg 5 PR Pz PE D F,)

<2V(Pz1NE,p,F, P2ixPE Pp  DE )



2 (V(FPJE‘D-F-ZQ:_N qEDFZVN)

+V(geprzr N,p};mfpg"’fp?’”fq 1)
(rg

4V unzf ;nlfp;‘nzquI N, pzénzfp%nlfp;nifp ))

< D1 . . . . . . .
<2 (V(pxil,_l\{Uil;l\llvl,Nzl.N,qxl.NUl.Nvl NZ1,N)

+V

(aeprzon: P o P gzn)
+V(QZ1=N,P23;1\{))

(d) - 0)

< 2@V(Pxrnyry vy g1y, gxungun vy zin ) +60 (N))
(e)

< 46, 1(N) +20O(N),

where (a) and (b) hold by the triangle inequality, (c) holds
by the data Aprocessmg mequahty using (11) and E, &
Gx (X)), D; 2 Gu(UEY), Fy £ Gy (V1Y) from Line 5 of
Algorithm 1 and Algorithm 2, (d) holds by (11) and Lemma 2,
(e) holds by Lemma 3. O

The next lemma shows that the recycled randomness in
Block ¢ € [2, k] is almost independent of the channel outputs
in Blocks 1 to ¢ — 1 considered jointly.

Lemma 5. For i € [2,k], we have
_ ~ ~ 2
\Y (lel;’,ij‘iqu‘,EiFi’pzllf{\ilpDiEiFi) < 61( )(N)a

where 5 (N) 2 (211 — 1)(46;_1 (N) + 20O (N)).

Proof. We prove the result by induction. The lemma is true
for 7 = 2 by Lemma 4. Assume now that the lemma holds for
i € [2,k — 1]. Then, for i € [3, k], we have

\% (pzl N

1:i—2

We have

_ ~ ()
Di,lEi,lFi,lapZ%:’ﬁ2pD¢—1Ei—1F7t—1) S 67,—1(]\])

Vv (pZ%jﬁlD,;EiFi s Pz1:N PDE; F)

(a)
<V (pZ%jﬁlDiEiFiva}jiI\i2pZi1:_A1’DiEiFi)

+V( ZlN pZ1ND EvaZlN pZ1NpD EF)

+V (pz;;gz ,PzENPD B F; s Pz:N PD;E; F)
=V Bz oo Bapy Pz poir, )

+V (Pz;j\{ D,E;F;»PZz:NPD; E; F)

+V( ZlN ple,ple )

(b)
<V( PzN DB FPziN pleDEF)

+V (B oy P, ) + 000 (V)
(c) ~
<2V (pzll::i]\ilDi—l:iEi—lziFi—1:i’
~ ~ 1
lelj{\izpzilf\{Di—1:71Ei—1;in:—1:1:) + 51( )(N)

D gy 5
- pZ%, 2 Di— lEi—lFi—lpZilz_I\{DiEiFi|Di—1Ei—1Fi—1’

ﬁle:’ﬁZﬁZ}j\{Di,l;iEi,hiFi,l;i) + 51(1)(N)
—2V( PziN D, B Fi_ l,ple PD; 1Ei 1 Fi_ 1)
+5{7 (V)
< a0 +282,()
<67 (N),

where (a) holds by the triangle inequality, (b) holds by
Lemma 4, (c) follows from the data processing inequal-
ity, (d) holds by the Markov chain (D;, E;, F;, ZFY) —
(Di_1,E;_1,F;_1) — ZEN,, (e) holds by the induction hy-
pothesis. O

The next lemma shows that the channel outputs of all the
blocks are asymptotically independent.

Lemma 6. We have

k
\ (52;;,§, HﬁzgzN) <(k
=1

where 5122)(]\[) is defined in Lemma 5.
Proof. We have

k
\4 (ﬁz;;gﬁﬂﬁz}”)
<ZV ple H ple,pZ1N HpZ1N

Jj=i+1

- 1)5122) (N)7

( Z1N7PZ1 N ple)

IN

(pZ“VDEvaZ“\’DEFpZ 1:N )

V(

v (lelgif\ilDiEiFi ) pz%;ﬁlpDiEiFi)

ZlN

1:4—1

\D,;EiFipzierDiEiFi7PZ,31ND,;EiF7;p211;g\L1)

'M»L‘M»LH;WMMM ;

@
I|
o

—

c

<

~

5(2)(N)
< (k-1 sP(N
<( )]gﬁgﬁ (N),

where (a) holds by the triangle inequality, (b) holds by the
Markov chain ZlN — (D;,Ei, F) — Z112N1’ (¢) holds by
Lemma 5. O

We now show that the target output distribution is well
approximated jointly over all blocks.

Lemma 7. For Block i € [1,k], we have
V (B gz ) < (k= D5 (N) + ko(N),

where 5122)(]\7) is defined in Lemma 5 and 0y(N) is defined
in Lemma 3.



Proof. We have

V(ﬁzllf;iv’ qZI:kN)

k
+ V(H ﬁZ}:N s qzlsz)

i=1

k k
k= 18D (N) + V(igen [[ 5w azn [[5rv)

(a)
< (k—1)8 (N)

(®)

< (
=2 =2
k
+ V(qzmv Hﬁzil:N,qucN)
=2
(©) b
< (k- 1)5,(62)(]\7) +01(N) + V(HﬁzilzN,quz(k—l)N)
1=2
(d)
< (k- 1)8 (N +Z§
< (k—1)52 (N )+k max_6,(N),

J€[1,k]

where (a) holds by the triangle inequality and Lemma 6, (b)
holds by the triangle inequality, (¢) holds by Lemma 3, (d)
holds by induction.

O

Finally, the next lemma shows that the encoding scheme of
Section IV-B achieves the desired rate-tuple.

Lemma 8. Let ¢y > 0. For k large enough and £ > 0, we have
hm Ry =1(X;ZU) + ¢ + 2¢,
N—+
hm RU:I(U,Z)+60+2§,
hm Ry =I(V; ZUX) + ey + 2¢.
N —+o00

Proof. Let k be such that + max(H(X), H(U),H(V)) < €.
Then, by the definition of ¢;, we have

_ YL IE
= =N
_ N(H(X) +e1) + (k= )N(I(X; ZU) + 1)
- EN
< H(kX) +I1(X;ZU0) + ¢
<e+I(X;ZU)+ ¢
N2t 1(X ZU) + e + 2€,
Y
Fo==9N
 NHU) 4 e+ (k- 1)NI(U; Z) + 1)
B kN
H(U)

STJrI(U;Z)Jrel

<e+IU;Z)+e

N2H0 [(U3 Z) + €0 + 26,

S |F]

R =
v EN

NHWV) +e1) + (k- 1)N

kN
+I(V;ZUX) + ¢
<e+IV;ZUX) + ¢
N2E0 [V ZUX) + € + 2€.

(I(V;2UX) +e)

_HWY)

B. Coding scheme analysis for Case 2

For Case 2, U = () and V =Y, so that by Lemma 8, the
achieved rate pair is such that

lim Ry =I(X;Z)+ e+ 2¢,

N —+4oc0
N1~1>r£oo R2 - NE)IEOO(RV + RU)

—I(Y;ZX) + o +2¢
W 1y, Z1X) + eo + 2¢
I(Y; Z) + e + 26,

where (a) holds by independence between X and Y, and (b)
holds because I(XY;Z) =I(X;Z)+ I(Y;Z) in Case 2.

®

VI. EXTENSION TO MORE THAN TWO TRANSMITTERS

Consider a discrete memoryless multiple access channel
(X, qz1x,, Z), where X = {0,1}, 1 € £ £ [1,L], Z is
a finite alphabet, and X, £ (X;);c.. The definitions in Sec-
tion II-B immediately extend to this multiple access channel
with L transmitters and we have the following counterpart of
Theorem 1.

Theorem 4. We have R,, = Ry, with

Ry, = |J {(Ri)iec : I(Xs; Z|T) < Rs,¥S C L},

pr,(ax;)T)1eL

where pr is defined over T £ [1,|Z|+2% —1] and (qx, /7)1
are such that, for any t € T and z € Z,

> azix. Glae) [ axur(@ilt).

rrEXL lel

Proof. The converse is an immediate extension of the con-
verse of Theorem 1 from [7]. The achievability follows from
Theorem 5. O

Theorem 5. The coding scheme presented in Section VI-A,
which solely relies on source resolvability codes, used as black
boxes, and two-universal hash functions, achieves the entire
multiple access channel resolvability region R, of Theorem 4
for any discrete memoryless multiple access channel with
binary input alphabets.

A. Achievability Scheme

In the following, we use the notation Xs = (X;);es for
S CL, and Xy, £ X[[l,l]] for [ € L. Let PX, = Hleﬁpxl‘
We will show the achievability of the region

R (px.) = {(R)iec : I(Xs;Z) < Rs,VS C L},



which reduces to showing the achievability of the rate-
tuple (I(X;; Z|X1.-1))iec. Indeed, the set function & —
—I(Xs;Z) is submodular, e.g., [20], and the region
R (px,) thus forms a contrapolymatroid [19] whose dom-
inant face is the convex hull of its extreme points given
by {(I(Xa(l)§Z‘X{g(i):ie[[l,l—lﬂ}))lell OIS G(L)}, where
G(L) is the symmetric group over L. By time-sharing and
symmetry of the extreme points, the achievability of the
dominant face reduces to showing the achievability of one
extreme point, which without loss of generality can be chosen
as (I(Xy; Z| X1:0-1) )iec-

The encoding scheme to achieve (I(X;; Z|X1.-1))iec Op-
erates over k € N blocks of length N. In this section,
we use the double subscripts notation X;;, where the first
subscript corresponds to Transmitter [ € £ and the second
subscript corresponds to Block ¢ € [1,k]. The encoding at
Transmitter [ € £ is described in Algorithm 3 and uses

e A hash function G, : {0,1}¥ — {0,1}"* chosen

uniformly at random in a family of two-universal hash
functions, where the output length of the hash function
Gx, is defined as follows

rx, 2 N(H(X)|ZX1.4-1) — €2/2). (16)

e A source resolvability code for the discrete mem-
oryless source (Xj,qx,) with encoder function ey’
and rate H(X;) + 2, where e = 2(65(N) + &),
§5(N) = log(|Xz|+3)y/Z(L+1logN), & > 0, such
that the distribution of the encoder output p X satisfies
V(pxin,qxinv) < 6(N), where 6(N) is such that
th%ﬂ)o 5(N) =0.

In Algorithm 3 and for any [ € L, the hash function output
Ei;, i € [2,k], with length rx, corresponds to recycled
randomness from Block 7 — 1.

Algorithm 3 Encoding algorithm at Transmitter [ € £

Require: A vector E;; of N(H(X;) + €2) uniformly dis-
tributed bits, and for ¢ € [2,k], a vector E;; of
N(I(X;; ZX1.—1) + €2) uniformly distributed bits.

1: for Block i =1 to k do

2: if 7 =1 then

3 Define XV £ e

4:  elseif ¢ > 1 then _

5 Define F ; = GXl (Xll'l »

6

7

8

9

N (Er)

Define X1 N2 X (B ||y
end if
Send X'\ over the channel
: end for

B. Achievability Scheme Analysis

For convenience, define, for any [ € L, EM £ (. Let
DBy, XLN Z1N denote the joint probability distribution of
the random variables El,i, X lllN , and Zil:N , 1 € L, created in
Block 7 € [1, k] of the coding scheme of Section VI-A.

We prove in the following lemma that in Block i € [2, k],
if the inputs X1V i1 of the hash functions (Gx, )i, are re-

placed by X/} distributed according to gx1:n = | A

then the outputs of these hash functions are almost jointly
uniformly distributed. Define

GX]:L(Xll::i;V) £ (GXL (XllzN))leg .

Lemma 9. Let pumf denote the uniform distribution over
{0, 1} Xec i, Then, we have

v (qul:L(Xllfiv)ZLva%TZqzl:N) < 5*(0) (]\])7
where 5*(©)(N) £ 2/N + 252~ 7%

Proof. Using Lemma 16 in Appendix B, with the substitutions

A+ L,TYN « XN, applied to the product distribution
qx 1N z1v , there exists a subnormalized non-negative function

wx 1~ z1n such that for any S € £

V(lelfinl:N7lel_:£Vzl:N) S 1/]\[7
HOO('LUXé:Nzl:N|qzl:N) > NH(Xs|Z) -

a7)
No5(N), (18)

where the min-entropy Hoo(wx v z1:n|qz1:v) is defined in
Lemma 16 in Appendix B, and §5(N) £ log(|Xs| +
3)\/%(L +1log N). Let qp,,, define the distribution of

El:L £ GX1:L(X11::£V)7 (19)

where XV is distributed according to qx1:v. We have

V(QELLZLN>p%T'LfQZ1=N)
(a)
< V(gg,,, 228, wE,, z21:8) + V(wg,,, 71 N7pE

(b)
< V( Ax1:N Z1N, wX1NZ1N)+V(wE1L21N,pE

(c)
< 1/N+V(’LUE1 LZIN7pE fwle)

fquv)

f‘]zl N)

+ V( L”“fwz1 N ,p}f;”fq 1: N)

(d)

§2/N+V(wE1LZ1N7pE WziN)

(z) 2/N+ Z QTXS*HOO(U/X%:NZLNMZLN)
SCL,S#D

(é) 9N + Z orxs—NH(Xs|Z2)+Ng(N)
SCL,5#0

WoN 4 Y 2TiesWHXUZX-0)=F)
SCL,S#D

sy zlesH(Xz\zxﬂl,mﬂms)waz(w))1/2
(h) 2 L aw
< 2/N.|_ Z 2Zl€$ N(=3+0z(N))

SCL,S£0
(i) .
< 2/N + V2la-Ne N2t

where (a) holds by the triangle inequality, (b) holds by (19)
and the data processing inequality, (¢) holds by (17) and the
triangle inequality, (d) holds by (17), (e) holds by Lemma 17
in Appendix B, (f) holds by (18) and because for any S C L,



05(N) < 07(N), (9) holds by (16) and the chain rule, (h)
holds because conditioning reduces entropy, (¢) holds because
|S|> 1 and €3 = 2(6%(N) + &). O

We now show that in each encoding block, the random
variables induced by the coding scheme approximate well the
target distribution.

Lemma 10. For Block i € [[1, k],
V(ﬁX}jﬁiZ}:Nvlelji\’ZlfN) < 0; (N), (20)
N) £ LE(N) + 8 O(N) (=) +

Proof. We prove the result by induction. For ¢ = 1, we have

where 6} ( L*§(N).

V(pr;ﬁlz§:N,QXl=Nzl=N)
= V(pzll=N|X1 N pxll N QZ1=N|X11;gCIX11;£V)
(@)

= V(le N 7qX1 N)

1:L,1

§ Z V(ﬁxl{fv ) (IX}W)
el

2y

(c)
< L3(N),

where (a) holds because v x1.8v = Pzin xun 5 (b) holds

by the triangle inequality and because (X' ll‘lN ) are jointly

independent, and (X}*V);c are jointly mdepenldeLm (¢) holds
by the source resolvablhty codes used at the transmitters
because |El il s H(X)) 4+ e/2,1€ L.

Assume now that, for ¢ € [2, k— 1], (20) holds. For any [ fe

L and i € [2,k], consider £ ; distributed according to p2"*/,
the uniform distribution over {O 1}7%:, and let p XN denote

the distribution of XN £ eX!(E};, Ey;). For i € [1,k—1],
we have

V(px

(@)
< ZV pX1N dx ) N)
el

1:N 1:N 71:N
1Llﬂzlﬂvflx A )

(0)
< ZV PxpN s PXEN, )+ Vi(p X{gj’HafZX;ﬁN)
leL

(c) -
<> V(pxpx »pxpx,) +6(N)
leL

(4) uni
< ZVPELH—UPE f)+6(N)
el

23 (s

el

+V pEL a1 dGx, (X N))

V(g xp) P )

&) Z (6

el

+V pGX (Xl N) qGX (Xl N))
+V( Ly, pi
4G x,(x}N) P,

<Z§

leL

+VPX1N QXlN) + 07 O(N)

)+ 85 (N) 4+ 57O (N)

%Za

lel
=L (5(1\/) +65(N) + 5*<0>(N)) :

where (a) holds similar to (21), (b) holds by the triangle
inequality, (c) holds by the source resolvability codes used at
the transmitters because % = H(X)) +e/2,l € L,
(d) holds by the data processing inequality, (e) holds by
the triangle inequality, (f) holds because for any I € L,
Epiy1 2 Gx, (X)) by Line 5 of Algorithm 3, (g) holds
by the data processing inequality and Lemma 9, () holds by
the induction hypothesis. O

Next, we show that the recycled randomness in Block ¢ €
[2,k] is almost independent from the channel outputs of
Block 7 — 1.

Lemma 11. For i € [2, k], we have

V(Pp, 20 P Brey) < 6 (V).
Y(N) £ 467 (N) + 26O (N).

Proof. We have

where 5:(

V(pELL,iZil;I\{ 3 pElzL,ingiAlr)

(a)
< V(pg,., 71

+ V(pEanzl’N7pE1 L, iﬁZl’A{)

apE fpzilj\{)

< 2V(Dp,,, 28 P, przl ~)

(2 2 (V(ﬁEhL,izgﬂaQGXI:L(Xll;g)erN)
+V(qoy, , (xeyyzen ap%niZqu‘N)
+V (T gzun, p. fple))

L AWy grsaxryzin) + 5O (N)

LY 2N Ax LR

T+ V(gzin, D)

@) * *(0)
< 46;_1(N) +26"(N),

where (a) and (b) hold by the triangle inequality, (c)
holds by the data processing inequality because FEi.r,; =
Gx,.. (Xlljﬁi_l) by Line 5 of Algorithm 3, and by Lemma 9,

(d) holds by Lemma 10. O

Next, we show that the recycled randomness in Block i €
[2, k] is almost independent of the channel outputs in Blocks 1
to 7 — 1 considered jointly.

Lemma 12. For i € [2,k], we have
v (ﬁElzL,ilejﬁl 7ﬁE1;L,1‘,§Z11j{\L1) = 6;‘(2)(]\[)3
where 5% (N) £ (20=1 = 1)(467_,(N) + 25* O (V).

Proof. We prove the result by induction. The lemma is true
for ¢ = 2 by Lemma 11. Assume now that the lemma holds



for i € [2,k — 1]. Then, for i € [3, k], we have

V<leN Ei.r, vale pE1L1)

1ii—1
(a)
<V(21N ElevalN pZ NEle)'

+V (1/52;;/5[21723;@&1@aigzll;ﬁQﬁzgj\l’ﬁEl;L,i)

+V( Dz1N DziNDEyL . PziN pElLl)
=V (ﬁZi;ﬁlEl;L,iaﬁle;ﬁzﬁZ}:_’\l’El;L,i>

+V( PzyNEy . ’pzl NPE1 L7)

Y (Bopy Py gy, )

6*(1)( N) +2V (5zll:=ﬁ1E1;L,i,1:i>ﬁz};ﬁ2ﬁzg;1\{E1;L,i,1;i)
(0)5 (N )+2V( PzN By A PZENEL L | Brn
]3211;1.1\12523;1\1’&:“,1;@-)

:5%(1)( )+2V( PziN By PZEN DBy 1)
5O +25,2(),

where (a) holds by the triangle inequality, (b) holds by
Lemma 11, ( ) holds by the Markov chain (FEy.1;, ZFY) —
Ey.pi-1— Z:N,, (d) holds by the induction hypothesis. [

The following lemmas show that the channel outputs of all
the blocks are asymptotically independent, and that the target
output distribution is well approximated jointly over all blocks.

Lemma 13. We have

k
v (ﬁzllgg’anﬁz}ﬂ\’> < (k
i=1

where (5,:(2) (N

16, P (),

) is defined in Lemma 12.
Lemma 14. For block i € [1,k], we have

v (1’5211;,gv,qzm) < (k= 1)6;P(N) + ki (N),

where 6,:(2) (N) is defined in Lemma 12 and 6;,(N) is defined
in Lemma 10.

The proofs of Lemmas 13 and 14 are similar to the proofs
of Lemmas 6 and 7, respectively, and are thus omitted.
Finally, the next lemma shows that the encoding scheme of
Section VI-A achieves the desired rate-tuple.

Lemma 15. Let ¢y > 0. For k large enough and any |l € L,
we have Nlim R =I1(Xy; Z| X1.-1) + €0 + 2¢.
—+o0

Proof. Let k be such that for any [ € £ we have H(I‘CX )
Then, by the definition of €q, for any [ € £, we have

k
oy
Rl _ ZZ:l‘ l, |

T kN
N(H (X)) +€2) +

< €.

(k= 1)NU(X;; ZX1.0-1) + €2)
kN

H(X
< (k ) + (X3 ZX10-1) + €2
<e+I(X1;;ZX10-1) + e

Ao, [(Xy; ZX10-1) + €0 + 2.

VII. CONCLUDING REMARKS

We showed that codes for MAC resolvability can be ob-
tained solely from source resolvability codes, used as black
boxes, and two-universal hash functions. The crux of our ap-
proach is randomness recycling implemented with distributed
hashing across a block-Markov coding scheme. Since explicit
constructions for source resolvability codes and two-universal
hash functions are known, our approach provides explicit
codes to achieve the entire multiple access channel resolvabil-
ity region for arbitrary channels with binary input alphabets.

APPENDIX A
AN EXPLICIT CODING SCHEME FOR SOURCE
RESOLVABILITY
A A [10]%®7
Let n € Nand N = 2" Let G, = 1 be

the source polarization matrix defined in [21]. For any set
A C [1,N] and any sequence X'V, let XN [A] be the
components of X~ whose indices are in .A. Next, consider
a binary memoryless source (X, ¢x ), where | X |= 2. Let X1V
be distributed according to gxin = Hi]iqu, and define
AEN & G XN Define also for 3 < 1/2, dy = 9—N".
the sets

Vx £ {i € [1,N]: HA|A"" ) > 1 -6y},
Hx £ {i € [1,N]: HA|AY" ) > 6n} .

Algorithm 4 Encoding algorithm for source resolvability

Require: A vector R of [Vx| uniformly distributed bits
1: Define AN [Vx] £ R
2: Define A’ according to qaijavi— for j € VG\HS and
as Al A argmaquj‘A1:j71(a|a1:j_1) for j € H%
ac{0,1}
3: Define X1V £ ALNG,

In Algorithm 4, the distribution of XV is such that
limy 0o V(Px1:v, ¢x1:8) = 0 by [22], [23]. Moreover, the
rate of R is 22 X2F%0 F(X) by [24, Lemma 1], and the
rate of randomness used in Line 2 is 0 by [10, Lemma 20].
Hence, Algorithm 4 achieves the source resolvability of

(X7QX>'

APPENDIX B
SUPPORTING LEMMAS

A function fx defined over a finite alphabet X is sub-
normalized non-negative if fx(z) > 0,Vx € X and
> wex [x(x) < 1. Additionally, for a subnormalized non-
negative function fxy defined over a finite alphabet X' x ), its
marginals are defined as fx (z) £ doyey fxv(z,y), Ve € X



and fy (y) £, cx fxv(z,y),Vy € Y, similar to probability
distributions.

Lemma 16 ( [25], [26, Lemma 2]). Define A = [1, A]. Let
(T2)aca be A finite alphabets and define for S C A, Ts =
Xoes T.. Consider the random variables Ti{N 2 (TENYpen
and ZVN defined over 7;1‘\7 x ZN with probability distribution

A TN .
qryNzuN = [[,21 gruz. For any € > 0, there exists a
subnormalized non-negative function WriN 71N defined over
TA x ZN such that V(qT}l:Nzl:N,wT}A:Nzl:N) <€ and

Hoo(wTé:NZ1;N|qZ1;N) > NH(Ts|Z) — Nos(N),VS C A,
where 6s(N) = log(|Ts| + 3)1/ 2 (A — loge), and we have
defined the min-entropy as in [27], [28], i.e.,

HOO<wTé:Nzl:N|QZ1:N)
wTé:Nzl:N(t}g:N,Zl:N)

gz (2BN)

JAN
= —log max

tENeTd
2N esupp(q,1:n)

Lemma 17 ( [25], [26, Lemma 1]). Consider a sub-
normalized non-negative function px,z defined over
Xl€£ X} X Z, where X £ (Xl)leL and, Z, X, l € L, are
finite alphabets. For | € L, let F; : {0,1}" — {0,1}"™,
be uniformly chosen in a family F; of two-universal hash
functions. Define s; = [Licc|Fil, and for any S C L,
define rs = Y icsTi- Define also Fr 2 (F)ier and
Fr(Xc) £ (Fi(Xy)),e - Then, for any qz defined over Z
such that supp(qz) C supp(pz), we have

V(pr.(xe),Fe,2 PUCPUFPZ)

< Z 2T5—Hoo(pxsz\qz),
SCL,540

where py,. and py, are the uniform distributions over [1,27<]
and |1, s.], respectively.

APPENDIX C
PROOF OF LEMMA 1

The proof is similar to [16]. We have

(@)

I1(xY;2) 2 1(XUV; Z)
®)

=1(U; Z) + 1(X; Z|U) + 1(V; Z|UX),

where (a) holds because I(XUV;Z) > I(XY; Z) since Y =
fU,V), and I(XUV;Z) < I(XY;Z) since (X,U,V) —
(X,Y)— Z forms a Markov chain, (b) holds by the chain rule.

We know by [16, Lemma 6] that I(X; ZU) is a continuous
function of €, hence so is

Ry = 1(X;Z|U) = I(X; ZU),
where the last equality holds by the independence between X
and U. Then, I(X; Z) and I(X; Z|Y') are in the image of R;

by (3), and hence, using I(X; Z2) < I(X;YZ) = 1(X; Z|Y),
[[(X;Z),1(X;Z|Y)] is also in the image of R; by continuity.
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