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A Second-Order Converse Bound for the

Multiple-Access Channel via Wringing Dependence
Oliver Kosut

Abstract

A new converse bound is presented for the two-user multiple-access channel under the average probability of error constraint.
This bound shows that for most channels of interest, the second-order coding rate—that is, the difference between the best
achievable rates and the asymptotic capacity region as a function of blocklength n with fixed probability of error—is O(1/

√

n)
bits per channel use. The principal tool behind this converse proof is a new measure of dependence between two random variables
called wringing dependence, as it is inspired by Ahlswede’s wringing technique. The O(1/

√

n) gap is shown to hold for any
channel satisfying certain regularity conditions, which includes all discrete-memoryless channels and the Gaussian multiple-access
channel. Exact upper bounds as a function of the probability of error are proved for the coefficient in the O(1/

√

n) term, although
for most channels they do not match existing achievable bounds.

Index Terms

Multiple-access channel, second-order, dispersion, wringing, dependence measures.

I. INTRODUCTION

The multiple-access channel (MAC) is the fundamental information theory problem that addresses coordination among

independent parties. In this problem, multiple transmitters1 independently send signals into a noisy channel, and a receiver

attempts to recover a message from each transmitter. The MAC was alluded to by Shannon in [1]; the discrete-memoryless

version was formally stated and its capacity region determined in [2]–[4]. The capacity region for the Gaussian case was found

in [5], [6].

These results were first-order asymptotic, meaning they considered the channel coding rates in the regime where the

probability of error goes to zero and the blocklength goes to infinity. One may consider refinements to these results. For

example, a strong converse states that, if the probability of error is fixed above zero and the blocklength goes to infinity,

then the set of achievable rates is identical to the standard capacity region. The strong converse for the discrete-memoryless

MAC was first proved by Dueck in [7]; this argument made use of the blowing-up lemma and a so-called wringing step. An

alternative strong converse proof was presented by Ahlswede in [8]; this proof used Augustin’s converse argument [9] in place

of the blowing-up lemma, followed by a more refined wringing step. A strong converse for the Gaussian MAC was proved in

[10], using an argument based on that of [8].

One may refine the strong converse even further by fixing the probability of error, and asking how quickly the coding rates

at blocklength n approach the capacity region. This work dates back to Strassen [11], who showed that for the point-to-point

channel coding problem, the backoff from capacity at blocklength n is O(1/
√
n), and also characterized the coefficient on

this term. Recently, there has been renewed interest in this second-order (also known as dispersion) regime following [12],

which refined Strassen’s asymptotic analysis via the information spectrum, and [13], which also focused on non-asymptotic

information theoretic bounds.

However, in the fixed-error second-order regime, the MAC has turned out to be significantly more difficult than the point-to-

point channel. Achievable bounds are proved in [14]–[19], each of which gives lower bounds of order O(1/
√
n) on the back-off

term in the coding rate. Second-order results for the related problem of the MAC with degraded message sets were presented

in [20], [21], including matching second-order converse bounds. For the standard MAC under the maximal probability of error

criterion, a second-order converse bound is presented in [22]. Recently, a bound for the maximal probability of error version,

based on the technique of the present paper, was presented in [23], which was published after the preprint of this paper.

(See Sec. V-C for a brief discussion of the maximal-error case.) Herein we focus on the average probability of error case.

Second-order results for a random-access model, wherein an unknown number of transmitters send messages to a receiver,

were derived in [24].

Despite this progress, the best converse bound for the second-order rate of the standard MAC with average probability of

error has remained [8]. While [8] is primarily interested in proving a strong converse, rather than characterizing the asymptotic

behavior of the coding rate, the converse bound presented there shows that

R(n, ǫ) ⊆ C +O

(
logn√

n

)
(1)
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1Throughout this paper, we will focus on the case with two transmitters.
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where R(n, ǫ) is the set of achievable rate pairs at blocklength n and average probability of error ǫ, and C is the capacity

region. In this paper, we improve upon the converse bound from [8] to show that for most MACs of interest—including

discrete-memoryless MACs and the Gaussian MAC—the achievable rate region is bounded by

R(n, ǫ) ⊆ C +O

(
1√
n

)
. (2)

This result asserts that achievable second-order bounds of [14]–[19] are order-optimal; that is, the gap between the capacity

region and the blocklength-n achievable region, in either direction, is at most O(1/
√
n). We provide a specific upper bound

on the coefficient in the O(1/
√
n) term, although for most channels it does not match the achievability bounds.

The main difficulty in proving a second-order converse for the MAC is to properly deal with the independence between the

transmitters. The problem variant with degraded message sets, as studied in [20], [21], seems to be easier precisely because

the transmitted signals are not independent. The independence that is inherent to the standard MAC prohibits many of the

methods to prove second-order converses for the point-to-point channel; for example, one cannot restrict the inputs to a fixed

type (empirical distribution), which is one of the steps in the point-to-point converse in [13], since imposing a fixed joint type

on the two input signals creates dependence. An alternative approach adopted in [25] to prove second-order converses uses the

notion of reverse hypercontractivity. This technique provides a strengthening of Fano’s inequality, wherein the coding rate is

upper bounded by the mutual information plus an O(1/
√
n) error term. However, this technique relies on the geometric average

error criterion, which is stronger than the usual average error criterion (but weaker than the maximal error criterion). The method

of [25] can be applied to the average error criterion by first expurgating the code—i.e., removing some of the codewords with

the largest probability of error. However, with the MAC, we cannot just expurgate codewords, we must expurgate codeword

pairs, which again introduces some dependence between inputs. For this reason, reverse hypercontractivity can be viewed as a

replacement for the blowing-up lemma or Augustin’s converse, but does not remove the need for wringing. Interestingly, the

technique that we use here seems to be related to hypercontractivity; see Sec. III-D for more details.

To handle the independence between transmitters, the strong converse of [8] adopted the following approach: given any

MAC code, first expurgate it by restricting to those channel inputs with limited maximal probability of error. Of course,

this expurgation introduces some dependence between the transmissions. Second, this dependence is “wrung out” by further

restricting the channel inputs so as to restore some measure of independence between them. Our bound follows the same

basic outline, but we use a different technique for wringing. Namely, we introduce a new dependence measure called wringing

dependence. In the wringing step, we restrict the channel inputs so that the wringing dependence between them is small. This

method of wringing proves to be more efficient than that of [8]. In addition to being critical to our converse proof, the wringing

dependence measure is interesting in its own right: it satisfies many natural properties of any dependence measure, including

the data processing inequality, and all 7 of the axioms for dependence measures that Rényi proposed in [26]. Using this tool,

we show that a bound of the form (2) holds for any MAC that satisfies two regularity conditions. All discrete-memoryless

MACs, and the Gaussian MAC, are shown to satisfy these conditions.

The remainder of the paper is organized as follows. Sec. II gives notational conventions and describes the setup for the

MAC problem. Sec. III is devoted to the wringing dependence: it is defined, some simple examples are presented, and its main

properties are proved. Sec. IV gives a finite blocklength converse bound for the MAC; this bound includes the core steps of

our converse argument based on the wringing dependence. In Sec. V, second-order asymptotic bounds are proved, applying

the finite blocklength bound from Sec. IV to prove (2) under certain regularity conditions. Specifically, two second-order

bounds are proved: one that applies to any channel that satisfies two regularity conditions, and a tighter bound that holds

for discrete-memoryless channels. Sec. VI illustrates the results with some specific example channels, including the Gaussian

MAC. We conclude in Sec. VII. Several of the more technical proofs are contained in appendices.

II. PRELIMINARIES

A. Notation

Throughout, all logs and exponential have base e unless otherwise specified; log base 2 is denoted log2. For a random

variable, we use the corresponding calligraphic letter to indicate its alphabet; e.g. X has alphabet X . While most results in the

paper hold for arbitrary probability spaces, to simplify notation we do not typically specify the event space. For an alphabet

X , the set of all distributions on that alphabet is denoted P(X ). Given two alphabets X ,Y , the channel W from X to Y is

a collection (Wx)x∈X where Wx ∈ P(Y) for each x ∈ X . The set of all channels from X to Y is denoted P(X → Y). We

will also sometimes use the notation PY |X for a channel from X to Y where PY |X=x ∈ P(Y) is the conditional distribution

given X = x. We use E[X ] for expectation of a real-valued random variable X ; usually the underlying distribution will be

clear from context, but if not we write EP [X ] to mean
∫
XdP . For variance, Var(X) or VarP (X) are used in the same way.

The probability of an event is denoted with P in a similar manner. For a set A ⊂ X , we write the indicator function for A
as 1(x ∈ A). For an integer n, we denote [n] = {1, . . . , n}. A sequence xn ∈ Xn means xn = (x1, . . . , xn). We adopt the

standard O(·) and o(·) notations. Specifically, for functions f(n), g(n), we write g(n) = O(f(n)) to indicate

lim sup
n→∞

∣∣∣∣
g(n)

f(n)

∣∣∣∣ < ∞. (3)
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Similarly, g(n) = o(f(n)) means limn→∞ g(n)/f(n) = 0. We also use this notation when the limit goes to 0 instead of

infinity; for example g(δ) = O(f(δ)) means lim supδ→0 |g(δ)/f(δ)| < ∞. We write |x|+ = max{0, x} for positive part.

We also adopt the following standard definitions. Given two distributions P,Q ∈ P(X ), the Kullback-Leibler divergence is

denoted

D(P‖Q) = EP

[
log

dP

dQ

]
(4)

where dP
dQ is the Radon-Nikodym derivative. We will also need the Rényi divergence of order ∞, given by

D∞(P‖Q) = sup
A⊂X

log
P (A)

Q(A)
(5)

where the supremum is over all events A in the probability space. The total variational distance is

dTV (P,Q) = sup
A⊂X

|P (A) −Q(A)|. (6)

The hypothesis testing fundamental limit is given by

βα(P,Q) = inf
T :X→[0,1],
EP [T (X)]≥α

EQ[T (X)]. (7)

Here, T (x) represents the probability that a hypothesis test outputs hypothesis 1 when X = x. The divergence variance is

denoted

V (P‖Q) = VarP

(
log

dP

dQ

)
. (8)

The third absolute moment of the log-likelihood ratio is given by

T (P‖Q) = EP

[∣∣∣∣log
dP

dQ
−D(P‖Q)

∣∣∣∣
3
]
. (9)

For distributions PX ∈ P(X ), QY ∈ P(Y) and a channel W ∈ P(X → Y), the conditional divergence and conditional

divergence variance are denoted

D(W‖QY |PX) =

∫
dPX(x)D(Wx‖QY ), (10)

V (W‖QY |PX) =

∫
dPX(x)V (Wx‖QY ). (11)

Given joint distribution PXY ∈ P(X × Y), the mutual information is given by

I(X ;Y ) = D(PY |X‖PY |PX) (12)

where PX , PY , PY |X are the induced marginal and conditional distributions. The conditional mutual information is given by

I(X ;Y |Z) = D(PY |XZ‖PY |Z |PXZ). (13)

For a discrete distribution PX , the entropy is

H(X) =
∑

x∈X
−PX(x) logPX(x). (14)

We also use Hb(p) to denote the binary entropy; i.e. Hb(p) = H(X) where X ∼ Ber(p).

B. Multiple-Access Channel Problem Setup

A one-shot multiple-access channel (MAC) with two users is given by a channel W ∈ P(X ×Y → Z) where X and Y are

the input alphabets, and Z is the output alphabet. A (stochastic) code is given by

1) a user 1 encoder PX|I1 ∈ P([M1] → X ),
2) a user 2 encoder PY |I2 ∈ P([M2] → Y),
3) a decoder PÎ1,Î2|Z ∈ P(Z → [M1]× [M2]).

The average probability of error is given by P((Î1, Î2) 6= (I1, I2)) where (I1, I2) represent the messages, which are uniformly

distribution over [M1]× [M2], and

(X,Y, Z, Î1, Î2)|(I1, I2) = (i1, i2) ∼ PX|I1=i1(x)PY |I2=i2(y)Wxy(z)PÎ1,Î2|Z=z (̂i1, î2). (15)
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Here, recall that W is the channel distribution from (X,Y ) to Z . A code with message counts M1,M2 and average probability

of error at most ǫ is called an (M1,M2, ǫ) code.

Given a one-shot channel W , the n-length product channel is given by

Wxnyn =
n∏

t=1

Wxtyt . (16)

For n-length channels, we also impose cost-constraints on the channel inputs. Specifically, there are functions b1 : X → R,

b2 : Y → R, and constants B1, B2 ∈ R; we assume that the encoders PXn|I1 , PY n|I2 are such that the channel inputs Xn, Y n

satisfy the following almost surely:

1

n

n∑

t=1

b1(Xt) ≤ B1,
1

n

n∑

t=1

b2(Yt) ≤ B2. (17)

Of course, a lack of cost constraint is included in this model simply by taking b1(x) = b2(y) = 0 for all x, y. We consider

(W, b1, b2, B1, B2) to constitute the channel specification. We say an (n,M1,M2, ǫ) code is a code for n-length channel with

average probability of error ǫ. For any blocklength n and probability of error ǫ ∈ (0, 1), the set of achievable rates are

R(n, ǫ) =

{(
logM1

n
,
logM2

n

)
: ∃ an (n,M1,M2, ǫ) code

}
. (18)

The operational definition for the capacity region is given by2

C =
⋂

ǫ>0

lim inf
n→∞

R(n, ǫ). (19)

The first-order asymptotic result, proved in [2]–[6], is that the capacity region is

C =
⋃

PUXY :X⊥Y |U,
E[b1(X)]≤B1,
E[b2(Y )]≤B2

{(R1, R2) : R1 +R2 ≤ I(X,Y ;Z|U), R1 ≤ I(X ;Z|Y, U), R2 ≤ I(Y ;Z|X,U)} (20)

where X ⊥ Y |U indicates that X and Y are independent given U . Here, U is the time-sharing random variable.3 Using

Carathéodory’s theorem, we can restrict the alphabet cardinality of U in the union to |U| ≤ 6.

Because of the multi-dimensional nature of achievable rate regions for network information theory problems such as the

MAC, articulating second-order results can be a bit complicated. There are at least three equivalent methods for describing these

results: (i) characterize the region of second-order coding rate pairs around a specific point on the boundary of the capacity

region, (ii) fix an angle of approach to a point on the capacity region boundary, or (iii) bound the maximum achievable weighted

sum-rate. See [27, Chapter 6] for a discussion of these issues for network information theory problems. We have chosen to

focus on the weighted sum-rate approach, which has the advantage that we can work with scalar quantities, and we do not

need to specify a point on the capacity region boundary. Specifically, for non-negative constants α1, α2, we define the largest

achievable weighted-sum rate as

R⋆
α1,α2

(n, ǫ) = sup

{
α1 logM1 + α2 logM2

n
: ∃ an (n,M1,M2, ǫ) code

}
. (21)

In particular, R⋆
1,1(n, ǫ) is the largest achievable standard sum rate. Note that for any constant c,

R⋆
c α1,c α2

(n, ǫ) = cR⋆
α1,α2

(n, ǫ). (22)

Thus, it is enough to consider only pairs (α1, α2) where max{α1, α2} = 1. We also define the weighted-sum capacity as

Cα1,α2 = sup{α1R1 + α2R2 : (R1, R2) ∈ C}. (23)

Since the capacity region C is convex, it is equivalently characterized by Cα1,α2 . From the result in (20), it is easy to see that

Cα1,α2 = sup
PUXY :X⊥Y |U,
E[b1(X)]≤B1,
E[b2(Y )]≤B2

[
min{α1, α2}I(X,Y ;Z|U) + |α1 − α2|+I(X ;Z|Y, U) + |α2 − α1|+I(Y ;Z|X,U)

]
. (24)

Our goal is to prove bounds of the form

R⋆
α1,α2

(n, ǫ) ≤ Cα1,α2 +O

(
1√
n

)
. (25)

2Recall that the lim-inf of a sequence of sets An is
⋃

n≥1

⋂
k≥n Ak .

3We have chosen to use U rather than the more standard Q, since the letter Q is primarily used for other concepts in this paper.
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Note that if such a bound can be proved in which the implied constant in the O(1/
√
n) term is uniformly bounded over all

α1, α2 where max{α1, α2} = 1, then

R(n, ǫ) ⊆ C +O

(
1√
n

)
. (26)

III. WRINGING DEPENDENCE

This section is devoted to defining and characterizing the wringing dependence, a new dependence measure that will be

critical in our converse proof for the MAC. In Sec. III-A, we first outline Ahlswede’s proof of the MAC strong converse

from [8] as motivation for the wringing dependence, and then we define it. The basic properties of wringing dependence are

described in Sec. III-B. The wringing lemma, which is the primary use of wringing dependence in our MAC converse proof, is

given in Sec. III-C. We present some relationships between wringing dependence and other dependence measures—specifically

hypercontractivity and maximal correlation—in Sec. III-D.

A. Motivation and Definition

Consider a one-shot MAC given by W ∈ P(X × Y → Z). Ahlswede’s converse proof from [8], and ours, involves these

basic steps:

1) given any MAC code, expurgate it by restricting to the subset Γ ⊂ X ×Y of input pairs with limited maximal probability

of error,

2) choose sets X̄ ⊂ X , Ȳ ⊂ Y so that when the code is restricted to input pairs (X,Y ) ∈ Γ∩ (X̄ × Ȳ), the inputs are close

to independent,

3) prove a converse bound on the code restricted to Γ ∩ (X̄ × Ȳ),
4) relate this converse bound back to the original code.

Step 2 is called “wringing,” as the dependence between X and Y introduced by restricting the code to Γ is “wrung out” in the

choice of X̄ , Ȳ . This step is also where our proof deviates most significantly from Ahlswede’s. In the wringing step, choosing

the sets X̄ , Ȳ requires trading-off between two objectives: (i) maximizing the probability of the sets X̄ × Ȳ , so that in Step 4,

there is limited difference between the subset and the original code; and (ii) minimizing the dependence between the inputs

when restricted to X̄ × Ȳ , so that the converse bound proved in Step 3 captures the independence between transmissions that

is inherent to the MAC. The key result addressing this trade-off in Ahlswede’s proof is [8, Lemma 4]; the following is a slight

modification of this lemma.4

Lemma 1: Let PXnY n ∈ P(Xn × Yn), QXn ∈ P(Xn), and QY n ∈ P(Yn) be distributions such that

D∞(PXnY n‖QXnQY n) ≤ log(1 + c). (27)

For any 0 < γ < c, 0 < ǫ < 1, there exist sets X̄ ⊂ Xn, Ȳ ⊂ Yn such that

PXnY n(X̄ , Ȳ) ≥ ǫc/γ (28)

and for all t ∈ [n], x ∈ X , y ∈ Y
PXtYt|Xn∈X̄ ,Y n∈Ȳ(x, y) ≤ max{ǫ, (1 + γ)QXt|Xn∈X̄ (x)QYt|Y n∈Ȳ(y)}. (29)

In this lemma, one can see the two objectives at play: (28) is a bound on the probability of X̄ × Ȳ , and (29) is a guarantee

on dependence of the channel inputs. The two parameters γ and ǫ allow one to trade-off between these two objectives; as

γ, ǫ → 0, the guarantee on the probability becomes weaker, while the guarantee on the dependence becomes stronger. In the

extreme case that γ = ǫ = 0, (29) states that Xt and Yt are independent, whereas (28) becomes trivial.

Ahlswede’s lemma is proved iteratively. The process is initialized with X̄ = Xn, Ȳ = Yn. At each step, if (29) is violated

for some t ∈ [n], x̄t ∈ X , ȳt ∈ Y , then the sets X̄ , Ȳ are revised to

X̄ ′ = X̄ ∩ {xn : xt = x̄t}, Ȳ ′ = Ȳ ∩ {yn : yt = ȳt}. (30)

Because each step involves a violation of (29), at that point

PXtYt|Xn∈X̄ ,Y n∈Ȳ(x̄t, ȳt) > ǫ, (31)

PXtYt|Xn∈X̄ ,Y n∈Ȳ(x̄t, ȳt)

QXt|Xn∈X̄ (x̄t)QYt|Y n∈Ȳ(ȳt)
> 1 + γ. (32)

Here, (31) ensures that the probability of the pair (x̄t, ȳt) is not too small, while (32) ensures that each step “eats into” the

Rényi divergence between P and Q from (27) by at least log(1+γ). The latter implies that the number of steps cannot exceed
log(1+c)
log(1+γ) ≤ c/γ, which leads to the guarantee on the probability in (28).

4The main difference is that Ahlswede’s lemma has only one sequence Xn, even though when the lemma is applied in the converse proof, it is done with
two sequences Xn, Y n. Here, we have stated the lemma with two sequences to make the connection to our technique clearer.
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To improve on Ahlswede’s lemma, we make three principal observations:

1) Wringing can be done in the one-shot setting.

2) The set reduction steps in (30) need not be limited to individual pairs (x̄t, ȳt); we may instead use arbitrary sets

A ⊂ X ,B ⊂ Y , and revise the sets as X̄ ′ = X̄ ∩ A, Ȳ ′ = Ȳ ∩ B.

3) The trade-off between the probability as in (31) and the likelihood ratio as in (32) is most efficient by maximizing

log PXY (A,B)
QX (A)QY (B)

− logPXY (A,B) =
logQX(A)QY (B)
logPXY (A,B) − 1. (33)

Note that if the quantity in (33) is maximized, then neither the likelihood ratio nor the probability of (A,B) will be too

small. Moreover, maximizing this quantity ensures that if a pair (A,B) has low probability, then the likelihood ratio is

larger, ensuring that this step “eats into” the Rényi divergence by a greater amount.

We are now ready to give the definition for wringing dependence, in which the quantity in (33) plays a key role.

Definition 1: Given random variables X,Y with joint distribution PXY , the wringing dependence between X and Y is given

by5

∆(X ;Y ) = inf
QX ,QY

sup
A⊂X ,B⊂Y

inf
{
δ ≥ 0 : PXY (A,B)1+δ ≤ QX(A)QY (B)

}
. (34)

Note that for any p, q ∈ (0, 1), inf{δ ≥ 0 : p1+δ ≤ q} =
∣∣∣ log q
log p − 1

∣∣∣
+

. Therefore an alternative definition is

∆(X ;Y ) = inf
QX ,QY

sup
A⊂X ,B⊂Y

∣∣∣∣
logQX(A)QY (B)
logPXY (A,B) − 1

∣∣∣∣
+

(35)

where log q
log p really means inf{θ : pθ ≤ q}, so by convention

log q

log p
= 0 if p = 0 or q = 1, p < 1,

log q

log p
= ∞ if p = 1, q < 1,

log 1

log 1
= −∞. (36)

To compute the wringing dependence given a joint distribution PXY requires optimizing over QX and QY . In fact, this

optimization is convex, as shown as follows. We may write the quantity inside the positive part in (35) as

logQX(A)QY (B)
logPXY (A,B) − 1 =

logQX(A)

logPXY (A,B) +
logQY (B)

logPXY (A,B) − 1. (37)

For fixed sets A,B, logPXY (A,B) ≤ 0, which means each of terms in the RHS of (37) is jointly convex in (QX , QY ). Using

the fact that the supremum (or maximum) of convex functions is also convex, this implies that

sup
A⊂X ,B⊂Y

∣∣∣∣
logQX(A)QY (B)
logPXY (A,B) − 1

∣∣∣∣
+

(38)

is jointly convex in (QX , QY ). Thus, the wringing dependence can in principle be computed via convex optimization if X
and Y are finite sets. However, this computation quickly becomes impractical as the alphabet sizes grow, since the number of

sets A,B is exponential in the alphabet cardinality. The following is one example of a simple distribution for which it can be

computed in closed form.

Example 1: Consider a doubly symmetric binary source (DSBS) (X,Y ), wherein X,Y are each uniform on {0, 1}, and

PXY (1, 1) = PXY (0, 0) = p
2 . Since this distribution is symmetric between X and 1 − X , and between Y and 1 − Y , the

convexity of (38) in (QX , QY ) means that the optimal QX , QY are each uniform on {0, 1}. Thus, if p ≤ 1/2, then ∆(X ;Y )
is given by

∆(X ;Y ) = max

{
0,

log 1/4

log p/2
− 1,

log 1/4

log(1− p)/2
− 1

}
(39)

=
log 4

log 2− log(1− p)
− 1 (40)

=
1 + log2(1 − p)

1− log2(1 − p)
. (41)

Therefore, for any p,

∆(X ;Y ) =
1 + log2 max{p, 1− p}
1− log2 max{p, 1− p} . (42)

The wringing dependence for a DSBS as a function of p is shown in Fig. 1.

5While technically, the wringing dependence is a function of the joint distribution PXY rather than a function of the random variables X, Y themselves, we
have chosen to use the notation ∆(X; Y ) wherein the dependence measure is an operator on the random variables. This notational choice is made consistently
for all dependence measures in the paper: for example mutual information is I(X; Y ), maximal correlation is ρm(X; Y ), etc. In all cases, the underlying
distribution will be clear from context, or specified in a subscript such as ∆P (X; Y ).
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Fig. 1. The wringing dependence for a doubly symmetric binary source, as a function of the crossover probability p.

B. Properties

The most important property of the wringing dependence is a counterpart of Ahlswede’s lemma, which is presented in

Sec. III-C. But before stating this result, we prove some basic properties of the dependence measure. In particular, the following

result states that wringing dependence satisfies many properties that one would expect of any dependence measure: it is non-

negative, is zero iff X and Y are independent, and satisfies the data processing inequality. Indeed, this result shows that

wringing dependence satisfies 6 out of the 7 axioms for dependence measures proposed in [26]. (It also satisfies the 7th, which

is that for bivariate Gaussians, the wringing dependence equals the correlation coefficient; this fact is established in Sec. III-D.)

The theorem also includes some other properties that will be useful throughout the paper.

Theorem 2: The wringing dependence ∆(X ;Y ) satisfies the following:

1) ∆(X ;Y ) = ∆(Y ;X).
2) 0 ≤ ∆(X ;Y ) ≤ 1.

3) If ∆(X ;Y ) ≤ δ, then for all A ⊂ X ,B ⊂ Y ,

PXY (A,B) ≤ (1 + 2δ) (PX(A)PY (B))1/(1+δ)
, (43)

|PXY (A,B)− PX(A)PY (B)| ≤ 2δ. (44)

4) ∆(X ;Y ) = 0 if and only if X and Y are independent.

5) ∆(X ;Y ) = 1 if X and Y are decomposable, meaning there exist sets A ⊂ X ,B ⊂ Y where 0 < PX(A) < 1 and

1(X ∈ A) = 1(Y ∈ B) almost surely6. Moreover, if X ,Y are finite sets and ∆(X ;Y ) = 1, then X and Y are

decomposable.

6) For any Markov chain W −X − Y − Z , ∆(W ;Z) ≤ ∆(X ;Y ).

Proof: (1) Symmetry between X and Y follows trivially from the definition.

(2) The fact that ∆(X ;Y ) ≥ 0 follows immediately from the definition. To upper bound ∆(X ;Y ), we may take QX = PX ,

QY = PY , so

∆(X ;Y ) ≤ inf{δ ≥ 0 : PXY (A,B)1+δ ≤ PX(A)PY (B) for all A ⊂ X ,B ⊂ Y}. (45)

Since PXY (A,B) ≤ PX(A) and PXY (A,B) ≤ PY (B), PXY (A,B)2 ≤ PX(A)PY (B) for all A,B. That is, δ = 1 is feasible

in (45), so ∆(X ;Y ) ≤ 1.

(3) Suppose ∆(X ;Y ) ≤ δ. Thus, for any δ′ > δ, there exist QX , QY such that

PXY (A,B)1+δ′ ≤ QX(A)QY (B) for all A ⊂ X ,B ⊂ Y. (46)

Consider the function f(p) = p1+δ′ for p ≥ 0. Since δ′ > 0, f is convex, so it can be lower bounded by any tangent line. In

particular, forming the tangent line around p = 1 gives

p1+δ′ = f(p) ≥ f(1) + f ′(1)(p− 1) = 1 + (1 + δ′)(p− 1) = (1 + δ′)p− δ′. (47)

6Decomposability is equivalent to the Gács-Körner common information being positive [28].
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Using this bound to lower bound the LHS of (46) gives

QX(A)QY (B) ≥ (1 + δ′)PXY (A,B)− δ′. (48)

Taking B = Y gives

QX(A) ≥ (1 + δ′)PX(A) − δ′. (49)

Since this may hold for Ac in place of A, we may write

QX(A) = 1−QX(Ac) (50)

≤ 1− (1 + δ′)PX(Ac) + δ′ (51)

= (1 + δ′)PX(A). (52)

By the same argument, for any B ⊂ Y , QY (B) ≤ (1 + δ′)PY (B). Thus

PXY (A,B)1+δ′ ≤ QX(A)QY (B) (53)

≤ (1 + δ′)2PX(A)PY (B). (54)

As this holds for all δ′ > δ, we have

PXY (A,B)1+δ ≤ (1 + δ)2PX(A)PY (B). (55)

Thus

PXY (A,B) ≤
[
(1 + δ)2PX(A)PY (B)

]1/(1+δ)
. (56)

Noting that (1 + δ)2/(1+δ) ≤ 1 + 2δ proves (43). Using again the tangent line bound from (47) to lower bound the LHS of

(55) gives

(1 + δ)PXY (A,B)− δ ≤ (1 + δ)2PX(A)PY (B). (57)

Thus

PXY (A,B) ≤ (1 + δ)PX(A)PY (B) +
δ

1 + δ
(58)

≤ PX(A)PY (B) + δ +
δ

1 + δ
(59)

≤ PX(A)PY (B) + 2δ. (60)

We prove the corresponding lower bound as follows:

PXY (A,B) = PX(A) − PXY (A,Bc) (61)

≥ PX(A) − PX(A)PY (Bc)− 2δ (62)

= PX(A)PY (B)− 2δ (63)

where (62) is simply an application of (60) with Bc swapped with B. Combining (60) and (63) proves (44).

(4) If ∆(X ;Y ) = 0, then (44) immediately gives PXY (A,B) = PX(A)PY (B) for all A ⊂ X ,B ⊂ Y; i.e., X and Y are

independent. Conversely, suppose X and Y are independent. Thus, if we take QX = PX , QY = PY , then

PXY (A,B) ≤ QX(A)QY (B). (64)

This proves that ∆(X ;Y ) = 0 by the definition in (34).

(5) Assume there exist sets A,B as stated. Since 1(X ∈ A) = 1(Y ∈ B) almost surely, PXY (A,B) = PX(A) = PY (B),
and PXY (Ac,Bc) = PX(Ac) = PY (Bc), and also by assumption each of these probabilities is strictly between 0 and 1. For

convenience let p = PXY (A,B). Using the definition in (35), we may lower bound the wringing dependence by

∆(X ;Y ) ≥ inf
QX ,QY

max

{
logQX(A)QY (B)

log p
,
logQX(Ac)QY (Bc)

log(1− p)

}
− 1 (65)

= inf
q∈[0,1]

max

{
log q2

log p
,
log(1− q)2

log(1 − p)

}
− 1 (66)

= max

{
log p2

log p
,
log(1− p)2

log(1− p)

}
− 1 (67)

= 1 (68)

where (66) holds since the RHS of (65) is concave in (QX , QY ) and symmetric between QX(A) and QY (B), so the optimal

choice is QX(A) = QY (B) = q for some q ∈ [0, 1]; (67) holds since the first term in the max in (66) is decreasing in q while

the second term is increasing, so the infimum is achieved when the two terms in the max are equal, which occurs at q = p;
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and (68) holds by the fact that 0 < p < 1. Since we know that in general ∆(X ;Y ) ≤ 1, this proves ∆(X ;Y ) = 1. For the

partial converse, assume X ,Y are finite sets, and that ∆(X ;Y ) = 1. This implies that

sup
A⊂X ,B⊂Y

logPX(A)PY (B)
log PXY (A,B) = 2. (69)

Since X ,Y are finite, the supremum is attained, so there exist sets A,B where 0 < PXY (A,B) < 1 and

PX(A)PY (B) = PXY (A,B)2. (70)

This only holds if PXY (A,B) = PX(A) = PY (B), which implies that 1(X ∈ A) = 1(Y ∈ B) almost surely.

(6) The symmetry of the wringing dependence means that it is enough to show ∆(X ;Z) ≤ ∆(X ;Y ). We have

∆(X ;Z) = inf
QX ,QZ

sup
A⊂X ,B′⊂Z

∣∣∣∣
logQX(A)QZ(B′)

logPXZ(A,B′)
− 1

∣∣∣∣
+

(71)

≤ inf
QX ,QY

sup
A⊂X ,B′⊂Z

∣∣∣∣
logQX(A)

∫
dQY (y)PZ|Y=y(B′)

logPXZ(A,B′)
− 1

∣∣∣∣
+

(72)

= inf
QX ,QY

sup
A⊂X ,B′⊂Z

∣∣∣∣
logQX(A)

∫
dQY (y)PZ|Y =y(B′)

log
∫
dPXY (x, y)1(x ∈ A)PZ|Y =y(B′)

− 1

∣∣∣∣
+

(73)

≤ inf
QX ,QY

sup
A⊂X

sup
g:Y→[0,1]

∣∣∣∣
logQX(A)EQ[g(Y )]

logEP [1(X ∈ A)g(Y )]
− 1

∣∣∣∣
+

(74)

where (72) holds because for any QY , QZ =
∫
dQY (y)PZ|Y =y is a valid distribution on Z , in the denominator of (73) we

have used the fact that X − Y −Z is a Markov chain, and (74) holds because in (73) we may take g(y) = PZ|Y =y(B′) which

is feasible for the supremum over g in (74). For fixed QX , QY , and A, define

G = sup
g:Y→[0,1]

∣∣∣∣
logQX(A)EQ[g(Y )]

logEP [1(X ∈ A)g(Y )]
− 1

∣∣∣∣
+

. (75)

We may also define

G′ = sup
B⊂Y

∣∣∣∣
logQX(A)QY (B)
logPXY (A,B) − 1

∣∣∣∣
+

. (76)

To complete the proof, it is enough to show that G ≤ G′. Rearranging (76), for any B ⊂ Y ,

PX,Y (A,B)1+G′ ≤ QX(A)QY (B). (77)

For any function g : Y → [0, 1], define the sets Bt = {y : g(y) < t}. Thus

g(y) =

∫ 1

0

1(y ∈ Bt)dt. (78)

Since G′ ≥ 0, f(z) = z1+G′

is a convex function, which allows us to write

(EP [1(X ∈ A)g(Y )])1+G′

=

(
EP

[
1(X ∈ A)

∫ 1

0

1(Y ∈ Bt)dt

])1+G′

(79)

≤
∫ 1

0

dt(EP [1(X ∈ A)1(Y ∈ Bt)])
1+G′

(80)

=

∫ 1

0

PXY (A,Bt)
1+G′

dt (81)

≤
∫ 1

0

QX(A)QY (Bt)dt (82)

= QX(A)

∫ 1

0

EQ[Y ∈ Bt]dt (83)

= QX(A)EQ[g(Y )] (84)

where (80) follows from Jensen’s inequality and the fact that
∫ 1

0 dt = 1, and (82) follows from (77). Since (84) holds for all

functions g, this implies G ≤ G′, which completes the proof.
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C. The Wringing Lemma

The following result is our counterpart of Ahlswede’s Lemma 4 from [8].

Lemma 3: Let PXY ∈ P(X × Y), QX ∈ P(X ), and QY ∈ P(Y) be distributions such that

D∞(PXY ‖QXQY ) ≤ σ (85)

where σ is finite. For any δ > 0, there exist sets X̄ ⊂ X , Ȳ ⊂ Y such that

PXY (X̄ , Ȳ) ≥ exp
{
−σ

δ

}
(86)

and

∆(X̄ ; Ȳ ) ≤ δ (87)

where (X̄, Ȳ ) are distributed according to PXY |X∈X̄ ,Y ∈Ȳ .

As we outlined in Sec. III-A, Ahlswede’s proof of [8, Lemma 4] involved iteratively restricting the wringing sets until the

desired property is achieved. While a proof of Lemma 3 along these lines would work for discrete variables, it does not directly

generalize to arbitrary variables. Instead, we present a slightly different proof that does work in general.

Proof of Lemma 3: Let A be the collection of pairs of sets (A,B) where A ⊂ X ,B ⊂ Y such that PXY (A,B) > 0 and

PXY (A,B)1+δ ≥ QX(A)QY (B). (88)

This set A is always non-empty, since it includes (A,B) = (X ,Y). For any (A,B) ∈ A , using the assumption that

PXY (A,B) > 0, we may rearrange (88) to write

PXY (A,B) ≥
(
QX(A)QY (B)
PXY (A,B)

)1/δ

(89)

≥ exp
{
−σ

δ

}
(90)

where the second inequality follows from the assumption that D∞(PXY ‖QXQY ) ≤ σ.

We proceed to construct a pair of sets (X̄ , Ȳ) ∈ A that satisfy the following property:

for all A ⊂ X̄ ,B ⊂ Ȳ , if PXY (A,B) < PXY (X̄ , Ȳ) then (A,B) /∈ A . (91)

These sets can be easily found if the infimum is attained in

inf
(A,B)∈A

PXY (A,B). (92)

That is, if there exist (X̄ , Ȳ) ∈ A such that PXY (X̄ , Ȳ) ≤ PXY (A,B) for all (A,B) ∈ A , then (91) follows easily. Note

that the infimum in (92) is always attained if X ,Y are finite sets. However, if this infimum is not attained we need a different

argument.

We create a sequence of pairs of sets (Ak,Bk) ∈ A for each non-negative integer k, as follows. First let (A0,B0) = (X ,Y).
For any k ≥ 1, given (Ak−1,Bk−1), define (Ak,Bk) as follows. Let

pk = inf
A⊂Ak−1,B⊂Bk−1:(A,B)∈A

PXY (A,B). (93)

Let Ak ⊂ Ak−1,Bk ⊂ Bk−1 be such that (Ak,Bk) ∈ A and

PXY (Ak,Bk) ≤ pk +
1

k
. (94)

This iteratively defines the sets Ak,Bk for all k. We now define

X̄ =
⋂

k≥0

Ak, Ȳ =
⋂

k≥0

Bk. (95)

We need to prove that (X̄ , Ȳ) ∈ A and that (91) is satisfied. By the dominated convergence theorem,

PXY (X̄ , Ȳ) = lim
k→∞

PXY (Ak,Bk), QX(X̄ ) = lim
k→∞

QX(Ak), QY (Ȳ) = lim
k→∞

QY (Bk). (96)

These limits imply that X̄ , Ȳ satisfy (88). Moreover, since (Ak,Bk) ∈ A for each k, the lower bound in (90) implies

that PXY (Ak,Bk) ≥ exp{−σ
δ }, so PXY (X̄ , Ȳ) is bounded away from 0. Thus (X̄ , Ȳ) ∈ A . To prove (91), consider any

A ⊂ X̄ ,B ⊂ Ȳ where PXY (A,B) < PXY (X̄ , Ȳ). Note that

lim
k→∞

[
PXY (Ak,Bk)−

1

k

]
= PXY (X̄ , Ȳ). (97)
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Thus, there exists a finite k such that PXY (A,B) < PXY (Ak,Bk) − 1
k . By (94), this implies that PXY (A,B) < pk, which

means A,B cannot be feasible for the infimum defining pk in (93). In particular, since A ⊂ X̄ ⊂ Ak−1 and B ⊂ Ȳ ⊂ Bk−1,

it must be that (A,B) /∈ A . This proves the desired property of (X̄ , Ȳ) in (91).

Given (91), we now complete the proof. Since (X̄ , Ȳ) ∈ A , we immediately have the probability bound in (86). We now

need to prove the bound on the wringing dependence in (87). To show that ∆(X̄ ; Ȳ ) ≤ δ, it is enough to show that for all

A ⊂ X ,B ⊂ Y ,

PXY |X∈X̄ ,Y ∈Ȳ(A,B)1+δ ≤ QX|X∈X̄ (A)QY |Y ∈Ȳ(B). (98)

Letting A′ = A ∩ X̄ ,B′ = B ∩ Ȳ , we have

PXY |X∈X̄ ,Y ∈Ȳ(A,B) = PXY (A′,B′)

PXY (X̄ , Ȳ) , QX|X∈X̄ (A) =
QX(A′)

QX(X̄ )
, QY |Y ∈Ȳ(B) =

QY (B′)

QY (X̄ )
. (99)

Consider the case that PXY (A′,B′) = PXY (X̄ , Ȳ). Since A′ ⊂ X̄ ,B′ ⊂ Ȳ , we must have PXY ((X̄ × Ȳ)\ (A′×B′)) = 0. By

the assumption that σ is finite, PXY ≪ QXQY , so in particular QXQY ((X̄ ×Ȳ)\(A′×B′)) = 0, and thus QX(A′)QY (B′) =
QX(X̄ )QY (Ȳ). Thus, each side of (98) equals 1, so the inequality holds. Now consider the case that PXY (A′,B′) = 0. This

implies that the LHS of (98) is 0, so it holds trivially.

The remaining case is when 0 < PXY (A′,B′) < PXY (X̄ , Ȳ). By the key property of (X̄ , Ȳ) in (91), we must have

(A′,B′) /∈ A . Thus

PXY |X∈X̄ ,Y ∈Ȳ(A,B)1+δ =
PXY (A′,B′)1+δ

PXY (X̄ , Ȳ)1+δ
(100)

<
QX(A′)QY (B′)

PXY (X̄ , Ȳ)1+δ
(101)

≤ QX(A′)QY (B′)

QX(X̄ )QY (Ȳ)
(102)

= QX|X∈X̄ (A)QY |Y ∈Ȳ(B) (103)

where (101) follows because (A′,B′) /∈ A and PXY (A′,B′) > 0, which imply that (88) must be violated; and (102) follows

because (X̄ , Ȳ) ∈ A . This proves (98) for all A ⊂ X ,B ⊂ Y .

D. Relationship to Other Dependence Measures

1) Hypercontractivity: One of the first uses of hypercontractivity in information theory was [29], wherein Ahlswede and

Gács were interested in establishing conditions under which random variables X,Y satisfy

PXY (A,B) ≤ PX(A)σPY (B)τ for all A ⊂ X ,B ⊂ Y. (104)

To establish this inequality, they actually proved something stronger, namely

E[f(X)g(Y )] ≤ ‖f(X)‖1/σ‖g(Y )‖1/τ for all f : X → R, g : Y → R (105)

where for a real-valued random variable Z , ‖Z‖r = (E[|Z|r])1/r. By optimizing over f , one finds that (105) is equivalent to

‖E[g(Y )|X ]‖1/(1−σ) ≤ ‖g(Y )‖1/τ for all g : Y → R. (106)

Such an inequality is known as hypercontractivity. If the inequality is reversed, it is known reverse hypercontractivity [30].

The advantage of working with hypercontractivity rather than the more operationally meaningful inequality (104) is that

hypercontractivity tensorizes: that is, if (106) holds for X,Y , then it also holds for Xn, Y n where (Xt, Yt) are i.i.d. with the

same distribution as X,Y .

The relationship between hypercontractivity and wringing dependence is apparent from (104); namely this inequality is

identical to the inequality defining the wringing dependence in (34) but with QX = PX , QY = PY , and σ = τ = 1/(1 + δ).
We make this relationship precise as follows.

For a pair of random variables X,Y , [31] defined the hypercontractivity ribbon RX;Y as the set of pairs (r, s) where one

of the following hold:

• 1 ≤ s ≤ r, and for all g : Y → R,

‖E[g(Y )|X ]‖r ≤ ‖g(Y )‖s, (107)

• 1 ≥ s ≥ r, and for all g : Y → R+,

‖E[g(Y )|X ]‖r ≥ ‖g(Y )‖s. (108)

The second condition concerns reverse hypercontractivity, which does not appear to be related to the wringing dependence,

but we have included it for completeness. The following proposition, which is proved in Appendix A connects the wringing

dependence to the hypercontractivity ribbon.
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Proposition 4: Given random variables X,Y , let

∆hyp(X ;Y ) = inf{δ ∈ [0, 1] : (1 + 1/δ, 1 + δ) ∈ RX;Y }. (109)

Then

∆(X ;Y ) ≤ ∆hyp(X ;Y ). (110)

Moreover, if we let Xn, Y n be jointly i.i.d. where PXtYt = PXY for each t ∈ [n], then ∆(Xn;Y n) is a non-decreasing

sequence such that

lim
n→∞

∆(Xn;Y n) = ∆hyp(X ;Y ). (111)

Note that the quantity ∆hyp(X ;Y ) defined in (109) involves checking whether (r, s) ∈ RX;Y where r = 1 + 1/δ and

s = 1+ δ for some δ ∈ [0, 1]; this is the regime where 1 ≤ s ≤ r, which corresponds to hypercontractivity rather than reverse

hypercontractivity. The proof of the upper bound on wringing dependence in (110) follows from essentially the same argument

as the one [29] used to establish inequalities of the form (104) via hypercontractivity. The limiting behavior of the wringing

dependence in (111) is proved by an argument very similar to that of [32], which gives several equivalent characterizations of

the hypercontractivity ribbon.

We illustrate Prop. 4 with two examples: the doubly-symmetric binary source, and bivariate Gaussians. For the DSBS,

∆hyp(X ;Y ) is shown to be strictly larger than the wringing dependence, and so (109) is a loose bound. For bivariate Gaussians,

(109) gives a tight bound. In fact, the wringing dependence for bivariate Gaussians is quite difficult to compute directly from

the definition, but Prop. 4 allows us to find it exactly: for bivariate Gaussians with correlation coefficient ρ, ∆(X ;Y ) = |ρ|.
This establishes that the last of Rényi’s axioms from [26] holds for wringing dependence.

Example 2 (DSBS): Let (X,Y ) be a DSBS with parameter p as in Example 1. In [31], it was established that the

hypercontractivity ribbon consists of the pairs (r, s) where either (1−2p)2(r−1)+1 ≤ s ≤ r or r ≤ s ≤ (1−2p)2(r−1)+1.

In particular, (1 + 1/δ, 1 + δ) ∈ RX;Y iff

(1− 2p)2
1

δ
+ 1 ≤ 1 + δ (112)

which holds if δ ≥ |1− 2p|. Therefore, ∆hyp(X ;Y ) = |1− 2p|. Note that this quantity is strictly smaller than the the wringing

dependence as calculated in Example 1, except for the trivial cases where p ∈ {0, 1/2, 1}.

Example 3 (Bivariate Gaussians): Let (X,Y ) have a bivariate Gaussian distribution with correlation coefficient ρ. We claim

that ∆(X ;Y ) = |ρ|. Without loss of generality, we may assume that X,Y each have zero mean, and covariance matrix
[

1 ρ
ρ 1

]
. (113)

We may assume that ρ ≥ 0, since if not we may simply replace Y with −Y . We upper bound ∆(X ;Y ) via Prop. 4. A result

originally by Nelson [33], which is also a consequence of the Gaussian log-Sobolev inequality [34], is that for any function

g : R → R, (107) holds for r ≥ s ≥ 1 if ρ ≤
√
(s− 1)/(r − 1). (See [35, Sec. 3.2] for an information-theoretic treatment

of this inequality.) Thus, with r = 1 + 1/δ and s = 1 + δ, (r, s) ∈ RX;Y if ρ ≤ δ. Therefore ∆hyp(X ;Y ) ≤ ρ, and so

∆(X ;Y ) ≤ ρ by Prop. 4.

We now show that ∆(X ;Y ) ≥ ρ. If ρ = 1, then X = Y , so ∆(X ;Y ) = 1. Now suppose that ρ < 1. Let δ = ∆(X ;Y ).
Applying (43) from Thm. 2, for any A,B ⊂ R

PXY (A,B) ≤ (1 + 2δ)(PX(A)PY (B))1/(1+δ). (114)

In particular, for a parameter a ≥ 0 (we will eventually take the limit a → ∞), we may choose A = B = [a, a+ 1]. Let φ(x)
be the standard Gaussian PDF. Since φ(x) is decreasing for x ∈ [a, a+ 1], we have

PX(A) = PY (B) =
∫ a+1

a

φ(x)dx ≤ φ(a). (115)

The joint PDF of (X,Y ) is

fXY (x, y) =
1

2π
√
1− ρ2

exp

{
−x2 + y2 − 2ρxy

2(1− ρ2)

}
. (116)

In particular, fXY (x, y) is decreasing in x and y if x ≥ ρy and y ≥ ρx. From the assumption that ρ < 1, these conditions

hold for all x, y ∈ [a, a+ 1] for sufficiently large a. Thus

PXY (A,B) =
∫ a+1

a

dx

∫ a+1

a

dy fXY (x, y) ≥ fXY (a+ 1, a+ 1). (117)

Plugging into (114) gives

1

2π
√
1− ρ2

exp

{
− (a+ 1)2(1− ρ)

1− ρ2

}
≤ (1 + 2δ) exp

{
− a2

1 + δ

}
. (118)
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Thus

− (a+ 1)2

1 + ρ
− log(2π

√
1− ρ2) ≤ − a2

1 + δ
+ log(1 + 2δ). (119)

Dividing by a2 and taking a limit as a → ∞ gives ρ ≤ δ. That is, ∆(X ;Y ) ≥ ρ.

2) Maximal Correlation: The maximal correlation, which was introduced in [36], [37] and further studied in [26], is given

by

ρm(X ;Y ) = sup
f,g

ρ(f(X); g(Y )) (120)

where the supremum is over all real-valued functions f : X → R and g : Y → R such that f(X) and g(Y ) have finite, non-

zero variances, and ρ(·; ·) is the correlation coefficient. The maximal correlation shares much in common with the wringing

dependence: in particular, both satisfy all 7 axioms from [26]. Moreover, the maximal correlation provides a simple bound

on the hypercontractivity ribbon (see [31]); this implies that ∆hyp(X ;Y ) ≥ ρm(X ;Y ), where ∆hyp is defined in (109). The

following result, proved in Appendix B, shows that if the wringing dependence is small, then the maximal correlation is also

small.

Lemma 5: If ∆(X ;Y ) ≤ δ, then the maximal correlation is bounded by

ρm(X ;Y ) ≤ O(δ log δ−1). (121)

This result will be particularly useful when addressing the Gaussian MAC; see Sec. VI-B. Unfortunately, the bound in

Lemma 5 is not linear; in fact, no universal bound of the form ρm(X ;Y ) ≤ K∆(X ;Y ) is possible.7 This is illustrated in the

following example. This example also shows that Lemma 5 is order-optimal; in fact, for any 0 < c < 1 and any δ > 0, there

exists a distribution PXY where ∆(X ;Y ) ≤ δ and

ρm(X ;Y ) ≥ c δ log δ−1. (122)

Example 4: For any a ∈ [0, 1/2], let X,Y be binary variables with joint PMF given by

Y
X

0 1

0 1− 2a a
1 a 0

Note that PX = PY = Ber(a). We first calculate the maximal correlation. Since X,Y are both binary, the only nontrivial

functions of them are the identity function and its complement, so

ρm(X ;Y ) = |ρ(X ;Y )| = |E[XY ]− E[X ]E[Y ]|√
Var(X)Var(Y )

=
a2

a(1− a)
=

a

1− a
. (123)

To compute the wringing dependence, recall that the function of (QX , QY ) in the definition in (35) is concave. Since X and

Y have the same distribution, the optimal choice has QX = QY . If we let QX = QY = Ber(q), then we see that wringing

dependence between X and Y is

∆(X ;Y ) = inf
q∈[0,1]

max

{
log q(1 − q)

log a
,
log(1− q)2

log(1− 2a)

}
− 1. (124)

While there is no simpler closed-form expression, this quantity can be easily computed. Fig. 2 shows the relationship between

maximal correlation and wringing dependence across the range of a. To analytically establish that this example satisfies the

claim (122), we may upper bound the wringing dependence by plugging in q = a, to find

∆(X ;Y ) ≤ max

{
log a(1− a)

log a
,
log(1− a)2

log(1− 2a)

}
− 1 (125)

=
log a(1− a)

log a
− 1 (126)

=
log(1− a)

log a
. (127)

Thus

lim
a→0

∆(X ;Y ) log∆(X ;Y )−1

ρm(X ;Y )
≤ lim

a→0

1− a

a

log(1 − a)

log a
log

(
log a

log(1− a)

)
(128)

= lim
a→0

(1− a) · − log(1− a)

a
· log(− log a)− log(− log(1− a))

− log a
. (129)

7If there were such a bound, analyzing the Gaussian MAC would dramatically simplify.
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Fig. 2. The relationship between wringing dependence and maximal correlation for Example 4, plotted across the range of a ∈ [0, 1/2]. Of particular note
about this example is that, in the vicinity of the point (0, 0), the slope of the curve is infinite.

We proceed to show that the limit as a → 0 of each of the three multiplied terms in (129) is 1. The limit of the first term is

certainly 1; the limit of the second term can be seen to be 1 by an application of L’Hopital’s rule. For the third term, we have

lim
a→0

log(− log a)− log(− log(1− a))

− log a
= lim

a→0

1
a log a + 1

(1−a) log(1−a)

−1/a
(130)

= lim
a→0

[ −1

log a
− a

(1 − a) log(1− a)

]
(131)

= lim
a→0

−a

(1− a) log(1− a)
(132)

= lim
a→0

−1

− log(1− a)− 1
(133)

= 1 (134)

where (130) and (133) follow from L’Hopital’s rule, and (132) holds since log a → −∞. Therefore, for any 0 < c < 1, there

exists a sufficiently small a such that (122) holds.

Another interesting fact is that while Lemma 5 upper bounds the maximal correlation by a function of the wringing

dependence, no lower bound is possible. The follow example illustrates that the maximal correlation can be arbitrarily close

to 0 while the wringing dependence is arbitrarily close to 1.

Example 5: Given parameter a, let X,Y be binary variables with joint PMF given by

Y
X

0 1

0 a a log a−1

1 a log a−1 1− a− 2a log a−1

We claim that as a → 0, ρm(X ;Y ) → 0 while ∆(X ;Y ) → 1. The maximal correlation can be computed as

ρm(X ;Y ) =
a− (a+ a log a−1)2

(a+ a log a−1)(1− a− a log a−1)
=

a− o(a)

a log a−1 + o(a log a−1))
=

1− o(1)

log a−1
(135)

which vanishes as a → 0. We may lower bound the wringing dependence by

∆(X ;Y ) ≥ inf
q
max

{
log q2

log a
,

log(1− q)2

log(1− a− 2a log a−1)

}
− 1 (136)
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= sup
q

min

{
log q2

log a
,

log(1 − q)2

log(1− a− 2a log a−1)

}
− 1 (137)

where (137) holds since the first function inside the maximum in (136) is decreasing in q while the second function is increasing.

We may now lower bound (137) by choosing q = 2a log a−1, which gives

log q2

log a
=

2 log(2a log a−1)

log a
=

2 log a+ 2 log(2 log a−1)

log a
= 2−O

(
log log a−1

log a−1

)
(138)

and

log(1− q)2

log(1 − a− 2a log a−1)
=

2 log(1− 2a log a−1)

log(1− a− 2a log a−1)
=

4a log a−1 +O(a2 log2 a−1)

2a log a−1 +O(a)
= 2−O

(
1

log a−1

)
. (139)

Therefore, in the limit as a → 0, (137) approaches 1.

IV. FINITE BLOCKLENGTH CONVERSE BOUND

Before stating our main finite blocklength bound, we need the following definition. Given distributions P,Q1, . . . , Qk on

alphabet X , we define the achievable region for a hypothesis test between a simple hypothesis P and the composite hypothesis

{Q1, . . . , Qk} by the set

βα(P,Q1, . . . , Qk) =
⋃

T :X→[0,1],
EP [T (X)]≥α

{(β1, . . . , βk) ∈ [0, 1]k : EQi [T (X)] ≤ βi for i = 1, . . . , k}. (140)

The following is our finite blocklength converse bound for the MAC. It follows the same core steps as Ahlswede’s proof from

[8], while using wringing dependence in the wringing step, and is also written in a one-shot manner.

Theorem 6: Suppose there exists an (M1,M2, ǫ) code for the one-shot MAC W ∈ P(X ×Y → Z). For any λ > ǫ, δ > 0,

there exists a distribution PXY ∈ P(X×Y) where ∆(X ;Y ) ≤ δ, and for any QZ ∈ P(Z), QZ|Y ∈ P(Z|Y), QZ|X ∈ P(Z|X ),

1

M1M2
≥
(
1− ǫ

λ

)1+1/δ

E[β12(X,Y )], (141)

1

M1
≥
(
1− ǫ

λ

)1+1/δ

E[β1(X,Y )], (142)

1

M2
≥
(
1− ǫ

λ

)1+1/δ

E[β2(X,Y )] (143)

where the expectations are with respect to PXY , and for each x, y,

(β12(x, y), β1(x, y), β2(x, y)) ∈ β1−λ(Wxy , QZ , QZ|Y=y, QZ|X=x). (144)

Proof: Consider a (stochastic) code given by encoders PX|I1 ∈ P([M1] → X ) and PY |I2 ∈ P([M2] → Y), and decoder

PÎ1,Î2|Z ∈ P(Z → [M1] × [M2]) with average probability of error at most ǫ. Let QX be the distribution induced on X

assuming I1 is uniform on [M1]; i.e.,

QX(A) =
1

M1

M1∑

i1=1

PX|I1=i1(A). (145)

Let QY be the corresponding distribution induced on Y assuming I2 is uniform on [M2]. Also let QXY = QXQY be the

product distribution. Let E be the error event, that is

E = {(Î1, Î2) 6= (I1, I2)}. (146)

Given any λ > ǫ, we may define the expurgation set by

Γ = {(x, y) ∈ X × Y : P(E|X = x, Y = y) ≤ λ}. (147)

That is, Γ is the set of transmitted pairs (x, y) that give probability of error at most λ. From the assumption that the probability

of error is at most ǫ,

ǫ ≥ P(E) (148)

≥ P(E , (X,Y ) /∈ Γ) (149)

≥ (1 −QXY (Γ))λ (150)

so

QXY (Γ) ≥ 1− ǫ

λ
. (151)
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Let PX′Y ′ = QXY |(X,Y )∈Γ. We may bound the Rényi divergence between these two distributions by

D∞(PX′Y ′‖QXY ) = sup
F⊂X×Y

log
PX′Y ′(F )

QXY (F )
(152)

= sup
F⊂X×Y

log
QXY (F ∩ Γ)

QXY (Γ)QXY (F )
(153)

≤ − logQXY (Γ) (154)

≤ − log
(
1− ǫ

λ

)
. (155)

We may now apply Lemma 3 with σ = − log(1 − ǫ/λ) and any fixed δ > 0, to find sets X̄ ⊂ X , Ȳ ⊂ Y . Let PXY =
PX′Y ′|X′∈X̄ ,Y ′∈Ȳ . From the lemma,

∆(X ;Y ) ≤ δ, (156)

PX′Y ′(X̄ , Ȳ) ≥ exp{−σ/δ}. (157)

Using an identical calculation to the earlier bound on Rényi divergence,

D∞(PXY ‖QXY ) ≤ − logQXY (Γ ∩ X̄ × Ȳ) (158)

= − logQXY (Γ)PX′Y ′(X̄ , Ȳ) (159)

≤ σ +
σ

δ
(160)

= −
(
1 +

1

δ

)
log
(
1− ǫ

λ

)
. (161)

Thus
dPXY

dQXY
(x, y) ≤ exp{D∞(PXY ‖QXY )} ≤

(
1− ǫ

λ

)−1−1/δ

. (162)

We now define a hypothesis testing function T : X × Y × Z → [0, 1] given by

T (x, y, z) = P(Ec|(X,Y, Z) = (x, y, z)). (163)

From the definition of Γ, for any (x, y) ∈ Γ,
∫

dWxy(z)T (x, y, z) = P(Ec|(X,Y ) = (x, y)) ≥ 1− λ. (164)

Thus, by the definition of the hypothesis testing quantity in (140), for any QZ , QZ|Y , QZ|X , (144) holds with

β12(x, y) =

∫
dQZ(z)T (x, y, z), (165)

β1(x, y) =

∫
dQZ|Y=y(z)T (x, y, z), (166)

β2(x, y) =

∫
dQZ|X=x(z)T (x, y, z). (167)

Thus

E[β12(X,Y )] =

∫
dPXY (x, y)dQZ(z)T (x, y, z) (168)

≤
∫

dPXY (x, y)dQZ(z)P(Ec|(X,Y, Z) = (x, y, z)) (169)

≤
(
1− ǫ

λ

)−1−1/δ
∫

dQX(x)dQY (y)dQZ(z)P(Ec|(X,Y, Z) = (x, y, z)) (170)

≤
(
1− ǫ

λ

)−1−1/δ 1

M1M2
(171)

where (170) holds by the bound on the Rényi divergence from (162), and (171) holds because if (X,Y, Z) ∼ QXQY QZ , then

(I1, I2) are uniformly random on [M1]× [M2] and (Î1, Î2) are independent from them, so the probability of correct decoding

is at most 1
M1M2

. Rearranging (171) yields (141). By a nearly identical argument,

E[β1(X,Y )] =

∫
dPXY (x, y)dQZ|Y=y(z)T (x, y, z) (172)

≤
(
1− ǫ

λ

)−1−1/δ
∫

dQX(x)dQY (y)dQZ|Y=y(z)P(Ec|(X,Y, Z) = (x, y, z)) (173)
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≤
(
1− ǫ

λ

)−1−1/δ 1

M1
(174)

where (174) holds because if (X,Y, Z) ∼ QXQY QZ|Y , then I1 and Î1 are independent. Rearranging yields (142). The same

calculation for E[β2(X,Y )] yields (143).

V. ASYMPTOTIC RESULTS

We present two asymptotic results, each characterizing the second-order rate as O(1/
√
n) under certain assumptions on the

channel. The first result (Thm. 7) aims to bound the second-order rate with minimal assumptions on the channel, while giving

the simplest possible proof of the result. In particular, Thm. 7 avoids an assumption on the third-moment of the information

density. The second result (Thm. 9) applies only to MACs with finite alphabets, but it gives a substantially tighter bound on

the second-order rate for these channels. Thm. 9 is intended to give the tightest possible bound on the second-order rate, at the

cost of a more complicated proof. We state both results first, and then prove them in Secs. V-A and V-B. Sec. V-C provides

some discussion of the maximal probability of error case.

For α1 ≥ α2 ≥ 0, and any δ ≥ 0, define

Cα1,α2(δ) = sup
PUXY :∆(X;Y |U=u)≤δ for all u,

E[b1(X)]≤B1,
E[b2(Y )]≤B2

[
α2I(X,Y ;Z|U) + (α1 − α2)I(X ;Z|Y, U)

]
. (175)

For α2 ≥ α1 ≥ 0, we define Cα1,α2(δ) similarly, except there is a term with I(Y ;Z|X,U) in place of the I(X ;Z|Y, U)
term. Note that Cα1,α2(0) = Cα1,α2 . Also let C′

α1,α2
(δ) be the derivative of Cα1,α2(δ) with respect to δ. Since Cα1,α2(δ) is

non-decreasing in δ, C′
α1,α2

(δ) is well-defined, although it may be infinite. Let

Vmax = sup
PUXY :

E[b1(X)]≤B1,
E[b2(Y )]≤B2

max
{
V (W‖PZ|U |PUXY ), V (W‖PZ|Y U |PUXY ), V (W‖PZ|XU |PUXY )

}
(176)

where PZ|U , PZ|Y U , PZ|XU are the induced distributions from PUXY . Note that in this definition, there is no independence

constraint on PUXY .

Theorem 7: For any α1, α2 where max{α1, α2} = 1, and any ǫ ∈ (0, 1),

R⋆
α1,α2

(n, ǫ) ≤ Cα1,α2 + min
λ∈(ǫ,1)

[
2

√
C′

α1,α2
(0) log

λ

λ− ǫ
+

√
Vmax

1− λ

]
1√
n
+ o

(
1√
n

)
. (177)

The proof of this result, found in Sec. V-A, applies an Augustin-type argument (cf. [9]), wherein Chebyshev’s inequality

is used to bound the hypothesis testing fundamental limit. Thus, the bound is only meaningful if the second moment statistic

Vmax is finite, but there is no requirement on the third moment, which allows Thm. 7 to hold in a great deal of generality,

although it can typically be improved with more careful analysis. The following corollary comes by plugging in, for example,

λ = ǫ+1
2 into (177).

Corollary 8: If (i) Vmax < ∞, and (ii) C′
α1,α2

(0) is uniformly bounded for all α1, α2 where max{α1, α2} = 1, then for

any ǫ ∈ (0, 1),

R(n, ǫ) ⊆ C +O

(
1√
n

)
. (178)

As seen from Corollary 8, the second-order coding rate is O(1/
√
n) as long as two regularity conditions hold. The condition

on Vmax is not surprising, as any result of this form requires that the information density has a finite second moment. One

slight complication arises from the fact that, in the definition of Vmax in (176), one cannot choose the output distribution

PZ|U separately from the input distribution. That is, even though in Thm. 6 the distribution QZ (and QZ|Y , QZ|X ) is a free

choice, we select only the induced output distribution. This complicates the analysis for some channels; for example, for the

Gaussian point-to-point channel, in the second-order converse bound one typically chooses an i.i.d. Gaussian for the output

distribution, as in [13, Sec. III-J]. By contrast, here that choice is not available. This difficulty is addressed for the Gaussian

MAC in Appendix E.

The second regularity condition, on the boundedness of C′
α1,α2

(0), wherein the wringing dependence appears, is more

particular to our method. Verifying this condition requires analyzing the effect of the wringing dependence between the two

inputs on the maximum achievable weighted-sum-rate. In the sequel, we establish that this condition holds in two cases: for

any discrete-memoryless channel, as shown in Thm. 9, and for the Gaussian MAC, as discussed in Sec. VI-B with the proof

in Appendix E.

We now state a more precise result for discrete-memoryless channels, which will require a few new definitions. Let P in
α1,α2

be the set of distributions PUXY satisfying the supremum in the characterization of Cα1,α2 in (24). For any α ∈ [0, 1], let

V +
1,α = sup

P
UXY ∈P in

1,α

[
α
√
V (W‖PZ|U |PUXY ) + (1− α)

√
V (W‖PZ|Y U |PUXY )

]2
(179)
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where PZ|U and PZ|Y U are the induced distributions from PUXY . Also let

V −
1,α = inf

PUXY ,PX′Y ′|U

[
α
√

V (W‖PZ|U |PUX′Y ′) + (1 − α)
√
V (W‖PZ|Y U |PUX′Y ′)

]2
(180)

where the infimum is over all PUXY ∈ P in
1,α and PX′Y ′|U satisfying

αD(W‖PZ|U |PUX′Y ′) + (1− α)D(W‖PZ|Y U |PUX′Y ′) = C1,α. (181)

Define V −
α,1 and V +

α,1 analogously. For any α1, α2 where max{α1, α2} = 1 and any λ ∈ (0, 1), let

V λ
α1,α2

=

{
V −
α1,α2

, λ < 1/2

V +
α1,α2

, λ ≥ 1/2.
(182)

Theorem 9: If X ,Y,Z are finite sets, then both regularity conditions in Corollary 8 are satisfied. In addition, for any α1, α2

where max{α1, α2} = 1, and any ǫ ∈ (0, 1),

R⋆
α1,α2

(n, ǫ) ≤
(
Cα1,α2 + min

λ∈(ǫ,1)

[
2

√
C′

α1,α2
(0) log

λ

λ− ǫ
−
√
V λ
α1,α2

Q−1(λ)

]
1√
n

)∗∗

+ o

(
1√
n

)
(183)

where Q is the Gaussian complementary CDF and Q−1 is its inverse function, and (·)∗∗ represents the lower convex envelope

as a function of (α1, α2).
Note that V +

α1,α2
and V −

α1,α2
are not quite complementary. In particular, V −

α1,α2
is in general smaller than the quantity

obtained by simply replacing the supremum with an infimum in (179). However, for at least some channels of interest, such

as the binary additive erasure channel (see Sec. VI-A), all of these divergence variance quantities are equal.

Thm. 9 settles the question, at least for some discrete channels, of whether the maximum achievable rates approach the

capacity region from below or above for sufficiently small probability of error. We state this precisely in the following corollary.

Corollary 10: Let X ,Y,Z be finite sets. If V −
α1,α2

> 0, then for sufficiently small ǫ and sufficiently large n,

R⋆
α1,α2

(n, ǫ) < Cα1,α2 . (184)

This corollary is proved by choosing, for example, λ = 2ǫ in (183) and taking ǫ to be sufficiently small.

A. Proof of Thm. 7

Consider any (n,M1,M2, ǫ) code for the n-length product channel. We consider (α1, α2) = (1, α) where α ∈ [0, 1].
The alternative case is proved identically. We apply Thm. 6 wherein the one-shot input alphabets X ,Y are replaced by the

cost-constrained input sets
{
xn ∈ Xn :

n∑

t=1

b1(xt) ≤ nB1

}
,

{
yn ∈ Yn :

n∑

t=1

b2(yt) ≤ nB2

}
. (185)

Thus, for any λ > ǫ, δ > 0, there exists a distribution PXnY n such that Xn and Y n fall into the sets in (185) almost surely,

∆(Xn;Y n) ≤ δ, and

log(M1M2) ≤ − logE
[
β1−λ(WXnY n ,

∏n
t=1 PZt)

]
+

(
1

δ
+ 1

)
log

λ

λ− ǫ
, (186)

logM1 ≤ − logE
[
β1−λ(WXnY n ,

∏n
t=1 PZt|Yt=Yt

)
]
+

(
1

δ
+ 1

)
log

λ

λ− ǫ
, (187)

logM2 ≤ − logE
[
β1−λ(WXnY n ,

∏n
t=1 PZt|Xt=Xt

)
]
+

(
1

δ
+ 1

)
log

λ

λ− ǫ
. (188)

Here, we have relaxed Thm. 6 by noting that if (β1, . . . , βk) ∈ β1−λ(P,Q1, . . . , Qk), then βi ≥ β1−λ(P,Qi) for each i ∈ [k].
We have also chosen the induced product distributions for QZ , QZ|Y , QZ|X . Since by Thm. 2, wringing dependence satisfies

the data processing inequality, ∆(Xt;Yt) ≤ δ for any t ∈ [n]. We will make use of the ǫ-information spectrum divergence (cf.

[27], [39]), which is given by

Dǫ
s(P‖Q) = sup

{
R ∈ R : P

(
log

dP

dQ
(Z) ≤ R

)
≤ ǫ

}
. (189)

The hypothesis testing quantity can be related to the information spectrum divergence as

− log β1−λ(P,Q) ≤ inf
0<η<1−λ

[
Dλ+η

s (P‖Q)− log η
]
. (190)



19

Using Chebyshev’s inequality, the information spectrum divergence may in turn be bounded by (see e.g., [27, Prop. 2.2])

Dǫ
s(P‖Q) ≤ D(P‖Q) +

√
V (P‖Q)

1− ǫ
(191)

and so

− log β1−λ(P,Q) ≤ D(P‖Q) + inf
0<η<1−λ

(√
V (P‖Q)

1− λ− η
− log η

)
. (192)

Applying (192) to the bound in (186) gives, for any 0 < η < 1− λ,

log(M1M2)−
(
1

δ
+ 1

)
log

λ

λ− ǫ
(193)

≤ − log

∫
dPXnY n(xn, yn) exp

{
−

n∑

t=1

D(Wxtyt‖PZt)−

√√√√ 1

1− λ− η

n∑

t=1

V (Wxtyt‖PZt) + log η

}
(194)

≤
n∑

t=1

D(W‖PZt |PXtYt) +

√√√√ 1

1− λ− η

n∑

t=1

V (W‖PZt |PXtYt)− log η (195)

= nD(W‖PZ|U |PXY U ) +

√
n

1− λ− η
V (W‖PZ|U |PXY U )− log η (196)

≤ nI(XY ;Z|U) +

√
nVmax

1− λ− η
− log η (197)

where (195) holds by convexity of the exponential and concavity of the square root; in (196) we have let U ∼ Unif[n],
X = XU , Y = YU , Z = ZU ; and (197) follows from the definition of Vmax in (176). Applying the same derivation to (187)

gives

logM1 −
(
1

δ
+ 1

)
log

λ

λ− ǫ
≤ nI(X ;Z|Y U) +

√
nVmax

1− λ− η
− log η. (198)

Recall that for each t ∈ [n], ∆(Xt;Yt) ≤ δ, which means that for each u, ∆(X ;Y |U = u) ≤ δ. Moreover, by the fact that

Xn, Y n fall into the cost-constrained sets in (185),

E[b1(X)] =
1

n

n∑

t=1

E[b1(Xt)] ≤ B1, (199)

E[b2(Y )] =
1

n

n∑

t=1

E[b2(Yt)] ≤ B2. (200)

Thus, from the definition of C1,α(δ) in (175),

αI(XY ;Z|U) + (1 − α)I(X ;Z|Y, U) ≤ C1,α(δ) = C1,α + C′
1,α(0) δ + o(δ) (201)

where the equality follows from the definition of the derivative. We may combine (197) and (198), then plug in (201) to find

logM1 + α logM2 ≤ nC1,α + nC′
1,α(0)δ + o(nδ) +

√
nVmax

1− λ− η
− log η +

(
1

δ
+ 1

)
log

λ

λ− ǫ
. (202)

Recall that δ is a free parameter. The optimal choice (ignoring the o(nδ) term) is δ =

√
log λ

λ−ǫ

nC′
1,α(0) which gives

logM1 + α logM2 ≤ nC1,α + 2

√
nC′

1,α(0) log
λ

λ− ǫ
+

√
nVmax

1− λ− η
− log η + log

λ

λ− ǫ
+ o(

√
n) (203)

We now distinguish two cases. If Vmax > 0, then the optimal value of λ in the minimization in (177) is bounded away from

1. Let λ take on this optimal value, and we choose η = 1/
√
n to give

logM1 + α logM2 ≤ nC1,α + 2

√
nC′

1,α(0) log
λ

λ− ǫ
+

√
nVmax

1− λ
+ o(

√
n). (204)

If alternatively Vmax = 0, then the optimal value of λ in the minimization in (177) is λ = 1, but plugging λ = 1 into (203)

does not quite work, because of the requirement that η < 1− λ. Instead we may choose λ = 1− 2/n and η = 1/n to give

logM1 + α logM2 ≤ nC1,α + 2
√
nC′

1,α(0) log(1− ǫ)−1 + o(
√
n). (205)
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B. Proof of Thm. 9

We will need the following lemma, which is proved in Appendix C.

Lemma 11: Consider a MAC where X ,Y,Z are finite sets. Let Wmin be the smallest non-zero value of Wxy(z). Consider

any random variables X,Y with distribution PXY where ∆(X ;Y ) ≤ δ. Let (X̃, Ỹ , Z̃) ∼ PXPY W . Then

I(X,Y ;Z) ≤ I(X̃, Ỹ ; Z̃) +

[
8min{|X |, |Y|} + |Z|

(
(1 − logWmin)e

−1 + 4e−2
)
+ 2min{|X |, |Y|} log |Z|

]
δ +O(δ2),

(206)

I(X ;Z|Y ) ≤ I(X̃ ; Z̃|Ỹ ) +

[
8min{|X |, |Y|}+ |Y| · |Z|

(
(1− logWmin)e

−1 + 4e−2
)
+ 2min{|X |, |Y|} log |Z|

]
δ +O(δ2),

(207)

I(Y ;Z|X) ≤ I(X̃ ; Z̃|Ỹ ) +

[
8min{|X |, |Y|}+ |X | · |Z|

(
(1− logWmin)e

−1 + 4e−2
)
+ 2min{|X |, |Y|} log |Z|

]
δ +O(δ2).

(208)

Lemma 11 immediately gives that C′
α1,α2

(0) is uniformly bounded for any α1, α2 with max{α1, α2} = 1. To prove that

Vmax < ∞, we note that for any distribution PXY and its induced distribution PZ

V (W‖PZ |PXY ) ≤ E

[
log2

WXY (Z)

PZ(Z)

]
(209)

≤
(√

E
[
log2 WXY (Z)

]
+

√
E[log2 PZ(Z)]

)2

(210)

≤
(
2
√
4e−2|Z|

)2
(211)

= 16e−2|Z| (212)

where we have used the fact that p log2 p ≤ 4e−2. By the same argument, V (W‖PZ|Y ‖PXY ), V (W‖PZ|X‖PXY ) are also

bounded by 16e−2|Z|.
Recall that R⋆

α1,α2
(n, ǫ), as defined in (18), is the supremum of linear functions in (α1, α2), so it is convex in (α1, α2). Thus,

to prove the theorem it is enough to show (183) but without the lower convex envelope. We assume that (α1, α2) = (1, α)
for α ∈ [0, 1]. We proceed with with the first step as in the proof of Thm. 7; namely from Thm. 6 we derive (186)–(188).

Combining (186) and (187), and using the fact that pαq1−α is concave in (p, q), gives

logM1 + α logM2 ≤ − logE
[
(β1−λ(WXnY n ,

∏n
t=1 PZt))

α (
β1−λ(WXnY n ,

∏n
t=1 PZt|Yt=Yt

)
)1−α

]
+

(
1

δ
+ 1

)
log

λ

λ− ǫ
(213)

Since we will apply a Berry-Esseen bound to the hypothesis testing quantities, rather than a Chebyshev bound as in Thm. 7,

we need to avoid some potentially badly-behaving (xn, yn) sequences. In particular, define the set

Ω0 =

{
(xn, yn) : PXtYt(xt, yt) ≤

1

n2
for some t ∈ [n]

}
. (214)

Let p0 = PXnY n(Ω0). By the union bound,

p0 ≤
n∑

t=1

P

(
PXtYt(Xt, Yt) ≤

1

n2

)
(215)

=
n∑

t=1

∑

x,y

PXtYt(x, y) 1

(
PXtYt(x, y) ≤

1

n2

)
(216)

≤ |X | |Y|
n

. (217)

From the fact that the β quantities are non-negative, we may further bound (213) by

logM1 + α logM2 ≤ − logE
[
1((Xn, Y n) ∈ Ωc

0)
(
β1−λ(WXnY n ,

∏n
t=1 PZt)

)α(
β1−λ(WXnY n ,

∏n
t=1 PZt|Yt=Yt

)
)1−α

]

+

(
1

δ
+ 1

)
log

λ

λ− ǫ
. (218)

We now use the Berry-Esseen theorem via [27, Prop. 2.1] to bound each of the hypothesis testing quantities in (218). Specifically,

for any xn, yn

− log β1−λ(Wxnyn ,
∏n

t=1 PZt) ≤ inf
0<η≤1−λ

nDn −
√
nVn Q

−1

(
λ+ η +

6Tn√
nV 3

n

)
− log η (219)
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where

Dn =
1

n

n∑

t=1

D(Wxtyt‖PZt), (220)

Vn =
1

n

n∑

t=1

V (Wxtyt‖PZt), (221)

Tn =
1

n

n∑

t=1

T (Wxtyt‖PZt). (222)

For any (xn, yn) ∈ Ωc
0, any t ∈ [n], and any z ∈ Z ,

log
Wxtyt(z)

PZt(z)
= log

Wxtyt(z)∑
x,y PXtYt(x, y)Wxy(z)

(223)

≤ log
1

PXtYt(xt, yt)
(224)

≤ 2 logn (225)

where the last inequality follows from the definition of Ω0 in (214). (In fact, this is the purpose of the set the set Ω0 in the

first place.) We may prove a simple lower bound by, for any z where Wxtyt(z) > 0,

log
Wxtyt(z)

PZt(z)
≥ logWxtyt(z) ≥ logWmin. (226)

where Wmin = minx,y,z:Wxy(z)>0 Wxy(z). For any fixed channel with finite alphabets, Wmin > 0. Thus, for sufficiently large

n, ∣∣∣∣log
Wxtyt(z)

PZt(z)

∣∣∣∣ ≤ 2 logn. (227)

This implies that 0 ≤ D(Wxtyt‖PZt) ≤ 2 logn, so we have
∣∣∣∣log

Wxtyt(z)

PZt(z)
−D(Wxtyt‖PZt)

∣∣∣∣ ≤ 2 logn− logWmin ≤ 3 logn (228)

where the last inequality holds for sufficiently large n. Thus, for any (xn, yn) ∈ Ωc
0,

Tn ≤ max
t∈[n]

T (Wxtyt‖PZt) ≤ (3 logn)3. (229)

By the same argument, Vn ≤ (3 logn)3. Applying the upper bound on Tn in (229) to the bound on the hypothesis testing

quantity from (219) and selecting η = min{1/√n, 1− λ}, for any (xn, yn) ∈ Ωc
0 we have

− log β1−λ(Wxnyn ,
∏n

t=1 PZt) ≤ nDn −
√
nVn Q

−1

(
λ+

1√
n
+

6(3 logn)3√
nV 3

n

)
+

1

2
logn (230)

where we adopt the convention that Q−1(p) = −∞ if p ≥ 1. We now consider two cases. Consider first the case that

Vn ≥ n−1/4. This implies
√
nV 3

n ≥ n1/8, so in particular
√
nV 3

n → ∞. Thus, applying a Taylor expansion to the Q−1

function, there exists a constant c0 depending only on λ such that, for sufficiently large n,

√
nVn Q

−1

(
λ+

1√
n
+

6(3 logn)3√
nV 3

n

)
≥
√
nVn

[
Q−1(λ) − c0

(
1√
n
+

6(3 logn)3√
nV 3

n

)]
(231)

=
√
nVn Q−1(λ) − c0

(√
Vn +

6(3 logn)3

Vn

)
(232)

≥
√
nVn Q−1(λ) − c0

(
(3 logn)3/2 + 162n1/4 log3 n

)
. (233)

Now consider the case that Vn ≤ n−1/4. Then we apply the simpler Chebyshev bound of [27, Prop. 2.2] on the hypothesis

testing quantity to write

− log β1−λ(Wxnyn ,
∏n

t=1 PZt) ≤ inf
0<η≤1−λ

nDn +

√
nVn

1− λ− η
− log η (234)

≤ nDn +
2
√
nVn

1− λ
− log

1− λ

2
(235)

= nDn −
√
nVn Q

−1(λ) +
√
nVn

(
Q

−1(λ) +
2

1− λ

)
− log

1− λ

2
(236)
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≤ nDn −
√
nVn Q

−1(λ) + n3/8

(∣∣Q−1(λ)
∣∣+ +

2

1− λ

)
− log

1− λ

2
(237)

where in (235) we have selected η = 1−λ
2 . Thus, in all cases, if (xn, yn) ∈ Ωc

0, then for sufficiently large n,

− log β1−λ(Wxnyn ,
∏n

t=1 PZt) ≤ nDn −
√
nVn Q−1(λ) + an (238)

where

an = max

{
c0

(
(3 logn)3/2 + 162n1/4 log3 n

)
, n3/8

(∣∣Q−1(λ)
∣∣+ +

2

1− λ

)
− log

1− λ

2

}
. (239)

Note that the constants in the definition of an depend only on λ, and that for any λ > 0, an = o(
√
n). By a similar argument,

if (xn, yn) ∈ Ωc
0, then for sufficiently large n

− log β1−λ(Wxnyn ,
∏n

t=1 PZt|Yt=yt
) ≤

n∑

t=1

D(Wxtyt‖PZt|Yt=yt
)−

√√√√
n∑

t=1

V (Wxtyt‖PZt|Yt=yt
)Q−1(λ) + an (240)

Applying both bounds to (218) gives

logM1 + α logM2 ≤ − logE
[
1((Xn, Y n) ∈ Ωc

0) exp
{
−nD(Xn, Y n) +

√
nV (Xn, Y n)Q−1(λ)− an

}]

+

(
1

δ
+ 1

)
log

λ

λ− ǫ
(241)

where we have defined the statistics

D(xn, yn) =
1

n

n∑

t=1

[
αD(Wxtyt‖PZt) + (1 − α)D(Wxtyt‖PZt|Yt=yt

)
]
, (242)

V (xn, yn) =


α

√√√√ 1

n

n∑

t=1

V (Wxtyt‖PZt) + (1− α)

√√√√ 1

n

n∑

t=1

V (Wxtyt‖PZt|Yt=yt
)




2

. (243)

Consider any λ ≥ 1/2. From (241), by the convexity of the exponential, we have

logM1 + α logM2 ≤ 1

1− p0
E

[
1((Xn, Y n) ∈ Ωc

0)
(
nD(Xn, Y n)−

√
nV (Xn, Y n)Q−1(λ)

)]
+ an − log(1 − p0)

+

(
1

δ
+ 1

)
log

λ

λ− ǫ
(244)

≤ 1

1− p0
E

[
nD(Xn, Y n)−

√
nV (Xn, Y n)Q−1(λ)

]
+ an − log(1− p0) +

(
1

δ
+ 1

)
log

λ

λ− ǫ
(245)

where we have used the facts that D(xn, yn) and V (xn, yn) are non-negative, and since λ ≥ 0, Q−1(λ) ≤ 0. Note that

E[D(Xn, Y n)] =
1

n

n∑

t=1

[
αD(W‖PZt |PXtYt) + (1− α)D(W‖PZt|Yt

|PXtYt)
]

(246)

=
1

n

n∑

t=1

[αI(Xt, Yt;Zt) + (1− α)I(Xt;Zt|Yt)] (247)

= αI(X,Y ;Z|U) + (1− α)I(X ;Z|Y, U) (248)

where in the last equality we have defined U ∼ Unif[n] and X = XU , Y = YU , Z = ZU . Moreover, by concavity of the

square root,

E

[√
V (Xn, Y n)

]
≤ α

√√√√ 1

n

n∑

t=1

V (W‖PZt |PXtYt) + (1 − α)

√√√√ 1

n

n∑

t=1

V (W‖YZt|Yt
|PXtYt) (249)

= α
√

V (W‖PZ|U |PUXY ) + (1 − α)
√
V (W‖PZ|Y U |PUXY ). (250)

Thus, since Q−1(λ) ≤ 0,

logM1 + α logM2

≤ 1

1− p0

[
n(αI(X,Y ;Z|U) + (1− α)I(X ;Z|Y, U))
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−√
n
(
α
√

V (W‖PZ|U |PUXY ) + (1− α)
√

V (W‖PZ|Y U |PUXY )
)
Q

−1(λ)

]

+ an − log(1 − p0) +

(
1

δ
+ 1

)
log

λ

λ− ǫ
(251)

≤ n(αI(X,Y ;Z|U) + (1− α)I(X ;Z|Y, U))

−√
n
(
α
√

V (W‖PZ|U |PUXY ) + (1− α)
√

V (W‖PZ|Y U |PUXY )
)
Q

−1(λ) +

(
1

δ
+ 1

)
log

λ

λ− ǫ
+ o(

√
n) (252)

where we have used the facts that an = o(
√
n), pn = O(1/n), and that the quantity inside the square brackets in (251) is

at most n log |Z| − √
nVmaxQ

−1(λ). From the cost-constraint assumptions on the code, we also have E[b1(X)] ≤ B1 and

E[b2(Y )] ≤ B2. By Carathédory’s theorem, we may reduce the cardinality of U to |U| ≤ 6 while preserving the following

values:

αI(X,Y ;Z|U) + (1− α)I(X ;Z|Y, U), V (W‖PZ|U |PUXY ), V (W‖PZ|Y U |PUXY ), E[b1(X)], E[b2(Y )]. (253)

Choosing δ = O(n−1/2) allows us to derive the crude bound

logM1 + α logM2 ≤ n(αI(X,Y ;Z|U) + (1− α)I(X ;Z|Y, U)) +O(
√
n). (254)

Define X̃, Ỹ , Z̃ where

PX̃Ỹ Z̃|U=u(x, y, z) = PX|U=u(x)PY |U=u(y)Wxy(z). (255)

By Lemma 11,

logM1 + α logM2 ≤ n(αI(X̃, Ỹ ; Z̃, U) + (1 − α)I(X̃ ; Z̃|Ỹ , U)) +O(
√
n). (256)

Our goal is to prove that

logM1 + α logM2 ≤ nC1,α + 2

√
nC′

1,α(0) log
λ

λ− ǫ
−
√
nV +

1,αQ
−1(λ) + o(

√
n). (257)

Since Q−1(λ) ≤ 0, we may assume that

logM1 + α logM2 ≥ nC1,α (258)

or else there is nothing to prove. Thus

αI(X̃, Ỹ ; Z̃, U) + (1 − α)I(X̃ ; Z̃|Ỹ , U) ≥ C1,α −O

(
1√
n

)
. (259)

Noting that the mutual information is continuous over distributions with finite alphabets, by the definition of C1,α, (259) implies

that there exists a distribution P ⋆
UXY ∈ P in

1,α where dTV (PUX̃Ỹ , P
⋆
UXY ) ≤ o(1). Since ∆(X ;Y |U = u) ≤ δ, from Thm. 2 we

have

|PXY |U=u(x, y)− PX̃Ỹ |U=u(x, y)| ≤ 2δ. (260)

As we have taken δ = O(1/
√
n), then dTV (PUXY , PUX̃Ỹ ) ≤ o(1). Thus by the triangle inequality, dTV (PUXY , P

⋆
UXY ) ≤

o(1). Since the dispersion variance is also is a continuous function of PUXY (again for finite alphabets), we must have

α
√
V (W‖PZ|U |PUXY ) + (1− α)

√
V (W‖PZ|Y U |PUXY ) (261)

≤ α
√
V (W‖P ⋆

Z|U |P ⋆
UXY ) + (1− α)

√
V (W‖P ⋆

Z|Y U |P ⋆
UXY ) + o(1) (262)

≤ V +
1,α + o(1) (263)

where the second inequality holds since P ⋆
UXY ∈ P in

1,α and by the definition of V +
1,α in (179). Now returning to the bound in

(252),

logM1 + α logM2 ≤ n(αI(X,Y ;Z|U) + (1− α)I(X ;Z|Y, U))−
√
nV +

1,αQ
−1(λ) +

(
1

δ
+ 1

)
log

λ

λ− ǫ
+ o(

√
n) (264)

≤ nC1,α(δ)−
√
nV +

1,α Q−1(λ) +

(
1

δ
+ 1

)
log

λ

λ− ǫ
+ o(

√
n) (265)

= nC1,α + C′
1,α(0)δ + o(nδ)−

√
nV +

1,α Q
−1(λ) +

(
1

δ
+ 1

)
log

λ

λ− ǫ
+ o(

√
n) (266)

(265) holds by the definition of C1,α(δ); and (266) follows by the definition of the derivative. Selecting δ =

√
log λ

λ−ǫ

C′
1,α(0) , we

derive the desired bound in (257).
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Now consider any λ < 1/2. Our goal is to show that

logM1 + α logM2 ≤ nC1,α(δ)−
√
nV −

1,α Q−1(λ) +

(
1

δ
+ 1

)
log

λ

λ− ǫ
+ o(

√
n) (267)

where eventually we will choose δ = O(n−1/2). Thus, we may assume

logM1 + α logM2 ≥ nC1,α −
√
nV −

1,α Q−1(λ) +

(
1

δ
+ 1

)
log

λ

λ− ǫ
(268)

or else we are done. Now let

Ω1 =

{
(xn, yn) : nD(xn, yn) ≤ nC1,α −

√
nV −

1,α Q−1(λ)− an − logn

}
, (269)

Ω2 = {(xn, yn) : nD(xn, yn) ≥ nC1,α(δ) + logn} (270)

and let pi = PXnY n(Ωi ∩Ωc
0) for i = 1, 2. To upper bound p1, beginning from the bound in (241) we may write

logM1 + α logM2 + log(1 − p0)−
(
1

δ
+ 1

)
log

λ

λ− ǫ
(271)

≤ − log
∑

(xn,yn)∈Ω1∩Ωc
0

PXnY n(xn, yn) exp
{
−nD(xn, yn) +

√
nV (xn, yn)Q−1(λ)− an

}
(272)

≤ − log
∑

(xn,yn)∈Ω1∩Ωc
0

PXnY n(xn, yn) exp

{
−nC1,α +

√
nV −

1,α Q−1(λ) + logn

}
(273)

= − log p1 + nC1,α −
√
nV −

1,α Q
−1(λ) − logn (274)

where in (273) we have used the definition of Ω1, and the fact that Q−1(λ) ≥ 0 since λ < 1/2; and (274) holds by the

definition of p1. Thus by the assumption in (268)

p1 ≤ 1

(1− p0)n
= O

(
1

n

)
(275)

since p0 = O(1/n).
Let

V ′ = min{V (xn, yn) : (xn, yn) ∈ (Ω1 ∪ Ω2)
c}. (276)

We will prove that V ′ ≥ V −
1,α − o(1). Fix (xn, yn) ∈ (Ω1 ∪ Ω2)

c. By the definitions of Ω1,Ω2, since an = o(
√
n) we have

C1,α −O(n−1/2) ≤ D(xn, yn) ≤ C1,α(δ) + logn. (277)

Since δ = O(n−1/2), by Taylor’s theorem and the fact from Lemma 11 that C′
1,α(0) is bounded, C1,α(δ) = C1,α +O(n−1/2).

Thus |D(xn, yn)− C1,α| ≤ O(n−1/2). If we again let U ∼ Unif[n], and

PX′Y ′|U=t(x, y) = 1(x = xt, y = yt) (278)

then we may write

D(xn, yn) = αD(W‖PZ|U |PUX̄Ȳ ) + (1− α)D(W‖PZ|Y U |PUX′Y ′), (279)
√
V (xn, yn) = α

√
V (W‖PZ|U |PUX′Y ′) + (1− α)

√
V (W‖PZ|Y U |PUX′Y ′). (280)

Also note that E[b1(X
′)] = 1

n

∑n
t=1 b1(xt) ≤ B1, and similarly E[b2(Y

′)] ≤ B2. We may perform a dimensionality reduction

on U where |U| ≤ 9 to preserve the following values:

αI(X,Y ;Z|U) + (1− α)I(X ;Z|Y, U), (281)

αD(W‖PZ|U |PUX′Y ′) + (1− α)D(W‖PZ|Y U |PUX′Y ′), (282)

V (W‖PZ|U |PUX′Y ′), V (W‖PZ|Y U |PUX′Y ′), (283)

E[b1(X)], E[b2(Y )], E[b1(X
′)], E[b2(Y

′)]. (284)

Note that this is not the same dimensionality reduction as above; in particular, this one depends on xn, yn. Since δ = O(n−1/2),
by the same argument as above, there exists P ⋆

UXY ∈ P in
1,α where dTV (PUXY , P

⋆
UXY ) ≤ o(1). Since |D(xn, yn)−C1,α| ≤ o(1),

by continuity of the relative entropy (for finite alphabets) there exists a distribution P ⋆
X′Y ′|U such that dTV (PUX′Y ′ , P ⋆

UX′Y ′) ≤
o(1) and

αD(W‖P ⋆
Z|U |P ⋆

UX′Y ′) + (1− α)D(W‖P ⋆
Z|Y U |P ⋆

UX′Y ′) = C1,α. (285)
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That is, (P ⋆
UXY , P

⋆
X′Y ′|U ) satisfy the feasibility condition for the definition of V −

1,α in (181). By continuity of the divergence

variance, this implies that V (xn, yn) ≥ V −
1,α − o(1). This proves that V ′ ≥ V −

1,α − o(1). Now we may lower bound the

expectation in (241) by

E

[
1((Xn, Y n) ∈ Ωc

0) exp
{
−nD(Xn, Y n) +

√
nV (Xn, Y n)Q−1(λ)− an

}]
(286)

≥
∑

(xn,yn)∈(Ω0∪Ω1∪Ω2)c

PXnY n(xn, yn) exp
{
−nD(xn, yn) +

√
nV ′ Q−1(λ)− an

}
(287)

≥
∑

(xn,yn)∈(Ω0∪Ω1)c

PXnY n(xn, yn) exp
{
−nD(xn, yn) +

√
nV ′ Q−1(λ)− an

}

−
∑

(xn,yn)∈Ωc
0∩Ω2

PXnY n(xn, yn) exp
{
−nD(xn, yn) +

√
nV ′ Q−1(λ)− an

}
(288)

≥ (1 − p0 − p1) exp



− 1

1− p0 − p1

∑

(xn,yn)∈(Ω0∪Ω1)c

PXnY n(xn, yn)nD(xn, yn) +
√
nV ′ Q−1(λ)− an





− p2 exp
{
−nC1,α(δ) +

√
nV ′ Q−1(λ) − logn− an

}
(289)

≥ (1 − p0 − p1) exp

{
− 1

1− p0 − p1
nE[D(Xn, Y n)] +

√
nV ′ Q−1(λ) − an

}

− exp
{
−nC1,α(δ) +

√
nV ′ Q−1(λ)− logn− an)

}
(290)

≥ (1 − p0 − p1) exp

{
− 1

1− p0 − p1
nC1,α(δ) +

√
nV ′ Q−1(λ)− an

}

− exp
{
−nC1,α(δ) +

√
nV ′ Q−1(λ)− logn− an

}
(291)

= exp
{
−nC1,α(δ) +

√
nV ′ Q−1(λ)− an

}(
exp

{
log(1− p0 − p1)−

p0 + p1
1− p0 − p1

nC1,α(δ)−O(1)

}
− 1

n

)
(292)

= exp
{
−nC1,α(δ) +

√
nV ′ Q−1(λ)− an

}
O(1) (293)

≥ exp

{
−nC1,α(δ) +

√
nV −

1,α Q
−1(λ)− o(

√
n)

}
(294)

where (287) holds by the definition of V ′, (289) holds by the definition of Ω2 and by convexity of the exponential, (290) holds

by extending the sum over all (xn, yn), (291) holds since E[D(Xn, Y n)] = αI(X,Y ;Z|U)+(1−α)I(X ;Z|Y, U) ≤ C1,α(δ);

(293) holds since p0 + p1 = O(1/n), which implies that log(1− p0 − p1) = −O(1/n) and
(p0+p1)n
1−p0−p1

= O(1), and we also use

the fact that C1,α(δ) ≤ log |Z|;and (294) holds since V ′ ≥ V −
1,α − o(1) and an = o(

√
n). This proves (267). Again using the

definition of the derivative, and choosing δ optimally (this involves δ = O(n−1/2) as promised) completes the proof.

C. Discussion of the Maximal Error Case

While the results in this paper focus on the average error probability criterion, an important variant of the problem is the

one using maximal error probability. In a sense, the maximal error variant is an easier problem, because it imposes a stronger

condition on each message pair. Unfortunately, as originally shown in [38], the capacity regions for the two problem variants

can differ, and in general the capacity region of the maximal error case (with deterministic encoders) is not even known.

A second-order converse bound for the maximal-error case was presented in [22]; however, the proof of the main result

of [22] appears to have a gap (namely, the derivation of equation (28)). The recent work [23] used a wringing-based proof

(following a similar approach as this paper) to derive a similar bound to that claimed in [22]. The result derived in [23] is as

follows. Let R⋆,max
α1,α2

(n, ǫ) be the largest achievable weighted-sum rate for a length-n code with maximal probability of error

ǫ. Consider a discrete-memoryless MAC such that there is a unique optimal input distribution for the standard sum-rate; i.e.

P in
1,1 contains a single distribution P ⋆

XP ⋆
Y . Then [23] shows that

R⋆,max
1,1 (n, ǫ) ≤ C1,1 −

√
V ⋆

n
Q

−1(ǫ) + o

(
1√
n

)
(295)

where V ⋆ = V (W‖P ⋆
Z |P ⋆

XP ⋆
Y ) where P ⋆

Z is the induced output distribution from P ⋆
XP ⋆

Y . This constitutes a tighter bound on

the sum-rate than Thm. 9. However, note that in (295), C1,1 is the average-case sum-capacity, which may not be the same as

the maximal-error sum-capacity, and indeed the maximal-error sum-capacity may not even be known. Thus, for many channels

the gap between the best-known achievability and converse bounds for the maximal-error case is O(1), as opposed to O(1/
√
n)

for the average-error case.
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VI. EXAMPLE MULTIPLE-ACCESS CHANNELS

A. Binary Additive Erasure Channel

Let X ∈ {0, 1}, Y ∈ {0, 1}, Z = {0, 1, 2, e}. Given (X,Y ) = (x, y), Z = e with probability γ, and Z = x + y with

probability γ̄ = 1− γ. The capacity region for this channel is the pentagonal region

C =

{
(R1, R2) : R1 +R2 ≤ 3

2
γ̄ log 2, R1 ≤ γ̄ log 2, R2 ≤ γ̄ log 2.

}
(296)

Thus the weighted-sum-capacity is

Cα1,α2 =

(
max{α1, α2}+

1

2
min{α1, α2}

)
γ̄ log 2. (297)

In order to apply Thm. 9, we need to find C′
α1,α2

(0), V +
α1,α2

, and V −
α1,α2

. First we compute Cα1,α2(δ). Since the channel

is symmetric between the two inputs, Cα1,α2(δ) = Cα2,α1(δ). Let (α1, α2) = (1, α) for α ∈ [0, 1]. Since this channel has no

cost constraints, the time sharing variable U can be eliminated in the definition of Cα1,α2(δ) in (175). Thus

C1,α(δ) = max
PXY :∆(X;Y )≤δ

[
αI(X,Y ;Z) + (1 − α)I(X ;Z|Y )

]
(298)

= max
PXY :∆(X;Y )≤δ

γ̄ [αH(X + Y ) + (1− α)H(X |Y )] . (299)

To lower bound C1,α(δ), we may take PXY to be a DSBS with parameter p ≤ 1/2. Recalling the calculation from Example 1,

∆(X ;Y ) = 1+log2(1−p)
1−log2(1−p) , so

C1,α(δ) ≥ max
p≤1/2:

1+log2(1−p)

1−log2(1−p)
≤δ

γ̄ [α(Hb(p) + (1− p) log 2) + (1 − α)Hb(p)] (300)

=

{
γ̄
[
Hb(2

1−2/(1+δ)) + α21−2/(1+δ) log 2
]
, δ < 1−log2(1+2−α)

1+log2(1+2−α) ,

γ̄[log(1 + 2−α) + α log 2], δ ≥ 1−log2(1+2−α)
1+log2(1+2−α)

(301)

where (301) follows from a straightforward entropy calculation. In fact, this lower bound is tight, although the proof is a little

more difficult. The following proposition is proved in Appendix D.

Proposition 12: For any α ∈ [0, 1] and δ ∈ [0, 1], C1,α(δ) is equal to the expression in (301).

Given the expression for C1,α(δ) in (301), the first-order Taylor expansion is given by

C1,α(δ) = γ̄
(
1 +

α

2

)
log 2 + γ̄α(log2 2)δ +O(δ2). (302)

In particular, C′
1,α(0) = γ̄α log2 2.

We now calculate the dispersion variance quantities V +
α1,α2

, V −
α1,α2

. For any8 α ∈ (0, 1], P in
1,α is the set of distributions

PUXY where PXY |U=u is uniform on {0, 1}2. That is, (X,Y ) are independent of U , so we may ignore U . Taking PZ , PZ|Y
to be the induced distributions from the unique optimal input distribution, we may calculate

D(Wxy‖PZ) = (1 + 1(x = y))γ̄ log 2, (303)

D(Wxy‖PZ|Y=y) = γ̄ log 2. (304)

Note that αD(W‖PZ |PX′Y ′) + (1 − α)D(W‖PZ|Y |PX′Y ′) = C1,α iff PX′Y ′(0, 0) + PX′Y ′(1, 1) = 1/2. Moreover,

V (Wxy‖PZ) = γγ̄(1 + 4 · 1(x = y)) log2 2, (305)

V (Wxy‖PZ|Y=y) = γγ̄ log2 2. (306)

Thus

V −
1,α = γγ̄

(
α

√
5

2
+ 1− α

)2

. (307)

Moreover, V +
1,α is the same quantity. Thm. 9 now gives

R⋆
1,α(n, ǫ) ≤ γ̄

(
1 +

α

2

)
log 2 +

(
min

λ∈(ǫ,1)
2

√
γ̄α log

λ

λ− ǫ
−√

γγ̄

(
α

√
5

2
+ 1− α

)
Q−1(λ)

)∗∗
log 2√

n
+ o

(
1√
n

)
. (308)

8The α = 0 case allows other optimal input distributions, although this case is somewhat trivial, as is reduces to a point-to-point binary erasure channel.
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Fig. 3. Upper and lower bounds on the second-order coefficient for the binary additive erasure channel. Subfigure (a) shows the second-order bounds for
the maximum achievable weighted-sum-rate R⋆

1,α(n, ǫ) as a function of α ∈ [0, 1] for erasure probability γ = 0.25 and probability of error ǫ = 10−3.

Subfigure (b) shows second-order bounds for the standard sum-rate R⋆
1,1(n, ǫ) as a function of γ ∈ [0, 1] for ǫ = 10−3 . The lower bound is from prior work

[14]–[18], while the upper bound is our contribution. In subfigure (a), along with the upper bound from (309), we also show the weaker upper bound found
by not taking the lower convex envelope in (308). Note that the stronger bound is simply the lower convex envelope of the weaker bound.

In fact, the quantity inside the (·)∗∗ is concave (see Fig. 3), so it is equivalent to simply take the convex combination of the

points at α = 0 and α = 1. At α = 0 one can see that it is optimal to choose λ = ǫ. Thus

R⋆
1,α(n, ǫ) ≤ γ̄

(
1 +

α

2

)
log 2 +

[
(1 − α)

√
γγ̄Q−1(ǫ) + min

λ∈(ǫ,1)
α

(
2

√
γ̄ log

λ

λ− ǫ
−
√
γγ̄

5

2
Q−1(λ)

)]
log 2√

n
+ o

(
1√
n

)
.

(309)

The corresponding achievability bound from any of [14]–[18]9 is

R⋆
1,α(n, ǫ) ≥ γ̄

(
1 +

α

2

)
log 2 + L(α, ǫ) log 2− o

(
1√
n

)
(310)

where

L(α, ǫ) = sup{αs1 + (1− α)s2 : P(S1 ≥ s1, S2 ≥ s2) ≥ 1− ǫ} (311)

and (S1, S2) are jointly Gaussian with zero mean and covariance matrix

γγ̄

[
5/2 3/2
3/2 1

]
. (312)

Fig. 3 illustrates the upper and lower bounds on the coefficient in the O(1/
√
n) term. The figure shows bounds on the second-

order coefficient for R1,α(n, ǫ) for γ = 0.25, ǫ = 10−3, and also bounds on R1,1(n, ǫ)—i.e., the standard sum-rate—for all

γ ∈ [0, 1] and ǫ = 10−3. Unfortunately, the upper and lower bounds only match for essentially trivial cases: when α = 0,

wherein the problem reduces to the point-to-point binary erasure channel, and when γ = 1, wherein the output is independent

from the inputs so no communication is possible.

B. Gaussian MAC

In the Gaussian MAC, X,Y, Z are all real-valued, the output is Z = X + Y + N , where N ∼ N (0, 1), and the input

sequences Xn, Y n are subject to power constraints
∑n

t=1 X
2
t ≤ nS1 and

∑n
t=1 Y

2
t ≤ nS2. The following result, proved in

Appendix E, states that the Gaussian MAC satisfies the conditions of Corollary 8, and so its second-order rate is O(1/
√
n).

Theorem 13: For the Gaussian MAC, C′
α1,α2

(0) is uniformly bounded for all α1, α2 where max{α1, α2} = 1, and Vmax < ∞.

In the statement of this theorem, we have omitted any specific bound on C′
α1,α2

(0) or Vmax. While such bounds can be

extracted from the proof, we have sought clarity of the proof over optimality of the bounds10, and so we have elected to

highlight the order of the bound on the second-order rate, rather than the coefficient.

9The achievable bound from [18] is in general the strongest, but for this channel these all produce the same bound.
10The length and complexity of the proof in Appendix E may make you skeptical of this claim, but it’s true!
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VII. CONCLUSION

The main result of this paper is that, for most multiple-access channels of interest, under the average probability of error

constraint the second-order coding rate is O(1/
√
n) bits per channel use. Along the way, we introduced and characterized the

wringing dependence, which was a critical element in the proof of the main results.

Possible future work includes extensions to more than two transmitters, or applying similar techniques to other network

information theory problems (the interference channel with strong interference should be a straightforward extension). Moreover,

there are a number of ways that our results could potentially be improved even for the two-user MAC. First, the regularity

conditions given in Corollary 8, under which we are able to prove the second-order bound of O(1/
√
n), are quite difficult to

verify for non-discrete channels. The only continuous channel for which we have successfully verified the conditions is the

Gaussian MAC; the proof of this in Appendix E is quite technical, as well as being very specific to the Gaussian channel. It

would be advantageous to find conditions that are easier to verify under which the second-order bound holds.

A second potential improvement has to do with the quantity V λ
α1,α2

in Thm. 9. Specifically, the form of V −
α1,α2

in (180)

is not especially natural; it may be possible to improve the result so that this quantity is complementary to V +
α1,α2

; that is,

(179) with an infimum instead of a supremum. In addition, Thm. 9 could be strengthened using dispersion quantities extracted

from multi-dimensional Gaussian CDFs, along the lines of the achievable bounds in [14]–[19]. One may also wish to prove

something similar to Thm. 9 for non-discrete channels.

Of course, the ultimate goal would be to determine the second-order coefficient exactly. Even if the above improvements

could be made, there would remain a gap between achievability and converse bounds for almost all channels, including such

simple examples as the deterministic binary additive channel. It appears that new ideas are required in order to close the gap

completely. One possible direction of improvement, which the method used here fails to address, is the following. Consider

the distribution of the error probability conditioned on the message pair. That is, let ǫ(i1, i2) be the error probability given

message pair (i1, i2). Taking (I1, I2) to be uniformly random over the message sets, it is critical to characterize the distribution

of the random variable ǫ(I1, I2) in any MAC converse proof. In our proof, we do not use anything about the distribution of

ǫ(I1, I2) beyond that its expected value is the overall error probability. In particular, the proof would allow ǫ(I1, I2) to take

values only {0, λ} for some λ. Intuitively, no good code could give rise to such a distribution on ǫ(I1, I2). Indeed, existing

achievable bounds produce distributions on ǫ(I1, I2) that are close to Gaussian—very different from a distribution taking only

two values. The independence of the messages would seem to impose certain restrictions on the distribution of this variable,

but the precise nature of these restrictions remains elusive.

Another intriguing area of inquiry relates to hypercontractivity. As discussed in Sec. III-D, the wringing dependence can be

upper bounded by a quantity related to hypercontractivity. However, this upper bound did not actually help in the converse

proof. A lower bound on wringing dependence could help establish that the regularity conditions of Corollary 8 are satisfied,

as one must show that the information capacity region does not grow too much by allowing a small wringing dependence

between the channel inputs. It is unclear whether there is some alternative method of wringing that uses hypercontractivity

more directly. Another question along these lines is whether there is any connection between the technique used here and that

of [25], which proves second-order converses for a variety of problems via reverse hypercontractivity.

APPENDIX A

PROOF OF PROPOSITION 4

To prove (110), we take δ ∈ [0, 1] to be such that (1+1/δ, 1+δ) ∈ RX;Y , and we will show ∆(X ;Y ) ≤ δ. Let r = 1+1/δ
and s = 1 + δ. It was found in [31] that an equivalent condition for (r, s) ∈ RX;Y is that, for all f : X → R, g : Y → R,

E[f(X)g(Y )] ≤ ‖f(X)‖r′‖g(Y )‖s, (313)

where r′ is the Hölder conjugate of r, defined by 1
r + 1

r′ = 1. In this case, since r = 1 + 1/δ, r′ = 1 + δ. Thus, for all

real-valued functions f and g,

E[f(X)g(Y )] ≤ ‖f(X)‖1+δ‖g(Y )‖1+δ. (314)

Given any A ⊂ X ,B ⊂ Y , let f(x) = 1(x ∈ A) and g(y) = 1(y ∈ B). Thus

PXY (A,B) = E[f(X)g(Y )] (315)

≤ ‖f(X)‖1+δ‖g(Y )‖1+δ (316)

=
(
E
[
f(X)1+δ

]
E
[
g(Y )1+δ

])1/(1+δ)
(317)

= (PX(A)PY (B))1/(1+δ)
. (318)

Therefore, δ satisfies the feasibility condition in (34) with QX = PX , QY = PY , so ∆(X ;Y ) ≤ δ.

It follows from the data processing inequality for wringing dependence that ∆(Xn;Y n) is non-decreasing in n. We now

prove the limiting behavior in (111). Due to the tensorization property of hypercontractivity (cf. [30]), RXn;Y n = RX;Y , and
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so ∆hyp(X
n;Y n) = ∆hyp(X ;Y ). From the upper bound we have already proved, ∆(Xn;Y n) ≤ ∆hyp(X ;Y ) for any n. Now

it is enough to show

lim
n→∞

∆(Xn;Y n) ≥ ∆hyp(X ;Y ). (319)

To prove this lower bound, suppose first that X ,Y are finite sets; we will later relax this assumption. We will need some

results from the method of types. In particular, let Pn(X ) be the set of n-length types on alphabet X ; that is, distributions

P ∈ P(X ) where P (x) is a multiple of 1/n for each x ∈ X . For a sequence xn, let Pxn ∈ Pn(X ) be its type:

Pxn(x) =
|{t : xt = x}|

n
. (320)

Fix a finite alphabet U , and a conditional distribution PU|XY . Let PUXY = PXY PU|XY . For each integer n, let P
(n)
UXY be

the element of Pn(U ×X ×Y) closest in total variational distance to PUXY . Note that dTV (P
(n)
UXY , PUXY ) → 0 as n → ∞.

Define the type class

T (X) = {xn : Pxn = P
(n)
X }; (321)

T (U), T (XY ), etc. are defined similarly. Given a sequence un ∈ T (U), define the conditional type class

T (X |un) = {xn : Punxn = P
(n)
UX}; (322)

again T (Y |un), T (XY |un) are defined similarly. A basic result from the method of types (see e.g. [40, Chap. 11]) is that

1

(n+ 1)|X |·|U| exp{nH(X |U)} ≤ |T (X |un)| ≤ exp{nH(X |U)} (323)

where the conditional entropy is with respect to P
(n)
UXY . Moreover, for any xn ∈ T (X |un),

PXn(xn) = exp{−n(H(X) +D(P
(n)
X ‖PX)}. (324)

Similar facts hold for T (Y |un), T (XY |un). We may now lower bound ∆(Xn;Y n) by restricting A and B to the sets T (X |un)
and T (Y |un) respectively, for some un ∈ T (U). Thus

∆(Xn;Y n) ≥ inf
QXn ,QY n

max
un∈T (U)

logQXn(T (X |un))QY n(T (Y |un))

logPXnY n(T (X |un), T (Y |un))
− 1. (325)

In this expression, QXn is only evaluated on sequences xn ∈ T (X). Moreover, the objective function is symmetric among the

sequences xn in this type class. Similar facts hold for QY n . Thus, by the convexity of the expression in (325) in (QXn , QY n),
the optimal choices of QXn and QY n are uniform over T (X) and T (Y ) respectively. Thus, for any un ∈ T (U),

QXn(T (X |un)) =
|T (X |un)|
|T (X)| ≤ (n+ 1)|X | exp{−nI(U ;X)}. (326)

Similarly

QY n(T (Y |un)) ≤ (n+ 1)|Y| exp{−nI(U ;Y )}. (327)

We may also write

PXnY n(T (X |un), T (Y |un)) ≥ PXnY n(T (XY |un)) (328)

= |T (XY |un)| exp{−n(H(XY ) +D(P
(n)
XY ‖PXY )} (329)

≥ 1

(n+ 1)|X |·|Y|·|U| exp{−n(I(U ;XY ) +D(P
(n)
XY ‖PXY ))}. (330)

Thus

∆(Xn;Y n) ≥ −n(I(U ;X) + I(U ;Y )) + (|X | + |Y|) log(n+ 1)

−n(I(U ;XY ) +D(P
(n)
XY ‖PXY ))− (|X | · |Y| · |U|) log(n+ 1)

− 1 (331)

By the continuity of Kullback-Leibler divergence for finite alphabets, D(P
(n)
XY ‖PXY ) → 0 as n → ∞. Thus, if we take a limit

as n → ∞, we find

lim
n→∞

∆(Xn;Y n) ≥ sup
U

I(U ;X) + I(U ;Y )

I(U ;XY )
− 1 (332)

where we have taken a supremum over all finite alphabets U and all conditional distributions PU|XY , and now the mutual

informations are with respect to PUXY .

We now show that the RHS of (332) is lower bounded by ∆hyp(X ;Y ). As shown in [32], for any r ≥ s ≥ 1, (r, s) ∈ RX;Y

if and only if

s ≥ sup
U

rI(U ;Y )

rI(U ;XY )− (r − 1)I(U ;X)
(333)
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where the supremum is over variables U with finite alphabets. (In fact, an alphabet of size 2 is enough.) Consider any

δ < ∆hyp(X ;Y ). By the definition of ∆hyp in (109), it must be that (1+1/δ, 1+δ) /∈ RX;Y . By the equivalent characterization

of RX;Y in (333), this implies there exists a variable U such that

1 + δ <
(1 + 1

δ )I(U ;Y )

(1 + 1
δ )I(U ;XY )− 1

δ I(U ;X)
. (334)

Rearranging gives

δ <
I(U ;Y ) + I(U ;X)

I(U ;XY )
− 1. (335)

As this holds for any δ < ∆hyp(X ;Y ), the RHS of (332) is indeed lower bounded by ∆hyp(X ;Y ).
While the above argument only applies for finite alphabets, for infinite alphabets we may apply a quantization argument as

follows. Let [X ], [Y ] be finite quantizations of X,Y . We write [X ]n = ([X1], . . . , [Xn]) where each [Xt] is the quantization of

Xt using the same quantization. By the data processing inequality and the fact that we have already proved the lower bound

in (319) for finite alphabets,

lim
n→∞

∆(Xn;Y n) ≥ lim
n→∞

∆([X ]n; [Y ]n) ≥ ∆hyp([X ]; [Y ]). (336)

We may take a supremum on the RHS over all finite quantizations, so it is enough to show that this supremum equals

∆hyp(X ;Y ). Some equivalent forms for ∆hyp are as follows:

∆hyp(X ;Y ) = inf{δ ≥ 0 : E[f(X)g(Y )] ≤ ‖f(X)‖1+δ‖g(Y )‖1+δ for all f, g} (337)

= sup{δ ≥ 0 : E[f(X)g(Y )] > ‖f(X)‖1+δ‖g(Y )‖1+δ for some f, g}. (338)

Recalling the definition of a simple function as one that takes on only finitely many values, we may write

sup
finite quantizations [X],[Y ]

∆hyp([X ]; [Y ]) = sup{δ ≥ 0 : E[f(X)g(Y )] > ‖f(X)‖1+δ‖g(Y )‖1+δ for some simple f, g}. (339)

By the usual definition of the Lebesgue integral, if there exist functions f, g such that E[f(X)g(Y )] > ‖f(X)‖1+δ‖g(Y )‖1+δ,

then there also exist simple functions satisfying the same inequality. This proves that the quantity in (339) equals ∆hyp(X ;Y ).

APPENDIX B

PROOF OF LEMMA 5

Assume ∆(X ;Y ) ≤ δ. One way to express the maximal correlation is

ρm(X ;Y ) = sup
f,g:

E[f(X)]=E[g(Y )]=0,
Var(f(X))=Var(g(Y ))=1

E[f(X)g(Y )]. (340)

Take any f, g such that f(X), g(Y ) have zero mean and unit variance. We wish to show that E[f(X)g(Y )] ≤ O(δ log δ−1).
We may define X ′ = f(X) and Y ′ = g(Y ). By the fact that ∆ satisfies the data processing inequality, ∆(X ′;Y ′) ≤ δ. To

simplify notation, we drop the primes, and assume that X and Y are themselves real-valued random variables with zero mean

and unit variance. Now it is enough to show that E[XY ] ≤ O(δ log δ−1).
We upper bound E[XY ] by breaking into pieces as follows:

E[XY ] = E[XY 1(X > 0, Y > 0)]+E[XY 1(X > 0, Y < 0)]+E[XY 1(X < 0, Y > 0)]+E[XY 1(X < 0, Y < 0)]. (341)

We will proceed to show that

|E[XY 1(X > 0, Y > 0)]− E[X1(X > 0)]E[Y 1(Y > 0)]| ≤ O(δ log δ−1). (342)

This is enough to prove the lemma, since each term in (341) can be bounded using (342) by swapping X with −X and/or Y
with −Y . The primary tool we use to prove (342) is the consequence of ∆(X ;Y ) ≤ δ in (43), which upper bounds a joint

probability over PXY in terms of the marginal probabilities raised to the power 1/(1 + δ). To apply this fact to bound the

expectation requires writing the expectation in terms of probabilities, which can be done as follows:

E[XY 1(X > 0, Y > 0)] =

∫ ∞

0

dx

∫ ∞

0

dyP(X > x, Y > y). (343)

We may now apply (43) to the probability P(X > x, Y > y) to derive the upper bound

E[XY 1(X > 0, Y > 0)] ≤ (1 + 2δ)

∫ ∞

0

P(X > x)1/(1+δ)dx

∫ ∞

0

P(Y > y)1/(1+δ)dy. (344)
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We may now bound one of the integrals in (344) by writing
∫ ∞

0

P(X > x)1/(1+δ)dx− E[X1(X > 0)] =

∫ ∞

0

[
P(X > x)1/(1+δ) − P(X > x)

]
dx (345)

≤
∫ ∞

0

[
P(X > x)1/(1+δ) − 1

1 + δ
P(X > x)

]
dx (346)

≤
∫ 1

0

δ

1 + δ
dx +

∫ ∞

1

[(
1

x2

)1/(1+δ)

− 1

(1 + δ)x2

]
dx (347)

=
4δ

1− δ2
(348)

= O(δ) (349)

where (347) holds because the function p 7→ p1/(1+δ) − p
1+δ is an increasing function for any δ with a maximum value of

δ
1+δ , and since P(X > x) ≤ 1/x2 from the assumption that E[X2] = 1 and Chebyshev’s inequality. Since the same argument

holds for the integral over y in (344), we have

E[XY 1(X > 0, Y > 0)] ≤ (1 + 2δ) (E[X1(X > 0)] +O(δ)) (E[Y 1(Y > 0)] +O(δ)) (350)

≤ E[X1(X > 0)]E[Y 1(Y > 0)] +O(δ) (351)

where we have used the fact that

E[X1(X > 0)] ≤
√
E[X21(X > 0)] ≤

√
E[X2] ≤ 1 (352)

and the same holds for Y .

We now lower bound E[XY 1(X > 0, Y > 0)]. Again using the integral expansion in (343), we may do so by lower

bounding P(X > x, Y > y). It will be convenient to define the function

kδ(p) =

{
(1 + 2δ)p1/(1+δ) − p, p ≤ 1

2δ, p > 1
. (353)

For p ≥ 0, kδ(p) is non-decreasing, concave, and 0 ≤ kδ(p) ≤ 2δ. For any x ≥ 0, y ≥ 0,

P(X > x, Y > y) = P(X > x) − P(X > x, Y ≤ y) (354)

≥ P(X > x) − (1 + 2δ) [P(X > x)P(Y ≤ y)]
1/(1+δ)

(355)

= P(X > x)P(Y > y) + P(X > x)P(Y ≤ y)− (1 + 2δ) [P(X > x)P(Y ≤ y)]
1/(1+δ)

(356)

= P(X > x)P(Y > y)− kδ(P(X > x, Y ≤ y)) (357)

≥ P(X > x)P(Y > y)− kδ(P(X > x)) (358)

where in (355) we have again applied (43), in (357) we have used the definition of kδ , and in (358) we have used the fact

that kδ is non-decreasing. We may now bound

E[X1(X > 0)]E[Y 1(Y > 0)]− E[XY 1(X > 0, Y > 0)] (359)

=

∫ ∞

0

dx

∫ ∞

0

dy [P(X > x)P(Y > y)− P(X > x, Y > y)] (360)

≤
∫ ∞

0

dx

∫ ∞

0

dymin{P(X > x)P(Y > y), kδ(P(X > x)), kδ(P(Y > y)) (361)

where (361) holds by three upper bounds on P(X > x)P(Y > y) − P(X > x, Y > y): the fact that P(X > x, Y > y) ≥ 0,

the bound in (358), and the bound in (358) with X and Y swapped. To further upper bound (361), we separate the integral

over x and y into three regions: when x, y ≥ δ−1/2, we upper bound the integrand by P(X > x)P(Y > y); when y ≤ x and

y ≤ δ−1/2, we upper bound the integrand by kδ(P(X > x)); when x ≤ y and x ≤ δ−1/2, we upper bound the integrand by

kδ(P(Y > y)). Thus (361) is at most

∫ ∞

δ−1/2

P(X > x)dx

∫ ∞

δ−1/2

P(Y > y)dy +

∫ ∞

0

dx

∫ min{x,δ−1/2}

0

dykδ(P(X > x))

+

∫ ∞

0

dy

∫ min{y,δ−1/2}

0

dxkδ(P(Y > y)). (362)
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We now bound each term in (362) in turn. In the first term in (362), Chebyshev’s inequality gives
∫ ∞

δ−1/2

P(X > x)dx ≤
∫ ∞

δ−1/2

1

x2
dx =

√
δ. (363)

The same calculation holds for Y , so the first term in (362) is at most δ. The second term in (362) may be bounded by
∫ ∞

0

min{x, δ−1/2}kδ(P(X > x))dx (364)

=

∫ δ−1/2

0

x kδ(P(X > x))dx + δ−1/2

∫ ∞

δ−1/2

kδ(P(X > x))dx (365)

≤ 1

2δ

∫ δ−1/2

0

2δx kδ(P(X > x))dx + δ−1/2

∫ ∞

δ−1/2

kδ(1/x
2)dx (366)

≤ 1

2δ
kδ

(∫ δ−1/2

0

2δxP(X > x)

)
+ δ−1/2

(
(1 + 2δ)(1 + δ)

1− δ
δ

1−δ
2(1+δ) − δ1/2

)
(367)

≤ 1

2δ
kδ(δ) +

(1 + 2δ)(1 + δ)

1− δ
δ−δ/(1+δ) − 1 (368)

=
1

2

(
(1 + 2δ)δ−δ/(1+δ) − 1

)
+

(1 + 2δ)(1 + δ)

1− δ
δ−δ/(1+δ) − 1 (369)

= O(−δ log δ) (370)

where (366) holds by Chebyshev’s inequality and the fact that kδ is increasing; (367) holds since kδ is concave and
∫ δ−1/2

0
2δx =

1; (368) holds since ∫ δ−1/2

0

2xP(X > x) ≤
∫ ∞

0

2xP(X > x) = E[X2] = 1 (371)

and (370) holds since δ−δ/(1+δ) = 1 − δ log δ + O(δ2 log2 δ). The third term in (362) may be bounded by an identical

calculation. This completes the proof of (342), which therefore proves the lemma.

APPENDIX C

PROOF OF LEMMA 11

Given that ∆(X ;Y ) ≤ δ,

dTV (PXY , PXPY ) =
∑

x,y

|PXY (x, y)− PX(x)PY (y)|+ (372)

=
∑

x

∑

y:PXY (x,y)>PX(x)PY (y)

(PXY (x, y)− PX(x)PY (y)) (373)

≤
∑

x

2δ (374)

= 2δ|X | (375)

where in (374) we have applied (44) from Thm. 2 with the particularizations A = {x} and B = {y : PXY (x, y) >
PX(x)PY (y)}. Applying the same argument swapping X and Y gives

dTV (PXY , PXPY ) ≤ 2δmin{|X |, |Y|}. (376)

Since Z is the output of the channel with X,Y as the inputs, while Z̃ is the output of the channel with X̃, Ỹ as the inputs,

this also means that dTV (PXY Z , PX̃Ỹ Z̃) ≤ 2δmin{|X |, |Y|}.

We may relate the conditional entropies as follows:

H(Z|X,Y ) =
∑

x,y

PXY (x, y)H(Z|X = x, Y = y) (377)

≥
∑

x,y

PX(x)PY (y)H(Z|X = x, Y = y)−
∑

x,y

|PXY (x, y)− PX(x)PY (y)|+H(Z|X = x, Y = y) (378)

≥ H(Z̃|X̃, Ỹ )− 2δmin{|X |, |Y|} log |Z|. (379)

To complete the proof of the lemma, we must bound H(Z), H(Z|X), and H(Z|Y ). The main difficulty is that the entropy

is not Lipschitz continuous, so the fact that the total variational distance is O(δ) does not immediately imply that the entropies



33

differ by O(δ). We circumvent this problem using the stronger consequence of ∆(X ;Y ) ≤ δ in (43) from Thm. 2. We first

bound H(Z). Let z ∈ Z be such that PZ̃(z) ≥ 1/4. Then by the total variational bound,

PZ(z) ≥ PZ̃(z)− 2δmin{|X |, |Y|} ≥ e−2 (380)

where the second inequality holds for sufficiently small δ, and since e−2 < 1/4. Consider the function f(p) = −p log p. Since

f ′(p) = − log p− 1, if p ≥ e−2 then

|f ′(p)| ≤ 1. (381)

Since we have established that PZ(z), PZ̃(z) ≥ e−2, and |PZ(z)− PZ̃(z)| ≤ 2δmin{|X |, |Y|}, we have

− PZ(z) logPZ(z) ≤ −PZ̃(z) logPZ̃(z) + 2min{|X |, |Y|}δ. (382)

Note there are at most 4 values of z where PZ̃(z) ≥ 1/4, so
∑

z:PZ̃(z)≥1/4

[−PZ(z) logPZ(z) + PZ(z) logPZ̃(z)] ≤ 8min{|X |, |Y|}δ. (383)

Now suppose z ∈ Z is such that PZ̃(z) < 1/4. Let rz =
∑

x,y W (z|x, y). Assume without loss of generality that all letters

in Z are reachable (i.e. W (z|x, y) > 0 for some x, y). Thus rz ≥ Wmin. We may now bound

PZ(z) =
∑

x,y

PXY (x, y)W (z|x, y) (384)

≤
∑

x,y

(1 + 2δ)(PX(x)PY (y))
1/(1+δ)W (z|x, y) (385)

= (1 + 2δ)rz
∑

x,y

W (z|x, y)
rz

(PX(x)PY (y))
1/(1+δ) (386)

≤ (1 + 2δ)rz

(
∑

x,y

W (z|x, y)
rz

PX(x)PY (y)

)1/(1+δ)

(387)

= (1 + 2δ)r−δ/(1+δ)
z PZ̃(z)

1/(1+δ) (388)

≤ (1 + 2δ)W
−δ/(1+δ)
min PZ̃(z)

1/(1+δ) (389)

≤ (1 + 2δ)(1− δ logWmin +O(δ2))PZ̃ (z)
1/(1+δ) (390)

where (385) follows from (43), and (387) holds by the definition of rz and by the concavity of the function p1/(1+δ). By the

assumption that PZ̃(z) < 1/4, for sufficiently small δ, (390) is less than e−1. Thus, we are in the increasing regime of the

function −p log p. In particular

−PZ(z) logPZ(z) ≤ −
[
(1 + 2δ)(1− δ logWmin +O(δ2))PZ̃(z)

1/(1+δ)
]

· log
[
(1 + 2δ)(1− δ logWmin +O(δ2))PZ̃(z)

1/(1+δ)
]

(391)

≤ −1 + 2δ

1 + δ
(1 − δ logWmin +O(δ2))PZ̃(z)

1/(1+δ) logPZ̃(z) (392)

where in (392) we have simply dropped terms greater than 1 inside the log. Here we need a technical result. For any p ∈ [0, 1],
let gp(δ) = −p1/(1+δ) log p. We claim that for all δ ≥ 0,

gp(δ) ≤ −p log p+ 4e−2δ. (393)

Since gp(0) = −p log p, it is enough to show that g′p(δ) ≤ 4e−2 for all δ. The first and second derivatives of gp are

g′p(δ) =
p1/(1+δ) log2 p

(1 + δ)2
, (394)

g′′p (δ) = p1/(1+δ) log2 p

( −2

(1 + δ)3
− log p

(1 + δ)4

)
. (395)

Note that g′′p (δ) ≤ 0 iff

− 2(1 + δ)− log p ≤ 0. (396)

That is, g′p(δ) is maximized at δ = − log p
2 − 1. Thus

g′p(δ) ≤
p

2
− log p log2 p
(

− log p
2

)2 = 4p
2

− log p = 4 exp

{
log p

2

− log p

}
= 4e−2. (397)
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This proves the claim in (393). Applying this result to (392) gives

−PZ(z) logPZ(z) ≤
1 + 2δ

1 + δ
(1− δ logWmin +O(δ2))

[
−PZ̃(z) logPZ̃(z) + 4e−2δ

]
(398)

≤ −PZ̃(z) logPZ̃(z) +
[
(1− logWmin)e

−1 + 4e−2
]
δ +O(δ2) (399)

where in (399) we have used the fact that −p log p ≤ e−1. Therefore

H(Z)−H(Z̃) ≤ 8min{|X |, |Y|}δ +
∑

z:PZ̃(z)<1/4

([
(1− logWmin)e

−1 + 4e−2
]
δ +O(δ2)

)
(400)

≤
[
8min{|X |, |Y|} + |Z|

(
(1 − logWmin)e

−1 + 4e−2
)]

δ +O(δ2) (401)

Combining (401) with the bound on conditional entropy in (379) proves (206).

To prove the bound on I(X ;Z|Y ) in (207), we need to bound H(Z|Y ), or equivalently H(Y, Z), since H(Y ) = H(Ỹ ). We

may almost the same argument as above, but with the joint distribution PY Z in place of PZ . In particular, if PỸ Z̃(y, z) ≥ 1/4,

then

− PY Z(y, z) logPY Z(y, z) ≤ −PỸ Z̃(y, z) logPỸ Z̃(y, z) + 2min{|X |, |Y|}δ. (402)

To deal with PỸ Z̃(y, z) < 1/4, let rz|y =
∑

x W (z|x, y). If rz|y = 0, then PY Z(y, z) = PỸ Z̃(y, z) = 0, so this letter pair can

be discarded. Otherwise, rz|y ≥ Wmin, so

PY Z(y, z) =
∑

x

PXY (x, y)W (z|x, y) (403)

≤
∑

x

(1 + 2δ)(PX(x)PY (y))
1/(1+δ)W (z|x, y) (404)

≤ (1 + 2δ)r
−δ/(1+δ)
z|y PỸ Z̃(y, z)

1/(1+δ) (405)

≤ (1 + 2δ)W
−δ/(1+δ)
min PỸ Z̃(y, z)

1/(1+δ). (406)

The remainder of the proof is essentially identical, and so we find

H(Z|Y ) ≤ H(Z̃|Ỹ ) +
[
8min{|X |, |Y|} + |Y| · |Z|

(
(1− logWmin)e

−1 + 4e−2
)]

δ +O(δ2). (407)

Combining with the bound on the entropy conditioned on X,Y in (379) proves (207). The bound on I(Y ;Z|X) in (208) is

proved by the same argument.

APPENDIX D

PROOF OF PROP. 12

If δ ≥ 1−log2(1+2−α)
1+log2(1+2−α) , then we may simply ignore the constraint on the wringing dependence, so

C1,α(δ) ≤ max
PXY

γ̄ [αH(X + Y ) + (1− α)H(X |Y )] = γ̄
[
log(1 + 2−α) + α log 2

]
. (408)

Now consider δ <
1−log2(1+2−α)
1+log2(1+2−α) . We define for convenience rz = P(X + Y = z) for z = 0, 1, 2. Note that

αH(X + Y ) + (1− α)H(X |Y ) ≤ αH(X + Y ) + (1− α)H(X ⊕ Y ) = αH(r0, r1, r2) + (1− α)Hb(r0 + r2) (409)

where ⊕ is modulo 2 addition, and we have used the fact that X ⊕ Y = 0 iff X + Y ∈ {0, 2}. Since ∆(X ;Y ) ≤ δ, using the

properties of the wringing dependence in Thm. 2, there exist QX , QY ∈ P({0, 1}) such that

r0 = PXY (0, 0) ≤ (QX(0)QY (0))
1/(1+δ). (410)

Similarly r2 ≤ (QX(1)QY (1))
1/(1+δ). Thus

√
r0 +

√
r2 ≤ (QX(0)QY (0))

1/(2(1+δ)) + (QX(1)QY (1))
1/(2(1+δ)) (411)

≤ 21−1/(1+δ) (412)

where (412) holds because (pq)ρ is concave in (p, q) for 0 ≤ ρ ≤ 1, and so the quantity in (411) is maximized with

QX(0) = QY (0) = 1/2. We may rewrite the constraint in (412) as

4r0r2 ≤ (21−1/(1+δ) − r0 − r2)
2. (413)

Thus

αH(r0, r1, r2) + (1 − α)Hb(r0 + r2) (414)
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≤ max
r0,r2∈[0,1]:
r0+r2≤1,

4r0r2≤(21−1/(1+δ)−r0−r2)
2

[
− (1− r0 − r2) log(1− r0 − r2) + α(−r0 log r0 − r2 log r2)− (1− α)(r0 + r2) log(r0 + r2)

]

(415)

≤ min
λ≥0

max
r0,r2∈[0,1]:
r0+r2≤1

[
− (1 − r0 − r2) log(1− r0 − r2) + α(−r0 log r0 − r2 log r2)− (1− α)(r0 + r2) log(r0 + r2)

+ λ((21−1/(1+δ) − r0 − r2)
2 − 4r0r2)

]
. (416)

Let f(r0, r2;λ) be the function in (416). We claim that for any λ ≤ α, f(r0, r2;λ) is concave in (r0, r2). The Hessian with

respect to (r0, r2) is given by

∇2f(r0, r2;λ) =

[
− r0+r2(1−r0−r2)α

r0(1−r0−r2)(r0+r2)
+ λ − 1−(1−r0−r2)α

(1−r0−r2)(r0+r2)
− λ

− 1−(1−r0−r2)α
(1−r0−r2)(r0+r2)

− λ − r2+r0(1−r0−r2)α
r2(1−r0−r2)(r0+r2)

+ λ

]
. (417)

We need to show that ∇2f(r0, r2;λ) is negative semi-definite; this requires that the upper left element is non-positive, and the

determinant is non-negative. The upper left element is given by

− r0 + r2(1 − r0 − r2)α

r0(1 − r0 − r2)(r0 + r2)
+ λ ≤ − 1

(1− r0 − r2)(r0 + r2)
+ λ (418)

≤ −4 + λ (419)

≤ −3 (420)

where (418) holds because α ≥ 0, (419) holds because x(1 − x) ≤ 1/4, and (420) holds by the assumption that λ ≤ α ≤ 1.

The determinant of the Hessian is given by

|∇2f(r0, r2;λ)| =
(r0 + r2)α− (4r0r2 + (1 − r0 − r2)(r0 − r2)

2α)λ

r0r2(1 − r0 − r2)(r0 + r2)
(421)

≥ α
[
r0 + r2 − 4r0r2 − (1− r0 − r2)(r0 − r2)

2α
]

r0r2(1− r0 − r2)(r0 + r2)
(422)

≥ α
[
r0 + r2 − 4r0r2 − (1− r0 − r2)(r0 − r2)

2
]

r0r2(1 − r0 − r2)(r0 + r2)
(423)

=
α [1− r0(1 − r0)− r2(1− r2)− 2r0r2]

r0r2(1− r0 − r2)
(424)

≥ 0 (425)

where (422) holds by the assumption that λ ≤ α, (423) holds since α ≤ 1, and (425) holds again since x(1 − x) ≤ 1/4 and

since r0 + r2 ≤ 1. We may upper bound (416) by choosing any λ ≥ 0. With some hindsight, we choose

λ = 2−2+1/(1+δ)
[
log
(
2−1+2/(1+δ) − 1

)
+ α log 2

]
. (426)

Note that λ ≥ 0 if

1 ≤ 2α
(
2−1+2/(1+δ) − 1

)
. (427)

This indeed holds by the assumption that δ < 1−log2(1+2−α)
1+log2(1+2−α) . In addition, noting that λ is decreasing in δ,

λ ≤ 2−1
[
log(21 − 1) + α log 2

]
=

α log 2

2
< α. (428)

Thus, by the above claim, for this value of λ, f(r0, r2;λ) is concave. Since the function is also symmetric between r0 and

r2, it is maximized at r0 = r2 = r. Differentiating this function, the maximizing value of r is found at

0 =
d

dr
f(r, r;λ) = 2 log(1− 2r)− 2 log r − (1− α)2 log 2− 4 · 21−1/(1+δ)λ (429)

This is solved at r = 2−2/(1+δ). At this value, the constraint in (413) holds with equality. Thus the upper bound from (416)

becomes

αH(r0, r1, r2) + (1− α)Hb(r0 + r2) ≤ Hb(2
1−2/(1+δ)) + α21−2/(1+δ) log 2. (430)

This gives an upper bound on C1,α(δ) that exactly matches the lower bound in (301).
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APPENDIX E

PROOF OF THM. 13

A. Bounding C′
α1,α2

(0)

Let (α1, α2) = (1, α) for α ∈ [0, 1]. Recall that

C1,α(δ) = sup
X,Y,U :∆(X;Y |U=u)≤δ ∀u,

E[X2]≤S1,

E[Y 2]≤S2

[
αI(X,Y ;Z|U) + (1− α)I(X ;Z|Y, U)

]
. (431)

Note that

C1,α(0) = α
1

2
log(1 + S1 + S2) + (1 − α)

1

2
log(1 + S1). (432)

Since C1,α(δ) is convex in α,

C1,α(δ) ≤ αC1,1(δ) + (1− α)C1,0(δ). (433)

We may easily bound the second term:

C1,0(δ) = sup
X,Y,U :∆(X;Y |U=u)≤δ ∀u,

E[X2]≤S1,

E[Y 2]≤S2

I(X ;Z|Y, U) (434)

≤ sup
X,Y :E[X2]≤S1,E[Y 2]≤S2

h(X +N)− h(N) (435)

≤ 1

2
log(1 + S1) (436)

= C1,0(0) (437)

where h(·) denotes the differential entropy. This implies that C′
1,0(0) = 0. Thus, to uniformly bound C′

1,α(δ) for all α, it is

enough to prove that C′
1,1(0) < ∞. Let X,Y, U be any set variables satisfying the constraints in the infimum in (431). Note

that

I(X,Y ;Z|U) ≤ h(Z|U)− h(N) (438)

= h(Z|U)− 1

2
log 2πe. (439)

Now it is enough to show h(Z|U) ≤ 1
2 log 2πe(1+S1+S2)+O(δ). For each u, let S1u = E[X2|U = u], S2u = E[Y 2|U = u].

Thus
∑

u PU (u)S1u ≤ S1,
∑

u PU (u)S2u ≤ S2. Our goal is to show that, for each u

h(Z|U = u) ≤ 1

2
log 2πe(1 + S1u + S2u) +O(δ) (440)

which implies

h(Z|U) =
∑

u

PU (u)h(Z|U = u) ≤ 1

2
log 2πe(1 + S1 + S2) +O(δ) (441)

where we have used the concavity of the log. For convenience, for the remainder of the proof we drop the conditioning on u.

Throughout this proof, we are careful to use O(·) notation only when the implied constant is universal, and in particular does

not depend on S1, S2.

We may assume without loss of generality that X and Y have zero mean, since if they do not, shifting their means to zero

does not change h(Z), and only reduces E[X2],E[Y 2]. For convenience define S = 1+S1+S2. Since our goal to is to prove

(440), we may assume

h(Z) ≥ 1

2
log(2πeS) (442)

because otherwise we have nothing to prove. Let σ2
Z = E[Z2]. Since ∆(X ;Y ) ≤ δ, from Lemma 5, ρm(X ;Y ) ≤ O(δ log δ−1).

This implies that E[XY ] ≤ √
S1S2 O(δ log δ−1). Thus,

σ2
Z = E[(X + Y +N)2] (443)

= S + 2E[XY ] (444)

≤ S + 2
√
S1S2 O(δ log δ−1) (445)

≤ S + S O(δ log δ−1) (446)
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where in (444) we have used the fact that N is independent from (X,Y ), and (446) follows because 2
√
S1S2 ≤ S1+S2 ≤ S.

Let Z̃ ∼ N (0, S), so

h(Z) =
1

2
log 2πS +

σ2
Z

2S
−D(PZ‖PZ̃) (447)

≤ 1

2
log 2πS +

1

2
+O(δ log δ−1)− 2dTV (PZ‖PZ̃)

2 (448)

=
1

2
log 2πeS +O(δ log δ−1)− 2dTV (PZ‖PZ̃)

2 (449)

where the (448) follows from the bound on σ2
Z in (446) and from Pinsker’s inequality. Applying the lower bound on h(Z)

from (442) gives

dTV (PZ‖PZ̃) ≤ O(
√

δ log δ−1). (450)

For any function f : R → [0, fmax],

∣∣∣E[f(Z)]− E[f(Z̃)]
∣∣∣ =

∣∣∣∣∣

∫ fmax

0

[P(f(Z) > a)− P(f(Z̃) > a)]da

∣∣∣∣∣ (451)

≤
∫ fmax

0

∣∣∣P(f(Z) > a)− P(f(Z̃) > a)
∣∣∣ da (452)

≤ fmaxdTV (PZ‖PZ̃) (453)

≤ fmaxO(
√

δ log δ−1). (454)

where (453) follows from the fact that for any A ⊂ R, |PZ(A) − PZ̃(A)| ≤ dTV (PZ , PZ̃).
The following definitions will be key to the remainder of the proof:

τX =
S1√
S

−
√
S

8
log δ, (455)

τY =
S2√
S

−
√
S

8
log δ, (456)

τN =
1√
S
, (457)

τZ = τX + τY + τN =
√
S

(
1− 1

4
log δ

)
, (458)

mX = E

[
eX/

√
S1(X < τX)

]
, (459)

mY = E

[
eY/

√
S1(Y < τY )

]
. (460)

Similarly to the proof of Lemma 5, the core of the proof involves upper and lower bounding

E[XY 1(X > 0, Y > 0)]− E[X1(X > 0)]E[Y 1(Y > 0)]. (461)

Since ∆(X ;Y ) ≤ δ, the same argument as in (343)–(351) shows that the quantity (461) is upper bounded by
√
S1S2 O(δ) ≤ S O(δ). (462)

To lower bound (461), we cannot use precisely the same argument as in Lemma 5, since we need a bound that eliminates the

log δ−1 term. We first divide (461) into four terms:

E[XY 1(X > 0, Y > 0)]− E[X1(X > 0)]E[Y 1(Y > 0)]

=
(
E[XY 1(0 < X < τX , 0 < Y < τY )]− E[X1(0 < X < τX)]E[Y 1(0 < Y < τY )]

)

+
(
E[XY 1(X ≥ τX , 0 < Y < τY )]− E[X1(X ≥ τX)]E[Y 1(0 < Y < τY )]

)

+
(
E[XY 1(0 < X < τX , Y ≥ τY )]− E[X1(0 < X < τX)]E[Y 1(Y ≥ τY )]

)

+
(
E[XY 1(X ≥ τX , Y ≥ τY )]− E[X1(X ≥ τX)]E[Y 1(Y ≥ τY )]

)
. (463)

In order to bound the first term in the RHS of (463), we tighten the proof technique of Lemma 5 by bounding mX ,mY .

Since mX ,mY are essentially values of the moment generating functions for X and Y , bounding mX ,mY allows us to

apply Chernoff bounds to probabilities involving X and Y . We exploit the fact that Chernoff bounds are stronger than the

Chebyshev’s bounds used in the proof of Lemma 5 to prove a tighter bound in this context. We first relate mX ,mY to a

moment generating function for Z , by writing

E

[
eZ/

√
S1(Z < τZ)

]
(464)



38

= E

[
e(X+Y+N)/

√
S1(X + Y +N < τX + τY + τN )

]
(465)

≥ E

[
e(X+Y+N)/

√
S1(X < τX , Y < τY , N < τN )

]
(466)

= E

[
e(X+Y )/

√
S1(X < τX , Y < τY )

] 1
2
e1/(2S) (467)

≥ 1

2

(
E

[
eX/

√
S1(X < τX)

]
E

[
eY/

√
S1(Y < τY )

]

−O(δ log δ−1)

√
Var

(
eX/

√
S1(X < τX)

)
Var

(
eY/

√
S1(Y < τY )

))
(468)

≥ 1

2

(
E

[
eX/

√
S1(X < τX)

]
E

[
eY/

√
S1(Y < τY )

]

−O(δ log δ−1)

√
E

[
e2X/

√
S1(X < τX)

]
E

[
e2Y/

√
S1(Y < τY )

])
(469)

≥ 1

2

[
mXmY −O(δ log δ−1) exp

{
τX + τY√

S

}]
(470)

=
1

2

[
mXmY −O(δ log δ−1) exp

{
S1 + S2

S
− 1

4
log δ

}]
(471)

≥ 1

2

[
mXmY −O(δ3/4 log δ−1)

]
(472)

where (466) holds because the random quantity in (465) is non-negative and since X < τX , Y < τY , N < τN implies Z < τZ ,

(467) holds since N is a standard Gaussian independent of (X,Y ), (468) holds by the bound on ρm(X ;Y ) from Lemma 5,

(470) holds from the simple upper bound on E

[
e2X/

√
S1(X < τX)

]
found by plugging in X = τX , and (472) holds since

S1 + S2 ≤ S. We now apply the total variational bound in (454) to upper bound the quantity in (464). Specifically, since

ez/
√
S1(z < τZ) ≤ eτZ/

√
S ,

E

[
eZ/

√
S1(Z < τZ)

]
≤ E

[
eZ̃/

√
S1(Z < τZ)

]
+ eτZ/

√
SO(

√
δ log δ−1) (473)

≤ e1/2 + e δ−1/4O(
√

δ log δ−1) (474)

= e1/2 +O(δ1/4
√
log δ−1) (475)

where in (474) we have used the fact that Z̃ ∼ N (0, S). Combining the bounds in (472) and (475) yields

mXmY ≤ 2e1/2 +O(δ1/4
√
log δ−1). (476)

Since 2e1/2 < 4, and recalling that the implied constant in the O(·) term in (476) is universal, we may assume that δ is

sufficiently small that mXmY ≤ 4.

We now lower bound the first term in (463), or equivalently upper bound the negative of this term. As in the proof of

Lemma 5, we will use the function kδ , defined in (353). By an identical argument as in (354)–(358),

P(x < X < τX)P(y < Y < τY )− P(x < X < τX , y < Y < τY ) ≤ kδ (min{P(x < X < τX), P(y < Y < τY )}) . (477)

Thus

E[X1(0 < X < τX)]E[Y 1(0 < Y < τY )]− E[XY 1(0 < X < τX , 0 < Y < τY )] (478)

=

∫ τX

0

dx

∫ τY

0

dy [P(x < X < τX)P(y < Y < τY )− P(x < X < τX , y < Y < τY )] (479)

≤
∫ τX

0

dx

∫ τY

0

dy kδ (min{P(x < X < τX), P(y < Y < τY )}) . (480)

For any x ≤ τX , a Chernoff-type bound gives

P(x < X < τX) ≤ e−x/
√
S
E

[
eX/

√
S1(X < τX)

]
= e−x/

√
SmX (481)

and similarly P(y < Y < τX) ≤ e−y/
√
SmY , so the difference in (478) is at most

∫ τX

0

dx

∫ τY

0

dy kδ

(
min{e−x/

√
SmX , e−y/

√
SmY }

)
(482)

≤
∫ ∞

0

dx

∫ ∞

0

dy kδ

(
e−(x+y)/(2

√
S)√mXmY

)
(483)
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≤
∫ ∞

0

dx

∫ ∞

0

dy kδ

(
2e−(x+y)/(2

√
S)
)

(484)

= 4S

∫ ∞

0

z kδ
(
2e−z

)
dz (485)

= 4S

[∫ log 2

0

2δzdz +

∫ ∞

log 2

z
(
(1 + 2δ)(2e−z)1/(1+δ) − 2e−z

)
dz

]
(486)

= 4S
[
(log2 2)δ + (1 + 2δ)(1 + δ)(1 + δ + log 2)− (1 + log 2)

]
(487)

= S O(δ) (488)

where (483) follows since the integrand is non-negative, so the upper limits of the integral may be extended to ∞, as well as

because min{a, b} ≤
√
ab and kδ is non-decreasing; (484) holds by the above conclusion that mXmY ≤ 4; (485) holds by

the change of variables z = x+y

2
√
S

; and (486) follows from the definition of kδ. This proves that the first term in (463) is lower

bounded by −S O(δ).
We now consider the second term in (463). Applying again the bound on ρm(X ;Y ) from Lemma 5 gives

E[XY 1(X ≥ τX , 0 < Y < τX)]− E[X1(X ≥ τX)]E[Y 1(0 < Y < τY )] (489)

≥ −O(δ log δ−1)
√

E[X21(X ≥ τX)]E[Y 21(0 < Y < τX)] (490)

≥ −O(δ log δ−1)
√

E[X21(X ≥ τX)]S (491)

where the second inequality holds since E[Y 21(0 < Y < τX)] ≤ E[Y 2] ≤ S2 ≤ S. We now need to upper bound E[X21(X ≥
τX)]. Define

pX = P(X ≥ τX), (492)

aX = E[X21(X ≥ τX)]. (493)

Intuitively, if X ≥ τX , then we expect Z also to be large, and so we expect pX to be small. This intuition can be formalized

by writing

P(Z ≥ τX − 2
√
S2) = P(X + Y +N ≥ τX − 2

√
S2) (494)

≥ P(X ≥ τX , Y ≥ −2
√
S2, N ≥ 0) (495)

=
1

2
P(X ≥ τX , Y ≥ −2

√
S2) (496)

≥ 1

2
P(X ≥ τX)P(Y ≥ −2

√
S2)− δ (497)

≥ 3

8
pX − δ (498)

where (496) holds because N is Gaussian and independent of X,Y , (497) holds by the consequence of ∆(X ;Y ) ≤ δ in (44),

and (498) holds by Chebyshev’s inequality on Y . Thus

pX ≤ 8

3
P(Z ≥ τX − 2

√
S2) +O(δ) (499)

≤ 8

3
P(Z̃ ≥ τX − 2

√
S2) +O(

√
δ log δ−1) (500)

=
8

3
P

(
Z̃ ≥ S1√

S
−

√
S

8
log δ − 2

√
S2

)
+O(

√
δ log δ−1) (501)

≤ 8

3
P

(
Z̃ ≥

√
S

(
−1

8
log δ − 2

))
+O(

√
δ log δ−1) (502)

≤ 8

3
exp

{
−1

2

(
−1

8
log δ − 2

)2
}

+O(
√

δ log δ−1) (503)

= O(
√

δ log δ−1) (504)

where (500) holds by the bound on total variational distance in (450), (502) holds since S2 ≤ S, (503) holds since Z̃ ∼ N (0, S)
and by the Chernoff bound on the Gaussian CDF, and (504) holds since exp{−O(log2 δ)} vanishes faster than O(

√
δ log δ−1).

In order to bound aX , we bound the mean-squared of Z conditioned on either X < τX or X ≥ τX . In particular,

E[Z21(X < τX)] = E[(X + Y +N)21(X < τX)] (505)

= 1 + E[X21(X < τX)] + E[Y 21(X < τX)] + 2E[XY 1(X < τX)] (506)
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≤ 1 + S1 − aX + S2 +O(δ log δ−1)
√
E[X21(X < τX)]E[Y 2] (507)

≤ S − aX + S O(δ log δ−1) (508)

where (507) again uses the maximal correlation bound from Lemma 5, and (508) follows from the mean squared bounds on

X and Y . Thus

E[Z2|X < τX ] ≤ S − aX + S O(δ log δ−1)

1− pX
. (509)

Moreover

E[Z2|X ≥ τX ] ≤ σ2
Z

pX
≤ S + S O(δ log δ−1)

pX
. (510)

We now apply these two bounds to upper bound the differential entropy of Z . In particular, if we let F = 1(X ≥ τX), then

h(Z) ≤ H(F ) + h(Z|F ) (511)

= Hb(pX) + (1− pX)h(Z|X < τX) + pXh(Z|X ≥ τX) (512)

≤ Hb(pX) + (1− pX)
1

2
log 2πe

S − aX + S O(δ log δ−1)

1− pX
+ pX

1

2
log 2πe

S + S O(δ log δ−1)

pX
(513)

=
3

2
Hb(pX) + (1− pX)

1

2
log 2πe(S − aX + S O(δ log δ−1)) + pX

1

2
log 2πe(S + S O(δ log δ−1)) (514)

where (513) follows from the fact that differential entropy is upper bounded by that of a Gaussian with the same variance and

the bounds in (509)–(510). Recalling the assumption that h(Z) ≥ 1
2 log 2πeS, we have

0 ≤ 3

2
Hb(pX) + (1− pX)

1

2
log

(
1 +

−aX + S O(δ log δ−1)

S

)
+ pX

1

2
log
(
1 +O(δ log δ−1)

)
(515)

≤ 3

2
Hb(pX) + (1− pX)

−aX + S O(δ log δ−1)

2S
+ pXO(δ log δ−1) (516)

=
3

2
Hb(pX)− (1− pX)aX

2S
+O(δ log δ−1). (517)

Rearranging gives

aX ≤ S

1− pX

[
3Hb(pX) +O(δ log δ−1)

]
(518)

≤ S(1 +O(
√

δ log δ−1))
[
O(δ1/2(log δ−1)3/2) +O(δ log δ−1)

]
(519)

= S O(δ1/2(log δ−1)3/2) (520)

where in (519) we have applied the bound on pX from (504), as well as the fact that for small p, Hb(p) = O(p log p−1).
Plugging this bound back into (491), we find

E[XY 1(X ≥ τX , 0 < Y < τX)]− E[X1(X ≥ τX)]E[Y 1(0 < Y < τY )] ≥ −S O(δ5/4(log δ−1)7/4). (521)

By the same argument as the above bound on aX , we may similarly find

E[Y 21(Y ≥ τY )] ≤ S O(δ1/2(log δ−1)3/2). (522)

This implies that the third term in (463) is lower bounded by

E[XY 1(X < τX , Y ≥ τY )]− E[X1(X < τX)]E[Y 1(Y ≥ τY )] ≥ −S O(δ5/4(log δ−1)7/4) (523)

and the fourth term in (463) is lower bounded by

E[XY 1(X ≥ τX , Y ≥ τY )]− E[X1(X ≥ τX)]E[Y 1(Y < τY )] ≥ −S O(δ3/2(log δ−1)5/2). (524)

Note that for each of the bounds in (521), (523), and (524), the function of δ grows smaller than O(δ). Putting everything

together, we now have

|E[XY 1(X > 0, Y > 0)]− E[X1(X > 0)]E[Y 1(Y > 0)]| ≤ S O(δ). (525)

Applying this bound by swapping X with −X and/or Y with −Y gives

E[XY ] ≤ S O(δ). (526)

Therefore

h(Z) ≤ 1

2
log 2πeS(1 +O(δ)) =

1

2
log 2πeS +O(δ). (527)

This proves (440).
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B. Bounding Vmax

Recall that

Vmax = sup
PUXY :E[X2]≤S1,E[Y 2]≤S2

max{V (W‖PZ|U |PUXY ), V (W‖PZ|Y U |PUXY ), V (W‖PZ|XU |PUXY )}. (528)

Each of the terms in the maximum can be shown to be finite by showing that the equivalent point-to-point quantity is finite:

sup
PUX :E[X2]≤S

V (W ′‖PZ|U |PUX) (529)

where W ′ ∈ P(R → R) is the point-to-point channel where Z = X+N , N ∼ N (0, 1). Consider any PUX where E[X2] ≤ S.

Fix u, and let Su = E[X2|U = u]. To simplify notation, we again drop the conditioning on U = u. Define the information

density

ı(x; z) = log
dW ′

x

dPZ
(z). (530)

Note that

V (W ′‖PZ |PX) = E [Var(ı(X ;Z)|X)] (531)

≤ E[ı(X ;Z)2] (532)

= E[ı(X ;Z)21(ı(X ;Z) ≤ 0)] + E[ı(X ;Z)21(ı(X ;Z) ≥ 0)] (533)

where (X,Z) are distributed according to PXW ′. To lower bound the information density, we may upper bound the Radon-

Nikodym derivative

dPZ

dW ′
x

(z) =

∫
dPX(x′)

dW ′
x′

dW ′
x

(z) (534)

=

∫
dPX(x′) exp

{
− (z − x′)2

2
+

(z − x)2

2

}
(535)

≤ exp

{
(z − x)2

2

}
. (536)

Thus

ı(x; z) ≥ − (z − x)2

2
. (537)

Thus the first term in (533) may now be upper bounded by

E[ı(X ;Z)21(ı(X ;Z) ≤ 0)] ≤ E

[(
(Z −X)2

2

)2

1(ı(X ;Z) ≤ 0)

]
(538)

≤ E

[
(Z −X)4

4

]
(539)

=
3

4
(540)

where we have used the fact that Z −X = N is a standard Gaussian.

We now upper bound the second term in (533). For any integer k, let Ak = [k, k + 1). Let pk = P(X ∈ Ak). Also let

µk = E[X |X ∈ Ak] and σ2
k = Var(X |X ∈ Ak). Since Ak is an interval of length 1, σ2

k ≤ 1/4. Then for any integer k, the

PDF of PZ is lower bounded by

fZ(z) =

∫
dPX(x)

1√
2π

exp

{
− (z − x)2

2

}
(541)

≥
∫

x∈Ak

dPX(x)
1√
2π

exp

{
− (z − x)2

2

}
(542)

≥ pk
1√
2π

exp

{
E

[
− (z −X)2

2

∣∣∣∣X ∈ Ak

]}
(543)

= pk
1√
2π

exp

{
− (z − µk)

2

2
− σ2

k

2

}
(544)

≥ pk
1√
2π

exp

{
− (z − µk)

2

2
− 1

8

}
(545)
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where (543) holds by the convexity of the exponential, (544) holds by the definitions of µk and σk, and (545) holds since

σ2
k ≤ 1/4. Thus, for any k the information density can be upper bounded by

ı(x; z) ≤ −(z − x)2 + (z − µk)
2

2
+

1

8
− log pk (546)

Applying this bound to the second term in (533) gives

E[ı(X ;Z)21(ı(X ;Z) ≥ 0)] (547)

≤
∞∑

k=−∞

∫

x∈Ak

dPX(x)E

[(−(Z − x)2 + (Z − µk)
2

2
+

1

8
− log pk

)2 ∣∣∣∣X = x

]
(548)

=
∑

k

∫

x∈Ak

dPX(x)

[
(x− µk)

2 +

(
(x− µk)

2

2
+

1

8
− log pk

)2
]

(549)

≤
∑

k

pk

[
1 +

(
5

8
− log pk

)2
]

(550)

≤ 2 +
∑

k

[
−2pk log pk + pk log

2 pk
]

(551)

where (550) holds since |x−µk| ≤ 1 for x ∈ Ak, because µk ∈ Ak and Ak has length 1, and in (551) we have upper bounded

5/8 by 1 to simplify the expression. By Chebyshev’s inequality, for k > 0

pk = P(X ∈ Ak) ≤ P(X ≥ k) ≤ Su

k2
. (552)

Note that for p ∈ [0, 1], −p log p ≤ 1/e, and this function is increasing for p ≤ 1/e. Thus, if we consider the sum of −pk log pk
for k ≥ 0, we have

∞∑

k=0

−pk log pk ≤
⌈
√
eSu⌉∑

k=0

1

e
+

∞∑

k=⌈
√
eSu⌉+1

−Su

k2
log

Su

k2
(553)

≤ 1

e
(
√
eSu + 2) +

∫ ∞

√
eSu

−Su

r2
log

Su

r2
dr (554)

=

√
Su√
e

+
2

e
+

3
√
Su√
e

(555)

=
4
√
Su√
e

+
2

e
. (556)

By an identical calculation,
∑−1

k=−∞ −pk log pk ≤ 4
√
Su√
e

+ 2
e . Similarly, note that p log2 p ≤ 4/e2, and this function is increasing

for p ≤ 1/e2. Thus

∞∑

k=0

pk log
2 pk ≤

⌈e
√
Su⌉∑

k=0

4

e2
+

∞∑

⌈e
√
Su⌉+1

Su

k2
log2

Su

k2
(557)

≤ 4

e2
(e
√
Su + 2) +

∫ ∞

e
√
Su

Su

r2
log2

Su

r2
dr (558)

=
4

e2
(e
√
Su + 2) +

20
√
Su

e
(559)

=
24

√
Su

e
+

2

e2
. (560)

Again the same holds for the summation over k < 0. Applying the bounds in (556) and (560) to (551) gives

E[ı(X ;Z)21(ı(X ;Z) ≤ 0)] ≤ 2 +
8
√
Su√
e

+
4

e
+

48
√
Su

e
+

4

e2
. (561)

Now combining the bounds on each of the terms in (533) gives

V (W ′‖PZ|U |PUX) ≤
∑

u

PU (u)

[
11

4
+

4

e
+

4

e2
+

(
8√
e
+

48

e

)√
Su

]
(562)

≤ 11

4
+

4

e
+

4

e2
+

(
8√
e
+

48

e

)√
S. (563)
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