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Second-Order Asymptotically Optimal Outlier
Hypothesis Testing

Lin Zhou, Yun Wei and Alfred Hero

Abstract

We revisit the outlier hypothesis testing framework of Li et al. (TIT 2014) and derive fundamental limits for the optimal test
under the generalized Neyman-Pearson criterion. In outlier hypothesis testing, one is given multiple observed sequences, where
most sequences are generated i.i.d. from a nominal distribution. The task is to discern the set of outlying sequences that are
generated from anomalous distributions. The nominal and anomalous distributions are unknown. We study the tradeoff among the
probabilities of misclassification error, false alarm and false reject for tests that satisfy weak conditions on the rate of decrease of
these error probabilities as a function of sequence length. Specifically, we propose a threshold-based test that ensures exponential
decay of misclassification error and false alarm probabilities. We study two constraints on the false reject probability, with one
constraint being that it is a non-vanishing constant and the other being that it has an exponential decay rate. For both cases,
we characterize bounds on the false reject probability, as a function of the threshold, for each pair of nominal and anomalous
distributions and demonstrate the optimality of our test under the generalized Neyman-Pearson criterion. We first consider the case
of at most one outlying sequence and then generalize our results to the case of multiple outlying sequences where the number of
outlying sequences is unknown and each outlying sequence can follow a different anomalous distribution.

Index Terms

Finite blocklength analysis, Error exponent, Misclassification, False alarm, False reject

I. INTRODUCTION

In the outlier hypothesis testing (OHT) problem, one observes a number M of sequences. The majority of the M sequences
are i.i.d. samples from a nominal distribution and the rest of the sequences are i.i.d. samples from anomalous distributions
different from the nominal distribution. The task in the OHT problem is to design a test to discern the set of outlying sequences
with high probability when both nominal and anomalous distributions are unknown. Motivated by practical applications in
anomaly detection [1], we revisit the OHT problem studied in [2] when the outlying sequence might not be present and derive
the performance tradeoff among the probabilities of misclassification error, false alarm and false reject for threshold-based tests.
Furthermore, we show that such tests are optimal under the generalized Neyman-Pearson criterion for both a second-order
asymptotic regime and a large deviations regime. Our second-order asymptotic result provides an approximation to the finite
sample performance of the tests. Throughout the paper, we consider the case where the sequences have a finite alphabet.

We first consider the case when there is at most one outlying sequence. Under this setting, the null hypothesis is that there is
no outlying sequence while a non-null hypothesis specifies the index of the outlying sequence. Li et al. [2, Theorem 5] showed
that the error probability under each non-null hypothesis decays exponentially fast and that the error probability under the null
hypothesis vanishes as the length of observed sequenced tends to infinity for the threshold based generalized likelihood ratio
test [2, Eq. (25)]. Furthermore, the authors of [2] showed the optimality of their test when the number of observed sequences
M tends to infinity. A natural question arises: whether or not it is possible to claim optimality for a test when the number of
observed sequences M is finite and when the length of the observed sequences is non-asymptotic. Our first contribution sheds
lights on the positive answer for this question. To do so, we decompose the error probability under the non-null hypothesis into
the misclassification error probability and the false reject probability, where the false reject event corresponds to falsely claiming
that no outlying sequence exists and the misclassification error event corresponds to falsely claiming that a nominal sequence is
an outlier. The error probability under the null hypothesis is denoted the probability of false alarm, which is the probability of
falsely claiming that an observed sequence is an outlying sequence when no outlying sequence is present. We show that a test,
inspired by sequence classification with empirical statistics [3], [4], is optimal under the generalized Neyman-Pearson criterion,
from a second-order or a first-order asymptotic perspective.

We then generalize our results to the case where the number of outlying sequences is unknown and each outlying sequence
can be generated from a potentially different anomalous distribution. When the number of outlying sequences is known, Li et
al. [2, Theorem 10] derived an achievability decay rate of the error probabilities under each hypothesis and showed asymptotic
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optimality of their result when the number of the sequences M tends to infinity, when the lengths of sequences n tend to
infinity and when all the outlying sequences are generated from the same anomalous distribution. Furthermore, when the number
of outlying sequences is unknown and when each outlying sequence is generated from the same anomalous distribution, Li
et al. [2, Theorem 10] showed that when the null hypothesis is not taken into account, a generalized likelihood ratio test is
exponentially consistent. However, the authors of [2] did not provide explicit equations of the exponent. One might wonder
whether it is possible to characterize the performance of a test when the number of outlying sequences is unknown and when
each outlying sequence can be generated from a different anomalous distribution. Our second contribution provides a positive
answer to this question and also demonstrates the optimality of the test under the generalized Neyman-Pearson criterion.

A. Main Contributions

Our main contribution is an analysis of the tradeoff among probabilities of misclassification error, false reject and false alarm
for threshold-based tests that are optimal under the generalized Neyman-Pearson criterion [3]. For the case where there exists at
most one outlying sequence, our results complement [2, Theorem 5], extending their results to a new threshold-based test and
providing a second-order asymptotic approximation to the performance of the test with finite length sequences. We also relax the
conditions for optimality of the test using a weaker condition inspired by statistical classification [3]. Furthermore, asymptotically,
our results in Theorem 3 complement [2, Proposition 4] by identifying a sufficient condition on the pair of nominal and
anomalous distributions under which the test ensures exponential decay of all three kinds of error probabilities. Finally, for
the second-order asymptotic results in Theorem 1, the information theoretical quantity that characterizes the performance
tradeoff is shown to be a generalized Jensen-Shannon divergence, which is significantly different from the constrained sum of
KL divergences in [2, Eq. (26)] or the Bhattacharyya distance in [2, Corollary 6]. For the case admitting multiple outlying
sequences, we analyze the performance of a threshold-based test ignorant of the number of outlying sequences, where each
outlying sequence can be drawn from a different distribution. Our results close a gap in the theory developed in [2, Section IV],
providing explicit equations for the asymptotic performance of the outlier test.

For the case where there exists at most one outlying sequence, we propose a threshold-based test that ensures exponential
decay of both misclassification error and false alarm probabilities, called the homogeneous error exponent, which simultaneously
upper bounds the false reject probabilities as a function of the threshold for any pair of nominal and anomalous distributions.
We first derive a second-order asymptotic result that provides an approximation to the performance of the test when the length
n of each observed sequence is finite. In particular, under any pair of nominal and anomalous distributions (PN, PA), we show
that if the threshold of the test is upper bounded by a certain function of n, the false reject probability is essentially upper
bounded by a constant ε ∈ (0, 1). Our proposed test is optimal under the generalized Neyman-Pearson criterion: among all
tests that can ensure exponential decay of misclassification error and false alarm probabilities at a given rate for all pairs of
nominal and anomalous distributions, our test has the smallest non-vanishing false reject probability under any pair of nominal
and anomalous distributions. This way, optimality is ensured for any finite number of observed sequences M (see [4] for a
similar result in the context of statistical classification).

In anomaly detection, it may be necessary to maintain a vanishingly small false reject probability when the length of each
observed sequence becomes unbounded. To resolve this problem, asymptotically when the lengths of the observed sequences
tend to infinity, we derive the exponential decay rate of the false reject probability as a function of the threshold in the test. We
show, in particular, that the homogeneous error exponent is the threshold of the test for any pair of nominal and anomalous
distributions. This way, we establish that, as long as the nominal and anomalous distribution is separated in a certain distance
measure, the test is exponentially consistent, i.e., all three kinds of error probabilities decay exponentially fast with respect
to the sequence length n. Conversely, we show that among all tests that can enure the same speed of exponential decay of
misclassification error and false alarm probabilities for all pairs of nominal and anomalous distributions, our proposed test
guarantees the largest exponential decay rate for the false reject probability regardless of the pair of nominal and anomalous
distributions.

B. Related Works

The most closely related work to ours is that of [2], where the authors formulated the outlier hypothesis testing problem,
and derived optimal results under constraints on the number of observed sequences, the length of observed sequences and the
number of anomalous distributions. Other related work on outlier hypothesis testing is worth mentioning. A low complexity test
for outlier hypothesis testing was proposed and analyzed in [5]. A distribution free test based on maximum mean discrepancy
was proposed in [6] and shown to be exponentially consistent when the number of outlying sequences is known, as long as a
certain condition holds on the number of observed sequences and the length of each sequence. Readers may also refer to [7]
for a comprehensive survey of the commonly made assumptions on distributions, definitions of outliers, types of tests and
applications. Furthermore, the results of [2] were generalized to a sequential setting in [8] where each sequence is observed
symbol by symbol until the test is confident enough to make a decision. In [9], the authors studied the quickest outlier detection
problem where outlying sequences follow an anomalous distribution after a certain unknown change time and tests were
proposed to identify the outliers. Finally, in [10] for the problem of detecting an outlier from M sequence streams, the authors
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studied a special case of the sequential outlier detection problem where at each time only a subset of all sequence symbols are
observed.

Since our proof technique is inspired by asymptotic statistical classification theory, we also mention a few works in this
domain. In [3], Gutman studied a binary sequence classification problem and showed that a certain test using empirical
distributions is asymptotically optimal with exponentially decreasing misclassification error probabilities. The result in [3] was
generalized to classification of multiple sequences in [11] and to distributed detection in [12]. Finally, a finite sample analysis
for the setting of [3] was provided in [4].

C. Organization for the Rest of the Paper

The rest of the paper is organized as follows. In Section II, we set up the notation, formulate the outlier hypothesis testing
problem with at most one outlying sequence, propose fundamental limits and present our main results. In Section III, we
generalize our results to the case of multiple outlying sequences where the number of outlying sequences is unknown and each
outlying sequence is generated from a potentially different anomalous distribution. Finally, we conclude the paper and discuss
future research directions in Section IV. The proofs of all theorems are deferred to appendices.

II. CASE OF AT MOST ONE OUTLYING SEQUENCE

Notation

Random variables and their realizations are in upper (e.g., X) and lower case (e.g., x) respectively. All sets are denoted in
calligraphic font (e.g., X ). We use superscripts to denote the vectors, like Xn := (X1, . . . , Xn). All logarithms are base e. The set
of all probability distributions on a finite set X is denoted as P(X ). Notation concerning the method of types follows [13]. Given
a vector xn = (x1, x2, . . . , xn) ∈ Xn, the type or empirical distribution is denoted as T̂xn(a) = 1

n

∑n
i=1 1{xi = a}, a ∈ X .

The set of types formed from length-n sequences with alphabet X is denoted as Pn(X ). Given P ∈ Pn(X ), the set of all
sequences of length n with type P , the type class, is denoted as T nP . We use R, R+, and N to denote the set of real numbers,
non-negative real numbers, and natural numbers respectively. Given any number a ∈ N, we use [a] to denote the collection of
natural numbers between 1 and a.

A. Problem Formulation

We start by assuming that there is at most one outlying sequence. Consider a set of M observed sequences Xn :=
{Xn

1 , . . . , X
n
M} and a pair of nominal distribution PN and anomalous distribution PA defined on the finite alphabet X . All

sequences, with at most one exception, are generated i.i.d. from PN. The goal of outlier hypothesis testing is to discern the
outlying sequence that is generated i.i.d. from the anomalous distribution PA ∈ P(X ) if an outlying sequence is present.
Throughout this paper, we assume that both the nominal distribution PN and the anomalous distribution PA are unknown.
Furthermore, to avoid degenerate cases, similarly to [2], we consider only distributions (PN, PA) with identical supports.

Under this setting, the objective of detecting a potential outlying sequence is equivalent to making a correct decision in the
(M + 1)-ary hypothesis testing problem with the following hypotheses:
• Hi, i ∈ [M ]: the i-th sequence Xn

i is the outlying sequence, i.e., Xn
i ∼ PA and Xn

j ∼ PN for all j ∈Mi;
• Hr: there is no outlying sequence, i.e., Xn

j ∼ PN for all j ∈ [M ],
where Mi is defined the as the set of integers in [M ] excluding i and Hr denotes the null hypothesis.

The main task in the above OHT problem is to design a decision rule (test) φn : XMn → {H1, . . . ,HM ,Hr} having
good performance in a sense specified below. Any test φn partitions the sample space XMn into M + 1 disjoint regions:
{Ai(φn)}i∈[M ] where XMn ∈ Ai(φn) favors the non-null hypothesis Hi and a reject region Ar(φn) = (∪i∈[M ]Ai(φn))c

where XMn ∈ Ai(φn) favors the null hypothesis Hr.
Given any test φn and any pair of nominal and anomalous distributions (PN, PA) ∈ P(X )2, the performance of the test φn

is evaluated by the following misclassification error, false reject and false alarm probabilities:

βi(φn|PN, PA) := Pi{φn(Xn) /∈ {Hi,Hr}}, i ∈ [M ], (1)
ζi(φn|PN, PA) := Pi{φn(Xn) = Hr}, i ∈ [M ], (2)

Pfa(φn|PN, PA) := Pr{φn(Xn) 6= Hr}, (3)

where for each i ∈ [M ], we define Pi{·} := Pr{·|Hi} where Xn
i is distributed i.i.d. according to PA and for Xn

j is distributed
according to PN for each j ∈Mi and we define Pr{·} := Pr{·|Hr} where all sequences are generated i.i.d. from PN for all
i ∈ [M ]. Consistent with the literature on hypothesis testing (e.g., [14]), we define βi(φn|PN, PA) and ζi(φn|PN, PA) as type-i
misclassification error and false reject probabilities, respectively, and we define Pfa(φn|PN, PA) as the false alarm probability.
Our main results characterize the tradeoff among the probabilities of misclassification error in (1), false rejection in (2) and
false alarm in (3) for different settings.
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B. A Threshold-Based Test

To present our test, we need the following definition. Given a sequence of distributions Q = (Q1, . . . , QM ) ∈ P(X )M , for
each i ∈ [M ], define the following linear combination of KL divergence terms between a single distribution and a mixture
distribution

Gi(Q) :=
∑
j∈Mi

D

(
Qj

∥∥∥∥
∑
l∈Mi

Ql

M − 1

)
, (4)

whereMi was defined the as the set of integers in [M ] excluding i. We remark that Gi(Q) can be understood as a homogeneity
measure that checks the similarity of distributions Q except Qi. The measure Gi(Q) = 0 if and only if Qj = Q for all j ∈Mi

where Q ∈ P(X ) is arbitrary. This measure will be used to construct our optimal test.
Throughout the section, we use a threshold-based test that takes the observed sequences as inputs and it outputs a decision

among the (M + 1) hypotheses. Given M observed sequences xn = (xn1 , . . . , x
n
M ) and any positive real number λ ∈ R+, the

test operates as follows:

ψn(xn) :=

{
Hi if Si(x

n) < minj∈Mi Sj(x
n) and minj∈Mi Sj(x

n) > λ
Hr otherwise,

(5)

where Si(x
n) is the scoring function

Si(x
n) := Gi(T̂xn

1
, . . . , T̂xn

M
), (6)

and Gi(·) is the function defined in (4) that measures the sum of the KL divergence between the empirical distribution of each
sequence xnj with j ∈Mi relative to the average of the empirical distributions of all sequences xnj where j ∈Mi. Note that
the threshold λ may be a function of sequence length n, denoted λn discussed below.

We first informally explain the test in (6) from an asymptotic point of view. Intuitively, if xni is the anomalous sequence that
is generated from the unknown distribution PA, then as the length of each observed sequence n increases, using the weak law
of large numbers, we know that the empirical distribution T̂xn

i
tends to PA and the empirical distribution T̂xn

j
for each j ∈Mi

tends to the unknown nominal distribution PN. Thus, the scoring function Si(x
n) tends to zero and the scoring function of

Sj(x
n) for each j ∈Mi tends to GDM (PN, PA) (cf. (10)), which is strictly positive if PN 6= PA. Therefore, for any threshold

λ that is positive but less than GDM (PN, PA), with high probability, it is possible to identify the outlying sequence if it exists.
On the other hand, if there is no outlier, then with the same logic, for each i ∈ [M ], the scoring function Si(x

n) tends to zero
and naturally the null hypothesis is decided for any positive threshold λ. Therefore, the test in (5) is consistent asymptotically
for any PN 6= PA such that the threshold λ < GDM (PN, PA).

We remark that the scoring function Si(x
n) was also used in [2, Eq. (25)] to construct a test for the same problem. At

first glance, the threshold-based test in [2, Eq. (25)] relies on the pairwise difference of log likelihoods of the joint empirical
distributions under different hypotheses. However, a closer investigation reveals that the test in [2, Eq. (25)] is equivalent to the
following test

ψLi
n (xn) :=

{
Hi if Si(x

n) < minj∈Mi Sj(x
n) and maxj 6=k(Sj(x

n)− Sk(xn)) > αn,
Hr otherwise,

(7)

where αn = Θ( logn
n ) is a length-n dependent threshold. In [2, Theorem 5], Li et. al showed that their test ψLi

n ensures that the
sum of false reject and misclassification error probabilities decay exponentially fast and that the false alarm probability vanishes
as n→∞. Note that our test in (5) differs from the test [2, Eq. (25)] only in that we have a different condition to decide the
null hypothesis. However, this subtle difference enables us to trade off the false reject probability and the homogeneous decay
rate of the misclassification error and false alarm probabilities in Theorems 1 to 3. It should be noted that, while the test ψLi

n is
universal over (PN, PA), this was only achievable since the false alarm probability was not controlled in [2]. The false alarm
control in our proposed test will necessarily depend on the knowledge of PN, through the threshold λ, and therefore our test in
(5) is not universal.

C. Preliminaries

To present our results that characterize the tradeoff among the probabilities of misclassification error, false alarm and false
reject, several definitions are needed. Given any pair of distributions (PN, PA), for any x ∈ X , define two information densities
(log likelihood ratios):

ı1(x|PN, PA) := log
(M − 1)PA(x)

(M − 2)PN(x) + PA(x)
, (8)

ı2(x|PN, PA) := log
(M − 1)PN(x)

(M − 2)PN(x) + PA(x)
. (9)
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The following linear combinations of the expectations and variances of these two information densities are critical in presenting
our main results:

GDM (PN, PA) := EPA
[ı1(X|PN, PA)] + (M − 2)EPN

[ı2(X|PN, PA)], (10)
VM (PN, PA) := VarPA

[ı1(X|PN, PA)] + (M − 2)VarPN
[ı2(X|PN, PA)]. (11)

Furthermore, we need the following covariance function of the information densities

CovM (PN, PA) := −
(
GDM (PN, PA)

)2
+ EPA

[(
ı1(X|PN, PA)

)2]
+ 2(M − 2)EPA

[ı1(X|PN, PA)]EPN
[ı2(X|PN, PA)]

+ (M2 − 5M + 7)
(
EPN

[ı2(X|PN, PA)]
)2

+ (M − 3)EPN

[(
ı2(X|PN, PA)

)2]
. (12)

Then, the covariance matrix VM (PN, PA) = {Vi,j(PN, PA)}(i,j)∈[M−1]2 is defined as

Vi,j(PN, PA) =

{
VM (PN, PA) if i = j
CovM (PN, PA) otherwise.

(13)

For any k ∈ N, Qk(x1, . . . , xk;µ,Σ) is the multivariate generalization of the complementary Gaussian cdf defined as follows:

Qk(x1, . . . , xk;µ,Σ) :=

∫ ∞
x1

. . .

∫ ∞
xk

N (x;µ; Σ)dx, (14)

where N (x;µ; Σ) is the pdf of a k-variate Gaussian with mean µ and covariance matrix Σ [15]. Furthermore, for any k ∈ N,
we use 1k to denote a row vector of length k with all elements being one and we use 0k similarly. The complementary Gaussian
cdf with covariance matrix VM (PN, PA) and the mean value GDM (PN, PA) bounds the probability of false reject.

Finally, given any λ ∈ R+ and any pair of distributions (PN, PA), for each i ∈ [M ], define the following quantity

LDi(λ, PN, PA) := min
(j,k)∈[M ]2:j 6=k

min
Q∈(P(X ))M :

Gj(Q)≤λ, Gk(Q)≤λ

(
D(Qi‖PA) +

∑
l∈Mi

D(Ql‖PN)
)
. (15)

The above quantity is key to characterize the exponential decay rate of the false reject probability.

D. Second-Order Asymptotic Approximation to the Non-Asymptotic Performance

Our first set of results characterize the performance of the test in (5) in terms of probabilities of misclassification error, false
alarm and false reject probabilities in the second-order asymptotic regime. We first demonstrate a non-asymptotic achievability
result and then prove that such a result is optimal up to second-order under the generalized Neyman-Pearson criterion [3], [4].

1) Achievability:

Theorem 1. For every pair of nominal and anomalous distributions (PN, PA) ∈ P(X )2, given any positive real number
λ ∈ R+, the test in (5) satisfies

max
i∈[M ]

βi(ψn|PN, PA) ≤ exp
(
− nλ+ |X | log((M − 1)n+ 1)

)
, (16)

Pfa(ψn|PN, PA) ≤M(M − 1) exp(−nλ+ |X | log((M − 1)n+ 1)), (17)

max
i∈[M ]

ζi(ψn|PN, PA) ≤ 1−QM−1

(√
n
(
λ−GDM (PN, PA) +O

( log n

n

))
× 1M−1; 0M−1; VM (PN, PA)

)
+O

(
1√
n

)
.

(18)

The proof of Theorem 1 is provided in Appendix A. We make several remarks.
For any finite number of observed sequences M , as the length of each observed sequence n increases, both the maximal

classification error (cf. (1)) and the false alarm (cf. (3)) probabilities decay exponentially fast with a speed lower bounded by
the threshold λ in the test in (5), i.e.,

lim inf
n→∞

1

n
min

{
min
i∈[M ]

{− log βi(ψn|PN, PA)},− log Pfa(ψn|PN, PA)

}
≥ λ. (19)

Furthermore, asymptotically, the upper bound on the maximal false reject probability (cf. (2)) converges to limn→∞
(
1 −

QM−1(
√
n(λ − GDM (PN, PA)) × 1M−1; 0M−1; VM (PN, PA))

)
, which is a function of the threshold λ and the pair of

distributions (PN, PA). To better understand the seemingly complicated upper bound on the false reject probability, for any
ε ∈ (0, 1), we define

L∗M (ε|PN, PA) := max
{
L ∈ R : QM−1(L× 1M−1; 0M−1; VM (PN, PA)) ≥ 1− ε

}
, (20)

λ∗(n, ε|PN, PA) := GDM (PN, PA) +
L∗M (ε|PN, PA)√

n
. (21)



6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Illustration of phase transition for our test. Here we consider Bernoulli sources PN = Bern(0.2) and PA = Bern(0.4). We assume that there are
M = 4 observed sequences and one sequence is the outlier. We plot the maximal false reject probability, i.e., maxi∈[n] ζi(ψn|PN, PA).

We then have the following corollary of Theorem 1.

Corollary 1. For any pair of nominal and anomalous distributions (PN, PA), if the threshold λ satisfies λ ≤ λ∗(n, ε|PN, PA)
for all n ∈ N, then for any ε ∈ (0, 1), the maximal false reject probability under (PN, PA) is asymptotically upper bounded
by ε, i.e., lim supn→∞maxi∈[M ] ζi(ψn|PN, PA) ≤ ε. In particular, if the threshold λ further satisfies that λ < GDM (PN, PA)
for all n ∈ N, then the false reject probability vanishes.

The result in Corollary 1 implies a phase transition phenomenon for our test. In particular, if the threshold λ is strictly greater
than GDM (PN , PA), then asymptotically the false reject probabilities tend to one. On the other hand, if λ < GDM (PN , PA),
then asymptotically the false reject probabilities vanish. See Figure 1 for a numerical illustration. As we shall show later (in
Theorem 3), actually, if λ < GDM (PN, PA), the false reject probability converges to zero exponentially fast with a speed lower
bounded by a explicit function of the threshold λ.

Note that λ∗(n, ε|PN, PA) is a critical bound for the threshold in the test, which trades off a lower bound λ on the exponential
decay rates of misclassification error and false alarm probabilities and a non-vanishing upper bound ε ∈ (0, 1) for the maximal
false reject probability. Such a result is known as a second-order asymptotic result since it provides a formula for the second
dominant term L∗M (ε|PN,PA)√

n
beyond the leading constant term GDM (PN, PA) asymptotically as n→∞. Furthermore, as shown

in non-asymptotic analysis for channel coding [16], second-order asymptotic results often provide good approximation to the
performance for finite length n. We provide a numerical example to illustrate the validity of this claim in Section II-D3.

Theorem 1 also captures the influence of the number of sequences M on the performance of the test (5). To study the asymptotic
case of M →∞, we need to make an assumption on the order of M and n. In fact, as long as lim supn→∞

M logn
n → 0, the

asymptotic lower bounds hold. Intuitively, when one has a larger number of sequences, it should be easier to learn the nominal
distribution and thus achieve better performance. This should imply that as M increases, the upper bound λ∗(n, ε|PN, PA)
on the homogeneous error exponent λ in (21) increases as well. To verify this intuition, the second-order result in (21) for
Bernoulli distributions with different values of M is plotted in Figure 2. The influence of M on the performance of the test in
(5) is dominated by GDM (PN, PA). In fact,

∂GDM (PN, PA)

∂M
= D

(
PN

∥∥∥∥ (M − 2)PN + PA

M − 1

)
> 0. (22)

Thus, as the number of sequences M increases, the performance of the test in (5) improves. In the extreme case, as M →∞,
we have

lim
M→∞

GDM (PN, PA) = D(PA‖PN). (23)

This implies that the maximum asymptotic decay rate of the misclassification error and false alarm probabilities of the test
under any pair of nominal and anomalous distributions (PN, PA) in (5) is D(PA‖PN) as the number of sequences M tends to
infinity, assuming that the false reject probability does not tend to one.

Finally, we remark that Theorem 1 is relevant to M -ary hypothesis testing using empirical statistics [3], [4], [11], also
known as M -ary statistical classification. In M -ary statistical classification, one is given M training sequences and one testing
sequence. The task there is to identify the true distribution of the testing sequence among the empirical distributions of the



7

n
100 200 300 400 500 600 700 800 900 1000

λ
∗
(n
,
ε
|P

N
,
P
A
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M = 4
M = 6
M = 8

Fig. 2. Illustration of the effect of the number of sequences M in the performance for outlying sequence detection with reject option. Here we consider
Bernoulli sources PN = Bern(0.2) and PA = Bern(0.4). We assume that there are M observed sequences and that only one sequence is an outlier. We plot
λ∗(n, ε|PN, PA) without the O(logn/n) term.

training sequences. In contrast, in the outlier hypothesis testing problem addressed in Theorem 1, we are given M sequences
and our task is to identify the potential outlying sequence if it exists. Although the two problems are different in formulation,
the proof techniques are similar. In fact, our proof technique for Theorem 1 can be used to strengthen [4, Theorem 4.1] by
removing the condition in [4, Section 4.2] on the uniqueness of the minimizing distribution for the scoring function in [4, Eq.
(4.4)].

2) Converse: With the above achievability result on the performance of the test in (5), it remains to show that the test is in
fact optimal in a certain sense. Since nominal and anomalous distributions are unknown, in order to derive a converse result,
the classical Neyman-Pearson criterion, which requires knowledge of generating distributions, is not applicable. Furthermore, as
proved in [2], for our problem, it is impossible to ensure that all three kinds of error probabilities decay exponentially for
all pairs of nominal and anomalous distributions. As a compromise, we adopt the generalized Neyman-Pearson criterion of
Gutman [3] to derive a lower bound on the false reject probability. The generalized Neyman-Pearson criterion is that both
misclassification error and false alarm probabilities decay exponentially fast with homogeneous speed for all pairs of nominal
and anomalous distributions. We give a lower bound on the false reject probability for any particular pair of distributions
(PN, PA) in the following theorem.

Theorem 2. Given any positive real number λ ∈ R+, let the test φn satisfy

max
{

max
i∈[M ]

βi(φn|P̃N, P̃A), Pfa(φn|P̃N, P̃A)
}
≤ exp(−nλ), ∀ (P̃N, P̃A) ∈ P(X )2. (24)

Then for any pair of nominal and anomalous distributions (PN, PA) ∈ P(X )2, the minimal false reject probability satisfies

min
i∈[M ]

ζi(φn|PN, PA) ≥ 1−QM−1

(√
n
(
λ−GDM (PN, PA) +O

( log n

n

))
× 1M−1; 0M−1; VM (PN, PA)

)
+O

(
1√
n

)
.

(25)

The proof of Theorem 2 is provided in Appendix B.
The result in Theorem 2 holds for any number of observed sequences M and when the length n of each observed sequence

n is such that O( logn
n ) and O( 1√

n
) can be neglected. Furthermore, Theorem 2 implies that the test in (5) is optimal under the

generalized Neyman-Pearson criterion. Specifically, among all tests that ensure exponential decay of the maximal misclassification
error and false alarm probabilities at a speed no less than λ, the test in (5) achieves the minimal false reject probability in a second-
order asymptotic sense such that lim infn→∞QM−1

(√
n(λ−GDM (PN, PA) +O

(
logn
n ))× 1M−1; 0M−1; VM (PN, PA)

)
> 0.

3) A Numerical Example: We present an example to illustrate Theorem 1 and Corollary 1. Consider the binary alphabet
X = {0, 1} and M = 4. Assume that there is exactly one outlying sequence and let Bern(p) denote a Bernoulli distribution
with parameter p ∈ (0, 1). For any (p, q) ∈ (0, 1)2 such that p 6= q, we set the nominal distribution PN as Bern(p) and
the anomalous distribution PA as Bern(q). We make the above nominal and anomalous distribution assumptions in order to
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(a) False alarm probability (b) Misclassification error probability

Fig. 3. Simulated false alarm and misclassification error probabilities for M = 4. The false alarm probability is simulated for PN = Bern(0.25) and the
misclassification error probability is simulated for PN = Bern(0.29) and PA = Bern(0.3). The error bar denotes one standard deviation below and above
the mean value. As observed, both false alarm and misclassification error probabilities are upper bounded by the dominant term exp(−nλ) in Theorem 1.

demonstrate tightness of the inequality (21) in the theorem. For the above example, the information densities (cf. (8) and (9))
satisfy

ı1(x|PN, Px) := 1(x = 0) log
(M − 1)(1− q)

(M − 2)(1− p) + 1− q
+ 1(x = 1) log

(M − 1)q

(M − 2)p+ q
, (26)

ı2(x|PN, Px) := 1(x = 0) log
(M − 1)(1− p)

(M − 2)(1− p) + 1− q
+ 1(x = 1) log

(M − 1)p

(M − 2)p+ q
. (27)

Furthermore,

GDM (PN, PA) = Db

(
q
∥∥∥ (M − 2)p+ q

M − 1

)
+ (M − 2)Db

(
p
∥∥∥ (M − 2)p+ q

M − 1

)
, (28)

where Db(p‖q) = p log p
q + (1− p) log 1−p

1−q is the binary KL divergence function. The variance VM (PN, PA) is given by

VM (PN, PA) = EPA [(ı1(X|PN, Px))2] + (M − 2)EPN [(ı2(X|PN, PA))2]

−
(
Db

(
q
∥∥∥ (M − 2)p+ q

M − 1

))2

− (M − 2)

(
Db

(
p
∥∥∥ (M − 2)p+ q

M − 1

))2

. (29)

Similarly, we can also calculate CovM (PN, PA) (cf. (12)) and thus the covariance matrix VM (PN, PA).
For the case of p = 0.2, q = 0.4 and M = 4, we have

VM (PN, PA) =

 0.1331 0.1106 0.1106
0.1106 0.1331 0.1106
0.1106 0.1106 0.1331

 , (30)

and other cases can be calculated similarly.
Below we simulate the false alarm and misclassification error probabilities of our test in (5) with λ = 0.0021. The false alarm

probability is simulated for PN = Bern(0.25) and the misclassification error probability is simulated for PN = Bern(0.29) and
PA = Bern(0.3). The false alarm probability is determined by the nominal distribution PN. The simulation results are plotted
and compared with the theoretical upper bounds in Figure 3. For each sequence length n, we run the test 106 times and plot
the empirical false reject probability. From Figure 3, we observe that both false alarm and misclassification error probabilities
are upper bounded by exp(−nλ), which is the dominant term in the upper bounds derived in Theorem 1. Thus, the simulation
results in Figure 3 demonstrate that our lower bound on the homogeneous decay rate of misclassification error and false alarm
probabilities is valid for this numerical example.

We next simulate the false reject probability of our test in (5) with λ = 0.05 when the nominal distribution is PN = Bern(0.2)
and the anomalous distribution is PA = Bern(0.4). The simulation results are plotted and compared with the theoretical upper
bound in Figure 4. Specifically, the theoretical result corresponds to the upper bound in (18) where the O( logn

n ) term is chosen

1Such a choice of λ is selected to ensure that exp(−nl) can be numerically approximated without excessive simulation trials.
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Fig. 4. Simulated false reject probability when there is one outlying sequence out of M = 4 sequences. To verify the tightness of our theoretical result, we
need to assume a pair of nominal and anomalous distributions to permit the calculation of the false reject probability. For this purpose, the nominal distribution
is assumed to be PN = Bern(0.2) and the anomalous distribution is assumed to be PA = Bern(0.4). The error bar denotes one standard deviation below
and above the mean value. As observed, the simulated false reject probability approaches the target value ε as the lengths of observed sequences become
moderate. This implies that our theoretical upper bound on the false reject probability in Theorem 1 is tight for this numerical example.
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Fig. 5. Simulated false reject probability when there is one outlying sequence out of M = 4 sequences to illustrate Corollary 1. For this purpose, the nominal
distribution is assumed to be PN = Bern(0.2) and various anomalous distributions are considered. The error bar denotes one standard deviation below and
above the mean value. As observed, the simulated false reject probability approaches the target value ε as the lengths of observed sequences become moderate,
as predicted in Corollary 1.

as logn
n and the additive term O( 1√

n
) is ignored. From Figure 4, we find that our theoretical upper bound on the false reject

probability in Theorem 1 is rather tight for n ≥ 1000 in this numerical example.
Finally, to illustrate Corollary 1, we further simulate the false reject probability of the test in (5) with the following threshold

λn = GDM (PN, PA) +
L∗M (ε|PN, PA)√

n
, (31)

for ε = 0.1 and n ∈ {100, 125, . . . , 200, 300, . . . , 1500}. Corollary 1 claims that the false reject probability of our test in (5) is
upper bound by ε = 0.1 asymptotically. We plot the simulated results versus the theoretical upper bound in Figure 5 for the
nominal distribution PN = Bern(0.2) and different anomalous distributions PA. From Figure 5, we find that for all cases, the
simulated false reject probability approaches ε = 0.1 as n increases. The gap between the simulated result and the theoretical
upper bound results from the uncharacterized third-order term O( logn

n ) in Theorem 1. We remark that the simulated false
reject probability for PA = Bern(0.6) is closer to the target value ε = 0.1 than the other cases because the uncharacterized
third-order term O( logn

n ) has relatively smaller influence for a larger GM (PN, PA).
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E. Asymptotic Decay Rates

For accurate anomaly detection, all error probabilities should be small to ensure that no outlying sequence is missed or
identified incorrectly. Thus, a constant or even vanishing false reject probability might not suffice when the length of the
observed sequence n is unbounded. In the following theorem, we obtain an asymptotic tradeoff between the exponents of false
reject probabilities and the homogeneous error exponent for misclassification error and false alarm probabilities. Recall the
definition of LDi(λ, PN, PA) in (15).

Theorem 3. For every pair of nominal and anomalous distributions (PN, PA), given any positive real number λ ∈ R+, the
test in (5) satisfies:

lim inf
n→∞

1

n
min

{
min
i∈[M ]

{− log βi(ψn|PN, PA)},− log Pfa(ψn|PN, PA)

}
≥ λ, (32)

lim inf
n→∞

− 1

n
log ζi(ψn|PN, PA) ≥ LDi(λ, PN, PA). (33)

Conversely, given any positive real number λ ∈ R+, for any test φn such that for all pairs of nominal distributions (P̃N, P̃A),

lim inf
n→∞

1

n
min

{
min
i∈[M ]

{− log βi(φn|P̃N, P̃A)},− log Pfa(ψn|P̃N, P̃A)

}
≥ λ, (34)

under any pair of nominal and anomalous distributions (PN, PA), the false reject exponent satisfies

lim sup
n→∞

− 1

n
log ζi(φn|PN, PA) ≤ LDi(λ, PN, PA). (35)

The differences between the proof of Theorem 3 and the proofs of Theorems 1, 2 lie in the analysis of the false reject
probability. See Appendix C.

To ensure that all three kinds of error probabilities decay exponentially, we need min{λ,mini∈[M ] LDi(λ, PN, PA)} > 0.
Given any (PN, PA), for each i ∈ [M ], LDi(λ, PN, PA) (cf. (15)) is non-increasing in λ and LDi(λ, PN, PA) = 0 if and only if
λ ≥ GDM (PN , PA) (cf. Appendix H for justification). Therefore, for any pair of nominal and anomalous distributions (PN, PA)
such that GDM (PN, PA) > 0 and λ < GDM (PN, PA), all three kinds of error probabilities decay to zero exponentially fast.
However, in practice, one cannot know either PN or PA. Thus, the above result implies that one can choose a smaller threshold
λ to ensure exponentially consistent performance under a larger set of distributions. When one has some information about the
underling true pair of distributions (PN, PA), one can choose a large enough λ to ensure good homogeneous error exponent
and a positive false reject exponent.

We further discuss the tradeoff between the false reject exponent LDi(λ, PN, PA) and the homogeneous error exponent λ
under each hypothesis. Specifically, one might wonder what value is taken on by the largest false reject exponent given any
positive λ. In Appendix H, we show that

sup
λ∈R+

LDi(λ, PN, PA) < min
Q∈P(X )

(D(Q‖PA) + (M − 1)D(Q‖PN)), (36)

and thus provide an answer to the above question. Note that the right hand side in (36) is positive if PN 6= PA.
The converse part states that the test in (5) is also optimal under the generalized Neyman-Pearson criterion when the false

reject probabilities decay exponentially fast. Specifically, among all tests that ensure exponential decay of misclassification error
and false alarm probabilities for all possible pairs of nominal and anomalous distributions, the test in (5) has the largest false
reject exponent under any pair of nominal and anomalous distributions.

Finally, note that asymptotically the exponents of probabilities of misclassification error and false alarm are equal. This is
an artifact of our test in (5) where only one threshold λ is used. It would be worthwhile to investigate tests that can fully
characterize the exponent tradeoff of all three kinds of error probabilities, beyond the degenerate “corner-point” case in this
paper. Similar comments apply also to our results for the case of multiple outlying sequences. Such investigations will be
pursued in future work.

III. CASE OF MULTIPLE OUTLYING SEQUENCES

In this section, we generalize the results in Section II to the case of multiple outlying sequences where each outlying sequence
can be generated from a potentially different anomalous distribution. We assume that the number of outlying sequences is
unknown but less than half of the total number of the observed sequences. We study the performance of a threshold-based test
that generalizes (5) and demonstrate the optimality of the test under the generalized Neyman-Pearson criterion.
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A. Problem Formulation

Assume that there are at most T =: dM2 − 1e outlying sequences out of M observed sequences Xn = (Xn
1 , . . . , X

n
M ). In

the outlier hypothesis testing problem with at most T outliers, the task is to decide whether there are outlying sequences and
identify the set of outlying sequences if any exist. We assume that each outlying sequence is generated i.i.d. from a possibly
different anomalous distribution. Specifically, let PT := (PA,1, . . . , PA,T ) be a collection of T anomalous distributions that are
different from the nominal distribution PN, all defined on the finite alphabet X with the same support. Furthermore, for any
t ∈ [T ], let St denote the set of all subsets of [M ] whose cardinality (size) is t, i.e.,

St := {B ⊆ [M ] : |B| = t}. (37)

Then, define the union of subsets St over t ∈ [T ] as S :=
⋃
t∈[T ] St. For any B ∈ S , let PB denote the collection of distributions

(PA,1, . . . , PA,|B|). When B ∈ S denotes the index of the outlying sequences, for any l ∈ B, Xn
l is generated i.i.d. from

PA,B(l), where B denotes an ordered mapping from B to [|B|] such that for each i ∈ B, B(i) := j if i is the j-th smallest
element in B. For example, when M = 10, B = {2, 3, 6} and PB = (PA,1, PA,2, PA,3), then the second sequence Xn

2 is
generated i.i.d. from PA,1, the third sequence Xn

3 is generated i.i.d. from PA,2 and the 6-th sequence Xn
6 is generated i.i.d.

from PA,3 while all other sequences are generated i.i.d. from the unknown nominal distribution PN.
Since the exact number of outlying sequences is unknown, there are in total |S|+ 1 =

∑
t∈[T ]

(
M
t

)
+ 1 possible configurations

of outlying sequences. Formally, the task is to design a test φn : XMn → {{HB}B∈S ,Hr} to classify between the following
|S|+ 1 hypotheses:
• HB where B ∈ S: the set of outlying sequences are sequences Xn

j with j ∈ B;
• Hr: there is no outlying sequence.

Similarly to Section II, the null hypothesis is introduced to model the case when there is no outlying sequence among all M
observed sequences.

Given any test φn, under any tuple of nominal and anomalous distributions (PN,PT ) = (PN, PA,1, . . . , PA,T ), the performance
of φn is evaluated by the following misclassification error, false reject and false alarm probabilities:

βB(φn|PN,PT ) := PB{φn(Xn) /∈ {HB,Hr}}, (38)
ζB(φn|PN,PT ) := PB{φn(Xn) = Hr}, (39)

Pfa(φn|PN,PT ) := Pr{φn(Xn) 6= Hr}, (40)

where B ∈ S denotes the set of indices of outlying sequences, and we define PB(·) := Pr{·|HB} where for each i ∈ [M ] such
that i /∈ B, Xn

i is generated i.i.d. from the nominal distribution PN and for i ∈ B, Xn
i is generated i.i.d. from an nominal

distribution PA,B(i), finally we define Pr(·) := Pr{·|Hr}, where all sequences are generated i.i.d. from the nominal distribution
PN.

B. A Threshold-Based Test

To present our test, we need the following definition that generalizes Gi(Q) in (4). Given a sequence of distributions
Q = (Q1, . . . , QM ) ∈ P(X )M and each B ∈ S, define the following linear combination of KL divergence terms

GB(Q) :=
∑
t∈MB

D

(
Qt

∥∥∥∥
∑
l∈MB Ql

M − |B|

)
, (41)

where MB is the set of elements that are in [M ] but not in B, i.e., MB := [M ] \ B = {i ∈ [M ] : i /∈ B}. Similar to Gi(Q)
in (4), GB(Q) is a homogeneity measure and equals zero if and only if Qj = Q for all j ∈MB where Q ∈ P(X ) is arbitrary.

Throughout the section, we use a threshold-based test that takes the empirical distribution of each observed sequence as the
input and outputs a decision among all hypotheses. Given M observed sequences xn = (xn1 , . . . , x

n
M ) and any positive real

number λ, the test operates as follows:

Ψn(xn) :=

{
HB if SB(xn) < minC∈SB SC(x

n) and minC∈SB SC(x
n) > λ,

Hr otherwise,
(42)

where SB = {C ∈ SB} and SC(·) is the scoring function defined as

SC(x
n) := GC(T̂xn

1
, . . . , T̂xn

M
), (43)

which measures the sum of KL divergence between the empirical distribution of each sequence xnj with j /∈ B relative to the
average of the empirical distributions of all sequences xnj where j /∈ B. For the special case of T = 1, the test in (42) reduces
to the test in (5).

We then discuss how the test in (42) deals with different and unknown number of outlying sequences when T ≥ 2. Given
M observed sequences xn, we calculate the scoring functions GB(T̂xn

1
, . . . , T̂xn

M
) for all possible sets B ⊆ S. Note that each



12

B ⊆ (S \ ∅) denotes a possible set of indices of outlying sequences and B = ∅ corresponds to the null hypothesis that no
outlying sequence appears. To determine the set of outlying sequences, using the scoring function for all possible

(
M
T

)
+ 1

cases, we run the test in (42) that compares each scoring function with the threshold λ. In other words, the test (42) checks all
possibilities of outlying sequences to make a decision and its complexity increases exponentially with T . Note that the test in
(42) is a generalization of our test in (5) for the case of at most one outlying sequence and specializes to (5) when T = 1. The
property of test in (42) is similar to the discussion of the test in (5).

Finally, we remark that the statistic in (41) was also used in [2, Eq. (37)] to construct a test when the number t of outlying
sequences is known and when there is no null hypothesis. In contrast, the test in (42) does not assume any knowledge of the
number of outlying sequences, and in addition, incorporates a null hypothesis to include the possibility of no outliers.

C. Preliminaries

To present our main results, we need the following definitions that generalize those in Section II-C for the case of at most
one outlying sequence. Given any B ∈ S and any tuple of distributions PB = (PN, PA,1, . . . , PA,|B|) ∈ (P(X ))|B|+1, for any
two sets (B, C) ∈ S2, define the following mixture distribution

P
(B,C,PN,PB)
Mix (x) :=

1

M − |C|

( ∑
i∈(B∩MC)

PA,B(i)(x) +
∑

i∈(MB∩MC)

PN(x)
)
, (44)

and, parallel to (8) and (9), define the following information densities (log likelihoods)

ı1,l(x|B, C, PN,PB) := log
PA,l(x)

P
(B,C,PN,PB)
Mix (x)

, l ∈ [|B|], (45)

ı2(x|B, C, PN,PB) := log
PN(x)

P
(B,C,PN,PB)
Mix (x)

. (46)

Analogously to (10) to (12), define the following linear combinations of expectations and variances of information densities:

GD(B, C, PN,PB)

:=
∑

i∈(B∩MC)

EPA,B(i)
[ı1,B(i)(X|B, C, PN,PB)] +

∑
i∈(MB∩MC)

EPN [ı2(X|B, C, PN,PB)] (47)

=
∑

i∈(B∩MC)

D(PA,B(i)‖P
(B,C,PN,PB)
Mix ) +

∑
i∈(MB∩MC)

D(PN‖P (B,C,PN,PB)
Mix ), (48)

V(B, C, PN,PB)

:=
∑

i∈(B∩MC)

VarPA,B(i)
[ı1,B(i)(X|B, C, PN,PB)] +

∑
i∈(MB∩MC)

VarPN
[ı2(X|B, C, PN,PB)]. (49)

For simplicity, given any (B, C) ∈ S2 and any variables (x1, . . . , xM ), let

ıB,C(x1, . . . , xM |PN,PB) :=
∑

j∈(B∩MC)

ı1,B(j)(xj |B, C, PN,PB) +
∑

j̄∈(MB∩MC)

ı2(xj̄ |B, C|PN,PB). (50)

For ease of latter presentation, let SB denote the set S \ {B}, i.e., {C ∈ S : C 6= B}. Furthermore, let the elements in SB be
ordered as {C1, . . . , C|S|−1}. Then for each (i, k) ∈ [|S| − 1]2 such that i 6= k, define the covariance

Cov(Ci, Ck, PN,PB) := E[ıB,Ci(X1, . . . , XM |PN,PB)ıB,Ck(X1, . . . , XM |PN,PB)].

Analogously to (13), define a covariance matrix V(B, PN,PB) = {Vi,j(B, PN,PB)}(i,j)∈[|S|−1]2 where

Vi,j(B, PN,PB) =

{
V(B, Ci, PN,PB) if i = j,
Cov(Ci, Ck, PN,PB) otherwise.

(51)

The complementary cdf Qk(·) in (14), together with GD(B, C, PN,PB) and V(B, PN,PB), will be critical to upper bound the
false reject probabilities.

Finally, given any λ ∈ R+ and any tuple of distributions PB = (PN, PA,1, . . . , PA,T ) ∈ PT (X ), for each B ∈ S , define the
following quantity:

LDB(λ, PN,PB) := min
(C,D)∈S2:C6=D

min
Q∈(P(X ))M :

GC(Q)≤λ, GD(Q)≤λ

(∑
i∈B

D(Qi‖PA,B(i)) +
∑
i∈MB

D(Qi‖PN)
)
. (52)

The quantity LDB(λ, PN,PB) will characterize the false reject exponent under each hypothesis.
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D. Second-Order Asymptotic Approximation to the Non-Asymptotic Performance

Our first set of results characterize the performance tradeoff among probabilities of misclassification error, false alarm and
false reject. Specifically, we first provide an achievability result, where the performance of the test in (42) is characterized in
terms of misclassification error and false alarm probabilities that decay exponentially fast when the false reject probability
is upper bounded by a function of the threshold λ. Furthermore, we demonstrate the optimality of the test in (42) under the
generalized Neyman-Pearson criterion.

Theorem 4. For any nominal distribution PN and anomalous distributions PT = (PA,1, . . . , PA,T ), given any positive real
number λ ∈ R+, the test in (42) satisfies that for each B ∈ S,

βB(Ψn|PN,PT ) ≤ exp
(
− nλ+ |X | log((M − 1)n+ 1)

)
, (53)

Pfa(Ψn|PN,PT ) ≤ |S|2 exp
(
− nλ+ |X | log((M − 1)n+ 1)

)
, (54)

ζB(Ψn|PN,PT ) ≤ 1−Q|S|−1

(√
nµ̄(λ, PN,PB); 0|S|−1; V(B, PN,PB)

)
+O

(
1√
n

)
, (55)

where µ̄(λ, PN,PB) denotes the vector (λ−GD(B, C1, PN,PB) +O(log n/n), . . . , λ−GD(B, C|S|−1, PN,PB) +O(log n/n)).

The proof of Theorem 4 is a generalization of the proof of Theorem 1 and is given in Appendix D.
Similarly to the result in Theorem 1, when the number of outlying sequences M is finite, both misclassification error false alarm

probabilities decay exponentially fast, with a speed lower bounded by λ asymptotically when n tends to infinity. On the other
hand, the false reject under each hypothesis HB is upper bounded by a function of λ and critical quantities GD(B, C, PN,PB)
and V(B, PN,PB). Note that the threshold λ trades off the lower bound on the decay rate of the homogeneous error exponent
of the misclassification error and false alarm probabilities and the upper bound on the false reject probability. If λ increases, the
homogeneous error exponent increases while the false reject probability increases as well. This implies that better performance
in misclassification error and false alarm probabilities leads to worse false reject probabilities.

Asymptotically as n → ∞, if the threshold λ < mini∈[|S|−1] GD(B, Ci, PN,PB), then the false reject probability under
hypothesis HB vanishes. One might also be interested in the more practical non-asymptotic case where n is finite. Obtaining
the exact solution to such case is almost impossible. However, a second-order asymptotic approximation to the non-asymptotic
performance is possible using the result in (55). For this purpose, we define

GD(B, PN,PB) := min
i∈[|S|−1]

GD(B, Ci, PN,PB) (56)

as the minimum value of the vector (GD(B, C1, PN,PB), . . . ,GD(B, C|S|−1, PN,PB)) and let d(B) be the number of elements
in the vector that equals the minimal value, i.e., d(B) :=

∣∣{i ∈ [|S|−1] : GD(B, Ci, PN,PB) = GD(B, PN,PB)}
∣∣. Analogously

to (20) and (21), given any ε ∈ (0, 1), let

L∗(ε|B, PN,PB) := max
{
L ∈ R : Qd(B)(L× 1d(B); 0d(B); V(B, PN,PB)) ≥ 1− ε

}
, (57)

λ∗(n, ε|B, PN,PB) := GD(B, PN,PB) +
L∗(ε|B, PN,PB)√

n
. (58)

We then have the following corollary of Theorem 4.

Corollary 2. For any (B, PN,PB), if λ satisfies λ ≤ λ∗(n, ε|B, PN,PB) for all n ∈ N, then as n increases, the upper bound
on the false reject probability tends to ε ∈ (0, 1), i.e., lim supn→∞ ζB(Ψn|PN,PT ) ≤ ε.

The second-order asymptotic upper bound in Corollary 2 provides further characterization beyond the first-order asymptotic
constant term GD(B, PN,PB) and it trades off the homogeneous error exponent with any any non-vanishing false reject
probability ε ∈ (0, 1) beyond the vanishing case with ε→ 0 implied by a first-order asymptotic analysis.

Finally, we discuss the influence of the number of observed sequences M on the performance of the test in (42). As
demonstrated in the above remark, GD(B, PN,PB) is the critical quantity that is related with the performance of the test. Thus,
it suffices to study the properties of GD(B, PN,PB) as a function of M under each hypothesis HB. However, it is challenging
to obtain closed form equations for the dependence of GD(B, PN,PB) on M when each outlying sequence is generated from
a unique anomalous distributions. Thus, we specialize our results to the case where all anomalous distributions are the same
and denoted by PA. Under this assumption, one can verify that

GD(B, PN,PB) = min
t∈[T ]

min
l∈[|B|]

(
lD(PA‖P t,lMix) + (M − t− l)D(PN‖P l,tMix)

)
, (59)

where P t,lMix = lPA+(M−t−l)PN

M−t . For any (t, l) ∈ [T ]× [|B|], one can verify that

∂GD(B, PN,PB)

∂M
= D(PN‖P l,tMix). (60)
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Thus, GD(B, PN,PB) increases in M if D(PN‖P l,tMix) > 0, which holds for all distinct pair of nominal and anomalous
distributions. This implies that the performance of the test in (42) increases as the number of observed sequences M increases
when the number of outlying sequences |B| remains unchanged. On the other hand, the result in (59) implies that for a fixed
number of observed sequences M , the performance of the test in (42) degrades as the number of outlying sequences |B|
increases.

In the following theorem, it is shown that the test in (42) is optimal under the generalized Neyman-Pearson criterion for
second-order asymptotic analysis.

Theorem 5. Given any λ ∈ R+, for any test φn such that

βB(φn|P̃N, P̃T ) ≤ exp(−nλ), ∀ (P̃N, P̃T ), (61)

then for any tuple of nominal and anomalous distributions (PN,PT ), for each B ∈ S,

ζB(Ψn|PN,PT ) ≥ 1−Q|S|−1

(√
nµ̄(λ, PN,PB); 0|S|−1; V(B, PN,PB)

)
+O

(
1√
n

)
. (62)

The proof of Theorem 5 is similar to that of Theorem 2 and only salient differences are emphasized in Appendix E.

E. Asymptotic Decay Rates

We next study the case where the false reject probability decays exponentially fast as well and thus characterize the tradeoff
between the false reject exponent and the homogeneous error exponent of the misclassification error and false alarm probabilities.
Recall the definition of LDB(λ, PN,PB) in (52).

Theorem 6. For any nominal distribution PN and anomalous distributions PT = (PA,1, . . . , PA,T ), given any positive real
number λ ∈ R+, the test in (42) satisfies that for each B ∈ S,

lim inf
n→∞

− 1

n
log βB(Ψn|PN,PT ) ≥ λ, (63)

lim inf
n→∞

− 1

n
log Pfa(Ψn|PN,PT ) ≥ λ, (64)

lim inf
n→∞

− 1

n
log ζB(Ψn|PN,PT ) ≥ LDB(λ, PN,PB). (65)

Conversely, for any test that ensures the homogeneous exponential decay rate of the misclassification error and false alarm
is no less than λ for all tuples of nominal and anomalous distributions, under any nominal distribution PN and anomalous
distributions PT = (PA,1, . . . , PA,T ), the false reject exponent is also upper bounded by LDB(λ, PN,PB) under each hypothesis
HB.

The proof of Theorem 6 is omitted since it requires modifying the proof of Theorem 4 similarly to how one modifies the
proof of Theorem 1 to prove Theorem 3. The result in Theorem 3 follows by specializing Theorem 6 to the case of T = 1.
Similar remarks as those for Theorem 3 apply here.

For example, the threshold λ governs the tradeoff between the false reject exponent and the homogeneous error exponent under
each hypothesis. From the definition of LDB(λ, PN,PB) in (52), it follows that the false reject exponent LDB(λ, PN,PB) in (52)
decreases in λ. Similarly to the proof in Appendix H, one can show that LDB(λ, PN,PB) > 0 if and only if λ < GD(B, PN,PB)
and the maximal false reject exponent satisfies

max
λ∈(0,GD(B,PN,PB))

LDB(λ, PN,PB) ≤ min
Q∈P(X )

(∑
i∈B

D(Q‖PA,B(i)) + (M − |B|)D(Q‖PN)
)
. (66)

Therefore, if the threshold λ < minB∈S GD(B, PN,PB), then regardless of the number of outlying sequences, the misclassifi-
cation error, the false alarm and false reject probabilities decay exponentially fast for any tuple of distributions (PN,PT ) such
that minB∈S GD(B, PN,PB) is strictly positive.

IV. CONCLUSION

We revisited the outlier hypothesis testing problem studied by Li et al. in [2] and derived performance guarantees for tests
that are optimal under the generalized Neyman-Pearson criterion [3]. In particular, we first studied the case with at most one
outlying sequence and then generalized our results to the case where there are multiple outlying sequences, the number of
outlying sequences is unknown and each outlying sequence can be generated from a unique anomalous distributions. For
both cases, we proposed a threshold-based test and analyzed its performance in terms of the tradeoff among the probabilities
of misclassification error, false alarm and false reject. Our results have brought new insights beyond [2] in several aspects,
including the design of a second-order asymptotic optimal test, the dominant factors affecting performance of a test and a
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second-order asymptotic approximation to the finite sample size performance using finite blocklength information theoretical
tools [13], [16].

There are several avenues for future research. Firstly, it might be interesting to study tests that can ensure exponential decay
of misclassification error probabilities for any pair of nominal and anomalous distributions and simultaneously ensure that the
false alarm and false reject probabilities are upper bounded by a constant for all pairs of nominal and anomalous distributions.
Secondly, it would be interesting to study the optimality of tests under criteria other than the generalized Neyman-Pearson
criterion. For example, whether the tests in this paper are optimal in the finite sample regime for a set of nominal and anomalous
distributions, which would be stronger that the asymptotic guarantees provided in this paper. Thirdly, it would be valuable to
extend our theory to the scenario where each nominal sample is generated from a different distribution in a neighborhood
of a fixed distribution and then derive the performance of the optimal test, similarly to [17]. Fourthly, one might generalize
our results to the case of continuous alphabet where each observed sequence is generated i.i.d. from a probability density
function. Finally, it would be worthwhile to consider a sequential setting by incorporating ideas from [8] to derive second-order
asymptotic limits of an optimal sequential test.

APPENDIX

A. Proof of Theorem 1

Recall the definitions of information densities in (8) and (9). Given any pair of distributions (PN, PA), define the following
linear combination of the third absolute moment of information densities

T(PN, PA) := EPA

[∣∣ı1(X|PN, PA)− EPA [ı1(X|PN, PA)]
∣∣3]

+ (M − 2)EPN

[∣∣ı2(X|PN, PA)− EPN
[ı2(X|PN, PA)]

∣∣]. (67)

Note that T(PN, PA) is finite since we consider distributions (PN, PA) with the same support on the finite alphabet X . Recall
the definition of the scoring function Si(x

n) = Gi(T̂xn
1
, . . . , T̂xn

M
) (cf. (4)) for each i ∈ [M ]. Furthermore, for any given set of

sequences xn = (xn1 , . . . , x
n
M ), define the following two quantities

i∗(xn) := arg min
i∈[M ]

Si(x
n), (68)

h(xn) := min
i∈[M ]:i 6=i∗(xn)

Si(x
n). (69)

Note that i∗(xn) denotes the index of the minimal scoring function (unique with high probability as we shall show) and h(xn)
denotes the value of the second minimal value of the scoring functions. Using these two definitions, our proposed test in (5) is
equivalently expressed as follows:

ψn(xn) =

{
Hi if i∗(xn) = i, and h(xn) > λ,
Hr if h(xn) ≤ λ (70)

We first analyze the misclassification error probabilities of our test ψn(·) under each hypothesis. Recall that we use Q to
denote a collection of M distributions (Q1, . . . , QM ) defined on the alphabet X . For any pair of nominal and anomalous
distributions (PN, PA) and for each i ∈ [M ], we can upper bound the type-i misclassification error probability as follows:

βi(ψn|PN, PA)

= Pi{i∗(Xn) 6= i, h(Xn) > λ} (71)
≤ Pi{Si(Xn) > λ} (72)

=
∑

xn∈XMn:Si(xn)>λ

PnA(xni )×
( ∏
j∈Mi

PnN(xnj )

)
(73)

=
∑

Q∈(Pn(X ))M :
Gi(Q)>λ

∑
xn: ∀ j∈[M ]
xn
j ∈T

n
Qj

PnA(xni )×
( ∏
j∈Mi

PnN(xnj )

)
(74)

=
∑

Q∈Pn(X )M :
Gi(Q)>λ

∑
xn: ∀ j∈[M ]
xn
j ∈T

n
Qj

exp

(
− n

(
D(Qi‖PA) +H(Qi)

))

× exp

(
− n

( ∑
j∈Mi

(
D(Qj‖PN) +H(Qj)

)))
(75)
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=
∑

Q∈Pn(X )M :
Gi(Q)>λ

∑
xn: ∀ j∈[M ]
xn
j ∈T

n
Qj

exp

(
− n

( ∑
t∈[M ]

H(Qt) +D(Qi‖PA)
))

× exp

(
− n

(
Gi(Q) + (M − 1)D

(∑
k∈Mi

Qk

M − 1

∥∥∥∥PN

)))
(76)

≤ exp(−nλ)
∑

Q∈Pn(X )M

∑
xn
i ∈T n

Qi

exp

(
− n

(
D(Qi‖PA) +H(Qi)

))

× exp

(
− n

(
(M − 1)D

(∑
k∈Mi

Qk

M − 1

∥∥∥∥PN

)))
(77)

≤ exp(−nλ)
∑

Qj∈Pn(X ), j∈Mi

exp

(
− n

(
(M − 1)D

(∑
k∈Mi

Qk

M − 1

∥∥∥∥PN

)))
(78)

≤ exp(−nλ)
∑

Q∈P(M−1)n(X )

((M − 1)n+ 1)|X |P
(M−1)n
N

(
T (M−1)n
Q

)
(79)

= exp
(
− nλ+ |X | log((M − 1)n+ 1)

)
, (80)

where (72) follows from definitions of i∗(xn) in (68) and h(xn) in (69) which indicate that Si(x
n) ≥ h(xn) > λ under the

condition that i∗(xn) 6= i and h(xn) > λ; (73) follows since under hypothesis Hi, the i-th sequence Xn
i is generated i.i.d.

according to the anomalous distribution PA while all other sequences are generated i.i.d. according to the nominal distribution
PN; (74) follows from the definitions of the scoring function Si(·) in (6) and Gi(·) in (4) and method of types [18, Chapter 11];
(76) follows since for any sequence of distributions Q = (Q1, . . . , QM ) and any distribution P̃N, the following equalities hold∑

j∈Mi

D(Qj‖PN) =
∑
j∈Mi

EQj

[
log

Qj(X)

PN(X)

]
(81)

=
∑
j∈Mi

EQj

[
log

1
M−1

∑
k∈Mi

Qk(X)

PN(X)
+ log

Qj(X)
1

M−1

∑
k∈Mi

Qk(X)

]
(82)

=
∑
j∈Mi

EQj

[
log

1
M−1

∑
k∈Mi

Qk(X)

PN(X)

]
+ Gi(Q) (83)

= (M − 1)D

(∑
k∈Mi

Qk

M − 1

∥∥∥∥PN

)
+ Gi(Q); (84)

(77) follows since the size of the type class |T nQj
| ≤ exp(nH(Qj)); (78) follows since∑

Qi∈Pn(X )

∑
xn
i ∈T n

Qi

exp

(
− n

(
D(Qi‖PA) +H(Qi)

))
=

∑
xn
i ∈Xn

PnA(xni ) = 1, (85)

and (79) follows from the lower bound on the probability of the type class TM(n−1)
Q and the fact that summing over (M − 1)

concatenated types of length n is equivalent to summing over a type of length (M − 1)n.
Given any pair of nominal and anomalous distributions (PN, PA), we can upper bound the false alarm probability as follows:

Pfa(ψn|PN, PA) = Pr{h(Xn) > λ} (86)

=
∑
i∈[M ]

Pr{i∗(Xn) = i and h(Xn) > λ} (87)

≤
∑
i∈[M ]

Pr{i∗(Xn) = i and ∃ j ∈Mi : Sj(X
n) > λ} (88)

≤
∑
i∈[M ]

∑
j∈Mi

Pr{Sj(Xn) > λ} (89)

≤
∑
i∈[M ]

∑
j∈Mi

∑
xn:Sj(xn)>λ

∏
t∈[M ]

PN(xnt ) (90)

=
∑
i∈[M ]

∑
j∈Mi

∑
Q∈Pn(X )M :

Gj(Q)>λ

∑
xn: ∀ j∈[M ]
xn
j ∈T

n
Qj

exp

−n ∑
t∈[M ]

(D(Qt‖PN) +H(Qt))

 (91)
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≤
∑
i∈[M ]

∑
j∈Mi

exp(−nλ+ |X | log((M − 1)n+ 1)) (92)

≤M(M − 1) exp(−nλ+ |X | log((M − 1)n+ 1)), (93)

where (88) follows since when i∗(Xn) = i, h(Xn) = minj∈Mi
Sj(X

n) and (92) follows from the steps analogously to those
leading to the result in (80).

Finally, we next analyze the false reject probabilities for any (PN, PA). For this purpose, we need the following definition of
typical sequences for each i ∈ [M ]:

Ti(PN, PA) :=

{
xn ∈ XMn : ∀ j ∈Mi, ‖T̂xn

j
− PN‖∞ ≤

√
log n

n
and ‖T̂xn

i
− PA‖∞ ≤

√
log n

n

}
. (94)

Using Chebyshev’s inequality (c.f. [19, Lemma 24]), we conclude that for each i ∈ [M ],

Pi{Xn /∈ Ti(PN, PA)} ≤ 2M |X |
n2

=: µn. (95)

In subsequent analysis, we need to use the following properties of Gi(Q) (cf. (4)) for each i ∈ [M ] and any given vector of
distributions Q = (Q1, . . . , QM ) ∈ (P(X ))M ,

∂Gi(Q)

∂Qj(x)
= log

(M − 1)Qj(x)∑
k∈Mi

Qk(x)
, j ∈Mi, x ∈ supp(Qj), (96)

∂2Gi(Q)

∂(Qj(x))2
=

∑
k∈Mi

Qk(x)−Qj(x)

Qj(x)
(∑

k∈Mi
Qk(x)

) , j ∈Mi, x ∈ supp(Qj), (97)

∂2Gi(Q)

∂Qj(x)Ql(x)
= − 1∑

k∈Mi
Qk(x)

, (j, l) ∈Mi ×Mi,j and x ∈ supp(Qj) ∩ supp(Ql) (98)

For each i ∈ [M ], define the vector of distributions Pi := (Q1, . . . , QM ) with Qi = PA and Qj = PN for all j ∈Mi. Since
KL divergence D(PA‖ (M−2)PN+PA

M−1 ) is continuous in its arguments (PA,
(M−2)PN+PA

M−1 ) in the interior of simplex, we know
that Gj(Q) is continuous around Pi for each j ∈Mi. Similarly, Gi(Q) is continuous around Pi. Under hypothesis Hi, given
any set of M sequences xn ∈ Ti(PN, PA), one can apply a Taylor expansion of Gj(T̂xn

1
, . . . , T̂xn

M
) (cf. (6)) around Pi, for

each j ∈Mi, we have

Gj(T̂xn
1
, . . . , T̂xn

M
)

= D

(
PA

∥∥∥∥ (M − 2)PN + PA

M − 1

)
+
∑
x∈X

(T̂xn
i
(x)− PA(x))ı1(x|PN, PA)

+
∑

l∈Mi,j

(
D

(
PN

∥∥∥∥ (M − 2)PN + PA

M − 1

)
+
∑
x∈X

(T̂xn
j
(x)− PN(x))ı2(x|PN, PA)

)
+
∑
l∈[M ]

O(‖T̂xn
j
− PA‖2) (99)

=
1

n

∑
t∈[n]

(
ı1(xi,t|PN, PA) +

∑
l∈Mi,j

ı2(xl,t|PN, PA)
)

+O

(
log n

n

)
, (100)

and for j = i,

Gj(T̂xn
1
, . . . , T̂xn

M
) = O

(
log n

n

)
. (101)

With the above definitions and results, we can now upper bound the false reject probability of our test (cf. (5)) under each
hypothesis Hi with i ∈ [M ] with respect to any pair of distributions (PN, PA) as follows:

ζi(ψn|PN, PA)

= Pi{h(Xn) ≤ λ} (102)

≤ Pi
{

min
j∈Mi

Gj(T̂Xn
1
, . . . , T̂Xn

M
) ≤ λ

}
(103)

= 1− Pi
{
∀ j ∈Mi, Gj(T̂Xn

1
, . . . , T̂Xn

M
) > λ

}
, (104)

where (103) follows since h(Xn) ≥ minj∈Mi
Gj(T̂Xn

1
, . . . , T̂Xn

M
), which is implied by the definition of h(xn) in (69).
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For simplicity, given random variables X1, . . . , XM , for each i ∈ [M ] and j ∈Mi, define the information density

ıi,j(X1, . . . , XM |PN, PA) := ı1(Xi|PN, PA) +
∑

l∈Mi,j

ı2(Xl|PN, PA), (105)

and for each t ∈ [n], we use Xt to denote the snapshot of the M sequences at time t, i.e., X1,t, . . . , XM,t.
The second term in (104) can be lower bounded as follows:

Pi
{
∀j ∈Mi, Gj(T̂Xn

1
, . . . , T̂Xn

M
) > λ

}
≥ Pi

{
∀j ∈Mi, Gj(T̂Xn

1
, . . . , T̂Xn

M
) > λ and Xn ∈ Ti(PN, PA)

}
(106)

≥ Pi
{
∀ j ∈Mi,

1

n

∑
t∈[n]

ıi,j(Xt|PN, PA) > λ+O

(
log n

n

)
and Xn ∈ Ti(PN, PA)

}
(107)

≥ Pi
{
∀ j ∈Mi,

1

n

∑
t∈[n]

ıi,j(Xt|PN, PA) > λ+O

(
log n

n

)}
− µn, (108)

where (107) follows from the result in (95) and the Taylor expansion in (100), and (108) follows from the result in (95).
Recall that under Pi, for each t ∈ [n], Xt = (X1,t, . . . , XMt

) are independent where Xi,t ∼ PA and Xj,t ∼ PN for j ∈Mi.
Recalling definitions of GDM (PN, PA)in (10), VM (PN, PA) in (11) and CovM (PN, PA) in (12), we have that for any i ∈ [M ]
and j ∈Mi

EPi [ıi,j(Xt|PN, PA)] = GDM (PN, PA), (109)
VarPi [ıi,j(Xt|PN, PA)] = VM (PN, PA), (110)

and for any k ∈Mi,j , the covariance of (ıi,j(Xt|PN, PA), ıi,k(Xt|PN, PA)) satisfies

CovPi
[ıi,j(Xt|PN, PA)ıi,k(Xt|PN, PA)] = CovM (PN, PA), (111)

where the justification of (111) is provided in Appendix I.
Recall the definition of VM (PN, PA) in (13). Applying the multivariate Berry-Esseen theorem [20], the first term in (108) is

bounded below as follows:

Pi
{
∀ j ∈Mi,

1

n

∑
t∈[n]

ıi,j(Xt|PN, PA) > λ+O

(
log n

n

)}

≥ QM−1

(√
n
(
λ−GDM (PN, PA) +O

( log n

n

))
× 1M−1; 0M−1; VM (PN, PA)

)
+O

(
1√
n

)
, (112)

where QM−1(·) is the multivariate generalization of the complementary Gaussian cdf defined in (14).
Using (104) and (112), we have that for any (PN, PA), the false reject probability is upper bounded as follows:

ζi(ψn|PN, PA) ≤ 1−QM−1

((
λ−GDM (PN, PA) +O

( log n

n

))
× 1M−1; 0M−1; VM (PN, PA)

)
+O

(
1√
n

)
. (113)

B. Proof of Theorem 2

Note that the converse proof without a constraint on the false alarm probability is also a converse proof with a constraint on
the false alarm probability. Therefore, in the subsequent proof, we drop the constraint on the false alarm probability and focus
on the misclassification error and the false reject probabilities.

We first relate the performances of any test with the type-based test (i.e., a test which uses only the types (empirical
distributions) of the sequences (T̂Xn

1
, . . . , T̂Xn

M
)), as demonstrated in the following lemma.

Lemma 1. Given any test φn, for any κ ∈ [0, 1], we can construct a type-based test φT
n such that for each i ∈ [M ] and any

pair of distributions (PN, PA),

βi(φn|PN, PA) ≥ 1− κ
M − 1

βi(φ
T
n |PN, PA), (114)

ζi(PN, PA) ≥ κζi(φT
n |PN, PA). (115)

The proof of Lemma 1 is inspired by [3, Lemma 2] and [4, Lemma 5.1] and provided in Appendix F.
We then show that for any type-based test, if we require that the misclassification error probabilities under each hypothesis

decay exponentially fast for all pairs of distributions, then the false reject probability under each hypothesis for any particular
pair of distributions can be lower bounded by an information spectrum bound, which is the cdf of the second minimal values
of the scoring functions {Gi(T̂Xn

1
, . . . , T̂Xn

M
)}.
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For simplicity, let

ηn,M :=
M |X | log(n+ 1)

n
. (116)

Furthermore, given any tuple of types Q = (Q1, . . . , QM ) ∈ (Pn(X ))M and any λ ∈ R+, let

g∗(Q) := min
i∈[M ]

Gi(Q), (117)

g(Q) := min
i∈[M ]:Gi(Q)>g∗(Q)

Gi(Q) (118)

denote the minimal and second minimal values of {Gi(Q)}i∈[M ].

Lemma 2. Given any λ ∈ R+, for any type-based test φT
n such that for all pair of distributions (P̃N, P̃A),

max
i∈[M ]

βi(φ
T
n |P̃N, P̃A) ≤ exp(−nλ), (119)

then for any pair of distributions (PN, PA) and for each i ∈ [M ], we have

ζi(φ
T
n |PN, PA) ≥ Pi

{
g(T̂Xn

1
, . . . , T̂Xn

M
) + ηn,M ≤ λ

}
. (120)

The proof of Lemma 2 is provided in Appendix G.
Combining Lemmas 1 and 2 with κ = 1− 1

n and noting that g(T̂xn
1
, . . . , T̂xn

M
) = h(xn) (cf. (69)) for any xn = (xn1 , . . . , x

n
M ),

we obtain the following corollary.

Corollary 3. Given any λ ∈ R+, for any test φn satisfying that for all pairs of distributions (P̃N, P̃A)

max
i∈[M ]

βi(φn|P̃N, P̃A) ≤ exp(−nλ), (121)

we have that for any pair of distributions (PN, PA) and for each i ∈ [M ]

ζi(φn|PN, PA) ≥
(

1− 1

n

)
Pi
{
h(Xn) + ηn,M +

log n+ log(M − 1)

n
≤ λ

}
. (122)

Using Corollary 3, with any test φn satisfying (121), for any pair of distributions (PN, PA), we have that for each i ∈ [M ]
and any j ∈Mi,

ζi(φn|PN, PA)

≥
(

1− 1

n

)
Pi
{
h(Xn) + ηn,M +

log n+ log(M − 1)

n
≤ λ,

and h(Xn) = min
j∈Mi

Gj(T̂Xn
1
, . . . , T̂Xn

M
)
}

(123)

≥
(

1− 1

n

)(
Pi
{

min
j∈Mi

Gj(T̂Xn
1
, . . . , T̂Xn

M
) + ηn,M +

log n+ log(M − 1)

n
≤ λ

}
− Pi{h(Xn) 6= min

j∈Mi

Gj(T̂Xn
1
, . . . , T̂Xn

M
)}
)
. (124)

We first focus on the second term in the bracket of (124). Given any i ∈ [M ], we have that for each j ∈Mi:

Pi{Gj(T̂Xn
1
, . . . , T̂Xn

M
) ≤ Gi(T̂Xn

1
, . . . , T̂Xn

M
)}

≤ Pi{Gj(T̂Xn
1
, . . . , T̂Xn

M
) ≤ Gi(T̂Xn

1
, . . . , T̂Xn

M
),Xn ∈ Ti(PN, PA)}+ Pi{Xn /∈ Ti(PN, PA)} (125)

≤ P
{

1

n

∑
t∈[n]

(
ı1(Xi,t|PN, PA) +

∑
l∈Mi,j

ı2(Xl,t|PN, PA)
)
≤ O

(
log n

n

)}
+ µn (126)

≤ Q

(√
n(GDM (PN, PA) +O( logn

n ))√
VM (PN, PA)

)
+

6T(PN, PA)√
n
(
VM (PN, PA)

)3 + µn (127)

≤ exp

(
−
n(GDM (PN, PA) +O( logn

n ))2

2VM (PN, PA)

)
+

6T(PN, PA)√
n
(
VM (PN, PA)

)3 + µn (128)

=: κn = O

(
1√
n

)
, (129)
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where (126) follows from Taylor expansions in (100) and (101) and the upper bound on the atypical set in (95), (127) follows
from the Berry-Esseen theorem [21], [22] and (128) follows since Q(x) ≤ exp(−x

2

2 ) for any x > 0. Therefore, we conclude
that for each i ∈ [M ],

Pi{h(Xn) 6= min
j∈Mi

Gj(T̂Xn
1
, . . . , T̂Xn

M
)}

= Pi
{
∃ j ∈Mi s.t. Gj(T̂Xn

1
, . . . , T̂Xn

M
) < Gi(T̂Xn

1
, . . . , T̂Xn

M
)
}

(130)

≤
∑
j∈Mi

Pi
{
Gj(T̂Xn

1
, . . . , T̂Xn

M
) < Gi(T̂xn

1
, . . . , T̂xn

M
)
}

(131)

≤ 1− (M − 1)κn. (132)

Finally, analogously to the achievability proof, we analyze the first term in the bracket of (124):

Pi
{

min
j∈Mi

Gj(T̂Xn
1
, . . . , T̂Xn

M
) + ηn,M +

log n+ log(M − 1)

n
≤ λ

}
= 1− Pi

{
∀ j ∈Mi, Gj(T̂Xn

1
, . . . , T̂Xn

M
) + ηn,M +

log n+ log(M − 1)

n
> λ

}
(133)

≥ 1− Pi
{

Xn /∈ Ti(PN, PA)}

− Pi
{
∀ j ∈Mi, Gj(T̂Xn

1
, . . . , T̂Xn

M
) + ηn,M +

log n+ log(M − 1)

n
> λ and Xn ∈ Ti(PN, PA)

}
(134)

≥ 1− µn − Pi
{
∀ j ∈Mi ,

1

n

∑
t∈[n]

ıi,j(Xt|PN, PA) +O
( log n

n

)
> λ

}
(135)

≥ 1− µn −QM−1

(√
n
(
λ−GDM (PN, PA) +O

( log n

n

))
× 1M−1; 0M−1; VM (PN, PA)

)
+O

(
1√
n

)
(136)

where in (134), the definition of the typical set Ti(PN, PA) was in (94), (135) follows from the result in (95) that upper bounds
the probability of Pi

{
Xn /∈ Ti(PN, PA)}, the Taylor expansion of Gj(T̂Xn

1
, . . . , T̂Xn

M
) exactly the same as in (108) and the

fact that ηn,M = O(log n/n), and (136) follows from the multivariate Berry-Esseen theorem similarly to (112).
Combining (124) and (136), we conclude that

min
i∈[M ]

ζi(φn|PN, PA) ≥ 1−QM−1

(√
n
(
λ−GDM (PN, PA) +O

( log n

n

))
× 1M−1; 0M−1; VM (PN, PA)

)
+O

(
1√
n

)
.

(137)

The proof of Theorem 2 is now completed.

C. Proof of Theorem 3

1) Achievability: We make use the same test φn(·) (cf. (5) and (70)) as in the achievability proof of Theorem 1.
The analyses of the misclassification error probabilities βi(ψn|P̃N, P̃A) and the false alarm probability Pfa(φn|P̃N, P̃A) are

exactly the same as in Appendix A. It suffices to bound the false reject probability of our test for a particular pair of distributions
(PN, PA). For each i ∈ [M ], we have that

ζi(ψn|PN, PA) = Pi{φn(Xn) = Hr} (138)
= Pi{h(Xn) ≤ λ} (139)

= Pi{∃ (j, k) ∈ [M ]2 s.t. j 6= k, Sj(X
n) ≤ λ and Sk(Xn) ≤ λ} (140)

≤
∑

(j,k)∈[M ]2:j 6=k

Pi{Sj(Xn) ≤ λ and Sk(Xn) ≤ λ} (141)

≤ M(M − 1)

2
max

(j,k)∈[M ]2:j 6=k
Pi{Sj(Xn) ≤ λ and Sk(Xn) ≤ λ}. (142)
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We now focus on upper bound the probability term in (142). For any (j, k) ∈ [M ]2, given any i ∈ [M ], we have

Pi{Sj(Xn) ≤ λ and Sk(Xn) ≤ λ}

≤
∑

xn∈XMn:Sj(xn)≤λ, Sk(xn)≤λ

Pi(xn) (143)

≤
∑

Q∈(Pn(X ))M :
Gj(Q)≤λ, Gk(Q)≤λ

exp

(
− n

(
D(Qi‖PA) +

∑
l∈Mi

D(Qj‖PN)
))

(144)

≤
∑

Q∈(Pn(X ))M

exp

(
− n min

QPn(X ))M :
Gj(Q)≤λ, Gk(Q)≤λ

(
D(Qi‖PA) +

∑
l∈Mi

D(Qj‖PN)
))

(145)

≤ (n+ 1)M |X | exp

(
− n min

Q∈(P(X ))M :
Gj(Q)≤λ, Gk(Q)≤λ

(
D(Qi‖PA) +

∑
l∈Mi

D(Qj‖PN)
))

. (146)

Combining (142), (146) and using the definitions of LDi(·) in (15), we have that for each i ∈ [M ] and any pair of distributions
(PN, PA), the i-th false reject probability satisfies for any λ ∈ R+

lim inf
n→∞

− 1

n
log ζi(ψn|PN, PA) ≥ LDi(λ|PN, PA). (147)

2) Converse: For simplicity, let

κn,M := ηn,M +
log n+ log(M − 1)

n
. (148)

Using Corollary 3, we have that for any test φn such that the misclassification error probabilities decay exponentially fast
with speed at least λ for all pairs of distributions, given any (PN, PA), for each i ∈ [M ], the i-th false reject probability
ζi(φn|PN, PA) satisfies(

1− 1

n

)
× ζi(φn|PN, PA)

≥ Pi
{
h(Xn) + κn,M ≤ λ

}
(149)

= Pi
{
∃(j, k) ∈ [M ]2 : j 6= k, Sj(X

n) + κn,M ≤ λ and Sk(Xn) + κn,M ≤ λ
}

(150)

≥ max
(j,k)∈[M ]2: j 6=k

Pi
{

Sj(X
n) + κn,M ≤ λ and Sk(Xn) + κn,M ≤ λ

}
(151)

≥ (n+ 1)−M |X | max
(j,k)∈[M ]2:

j 6=k

∑
Q∈(Pn(X ))M

exp

(
− n min

Q∈(Pn(X ))M :
Gj(Q)≤λ−κn,M

Gk(Q)≤λ−κn,M

(
D(Qi‖PA) +

∑
l∈Mi

D(Qj‖PN)
))

, (152)

where (150) follows from the definition of h(xn) in (69) and (152) follows similarly to (145).
Using the continuity of (PN, PA) to LDi(λ|PN, PA) (cf. (15)) for any λ ∈ R+, the definition of κn,M in (148) and the

results in (152), we have that for each i ∈ [M ],

lim sup
n→∞

− 1

n
log ζi(φn|PN, PA) ≤ LDi(λ|PN, PA) (153)

for any test φn satisfying (34).

D. Proof of Theorem 4

The proof of Theorem 4 is a generalization of the proof of of Theorem 1 and thus we only emphasize the differences.
For subsequent analyses, define the following linear combination of third absolute moments

T(B, C, PN,PB) :=
∑

i∈(B∩MC)

EPA,B(i)
[|ı1,B(i)(X|B, C, PN,PB)− EPA,B(i)

[ı1,B(i)(X|B, C, PN,PB)]|3]

+
∑

i∈(MB∩MC)

EPN [|ı2(X|B, C, PN,PB)− EPN [ı2(X|B, C, PN,PB)]|3]. (154)

Note that T(B, C, PN,PB) is finite since we consider distributions (PN,PB) with the same support on the finite alphabet X .
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Recall that S =
⋃
t∈[T ] St denotes all possible subsets of [M ] with at most dM2 − 1e elements. For any C ∈ S, recall the

definition of the scoring function SC(x
n) in (43). Recall the definition of the scoring function SB(xn) = GB(T̂xn

1
, . . . , T̂xn

M
)

for any B ∈ S. Given any xn, parallel to (68) and (69), define two quantities

I∗(xn) := arg min
B∈S

SB(xn), (155)

hS(xn) := min
B∈SB 6=I∗(xn)

SB(xn). (156)

Note that I∗(xn) denotes the set B that minimizes the scoring function and hS(xn) denotes the second minimal value of the
scoring function.

The test in (42) is equivalently expressed as follows:

Ψn(xn) =

{
HB if I∗(xn) = B, and hS(xn) > λ
Hr if hS(xn) ≤ λ. (157)

We next analyze the performance of the test in (157). We first analyze the misclassification error probability. Given any
B ∈ S , under any tuple of distributions PB = (PN, PA,1, . . . , PA,|B|), similarly to the case with at most one outlying sequence,
the misclassification error is upper bounded as follows:

βB(Ψn|PN,PT )

= PB
{
I∗(Xn) 6= B and hS(Xn) > λ

}
(158)

≤ PB
{

SB(Xn) > λ
}

(159)

=
∑

Q∈(Pn(X ))M :
GB(Q)>λ

∑
xn:xn

j ∈T
n
Qj

∀j∈[M ]

(∏
i∈B

PA,B(i)(x
n
i )

)
×
( ∏
j∈MB

PN(xnj )

)
(160)

=
∑

Q∈(Pn(X ))M :
GB(Q)>λ

∑
xn:xn

j ∈T
n
Qj

∀j∈[M ]

exp

(
− n

(∑
i∈B

D(Qi‖PA,B(i)) +
∑
j∈MB

D(Qi‖PN) +
∑
i∈[M ]

H(Qi)

))
(161)

=
∑

Q∈(Pn(X ))M :
GB(Q)>λ

∑
xn:xn

j ∈T
n
Qj

∀j∈[M ]

exp

(
− n

(∑
i∈B

D(Qi‖PA,B(i)) +
∑
i∈[M ]

H(Qi)

+ GB(Q) + (M − |B|)D
(∑

k∈MB Qk

M − T

∥∥∥∥PN

)))
(162)

≤ exp(−nλ)
∑

Qj∈Pn(X ), j∈MB

exp

(
− n(M − |B|)D

(∑
k∈MB Qk

M − T

∥∥∥∥PN

))
(163)

≤ exp
(
− nλ+ |X | log((M − |B|)n+ 1)

)
(164)

≤ exp
(
− nλ+ |X | log((M − 1)n+ 1)

)
, (165)

We then analyze the false alarm probability. Given any nominal distribution PN, the false alarm probability is upper bounded as
follows:

Pfa(Ψn|PN,PT ) := Pr{hS(Xn) > λ} (166)

=
∑
B∈S

Pr{I∗(Xn) = B and hS(Xn) > λ} (167)

≤
∑
B∈S

Pr{I∗(Xn) = B and ∃ C ∈ S : C 6= B, SC(X
n) > λ} (168)

≤
∑
B∈S

∑
C∈S: C6=B

Pr{SC(Xn) > λ} (169)

≤
∑
B∈S

∑
C∈S: C6=B

exp
(
− nλ+ |X | log((M − 1)n+ 1)

)
(170)

≤ |S|2 exp
(
− nλ+ |X | log((M − 1)n+ 1)

)
(171)

where (170) follows from similar steps leading to (164).
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Finally, we analyze the false reject probability of the tests. For this purpose, we need a generalized version of the typical set
in (94). For each B ∈ S and any PB, define

TB(PB) :=

{
xn ∈ XMn : ∀ j ∈ B, ‖T̂xn

j
− PA,B(j)‖∞ ≤

√
log n

n
,

and ∀j ∈MB, ‖T̂xn
j
− PN‖∞ ≤

√
log n

n

}
. (172)

Similarly to (95), for each B ∈ S, we have

PB{Xn /∈ TB(PB)} ≤ 2M |X |
n2

. (173)

Recall the definitions of the mixture distribution in (44) and the information densities in (45) and (46). Under each hypothesis
HB, given any observed sequences xn ∈ TB(PB), applying Taylor expansions of GC(T̂xn

1
, . . . , T̂xn

M
) for C ∈ S around PB

yields

• if C 6= B, then

GC(T̂xn
1
, . . . , T̂xn

M
)

=
∑

j∈(B∩MC)

(
D(PA,B(j)‖PB,C,PN,PB

Mix ) +
∑
x

(
T̂xn

j
(x)− PA,B(j)(x)

)
ı1,B(j)(x|B, C, PN,PB) +O

(
‖T̂xn

j
− PA,B(j)‖2

))
+

∑
j∈(MB∩MC)

(
D(PN‖PB,C,PN,PB

Mix ) +
∑
x

(
T̂xn

j
(x)− PN(x)

)
ı2(x|B,B,PB) +O

(
‖T̂xn

j
− PN‖2

))
(174)

=
1

n

∑
t∈[n]

( ∑
j∈(B∩MC)

ı1,B(j)(xj,t|B, C, PN,PB) +
∑

j∈(MB∩MC)

ı2(xj,t)
)

+O

(
log n

n

)
; (175)

• if C = B, then

GC(T̂xn
1
, . . . , T̂xn

M
) = O

(
log n

n

)
. (176)

The false reject probability is then upper bounded as follows:

ζB(Ψn|PN,PT )

= PB{hS(Xn) ≤ λ} (177)

≤ PB
{

min
C∈SB

GC(T̂Xn
1
, . . . , T̂Xn

M
) ≤ λ

}
(178)

= 1− PB
{
∀ C ∈ SB : GC(T̂Xn

1
, . . . , T̂Xn

M
) > λ

}
, (179)

where SB = {C ∈ SB} denotes the set of sets in S that are not equal to B. We now analyze the probability term in (179).
Recall that given any (B, C) ∈ S2 and any variables (X1, . . . , XM ),

ıB,C(X1, . . . , XM |PN,PB) =
∑

j∈(B∩MC)

ı1,B(j)(Xj |B, C, PN,PB) +
∑

j̄∈(MB∩MC)

ı2(Xj̄ |B, C|PN,PB). (180)

For each t ∈ [n], we use Xt to denote X1,t, . . . , XM,t.
Using Taylor expansions in (175), (176), for any B ∈ S,

PB{∀ C ∈ SB : GC(T̂Xn
1
, . . . , T̂Xn

M
) > λ}

≥ PB{∀ C ∈ SB : GC(T̂Xn
1
, . . . , T̂Xn

M
) > λ,Xn ∈ TB(PB)} (181)

≥ PB
{
∀ C ∈ SB :

1

n

∑
t∈[n]

ıB,C(Xt|PN,PB) > λ+O

(
log n

n

)}
− PB{Xn /∈ TB(PB)} (182)

= PB
{
∀ C ∈ SB :

1

n

∑
t∈[n]

ıB,C(Xt|PN,PB) > λ+O

(
log n

n

)}
− 2M |X |

n2
. (183)

Note that SB denotes all subsets of [M ] with size no greater than T excluding the set B thus each element in SB is a
subset of [M ]. There are in total |S| − 1 elements in the set SB and thus |S| − 1 inequalities (183) that need to be satisfied
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simultaneously. Recall that the elements in SB are ordered as {C1, . . . , C|S|−1}. This way, the probability term in (183) is
equivalent to

PB
{
∀ i ∈ [|S| − 1] :

1

n

∑
t∈[n]

ıB,Ci(Xt|PN,PB) > λ+O

(
log n

n

)}
. (184)

Recall the definitions of GD(B, C, PN,PB) in (48), V(B, C, PN,PB) in (49). Note that for each i ∈ [|S| − 1] and each
t ∈ [n],

EPB [ıB,Ci(Xt|PN,PB)] = GD(B, Ci, PN,PB), (185)
VarPB [ıB,Ci(Xt|PN,PB)] = V(B, Ci, PN,PB). (186)

Furthermore, for any (i, k) ∈ [|S| − 1]2 such that i 6= k, we have

CovPB(ıB,Ci(Xt|PB), ıB,Dj (Xt|PB)) = Cov(Ci, Cj ,PB). (187)

Using (183) to (187), and applying the multivariate Berry-Esseen theorem similarly to (112), we have

PB{∀ C ∈ SB : GC(T̂Xn
1
, . . . , T̂Xn

M
) > λ}

≥ Q|S|−1

(√
nµ̄(λ, PN,PB); 0|S|−1; V(B, PN,PB)

)
+O

(
1√
n

)
, (188)

where µ̄(λ, PN,PB) denotes the vector (λ−GD(B, C1, PN,PB) +O(log n/n), . . . , λ−GD(B, C|S|−1, PN,PB) +O(log n/n)).
Combining (179) and (188), we conclude that for any B ∈ S , the false reject probability under hypothesis HB satisfies that

ζB(Ψn|PN,PT ) ≤ 1−Q|S|−1

(√
nµ̄(λ, PN,PB); 0|S|−1; V(B, PN,PB)

)
+O

(
1√
n

)
. (189)

The proof of Theorem 4 is completed.

E. Proof of Theorem 5

Recall the definition of hT(xn) in (156) and ηn,M in (116). For ease of notation, let

ηn,M,T := ηn,M +
log n+ log(|S|))

n
. (190)

The following corollary is key to the converse proof of Theorem 4.

Corollary 4. Given any λ ∈ R+, for any test φn such that for all tuples of nominal and anomalous distributions (P̃N, P̃T ),

βB(φn|P̃N, P̃T ) ≤ exp(−nλ), (191)

then for any tuple of nominal and anomalous distributions (PN,PT ), for each B ∈ S,

ζB(φn|PN,PT ) ≥
(

1− 1

n

)
PB
{
hS(Xn) + ηn,M,T ≤ λ

}
. (192)

The proof of Corollary 4 is similar to that of Corollary 3 and is thus omitted.
Using Corollary 4, for any test φn satisfying (191), given any tuple of distributions (PN,PT ), for each B ∈ S, the false

reject probability is lower bounded by

ζB(φn|PN,PT )

≥
(

1− 1

n

)
PB
{
hS(Xn) + ηn,M,T ≤ λ, hS(Xn) = min

C∈SB
GC(T̂Xn

1
, . . . , T̂Xn

M
)
}

(193)

≥
(

1− 1

n

)
PB
{

min
C∈SB

GC(T̂Xn
1
, . . . , T̂Xn

M
) + ηn,M,T ≤ λ

}
− PB

{
hS(Xn) 6= min

C∈SB
GC(T̂Xn

1
, . . . , T̂Xn

M
)
}

(194)

≥
(

1− 1

n

)
PB
{

min
C∈SB

GC(T̂Xn
1
, . . . , T̂Xn

M
) + ηn,M,T ≤ λ

}
+O

(
1√
n

)
, (195)

where (195) is justified in Appendix J.
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Analogous to (188), using the multivariate Berry-Esseen theorem, we conclude that

PB
{

min
C∈SB

GC(T̂Xn
1
, . . . , T̂Xn

M
) + ηn,M,T ≤ λ

}
= 1− PB

{
∀ C ∈ SB, GC(T̂Xn

1
, . . . , T̂Xn

M
) + ηn,M,T > λ

}
(196)

≥ 1−Q|S|−1

(√
nµ̄(λ, PN,PB); 0|S|−1; V(B, PN,PB)

)
+O

(
1√
n

)
. (197)

The proof of Theorem 5 is thus completed by combining (195) and (197).

F. Proof of Lemma 1
For simplicity, let Q := (Q1, . . . , QM ) ∈ (Pn(X ))M and for any Q, we use T nQ to denote the set of sequences x =

(xn1 , . . . , x
n
M ) such that xni ∈ T nQi

for all i ∈ [M ]. Given any test φn, the sample space XMn is separated into (M + 1) disjoint
regions: {Ai(φn)}i∈[M ] and Ar(φn) where

Ai(φn) = {x ∈ XMn : φn(x) = Hi}, (198)

Ar(φn) =
( ⋃
i∈[M ]

Ai
)c

. (199)

We can then construct a type-based test as follows. Given any κ, for any Q ∈ (Pn(X ))M ,
• φT

n (Q) = Hr if at least κ fractions of the sequences in the type class T nQ are contained in the reject region, i.e.,

|T nQ ∩ Ar(φn)| ≥ κ|T nQ |. (200)

• φT
n (Q) = Hi if i) less than κ fractions of the sequences in the type class T nQ are contained in the reject region and ii) for

all j ∈ [M ], Ai(φn) contains the most number of the sequences in the type class T nQ , i.e.,

|T nQ ∩ Ar(φn)| < κ|T nQ |, and |T nQ ∩ Ai(φn)| ≥ max
j∈Mi

|T nQ ∩ Aj(φn)|. (201)

For any pair of distributions (PN, PA), we can then relate the performances of an arbitrary test φn and the constructed
type-based test φT

n as follows:

βi(φn|PT, PA) = Pi
{ ⋃
j∈Mi

Aj(φn)
}

(202)

=
∑
j∈Mi

P{Aj(φn)} (203)

=
∑
j∈Mi

∑
Q∈(Pn(X ))M

Pi{Aj(φn) ∩ T nQ} (204)

≥
∑
j∈Mi

∑
Q∈(Pn(X ))M :|T n

Q∩Ar(φn)|<κ
|T n

Q∩Aj(φn)|≥maxl∈Mj
|T n

Q∩Aj(φn)|

Pi{Aj(φn) ∩ T nQ} (205)

≥
∑
j∈Mi

∑
Q∈(Pn(X ))M :φT

n(Q)=Hj

1− κ
M − 1

Pi{T nQ} (206)

=
1− κ
M − 1

∑
Q∈(Pn(X ))M :∃j∈Mi:φ

T
n(Q)=Hj

Pi{T nQ} (207)

=
1− κ
M − 1

βi(φ
T
n |P1, P2), (208)

and

ζi(φn|PT, PA) = Pi
{
Ar(φn)

}
(209)

=
∑

Q∈(Pn(X ))M

Pi{Ar(φn) ∩ T nQ} (210)

≥
∑

Q∈(Pn(X ))M :|T n
Q∩Ar(φn)|≥κ

Pi{Aj(φn) ∩ T nQ} (211)

≥ κ
∑

Q∈(Pn(X ))M :|T n
Q∩Ar(φn)|≥κ

Pi{T nQ} (212)

= κζi(φ
T
n |PT, PA). (213)
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G. Proof of Lemma 2

To prove Lemma 2, it suffices to prove that for any type-based test satisfying (119), if a tuple of types Q satisfies that

g(Q) + ηn,M < λ, (214)

then we must have φT
n (Q) = Hr.

We will prove our claim by contradiction. Suppose our claim is not true. Then there exist types Q̄ = (Q̄1, . . . , Q̄M ) ∈
(Pn(X ))M such that for some i ∈ [M ],

φT
n (Q̄) = Hi and g(Q̄) + ηn,M < λ (215)

Note that (215) implies that there exists (j, k) ∈M2 such that j 6= k and

Gj(Q̄) + ηn,M < λ and Gk(Q̄) + ηn,M < λ. (216)

Furthermore, either j 6= i or k 6= i. Without loss of generality, we assume that j 6= i.
Then, we have that for all pairs of distributions (P̃N, P̃A), the misclassification error probability under hypothesis Hj can be

lower bounded as follows:

βj(φ
T
n |P̃N, P̃A) ≥

∑
Q∈(Pn(X ))M :φT

n(Q)=Hi

Pj(T nQ ) (217)

≥ Pj(TnQ̄) (218)

≥ (n+ 1)−Mn exp
(
− n

(
D(Q̄j‖P̃A) +

∑
l∈Mj

D(Q̄l‖P̃N)
))
. (219)

Now if we let P̃A = Q̄j and P̃N =
∑

l∈Mi
Q̄l

M−1 , then

βj(φ
T
n |P̃N, P̃A) ≥ (n+ 1)−M exp(−nGi(Q̄)) (220)

= exp
(
− n(Gi(Q̄) + ηn,M )

)
(221)

> exp(−nλ), (222)

which contradicts that (119) holds. Therefore, we have show that for any type-based test φT
n satisfying (119), we must have

φT
n (Q) = Hr for any Q satisfying (214).

H. Justification of Properties of Exponent Tradeoff

We first prove that LDi(λ, PN, PA) = 0 if and only if λ ≥ GDM (PN, PA). Recall the definition of LDi(·) in (15) and the
definition of Gi(·) in (4). Note that for each i ∈ [M ], any λ ∈ R+ and any (PN, PA), LDi(λ, PN, PA) = 0 if there exists
(j, k) ∈ [M ]2 such that j 6= k, Gj(Q

∗) ≤ λ and Gk(Q∗) ≤ λ where Q∗ is a collection of distributions with Q∗i = PA and
Q∗t = PN for all t ∈Mi. For any j ∈Mi, we have

Gj(Q
∗) =

∑
t∈(Mi∩Mj)

D

(
Q∗t

∥∥∥∥
∑
t∈Mj

Ql

M − 1

)
+D

(
Q∗i

∥∥∥∥
∑
t∈Mj

Ql

M − 1

)
(223)

= (M − 2)D

(
PN

∥∥∥∥ (M − 2)PN + PA

M − 1

)
+D

(
PA

∥∥∥∥ (M − 2)PN + PA

M − 1

)
(224)

= GDM (PN, PA). (225)

Furthermore, if j = i, then

Gj(Q
∗) =

∑
t∈Mi

D

(
Q∗t

∥∥∥∥
∑
t∈Mj

Ql

M − 1

)
= 0. (226)

Combining (225) and (226), we have for each i ∈ [M ],

max
(j,k)∈[M ]2:j 6=k

max{Gj(Q
∗),Gk(Q∗)} = GDM (PN, PA). (227)

Therefore, if λ = GDM (PN, PA), for each i ∈ [M ], we can find (j, k) ∈ [M ]2 such that j 6= k, max{Gj(Q
∗),Gk(Q∗)} ≤ λ

and thus LDi(λ, PN, PA) = 0. The justification is completed by the above argument with the fact that LDi(λ, PN, PA) is
non-increasing in λ for each i ∈ [M ] and any (PN, PA).
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We then prove (36). Since LDi(λ, PN, PA) is non-increasing in λ for each i ∈ [M ] and any (PN, PA), then we have

sup
λ∈R+

LDi(λ, PN, PA)

≤ LDi(0, PN, PA) (228)

= min
(j,k)∈[M ]2:j 6=k

min
Q∈(P(X ))M :

Gj(Q)=0, Gk(Q)=0

(
D(Qi‖PA) +

∑
l∈Mi

D(Ql‖PN)
)

(229)

= min
(j,k)∈[M ]2:j 6=k

min
Q∈(P(X ))M :
Q1=Q2=...QM

(
D(Qi‖PA) +

∑
l∈Mi

D(Ql‖PN)
)

(230)

= min
Q∈P(X )

(
D(Q‖PA) + (M − 1)D(Q‖PN)

)
, (231)

where (230) follows from the definition of Gi(·) in (4). The proof of (36) is thus completed.

I. Justification of (111)

For any i ∈ [M ], j ∈Mi, k ∈Mi,j , given any pair of distributions (PN, PA),

CovPi
[ıi,j(Xt|PN, PA)ıi,k(Xt|PN, PA)]

= EPi
[ıi,j(Xt|PN, PA)ıi,k(Xt|PN, PA)]− EPi

[ıi,j(Xt|PN, PA)]EPi
[ıi,k(Xt|PN, PA)] (232)

= EPi
[ıi,j(Xt|PN, PA)ıi,k(Xt|PN, PA)]−

(
GDM (PN, PA)

)2
, (233)

where (233) follows from (109). The first term in (233) can be further calculated as follows:

EPi
[ıi,j(Xt|PN, PA)ıi,k(Xt|PN, PA)]

= EPi

[(
ı1(Xi,t|PN, PA) +

∑
l∈Mi,j

ı2(Xl,t|PN, PA)
)(
ı1(Xi,t|PN, PA) +

∑
l̄∈Mi,k

ı2(Xl̄,t|PN, PA)
)]

(234)

= EPi

[(
ı1(Xi,t|PN, PA)

)2]
+ EPi

[ ∑
l̄∈Mi,k

ı1(Xi,t|PN, PA)ı2(Xl̄,t|PN, PA)
]

+ EPi

[ ∑
l∈Mi,j

ı1(Xi,t|PN, PA)ı2(Xl,t|PN, PA)
]

+ EPi

[( ∑
l∈Mi,j

ı2(Xl,t|PN, PA)
)( ∑

l̄∈Mi,k

ı2(Xl̄,t|PN, PA)
)]
. (235)

We can calculate each term in (235). The first term in (235) satisfies

EPi

[(
ı1(Xi,t|PN, PA)

)2]
= EPA

[(
ı1(X|PN, PA)

)2]
. (236)

The second term in (235) satisfies

EPi

[ ∑
l̄∈Mi,k

ı1(Xi,t|PN, PA)ı2(Xl̄,t|PN, PA)
]

=
∑

l̄∈Mi,k

EPi
[ı1(Xi,t|PN, PA)]EPi

[ı2(Xl̄,t|PN, PA)] (237)

= (M − 2)EPA
[ı1(X|PN, PA)]EPN

[ı2(X|PN, PA)]. (238)

Similarly, the third term in (235) satisfies

EPi

[ ∑
l∈Mi,j

ı1(Xk,t|PN, PA)ı2(Xl,t|PN, PA)
]

= (M − 2)EPA
[ı1(X|PN, PA)]EPN

[ı2(X|PN, PA)]. (239)
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Finally, the last term in (235) satisfies

EPi

[( ∑
l∈Mi,j

ı2(Xl,t|PN, PA)
)( ∑

l̄∈Mi,k

ı2(Xl̄,t|PN, PA)
)]

=
∑

l∈Mi,j

EPi

[
ı2(Xl,t|PN, PA)

( ∑
l̄∈Mi,k

ı2(Xl̄,t|PN, PA)
)]

(240)

= EPi

[
ı2(Xk,t|PN, PA)

( ∑
l̄∈Mi,k

ı2(Xl̄,t|PN, PA)
)]

+
∑

l∈Mi,j,k

EPi

[
ı2(Xl,t|PN, PA)

( ∑
l̄∈Mi,k

ı2(Xl̄,t|PN, PA)
)]

(241)

=
∑

l̄∈Mi,k

EPi
[ı2(Xk,t|PN, PA)]EPi

[ı2(Xl̄,t|PN, PA)]

+
∑

l∈Mi,j,k

EPi

[(
ı2(Xl,t|PN, PA)

)2
+ ı2(Xl,t|PN, PA)

( ∑
l̄∈Mi,k,l

ı2(Xl̄,t|PN, PA)
)]

(242)

= (M − 2)
(
EPN

[ı2(X|PN, PA)]
)2

+ (M − 3)EPN

[(
ı2(X|PN, PA)

)2]
+ (M − 3)2

(
EPN

[ı2(X|PN, PA)]
)2

(243)

= (M2 − 5M + 7)
(
EPN

[ı2(X|PN, PA)]
)2

+ (M − 3)EPN

[(
ı2(X|PN, PA)

)2]
. (244)

Combining (233) to (244), we have that for any i ∈ [M ], j ∈Mi, k ∈Mi,j ,

CovPi
[ıi,j(Xt|PN, PA)ıi,k(Xt|PN, PA)]

= −
(
GDM (PN, PA)

)2
+ EPA

[(
ı1(X|PN, PA)

)2]
+ 2(M − 2)EPA [ı1(X|PN, PA)]EPN [ı2(X|PN, PA)]

+ (M2 − 5M + 7)
(
EPN [ı2(X|PN, PA)]

)2
+ (M − 3)EPN

[(
ı2(X|PN, PA)

)2]
. (245)

J. Justification of (195)

Given any B ∈ S, using the Berry-Esseen theorem and Taylor expansions in (175), (176), we have that for each C ∈ SB

PB{GC(T̂Xn
1
, . . . , T̂Xn

M
) < GB(T̂Xn

1
, . . . , T̂Xn

M
)}

≤ PB{GC(T̂Xn
1
, . . . , T̂Xn

M
) < GB(T̂Xn

1
, . . . , T̂Xn

M
),Xn ∈ TB(PB)}+ PB{Xn /∈ TB(PB)} (246)

≤ PB
{

1

n

∑
t∈[n]

( ∑
j∈(B∩MC)

ı1,B(j)(Xj,t|B, C, PN,PB) +
∑

j∈(MB∩MC)

ı2(Xj,t)
)
< O

(
log n

n

)}
+

2M |X |
n2

(247)

≤ Q

(√
n(GD(B, C, PN,PB) +O( logn

n ))√
V(B, C, PN,PB)

)
+

6T(B, C, PN,PB)√
n(V(B, C, PN,PB))3

+
2M |X |
n2

(248)

≤ exp

(
−
n(GD(B, C, PN,PB) +O( logn

n ))2

2V(B, C, PN,PB)

)
+

6T(B, C, PN,PB)√
n(V(B, C, PN,PB))3

+
2M |X |
n2

(249)

=: κT,n = O

(
1√
n

)
, (250)

where (247) follows from (173).
Using (250), we have that for any B ∈ S,

PB{hS(Xn) = min
C∈SB

GC(T̂Xn
1
, . . . , T̂Xn

M
)}

= PB{GB(T̂Xn
1
, . . . , T̂Xn

M
) ≤ min

C∈SB
GC(T̂Xn

1
, . . . , T̂Xn

M
)} (251)

≥ 1−
∑
C∈SB

PB{GC(T̂Xn
1
, . . . , T̂Xn

M
) < GB(T̂Xn

1
, . . . , T̂Xn

M
)} (252)

≥ 1− (|S| − 1)κT,n (253)

= 1−O
(

1√
n

)
. (254)
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