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Abstract

We study spatially coupled LDPC codes that allow access to sub-blocks much smaller than the full code block.

Sub-block access is realized by a semi-global decoder that decodes a chosen target sub-block by only accessing the

target, plus a prescribed number of helper sub-blocks adjacent in the code chain. This paper develops a theoretical

methodology for analyzing the semi-global decoding performance of spatially coupled LDPC codes constructed from

protographs. The main result shows that semi-global decoding thresholds can be derived from certain thresholds we

define for the single-sub-block graph. These characterizing thresholds are also used for deriving lower bounds on

the decoder’s performance over channels with variability across sub-blocks, which are motivated by applications in

data-storage.

Keywords: coding for memories, decoding thresholds, density evolution, Markov chains, multi sub-block coding,

spatially coupled low-density parity-check codes.

I. INTRODUCTION

Spatially coupled low-density parity-check (SC-LDPC) codes [1] have been shown to be an attractive class of

graph codes, thanks to their many desired properties. Most of their good properties stem from the convolution-like

structure imposed on their code graphs. Their structure as a terminated chain allows achieving capacity universally

with belief-propagation (BP) decoding [2]. Thanks to the so called threshold-saturation effect, approaching capacity

with BP decoding is possible with much simpler graph structures than classical LDPC codes, thus alleviating

many of the notorious finite-block issues, and offering superior performance in practice. A very popular and

effective construction method for SC-LDPC codes uses chaining of coupled protographs [3], where extremely

simple protographs (e.g. regular) are often sufficient for extremely good performance [4], [5], [6], [7].

Another advantage of the convolutional structure lies in its enabling of efficient low-latency decoders such as the

window decoder [8], [9], [10], in which at each step the decoder spans a subset of the code graph and runs BP on

it, and then shifts the window to a new position. More recent work further enhances protograph-based SC-LDPC

codes and their decoding, through several novel ideas such as optimizing edge spreading [11], [12], [13], connecting

sub-chains [14], and doping [15]. In this paper, we harness the convolutional structure of SC-LDPC codes toward a

new feature: allowing selective decoding of target sub-blocks within the full code block, without requiring to start

the decoding from the beginning of the block. This feature is attractive for deploying SC-LDPC codes in storage

applications, which require read access to small units of data at low latency.

In a recent series of papers [16], [17], [18], [19], a new type of SC-LDPC codes for efficient sub-block access is

presented and studied. These codes, called SC-LDPCL codes (suffix ’L’ stands for locality), can be decoded locally

at the level of sub-blocks that are much smaller than the full code block, thus offering fast access to the coded

information alongside the strong reliability of the global full-block decoding. Earlier work on codes with sub-block

access includes multi-sub-block Reed-Solomon codes in [20], and multi-sub-block LDPC codes (without spatial

coupling) in [21]. Toward the analysis and design of SC-LDPC with sub-block access, we present in this paper a

detailed characterization of a BP-based decoding mode called semi-global (SG) decoding, which allows decoding

a target sub-block by accessing only the target and a few other sub-blocks around it in the code chain. As a result,

SG decoding offers improved correction capabilities for the target sub-block, with access and complexity costs that

are much lower compared to full global decoding of the entire block. The SG decoding mode was defined in [17],

and some tools to evaluate its performance on SC-LDPCL codes are given in [16]. These initial results motivate

http://arxiv.org/abs/2010.10616v1
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the development of a theoretical methodology toward constructing SC-LDPCL codes with maximal SG-decoding

performance, which we pursue in this paper. The key component in the proposed theoretical methodology is the

characterization of certain thresholds for the single sub-block code that govern the decoding performance in the SG

mode involving d+ 1 sub-blocks (the target and d other sub-blocks called helpers). As a result, code analysis and

construction are reduced to calculation and maximization of these single-sub-block thresholds, in comparison to

the unwieldy analysis and search over large graphs encompassing all the sub-blocks participating in SG decoding.

The main idea driving the new methodology is to break down the density-evolution analysis of the full SG decoder

to density evolution on single sub-blocks, while formalizing and accounting for the information transfer between

subsequent sub-blocks in the decoding process. For simplicity and clarity, we present the results assuming density

evolution over the binary erasure channel (BEC), but the results can be extended to other channels using known

extensions of the density-evolution method [22], [23], [24].

The paper is organized as follows. In Section II, we give the necessary background needed for the results presented

in the paper. This includes a general construction of SC-LDPCL codes based on binary-regular protographs, a

definition of the SG decoding mode, and some preliminaries on Markov chains needed for the codes’ analysis

on channels with memory in Section V. In Section III, we study SG decoding from the perspective of a single

sub-block (SB) decoded in the process. We define various SB thresholds, discuss their operational meanings, and

show how to calculate them. The derived results in this section are used in later sections to analyze the full SG

process. In Section IV, we define and characterize thresholds for SG decoding (SG thresholds). In particular, we

focus on memoryless channels and consider a limiting case, where the number of accessed SBs is large. Our results

connect between SG thresholds and SB thresholds. In Section V, we study the performance of SG decoding over a

practically motivated data-storage model in which variability is introduced to the channel quality (as motivated by

recent empirical studies [25], [26]). While [16] considered a SB varying i.i.d. model, in this paper we allow spatial

memory in the SBs’ channel parameters, for which we consider a model based on Markov chains.

The useful outcome from the results of this paper is that by examining only the local structure of the single-

SB graph, we can tell a lot about the code’s performance under different decoding modes. The values of the SB

thresholds frame which channel parameters can be handled with local decoding (target only), which require SG

decoding and with how many helpers, which require SG decoding to start from a termination sub-block, and which

may only be handled by the classical global full-block decoder. To demonstrate this ability, in Section V-E we

examine all possible unit-memory SC-LDPCL codes (up to symmetries) constructed from two regular protographs,

and find the most attractive choice in different scenarios of channel parameters, channel memory, and the number

of helpers accessed by the SG decoder.

II. BACKGROUND

A. Notations

The set of natural numbers is denoted by N. We use calligraphic letters (e.g., V, C, E ,S) or curly brackets to

mark discrete sets.

Scalars are commonly denoted by lowercase Latin or Greek letters, for example, i, j, k, l or ǫ, δ, ψ, φ. Random

variables are denoted by uppercase letters (e.g, X,Y,Z). For vector notations we add an underline (e.g., d, δ). For a

k-dimensional vector d = (d1, . . . , dk), we mark by ‖d‖1 its l1-norm, i.e., ‖d‖1 =
∑k

i=1 |di|. For two k-dimensional

vectors δ = (δ1, . . . , δk) and ν = (ν1, . . . , νk) we write δ � ν if for every i ∈ {1, . . . , k}, we have δi ≤ νi. If in

addition, δi < νi for some i ∈ {1, . . . , k}, then we write δ ≺ ν.

Matrices are denoted by uppercase letters (e.g., B,P,Q). The element in the i-th row and j-th column of a matrix

A is marked by square brackets: [A]i,j . If all of the elements of a k × l matrix A equal to some scalar a, then we

write A = ak×l. For two matrices A1, A2, (A1;A2) and (A1 A2) stand for vertical and horizontal concatenation,

respectively, of the matrices A1 and A2. The Kronecker product of matrices is denoted by ⊗.

B. SC-LDPC Codes with Sub-Block Locality

An LDPC protograph is a (small) bipartite graph G = (V ∪ C, E), where V, C, and E are the sets of variable nodes

(VNs), check nodes (CNs), and edges, respectively. A protograph G = (V ∪ C, E) is frequently represented through

a bi-adjacency matrix B (called protomatrix), where the VNs in V are indexed by the columns of B, the CNs in

C by the rows, and an element in B represents the number of edges connecting the corresponding VN and CN. A
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Tanner graph is generated from a protograph by a lifting operation specified by some lifting parameter (see [4]). The

design rate of the derived LDPC code is independent of the lifting parameter and given by 1−
∣
∣C
∣
∣/
∣
∣V

∣
∣. In the limit

of large lifting parameters, we can analyze the performance of the BP decoder on the resulting ensemble of Tanner

graphs via density evolution (DE) on the protograph. The BP decoding threshold of an LDPC protograph is defined

as the largest (worst) channel parameter such that DE on the protograph converges to error-free distributions for

the protograph’s VNs. In this paper, we pursue such asymptotic protograph analysis for the binary erasure channel

BEC(ǫ), but the same analysis can be extended to other channels, e.g., through the EXIT method [23]. Specifically,

we write ǫ∗(B) for the asymptotic threshold of the protograph B.

An (l, r)-regular SC-LDPC protograph1 is constructed as follows. Let B = 1l×r be an all-ones base matrix

representing an (l, r)-regular LDPC protograph, let T ≥ 1 be an integer memory parameter, and let {Bτ}
T
τ=0 be

binary matrices such that B =
∑T

τ=0Bτ (in this paper we consider only binary B matrices). Coupling M > 1
copies of B amounts to diagonally placing M copies of

(
B0;B1; · · · ;BT

)
in the coupled matrix. As an example,

for T = 1 the coupled protomatrix is given by




















B0

B1

. . .

B0

B1 B0

B1 B0

B1

. . .

B0

B1





















. (1)

︸︷︷︸
1

︸︷︷︸
···

︸︷︷︸
m−1

︸︷︷︸
m

︸︷︷︸
m+1

︸︷︷︸
···

︸︷︷︸

M

Throughout this paper, we consider (l, r)-regular SC-LDPC protographs with memory T = 1, i.e., B = 1l×r and

B1 = 1l×r −B0. We call such codes unit-memory binary-regular SC-LDPC codes. The results can be extended to

higher-memory codes with some technical modifications.

To endow SC-LDPC codes with more flexible access, we divide the codeword to M sub-blocks (SBs), where each

SB corresponds to one copy of (B0; · · · ;BT ) in the coupled matrix; the SB size is r times the lifting factor. We

define an (l, r, t)-regular SC-LDPC code with SB locality (in short SC-LDPCL) to be an (l, r)-regular SC-LDPC

protograph with a partitioning that is constrained such that B0 has l − t ≥ 2 all-one rows and t mixed rows (i.e.,

with ones and zeros). The all-one and mixed rows correspond to local checks (LC) and coupling checks (CC),

respectively (LCs are connected to VNs only inside SBs, and CCs connect between SBs). It was proved in [16]

that this is a general description of an (l, r, t)-regular SC-LDPCL protograph that allows local SB decoding. The

resulting protograph can be visualized as a chain of M > 1 coupled SBs, where each SB is an (l − t, r)-regular

local code, and adjacent SBs are connected via t coupling checks with connections specified by the t mixed rows

in B0.

Let Bloc be the (l − t) × r all-ones matrix that forms the local part of B0, and let Bleft, Bright be the t × r
matrices that form the coupling part of B0, B1, respectively, i.e., B0 = (Bleft ; Bloc) , B1 =

(
Bright ; 0

(l−t)×r
)
.

1the term regular refers to the protomatrix B, while the resulting coupled graph is not regular due to termination.
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Then, (1) can be re-written as






























Bleft

Bloc

Bright

. . .

Bleft

Bloc

Bright Bleft

Bloc

Bright Bleft

Bloc

Bright

. . .

Bleft

Bloc

Bright































. (2)

In view of (2), Bleft and Bright connect a SB to its neighbors on the left and right, respectively.

In [17], a special case of SC-LDPCL protographs are introduced. In particular, a unit-memory (l, r, t)-regular

SC-LDPCL protograph with t ∈ {1, 2, . . . , l−2} is constructed by setting Bleft to have a uniform staircase structure

(uniform cutting-vector partition [7]). That is, if we set w = ⌊r/(t+ 1)⌋, then

[Bleft]i,j =

{
1 1 ≤ j ≤ iw
0 otherwise

[Bright]i,j =

{
1 iw + 1 ≤ j ≤ r
0 otherwise

. (3)

Example 1. For l = 3, r = 6, t = 1, the construction in [17] yields






Bleft

Bloc

Bright







=







1 1 1 0 0 0

1 1 1 1 1 1
1 1 1 1 1 1

0 0 0 1 1 1






. (4)

Figure 1 illustrates a single SB in the (l = 3, r = 6, t = 1) SC-LDPCL protograph from [17]. This example will

serve as a running example throughout the paper.

Example 2. For l = 4, r = 16, t = 2, the following partition induces a different SC-LDPCL protograph (not

covered by the construction of [17])










Bleft

Bloc

Bright











=











1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1
0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0











.

C. Semi-Global Decoding

SC-LDPCL codes can be decoded locally for fast read access (as done in [21] for non-SC LDPC codes) and

globally for increased data reliability. Semi-global (SG) decoding [17], [18] is another decoding mode for SC-

LDPCL codes that offers a middle way between local and global decoding.
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LC

LC

CC CC

Bleft Bright

Bloc

Fig. 1: Illustration of the (l = 3, r = 6, t = 1) SC-LDPCL SB protograph in (4). The connections corresponding

to Bleft,Bloc, and Bright, are drawn in brown, blue, and magenta, respectively.

m m+ 1 m+ 2m− 1m− 2 . . .step 1 . . .

m m+ 1 m+ 2m− 1m− 2 . . .step 2 . . .

helper

phase

m m+ 1 m+ 2m− 1m− 2 . . .step 3 . . .
target

phase

Fig. 2: Example of semi-global decoding with target SB m ∈ [1 : M ], and d = 4; the steps are shown from top

to bottom. The gray SBs are those that are decoded in a given step, and the arrows represent information passed

between SBs.

1) Decoding-Mode Description: In SG decoding, the user is interested in SB m ∈ {1, . . . ,M}, which is called

the target SB, and the decoder decodes it with the help of additional d neighbor SBs called helper SBs. d is

a parameter that bounds the number of additional SBs read for decoding one SB; hence, the smaller d is, the

faster access the code offers for single SBs. In semi-global decoding there are two phases: the helper phase, and

the target phase. In the former, helper SBs are decoded locally, incorporating information from other previously

decoded helper SBs. In the latter, the target SB is decoded while incorporating information from its neighboring

helper SBs. Figure 2 exemplifies semi-global decoding with d = 4 helper SBs. In this example, the helper phase

consists of decoding helper SBs m− 2 and m+ 2 locally, and decoding helper SBs m − 1 and m + 1 using the

information from helper SBs m−2 and m+2, respectively. In the target phase, SB m is decoded using information

from both SB m− 1 and m+ 1. Note that semi-global decoding resembles window decoding of SC-LDPC codes

(see [8], [9], [10]) but differs in: 1) for a given target, there is no overlap between two window positions, which

decreases latency and complexity, and 2) decoding can start close to the target SB (i.e., not necessarily at the first

or last SBs), allowing low-latency access to SBs anywhere in the block.

Semi-global decoding is highly motivated by the locality property of SBs in SC-LDPCL codes (SBs can be

decoded locally), the spatial coupling of SBs (SBs can help their neighbor SBs), and by practical channels in

storage devices, i.e., channels with variability [25].

2) Semi-Global Density-Evolution: When analyzing semi-global decoding in the asymptotic regime (i.e., per-

forming DE), we can exploit the sequential nature of the algorithm to reduce the analysis over d SBs to analysis

of individual SBs with information carried between adjacent SBs. This information is represented in the analysis

through fixed DE values input to the SB’s DE calculation. We develop such a method in this paper, where for

simplicity the DE is performed on the BEC such that DE values are simply erasure probabilities [22].

For a left (resp. right) helper SBs, the DE values from the previously decoded helper are directed to the t CCs

corresponding to the t rows of Bleft (resp. Bright) and remain fixed during the SB’s DE iterations. We call these



6

LC

LC

CC CCδL δR

(a): Target

LC

LC

CC CC

incoming

CC

outgoing

CC

δI δO

(b): Helper

Fig. 3: The graphs corresponding to the target (a) and helper (b) SBs during semi-global decoding for the SB in

Example 1. Dashed edges do not participate during the SB decoding, except in sending DE values δO at the end.

CCs, incoming CCs and we denote by δI ∈ [0, 1]t the incoming DE values; δI affects the DE equations for incoming

CCs. Note that for termination helper SBs, i.e., the endpoint SBs in the coupled chain, we have δI = 0. When the

SB’s DE iterations stop (i.e., reach a DE fixed-point or any other stopping criteria), the outgoing DE values, which

are denoted by δO ∈ [0, 1]t are calculated and sent to the next SB via the t outgoing CCs corresponding to the t
rows of Bright, for left helper SBs, or Bright, for right helper SBs. These outgoing DE values turn into incoming

DE values for the next helper SB, which runs a similar process and outputs DE values to the next SB, etc. We call

the DE values passing between SBs inter-SB DE values.

Similarly, the target SB receives incoming DE values from both of its neighbor helper SBs, and these DE values

are kept fixed during the target’s DE iterations. We denote the incoming DE values to the target from the left

(resp. right) neighbor by δL ∈ [0, 1]t (resp. δR ∈ [0, 1]t); δL (resp. δR) is directed to the t left (resp. right) CCs

corresponding to the t rows of Bleft (resp. Bright). Same as for the helper SB, DE iterations at the target are

executed until some stopping criteria is met. If there is some non-trivial DE fixed point (i.e., not at the origin),

then decoding will fail; we call such a fixed-point SG-DE fixed-point.

Example 3. Figure 3 illustrates the above notations for the SB in Example 1. Note that since t = 1, then

δI , δO, δR, δL are scalars.

In [18], [16], DE equations for SG decoding of cutting-vector-based SC-LDPCL codes are derived. In this paper,

we extend the results to general constructions, and give a detailed characterization of the decoder’s performance

(i.e., thresholds).

D. Markov Chains

In Section V, we study the performance of semi-global decoding over a channel model which is based on Markov

chains. We now give a brief introduction to the basic notations and properties of Markov chains from [27]. We will

consider discrete Markov chains, i.e., the time index and state space are discrete. In our context, the time index is

a SB index, and the state space represents the channel quality. Let S = {s1, s2, . . . , s|S|} be the state space. The

random process {Xk}
∞
k=1 is said to be a Markov chain if

Pr
(
Xk = sj

∣
∣Xk−1 = si,Xk−2 = sik−2

, . . . ,X1 = si1
)
= Pr

(
Xk = sj

∣
∣Xk−1 = si

)
, ∀2 ≤ k ,∀1 ≤ i, j ≤ |S|.

For every i, j ∈ {1, 2, . . . , |S|}, we write Pr
(
Xk = sj

∣
∣Xk−1 = si

)
= Pi,j , where P is a |S| × |S| transition-

probability matrix, i.e., a matrix with non-negative entries and rows summing-up to 1.

The Chapman-Kolmogorov equations state that for every i, j ∈ {1, 2, . . . , |S|} and k, d ∈ N,

Pr (Xk+d = sj|Xk = si) =
[

P d
]

i,j
, (5)
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where P d is the d-th power of P .

A distribution ν =
(
ν1, ν2, . . . , ν|S|

)
such that for every j ∈ {1, 2 . . . , |S|}, νj = Pr(X1 = sj), is a stationary

distribution if for every k ∈ N and every j ∈ {1, 2, . . . , |S|}, νj = Pr(Xk = sj). This happens if and only if ν is

a left eigenvector of P with eigenvalue 1.

Let {Xk}
∞
k=1 be a Markov chain with a transition matrix P , and let ν be a stationary distribution for {Xk}

∞
k=1.

Let m be a large integer. If we consider the reverse process Yk = Xm−k, then Yk is a Markov chain with a transition

matrix P̂ given by

P̂i,j =
νj
νi
Pj,i, ∀1 ≤ i, j ≤ |S|, (6)

and with the same stationary distribution ν. Finally, let Zk = (Xm+k,Xm−k) be a two-dimensional process taking

values in S × S . Then, Zk is a Markov chain with a transition matrix P ⊗ P̂ , where ⊗ stands for the Kronecker

product:

Pr(Zk = (sj1 , sj2)
∣
∣Zk−1 = (si1 , si2) , Zk−2 = (si3 , si4) , . . .)

=Pr
(
Xm+k = sj1 ,Xm−k = sj2

∣
∣Xm+k−1 = si1 ,Xm−k+1 = si2 ,Xm+k−2 = si3 ,Xm−k+2 = si4 . . .

)

=Pr
(
Xm+k = sj1

∣
∣Xm+k−1 = si1 ,Xm−k+1 = si2 ,Xm+k−2 = si3 ,Xm−k+2 = si4 . . .

)

·Pr
(
Xm−k = sj2

∣
∣Xm+k = sj1 ,Xm+k−1 = si1 ,Xm−k+1 = si2 ,Xm+k−2 = si3 ,Xm−k+2 = si4 . . .

)

=Pr
(
Xm+k = sj1

∣
∣Xm+k−1 = si1

)
· Pr

(
Xm−k = sj2

∣
∣Xm−k+1 = si2

)

=Pi1,j1 · P̂i2,j2 .

III. SINGLE-SUB-BLOCK ANALYSIS

In this section, we study the semi-global decoding procedure from the perspective of a single SB decoded in the

process (with inputs from adjacent SBs) and derive results that will be used in later sections when we characterize

and analyze the full process of semi-global decoding.

A. Degree Profile

Definition 1. Let a, b ∈ N such that a < b, and let A ∈ {0, 1}a×b be a protomatrix. The degree profile of A consists

of two vectors dC(A) ∈ N
a, dV (A) ∈ N

b given by

[dC(A)]i =

b∑

j=1

Ai,j , 1 ≤ i ≤ a,

[dV (A)]j =

a∑

i=1

Ai,j , 1 ≤ j ≤ b.

Note that not every pair of vectors dC ∈ N
a, dV ∈ N

b is a realizable degree profile of some protomatrix (i.e.,

a protomatrix with dC ∈ N
a and dV ∈ N

b as its degree profile exists). For every protomatrix A, we must have

‖dC(A)‖1 =
∑a

i=1

∑b
j=1Ai,j = ‖dV (A)‖1. If we allow non-binary protomatrices, then this condition suffices for

a realizable degree profile. For binary protomatrices, this condition is not sufficient. For an example of a non-

realizable degree profile, consider a = 3, b = 4 and dC = (4, 4, 1), dV = (1, 2, 3, 3). Since the first two rows are

full, then the VN degrees should be all at least 2.

Consider a single SB (Bleft;Bloc;Bright) in the coupled protograph. Since by construction Bleft + Bright =
1t×r, Bloc = 1(l−t)×r , then

dC(Bleft) + dC(Bright) = r1×t, (7a)

dC(Bloc) = r1×(l−t), (7b)

dV (Bleft) + dV (Bright) = t1×r (7c)

dV (Bloc) = (l − t)1×r. (7d)
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B. Erasure Transfer in Binary-Regular Spatially Coupled Protographs

We now move to the characterization and analysis of a helper SB during semi-global decoding (see Figure 3(b)

for an example). Our derivations assume that the underlying base (uncoupled) protograph is binary and regular

(see Section II-B). To analyze the performance of SG decoders in the asymptotic regime, we now develop a DE

framework that captures the transfer of erasures between adjacent SBs through the vectors δI , δO, δR, δL. This

analysis is an extension of [16], [18] which focused on cutting-vector constructions. Decoding of sub-graphs with

incoming and outgoing DE values was considered in [14], for the purpose of inter-connecting sub-chains of SC-

LDPC codes. In this work, smaller units (SBs) are inter-connected, and the performance objective is ability to

decode a single target SB with an efficient SG decoder.

The propositions in this and the next sub-sections will be used in Sections IV and V to prove results concerning

the performance of the semi-global decoder on general (l, r, t) SC-LDPCL codes constructed from a binary base

protomatrix B. In what follows, we distinguish between helper SBs that have lower SB indices than the target SB

(e.g., SBs m− 2,m− 1 in Figure 2) and helper SBs that have higher SB indices (SBs m+1,m+ 2 in Figure 2).

We call the former left helper SBs and the latter right helper SBs.

Definition 2. Consider a helper SB during semi-global decoding. Let ǫ ∈ [0, 1] be a SB erasure rate, and let

δI ∈ [0, 1]t be the incoming DE values from a previously decoded helper. The erasure-transfer function calculates

the DE values outgoing towards the next SB (i.e., δO ∈ [0, 1]t) given ǫ and δI . We denote by ∆L (ǫ, δI) and

∆R (ǫ, δI) the erasure-transfer functions corresponding to right and left helper SBs, respectively (see Figure 4).

Note that ∆L (·, ·) and ∆R (·, ·) depend on the connectivity imposed by (Bleft ; Bloc ; Bright). In particular, for

a left (respectively right) helper SB, the incoming and outgoing CCs are represented by the rows of Bleft and Bright

(respectively Bright and Bleft), respectively.

Helper Helper

ǫ

(a)

∆L (ǫ, δI)
δI

∆R (ǫ, δI) Helper Helper

ǫ

(b)

δI

Fig. 4: Illustration of the operational meaning of ∆L (ǫ, δI) and ∆R (ǫ, δI): (a) a left helper SB; (b) a right helper

SB.

Let (Bleft;Bloc;Bright) ∈ {0, 1}(t+l)×r be a protograph of a left helper SB in an SC-LDPCL protograph (the

right-helper case follows similarly). Let σ1, . . . , σr be the bit-erasure rates at the VNs of the SB when the helper-

DE process stops (with some stopping criteria). Then, the outgoing DE values from this SB (to the next helper)

δO = (δO,1, . . . , δO,t) are given by

δO,i = 1−
r∏

j=1

(1− σj)
[Bright]i,j , ∀1 ≤ i ≤ t. (8)

For right helper SBs, the above holds with the substitution of Bright with Bleft. Note that the values σ1, . . . , σr
depend on the channel parameter and the incoming DE values to the helper.

Proposition 1. Consider a helper SB in a unit-memory binary-regular SC-LDPCL protograph. Then, the bit-erasure

rates of all of the VNs in the SB are zero if and only if δO = 0.

Proof. In view of (8), if for every j ∈ {1, . . . , r}, σj = 0, then for every i ∈ {1, . . . , t}, δO,i = 0. For the converse,

assume to the contrary that for every i ∈ {1, . . . , t}, δO,i = 0, and there exists a VN j ∈ {1, 2, . . . , r} such that

σj > 0. We divide the proof into two cases: 1) VN j is connected to all of the incoming CCs, 2) VN j is not

connected to all of the incoming CCs.

1) Since VN j is connected to all of the incoming CCs and all the LCs (every VN is connected to all of the

LCs), and σj > 0, then all of the CNs during the SB’s DE process receive positive (and bounded away from
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zero) values from VN j. Consequently, all of the VNs in the SB receive positive (and bounded away from

zero) values from all the CNs that participate in the SB’s decoding. We conclude that at the end of the DE

process, σj > 0 for every j ∈ {1, . . . , r}, contradicting (8).

2) Since VN j is not connected to all of the incoming CCs, and the SC protograph is based on binary-regular

base protographs, then VN j is connected to some outgoing CC i ∈ {1, . . . , t}, i.e., [Bright]i,j = 1. In view

of (8), we get δO,i > 1− (1− σj) = σj > 0, a contradiction.

The meaning of Proposition 1 is that, for unit-memory binary-regular SC-LDPC codes, providing full outgoing

information by a helper is equivalent to the helper SB’s full decoding. This fact simplifies the analysis and

construction pursued later in the paper.

For the following derivations, consider the DE equation for the (l, r) LDPC ensemble [22], i.e.,

xℓ(ǫ) = ǫ ·
(

1− (1− xℓ−1(ǫ))
r−1

)l−1
, x−1 = 1. (9)

Let ǫ∗l,r be the asymptotic threshold of the (l, r) LDPC ensemble, and for every ǫ ∈ [0, 1] let x(ǫ) = limℓ→∞ xℓ(ǫ)
such that

x(ǫ) = ǫ ·
(

1− (1− x(ǫ))r−1
)l−1

. (10)

The value x(ǫ) is commonly referred to as a fixed point for the DE equation (9). It is known that x(ǫ) = 0 if and

only if ǫ < ǫ∗l,r.

The following Proposition provides a tool we use in the sequel for bounding the SG decoding performance using

properties of the single-SB code.

Proposition 2. Let dC (Bleft) = (d1, . . . , dt) be the check degree profile of Bleft. For every ǫ ∈ [0, 1] define

φ(ǫ) = (φ1(ǫ), φ2(ǫ), . . . , φt(ǫ)) and ψ(ǫ) = (ψ1(ǫ), ψ2(ǫ), . . . , ψt(ǫ)) by

φi(ǫ) , 1− (1− x(ǫ))r−di

ψi(ǫ) , 1− (1− x(ǫ))di
, 1 ≤ i ≤ t. (11)

Then, for every ǫ ∈ [0, 1]

∆L

(
ǫ, φ(ǫ)

)
� φ(ǫ), (12a)

∆R

(
ǫ, ψ(ǫ)

)
� ψ(ǫ). (12b)

Proof. For ǫ < ǫ∗l,r we have x(ǫ) = 0 and thus φ(ǫ) = ψ(ǫ) = 0. In this case, (12a) and (12b) follow trivially.

For ǫ ≥ ǫ∗l,r we will first show that if δL = φ(ǫ) and δR = ψ(ǫ), then x(ǫ) > 0 is a SG-DE fixed-point (see

Section II-C2), i.e., we will show that if all VN-to-CN values in some DE iteration ℓ are equal to xℓ(ǫ) = x(ǫ),
then after one iteration, all of the the VN-to-CN values in iteration ℓ+ 1 remain x(ǫ).

Consider row i ∈ {1, 2, . . . , t} in Bleft. This row represents a coupling check node with an incoming DE value

φi(ǫ) given in (11), and di edges between it and the VNs of the SB. By our assumption, xℓ(ǫ) = x(ǫ). Thus, if we

mark the outgoing CN-to-VN message from a left coupling check node i to any VN in the SB in iteration ℓ by

u
(i)
ℓ (ǫ), then for every i ∈ {1, 2, . . . , t} we have

u
(i)
ℓ (ǫ) = 1− (1− φi(ǫ))(1 − x(ǫ))di−1

= 1− (1− x(ǫ))r−di(1− x(ǫ))di−1

= 1− (1− x(ǫ))r−1

(13)

(see Figure 5(a) for a graphical representation of (13)). Similarly, let w
(i)
ℓ (ǫ) denote the outgoing CN-to-VN message

from a right coupling check node i ∈ {1, 2, . . . , t} to any VN in the SB. In view of (7a)–(7d), a right coupling

check node with index i ∈ {1, . . . , t} is connected to VNs in the SB via r − di edges. Hence,

w
(i)
ℓ (ǫ) = 1− (1− ψi(ǫ))(1 − x(ǫ))r−di−1

= 1− (1− x(ǫ))di(1− x(ǫ))r−di−1

= 1− (1− x(ǫ))r−1,

(14)
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CC

δL,i(ǫ) =
1− (1− x(ǫ))r−di

xℓ(ǫ) = x(ǫ)

xℓ(ǫ) = x(ǫ)

u
(i)
ℓ (ǫ) =

1− (1− x(ǫ))r−1

...

di − 1
edges

(a)

CC

δR,i(ǫ) =
1− (1− x(ǫ))di

xℓ(ǫ) = x(ǫ)

xℓ(ǫ) = x(ǫ)

w
(i)
ℓ (ǫ) =

1− (1− x(ǫ))r−1

...

r − di − 1
edges

(b)

Fig. 5: Graphical representations of the coupling-check-nodes updates in the proof of Proposition 2: (a) left CC,

row i in Bleft; (b) right CC, row i in Bright.

(see Figure 5(b)). Moreover, let yℓ(ǫ) denote the outgoing CN-to-VN message from a local check node to any VN

in the SB. Since every local check node is of degree r, then

yℓ(ǫ) = 1− (1− x(ǫ))r−1. (15)

In view of (13)–(15), given that in iteration ℓ all of the DE values emanating from every VN equal xℓ(ǫ) = x(ǫ),
and in addition δL = φ(ǫ) and δR = ψ(ǫ), then all of the CN-to-VN DE values equal to 1 − (1 − x(ǫ))r−1.

Furthermore, every VN in the SB has degree l, thus the DE values from any VN to any CN in iteration ℓ+ 1 are

given by xℓ+1(ǫ) = ǫ · (1− (1− x (ǫ))r−1)l−1. In view of (10), this implies that xℓ+1(ǫ) = x(ǫ) = xℓ(ǫ), and thus

x(ǫ) is a fixed point when δL = φ(ǫ) and δR = ψ(ǫ).

In order to calculate the erasure transfer of a left helper SB ∆L

(
ǫ, φ(ǫ)

)
, we should run the SG DE equations

with ǫ as the channel parameter, and with δL = φ(ǫ) and δR = 1 as incoming DE values from the left and right,

respectively. From the above result and from monotonicity of DE, each outgoing (right) CC receives DE values from

the SB that are lower bounded by x(ǫ). Since the degree in the SB of an outgoing CC i ∈ {1, 2, . . . , t} is r − di,
then the outgoing DE values ∆L

(
ǫ, φ(ǫ)

)
are element-wise lower bounded by

(
(1− x(ǫ))r−d1 , . . . , (1 − x(ǫ))r−dt

)
,

which in view (11) of proves (12a). Similarly, (12b) holds for right helper SBs.

Protographs with the following definition of symmetry simplify the analysis.

Definition 3. Let (Bleft ; Bloc ; Bright) be a SB protomatrix. We say that the SB is symmetric if using only row

and column permutations one can transform Bleft into Bright.

Example 4. The SB in Example 1 is symmetric while the SB in Example 2 is not symmetric. Moreover, it can be

shown that a SB from the cutting-vector (l, r, t) SC-LDPCL construction in [17] is symmetric if and only if r is

divisible by t+ 1.

For symmetric SBs we have

∆L (ǫ, δI) = ∆R (ǫ, δI) , ∀ǫ ∈ [0, 1], ∀δI ∈ [0, 1]t.

Definition 4. Let k, t ∈ N, ǫ ∈ [0, 1], and δ ∈ [0, 1]t. We denote by ∆
(k)
L (ǫ, δ) (respectively ∆

(k)
R (ǫ, δ)), the function

that computes ∆L(ǫ, δ) (respectively ∆R(ǫ, δ)) recursively k times, i.e.,

∆
(1)
L (ǫ, δ) = ∆L(ǫ, δ),

∆
(k)
L (ǫ, δ) = ∆

(

ǫ,∆
(k−1)
L (ǫ, δ)

)

, k > 1.

When considering an erasure-transfer function ∆(ǫ, δ) (right or left), we identify three important channel-

parameter thresholds2 ǫ∗1, ǫ
∗
2, ǫ

∗
3. We call them the SB thresholds. They play an important role in the analysis

2These thresholds are properties of the protograph used, however, for ease of reading we make this implicit in the notations.
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and code design that we perform in Sections V and IV. The first threshold ǫ∗1 is the largest channel parameter such

that local decoding of the SB succeeds, regardless of the input DE values, i.e.,

∆(ǫ, δ) = 0, ∀ǫ < ǫ∗1, ∀δ ∈ [0, 1]t. (16)

This threshold can be easily calculated by the observation that ǫ∗1 = ǫ∗ (Bloc), where ǫ∗ (Bloc) is the threshold

induced by the protograph Bloc. The second threshold ǫ∗2 is the largest channel parameter such that the outgoing

DE values are element-wise smaller (with strict inequality in at least one element) than the incoming DE values,

i.e.,

∆(ǫ, δ) ≺ δ, ∀ǫ < ǫ∗2, ∀δ ∈ [0, 1]t. (17)

This means that a sequence of inter-SB DE values passing between SBs with channel parameters ǫ < ǫ∗2, will

gradually decrease towards zero. We calculate ǫ∗2 by computing ∆(ǫ, δ) for all δ ∈ [0, 1]t and with increasing values

of ǫ until (17) is violated. In view of Definition 4 and (17), for every ǫ < ǫ∗2, we define

q(ǫ) = min{k ∈ N : ∆(k) (ǫ, 1) = 0}. (18)

The value of q(ǫ) will play an important role later in the evaluation of semi-global decoding (Section V-D).

The third threshold ǫ∗3 is the largest channel parameter such that zero incoming DE values are preserved, i.e.,

∆(ǫ, 0) = 0, ∀ǫ < ǫ∗3. (19)

Example 5. Consider the (l = 3, r = 6, t = 1) SC-LDPCL protograph from Example 1. Since t + 1 = 2 divides

r = 6, then the SBs in this protograph are symmetric (see a remark in Example 4), so we omit the L andR sub-scripts

and mark ∆(·, ·) , ∆L(·, ·) = ∆R(·, ·), and δ , δL = δR (note that for t = 1, δ is a scalar). The SB thresholds of

this protograph are given by ǫ∗1 = 0.2, ǫ∗2 = 0.3719, ǫ∗3 = 0.4297. Figure 6 illustrates erasure-transfer functions for a

SB in this protograph and for channel parameters ǫ ∈ {0.18, 0.3547, 0.4239, 0.5438} (note that each of these channel

parameters falls into a different threshold interval, i.e., 0 < 0.18 < ǫ∗1 < 0.3547 < ǫ∗2 < 0.4239 < ǫ∗3 < 0.5438 < 1).

Also shown is the value q(0.3547) in (18); the dotted red line shows the inter-SB DE values, starting from 1 (all

erasure) down to 0 (no erasures) after q(0.3547) = 4 SBs.

Note that changing the value of the channel parameters could change the plots, however, different channel

parameters within the same threshold interval will produce plots with the same behavior and properties as described

in (16)–(19).

C. Target Threshold

We define the target threshold ǫ∗(δL, δR) as the maximum erasure rate such that the target is successfully decoded

locally given incoming DE values δL and δR. For example, if δL = δR = 1, then the target cannot use any side

information, and its threshold is the local threshold, i.e., ǫ∗(1, 1) = ǫ∗1. Furthermore, we have the following result.

Proposition 3. For left and right helper SBs, ǫ∗(0, 1) = ǫ∗3, and ǫ∗(1, 0) = ǫ∗3, respectively.

Proof. Recall that ǫ∗3 is largest channel parameter such that a helper SB that receives zero DE values from the

previous decoded helper SB outputs zero DE values to the next SB. In view of Proposition 1, we get that ǫ∗3 is

the largest channel parameter such that a helper SB is successfully decoded with zero incoming DE values. Since

helper SBs receive information from one side only (they output information to the other side), then ǫ∗3 = ǫ∗(0, 1)
for left helper SBs and ǫ∗3 = ǫ∗(1, 0) for right helper SBs.

Proposition 3 provides a simple way to calculate ǫ∗3. Consider a SB given by [Bleft;Bloc;Bright]. Zero incoming

DE values means that all incoming CCs are fully available, i.e., they can be treated as LCs. In addition, outgoing

CCs are not valid. We get that for left and right helper SBs

ǫ∗3 = ǫ∗([Bleft;Bloc]), (20a)

and

ǫ∗3 = ǫ∗([Bloc;Bright]), (20b)

respectively.
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0.4

0.6

0.8

1

δ

∆
(ǫ
,δ
)

ǫ = 0.5438 ∈ (ǫ∗3, 1)

ǫ = 0.4239 ∈ (ǫ∗2, ǫ
∗
3)

ǫ = 0.3547 ∈ (ǫ∗1, ǫ
∗
2)

ǫ = 0.1800 ∈ (0, ǫ∗1)

Fig. 6: ∆(ǫ, δ) for the (l = 3, r = 6, t = 1) protograph and for four possible channel parameters, each in a different

interval defined by the thresholds in (16)–(19): 0.18 (blue), 0.3547 (red), 0.4239 (cyan), 0.5438 (orange); black

represents the identity function ∆(ǫ, δ) = δ. For ǫ = 0.3547, four consecutive SBs suffice to decrease the inter-SB

DE values from 1 to 0 (dotted red); i.e., q(0.3547) = 4.

We add another SB threshold that will be used in the sequel

ǫ∗4 = ǫ∗(0, 0). (21)

It can be verified that

ǫ∗1 ≤ ǫ∗2 ≤ ǫ∗3 ≤ ǫ∗4. (22)

The following result is the parallel of Proposition 2 applying to the target SB.

Proposition 4. Let φ(ǫ), ψ(ǫ) be defined as in Proposition 2. Then, for every ǫ ∈ [0, 1]

ǫ∗
(
φ(ǫ), ψ(ǫ)

)
< ǫ∗l,r. (23)

Proof. Using the same arguments in the proof of Proposition 2, we get that if the left and right incoming DE values

are φ(ǫ) and ψ(ǫ), respectively, then x(ǫ) is a semi-global fixed point. Since x(ǫ) > 0 for every ǫ > ǫ∗l,r, then target

decoding fails. Hence, ǫ > ǫ∗
(
φ(ǫ), ψ(ǫ)

)
. Since this is true for all ǫ > ǫ∗l,r, then (23) holds.

Remark 1. For symmetric SBs (Definition 3) we have ǫ∗(δL, δR) = ǫ∗(δR, δL), for every δL, δR ∈ [0, 1]t.

IV. MEMORYLESS CHANNELS: THRESHOLD ANALYSIS

In this section, we characterize and calculate the semi-global thresholds of SC-LDPCL protographs. We focus in

this section on memoryless channels, before generalizing to channels with memory in the next section. Formally,

the semi-global threshold ǫ∗SG(m,d) is defined as the maximal erasure rate such that SG decoding successfully

decodes SB m with d helper SBs. In general, semi-global thresholds depend on the protograph (i.e., local graph,

coupling checks and total number of SBs), the position of the target SB m, and on the number of helper SBs

accessed during semi-global decoding d. However, in this section, we study the case of many helper SBs (in the

limit where d → ∞) and show that in this case semi-global thresholds depend solely on the single-SB structure

and on the question whether the first accessed helper SBs are termination SBs (i.e., at the endpoint of the coupled

chain of SBs) or not. In what follows, we use a binary parameter τ ∈ {0, 1} to mark the first-accessed-helper type:



13

termination (τ = 0) or non-termination (τ = 1). While needing to start from a termination SB is undesirable in

practical SG decoding of a random target SB, analyzing this mode is useful for “pseudo-termination” SBs defined

in the next section for channels with variability. The results in this section apply to unit-memory binary-regular

SC-LDPC codes, but for terseness we keep this implicit in most of the result statements.

Our ultimate goal in this section is to characterize the SG thresholds defined by

Definition 5. Let τL, τR ∈ {0, 1} indicate termination SBs (τ = 0) or not (τ = 1) from left and right of the target

SB, respectively. We define ǫτL,τRSG as the largest channel parameter such that SG successfully decodes the target SB

in the limit of d→ ∞ helper SBs.

For simplicity of the derivations, we assume that the SBs in the code are symmetric (see Definition 3). Conse-

quently, we remove the subscripts that were used to indicate left and right helper SBs (i.e., use ∆ to mark both

∆L and ∆R). In addition, in view of (11), we have that for every ǫ ∈ [0, 1], φ(ǫ) = ψ(ǫ).

For τ ∈ {0, 1}, let δ
(τ)
0 (ǫ), δ

(τ)
1 (ǫ), δ

(τ)
2 (ǫ), . . . be the sequence of inter-SB DE values between helper SBs during

semi-global decoding, with τ = 0 if decoding starts in a termination SB, and τ = 1 otherwise, i.e.,

δ
(τ)
i+1(ǫ) = ∆

(

ǫ, δ
(τ)
i

)

, i ≥ 0, τ = 0, 1,

δ
(0)
0 = 0, δ

(1)
0 = 1,

(24)

where ∆(ǫ, δ) is the erasure-transfer function given in Section III. From the monotonicity of the DE equations,

for every ǫ, ∆(ǫ, δ) is monotonically non-decreasing in δ. Consequently, for τ = 0, 1 the sequences {δ
(τ)
i (ǫ)}i≥0

(which are bounded by [0, 1]) converge to some limit value.

Definition 6. For τ = 0, 1, let δ̂
(τ)

(ǫ) = limi→∞ δ
(τ)
i (ǫ).

In view of (24) and Definition 6, for every ǫ ∈ [0, 1], ∆
(

ǫ, δ̂
(τ)

(ǫ)
)

= δ̂
(τ)

(ǫ).

Lemma 5. For every ǫ ∈ [0, 1], δ̂
(1)

(ǫ) ≻ φ(ǫ), where φ(ǫ) is defined in (11).

Proof. We will prove by a mathematical induction on i that for every i ≥ 0, δ
(1)
i � φ(ǫ). Consequently, this will

prove the Lemma. For i = 0 we have δ
(1)
0 = 1 � φ(ǫ). Now, assume correctness for some i ≥ 0. Then,

δ
(1)
i+1=∆(ǫ, δ

(1)
i )

(1)

� ∆(ǫ, φ(ǫ))

(2)

� φ(ǫ),

where (1) is the induction assumption combined with monotonicity of DE, and (2) follows from Proposition 2.

The following proposition characterizes the SG thresholds defined in Definition 5.

Proposition 6. Let τL, τR ∈ {0, 1} indicate termination SBs from left and right of the target SB, respectively. Then,

the semi-global thresholds are given by

ǫτL,τRSG = max
{

ǫ : ǫ < ǫ∗
(

δ̂
(τL)

(ǫ), δ̂
(τR)

(ǫ)
)}

, (25)

where ǫ∗(·, ·) and δ̂
(τ)

(ǫ) are the target threshold defined in Section III-C, and the limit incoming DE value to the

target from Definition 6, respectively.

Proof. Since we consider the limit of many helper SBs, then for every channel parameter ǫ ∈ [0, 1], the target

SB ”sees” incoming DE values given by δ̂
(τL)

(ǫ) and δ̂
(τR)

(ǫ) from the left and right, respectively. Consequently,

the threshold at the target is ǫ∗
(

δ̂
(τL)

(ǫ), δ̂
(τR)

(ǫ)
)

. By definition, the target is decoded successfully if and only if

the channel parameter is below the target threshold, i.e., ǫ < ǫ∗
(

δ̂
(τL)

(ǫ), δ̂
(τR)

(ǫ)
)

. Finally, the SG thresholds are

defined as the largest such channel parameter.
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Clearly, starting from a termination SB – as opposed to starting from a non-terminating SB – can only help.

Thus, from the symmetry-of-SBs assumption,

ǫ1,1SG ≤ ǫ0,1SG = ǫ1,0SG ≤ ǫ0,0SG. (26)

We now turn to evaluate ǫτL,τRSG . Let us first address the non-termination case in which from both sides of the

target the first helper is not a termination SB, i.e., δ0 = 1.

Lemma 7. ǫ1,1SG ≥ ǫ∗2, where ǫ∗2 is given in (17).

Proof. In view of (17) and Definition 6,

δ̂
(τ)

(ǫ) = 0, ∀ǫ ∈ [0, ǫ∗2), τ = 0, 1.

Thus, for every ǫ < ǫ∗2, the target receives full side information, i.e., δL = δR = 0. From (21)–(22) we have

ǫ < ǫ∗4 = ǫ∗(0, 0),

so the target is successfully decoded; hence ǫ < ǫ1,1SG. Since this is true for all ǫ < ǫ∗2, we conclude that ǫ∗2 ≤ ǫ1,1SG.

Lemma 8. δ̂
(0)

(ǫ) = 0 if and only if ǫ < ǫ∗3.

Proof. Let ǫ < ǫ∗3, and let δ
(0)
0 (ǫ) = 0. In view of (19), the first helper outputs δ

(0)
1 = 0. Applying this argument

repeatedly, we get that δ
(0)
i (ǫ) = 0 for all i ≥ 0. Consequently, δ̂

(0)
(ǫ) = 0.

For the other direction, let ǫ > ǫ∗3. By the definition of ǫ∗3 we have δ
(0)
1 (ǫ) ≻ 0 = δ

(0)
0 (ǫ). Since ∆(ǫ, ·) is

monotonically non-decreasing, then

δ
(0)
2 (ǫ) = ∆

(

ǫ, δ
(0)
1

)

≻ ∆
(

ǫ, δ
(0)
0

)

= δ
(0)
1 .

Repeating this argument for successive i > 2 gives δ
(0)
i (ǫ) ≻ δ

(0)
1 (ǫ) ≻ 0, for all i ≥ 2, and consequentlyδ̂

(0)
(ǫ) ≻

0.

Lemma 9. ǫ0,0SG ≤ ǫ∗4.

Proof. In view of (21), for every ǫ > ǫ∗4 the target will fail to decode even if δL = δR = 0. Thus, semi-global

decoding will fail and ǫ > ǫ0,0SG. This is true for all ǫ > ǫ∗4, thus ǫ0,0SG ≤ ǫ∗4.

Theorem 10. For every unit-memory binary-regular SC-LDPC protograph,

ǫ0,1SG ≥ ǫ∗3, (27a)

and if ǫ∗l,r ≤ ǫ∗3 and for every ǫ > ǫ∗3, δ̂
(0)

(ǫ) = δ̂
(1)

(ǫ), then

ǫ0,0SG = ǫ0,1SG = ǫ∗3. (27b)

Remark 2. The conditions ǫ∗l,r ≤ ǫ∗3 and δ̂
(0)

(ǫ) = δ̂
(1)

(ǫ) for ǫ > ǫ∗3 hold for many constructions. ǫ∗l,r is the

threshold of the l×r all-ones matrix, while in view of (20a)–(20b), for left helper SBs, ǫ∗3 equals to the threshold of

the l× r protomatrix [Bleft;Bloc]. For many assignments of Bleft, we will get ǫ∗l,r ≤ ǫ∗3 (see Table II in Section V-E).

In addition, the condition δ̂
(0)

(ǫ) = δ̂
(1)

(ǫ) holds whenever ∆(ǫ, δ) = δ for a unique δ ∈ [0, 1]t. In all of the DE

enumerations that we have done, this was the case; see the orange curve in Figure 6 for an example.

Proof. Let ǫ < ǫ∗3 and assume semi-global decoding with exactly one side starting from termination; w.l.o.g assume

termination on the left, i.e., τL = 0, τR = 1. If we mark the incoming DE values to the target from the left and right

by δL and δR, respectively, then δR = δ̂
(1)

(ǫ) � 1, and in view of Lemma 8, δL = δ̂
(0)

(ǫ) = 0. From monotonicity

and from Proposition 3,

ǫ∗
(

δ̂
(0)

(ǫ), δ̂
(1)

(ǫ)
)

> ǫ∗(0, 1) = ǫ∗3 > ǫ,
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TABLE I: Notations used above

Notation Meaning Reference

∆(ǫ, δ) Helper outgoing DE values Definition 2

ǫ∗1 Maximal channel parameter such that local decoding succeeds (16)

ǫ∗2 Maximal channel parameter such that the outgoing erasure is

always smaller than the incoming erasure

(17)

ǫ∗3 Maximal channel parameter such that a helper preserves zero

incoming DE values

(19)

ǫ∗(δL, δR) Maximum channel parameter such that the target is success-

fully decoded given incoming DE values δL and δR

Section III-C

ǫ∗4 = ǫ∗(0, 0) Maximal channel parameter such that a target with full incom-

ing information is successfully decoded

(21)

ǫ∗l,r Threshold of the (l, r) LDPC ensemble [22]

δ̂
(τ)

(ǫ) Input DE values into the target when semi-global starts from

termination (τ = 0) and non-termination (τ = 1)

Definition 6

ǫ
τL,τR
SG Threshold of semi-global decoding (25)

hence semi-global decoding succeeds. In view of (25), we have ǫ < ǫ0,1SG. Since this is true for all ǫ < ǫ∗3, then

(27a) holds.

To prove (27b), let ǫ > ǫ∗3 > ǫ∗l,r. From the added condition and from Lemma 5, δ̂
(0)

(ǫ) = δ̂
(1)

(ǫ) � φ(ǫ).
Thus, if semi-global decoding starts from termination (on both sides), the target receives incoming DE values

δL = δR � φ(ǫ). From monotonicity and from Proposition 4, the target threshold is

ǫ∗ (δL, δR) ≤ ǫ∗
(
φ(ǫ), φ(ǫ)

)

≤ ǫ∗l,r

< ǫ.

Thus, for every ǫ > ǫ∗3, ǫ > ǫ0,0SG; hence, ǫ0,0SG ≤ ǫ∗3. In view of (26) and (27a), we complete the proof for (27b).

The meaning of (27b) is that for construction that satisfy the added conditions in Theorem 10, if one side starts

from a termination, it does not help to start the other side from termination. Table I and Figure 7 summarize the

notations defined and results derived in Sections III and IV.

V. PERFORMANCE OVER THE SUB-BLOCK MARKOV-VARYING CHANNEL

As shown in Section IV (and previously reported in [18]), starting semi-global decoding from a termination SB

boosts the performance significantly, however, if the target SB is far away from termination SBs (i.e., the coupled

chain is very long and the target is around the middle of it), then it is costly – in terms of latency – to start

semi-global decoding from the endpoints of the chain.

In some practically motivated channel models, like the SB-varying channel that we next study, we might get

“lucky” such that a non-termination helper SB is decoded successfully. Since the outgoing DE values from a

successfully decoded SB equal 0 (see Proposition 1), then this SB acts like a termination SB. This happens, for

example, if the SB erasure rate ǫ is below the local threshold, as well as in other scenarios. To capture this favorable

effect, we define pseudo-termination sequences, whose qualitative definition is sequences of SBs (and their channel

states) that output zero DE values in their SG density-evolution analysis. Pseudo-termination sequences are a central

component of the analysis in this section.

To analyze SG decoding over channels with variability (and memory), in the following sub-sections we define

three Markov chains: the first describes the channel (Section V-A), the second is simplified to fit the SB thresholds

of the code ensemble (Section V-B), and the third corresponds to the decoder states during semi-global decoding

(Section V-C).

A. Channel Model

We consider a channel model, in which each SB suffers from a (possibly) different erasure rate. Furthermore,

the channel state (erasure rate) between SBs forms a Markov chain. We call this channel the SB Markov-varying
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Semi-global

decoding from

termination

δ̂
(0)

(ǫ) =

δ̂
(1)

(ǫ)

Global

decoding

Fig. 7: Summary of the asymptotic results derived in Sections III and IV.

(SBMV) channel. The i.i.d. version of the SB varying channel was first introduced in [28], and was studied for

SC-LDPCL codes in [18].

Let E = {e1, e2, . . . , e|E|} be the possible channel states (erasure rates), and let {Em}Mm=1 be a Markov chain

describing the channel state of SBs m ∈ {1, 2, . . . ,M}, with the transition probabilities

Pr
(
Em = ej

∣
∣Em−1 = ei

)
= Pi,j , ∀ 2 ≤ m ≤M, (28)

where P is a given |E| × |E| transition matrix (non-negative elements with rows summing to 1). We assume that

this Markov chain has a unique stationary distribution ν = (ν1, ν2, . . . , ν|E|), and that all SBs of interest (i.e., target

and helper SBs) are distributed according to ν (convergence to steady state irrespective of initial conditions lies

on the assumption that these SBs are sufficiently far from the block boundaries). The expected erasure rate of an

SBMV channel is given by

E [Em] =

|E|
∑

i=1

νiei. (29)

For example, the constant case, where the channel parameter is the same in all SBs and equals to some e ∈ [0, 1],
can be viewed as a SBMV channel with E = {e}, and trivial transition matrix and stationary distribution P = ν = 1.

Another example is the SB i.i.d. channel [17], [28], where each SB suffers from a channel parameter ei ∈ E with

some probability pi ∈ [0, 1] where
∑E

i=0 pi = 1, and the SBs’ channel parameters are independent. In this case,

for every i, j ∈ {1, . . . , E}, Pi,j = pj , and νi = pi.

B. Sub-Block States

When considering semi-global decoding over the SBMV channel, we assign to each SB a state according to the

four intervals corresponding to the thresholds defined in (16)–(19): 1) local decoding interval [0, ǫ∗1), for channel



17

parameters in this interval, the SB is decodable locally; 2) error-reduction interval [ǫ∗1, ǫ
∗
2), where the inter-DE values

between SBs decrease; 3) error-free-preservation interval [ǫ∗2, ǫ
∗
3), where zero incoming DE values are preserved;

4) anti-termination interval [ǫ∗3, 1], where the outgoing DE values are arbitrarily high, regardless of the incoming

DE values. We therefore merge channel states that fall inside the same interval and define

ai = {1 ≤ k ≤ |E| : ek ∈ [ǫ∗i−1, ǫ
∗
i )} , 1 ≤ i ≤ 4, (30)

where ǫ∗0 = 0 and ǫ∗4 = 1.

Let {Bm}Mm=1 be a Markov chain describing the state of SBs m ∈ {1, 2, . . . ,M} with a state space S =
{s1, s2, s3, s4} that correspond to {a1, a2, a3, a4} in (30), and a 4× 4 transition matrix Q. Recall that SBs in state

s1 are decodable locally, meaning that they output zero DE values, regardless of their incoming DE values. SBs

in state s2 are not decodable locally, but a sufficient number of consecutive s2-blocks will output zero DE values.

In general, the number of s2 SBs needed for this procedure, which we denote by q, depends on the exact channel

parameter in the interval [ǫ∗1, ǫ∗2). However, for simplicity of the results, we take a worst-case approach and set

q = max{q(ek) : k ∈ a2}, (31)

where q(·) is defined in (18).

In addition, SBs in state s3 preserve zero incoming DE values, meaning that if the incoming DE values are zero,

then so are the outgoing DE values. As another worst-case assumption, we assume that if in state s3 the incoming

DE values are not zero, then the outgoing DE values are arbitrarily high. Finally, SBs in state s4 output high DE

values even if the incoming DE values are zero. If the semi-global decoder encounters a SB in state s4, then all

of the information gathered from previously decoded helper SBs becomes irrelevant for the rest of the decoding

process.

Note that in general, SBs in states s3 and s4 could be helpful, i.e., produce smaller or equal outgoing DE values

even if the incoming DE values are non-zero, however, it is not guaranteed (unlike s1 or s2 SBs). Thus, the real

performance may actually be better, and the results we derive in the following sub-sections are lower bounds on

the real performance.

For every i ∈ {1, 2, 3, 4}, let µi =
∑

k∈ai
νk, with the convention that an empty sum equals zero. If indeed

ai = ∅ for some i ∈ {1, 2, 3, 4}, then we set Q(i, i) = 1 and Q(i, j) = Q(j, i) = 0 for every j 6= i. Else, the

transition probabilities are given by

Qi,j , Pr
(
Bm = sj

∣
∣Bm−1 = si

)

= Pr
(
Em ∈ aj

∣
∣Em−1 ∈ ai

)

=
∑

i′∈ai

Pr
(
Em−1 = ei′

∣
∣Em−1 ∈ ai

)
Pr

(
Em ∈ aj

∣
∣Em−1 = ei′

)

=
∑

i′∈ai

Pr
(
Em−1 = ei′

∣
∣Em−1 ∈ ai

) ∑

j′∈aj

Pr
(
Em = ej′

∣
∣Em−1 = ei′

)

=
1

µi

∑

i′∈ai

∑

j′∈aj

νi′Pi′,j′ ,

(32)

where i, j ∈ {1, 2, 3, 4}, si, sj ∈ S , and P is a given in (28). Figure 8(a) and Figure 8(b) illustrate the channel-state

and SB-state diagrams, respectively, for the case of |E| = 4 and a1 = {1, 2}, a2 = {3}, a3 = {4}, a4 = ∅.

Lemma 11. The stationary distribution of {Bm}Mm=1 is given by µ = (µ1, µ2, µ3, µ4), where µi =
∑

k∈ai
νk, ai is

given in (30), and ν is the stationary distribution of {Em}Mm=1.

Proof. For every j ∈ {1, 2, 3, 4}

µj =
∑

j′∈aj

νj′ (33a)

=
∑

j′∈aj

|E|
∑

i=1

νiPi,j′ (33b)
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Q2,3

Q1,2 Q2,1

Q1,3

Q3,2

Fig. 8: (a): a state diagram representing an SBMV channel with state space E = {e1, e2, e3, e4}, and transition

matrix P ; (b) a state diagram representing the block states with a1 = {1, 2}, a2 = {3}, a3 = {4}, a4 = ∅, and

transition matrix Q given in (32). For i ∈ {1, 2, 3, 4}, each state si is marked in a color corresponding to the curve

in Figure 6 that depicts its erasure-transfer behavior.

=

|E|
∑

i=1

∑

j′∈aj

νiPi,j′ (33c)

=

4∑

i=1

∑

i′∈ai

∑

j′∈aj

νi′Pi′,j′ (33d)

=

4∑

i=1

µiQi,j, (33e)

where (33a) is the definition of µj , (33b) follows since ν is left eigenvector of P with a unit eigenvalue, (33c) is

a change in summation order, (33d) is summing over the partition of {1, 2, . . . , |E|} into the sets {ai}
4
i=1, (33e) is

due to (32).

C. Pseudo-Termination Sequences

Consider a sequence of c helper SBs (b1, b2, . . . , bc), where for every i ∈ {1, 2, . . . , c}, bi ∈ S , and suppose

they are accessed, during semi-global decoding, in a descending order (first bc, and last b1). Recall that for SBs

in state s2, (17) holds, which induces an integer q ≥ 2 defined in (31) as the length of a sequence of consecutive

SBs in state s2 that suffices to produce zero outgoing DE values. Let ∆c,q(b1, b2, . . . , bc) denote the outgoing DE

values from SB b1 after decoding the sequence bc, . . . , b2, b1. When ∆c,q(b1, b2, . . . , bc) is all zero, we say that

b1, b2, . . . , bc is a pseudo-termination sequence.

Definition 7. For integers c, q, the set of all pseudo-termination sequences is defined by

T (c, q) = {(b1, b2, . . . , bc) ∈ Sc : ∆c,q(b1, b2, . . . , bc) = 0} .

Example 6. Let c = 3, q = 2. Then,

T (3, 2) = {(s1, b2, b3),∀b2, b3 ∈ S} ∪ {(s2, s1, b3),∀b3 ∈ S} ∪ {(s2, s2, b3),∀b3 ∈ S} ∪ {(s2, s3, s1)}
∪ {(s3, s2, s1)} ∪ {(s3, s1, b3),∀b3 ∈ S} ∪ {(s3, s2, s2)} ∪ {(s3, s3, s1)},

with a total of |T (3, 2)| = 32 pseudo-termination sequences, out of 43 = 64 possible sequences.
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Fig. 9: The state diagram representing the induced Markov chain {Xi}
c
i=1 of the SG decoder.

In what follows we answer the following question: under the SBMV channel model, what is the probability that

a sequence of c helper SBs will be a pseudo termination? The key to answering this question is defining a third

Markov chain evolving backward from b1 (decoded last) to bc (decoded first). Clearly, if b1 is in state s1, then the

sequence is a pseudo-termination sequence regardless of the states of b2, . . . , bc. Similarly, if b1 is in state s4, then

the sequence is not a pseudo-termination sequence, regardless to the states of b2, . . . , bc. If b1 is in state s2, than

we have to check b2: if it is in state s1 or it is in state s2 and q = 2, then the sequence is a pseudo-termination

sequence; if b1 is in state s3, then we check if b2, . . . , bc is pseudo termination; and so forth, until we reach c SBs.

The logic of determining pseudo-termination sequences is illustrated in Example 6, and specified in full precision

by the Markov chain presented next.

Define a Markov chain with q+2 states S̃q = {s̃1, s̃
(1)
2 , , s̃

(2)
2 , . . . , s̃

(q−1)
2 , s̃3, s̃4}. This Markov chain will be used

to analyze the semi-global decoder in reverse order as described above. The operational meanings of the states in

S̃q are: 1) s̃1 is the pseudo-termination state, which is an absorbing state because if reached, pseudo-termination

is guaranteed irrespective of the subsequent SB states; 2) s̃
(1)
2 , s̃

(2)
2 , . . . , s̃

(q−1)
2 are error-reduction states, and they

represent a sequence of q−1 consecutive SBs in state s2; 3) s̃3 is the reset state, as it resets the error-reduction stage;

4) s̃4 is the anti-termination state, which like s̃1 is also an absorbing state because if reached, then the corresponding

sequence is not pseudo termination regardless of the subsequent SB states. The transition probabilities between the

states in S̃q are given by the following matrix

Qq =













1 0 0 0 0

Q2,1 0 Q2,2 · Iq−2 Q2,3 Q2,4

Q2,1 +Q2,2 0 0 Q2,3 Q2,4

Q3,1 Q3,2 0 Q3,3 Q3,4

0 0 0 0 1













. (34)

where Iq−2 is the (q−2)×(q−2) identity matrix. The initial distribution of this Markov chain (i.e., the distribution

of the first SB in the sequence) is given by v = (µ1, µ2, 0, 0, . . . , 0, µ3, µ4), where µ = (µ1, µ2, µ3, µ4) is the

stationary distribution of the SB-state Markov chain given in Lemma 11. Figure 9 illustrates the state diagram of

this induced Markov chain.
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Theorem 12. Let c, q be integers such that q ≥ 2, and let B = (B1, B2, . . . , Bc) be the SB-state Markov chain

described in Section V-B. Then,

Pr (B ∈ T (c, q)) = vQc−1
q uT ,

where v, u are 1× (q + 2) vectors given by

v = (µ1, µ2, 0, 0, . . . , 0, µ3, µ4)
u= ( 1, 0, 0, 0, . . . , 0, 0, 0 )

,

µ = (µ1, µ2, µ3, µ4) is the stationary distribution given in Lemma 11, and Qq is given in (34).

Proof. Let {Xi}
c
i=1 be a Markov chain over the state space S̃q, with Qq as a transition matrix, and v as the initial

probability (see Figure 9 for the corresponding state diagram). By marginalizing over the state of the first SB and

expanding by (5),

Pr (b ∈ T (c, q)) , Pr (Xc = s̃1)

= µ1 Pr
(
Xc = s̃1

∣
∣X1 = s̃1

)

+ µ2 Pr
(

Xc = s̃1
∣
∣X1 = s̃

(1)
2

)

+ µ3 Pr
(
Xc = s̃1

∣
∣X1 = s̃3

)

+ µ4 Pr
(
Xc = s̃1

∣
∣X1 = s̃4

)

= vQc−1
q uT .

Corollary 13. Let c, q be integers such that q ≥ 2. Then,

|T (c, q)| = bAc−1
q uT ,

where

b = (1, 1, 0, 0, . . . , 0, 1, 1)
u = (1, 0, 0, 0, . . . , 0, 0, 0)

,

and

Aq =













4 0 0 0 0

1 0 Iq−2 1 1

2 0 0 1 1

1 1 0 1 1

0 0 0 0 4













.

Proof. Follows by applying Theorem 12 with an i.i.d. SBMV channel. i.e, Qi,j = µi = 0.25 for every i, j ∈
{1, 2, 3, 4}, and by the observation that for the i.i.d. case

Pr (b ∈ T (c, q)) =
|T (c, q)|

|Sc|
=

|T (c, q)|

4c
.
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Example 7. For c = 3 and q = 2 we have

|T (3, 2)| =
(
1 1 1 1

)







4 0 0 0
2 0 1 1
1 1 1 1
0 0 0 4







2





1
0
0
0







=
(
1 1 1 1

)







16 0 0 0
9 1 1 5
7 1 2 6
0 0 0 16













1
0
0
0







= 32,

which agrees with Example 6.

D. Semi-Global Decoding Performance

We now state lower bounds on the probability of semi-global-decoding success over the SBMV channel for

two schemes: 1) one-sided: all of the d helper SBs are on one side of the target; 2) two-sided: d/2 (for even d)

helper SBs are on each side of the target. Semi-global-decoding success is defined as the event that the target SB

is decoded successfully (in DE terms) following semi-global decoding.

Proposition 14. Let d, q be integers such that q ≥ 2. Then, the success probability of the one-sided semi-global

decoding over the SBMV channel with a transition matrix P is lower bounded by

pR(d) ≥ vQd
qu

T , (35a)

if the helper SBs are on the right and

pL(d) ≥ vQ̂d
qu

T , (35b)

where v, u,Qq are the same as in Theorem 12, and Q̂q is constructed as in (34) with the substitution

Q̂i,j =
µj
µi
Qj,i, 1 ≤ i, j ≤ 4.

.

Proof. In view of Proposition 1, semi-global decoding with all d helper SBs on one side succeeds, if and only if

the target outputs zero DE values. The proof of (35a) follows by applying Theorem 12 with d + 1 SBs (1 target

+d helper SBs). The proof of (35b) follows similarly combined with the observation that we should consider the

reverse Markov chain, i.e., a Markov chain with Q̂ as the transition matrix (see (6)).

Proposition 15. Let d, q be integers such that q ≥ 2 and d is even. Then, the success probability of the two-sided

semi-global decoding over the SBMV channel with a transition matrix P is lower bounded by

p2(d) ≥ v2

(

Qd/2
q ⊗ Q̂d/2

q

)

uT2 , (36)

where ⊗ is the Kronecker product,Qq, Q̂q are the same as in Proposition 14, and v2 = (v2,1, v2,2, . . . , v2,(q+2)2), u2 =
(u2,1, u2,2, . . . , u2,(q+2)2) are given by

v2,j+(q+2)(i−1) =







µ1 j = i = 1
µ2 j = i = 2
µ3 j = i = q + 1
µ4 j = i = q + 2
0 otherwise

u2,j+(q+2)(i−1) =

{
1 i = 1 or j = 1
0 otherwise

, 1 ≤ i, j ≤ q + 2.

Proof. Consider SBs m̄− d/2, . . . , m̄− 1, m̄, m̄+ 1, . . . , m̄+ d/2, i.e., m̄ is the index of the target SB. Let

{Bm}Mm=1 be the Markov chain describing the state of each SB. For every w ∈ {0, 1, . . . , d/2}, let BR,w , Bm̄+w
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and BL,w , Bm̄−w. Then, {BL,w}
d/2
w=0 and {BR,w}

d/2
w=0 are two Markov chains with transition matrices Q and Q̂,

respectively. The states of the right and left helper SBs correspond to {BR,w}
d/2
w=1 and {BL,w}

d/2
w=1, respectively,

and the target-SB state is BL,0 = BR,0 = Bm̄.

Similar to the SG-decoder Markov chain in Figure 9, we define the two-dimensional Markov chain {Xw =

(XL,w,XR,w)}
d/2
w=0, with (q + 1)2 states S̃q × S̃q, the transition matrix Qq ⊗ Q̂q, and an initial distribution

Pr (X0 = (xL, xR)) =







µi xL = xR = s̃i, i = 1, 3, 4

µ2 xL = xR = s̃
(1)
2

0 otherwise

.

Success in the two-sided semi-global decoding with even d helper SBs occurs if and only if XL,d/2 = s̃1 or

XR,d/2 = s̃1, which in view of (36) and the fact that
(

Qq ⊗ Q̂q

)d/2
=

(

Q
d/2
q ⊗ Q̂

d/2
q

)

completes the proof.

Example 8. Consider an SBMV channel with E = {e1 = 0.33, e2 = 0.42}, and consider two transition matrices

P1 =

(
α 1− α

1− α α

)

, P2 =

(
a 1− a
a 1− a

)

, (37)

for some parameters 0 < α, a < 1. Note that P1 represents a SB Gilbert-Elliot channel, while P2 represents a SB

i.i.d. channel (like in [18]) where each SB’s channel parameter is independent of the other SBs, and for each SB

m, Pr(Em = e1) = 1 − Pr(Em = e2) = a. In order to compare semi-global-decoding performance over these

channels, we should equalize their expected erasure rates (such that the comparison is fair). In view of (29), we

set α and a such that the stationary distributions of both Markov chains (P1 and P2) coincide. From symmetry, for

every α ∈ [0, 1], the stationary distribution corresponding to P1 is the uniform distribution (0.5, 0.5), thus we set

a = 0.5.

Assume we use the (l = 3, r = 6, t = 1) SC-LDPCL protograph from Example 1 over these channels. Recall

that the thresholds induced by this protograph are given by (see Example 5) ǫ∗1 = 0.2, ǫ∗2 = 0.3719, ǫ∗3 = 0.4297.

We calculate q(0.33) = 3 in (18). In addition,

a1 = ∅, a2 = {1}, a3 = {2}, a4 = ∅, µ = (0, 0.5, 0.5, 0),

and

Q1 =







1 0 0 0
0 α 1− α 0
0 1− α α 0
0 0 0 1






, Q2 =







1 0 0 0
0 0.5 0.5 0
0 0.5 0.5 0
0 0 0 1






,

corresponding to P1, P2, respectively.

Figure 10 plots the decoding success lower bound of (35a) and (36) as a function of d for the two transition

matrices P1, P2 in (37). For the non-i.i.d. channel P1, we calculated the success-probability lower bound for α = 0.9
(blue) and α = 0.1 (green). The former is a model in which the channel parameter tends to stay in the same state

between two neighbor SBs, while in the latter the channel model tends to change states. As seen in the plots, the

more-realistic channel model, with a positive correlation between SBs (α = 0.9, blue), shows better performance

than the i.i.d. model (black) and the α = 0.1 channel model (green) for all d. This can be explained by the

observation that in the α = 0.9 model, for every d, there is a higher chance to see a pseudo-termination sequence

(q consecutive SBs in state s2). It is also observed that in this setting the one-sided decoder performs better than

the two-sided, with generally a small advantage except in low d values where it is more significant.

Example 9. Consider a generalization of the SB Gilbert-Elliot channel from Example 8, where E = {e1 =
0.175, e2 = 0.35, e3 = 0.42, e4 = 0.47}, and

P1 =







0 0.5 0.5 0
β α 1− α− 2β β
β 1− α− 2β α β
0 0.5 0.5 0







(38)

for some parameters 0 < α, β < 1 such that α+2β ≤ 1. Like in Example 8, we use the same (l = 3, r = 6, t = 1)
SC-LDPCL protograph, whose thresholds imply that for every i ∈ {1, 2, 3, 4}, ai = {i}; q = 3 remains for the
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Fig. 10: Plots corresponding to the one-sided and two-sided semi-global-decoding success probabilities in (35b)

and (36) with q = 3 for the SB Gilbert-Elliot channel.

value e2 = 0.35, as before. The states s1 and s4 (corresponding to a1 and a4, respectively) are added to the channel

model as extreme states, where s1 is a very good state (local decoding/termination), and s4 is a very bad state

(anti-termination). To reflect the fact that these extreme states are likely rare, we set

β = 0.01.

It can be verified that for β = 0.01 and every 0 ≤ α ≤ 0.98, the stationary distribution of P1 is given by
1

2β+1 · (β, 0.5, 0.5, β) = (0.0098, 0.4902, 0.4902, 0.0098). Hence, for the i.i.d. channel model we set

P2 =







0.0098 0.4902 0.4902 0.0098
0.0098 0.4902 0.4902 0.0098
0.0098 0.4902 0.4902 0.0098
0.0098 0.4902 0.4902 0.0098






. (39)

Figure 11 plots the decoding success lower bound of (35a) and (36) as a function of d for P1 and P2 in (38) and

(39), respectively. Similarly to Figure 10, the more-realistic channel model, with a positive correlation between SBs

(α = 0.9, blue), shows better performance than the i.i.d. model (black) and the α = 0.1 channel model (green) for

all d. In contrast to Figure 10, here the two-sided decoder outperforms the one-sided when d is large. A possible

reason is that the addition of the states s̃1, s̃4 introduces a benefit for the two attempts at pseudo-termination offered

by the two-sided decoder.

E. Code Design

We now perform a threshold analysis and performance evaluation of semi-global decoding over the SB Markov-

varying channel for a family of SC-LDPCL protographs sharing the same code rate and node degrees, however,

differ in edge spreading. We focus on protographs in which the SBs are symmetric (see Definition 3), which have

the convenient property in which left and right helper SBs have identical structure. We first establish a connection

between symmetric SBs and their degree profile.
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and (36) for the SB generalized Gilbert-Elliot channel.

Definition 8. A degree profile dC ∈ N
a, dV ∈ N

b is said to be symmetric if by possibly reordering the elements of

dC and dV we get vectors d̃C and d̃V , respectively, such that

d̃C,i + d̃C,a+1−i = b, ∀1 ≤ i ≤ a,

d̃V,j + d̃V,b+1−j = a, ∀1 ≤ j ≤ b.

Example 10. The protomatrix in Example 1 has a symmetric degree profile.

Example 11. The following protomatrix has a symmetric degree profile:

A =





0 1 0 1 1 1 0 0
0 0 0 0 1 1 1 0
0 1 0 0 1 1 1 1



 .

Indeed, a = 3, b = 8, dC(A) = (4, 3, 5) and dV (A) = (0, 2, 0, 1, 3, 3, 2, 1) and after sorting dC(A) and dV (A)
in ascending and descending orders (Definition 8 allows arbitrary reordering), respectively, we get d̃C(A) =
(3, 4, 5), d̃V (A) = (3, 3, 2, 2, 1, 1, 0, 0).

Lemma 16. For every symmetric degree profile dC ∈ N
a, dV ∈ N

b we have

‖dC‖1 =
ab

2
= ‖dV ‖1.

Proof. Let d̃C = (d̃C,1, d̃C,2, . . . , d̃C,a) be the sorted version of dC . Then,

2‖dV ‖1 = 2‖dC‖1

= 2‖d̃C‖1

=

a∑

i=1

d̃C,i + d̃C,a+1−i

= ab.
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Corollary 17. If a and b are both odd, then no symmetric degree profile dC ∈ N
a, dV ∈ N

b exists.

We now connect the definition of symmetric SBs in Definition 3 with symmetric degree profiles from Definition 8.

Recall that symmetric SBs simplify the analysis since left and right helper SBs have an identical structure. This

leads to a simpler description of the semi-global-decoding process (e.g., unified left and right SB thresholds). The

following proposition shows that if we are interested in symmetric SBs we only need to consider symmetric degree

profiles.

Proposition 18. If a SB (Bleft ; Bloc ; Bright) ∈ {0, 1}(t+l)×r is symmetric then the degree-profile of Bleft is

symmetric. In addition, if t ≤ 2, then the converse holds as well.

Proof. See Appendix A.

We now proceed to performance comparison between different codes over the SB Markov-varying channel. We

focus on protographs with a coupling parameter t ≤ 2 and symmetric SBs. Let l = 4 and r = 6 be the VN and

CN degrees, respectively, of the base matrix B. We consider t ∈ {0, 1, 2}, where t = 0 corresponds to an isolated

SB (i.e., not coupled to its neighbors), and t ∈ {1, 2} corresponds to a SB in a proper SC-LDPC code with SB

locality.

In the case of t = 0, the protograph consists of isolated SBs, each being a (l, r) code. Since there are no coupling

checks, all of the SB’s thresholds coincide ǫ∗3 = ǫ∗2 = ǫ∗1 = 0.5061.

For t = 1, we have only a single edge-spreading rule that induces symmetric SBs








Bleft

Bloc

Bright









=









1 1 1 0 0 0

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

0 0 0 1 1 1









. (40)

All other assignments to Bleft with t = 1 and r = 6 violate the necessary condition for symmetric SBs in

Proposition 18. The thresholds for the SB in (40) are ǫ∗1 = 0.4294, ǫ∗2 = 0.4788, ǫ∗3 = 0.5474.

If we use t = 2 coupling check nodes, then more edge-spreading rules are possible. Let (dC,1, dC,2) = dC(Bleft)
be the check degree profile of Bleft. In view of Proposition 18, a SB is symmetric if and only if dC,1+dC,2 = r = 6.

Thus, we set dC,1 ∈ {1, 2, 3} and dC,2 = 6− dC,1. We can assume w.l.o.g. that the first row in Bleft is left aligned,

meaning it has dC,1 consecutive ones followed by 6 − dC,1 zeros. After setting the first row of Bleft, we set the

overlap between the first an second rows of Bleft. Let j ∈ {1, 2, . . . , r− (dC,2− 1)}. The second row of Bleft starts

with j−1 zeros, followed by dC,2 ones, and additional r− (dC,2− j+1) zeros. In all of the t = 2 designs we have

Bloc = 12×6, while Bleft is given by Table II. All other assignments to Bleft with r = 6, t = 2 (i.e., not in Table II)

either induce non-symmetric SBs or are permuted versions of those in Table II and thus are equivalent. The local

threshold of all t = 2 SBs is ǫ∗1 = 0.2 (the threshold of the (l = 2, r = 6) LDPC ensemble); the other thresholds,

alongside with their q value (see (18)) for erasure parameter 0.435, are given in Table II. Note that for dC = (3, 3)
and j = 1 (line 8 in Table II) we have 0.435 > ǫ∗2, and thus q(0.435) = ∞. For all other designs 0.435 < ǫ∗2 and

q(0.435) < ∞. Also shown are the global thresholds ǫ∗G (i.e., the threshold of the coupled protograph [21]) for

protographs with M = 50 SBs.

In what follows, we evaluate the semi-global performance of the above codes over the SBMV channel. We

consider two SB Gilbert-Elliot channels, both with the transition matrix P1 in (37) with α = 0.9. For the first one

E1 = {0.435, 0.54} and for the second E2 = {0.435, 0.57}. Note that in some of the possible designs in Table II,

we have that the erasure rate in the ”bad” state (0.54 and 0.57 for E1 and E2, receptively) is greater than ǫ∗3. In

view of Section V-D, this means that in these particular cases, ”bad” SBs are anti-termination SBs (i.e, in state s4,

see Section V-B). For these cases, (35a), (35b) simplify for one-sided decoding to

pR(d) = pL(d) =

{
0.5 · αq−1 d ≥ q − 1
0 otherwise

,

and for the two-sided mode (36) simplifies to

p2(d) =

{
0.5 · (2αq−1 − α2(q−1)) d

2 ≥ q − 1
0 otherwise

.
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TABLE II: All possible edge connections for the coupling check nodes in l = 4, r = 6 (rate 0.33) SC-LDPCL

protographs with symmetric SBs.

# t dC j Bleft ǫ∗1 ǫ∗2 ǫ∗3 ǫ∗G q(0.435)
1 0 0.5061 0.5061 0.5061 0.5061 1

2 1 3 1
(

1 1 1 0 0 0
)

0.4294 0.4788 0.5474 0.5564 2

3 2 (1, 5) 1

(

1 0 0 0 0 0
1 1 1 1 1 0

)

0.2 0.4368 0.5320 0.5836 10

4 2 (1, 5) 2

(

1 0 0 0 0 0
0 1 1 1 1 1

)

0.2 0.4423 0.5175 0.5655 5

5 2 (2, 4) 1

(

1 1 0 0 0 0
1 1 1 1 0 0

)

0.2 0.4386 0.5918 0.6114 11

6 2 (2, 4) 2

(

1 1 0 0 0 0
0 1 1 1 1 0

)

0.2 0.4442 0.5722 0.5966 7

7 2 (2, 4) 3

(

1 1 0 0 0 0
0 0 1 1 1 1

)

0.2 0.4488 0.5594 0.5863 5

8 2 (3, 3) 1

(

1 1 1 0 0 0
1 1 1 0 0 0

)

0.2 0.4345 0.4991 0.6338 ∞

9 2 (3, 3) 2

(

1 1 1 0 0 0
0 1 1 1 0 0

)

0.2 0.4411 0.5974 0.6104 10

10 2 (3, 3) 3

(

1 1 1 0 0 0
0 0 1 1 1 0

)

0.2 0.4463 0.5802 0.5982 7

11 2 (3, 3) 4

(

1 1 1 0 0 0
0 0 0 1 1 1

)

0.2 0.4507 0.5688 0.5900 6

.

In view of Section V-D, for a given SBMV channel, the performance of semi-global decoding is determined by:

1) the code thresholds, and in particular the induced Q matrix in (32); 2) the parameter q(e) which is the minimal

number of SBs with erasure rate e < ǫ∗2 needed for pseudo-termination. Hence, the performance of some of the

possibilities in Table II coincide. Further, some of the designs have properties (thresholds and q) that are dominated

by others, e.g., the design in line 3 is dominated by the design in line 7 (worse threshold and q).

In Figure 12 we eliminate these multiplicities and dominated cases and plot the performance of three designs

corresponding to lines 1,2, and 6 in Table II. The success probabilities of the two-sided semi-global decoding mode

over the SB Gilbert-Elliot channel (with E1 and E2) are plotted for these three design options. The plots show the

trade-offs between the different designs. For example, the uncoupled protograph (t = 0) has the highest success

probability for no helper SBs (d = 0), however, since the SBs are uncoupled, then adding helper SBs does not

improve the performance. In addition, on one hand, the t = 1 design shows high success probabilities for the E1
channel, and on the other hand the performance is poor for the E2 channel. This degradation is a result of a relatively

small ǫ∗3 threshold (0.5474, see line 2 in Table II). Furthermore, the t = 2 design with (dC,1, dC,2) = (2, 4), j = 2
(line 6 in Table II) shows the best performance for the E2 channel (for d ≥ 18), while it requires high values for

d (see q = 7 in Table II).

Example 12. Table III lists the thresholds of different designs for high-rate SC-LDPCL protographs with l = 4
and r = 16 (rate 0.75) (all designs induce symmetric SBs). The global thresholds are calculated for protographs

with M = 8 SBs.

VI. SUMMARY

This paper analyzes and characterizes semi-global decoding of SC-LDPC protographs with SB locality. We

perform a two-step analysis of the decoder: 1) from the perspective of a single SB decoded in the process, 2)

the full decoding process with d helper SBs. In the former, we define SB thresholds and prove theoretical results

about the incoming and outgoing DE values to and from SBs. In the latter, we use the single-SB results to prove

characterization results about semi-global thresholds over memoryless channels, and to derive lower bounds on the

semi-global performance over the SB Markov-varying channel.
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Fig. 12: The success probabilities of the two-sided semi-global decoding mode over the SB Gilbert-Elliot channel

for the designs in lines 1,2, and 6 in Table II.

TABLE III: Thresholds of SC-LDPCL designs with l = 4, r = 16.

# t dC j ǫ∗1 ǫ∗2 ǫ∗3 ǫ∗G q(0.16)
1 0 0.1931 0.1931 0.1931 0.1931 1

2 1 8 1 0.1568 0.1794 0.2036 0.2119 2

3 2 (5, 11) 1 0.0667 0.1601 0.2082 0.2288 33

4 2 (6, 10) 2 0.0667 0.1609 0.2121 0.2298 15

5 2 (7, 9) 3 0.0667 0.1613 0.2142 0.2304 13

6 2 (8, 8) 4 0.0667 0.1615 0.2149 0.2306 12

7 2 (6, 10) 1 0.0667 0.1598 0.1999 0.2326 ∞

8 2 (7, 9) 2 0.0667 0.1604 0.1999 0.2330 25

9 2 (8, 8) 3 0.0667 0.1605 0.1999 0.2331 21

10 2 (7, 9) 1 0.0667 0.1592 0.1667 0.2368 ∞

11 2 (8, 8) 2 0.0667 0.1594 0.1667 0.2368 ∞

12 2 (8, 8) 1 0.0667 0.1428 0.1429 0.2431 ∞

.
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Phase 1: 1 · · · m− 2 m−1 m m+1 m+ 2 · · · M

Phase 2: 1 · · · m− 2 m−1 m m+1 m+ 2 · · · M

Phase 3: 1 · · · m− 2 m−1 m m+1 m+ 2 · · · M

Fig. 13: The three phases in the modified semi-global decoder.

The most interesting line of future work is to find relations between the semi-global thresholds studied here and

the classical global threshold. These may lead to a systematic way to design protographs with improved global

thresholds. We find encouragement for this direction in a variation of the SG decoder that empirically approaches

the performance of the global decoder. This mode progresses similarly to the SG decoder, but instead of stopping

at the target (Phase 1 in Figure 13), it proceeds outward toward the termination SBs (Phase 2), and then returns to

the target again (Phase 3).
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APPENDIX A

PROOF OF LEMMA 18

We can assume w.l.o.g. that dC (Bleft) and dV (Bleft) are sorted in ascending order (if not, apply a sorting

permutation). Consider the row (CN) and column (VN) permutations πC and πV , respectively, defined by

πC(i) = t+ 1− i, 1 ≤ i ≤ t,
πV (j) = r + 1− j, 1 ≤ j ≤ r.

Since we assumed that dC (Bleft) and dV (Bleft) are sorted in ascending order, then the row and column permutations

that transform Bleft into Bleft are given by πC and πV , respectively. Thus, in view of (7a), for every i ∈ {1, . . . , t}
we have

r − [dC (Bleft)]i = [dC (Bright)]i
= [πC (dC (Bleft))]i
= [dC (Bleft)]πC(i)

= [dC (Bleft)]t+1−i

Similarly, it can be shown that for every j ∈ {1, . . . , r}, t − [dV (Bleft)]j = [dV (Bleft)]r+1−j , which in view of

Definition 8 implies that the degree-profile of Bleft is symmetric.

For the converse, assume that t ≤ 2 and that the degree-profile of Bleft is symmetric. If t = 1, then from

Corollary 17, r is even. We get that Bleft is a single-row matrix with r/2 ones and r/2 zeros. Since Bright = 1−Bleft,

then Bleft also has r/2 ones and r/2 zeros. The permutation that swaps between ones and zeros will transform

Bleft into Bright. In view of Definition 3, the SB is symmetric.

Now assume t = 2. Let dV (Bleft) = (d1, . . . , dr) be the VN degree profile of Bleft. For i ∈ {0, 1, 2}, let

Ji = {1 ≤ j ≤ r : dj = i}. J2 and J0 are the column indices in which Bleft has only ones and zeros, respectively.

Consider the row-swap permutation πC(1) = 2, πC(2) = 1 and any column (VN) permutation πV such that

πV (J2) = J0. Since d is symmetric, then |I2| = |I0| and such a column permutation exists. It can be verified that

these permutations transform Bleft into Bright, and this the SB is symmetric.
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