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Abstract

Sum-rank metric codes have recently attracted the attention of
many researchers, due to their relevance in several applications. Math-
ematically, the sum-rank metric is a natural generalization of both the
Hamming metric and the rank metric. In this paper, we provide an
Anticode Bound for the sum-rank metric, which extends the corre-
sponding Hamming and rank-metric Anticode bounds. We classify
then optimal anticodes, i.e., codes attaining the sum-rank metric An-
ticode Bound. We use these optimal anticodes to define generalized
sum-rank weights and we study their main properties. In particular,
we prove that the generalized weights of an MSRD code are determined
by its parameters. As an application, in the Appendix we explain how
generalized weights measure information leakage in multishot network
coding.

Introduction

The sum-rank metric has recently attracted attention in Coding Theory
due to its applications in reliable and secure multishot network coding [23,
17], rate-diversity optimal space-time codes [14, 27], and PMDS codes for
repair in distributed storage [4], among others. Furthermore, the sum-rank
metric is a natural generalization of both the Hamming metric and the rank
metric, thus providing a common theoretical framework for these two well-
studied metrics.

Several constructions of sum-rank metric codes exist in the literature.
The first constructions were mainly of convolutional codes, see [21] for a
survey and references. In this manuscript, we consider block codes. A trivial
Singleton Bound on their minimum sum-rank distance may be immediately
derived from the classical Singleton Bound on minimum Hamming distance
[19, Prop. 34]. Any code attaining the Singleton Bound for the rank metric
(i.e., any maximum rank-distance (MRD) code, including Gabidulin codes
[6, 7, 26]) also attains it for the sum-rank metric, that is, it is also a max-
imum sum-rank distance (MSRD) code. However, the parameters of MRD
codes (including the matrix sizes) are very strongly restricted. Furthermore,
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their decoding algorithms are over finite fields whose sizes are exponential in
the code length (i.e., the total number of columns), making such decoding
algorithms slow for large parameters. What makes the study of MSRD codes
interesting is that there are MSRD codes not coming from MRD codes and
attaining a wider range of parameters, including codes [19] with decoding
algorithms over finite fields of sub-exponential size [17].

Since then, other families of sum-rank metric codes have been found
and studied [15, 1, 22, 2, 3]. However, previous works, with the exception
of [2, 3], consider sum-rank metric codes where the number of columns
and/or rows are equal at different positions. A general Singleton Bound for
arbitrary numbers of columns and rows was given in [3, Th. 3.2], together
with corresponding MSRD codes for certain parameter ranges [3, Sec. 7].

In the context of wire-tap channels of type II, Wei introduced generalized
Hamming weights [30], which measure information leakage to an undesired
wire-tapper. Generalized Hamming weights also constitute a Hamming-
metric invariant of a code, and thus they are a useful tool in the classification
of Hamming-metric codes. Such weights were extended in [13] to general-
ized rank weights of vector codes linear over an extension field. Such weights
measure information leakage to a wire-tapper in singleshot linear network
coding. Similarly, generalized sum-rank weights for vector codes may be
obtained [16]. In [24, 18], two extensions of generalized rank weights were
given for matrix codes (thus only linear over the base field of the network).
The two definitions differ in terms of their applications. The first ones [24],
called Delsarte generalized weights, constitute a rank-metric invariant of
the codes, whereas the second ones [18], called generalized matrix weights,
measure information leakage to a wire-tapper but are not rank-metric in-
variants. Unfortunately, this discrepancy may not be saved, as there is only
one possible definition of generalized weights of matrix codes [18] that mea-
sure information leakage in linear network coding, and it does not lead to
rank-metric invariants. See also [9, Sec. 5].

In this work, we introduce generalized sum-rank weights of codes which
are only linear over the base field, and which we think of as matrix codes.
We will focus on a definition that extends Delsarte generalized weights [24],
and in the Appendix, we show how to modify the definition in order to
extend generalized matrix weights [18] and to measure information leakage
in multishot network coding. The proofs of the main properties for the
second definition can be trivially adapted from the corresponding results for
the first definition of generalized weights.

Our main definition of generalized sum-rank weights is based on optimal
anticodes for the sum-rank metric, in line with the rank-metric case [24]. To
this end, we provide in Theorem 3.1 an Anticode Bound for the sum-rank
metric, which extends the Hamming-metric Anticode Bound [24, Prop. 6]
and the rank-metric Anticode Bound [25, Prop. 47]. We then provide in
Theorem 3.11 a classification of optimal anticodes in the sum-rank metric,
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that is, codes attaining the sum-rank metric Anticode Bound. Recently in
[2], a different Anticode Bound was given for the sum-rank metric. However,
our bound is sharper and the resulting optimal anticodes lead to a definition
of generalized sum-rank weights that satisfy desirable properties, whereas
generalized weights based on anticodes as in [2] do not recover the minimum
sum-rank distance of the code.

The remainder of this manuscript is organized as follows. In Section
1, we collect some preliminaries on the sum-rank metric. In Section 2, we
study and lower bound the maximum rank of cosets of a linear rank-metric
code, extending results from Meshulam [20] to cosets. Using these results,
we provide in Section 3 our Anticode Bound for sum-rank metric codes and
we provide an explicit description and classification of optimal anticodes for
the sum-rank metric. In Section 4, we study linear isometries of sum-rank
metric codes. Such isometries allow us to define the notion of equivalent
codes, which allows us to say if a given parameter of a code is a sum-rank
invariant. In Section 5, we use optimal anticodes to define and obtain the
main properties of generalized sum-rank weights. Finally in Section 6, we
use the previous results to define and study MSRD codes and r-MSRD codes
in the general scenario considered in this work, namely matrix codes with
different numbers of rows and/or columns at different positions.
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1 Preliminaries and notation

For a prime power q, let Fq be the finite field with q elements. For
positive integers m ≥ n, we denote by Fm×n

q the set of m× n matrices with
entries in Fq. We denote by rk(M) the rank of a matrix M ∈ Fm×n

q and
by dim(V ) the dimension of an Fq-linear space V . We denote by 0 the zero
vector space.

For a positive integer r, we let [r] be the set {1, . . . , r}. For a matrix
M ∈ Fm×n

q and S ⊆ [m], L ⊆ [n] we let M(S,L) denote the submatrix of
M consisting of the rows indexed by S and the columns indexed by L. For
(s, l) ∈ [m]× [n],M(s, l) denotes the entry ofM in position (s, l). Moreover,
we let Es,l ∈ Fm×n

q be the matrix whose entries are equal to zero, except for
a one in position (s, l) ∈ [m]× [n].
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Fix positive integers ℓ, n1, . . . , nℓ,m1, . . . ,mℓ such that m1 ≥ . . . ≥ mℓ

and ni ≤ mi for i ∈ [ℓ]. We write n = n1 + . . .+ nℓ and let

M = Fm1×n1
q × . . .× Fmℓ×nℓ

q .

In particular, if ℓ = 1, then n = n1 and we let m = m1. Then m ≥ n and
M = Fm×n

q .

Definition 1.1. Let C = (C1, . . . , Cℓ) ∈ M, where Ci ∈ Fmi×ni
q for i ∈ [ℓ].

We define the sum-rank weight of C as

srk(C) =

ℓ∑︂
i=1

rk(Ci).

The sum-rank metric is then defined as

d : M×M −→ N
(C,D) ↦−→ srk(C −D).

A linear sum-rank metric code C is an Fq-linear subspace of M en-
dowed with the sum-rank metric. Throughout the paper, we will refer to it
simply as a (sum-rank) code. A code C ⊆ M is non-trivial if C ̸= 0,M.

The minimum distance of a code 0 ̸= C ⊆ M is

d(C) = min{srk(C) : C ∈ C \ {0}}

and the maximum sum-rank distance is

maxsrk(C) = max{srk(C) : C ∈ C}.

Notice that, if we let ℓ = 1, then C ⊆ Fm1×n1
q is a rank-metric code. We

refer the interested reader to [9] for an introduction to rank-metric codes
and their invariants. If m1 = 1, then m2 = . . . = mℓ = 1 and C ⊆ Fn

q is a
linear block code endowed with the Hamming metric.

For a square matrix M , let tr(M) denote its trace. Then

Tr : M×M −→ Fq

(D,C) ↦−→
∑︁ℓ

i=1 tr(DiC
t
i )

is a nondegenerate bilinear form. We define the dual of a code as the natural
extension of the dual of a rank-metric code, as defined in [6].

Definition 1.2. Let C ⊆ M be a code. The dual of C is

C⊥ = {D ∈ M : Tr(D,C) = 0 for all C ∈ C}.
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2 Maximal rank in cosets of rank-metric codes

In this section we provide lower bounds for the maximum rank of a coset
of a rank-metric code. Our strategy is inspired by that used by Meshulam
in [20] and extends it to cosets of a vector space.

Let ≺ be the lexicographic order on N× N and let

ϕ : Fm×n
q → N× N
M ↦→ min≺{(i, j) :M(i, j) ̸= 0}.

Definition 2.1. For a collection M = {M1, . . . ,Md} of matrices in Fm×n
q ,

we define a matrix M whose entry in position (i, j) is

M(i, j) =

®
1 if (i, j) = ϕ(Mk) for some k ∈ [d],

0 otherwise.

Denote by ρ(M) the minimal number of lines in M which cover all ones in
M , where a line of a matrix is either a row or a column.

A set of positions {(i1, j1), . . . , (ir, jr)} of entries in a matrix is indepen-
dent if for all h ̸= k, h, k ∈ [r] one has ih ̸= ik and jh ̸= jk. König’s Theorem
relates the cardinality of an independent set of positions of a zero-one matrix
to the minimum number of lines containing all the nonzero entries.

Theorem 2.2 (König’s Theorem, [12, 28]). If the entries of a rectangular
matrix are zeros and ones, then the minimum number of lines containing all
the entries equal to one is equal to the maximum cardinality of an indepen-
dent set of positions corresponding to nonzero entries.

In [20], Meshulam uses König’s Theorem to establish a lower bound for
the maximum rank of a matrix in a given vector space. In this section, we
extend Meshulam’s result from vector spaces of matrices to cosets. We start
with a preliminary result.

Lemma 2.3. Let D1, . . . , Dr, A ∈ Fr×r
q such that for all 1 ≤ i ≤ r, the first

i − 1 rows of Di are zero and the ith row is the ith standard basis vector.
Then there are x1, . . . , xr ∈ {0, 1} such that

rk

(︄
A+

r∑︂
i=1

xiDi

)︄
= r.

Proof. We proceed by induction on r. The case r = 1 is trivial. Assume
r > 1. For i ∈ [r−1] letD′

i = Di([r−1], [r−1]). By the induction hypothesis,
there exist x1, . . . , xr−1 ∈ {0, 1} such that the matrix A([r − 1], [r − 1]) +
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∑︁r−1
i=1 xiD

′
i is non-singular. Since Dr(i, j) = 0 for all (i, j) ̸= (r, r) and

Dr(r, r) = 1, by expanding with respect to the bottom row we obtain

det

(︄
A+

r−1∑︂
i=1

xiDi +Dr

)︄
= det

(︄
A+

r−1∑︂
i=1

xiDi

)︄
+

+ (−1)r+1 det

(︄
A([r − 1], [r − 1]) +

r−1∑︂
i=1

xiD
′
i

)︄
.

The last summand is nonzero, therefore

A+

r−1∑︂
i=1

xiDi +Dr and A+

r−1∑︂
i=1

xiDi

cannot both be singular.

The next theorem extends the main result of [20] from vector spaces to
cosets.

Theorem 2.4. Let A ∈ Fm×n
q and let M = {M1, . . . ,Md} ⊆ Fm×n

q . Then
there exist x1, . . . , xd ∈ {0, 1} such that

rk(A+ x1M1 + · · ·+ xdMd) ≥ ρ(M).

Proof. Let ρ(M) = r. By Theorem 2.2 there exist i1, . . . , ir ∈ [d] such that
{ϕ(Mij ) : j ∈ [r]} is independent. Let ϕ(Mij ) = (sj , lj) for j ∈ [r], then
both S = {s1, . . . , sr} and L = {l1, . . . , lr} have cardinality r.

We shall prove the theorem by showing that A(S,L) + ⟨B1, . . . , Br⟩
contains a non-singular matrix, where Bj = Mij (S,L). We may assume
that s1 < s2 < · · · < sr. Let σ be the permutation on [r] for which
lσ(1) < · · · < lσ(r). Denote the jth row of Bj by bj .

Clearly the first j−1 rows of Bj are zero, Bj(j, s) = 0 for s ∈ [σ−1(j)−1]
and Bj(j, σ

−1(j)) ̸= 0. Let C ∈ Fr×r
q be the matrix with rows b1, . . . br.

Notice that C is non-singular, since we can obtain an upper triangular matrix
with nonzero entries on the diagonal by permuting the rows of C. Let
Dj = BjC

−1 for j ∈ [r]. It easy to check that the first j − 1 rows of Dj are
zero and the jth row is the jth standard basis vector, for all j ∈ [r].

By Lemma 2.3 we have that A(S,L)C−1 +
∑︁r

j=1 xjDj is non-singular
for some x1, . . . , xr ∈ {0, 1}. Therefore

A(S,L) +
r∑︂

j=1

xjBj =

Ñ
A(S,L)C−1 +

r∑︂
j=1

xjDj

é
C

is also non-singular. This implies that rk(A+
∑︁r

j=1 xjMij ) ≥ r.
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A theorem by Meshulam [20, Theorem 2] states that if V ⊆ Fm×m
q is

an Fq-linear subspace of dim(V) > mt, then V contains a matrix of rank at
least t + 1. This result is easily generalized to m × n matrices. The next
theorem extends Meshulam’s results to cosets, i.e. sets of the form A + V,
where V ⊆ Fm×n

q is Fq-linear and A ∈ Fm×n
q . The theorem was first shown

by C. de Seguins Pazzis, see [5, Corollary 2].

Theorem 2.5. Let 0 ≤ t < n and let V ⊆ Fm×n
q be an Fq-linear subspace of

dim(V) > mt. Let A ∈ Fm×n
q . Then there exists B ∈ V such that

rk(A+B) ≥ t+ 1.

Moreover, if {B1, . . . , Bmt+d} is a basis of V, d = dim(V)−mt, then B can
be chosen of the form B =

∑︁mt+d
i=1 xiBi with xi ∈ {0, 1}.

Proof. Let dim(V) = mt+ d with d > 0 and choose a basis {B1, . . . , Bmt+d}
of V. By performing Gaussian elimination on {B1, . . . , Bmt+d} we may as-
sume that ϕ(B1), . . . , ϕ(Bmt+d) are distinct. Since a line in a matrix cover at
mostm entries we cannot cover ϕ(B1), . . . , ϕ(Bmt+d) by less than (mt+d)/m
lines. Therefore,

ρ({B1, . . . , Bmt+d}) ≥ t+ 1.

Theorem 2.4 implies that there exists B ∈ V of the desired form, such that
rk(A+B) ≥ t+ 1.

Results on vector spaces are a special case of those on cosets. For exam-
ple, the Anticode Bound is a direct consequence of Theorem 2.5.

Theorem 2.6 (Anticode Bound, [24]). Let C ⊆ Fm×n
q be a rank-metric code.

Then
dim(C) ≤ mmaxrk(C).

If A ∈ V and V is a linear space, then A+ V = V and there exist linear
spaces V ⊆ Fm×n

q such that dim(V) = mt and rk(A) ≤ t for all A ∈ V.
Such linear spaces appear in the coding theory literature under the name of
optimal anticodes. We now show that if A ̸∈ V, that is if A + V ≠ V, then
every V of dim(V) = mt contains a B such that rk(A + B) > t. For odd q
this is an immediate consequence of Theorem 2.4, as we show in the next
corollary. In Theorem 2.11 we prove the same result for any q. We choose
to include Corollary 2.7, since the proof is immediate.

Corollary 2.7. Let 0 ≤ t < n and let V ⊆ Fm×n
q be an Fq-linear subspace

of dimension dim(V) = mt. Let A ∈ Fm×n
q \ V. If q is odd, then there exists

B ∈ V such that
rk(A+B) ≥ t+ 1.

7



Proof. Let {B1, . . . , Bmt} be a basis of V and let V̄ = ⟨A⟩+V. Since A /∈ V,
then dim(V̄) = mt+ 1. By Theorem 2.5 there are x0, . . . , xmt ∈ {0, 1} such
that

rk

(︄
A+ x0A+

mt∑︂
i=1

xiBi

)︄
≥ t+ 1.

Multiplying by (1 + x0)
−1 we find a matrix of the form A+B with A ̸∈ V,

B ∈ V such that rk(A+B) ≥ t+ 1.

The following lemma will be used in the proof of the next theorem.

Lemma 2.8. Let f : Fr×r
q → Fq be a linear form that is constant on

GLr(Fq). Suppose that either r > 1 or q ̸= 2. Then f = 0.

Proof. Since f is linear, there exist ai,j ∈ Fq, i, j ∈ [r], such that

f(X) =
∑︂

1≤i,j≤r

ai,jxi,j

for any X = (xi,j) ∈ Fr×r
q . If r = 1 and q ̸= 2, let 1 ̸= α ∈ F∗

q . Then
f(α) = f(1)− f(1− α) = 0, hence f = 0. If r > 1, fix (k, l) ∈ [r]× [r]. Let
B = (bi,j) be a permutation matrix such that bk,l = 0. Let B̄ = B + Ek,l.
Both B and B̄ are non-singular, so f(B) = f(B̄). Therefore f(Ek,l) = 0 by
linearity. Since this is the case for every (k, l) ∈ [r] × [r], we conclude that
f = 0.

The next lemma will be used in the proof of Theorem 2.11.

Lemma 2.9. Let n ≥ 2 and m > 2. Let V ⊆ Fm×n
2 be an F2-linear subspace

such that dim(V) = m. Let A ∈ Fm×n
2 \ V. Then there exists B ∈ V such

that
rk(A+B) ≥ 2.

Proof. For v ∈ Fm
q and w ∈ Fm

q , denote by v ⊗ w the m × n matrix whose
entry in position (i, j) is viwj . If rk(A) ≥ 2, then the statement holds
with B = 0. If rk(A) = 1, then up to equivalence we may assume that
A = E1,1 = e1⊗ e1. If maxrk(V) = 1, then V is an optimal anticode and the
statement holds. If maxrk(V) > 2, then there exists B ∈ V with rk(B) > 2.
Hence rk(A+B) ≥ 2, since A has rank 1. Therefore, it suffices to prove the
statement for maxrk(V) = 2.

First suppose that there are two different elements V1, V2 ∈ V of rank 1.
Write V1 = v1 ⊗w1 and V2 = v2 ⊗w2 for some v1, v2 ∈ Fm

2 and w1, w2 ∈ Fn
2 .

If rk(A + V1) = rk(A + V2) = 1, then either v1 = e1 or w1 = e1 and
either v2 = e1 or w2 = e1. If either v1 = e1 and w2 = e1, or w1 = e1
and v2 = e1, then rk(A + V1 + V2) = 2, since V1, V2 ̸= A. If instead
v1 = v2 = e1, then e1, w1, w2 are linearly independent and every matrix in
⟨A,A+V1, A+V2⟩ has rank 1. Let B ∈ V be an element of rank two. Then
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one of the vectors e1, e1 + w1, e1 + w2 ̸∈ rowsp(B). Therefore, there exists
C ∈ {A,A+ V1, A+ V2} such that rk(C +B) = dim(rowsp(C +B)) ≥ 2. In
the case where w1 = w2 = e1, we proceed similarly using the column space.

Suppose now that in V there is at most one element of rank 1. Then
every linear combination with an element of maximum rank in V has again
maximum rank. Hence, since dim(V) > 2, there are two linearly independent
elements B1, B2 such that rk(B1) = rk(B2) = rk(B1 + B2) = 2. If rk(A +
B1) = rk(A+B2) = rk(A+B1 +B2) = 1, then

B1 = e1⊗ e1+ e2⊗ e2, B2 = e1⊗ e1+ v2⊗w2, B1+B2 = e1⊗ e1+ v3⊗w3,

possibly after applying a code equivalence that fixes A. Since

B2 = e1 ⊗ e1 + v2 ⊗ w2 = e2 ⊗ e2 + v3 ⊗ w3

and
B1 +B2 = e1 ⊗ e1 + v3 ⊗ w3 = e2 ⊗ e2 + v2 ⊗ w2

have rank 2, then v2, v3 ̸∈ {e1, e2}. Moreover

e1 ⊗ e1 + e2 ⊗ e2 = v2 ⊗ w2 + v3 ⊗ w3,

hence ⟨v2, v3⟩ = ⟨e1, e2⟩. The only possibility is that v2 = v3 = e1 + e2, but
this contradicts the assumption that B1 = v2 ⊗ w2 + v3 ⊗ w3 has rank 2.
Therefore, one among A+B1, A+B2, A+B1 +B2 has rank at least 2.

The next example we show that the condition m > 2 in Lemma 2.9 is
necessary. The example is essentially the same as the example that appears
below Theorem 2 in [5].

Example 2.10. Consider the 2-dimensional space V ⊆ F2×2
2 given by

V =

≠Å
1 0
0 1

ã
,

Å
0 0
1 0

ã∑
and let A =

Å
1 0
0 0

ã
/∈ V. Then maxB∈V{rk(A+B)} = 1.

The next theorem generalizes Corollary 2.7 to any q. It was first shown
by C. de Seguins Pazzis, see [5, Corollary 2].

Theorem 2.11. Let 0 ≤ t < n and let V ⊆ Fm×n
q be an Fq-linear subspace

such that dim(V) = mt. Let A ∈ Fm×n
q \ V. If either t ̸= 1 or m ̸= 2 or

q ̸= 2 or rk(A) ̸= 1, then there exists B ∈ V such that

rk(A+B) ≥ t+ 1.
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Proof. If t = 0, then V = 0 and the thesis is readily verified. Suppose that
t ≥ 1 and let M = {M1, . . . ,Mmt} be a basis of V. Up to a change of basis,
we may assume without loss of generality that ϕ(Mi) ̸= ϕ(Mj) if i ̸= j. In
particular, ρ(M) ≥ t. If ρ(M) ≥ t+ 1, then we conclude by Theorem 2.4.

Suppose that ρ(M) = t. Up to code equivalence, we may assume that
the t lines that cover ϕ(Mi) for all i are the first t columns. If t = 1 and
rk(A) ≥ 2, then let B = 0. If t = 1, rk(A) = 1, q ̸= 2 and there exists B ∈ V
with rk(B) ≥ 2, then either rk(A + B) ≥ 2 or rk(A + 2B) ≥ 2. If t = 1,
rk(A) = 1, q ̸= 2, and maxrkV = 1, then V is an optimal anticode and the
result follows easily. If q = 2 we conclude by Lemma 2.9, since m ̸= 2.

Suppose now that ρ(M) = t ≥ 2. For every t + 1 ≤ l ≤ n and every
k ∈ [m] there exists a linear form fk,l ∈ Fq[xi,j | (i, j) ∈ [m]× [t]] such that

V = {(xu,v)u,v ∈ Fm×n
q : xk,l = fk,l(xi,j) for all k ∈ [m], l ∈ [n] \ [t]}.

Assume without loss of generality that the entry ofMi in position ϕ(Mi) is 1.
Then fk,l is obtained by writing a matrix of V as

∑︁
(i,j)∈[m]×[t] xi,jM(i−1)t+j .

Assume that maxB∈V rk(A+B) = t for some A ∈ Fm×n
q . It suffices to show

that A ∈ V. Up to reducing A modulo V, we may assume without loss of
generality that ai,j = 0 for (i, j) ∈ [m] × [t]. Fix (k, l) ∈ [m] × [n] with
l ≥ t+ 1. Let X = (xi,j)i,j ∈ V. We have that

xk,l + ak,l = fk,l(xi,j) + ak,l.

Let L = [t] and let S be a subset of [m]\{k} of cardinality t. Let xi,j = 0 for
i /∈ S and j ∈ L. For any choice of (xi,j)i∈S,j∈L such thatX(S,L)+A(S,L) =
X(S,L) is invertible, one has

0 = xk,l + ak,l = fk,l(xi,j) + ak,l, (1)

since every matrix in (A + V)(S ∪ {k}, L ∪ {l}) has rank smaller than or
equal to t. Lemma 2.8 together with (1) implies that ak,l = 0. This proves
that A ∈ V.

3 Anticode Bound and optimal anticodes

In this section we prove an Anticode Bound for sum-rank metric codes.
Our bound improves the bound from [2, Theorem 2.2].

Theorem 3.1 (Anticode Bound). Let C ⊆ M be an Fq-linear subspace.
Then

dim(C) ≤ max
C∈C

{︄
ℓ∑︂

i=1

mi rk(Ci)

}︄
. (2)

In particular, if m1 = . . . = mℓ = m, then

dim(C) ≤ mmaxsrk(C).
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Proof. We proceed by induction on ℓ. If ℓ = 1, then C is a rank-metric code,
the sum-rank metric coincides with the rank metric, and the statement is
Theorem 2.6.

Let ℓ > 1. Let π be the canonical projection from M onto Fm1×n1
q ×· · ·×

Fmℓ−1×nℓ−1
q and let πℓ be the canonical projection from M onto Fmℓ×nℓ

q .

Define A = π(C) and B = πℓ(π
−1(0) ∩ C) and let C̃ = A × B. Since

dim(π−1(0) ∩ C) = dim(πℓ(π
−1(0) ∩ C)) = dim(B), we have that

dim(C) = dim(A) + dim(π−1(0) ∩ C) = dim(C̃).

By the induction hypothesis there is (C1, . . . , Cℓ−1) ∈ A such that

ℓ−1∑︂
i=1

mi rk(Ci) ≥ dim(A) = dim(C)− dim(B).

Let Cℓ ∈ πℓ(C) such that (C1, . . . , Cℓ) ∈ C. By Theorem 2.5 there is a B ∈ B
such that

rk(Cℓ +B) ≥
°
dim(B)
mℓ

§
.

Therefore

ℓ−1∑︂
i=1

mi rk(Ci) +mℓ rk(Cℓ +B) ≥ dim(C)− dim(B) +mℓ

°
dim(B)
mℓ

§
≥ dim(C).

The element (C1, . . . , Cℓ−1, Cℓ + B) ∈ C, since (C1, . . . , Cℓ−1, Cℓ) ∈ C and
B ∈ B. This concludes the proof.

Optimal sum-rank metric anticodes may now be defined as the codes
which meet the Anticode Bound.

Definition 3.2. A sum-rank metric code C ⊆ M is an optimal anticode if

dim(C) = max
C∈C

{︄
ℓ∑︂

i=1

mi rk(Ci)

}︄
.

Remark 3.3. In [2], the authors give a definition of r-anticode for r a non-
negative integer. In [2, Theorem 2.2] they establish an upper bound for the
dimension of an r-anticode. For a given C ⊆ M and r = maxsrk(C), [2,
Theorem 2.2] yields

dim(C) ≤ max

{︄
ℓ∑︂

i=1

miui :
ℓ∑︂

i=1

ui = maxsrk(C), ui ≤ ni for all i

}︄
. (3)
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Notice that our Anticode Bound is tighter than (3), since for all C =
(C1, . . . , Cℓ) ∈ C there exist u1, . . . , uℓ ∈ Z such that

∑︁ℓ
i=1 ui = maxsrk(C)

and rk(Ci) ≤ ui ≤ ni for all i. In particular, all codes that meet bound (3)
also meet our Anticode Bound. Moreover the bounds are different, as one
can easily check by comparing Theorem 3.11 in this paper and [2, Corollary
3.8]. In [2, Definition 2.3], the authors define optimal anticodes as those
that meet the bound (3). In particular, an optimal anticode according to [2]
is an optimal anticode according to Definition 3.2, but the converse is not
true in general. For example, the code 0 × F2 ⊆ F2×2

2 × F2 is an optimal
anticode according to Definition 3.2, but it does not meet (3).

A simple computation allows one to show that if Ci ⊆ Fmi×ni
q is an

optimal anticode with respect to the rank metric for i ∈ [ℓ], then C1 ×
· · · × Cℓ ⊆ M is an optimal anticode with respect to the sum-rank metric.
Moreover, one has the following.

Proposition 3.4. Let C ⊆ M be an optimal anticode and assume that m1 =
. . . = mℓ = m. For i ∈ [ℓ] let πi : M → Fmi×ni

q be the canonical projection.
The following are equivalent:

(1) C = C1 × · · · × Cℓ and Ci is an optimal rank-metric anticode for i ∈ [ℓ].

(2) maxsrk(C) =
∑︁ℓ

i=1maxrk(πi(C)).

Proof. (1) =⇒ (2) follows from a simple computation.
(2) =⇒ (1) Clearly, C ⊆

∏︁ℓ
i=1 πi(C), so

mmaxsrk(C) = dim(C) ≤
ℓ∑︂

i=1

dim(πi(C)) ≤
ℓ∑︂

i=1

mmaxrk(πi(C)).

Since maxsrk(C) =
∑︁ℓ

i=1maxrk(πi(C)), we have that

dim(C) = dim

(︄
ℓ∏︂

i=1

πi(C)

)︄
and dim(πi(C)) = mmaxrk(πi(C)).

Therefore C =
∏︁ℓ

i=1 πi(C) and Ci is an optimal rank-metric anticode for all
i ∈ [ℓ].

We will prove that optimal anticodes in the sum-rank metric are gen-
erated by their elements of maximum sum rank. We start by proving the
result in the special case of rank-metric anticodes.

Lemma 3.5. Let C ⊆ Fm×n
q be an optimal anticode. Then C is generated

by its elements of maximum rank.
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Proof. Let t = maxrk(C), then dim(C) = mt. Up to code equivalence
we may assume that C consists of all matrices whose rowspace is con-
tained in ⟨e1, . . . , et⟩, where e1, . . . , et ∈ Fn

q are the first t elements of
the standard basis. Therefore it suffices to prove the statement for C =
Fm×t
q . Let {Ei,j}1≤i≤m,1≤j≤t be the standard basis of Fm×t

q . Let I =∑︁t
i=1Ei,i ∈ Fm×t

q . For each (i, j) ∈ [m] × [t] there exists a permutation
matrix Si,j ∈ Fm×m

q such that (Si,jI)i,j = 0. Therefore one can write
Ei,j = (Si,jI + Ei,j) − Si,jI, with rk(Si,jI) = rk(Si,jI + Ei,j) = t. This
implies that {Si,jI + Ei,j , Si,jI}1≤i≤m,1≤j≤t is a set of matrices of rank t
which generates Fm×t

q .

The next observations will be useful in order to extend the result of
Lemma 3.5 to optimal anticodes in the sum-rank metric.

Lemma 3.6. Let m ≥ 2 and let C ⊆ Fm×n
2 be an optimal rank-metric

anticode of maxrk(C) = t. Then every element of C of rank t can be written
as the sum of two elements of C of rank t.

Proof. Up to code equivalence we may assume that C consists of all matrices
whose rowspace is contained in ⟨e1, . . . , et⟩, where e1, . . . , et ∈ Fn

2 are the first
t elements of the standard basis. Therefore, it suffices to show that every
element of full rank in Fm×t

2 can be written as the sum of two elements of
Fm×t
2 of full rank. Let C = (c1, . . . , ct) ∈ Fm×t

2 be the matrix whose columns
are c1, . . . , ct ∈ Fm

2 . Assume that rk(C) = t. If t = 1, let C̃ ∈ C \ {C, 0}.
Notice that C̃ exists, since m ≥ 2. Then C̃, C + C̃ are elements of rank 1
and C = C̃ + (C + C̃). If t is even, then C = C1 + C2 where

C1 = (c1 + c2, c1, c3 + c4, c3, . . . , ct−1 + ct, ct−1),

C2 = (c2, c1 + c2, c4, c3 + c4, . . . , ct, ct−1 + ct).

If t ̸= 1 is odd, then C = C1 + C2 where

C1 = (c1 + c2, c3, c1, c4 + c5, c4, . . . , ct−1 + ct, ct−1),

C2 = (c2, c3 + c2, c1 + c3, c5, c4 + c5, . . . , ct, ct−1 + ct).

Since C1 and C2 have the same column space as C, they have full rank.

Theorem 3.7. Let C = C1×· · ·×Cℓ ⊆ M, where Ci is an optimal rank-metric
anticode for all i ∈ [ℓ]. If either mℓ−1 ≥ 2 or q ̸= 2, then C is generated by
its elements of maximum sum-rank.

Proof. Let C = (C1, . . . , Cℓ) ∈ C be such that

ℓ∑︂
i=1

mi rk(Ci) = max
D∈C

{︄
ℓ∑︂

i=1

mi rk(Di)

}︄
.
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Since C is a product, then Ci is an element of maximum rank in Ci for all
1 ≤ i ≤ ℓ. If q ̸= 2, let α ∈ Fq \ {0, 1}. Then

(0, . . . , 0, Ci, 0, . . . , 0) ∈ ⟨(C1, . . . , Cℓ), (C1, . . . , Ci−1, αCi, Ci+1, . . . , Cℓ)⟩.

Therefore C is generated by its element of maximum sum-rank, since each
Ci is generated by its elements of maximum rank by Lemma 3.5.

If q = 2 and i ̸= ℓ, then by Lemma 3.6 there exist C ′
i, C

′′
i ∈ Ci of maxi-

mum rank such that Ci = C ′
i+C

′′
i . Let C

′ = (C1, . . . , Ci−1, C
′
i, Ci+1, . . . , Cℓ)

and C ′′ = (C1, . . . , Ci−1, C
′′
i , Ci+1, . . . , Cℓ). Then

(0, . . . , 0, Ci, 0, . . . , 0) ∈ ⟨C ′, C ′′⟩.

Since C and (0, . . . , 0, Ci, 0, . . . , 0), i ∈ [ℓ − 1], belong to the subcode of C
generated by its codewords of maximum sum-rank, then also (0, . . . , 0, Cℓ)
does. Therefore C is generated by its element of maximum sum-rank.

Example 3.8. For ℓ ≥ 2 andmℓ−1 = 1, the code C = 0⊕. . .⊕0⊕F2⊕F2 is an
optimal anticode, which is not generated by its unique element (0, . . . , 0, 1, 1)
of maximum sum-rank.

The next result on generating sets of optimal binary anticodes in the
Hamming metric will also be useful.

Lemma 3.9. Let C ⊆ Fℓ
2 be an optimal anticode of dim(C) = t ≥ 1. Then

C is generated by its elements of weight t and t− 1.

Proof. Let G be a generator matrix of C and assume that G is in reduced
row echelon form. Denote by g1, . . . , gt the rows of G. Let v = g1 + . . .+ gt.
Then the vectors v, v+ g1, . . . , v+ gt have weight t− 1 or t and are a system
of generators of C, since gi = v + (v + gi) for all i.

The following technical lemma will be used in the proof of Theorem 3.11.

Lemma 3.10. Let q = 2, ℓ ≥ 2, m1 = n1 = 2, and let k = max{i ∈
[ℓ] | mi > 1}. Let C ⊆ M,A = π(C),B = π1(π

−1(0) ∩ C), where π : M →
Fm2×n2
2 × · · · × Fmℓ×nℓ

2 and π1 : M → Fm1×n1
2 are the canonical projections.

If dim(B) = 2 and A =
∏︁k

i=2 Ci × C′ for optimal anticodes C′ ⊆ Fℓ−k
2 and

Ci ⊆ Fmi×ni
2 for all i ∈ [k] \ {1}, then one of the following holds:

(i) B is an optimal anticode,

(ii) There is B ∈ B and C = (C1, . . . , Cℓ) ∈ C with
∑︁k

i=2mi rk(Ci) +

wt(Ck+1, . . . , Cℓ) ≥
∑︁k

i=2mimaxrk(Ci) + maxwt(C′)− 1, such that

rk(B + C1) = 2.
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Proof. If maxrk(B) = 1, then B is an optimal anticode. Assume therefore
that maxrk(B) = 2. Let G be a generator matrix of C′ and assume that
G is in reduced row echelon form and that dim(C′) = t. If t = 0, then
let D = (D2, . . . , Dk), E = (E2, . . . , Ek) ∈

∏︁k
i=2 Ci be codewords such that

each component ofD,E,D+E has maximal rank. Such matrices exist, since
each Ci is an optimal anticode. Let D1, E1 ∈ C1 be such that (D1, . . . , Dk, 0),
(E1, . . . , Ek, 0) ∈ C. If one of D1, E1, and D1 +E1 is zero, then we conclude
by taking B of rank 2. If there is a rank 2 element among D1, E1, and
D1 + E1, then we conclude by taking B = 0. If D1, E1, D1 + E1 all have
rank 1, then again we easily conclude. In fact, either ⟨D1, E1⟩ ∩ B ≠ 0, or

|(D1 + B) ∪ (E1 + B) ∪ (D1 + E1 + B)| = 12,

but in F2×2
2 we have only 9 elements of rank 1.

Suppose now that t ≥ 1 and let g1, . . . , gt, v as in the proof of Lemma 3.9.
For every i ∈ [t], there exists Gi

1 ∈ F2×2
2 such that Gi = (Gi

1, 0, . . . , 0, gi) ∈ C.
If for every i ∈ [t], Gi

1 ∈ B, then C = D×C′, whereD ⊆ Fm1×n1
2 ×. . .×Fmk×nk

2 .
Therefore we reduce to the situation t = 0, which we treated above. Hence
we assume without loss of generality that G1

1 /∈ B. Let C =
∑︁t

i=1G
i =

(C1, 0, . . . , 0, v) and D = (D1, D2, . . . , Dk, 0, . . . , 0) such that Di has max
rank in Ci for i ∈ [k] \ {1}. If either D1 + C1 or D1 + C1 + G1

1 belongs to
B, then we conclude. If D1 + C1,D1 + C1 +G1

1 /∈ B, then since G1
1 /∈ B, we

have that
(D1 + C1 +G1

1 + B) ∩ (D1 + C1 + B) = ∅,

and
((D1 + C1 +G1

1 + B) ∪ (D1 + C1 + B)) ∩ (⟨G1
1⟩+ B) = ∅.

Notice that F2×2
2 consists of the zero matrix, 9 elements of rank 1, and 6

elements of rank 2. In ⟨G1
1⟩ + B there are at least two elements of rank 1,

since dim(⟨G1
1⟩+B) = 3. Therefore, in (D1 +C1 +G1

1 +B)∪ (D1 +C1 +B)
there must be at least an element of rank 2. We conclude, since the elements
D + C and D + C +G1 satisfy the condition from (ii).

In the next theorem we show that the optimal anticodes in the sum-rank
metric are products of optimal anticodes in the rank metric and an optimal
anticode in the Hamming metric.

Theorem 3.11. Let k = 0 if m1 = 1 and k = max{i ∈ [ℓ] | mi > 1}
otherwise. A code C ⊆ M is an optimal anticode if and only if there is an
optimal anticode C′ ⊆ Fℓ−k

q and optimal anticodes Ci ⊆ Fmi×ni
q for all i ∈ [k]

such that C =
∏︁k

i=1 Ci × C′.

Proof. Assume that C′ ⊆ Fℓ−k
q is an optimal Hamming-metric anticode and

Ci ⊆ Fmi×ni
q are optimal rank-metric anticodes for i ∈ [k]. It is straightfor-

ward to prove that C =
∏︁k

i=1 Ci × C′ ⊆ M is an optimal anticode. Further,
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the statement of the theorem holds for m1 = . . . = mℓ = 1. Therefore, we
may assume that m1 > 1, hence also k ≥ 1. We proceed by induction on ℓ.
For ℓ = 1, the theorem holds trivially.

We suppose that the theorem holds for ℓ− 1 and we prove it for ℓ > 1.
Let A = π(C), B = π1(π

−1(0) ∩ C), and C̃ = B × A. As in the proof of
Theorem 3.1, we have

dim(C) = dim(B) + dim(A) ≤ m1 rk(C1 +B) +
ℓ∑︂

i=2

mi rk(Ci), (4)

where (C1, . . . , Cℓ) ∈ C, (C2, . . . , Cℓ) maximizes
∑︁ℓ

i=2mi rk(Ci) on A, and
m1 rk(C1) ≥ dim(B). Since (C1, C2, . . . , Cℓ) ∈ C and C is an optimal anti-
code, then (4) is an equality. In particular,

m1 rk(C1) = dim(B) and
ℓ∑︂

i=2

mi rk(Ci) = dim(A). (5)

This proves that A is an optimal anticode. Therefore, by the induction
hypothesis, there is an optimal anticode C′ ⊆ Fℓ−k

q and optimal anticodes

Ci ⊆ Fmi×ni
q for 2 ≤ i ≤ k such that A =

∏︁k
i=2 Ci × C′.

We claim that C1 ∈ B. In fact, if C1 ̸∈ B and either dim(B) ̸= 2 or
m ̸= 2 or q ̸= 2 or n ̸= 2 or rk(C1) ̸= 1, then by Theorem 2.11 there exists
B ∈ B such that

rk(C1 +B) > dim(B)/m1 = rk(C1).

Since B ∈ B, then (C1 + B,C2, . . . , Cℓ) ∈ C. However, this contradicts the
optimality of C, since m1 rk(C1 +B) +

∑︁ℓ
i=2mi rk(Ci) >

∑︁ℓ
i=1mi rk(Ci) =

dim(C). This proves that C1 ∈ B, so C1 + B ∈ B, hence B is an optimal
anticode by (5). If dim(B) = 2, m = n = 2, q = 2, and rk(C1) = 1, then
by Lemma 3.10 either B is an optimal anticode, or there exists B ∈ B and
C̄ = (C̄1, . . . , C̄ℓ) such that (C̄1 +B, . . . , C̄ℓ) ∈ C and

m1 rk(C̄1 +B) +
ℓ∑︂

i=2

mi rk(C̄i) ≥ 4 + dim(A)− 1 = dim(C) + 1.

This is a contradiction, since C is an optimal anticode. We conclude that
also in this case B is an optimal anticode. In addition, our arguments show
that, if (C1, . . . , Cℓ) ∈ C is such that (C2, . . . , Cℓ) maximizes

∑︁ℓ
i=2mi rk(Ci),

then C1 ∈ B. Hence (0, C2, . . . , Cℓ) ∈ C.
In order to conclude the proof, it suffices to show that C = B×A. Since

C ⊇ B×0, it suffices to show that C ⊇ 0×A. If either k ≥ ℓ−1 or q ̸= 2, then
0 × A is generated by its element of maximum sum-rank by Theorem 3.7.
Since these belong to C, we have that 0 × A ⊆ C. Therefore, assume that
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k ≤ ℓ− 2 and q = 2. Let 2 ≤ i ≤ k. By Lemma 3.6, if Ci ∈ Ci is an element
of maximum rank, then Ci = Di + D′

i for some Di, D
′
i ∈ Ci of maximum

rank. Hence

(0, . . . , 0, Ci, 0, . . . , 0) = (0, D2, . . . , Dk, D) + (0, D′
2, . . . , D

′
k, D)

where Dj = D′
j ∈ Cj is an element of maximum rank for any j ∈ {2, . . . , k}\

{i} and D is an element of maximum rank of C′. Since (0, D2, . . . , Dk, D),
(0, D′

2, . . . , D
′
k, D) are elements of maximum sum-rank in 0×A, they belong

to C. This proves that, for any 2 ≤ i ≤ k, if Ci has maximum rank among
the elements of Ci, then

(0, . . . , 0, Ci, 0, . . . , 0) ∈ C. (6)

Since Ci is generated by its elements of maximum rank by Lemma 3.5, then

0× . . .× 0× Ci × 0× . . .× 0 ⊆ C

for all 2 ≤ i ≤ k.
In addition, it follows from (6) that (0, . . . , 0, D) ∈ C for any D ∈ C′ of

maximum Hamming weight. We claim that 0 × . . . × 0 × C′ ⊆ C. Let t be
the maximum weight of a codeword in C′ and let D′ ∈ C′ be an element of
weight t − 1. By Lemma 3.9 it suffices to show that (0, . . . , 0, D′) ∈ C. Let
(D2, . . . , Dk, D

′) ∈ A with rk(Di) = maxrk(Ci) for 2 ≤ i ≤ k. Let D1 be
such that (D1, D2, . . . , Dk, D

′) ∈ C. Since 0 × C2 × . . . × Ck × 0 ⊆ C, then
(D1, 0, . . . , 0, D

′) ∈ C. If D1 ∈ B the claim follows, since (D1, 0, . . . , 0) ∈
B × 0 ⊆ C. If D1 ̸∈ B, then since B is an optimal anticode, there exists
B ∈ B such that rk(B + D1) ≥ maxrk(B) + 1. Then the element (B +
D1, D2, . . . , Dk, D

′) ∈ C has sum rank

m1 rk(B +D1) +
k∑︂

j=2

mj rk(Dj) + wt(D′) ≥

m1(maxrk(B) + 1) +
k∑︂

j=2

mj maxrk(Cj) + t− 1 =

dim(C) +m1 − 1 > dim(C),

where wt(D′) denotes the Hamming weight of D′, and the inequality follows
from the assumption that m1 > 1. This contradicts the assumption that
C is an optimal anticode, completing the proof of the claim and of the
theorem.

Example 3.12. Denote by rowsp(M) the row-space of a matrix M . The
optimal anticodes in F5×2

q × F4×3
q are exactly the codes of the form

{(A,B) | rowsp(A) ⊆ U, rowsp(B) ⊆ V }

for some U ⊆ F2
q , V ⊆ F3

q vector subspaces.
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The next result is an easy consequence of Theorem 3.11.

Corollary 3.13. Assume that either q ̸= 2 or mℓ−2 ≥ 2. An Fq-linear
space C ⊆ M is an optimal anticode if and only if for all i ∈ [ℓ] there is
Ci ⊆ Fmi×ni

q optimal anticode such that C =
∏︁ℓ

i=1 Ci.

Proof. By Theorem 3.11 C =
∏︁k

i=1 Ci × C′, where C′ ⊆ Fℓ−k
q is an optimal

anticode, k = max{i ∈ [ℓ] | mi > 1}, and Ci ⊆ Fmi×ni
q are optimal anticodes

for all i ∈ [k]. If q ̸= 2, then C′ is a product of zeroes and copies of Fq

by [24, Proposition 9]. If q = 2 and ℓ − k ≤ 2, the same is true by direct
inspection.

We conclude this section with a proof that the dual of an optimal anti-
code in the sum-rank metric is an optimal anticode, if q ̸= 2 or mℓ−2 > 1.

Proposition 3.14. Let q ̸= 2 or mℓ−2 > 1. Then A ⊆ M is an optimal
anticode if and only if A⊥ ⊆ M is an optimal anticode.

Proof. The dual of an optimal anticode in the rank-metric is an optimal
anticode by [25, Theorem 54]. The result now follows from Corollary 3.13,
after observing that the dual of a product is the product of the duals.

Notice that Corollary 3.13 and Proposition 3.14 cannot be extended to
the case q = 2 and mℓ−2 = 1, since for n ≥ 3 there exist optimal anticodes
in Fn

2 which are not products of zeroes and copies of F2, and whose dual is
not an optimal anticode.

Example 3.15. Let n ≥ 3 be odd and let C ⊆ Fn
2 be the even-weight

code. Then C is an optimal anticode since dim(C) = n − 1 = maxwt(C).
Its dual C⊥ is the repetition code, which is not an optimal anticode since
dim(C⊥) = 1 < n = maxwt(C⊥).

4 Isometries

In this section we characterize the linear isometries of M and use them
to define a notion of equivalence between sum-rank metric codes. In the
next section we define and study generalized weights and show that they
are equivalence invariants. With our notion of equivalence, we also obtain
that an optimal anticode is equivalent to a product of standard optimal
anticodes in the rank metric.

Definition 4.1. An Fq-linear isometry φ in the sum-rank metric is an
Fq-linear homomorphism of M such that srk(φ(C)) = srk(C) for all C ∈ M.
Two sum-rank metric codes C,D ⊆ M are equivalent if there is an Fq-linear
isometry φ : M → M such that φ(C) = D.
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Recall that every Fq-linear isometry in the rank metric ψ : Fm×n
q → Fm×n

q

has the form ψ(A) = MAN , or ψ(A) = MAtN if m = n, for some M ∈
GLm(Fq) and N ∈ GLn(Fq). We refer the interested reader to [11, 29] for a
proof of this result. This allows us to characterize the Fq-linear isometries
in the sum-rank metric as follows.

Theorem 4.2. Let φ : M −→ M be an Fq-linear isometry. Then there is a
permutation

σ : [ℓ] −→ [ℓ]

with the property that σ(i) = j implies mi = mj and ni = nj and there are
rank-metric Fq-linear isometries ψi : Fmi×ni

q −→ Fmi×ni
q for i ∈ [ℓ] such that

φ(C1, . . . , Cℓ) = (ψ1(Cσ(1)), . . . , ψℓ(Cσ(ℓ)))

for all (C1, . . . , Cℓ) ∈ M.

Proof. For i ∈ [ℓ], letMi = 0×. . .×0×Fmi×ni
q ×0×. . .×0 ⊆ M where the ith

component is the only nonzero one. Let {(0, . . . , 0, Ek,l, 0, . . . , 0)}(k,l)∈[mi]×[ni]

be the standard basis of Mi. Then

srk(φ(0, . . . , 0, Ek,l, 0, . . . , 0)) = 1

for all (k, l) ∈ [mi] × [ni], implying that φ(0, . . . , 0, Ek,l, 0, . . . , 0) has only
one nonzero component for each choice of k and l, say ik,l. Further, we
notice that for a given k ∈ [mi]

srk

(︄
φ

(︄
0, . . . , 0,

ni∑︂
l=1

Ek,l, 0, . . . , 0

)︄)︄
= 1, (7)

and similarly for a given l ∈ [ni] we have that

srk

(︄
φ

(︄
0, . . . , 0,

mi∑︂
k=1

Ek,l, 0, . . . , 0

)︄)︄
= 1. (8)

By (7) we have that

srk

(︄
ni∑︂
l=1

φ(0, . . . , 0, Ek,l, 0, . . . , 0)

)︄
= 1,

implying that ik,l does not depend on k. The same argument together with
equation (8) shows that ik,l does not depend on l either. It follows that for all
i there is a j such that φ(Mi) ⊆Mj . Since φ

−1 is a linear isometry, it follows
from the same argument that that φ−1(Mj) ⊆ Mi. Hence φ(Mi) = Mj . In
particular, the map that sends i to j is a permutation of [ℓ], which we
denote by σ−1. Since Mi and Mj have the same weight distribution if and
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only if ni = maxrk(Mi) = maxrk(Mj) = nj and mi = dim(Mi)/ni =
dim(Mj)/nj = mj . Therefore

φ |Mi : Mi −→ Mj

(0, . . . , 0, Ci, 0, . . . , 0) ↦−→ (0, . . . , 0, ψj(Ci), 0, . . . , 0)

for j = σ−1(i) and for some linear rank-metric isometry ψj : Fmj×nj
q →

Fmj×nj
q . Hence by linearity

φ : M −→ M
(C1, . . . , Cℓ) ↦−→ (ψ1(Cσ(1)), . . . , ψℓ(Cσ(ℓ))).

The next corollary is immediate, after observing that every optimal an-
ticode in the rank metric is equivalent to a standard optimal anticode, see
e.g. [9, Section 3].

Corollary 4.3. For i ∈ [ℓ] let Ai ⊆ Fmi×ni
q be an optimal anticode and let

A = A1 × · · · × Aℓ ⊆ M. Then A is equivalent to

ℓ∏︂
i=1

⟨Ek,l | k ∈ [mi], l ∈ [ui]⟩,

where ui = maxrk(Ai).

It is natural to ask whether a result along the lines of the MacWilliams
Extension Theorem holds in the sum-rank metric. It is clear that, since we
do not have a MacWilliams Extension Theorem for rank-metric codes, we
also cannot have a MacWilliams Extension Theorem for sum-rank metric
codes. Moreover, in the sum-rank metric we have more pathologies than
just those coming from the rank metric, as the next examples shows.

Example 4.4. Let ℓ = 3, m1 = n1 = 3,m2 = m3 = n2 = n3 = 1. Let

C =

⎧⎨⎩
ÑÑ

a 0 0
0 0 0
0 0 0

é
, b, c

é
: a, b, c ∈ Fq

⎫⎬⎭
and

D =

⎧⎨⎩
ÑÑ

a 0 0
0 b 0
0 0 c

é
, 0, 0

é
: a, b, c ∈ Fq

⎫⎬⎭ .

Then φ : C → D defined as

φ

ÑÑ
a 0 0
0 0 0
0 0 0

é
, b, c

é
=

ÑÑ
a 0 0
0 b 0
0 0 c

é
, 0, 0

é
is an Fq-linear isometry between C and D, which does not extend to an
Fq-linear isometry of M by Theorem 4.2.
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Example 4.5. Let ℓ = 2, m1 = n1 = m2 = n2 = 2. Let

C =

ßÅÅ
a 0
0 b

ã
,

Å
c 0
0 d

ãã
: a, b, c, d ∈ Fq

™
.

Then φ : C → C defined as

φ

ÅÅ
a 0
0 b

ã
,

Å
c 0
0 d

ãã
=

ÅÅ
a 0
0 c

ã
,

Å
b 0
0 d

ãã
is an Fq-linear isometry between C and itself, which does not extend to an
Fq-linear isometry of M by Theorem 4.2.

5 Generalized weights

In this section we define generalized weights in the sum-rank metric and
establish some of their basic properties, including a weak monotonicity along
the lines of the corresponding result for rank-metric codes. In addition, we
prove that they satisfy Wei’s Duality if m1 = . . . = mℓ. For general mi’s,
we show by means of an example that the generalized weights of a code do
not determine those of its dual, hence Wei’s Duality cannot hold.

Definition 5.1. Let C ⊆ M be a sum-rank metric code. For each r ∈
[dim(C)], we define the r-th generalized sum-rank weight of C as

dr(C) = min{maxsrk(A) :A = A1 × · · · × Aℓ where Ai ⊆ Fmi×ni
q

are optimal anticodes and dim(C ∩ A) ≥ r}.

Notice that if m1 = · · · = mℓ = m, then

dr(C) =
1

m
min{dim(A) :A = A1 × · · · × Aℓ where Ai ⊆ Fm×ni

q

are optimal anticodes and dim(C ∩ A) ≥ r}.
(9)

Remark 5.2. We could have defined dr(C) to be

d′r(C) = min{maxsrk(A) : A an optimal anticode and dim(C ∩ A) ≥ r}.

For either q ̸= 2 or mℓ−2 > 1 we have that dr(C) = d′r(C) as, by Corol-
lary 3.13, A is an optimal anticode if and only if A = A1 × · · · × Aℓ for Ai

optimal anticode in Fmi×ni
q . In the case q = 2 and mℓ−2 = 1 one has

d′r(C) ≤ dr(C).

Notice moreover that dr(C) recovers the Hamming weights, since the
cardinality of a support of a code is the minimum dimension of a code
which contains it and is a product of copies of Fq and zeros. If q = 2, then
d′r(C) does not recover the Hamming weights, as there are optimal binary
anticodes which are not a product of copies of F2 and zeros. See also the
example following Theorem 10 in [24].
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Remark 5.3. It follows from the definition that the generalized weights are
invariant under code equivalence.

As an example, we compute the generalized weights of optimal anticodes.

Example 5.4. For i ∈ [ℓ] let Ai ⊆ Fmi×ni
q be an optimal anticode and let

A = A1 × · · · × Aℓ ⊆ M with dimAi = miui. By Corollary 4.3 and the
previous remark, dr(A) = dr(A′) for r ∈ [dim(C)], where A′ =

∏︁ℓ
i=1⟨Ek,l |

(k, l) ∈ [mi]× [ui]⟩. Let j ∈ [ℓ], 0 ≤ δ ≤ uj − 1, r =
∑︁j−1

i=1 miui+mjδ. Then

dr+1(A) = . . . = dr+mj (A) = u1 + . . .+ uj−1 + δ + 1.

Lemma 5.5. Let m1 ≥ ... ≥ mℓ ∈ N, u1, . . . , uℓ, u′1, . . . , u′ℓ ∈ R≥0 such that∑︁ℓ
i=1 ui =

∑︁ℓ
i=1 u

′
i and such that there exists k with ui ≥ u′i for all 1 ≤ i ≤ k

and ui ≤ u′i for all k < i ≤ ℓ, then
∑︁ℓ

i=1miui ≥
∑︁ℓ

i=1miu
′
i.

Proof. Since
∑︁k

i=1(ui − u′i) =
∑︁ℓ

i=k+1(u
′
i − ui) and m1 ≥ ... ≥ mℓ, then

k∑︂
i=1

mi(ui−u′i) ≥ mk

k∑︂
i=1

(ui−u′i) ≥ mk+1

ℓ∑︂
i=k+1

(u′i−ui) ≥
ℓ∑︂

i=k+1

mi(u
′
i−ui),

which proves the thesis.

In the next proposition we establish some basic properties of generalized
weights. Notice that in the case m1 = . . . = mℓ one gets inequalities of the
same form as those in [24, Theorem 30].

Proposition 5.6. Let 0 ̸= C ⊆ D ⊆ M, then:

1. d1(C) = d(C),

2. dr(C) ≤ ds(C) for 1 ≤ r ≤ s ≤ dim(C),

3. dr(C) ≥ dr(D) for r ∈ [dim(C)],

4. ddim(C)(C) ≤ n1 + · · ·+ nℓ,

5. dr+n1m1+···+nj−1mj−1+δmj
(C) ≥ dr(C) + n1 + · · ·+ nj−1 + δ

for j ∈ [ℓ], r ∈ [dim(C) − (n1m1 + · · · + nj−1mj−1 + δmj)], and 0 ≤
δ ≤ nj − 1.

Proof. 1. Let C = (C1, . . . , Cℓ) ∈ C be an element of minimum sum-rank.
Let Ai be an optimal anticode of dim(Ai) = mi rk(Ci) containing Ci and let
A = A1×· · ·×Aℓ. Then C ∩A ̸= 0, hence d1(C) ≤ d(C). To prove that they
are equal, observe that if A′ is an optimal anticode with maxsrk(A′) < d(C),
then A′ ∩ C = 0.

2., 3., and 4. follow directly from the definition.
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5. Let s = r+ n1m1 + · · ·+ nj−1mj−1 + δmj . Let A = A1 × · · · ×Aℓ be
an optimal anticode such that dim(C ∩A) ≥ s and ds(C) = maxsrk(A). For
i ∈ [ℓ], write dim(Ai) = miui. Since

ℓ∑︂
i=1

miui = dim(A) ≥ dim(C ∩ A) ≥ s > n1m1 + · · ·+ nj−1mj−1 + δmj

and m1 ≥ · · · ≥ mℓ, then ds(C) = u1 + . . . + uℓ > n1 + · · · + nj−1 + δ by
Lemma 5.5. Let v1, . . . , vℓ be such that n1 + · · · + nj−1 + δ = v1 + · · · + vℓ
and vi ≤ ui for i ∈ [ℓ]. We have that n1m1 + · · · + nj−1mj−1 + δmj ≥
v1m1 + · · · + vℓmℓ, since m1 ≥ · · · ≥ mℓ. For all i ∈ [ℓ] there exist optimal
anticodes A′

i ⊆ Ai of dim(A′
i) = mi(ui − vi). Let A′ = A′

1 × · · · × A′
ℓ, then

dim(C ∩ A′) ≥ s− (v1m1 + · · ·+ vℓmℓ)

≥ s− (n1m1 + · · ·+ nj−1mj−1 + δmj)

= r

hence

dr(C) ≤
ℓ∑︂

i=1

(ui − vi) = ds(C)− (n1 + · · ·+ nj−1 + δ).

From parts 4. and 5. of Proposition 5.6, we easily obtain the following
Singleton-type bound. This bound will be improved in Theorem 6.4.

Corollary 5.7. Let j ∈ [ℓ], 0 ≤ δ ≤ nj − 1, 0 ≤ s ≤ mj − 1, and let C ⊆ M
be a non-trivial code of

dim(C) =
j−1∑︂
i=1

mini + δmj + s.

Then

d(C) ≤
ℓ∑︂

i=j

ni − δ +

ß
1 if s = 0
0 else.

The next lemma will be useful in Section 6 for computing the generalized
weights of an MSRD code.

Lemma 5.8. Let C ⊆ M be a code and let k ∈ [ℓ], r +mk ∈ [dim(C)]. If

dr+mk
(C) >

k−1∑︂
i=1

ni

then
dr+mk

(C) ≥ dr(C) + 1.
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Proof. Let A = A1×· · ·×Aℓ be an optimal anticode such that maxsrk(A) =
dr+mk

(C) and dim(C ∩ A) ≥ r +mk. We claim that there exists k ≤ j ≤ ℓ
such that Aj ̸= 0. In fact, if this were not the case, then

k−1∑︂
i=1

ni ≥ maxsrk(A) = dr+mk
(C).

Let A′ ⊆ A be an optimal anticode such that

dim(A′) = dim(A)−mj and maxsrk(A′) = maxsrk(A)− 1.

One has

dim(C ∩ A′) ≥ dim(C ∩ A)−mj ≥ r +mk −mj ≥ r,

hence
dr(C) ≤ maxsrk(A′) = dr+mk

(C)− 1.

The next theorem extendsWei’s Duality Theorem [30, Theorem 3] and [24,
Corollary 38]. Let m1 = . . . = mℓ = m and let C ⊆ M be a sum-rank metric
code. For any r ∈ Z define

Wr(C) = {dr+sm(C) : s ∈ Z, r + sm ∈ [dim(C)]},

W r(C) =
ß
n+ 1− dr+sm(C) : s ∈ Z, r + sm ∈ [dim(C)]

™
.

The same arguments as in [24, Corollary 38] together with Proposi-
tion 5.6 prove the next theorem.

Theorem 5.9. Let m1 = . . . = mℓ = m, r ∈ [m], and let C ⊆ M be a
sum-rank metric code. Then

Wr(C⊥) = [n]\W r+dim(C)(C).

In particular the generalized weights of a sum rank metric code C determine
the generalized weights of C⊥.

The next example shows that the generalized weights of a code do not
determine those of its dual for arbitrary mi’s.

Example 5.10. Let C1, C2 ⊆ F3×1
2 × F2×2

2 be given by

C1 = 0× F2×2
2

C2 =

⎧⎨⎩
ÑÑ

a
b
0

é
,

Å
c d
0 0

ãé
: (a, b, c, d) ∈ F4

2

⎫⎬⎭ .
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One can check that d1(Ci) = d2(Ci) = 1 and d3(Ci) = d4(Ci) = 2 for i = 1, 2.
The corresponding duals

C⊥
1 = F3×1

2 × 0

C⊥
2 =

⎧⎨⎩
ÑÑ

0
0
a

é
,

Å
0 0
b c

ãé
: (a, b, c) ∈ F3

2

⎫⎬⎭
have different generalized weights, as d3(C⊥

1 ) = 1 and d3(C⊥
2 ) = 2.

Remark 5.11. Notice that the first code in the previous example is an
optimal anticode, while the second one is not, as its first component is not
an optimal rank-metric anticode. Therefore, the example also shows that in
the sum-rank metric there exist codes which have the same dimension and
generalized weights as an optimal anticode, without being one. This is in
contrast with codes endowed with the rank metric or the Hamming metric,
where a code which has the same dimension and generalized weights as an
optimal anticode is an optimal anticode.

Remark 5.12. There is another simple situation in which the generalized
weights of the dual code are determined by numerical data on the original
code. Let C = C1 × . . .× Cℓ, then the generalized weights of C satisfy

dr(C) = min

{︄
ℓ∑︂

i=1

dri(Ci) :
ℓ∑︂

i=1

ri = r, ri ∈ [dim(Ci)]

}︄
.

The generalized weights of the rank-metric codes C1, . . . , Cℓ determine those
of C⊥

1 , . . . , C⊥
ℓ , hence they determine the generalized weights of C⊥.

We conclude this section with a result on the weights of a code which
is Fqm-linear or, more generally, Fqk -linear. Let k = gcd{m1, . . . ,mℓ}. As
k | mi for all i ∈ [ℓ], then Fn1

qm1 × · · · × Fnℓ
qmℓ is a vector space over Fqk .

For i ∈ [ℓ], let Γi = {γ1,i, . . . , γmi,i} be a basis of Fqmi over Fq. For every
w ∈ Fni

qmi define Γi(w) ∈ Fmi×ni
q via the identity(︁

γ1,i . . . γmi,i

)︁
Γi(w) = w.

For every v = (v1, . . . , vℓ) ∈ Fn1
qm1 × · · · × Fnℓ

qmℓ , define Γ(v) ∈ M as

(Γ(v))i = Γi(vi).

Let V ⊆ Fn1
qm1 × · · · × Fnℓ

qmℓ be a vector space over Fqk . The set Γ(V) =
{Γ(v) : v ∈ V} is the sum-rank metric code associated to V with respect to
{Γ1, . . . ,Γℓ}. We say that Γ(V) is Fqk -linear, see also [9, Definition 11.1.3].
In the next theorem we extend the result in [24, Theorem 28] to the sum-
rank metric case. The statement in particular applies to Fqm-linear codes in
the case when m1 = . . . = mℓ = m.
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Theorem 5.13. Let k = gcd{m1, . . . ,mℓ}, let V ⊆ Fn1
qm1 × · · · × Fnℓ

qmℓ be an
Fqk-linear vector space with dimF

qk
(V) = t. If mi > ni for i ∈ [ℓ], then

dkr+1(Γ(V)) = . . . = dk(r+1)(Γ(V))

for 0 ≤ r < t.

Proof. Write C for Γ(V). By Proposition 5.6, dkr+1(C) ≤ . . . ≤ dk(r+1)(C).
Therefore it suffices to show that dkr+1(C) = dk(r+1)(C). Since mi > ni
for i ∈ [ℓ], A is an Fqk -linear code and so C ∩ A is Fqk -linear too. Since
the dimension over Fq of an Fqk -linear vector space is divisible by k, if
dim(C ∩ A) ≥ kr + 1, then dim(C ∩ A) ≥ k(r + 1). Therefore we conclude
that dkr+1(C) ≥ dk(r+1)(C).

Remark 5.14. Although the condition that m > n is missing in the state-
ment of [24, Theorem 28], it is necessary for the result to hold. In fact, [8,
Example 6.15] is a counterexample to the statement of [24, Theorem 28] for
square matrices.

6 MSRD codes

In this section we define MSRD and r-MSRD codes, and compute their
generalized weights.

Notation 6.1. Let µ ∈ [n]. We denote by A(µ) the set of optimal anticodes
of the form A = A1 × . . .×Aℓ ⊆ M, with Ai ⊆ Fmi×ni

q optimal rank-metric

anticode for all i ∈ [ℓ] and maxsrk(A) =
∑︁ℓ

i=1maxrk(Ai) = µ.

The next result follows from Lemma 5.5.

Lemma 6.2. Let µ ∈ [n] and write µ =
∑︁j−1

i=1 ni + δ =
∑︁ℓ

i=l+1 ni + δ′ for
some j, l ∈ [ℓ], δ ∈ [nj ], and δ

′ ∈ [nl]. Then

min
A∈A(µ)

dim(A) =
ℓ∑︂

i=l+1

mini + δ′ml

and

max
A∈A(µ)

dim(A) =

j−1∑︂
i=1

mini + δmj .

Moreover, if
min

A∈A(µ)
dim(A) = max

A∈A(µ)
dim(A),

then either µ = n or m1 = . . . = mℓ.
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Notation 6.3. Let µ ∈ [n] and write µ =
∑︁j−1

i=1 ni + δ + 1, 0 ≤ δ ≤ nj − 1.
Throughout the section, we denote

rµ = max
A∈A(µ)

dim(A) =

j−1∑︂
i=1

mini + (δ + 1)mj .

The Singleton Bound for rank-metric codes was first proved in [6, The-
orem 5.4]. A Singleton Bound for sum-rank metric codes was established
in [3, Theorem 3.2], for codes which are not necessarily linear. Our next the-
orem generalizes the previous results in the case of linear sum-rank metric
codes.

Theorem 6.4. Let C ⊆ M be a code and let r ∈ [dim(C)]. Let j ∈ [ℓ] and
0 ≤ δ ≤ nj − 1 be such that

dr(C)− 1 ≥
j−1∑︂
i=1

ni + δ.

Then

dim(C) ≤
ℓ∑︂

i=j

mini −mjδ + r − 1. (10)

Proof. Let Ai = Fmi×ni
q for i ∈ [j − 1], let Aj ⊆ Fmj×nj

q be an optimal
anticode of dimension δmj , and let Ai = 0 for j + 1 ≤ i ≤ ℓ. Let A =
A1 × · · · × Aℓ, then

dim(C ∩ A) ≤ r − 1.

Therefore

dim(C) +
j−1∑︂
i=1

mini +mjδ − r + 1 ≤ dim(C) + dim(A)− dim(C ∩ A)

= dim(C +A) ≤
ℓ∑︂

i=1

mini.

Theorem 6.4 yields upper bounds on all the generalized weights of C.

Corollary 6.5. Let C ⊆ M be a code and let r ∈ [dim(C)], j ∈ [ℓ], and
0 ≤ δ ≤ nj − 1 be such that dim(C) ≥

∑︁ℓ
i=j mini −mjδ + r. Then

dr(C) ≤
j−1∑︂
i=1

ni + δ.
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In particular, if dim(C) =
∑︁ℓ

i=j mini −mjδ, then

d1(C) ≤ . . . ≤ dmj (C) ≤
j−1∑︂
i=1

ni + δ + 1.

Corollary 6.5 suggests the following definition of MSRD code. The same
definition was given in [3, Definition 3.3] for codes which are not necessarily
linear.

Definition 6.6. A code C is MSRD if there exist j ∈ [ℓ] and 0 ≤ δ ≤ nj − 1
such that

d(C) =
j−1∑︂
i=1

ni + δ + 1 and dim(C) =
ℓ∑︂

i=j

mini − δmj .

Next we study some properties which are closely related to being MSRD.

(C0) For any A optimal anticode of maxsrk(A) = d(C) − 1 and dim(A) =
rd(C)−1 one has C +A = M.

(C1) The code C has dim(C) =
∑︁ℓ

i=j mini − mjδ and for any A optimal

anticode of maxsrk(A) ≤
∑︁j−1

i=1 ni + δ one has C ∩ A = 0.

(C2) For any A ∈ A(d(C)), let k = max{i ∈ [ℓ] | Ai ̸= 0}. Then

dim(C ∩ A) ≥ mk.

(C3) The code C has d(C) + d(C⊥) = n+ 2.

It is clear that being MSRD is equivalent to satisfying (C0). We now
show that it is also equivalent to satisfying (C1).

Proposition 6.7. Let j ∈ [ℓ] and 0 ≤ δ ≤ nj − 1. Let 0 ̸= C ⊆ M be a code.
Then C is MSRD if and only if it satisfies (C1).

Proof. Suppose that C is MSRD of dim(C) =
∑︁ℓ

i=j mini − δmj . Let A be
an optimal anticode of maxsrk(A) ≤ d(C) − 1. Then C ∩ A = 0 since, for
every 0 ̸= C ∈ C, one has srk(C) ≥ d(C) > maxsrk(A), so C ̸∈ A.

Suppose now that C satisfies (C1). Then d(C) ≤
∑︁j−1

i=1 ni + δ + 1 by
Corollary 6.5. Let C = (C1, . . . , Cℓ) ∈ C. For each i ∈ [ℓ], there is an
optimal rank-metric anticode Ai ⊆ Fmi×ni

q of dim(Ai) = mi rk(Ci) which
contains Ci. Therefore A = A1 × . . . × Aℓ is an optimal sum-rank metric
anticode of maxsrk(A) = srk(C) which contains C. Since C ∩A ̸= 0, it must
be that maxsrk(A) = srk(C) ≥

∑︁j−1
i=1 ni + δ + 1, therefore C is MSRD.
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Proposition 6.8. Let 0 ̸= C ⊆ M be a code and write its minimum distance
as d = d(C) =

∑︁j−1
i=1 ni + δ + 1, where j ∈ [ℓ] and 0 ≤ δ ≤ nj − 1. For

S ⊆ [n], denote by Fq[S] the set of elements of M which are zero outside of
the columns indexed by S. For any d ≤ h ≤ n, let Sh := [d− 1] ∪ {h}. The
following hold:

1. C is MSRD if and only if for any d ≤ h ≤ n we have

dim(C ∩ Fq[Sh]) = mk

where k = max{ν |
∑︁ν−1

i=1 ni < h}.

2. If C satisfies (C2), then C is MSRD.

Proof. 1. Assume that C is MSRD and let d ≤ h ≤ n. We have

dim(C ∩ Fq[Sh]) ≥ dim(C) + dim(Fq[Sh])−
ℓ∑︂

i=1

mini

=
ℓ∑︂

i=j

mini − δmj +

j−1∑︂
i=1

mini + δmj +mk −
ℓ∑︂

i=1

mini

= mk.

Conversely, suppose that for d ≤ h ≤ n one has dim(C ∩ Fq[Sh]) ≥ mk.
Let d ≤ h′ ≤ n, h ̸= h′. Then

dim(C ∩ Fq[Sh] ∩ Fq[Sh′ ]) = dim(C ∩ Fq[[d− 1]]) = 0

hence

dim(C) ≥
n∑︂

h=d

dim(C ∩ Fq[Sh]) ≥
ℓ∑︂

i=j

mini − δmj . (11)

Theorem 6.4 gives the reverse inequality, hence C is MSRD.
This proves that C is MSRD if and only if dim(C ∩ Fq[Sh]) ≥ mk for

all d ≤ h ≤ n. Notice moreover that (11) and Theorem 6.4 imply that, if
dim(C ∩ Fq[Sh]) ≥ mk for all d ≤ h ≤ n, then in fact dim(C ∩ Fq[Sh]) = mk

for all d ≤ h ≤ n. This concludes the proof of the first part of the statement.
2. Suppose that C satisfies (C2). For any d ≤ h ≤ n, lettingA = Fq[Sh] ∈

A(d), one has that dim(C ∩ Fq[Sh]) ≥ mk. As shown in 1., combining (11)
and Theorem 6.4 one obtains that C is MSRD.

The next examples show that there exist nontrivial codes which satisfy
property (C2) and that not every MSRD code satisfies (C2).

Example 6.9. In F2×2
2 × F1×1

2 , let

C =

≠ÅÅ
1 0
0 0

ã
, 1

ã
,

ÅÅ
0 0
0 1

ã
, 1

ã
,

ÅÅ
0 1
1 0

ã
, 1

ã∑
.

We have d(C) = 2 and C satisfies (C2).
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Example 6.10. Let C ⊆ F3×3
2 × F2×2

2 × F2 × F2 × F2 be

C =

∞ÑÑ
1 0 0
0 1 0
0 0 1

é
,

Å
1 0
0 1

ã
, 1, 1, 0

é
,

ÑÑ
0 0 1
1 0 1
0 1 0

é
,

Å
0 1
1 1

ã
, 0, 1, 1

é∫
.

The code C has dimension 2 with d(C) = 7, hence it is an MSRD code.
Consider now the optimal anticode

A = ⟨Ei,1, Ei,2 | i ∈ [3]⟩ × F2×2
2 × F2 × F2 × F2.

We have maxsrk(A) = 7 and A ∩ C = 0. Hence C does not satisfy (C2).

Proposition 6.11. Let C ⊆ M be a non-trivial code. Then C satisfies (C3)
if and only if both C and C⊥ are MSRD.

Proof. Write dim(C) =
∑︁ℓ

i=j mini−δmj−s for some j ∈ [ℓ], 0 ≤ δ ≤ nj−1,
and 0 ≤ s ≤ mj − 1. By Corollary 6.5

d1(C) ≤
j−1∑︂
i=1

ni + δ + 1. (12)

Moreover, dim(C⊥) = dim(M)− dim(C) =
∑︁j−1

i=1 mini + δmj + s, which by
Corollary 5.7 implies that

d1(C⊥) ≤
ℓ∑︂

i=j

nj − δ +

ß
1 if s = 0
0 else.

(13)

Therefore

d(C) + d(C⊥) ≤
ß
n+ 2 if s = 0
n+ 1 else.

If C satisfies (C3), then s = 0 and both C and C⊥ are MSRD. Conversely, if
C and C⊥ are MSRD, then s = 0 and both (12) and (13) are equalities. It
follows that C satisfies (C3).

In the next proposition we prove that, if m1 = . . . = mℓ, then properties
(C2) and (C3) are equivalent to being MSRD.

Proposition 6.12. Let C ⊆ M be a non-trivial code. If m1 = . . . = mℓ = m,
then both (C2) and (C3) are equivalent to being MSRD. In particular, the
dual of an MSRD code is MSRD.

Proof. Let C ⊆ M be a non-trivial code. If C is MSRD, then it satisfies
(C3) by [3, Theorem 6.1]. If C satisfies property (C3), then it is MSRD by
Proposition 6.11.
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If C satisfies (C2), then it is MSRD by Proposition 6.8. We now prove
that if C is MSRD, then it satisfies (C2). Let A ∈ A(d(C)), then

dim(C) + dim(A) ≤ mn+ dim(C ∩ A).

Hence by Lemma 6.2 we have

mn+m ≤ mn+ dim(C ∩ A),

so C satisfies (C2).

Moreover, one can prove that (C3) defines a trivial family of codes,
unless m1 = · · · = mℓ. Notice that this shows in particular that the dual of
a non-trivial MSRD code can never be MSRD, unless m1 = · · · = mℓ.

Proposition 6.13. If there exists a non-trivial code C ⊆ M that satisfies
(C3), then m1 = · · · = mℓ.

Proof. Write d(C⊥)− 1 =
∑︁k−1

i=1 ni + ε for some k ∈ [ℓ] and 0 ≤ ε ≤ nk − 1.
Since d(C) + d(C⊥)− 2 = n, one has

d(C)− 1 =

j−1∑︂
i=1

ni + δ =

ℓ∑︂
i=k

ni − ε (14)

for some j ∈ [ℓ] and 0 ≤ δ ≤ nj − 1. Since C and C⊥ are MSRD by
Proposition 6.11, one has

dim(C) =
ℓ∑︂

i=j

nimi − δmj =
k−1∑︂
i=1

nimi + εmk = dim(M)− dim(C⊥). (15)

Lemma 6.2, together with (15), implies that

max dimA(d(C)− 1) = min dimA(d(C)− 1),

which by Lemma 6.2 implies that m1 = · · · = mℓ.

In the remainder of this section, we study the generalized weights of
MSRD codes and propose a definition of r-MSRD codes, analogous to that
of r-MRD codes. The next theorem states that the generalized weights of
an MSRD code are determined by its parameters. This generalizes similar
results for MDS codes in the Hamming metric and MRD codes in the rank
metric. We postpone the proof, since in Theorem 6.19 we will prove a more
general result.
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Theorem 6.14. Let C ⊆ M be an MSRD code and write d(C) =
∑︁j−1

i=1 ni +
δ + 1 for some j ∈ [ℓ] and 0 ≤ δ ≤ nj − 1. Let d(C) ≤ h ≤ n and let
k = max{ν |

∑︁ν−1
i=1 ni < h}. Let r ∈ [dim(C)] be of the form

r = rh − rd(C)−1 −mk + 1.

Then
dr(C) = · · · = dr+mk−1(C) = h.

Remark 6.15. One can also write down the generalized weights computed
in Theorem 6.14 as follows. Let j ∈ [ℓ], 0 ≤ δ ≤ nj −1, and let C ⊆ M be an

MSRD code with d(C) =
∑︁j−1

i=1 ni + δ + 1 and dim(C) =
∑︁ℓ

i=j mini − δmj .
Write

h =

k−1∑︂
i=1

ni + ε+ 1

where k ≥ j. Since d(C) ≤ h ≤ n, one has that δ ≤ ε ≤ nj − 1 if k = j, and
0 ≤ ε ≤ nk − 1 if k > j. Then

r =

®
(ε− δ)mj + 1 if k = j, δ ≤ ε ≤ nj − 1,

(nj − δ)mj +
∑︁k−1

i=j+1mini + εmk + 1 if j < k ≤ ℓ, 0 ≤ ε ≤ nk − 1.

Remark 6.16. It follows from Theorem 6.14 that both bounds in the state-
ment of Theorem 6.4 are met for r ∈ [dim(C)] of the form r = 1,mj +
1, . . . , (nj − δ − 1)mj + 1, and

r = (nj − δ)mj +
k−1∑︂

i=j+1

mini + εmk + 1

with j < k ≤ ℓ and 0 ≤ ε ≤ nk − 1.

Remark 6.17. Let d0(C) = 0 and ddim(C)+1(C) = n+1. Theorem 6.14 states
that, for any d(C) ≤ h ≤ n and r of the form r = rh − rd(C)−1 −mk + 1, we
have

dr−1(C) < dr(C) = . . . = dr+mk−1(C) < dr+mk
(C).

Inspired by Remark 6.17 and by the definition of r-MRD codes, we define
a notion of r-MSRD code as follows. Notice that being 1-MSRD is equivalent
to being MSRD.

Definition 6.18. Let j ∈ [ℓ], 0 ≤ δ ≤ nj − 1, and let C ⊆ M be a code of

dim(C) =
∑︁ℓ

i=j mini−δmj . Define dmax =
∑︁j−1

i=1 ni+δ+1, let dmax ≤ h ≤ n
and

r = rh − rdmax−1 −mk + 1,

where k = max{ν |
∑︁ν−1

i=1 ni < h}. We say that C is r-MSRD if

dr(C) = h.
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We conclude this section by showing that, if C is r-MSRD, then C is r′-
MSRD for all r′ ≥ r, where r, r′ are integers of the form given in Definition
6.18. This observation allows us to compute the generalized weights of an
r-MSRD code. Since an MSRD code is 1-MSRD, the proof of next theorem
also proves Theorem 6.14.

Theorem 6.19. Let j ∈ [ℓ], 0 ≤ δ ≤ nj − 1, and let C ⊆ M be a non-trivial

code of dim(C) =
∑︁ℓ

i=j mini − δmj. Define dmax =
∑︁j−1

i=1 ni + δ + 1, let
dmax ≤ h ≤ n and

r = rh − rdmax−1 −mk + 1,

where k = max{ν |
∑︁ν−1

i=1 ni < h}. If C is r-MSRD, then

dr(C) = . . . = dr+mk−1(C) = h.

Moreover, C is (r +mk)-MSRD.

Proof. We have

h = dr(C) ≤ . . . ≤ dr+mk−1(C) ≤ h,

where the equality follows from the definition of r-MSRD code, the first and
second inequalities from Proposition 5.6, and the third from Corollary 6.5.
Therefore dr(C) = . . . = dr+mk−1(C) = h.

Since dr+mk
(C) ≥ dr(C) = h >

∑︁k−1
i=1 ni, then by Lemma 5.8

dr+mk
(C) ≥ dr(C) + 1 = h+ 1.

The reverse inequality follows from Corollary 6.5, hence dr+mk
(C) = h+ 1.

Since

max

{︄
ν :

ν−1∑︂
i=1

ni < h+ 1

}︄
=

ß
k if ε < nk − 1,
k + 1 if ε = nk − 1,

we let

m′ =

ß
mk if ε < nk − 1,
mk+1 if if ε = nk − 1.

Since m′ = rh+1 = rh, one has that r+mk = rh+1− rdmax−1−m′+1, hence
we proved that C is (r +mk)-MSRD.

Remark 6.20. We follow the notation of the last theorem. If a code C is
such that dr < h but dr+s(C) = h for some 1 ≤ s ≤ mk−1 then by Corollary
6.5 we have

dr+s(C) = · · · = dr+mk−1(C) = h.

However, this does not imply that C is an (r+mk)-MSRD code, as the next
example shows.
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Example 6.21. An MSRD code D of dimension 4 in F4×4
2 × F4×2

2 × F2×2
2

has weights d1(D) = d2(D) = 7, d3(D) = d4(D) = 8. Let C be generated by⎧⎪⎪⎨⎪⎪⎩
ÜÜ

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ê
,

Ü
1 0
0 1
0 0
0 0

ê
,

Å
1 0
0 0

ãê
,ÜÜ

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

ê
,

Ü
0 1
1 1
0 0
0 0

ê
,

Å
0 0
1 0

ãê
,ÜÜ

0 0 1 0
0 0 1 1
1 0 0 1
0 1 0 0

ê
,

Ü
0 0
0 0
1 0
0 1

ê
, 0

ê
,Å

0, 0,

Å
0 0
0 1

ãã™
The code C has dimension 4 and d1(C) = 1, then C is not MSRD. We
checked using the computer algebra system Macaulay2 [10] that the only
nonzero codewords of C of sum-rank less than 7 are the third and the fourth
element in the previous list. Hence d2(C) = d2(D) = 7. Taking A =

F4×4
2 ×F4×2

2 ×
ßÅ

a 0
b 0

ã
| a, b ∈ F2

™
we can see that d3(C) = 7 < 8 = d3(D).

In particular, C is not 3-MSRD.

Appendix: Support spaces and information leakage

An alternative notion of generalized weights could be defined for linear
codes

C ⊆ Fm1×n1
q × Fm2×n2

q × · · · × Fmℓ×nℓ
q

as follows. Here, we do not assume that ni ≤ mi, for i = 1, 2, . . . , ℓ. For
positive integers m and n, we say that VL ⊆ Fm×n

q is the (row) support
space associated to the vector space L ⊆ Fn

q if

VL = {C ∈ Fm×n
q : Row(C) ⊆ L},

where Row(C) ⊆ Fn
q denotes the row space of C ∈ Fm×n

q . Clearly VL is an
Fq-linear subspace of Fm×n

q of dimension

dim(VL) = m dim(L).

Denote by Pq,n the collection of subspaces of Fn
q . For a linear code C ⊆

Fm1×n1
q × Fm2×n2

q × · · · × Fmℓ×nℓ
q , we may give an alternative definition of
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generalized weights as

dSuppr (C) = min

{︄
ℓ∑︂

i=1

dim(Li) :Li ⊆ Pq,ni , 1 ≤ i ≤ ℓ,

dim (C ∩ (VL1 × · · · × VLℓ
)) ≥ r

}︄
.

(16)

for r ∈ [dim(C)]. In the case where,for all i ∈ [ℓ], ni < mi or ni = mi = 1,
then by [24, Theorem 26]

dSuppr (C) = dr(C),

for all linear codes C ⊆ Fm1×n1
q ×Fm2×n2

q ×· · ·×Fmℓ×nℓ
q and all r ∈ [dim(C)].

In particular, both coincide with the generalized Hamming weights if mi =
ni = 1 for i ∈ [ℓ].

Consider now arbitrary values of mi and ni, for i ∈ [ℓ]. The weights in
(16) present an advantage and a disadvantage with respect to using anticodes
instead of support spaces. Their disadvantage is that such weights are not
always invariant by arbitrary linear sum-rank isometries (simply notice that
support spaces are not necessarily again support spaces after transposition
of matrices, as we are only considering row supports). On the other hand,
their advantage is that they measure information leakage to a wire-tapper
in scenarios such as multishot linear network coding [17].

More concretely, consider a linear code C ⊆ Fm1×n1
q × Fm2×n2

q × · · · ×
Fmℓ×nℓ
q . Choose a complementary vector space M⊕C = Fm1×n1

q ×Fm2×n2
q ×

· · · × Fmℓ×nℓ
q . We may see M as our space of messages [17, Definition 3].

A (random) message M ∈ M is encoded by choosing C ∈ C uniformly at
random in C, and finally setting D = M + C, in order to hide M . If we
set D = (D1, D2, . . . , Dℓ), then Di ∈ Fmi×ni

q is sent through an Fq-linearly
coded network with ni outgoing links from the source node, for i ∈ [ℓ].
This could be the scenario in multishot network coding without delays (or
treating delays as erasures), or in singleshot network coding where we know
that the network has at least ℓ disconnected components (after removing the
source and sink nodes), see [17]. Assume we have no further knowledge of
the network topology or linear network code, but we know that an adversary
wire-taps µ arbitrary links of the network. Then the information contained
in

W = (D1B1, D2B2, . . . , DℓBℓ)

is leaked to the wire-tapper, for matrices Bi ∈ Fni×µi
q , for i ∈ [ℓ], such that

ℓ∑︂
i=1

rk(Bi) ≤
ℓ∑︂

i=1

µi = µ.
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Equality may be attained, as we do not know nor have control over the ma-
trices Bi. By [17, Lemma 1], the amount of information on M leaked to the
wire-tapper, measured in symbols in Fq, is given by the mutual information
in base q

Iq(M ;W ) ≤ dim
Ä
C⊥ ∩ (VL1 × · · · × VLℓ

)
ä
,

where Li = Row(Bt
i) ∈ Pq,ni , for i ∈ [ℓ]. Furthermore, equality holds if M

is chosen uniformly at random in M. Thus, in such a situation, dSuppr (C⊥)
represents the minimum number of links that an adversary needs to wire-tap
in order to obtain at least r units of information (number of bits multiplied
by log2(q)) of the sent message.

We conclude with some remarks on the properties of the generalized
weights dSuppr (C) as above. First, if m = m1 = m2 = . . . = mℓ, n =
n1 + n2 + · · · + nℓ, and C ⊆ Fn

qm
∼= Fm1×n1

q × Fm2×n2
q × · · · × Fmℓ×nℓ

q is an
Fqm-linear code, then

dSupprm−t(C) = dSRr (C),

for t ∈ {0, . . . ,m − 1} and r ∈ [dimFqm
(C)], where dSRr (C) denotes the rth

generalized weight considered in [16, Definition 10]. This equality is easy
to prove and recovers [18, Theorem 7] when ℓ = 1. Moreover, this is the
analogue of Theorem 5.13 for the case m = m1 = m2 = . . . = mℓ. Notice
that the assumption that ni < mi is not needed in this setting.

Finally, if we assume thatm1 ≥ m2 ≥ . . . ≥ mℓ, then all of the properties
stated throughout this manuscript for the generalized weights dr(C) hold
mutatis mutandis for the generalized weights dSuppr (C), with similar proofs
and without assuming that ni ≤ mi for i ∈ [ℓ]. In order to prove this claim,
it suffices to prove the analogue of Proposition 5.6, Theorem 6.4 and Lemma
5.8 for the generalized weights dSuppr (C). In fact, the other properties follow
from those results. We start with an analogue of Proposition 5.6.

Proposition 6.22. Let 0 ̸= C ⊆ D ⊆ M, then:

1. dSupp1 (C) = d(C),

2. dSuppr (C) ≤ dSupps (C) for 1 ≤ r ≤ s ≤ dim(C),

3. dSuppr (C) ≥ dSuppr (D) for r ∈ [dim(C)],

4. dSuppdim(C)(C) ≤ n1 + · · ·+ nℓ,

5. dSuppr+n1m1+···+nj−1mj−1+δmj
(C) ≥ dSuppr (C) + n1 + · · ·+ nj−1 + δ

for j ∈ [ℓ], r ∈ [dim(C) − (n1m1 + · · · + nj−1mj−1 + δmj)], and 0 ≤
δ ≤ nj − 1.

Proof. 1. Let C = (C1, . . . , Cℓ) ∈ C be an element of minimum sum-rank.
Let Li = Row(Ci) be a subspace such that Ci ∈ VLi and dim(VLi) =
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mi rk(Ci), for i ∈ [ℓ]. Then C ∩ (VL1 ×· · ·×VLℓ
) ̸= 0, hence dSupp1 (C) ≤ d(C).

To prove that they are equal, we observe that if L′
i ∈ Pq,ni , for i ∈ [ℓ], are

such that
∑︁ℓ

i=1 dim(L′
i) < d(C), then C ∩ (VL′

1
× · · · × VL′

ℓ
) = 0.

2., 3., and 4. follow directly from the definition.
5. Let s = r+ n1m1 + · · ·+ nj−1mj−1 + δmj . Let Li ∈ Pq,ni , for i ∈ [ℓ],

such that dim(C ∩ (VL1 × · · · ×VLℓ
)) ≥ s and dSupps (C) =

∑︁ℓ
i=1 dim(Li). For

i ∈ [ℓ], let ui = dim(Li). Since

ℓ∑︂
i=1

miui = dim(VL1 × · · · × VLℓ
) ≥ dim(C ∩ (VL1 × · · · × VLℓ

))

≥ s > n1m1 + · · ·+ nj−1mj−1 + δmj

and m1 ≥ · · · ≥ mℓ, then d
Supp
s (C) = u1 + . . .+ uℓ > n1 + · · ·+ nj−1 + δ by

Lemma 5.5. Let v1, . . . , vℓ be such that n1 + · · · + nj−1 + δ = v1 + · · · + vℓ
and vi ≤ ui for i ∈ [ℓ]. We have that n1m1 + · · · + nj−1mj−1 + δmj ≥
v1m1 + · · · + vℓmℓ, since m1 ≥ · · · ≥ mℓ. For all i ∈ [ℓ] there exist vector
spaces L′

i ⊆ Li of dim(L′
i) = ui − vi. Then

dim(C ∩ (VL′
1
× · · · × VL′

ℓ
)) ≥ s− (v1m1 + · · ·+ vℓmℓ)

≥ s− (n1m1 + · · ·+ nj−1mj−1 + δmj)

= r

hence

dr(C) ≤
ℓ∑︂

i=1

(ui − vi) = ds(C)− (n1 + · · ·+ nj−1 + δ).

The Singleton-type bound from Corollary 5.7 is a direct consequence of
Proposition 5.6. Notice however that it also follows directly from Proposition
6.22 for the generalized weights dSuppr (C). The next theorem is an analogue
of Theorem 6.4 for the generalized weights dSuppr (C).

Theorem 6.23. Let C ⊆ M be a code and let r ∈ [dim(C)]. Let j ∈ [ℓ] and
0 ≤ δ ≤ nj − 1 be such that

dSuppr (C)− 1 ≥
j−1∑︂
i=1

ni + δ.

Then

dim(C) ≤
ℓ∑︂

i=j

mini −mjδ + r − 1. (17)

Proof. Let Li = Fni
q for i ∈ [j − 1], let Lj ∈ Pq,nj be of dimension δ, and let

Li = 0 for j + 1 ≤ i ≤ ℓ. Then

dim(C ∩ (VL1 × · · · × VLℓ
)) ≤ r − 1.
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Therefore

dim(C) +
j−1∑︂
i=1

mini +mjδ − r + 1 ≤ dim(C) + dim(VL1 × · · · × VLℓ
)

− dim(C ∩ (VL1 × · · · × VLℓ
))

= dim(C + (VL1 × · · · × VLℓ
)) ≤

ℓ∑︂
i=1

mini.

A version of the Singleton Bound for the generalized weights dSuppr (C)
follows directly from Theorem 6.23 and yields the same inequalities as in
Corollary 6.5. Finally, we establish the analogue of Lemma 5.8 for the
generalized weights dSuppr (C).

Lemma 6.24. Let C ⊆ M be a code and let k ∈ [ℓ], r +mk ∈ [dim(C)]. If

dSuppr+mk
(C) >

k−1∑︂
i=1

ni

then
dSuppr+mk

(C) ≥ dSuppr (C) + 1.

Proof. For i ∈ [ℓ], let Li ∈ Pq,ni be such that dSuppr+mk
(C) =

∑︁ℓ
i=1 dim(Li) and

dim(C ∩ (VL1 × · · · × VLℓ
)) ≥ r +mk. We claim that there exists k ≤ j ≤ ℓ

such that Lj ̸= 0. In fact, if this were not the case, then

k−1∑︂
i=1

ni ≥
ℓ∑︂

i=1

dim(Li) = dSuppr+mk
(C).

For i ∈ [ℓ], let L′
i ∈ Pq,ni be such that L′

i = Li if i ̸= j, and L′
j ⊆ Lj with

dim(L′
j) = dim(Lj)− 1. One has

dim(C∩(VL′
1
×· · ·×VL′

ℓ
)) ≥ dim(C∩(VL1×· · ·×VLℓ

))−mj ≥ r+mk−mj ≥ r,

hence

dSuppr (C) ≤
ℓ∑︂

i=1

dim(L′
i) = dSuppr+mk

(C)− 1.

We conclude by noting that Wei’s duality (Theorem 5.9) also holds for
the generalized weights dSuppr (C) with the same proof.

38



References

[1] H. Bartz and S. Puchinger. Decoding of interleaved linearized Reed–
Solomon codes with applications to network coding. Preprint, 2020.
arXiv:2101.05604.

[2] E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Anticodes in the
sum-rank metric. Preprint, 2020. arXiv:2012.13706.

[3] E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental prop-
erties of sum-rank metric codes. Preprint, 2020. arXiv:2010.02779.

[4] H. Cai, Y. Miao, M. Schwartz, and X. Tang. A construction of max-
imally recoverable codes with order-optimal field size. Preprint, 2020.
arXiv:2011.13606.

[5] Clément de Seguins Pazzis. The affine preservers of non-singular ma-
trices, 2010.

[6] P. Delsarte. Bilinear forms over a finite field, with applications to coding
theory. J. Combin. Theory Ser. A, 25(3):226–241, 1978.

[7] E. M. Gabidulin. Theory of codes with maximum rank distance. Prob.
Info. Transmission, 21(1):1–12, 1985.

[8] H. Gluesing-Luerssen and B. Jany. q-polymatroids and their relation
to rank-metric codes. Preprint, 2021. arXiv:2104.06570.

[9] E. Gorla. Rank-metric codes. In W. Cary Huffman, Jon-Lark Kim, and
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