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Two new families of quadratic APN functions
Kangquan Li, Yue Zhou, Chunlei Li and Longjiang Qu

Abstract

In this paper, we present two new families of APN functions. The first family is in bivariate form(
x3 + xy2 + y3 + xy, x5 + x4y + y5 + xy + x2y2

)
over F2

2m . It is obtained by adding certain terms of the
form

∑
(aix

2iy2
i

, bix
2iy2

i

) to a family of APN functions recently proposed by Göloǧlu. The second family
has the form L(z)2

m+1+vz2
m+1 over F23m , which generalizes a family of APN functions by Bracken et al.

in 2011. By calculating the Γ-rank of the constructed APN functions over F28 and F29 , we demonstrate that
the two families are CCZ-inequivalent to all known families. In addition, the two families cover two known
sporadic APN instances over F28 and F29 , which were found by Edel and Pott in 2009 and by Beierle and
Leander in 2021, respectively.

Index Terms

APN function, CCZ-equivalence, Adding term, Bivariate form

1. INTRODUCTION

S-boxes are crucial nonlinear components in block ciphers. They should satisfy a variety of cryptographic

criteria [16], such as having low differential uniformity to resist differential attacks [4]. An n×n S-box can

be seen as a function from the finite field F2n to itself, which is commonly termed an (n, n)-function. The

differential uniformity of an (n, n)-function is defined as follows.

Definition 1. [28] Given an (n, n)-function f : F2n → F2n , its differential uniformity is given by

δf = max
a∈F∗

2n ,b∈F2n

# {z : z ∈ F2n | f(z + a) + f(z) = b} .

Furthermore, when δf = 2, the function f is called almost perfect nonlinear (APN for short).

APN functions provide the best resistance against differential attacks [28] and also find applications in

sequence design and coding theory [15]. In the last three decades, one of the most important topics in the
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TABLE I
ALL KNOWN APN MONOMIALS OVER F2n

Family Function Conditions Ref.

Gold z2
i+1 gcd(i, n) = 1 [23]

Kasami z2
2i−2i+1 gcd(i, n) = 1 [25]

Welch z2
t+3 n = 2t+ 1 [19]

Niho-1 z2
t+2t/2−1 n = 2t+ 1, t even [18]

Niho-2 z2
t+2(3t+1)/2−1 n = 2t+ 1, t odd [18]

Inverse z2
2t−1 n = 2t+ 1 [28]

Dobbertin z2
4i+23i+22i+2i−1 n = 5i [20]

TABLE II
ALL KNOWN POLYNOMIAL APN FAMILIES IN UNIVARIATE FORM OVER F2n

No. Function Conditions Ref.

F1- F2 z2
s+1 + u2k−1z2

ik+2mk+s
n = pk, gcd(k, 3) = gcd(s, 3k) = 1,
p ∈ {3, 4}, i = sk (mod p),m = p− i,
n ≥ 12, u primitive in F∗

2n

[11]

F3
sz2

i(q+1) + z2
i+1 + zq(2

i+1)

+cz2
iq+1 + cqz2

i+q + zq+1

q = 2m, n = 2m, gcd(i,m) = 1,

c ∈ F2n , s ∈ F2n\F2m , z2
i+1 + cz2

i

+
cqz + 1 has no solution x with xq+1 = 1

[10]

F4 z3 + a−1Trn1 (a
3z9) a ̸= 0 [12]

F5 z3 + a−1Trn3 (a
3z9 + a6z18) 3 | n, a ̸= 0 [13]

F6 z3 + a−1Trn3 (a
6z18 + a12z36) 3 | n, a ̸= 0 [13]

F7-F9 uz2
s+1 + u2mz2

−m+2m+s

+

vz2
−m+1 + wu2m+1z2

s+2m+s

n = 3m, gcd(m, 3) = gcd(s, 3m) = 1, v, w ∈ F2m

vw ̸= 1, 3 | m+ s, u primitive in F∗
2n

[6]

F10
a2z2

2m+1+1 + b2z2
m+1+1+

az2
2m+2 + bz2

m+2 + (c2 + c)z3
n = 3m,m odd, L(z) = az2

2m

+ bz2
m

+ cz
satisfies the conditions of Lemma 8 of [8]

[8]

F11
z3 + wz2

i+1

+ w2z3·2
m

+z2
i+m+2m

n = 2m,m odd, 3 ∤ m, w primitive
in F22 , s = m− 2, (m− 2)−1 (mod n)

[14]

F12 aTrnm(bz3) + aqTrnm(b3z9)
n = 2m,m odd, q = 2m, a /∈ Fq,
b not a cube [31]

study of APN functions is to construct new families of APN functions. Several infinite families of APN

functions are described in the literature. We summarize all known families of APN functions in Tables

I-III according to [9, Table 3], where in Tables I and II functions are given in univariate form in z ∈ F2n

and in Table III functions are given in bivariate form in (x, y) ∈ F2
2m . More specifically, Table I lists

all known APN monomials, which is conjectured to be complete [18]; Table II lists all known families

of polynomial APN functions, where Trnm denotes the trace function from F2n to F2m for any m | n,

i.e., Trnm(z) = z + z2
m

+ · · ·+ z2
( n
m

−1)m
; and Table III lists all known families of APN functions proposed

originally in bivariate form, where P1(z) = z2
k+1+az+b and P2(z) = (cz2

i+1+bz2
i

+1)2
m/2+1+z2

m/2+1.
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TABLE III
ALL KNOWN APN FAMILIES IN BIVARIATE FORMS OVER F2

2m

No. Function Conditions Ref.

F13 (xy, x2k+1 + αx(2k+1)2i) gcd(k,m) = 1, m even, α non-cubic [32]
F14 (xy, x23k+22k + ax22ky2

k

+ by2
k+1) gcd(k,m) = 1, P1 has no root in F2m [29]

F15 (xy, x2i+1 + x2i+m/2

y2
m/2

+ bxy2
i

+ cy2
i+1) m even, gcd(i,m) = 1, P2 has no root in F2m [15]

F16 (x2i+1 + xy2
i

+ y2
i+1, x22i+1 + x22iy + y2

2i+1) gcd(3i,m) = 1 [24]
F17 (x2i+1 + xy2

i

+ y2
i+1, x23iy + xy2

3i

) gcd(3i,m) = 1, m odd [24]

In this paper, we propose two new families of quadratic APN functions. The construction of the first

family is inspired by Dillon’s method [7] and its generalization by Budaghyan and Carlet [10]. Dillon in

[7] presented a way to construct APN functions of the form

f(z) = z(Az2 +Bq + Cz2q) + z2(Dzq + Ez2q) +Gz3q (1)

over Fq2 with q = 2m. In particular, Budaghyan and Carlet in [10] obtained a family of APN hexanomials

of this form, namely, the family F3 in Table II. Let f1(z) = Az3 + Cz2q+1 +Dzq+2 +Gz3q. Recently Li,

Li, Helleseth and Qu completely characterized the coefficients for which f1 is APN [26]. Later, Chase and

Lisoněk [17] proved that when m ≥ 4, f1 is APN if and only if f1 is CCZ-equivalent to one of two instances

of Gold functions. This indicates that the APN hexanomials of the form (1) can be seen as the summation

of a known APN function f1(z) and Bzq+1 +Ez2(q+1). Such an observation inspired us to seek new APN

functions over Fq2 by adding special terms of the form
∑

i ciz
2i(q+1), ci ∈ F∗

q2 to known APN families. Note

that for the bivariate form over F2
q ,
∑

i ciz
2i(q+1) is actually of the form

∑
i(aix

2i

y2
i

, bix
2i

y2
i

), ai, bi ∈ F∗
q .

It turns out that this approach can give rise to a new family of APN functions over F2
2m by adding the terms

(xy, xy + x2y2) to F16 in Table III.

Theorem 2. Let m be a positive integer with gcd(3,m) = 1. Then the function

f(x, y) =
(
x3 + xy2 + y3 + xy, x5 + x4y + y5 + xy + x2y2

)
is APN over F2

2m .

The construction of our second family arises from the following APN quadrinomial over F23m [6]:

f(z) = uz2
s+1 + u2

m

z2
−m+2m+s

+ vz2
−m+1 + wu2

m+1z2
s+2m+s

.

Assume w ̸= 0 and take γ = w
1

1−2s , which always exists since gcd (2m − 1, 2s − 1) = 2gcd(m,s) − 1 = 1.

Then f(γz)2
m

= γ2
s+1(L(z)2

m+1 + (vw + 1)z2
m+1), where L(z) = u2

m

z2
m+s

+ z. Note that the equation

L(z) = 0 only has z = 0 as a solution in F23m since gcd(23m − 1, 2m+s − 1) = 2gcd(3m,m+s) − 1 = 7 and

u is primitive in F23m . Thus L is a linearized permutation of F23m . Therefore, f is linear equivalent to an
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APN family of the form L(z)2
m+1 + vz2

m+1 with L a permutation binomial and v ̸= 0. By choosing a

linearized permutation trinomial L, we propose another new family of APN functions over F23m as follows.

Theorem 3. Let gcd(s,m) = 1 and v ∈ F∗
2m . Choose µ ∈ F∗

23m such that µ22m+2m+1 ̸= 1 and L(z) =

z2
m+s

+ µz2
s

+ z permutes F23m . Then f(z) = L(z)2
m+1 + vz2

m+1 is APN over F23m .

Interestingly, the two families in Theorems 2 and 3 both contain previously known sporadic APN instances.

According to the code isomorphism test, the family in Theorem 2 includes a sporadic APN function over

F28 (No. 1.9 in Table 9) originally discovered by Edel and Pott in 2009 with the switching method [21]; and

the family in Theorem 3 covers a sporadic APN function over F29 , which was recently found by Beierle

and Leander in 2021 using a recursive tree search [3]. Here we emphasize that the APN instances in [21]

and [3] were not covered by any family before our constructions.

The remainder of this paper is organized as follows. First, in Section 2 we demonstrate that the proposed

two families contain APN functions that are CCZ-inequivalent to those from the known families. Sections

3 and 4 prove the APNness of the families in Theorems 2 and 3, respectively. Section 5 summarizes the

work of this paper and presents some related problems.

2. CCZ-EQUIVALENCE

Two functions f and g over F2n are said to be Carlet-Charpin-Zinoviev (CCZ) equivalent if there

is an affine permutation of F2
2n that maps the graph Gf = {(z, f(z)) : z ∈ F2n} to the graph Gg =

{(z, g(z)) : z ∈ F2n}. CCZ-equivalence is the most general form of equivalence used in the classification

of APN functions. To justify that a family of APN functions is indeed new, it is necessary to show that its

instances are CCZ-inequivalent to those of the currently known APN families. As a theoretical proof of such

a task is rather challenging, in practice one typically chooses to demonstrate that the constructed family

contains an APN function that is CCZ-inequivalent to those from another family for small dimensions n.

Two common approaches are used for this purpose. The first one, known as the code isomorphism test, is

to check whether two linear codes associated with the functions are isomorphic. More precisely, for an

(n, n)-function f , its associated code Cf is the linear code defined by the following generating matrix: 1 1 · · · 1

0 u · · · u2
n−1

f(0) f(u) · · · f
(
u2

n−1
)
 ,

where u is a primitive element of F2n . It is shown [7, 22] that two functions f and g are CCZ-equivalent if

and only if Cf and Cg are isomorphic. The test of code isomorphism is implemented in MAGMA [5], and

it can be used to test CCZ-equivalence between two (n, n)-functions for small integers n. Another common

approach is to compare certain CCZ-invariants, i.e., properties that are preserved under CCZ-equivalence, of

two (n, n)-functions for small integers n. If two functions exhibit different values of a given CCZ-invariant,

then they must be CCZ-inequivalent. One CCZ-invariant is the Γ-rank [21]. The Γ-rank of an (n, n)-function
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TABLE IV
CCZ-INEQUIVALENT REPRESENTATIVES FROM THE KNOWN APN FAMILIES AND THAT IN THEOREM 2 OVER F28 AND THEIR

Γ-RANKS

No. Function Γ-rank Ref.

1 z3 11818 Gold
2 z9 12370 Gold
3 z57 15358 Kasami
4 z3 + z17 + u48z18 + u3z33 + uz34 + z48 13200 F3
5 z3 +Tr8(z

9) 13800 F4
6 z3 + u−1Tr8(u

3z9) 13842 F4
7 (xy, x3 + vy12) 13642 F13
8 (xy, x12 + x4y2 + y3) 13700 F14
9 (xy, x12 + x4y2 + v7y3) 13798 F14

10 (x3 + xy2 + y3, x5 + x4y + y5) 13642 F16
11 (xy, x3 + x2y + vx4y8 + v5y3) 13960 F15
12 (x3 + xy2 + y3 + xy, x5 + x4y + y5 + xy + x2y2) 14034 Theorem 2

TABLE V
CCZ-INEQUIVALENT REPRESENTATIVES FROM THE KNOWN APN FAMILIES AND THAT IN THEOREM 3 OVER F29 AND THEIR

Γ-RANKS

No. Function Γ-rank Ref.

1 z3 38470 Gold
2 z5 41494 Gold
3 z17 38470 Gold
4 z13 58676 Kasami
5 z241 61726 Kasami
6 z19 60894 Welch
7 z255 130816 Inverse
8 z3 +Tr9(z

9) 47890 F4
9 z3 +Tr93(z

9 + z18) 48428 F5
10 z3 +Tr93(z

18 + z36) 48460 F5
11 z3 + u246z10 + u47z17 + u181z66 + u428z129 48596 F10
12 (z16 + u5z2 + z)9 + u73z9 48558 Theorem 3

f is defined as the rank of the incidence matrix of a design dev(Gf ), whose set of points is F2
2n and whose

set of blocks is {(z + a, f(z) + b) : z ∈ F2n} for a, b ∈ F2n .

In this section, we demonstrate that our newly constructed APN families are CCZ-inequivalent to all

known APN families by comparing the Γ-ranks of the representatives from all known APN families and

ours over F28 and F29 , see Tables IV and V.1 In Table IV, u and v are elements in F28 and F24 with minimal

1In Tables IV and V, the Γ-ranks of the representatives from all known APN families are retrieved from the website
https://boolean.h.uib.no/mediawiki/index.php/Tables
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polynomials z8 + z4 + z3 + z2 + 1 and z4 + z + 1 over F2, respectively. In Table V, u denotes an element

of F29 with minimal polynomial z9 + z4 + 1 over F2. The last column, denoted by “Ref.” for short, refers

to the known APN families listed in Tables I, II and III. As shown in Tables IV and V, the two families

proposed in this paper contain instances that are not covered by any known family, which indicates that the

two families in this paper are new up to CCZ-equivalence. Moreover, according to the code isomorphism

test, we observe that the two families also cover known sporadic APN instance that does not belong to any

other known families. As a matter of fact, our first family in Theorem 2 covers one sporadic APN function

over F28 (No. 1.9) in [21, Table 9], which was found by the switching method. The covered APN instance

is

z3 + uTr8
(
u63z3 + u252z9

)
+ u154Tr8

(
u68z3 + u235z9

)
+ u35Tr8

(
u216z3 + u116z9

)
,

where u is defined as in Table IV. In addition, our second APN family in Theorem 3 covers one (No. 9)

of the APN functions over F29 in the dataset [2], which were obtained by a recursive tree search due to

Beierle and Leander [3]. The covered APN instance is CCZ-equivalent to

u149z384 + u339z320 + u498z288 + u404z272 + u125z264 + u274z260 + u125z258 + u432z257 +

u241z192 + u14z160 + u500z144 + u376z136 + u258z132 + u470z130 + u430z129 + u407z96 +

u317z80 + u209z72 + u371z68 + u77z66 + u502z65 + u464z48 + u6z40 + u188z36 +

u498z34 + u508z33 + u199z24 + u41z20 + u158z18 + u218z17 + u16z12 + u7z10 +

u116z9 + u437z6 + u502z5 + z3,

where u is defined as in Table V.

3. A NEW FAMILY OF APN FUNCTIONS OVER F2
2m

This section is dedicated to the proof of Theorem 2. We first give several useful lemmas. The following

lemma allows us to determine the number of solutions of cubic equations over F2m .

Lemma 4. [30] Let a, b ∈ F2m , b ̸= 0 and define

f(z) = z3 + az + b, h(t) = t2 + bt+ a3.

Let t1, t2 be two solutions of h(t) in F22m . Then:

• f has three zeros in F2m if and only if Trm
(
a3

b2

)
= Trm(1), t1 and t2 are cubes in F2m (resp. F22m)

when m is even (resp. odd).

• f has exactly one zero in F2m if and only if Trm
(
a3

b2

)
̸= Trm(1).

• f has no zeros in F2m if and only if Trm
(
a3

b2

)
= Trm(1), t1 and t2 are not cubes in F2m (resp. F22m)

when m is even (resp. odd).

The following simple results will be frequently used in the proof of Theorem 2 later.
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Lemma 5. Let gcd(m, 3) = 1. Then,

(1) the equation z3 + z + 1 = 0 has no solution in F2m;

(2) any element ω ∈ F22\F2 is not cubic in F2m and F22m;

(3) the equation a3 + a2b+ a+ b3 + b2 + 1 = 0 holds for a, b ∈ F2m if and only if (a, b) = (1, 1).

Proof. It is clear that any solution of z3 + z + 1 = 0 is in F23 . Furthermore, any solution in F2m actually

belongs to F2 since gcd(m, 3) = 1. Since 0, 1 are not solutions of the equation, the first statement follows.

For the second statement, the element ω is cubic in a finite field F2n if and only if ω
2n−1

3 = 1, which

implies 3|2n−1
3 since ω ∈ F22\F2. This is equivalent to saying that ω ∈ F22\F2 is cubic in F2n if and only

if 9|2n − 1, which holds only if n is a multiple of 6. Since gcd(3,m) = 1, ω cannot be a cubic in F2m and

F22m .

Let B = a3 + a2b+ a+ b3 + b2 +1. In the following, we prove that B = 0 if and only if (a, b) = (1, 1).

Plugging a = a1 + b into B = 0 and simplifying it, we get

a31 + (b2 + 1)a1 + (b+ 1)3 = 0. (2)

If b = 1, then a1 = 0 and thus a = a1+b = 1. If b ̸= 1, plugging a1 = (b+1)a2 into Eq. (2) and simplifying

it, we have a32 + a2 + 1 = 0, which has no solution in F2m from the first statement of this lemma. Thus

B = 0 if and only if (a, b) = (1, 1).

Since the resultant of polynomials will be used in our proof, we now recall some basic facts about it.

Given two polynomials u(x) = amxm + am−1x
m−1 + · · · + a0 and v(x) = bnx

n + bn−1x
n−1 + · · · + b0

over a field K with degrees m and n, respectively, their resultant Res(u, v) ∈ K is the determinant of the

following square matrix of order n+m:

am am−1 · · · a0 0 · · · 0

0 am am−1 · · · a0 0 · · · 0
...

. . .
...

0 · · · 0 am am−1 · · · a0

bn bn−1 · · · b0 0 · · · 0

0 bn bn−1 · · · b0 · · · 0
...

. . . . . .
...

0 · · · 0 bn bn−1 · · · b0


.

For a field K and two polynomials F (x, y), G(x, y) ∈ K[x, y], we use Resy(F,G) to denote the resultant

of F and G with respect to y, which is the resultant of F and G when considered as polynomials in

the single variable x. In this case, Resy(F,G) ∈ K[x] belongs to the ideal generated by F and G. It is

known that F (x, y) = 0 and G(x, y) = 0 has a common solution (x, y) if and only if x is a solution of

Resy(F,G)(x) = 0 (see [27, P. 36]).

In the final part of this section, we give the proof of Theorem 2.
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Proof of Theorem 2. Since f is a quadratic function with f(0, 0) = (0, 0), it suffices to show that for any

(a, b) ̸= (0, 0) ∈ F2
2m , the equation

f(x+ a, y + b) + f(x, y) + f(a, b) = 0 (3)

has exactly two solutions (x, y) = (0, 0), (a, b) in F2
2m . By a simple calculation, Eq. (3) is equivalent to the

following equation system:{
F (x, y) = ax2 +

(
a2 + b2 + b

)
x+ (a+ b)y2 +

(
a+ b2

)
y = 0

G(x, y) = (a+ b)x4 + b2x2 +
(
a4 + b

)
x+ by4 + a2y2 +

(
a4 + a+ b4

)
y = 0.

(4.1)

(4.2)

Firstly, we consider the case (a, b) = (1, 1). In this case, Eqs. (4) become{
x2 + x = 0

x2 + y4 + y2 + y = 0.

(5.1)

(5.2)

From Eq. (5.1), we know x ∈ {0, 1}. If x = 0, plugging it into Eq. (5.2), we have y4 + y2 + y = 0 and

then y = 0 by Lemma 5 (1). If x = 1, together with Eq. (5.2), we get y4 + y2 + y + 1 = 0, which means

y = 1. Thus in this case, Eqs. (4) have only (x, y) ∈ {(0, 0), (1, 1)} as solutions in F2
2m .

In the following, we always assume that (a, b) ̸= (1, 1). With the help of MAGMA (see Appendix-A for

more details), we obtain the resultant of F and G with respect to y as follows

Resy(F,G)(x) =
(
a3 + ab2 + b3

)2
x(x+ a)H(x, a, b)H(x+ a, a, b), (6)

where

H(x, a, b) = x3 + (a2 + ab+ a+ b2 + b+ 1)x+ a3 + a2b+ a+ b3 + b2 + 1.

In the sequel we shall show that Resy(F,G)(x) = 0 is equivalent to x(x+ a) = 0.

First of all, we have a3 + ab2 + b3 ̸= 0 for any (a, b) ̸= (0, 0) ∈ F2
2m . Otherwise, for some element

(a, b) ̸= (0, 0) ∈ F2
2m , a3 + ab2 + b3 = 0. If b = 0, then the above equation becomes a3 = 0, which

contradicts the assumption (a, b) ̸= (0, 0). If b ̸= 0, then we have c3 + c + 1 = 0, where c = a
b ∈ F2m ,

which contradicts Lemma 5 (1).

In addition, we need to show H(x, a, b)H(x+a, a, b) ̸= 0. Note that H(x, a, b) = 0 has the same number

of solutions in F2m as H(x+a, a, b) = 0. It suffices to show that the equation H(x, a, b) = 0 has no solution

in F2m . Now we consider the equation H(x, a, b) = 0, i.e.,

x3 +Ax+B = 0, (7)

where A = a2 + ab+ a+ b2 + b+ 1 and B = a3 + a2b+ a+ b3 + b2 + 1. By Lemma 5 (3), B ̸= 0 holds
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under the case (a, b) ̸= (1, 1). Let h(t) = t2 +Bt+A3. By computation, we have

A3

B2
=

C

B
+

C2

B2
+ 1,

where

C = a2b+ a2 + ab2 + a+ b2 + b.

Thus Trm

(
A3

B2 + 1
)
= 0 and the equation h(t) = 0 has two solutions t1 = C + ωB and t2 = C + ω2B in

F2m (resp. F22m) if m is even (resp. odd), where ω ∈ F22\F2. Moreover,

t1 = ω(ω2C +B)

= ω
(
ω2(a2b+ a2 + ab2 + a+ b2 + b) + a3 + a2b+ a+ b3 + b2 + 1

)
= ω

(
a+ ωb+ ω2

)3
,

which is not cubic by Lemma 5 (2). Similarly, t2 is not cubic, either. Thus from Lemma 4, the equation

x3 +Ax+B = 0 has no solution in F2m .

Hence from Eq. (6), we have x = 0 or x = a. Next, we will show that from Eqs. (4), y = 0 or y = b,

respectively. Namely, Eqs. (4) have only (x, y) ∈ {(0, 0), (a, b)} as solutions.

If a = 0, then x = 0. Moreover, Eq. (4.1) and Eq. (4.2) become by2 + b2y = 0 and by4 + b4y = 0,

respectively. Thus y = 0 or y = b. In the following, we assume that a ̸= 0.

Case 1: x = 0. In this case Eqs. (4) become{
(a+ b)y2 +

(
a+ b2

)
y = 0

by4 + a2y2 +
(
a4 + a+ b4

)
y = 0.

(8.1)

(8.2)

We now show that Eqs. (8) have only one solution y = 0 for any (a, b) ∈ F2
2m\{(0, 0), (1, 1)}. If a = b ̸= 1,

then by Eq. (8.1), we get y = 0. Suppose now that a ̸= b. If b = 0, then a ̸= 0 and Eq. (8.1) becomes

a(y2 + y) = 0, i.e., y ∈ {0, 1}. In addition, Eq. (8.2) is equivalent to a2y2 + (a4 + a)y = 0. Since

a4+a2+a ̸= 0 for any a ∈ F∗
2m , which holds by Lemma 5 (1), y = 1 is not a solution of Eq. (8.2). Namely,

y = 0 is the unique solution to Eqs. (8). If a ̸= b and b ̸= 0, then from Eq. (8.1), we get y ∈ {0, a+b2

a+b }.

Plugging y = a+b2

a+b into Eq. (8.2) and simplifying, we get

a(a+ b2)(a3 + ab2 + b3)(a3 + a2b+ a+ b3 + b2 + 1) = 0. (9)

Let c = a
b . Then a3 + ab2 + b3 = b3

(
c3 + c+ 1

)
̸= 0 for any b ̸= 0 due to Lemma 5 (1). In addition, by

Lemma 5 (3), we know that a3 + a2b+ a+ b3 + b2 +1 ̸= 0 for any (a, b) ̸= (1, 1). Thus by Eq. (9), we get

a = b2, which means that y = 0 is the unique solution of Eqs. (8).
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Case 2: x = a. In this case Eqs. (4) become{
(a+ b)(y + b)2 +

(
a+ b2

)
(y + b) = 0

b(y + b)4 + a2(y + b)2 +
(
a4 + a+ b4

)
(y + b) = 0.

(10.1)

(10.2)

It is clear that y = b is the unique solution of Eqs. (10) by the discussions of the case if x = 0.

On the whole, Eqs. (4) have only (x, y) ∈ {(0, 0), (a, b)} as solutions in F2
2m for any (a, b) ∈ F2

2m\{(0, 0)}.

Therefore, f is APN over F2
2m .

4. A NEW FAMILY OF APN FUNCTIONS OVER F23m

In this section, we will show that the univariate function in Theorem 3 is APN. Before that, we give some

important lemmas.

Lemma 6. Let gcd(m, s) = 1, µ ∈ F∗
23m satisfy µ22m+2m+1 ̸= 1 and Lβ(z) = z2

m+s

+ µz2
s

+ βz with

β ∈ F2m . Then L0(z) permutes F23m . Moreover, L1 permutes F23m if and only if Lβ does for any β ∈ F∗
2m .

Proof. Since Lβ(x) is a linearized polynomial, it suffices to show Lβ(x) = 0 only has x = 0 as a solution

in F23m . Suppose Lβ(a) = 0 for some a ∈ F∗
23m . If β = 0, we have a2

m+s

+ µa2
s

= 0, which contradicts

the condition µ22m+2m+1 ̸= 1. If β ̸= 0, let ϵ ∈ F∗
2m satisfy ϵ2

s−1 = β, which always exists since

gcd (2m − 1, 2s − 1) = 2gcd(m,s) − 1 = 1. Then we have

Lβ(ϵx) = (ϵx)2
m+s

+ µ(ϵx)2
s

+ β(ϵx) = ϵ2
s

(x2
m+s

+ µx2
s

+ x) = ϵ2
s

L1(x).

The desired statement thus follows.

Lemma 7. Let µ ∈ F∗
23m , L(z) = z2

m+s

+ µz2
s

+ z and L
′
(z) = z2

m+s

+ µ2m

z2
m

+ z. Then L permutes

F23m if and only if L
′

does.

Proof. For the linear polynomial L, it is known that its adjoint polynomial denoted by L∗ is L∗(z) =

z2
2m−s

+ µ23m−s

z2
3m−s

+ z and L permutes F23m if and only if L∗ does. Moreover, it is easy to check that

L
′
(z) = (L∗(z))2

m+s

. Thus L permutes F23m if and only if L
′

does.

Let gcd(s,m) = 1, a ∈ F23m and v ∈ F∗
2m . Choose µ ∈ F∗

23m such that µ22m+2m+1 ̸= 1 and L(z) =

z2
m+s

+ µz2
s

+ z permutes F23m . Define

A = L(a)a2
2m+s

B = (L(a)2
m

+ µ2m

L(a))a2
m+s

C = (L(a) + va)a2
m

D = µL(a)2
m

a2
s

E = (L(a) + va)2
m

a

(11)
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and denote

U1 = D22m

E2m+1 +AC22m

E2m

+B2m

C22m+1

U2 = A22m

E2m+1 +BC22m

E2m

+ C22m+1D2m

U3 = B22m

E2m+1 + C22m

DE2m

+A2m

C22m+1

U4 = C22m+2m+1 + E22m+2m+1

V1 = A22m+2C2m

+ABC2m

D22m

+AB2m+1E22m

+A2D2m

E22m

V2 = A22m+2E2m

+ABD22m

E2m

+A22m+1B2m

C +ACD22m+2m

V3 = A22m+1B2m

E +AB2m+1C22m

+A2C22m

D2m

+AD22m+2m

E

V4 = (B2m+1 +AD2m

)(AB22m

+D22m+1) + (A22m+1 +BD22m

)(A2m+1 +B2m

D).

(12)

The following lemma is crucial to the main proof in this section.

Lemma 8. Let A,B,C,D,E be defined as in (11), Ui, Vi with i = 1, 2, 3, 4 be defined as in (12). Then for

any a ∈ F∗
23m ,

(i) A+B + C +D + E = 0, ABCDE ̸= 0 and C + E ̸= 0;

(ii) UiVi ̸= 0 with i = 1, 2, 3;

(iii) U4 = V4 = 0;

(iv) U2V
2s

1 + U1V
2s

2 + U3V
2s

1 + U1V
2s

3 = 0;

(v) U2V
2s

1 + U1V
2s

2 ̸= 0.

Proof. (i) Recall that L(a) = a2
m+s

+ µa2
s

+ a and v ∈ F2m . It is readily seen that

A+B +C +D+E = L(a)
(
a2

m+s

+ µa2
s

+ a
)2m

+L2m

(a)
(
a2

m+s

+ µa2
s

+ a
)
+ a2

m+1(v+ v2
m

) = 0.

Next we show ABCDE ̸= 0. First, the fact AD ̸= 0 is clear since A = L(a)a2
2m+s

, D = µL(a)2
m

a2
s

and L permutes F23m . Second, let H(x) = x2
m

+ µ2m

x. Then H permutes F23m since µ22m+2m+1 ̸= 1. In

addition, it is easy to check that B = H(L(a))a2
m+s

and thus B ̸= 0 for any a ∈ F∗
23m . Third, CE ̸= 0 is

equivalent to L(a) + va = a2
m+s

+ µa2
s

+ (v + 1)a ̸= 0, which follows easily from Lemma 6.

Finally, assume that there exists some a ∈ F∗
23m such that C+E = (L(a)+va)a2

m

+(L(a)+va)2
m

a = 0.

Then L(a) + va = ηa for some η ∈ F∗
2m . Let β = 1 + v + η ∈ F2m . Then Lβ(a) = 0 for some a ∈ F∗

23m ,

which is also impossible by Lemma 6. Thus C + E ̸= 0 for any a ∈ F∗
23m .

(ii) Let

U = µ2m

a2
m+s+1 + a2

2m+s+1 + a2
m+s+2m

+ µ2m+1a2
2m+2m+s

+ µ22m+1a2
2m+s+2m

+ µa2
2m+s+22m

.

Plugging the expressions of A,B,C,D,E into those of U1, U2, U3 and investigating their factorizations with

the help of MAGMA (see Appendix-B), we get
U1 = va2

2m+s+2m

C22m

U22m

= va2
m

C22m

(a2
s

U)2
2m

U2 = va2
m+s+2m

C22m

U2m

= va2
m

C22m

(a2
s

U)2
m

U3 = va2
m+2s

C22m

U = va2
m

C22m

(a2
s

U).

(13)
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Moreover, let

V = a2
m+2s

+ µ2m

a2
2m+2m+s

+ µ22m

a2
2m+s+2m

+ a2
2m+s+22m

and

T = (µ22m+2m+1 + 1)a2
s

+ µ22m+2m

a+ µ22m

a2
m

+ a2
2m

.

Similarly, plugging the expressions of A,B,C,D,E into those of V1, V2, V3 and investigating their factor-

izations (see Appendix-B), we obtain
V1 = va2

2m+s+1+2m+s+22m

L(a)TV 22m

= va2
2m+s+1+2m+s

L(a)T (aV )2
2m

V2 = va2
2m+s+1+2m+s+2m

L(a)TV 2m

= va2
2m+s+1+2m+s

L(a)T (aV )2
m

V3 = va2
2m+s+1+2m+s+1L(a)TV = va2

2m+s+1+2m+s

L(a)T (aV ).

(14)

Thus in order to show that UiVi ̸= 0 with i = 1, 2, 3, it suffices to prove that UV T ̸= 0. Let P =

a2
2m+s

+ µ2m

a2
m+s

. Then P ̸= 0 for any a ∈ F∗
23m since the binomial z2

2m+s

+ µ2m

z2
m+s

clearly permutes

F23m when µ22m+2m+1 ̸= 1. In addition, we have

V = a2
2m

P + a2
m

P 2m

.

If there exists some a ∈ F∗
23m such that V = 0, then P = τa2

m

for some τ ∈ F∗
2m . Furthermore, we have

a2
2m+s

+µ2m

a2
m+s

+ τa2
m

= 0, i.e., a2
m+s

+µa2
s

+ τa = 0, which is impossible by Lemma 6. Thus V ̸= 0.

Moreover, U ̸= 0 due to the crucial observation that

U = V 22m

+ µV,

which is a permutation in V over F23m . Finally, if there exists some a ∈ F∗
23m such that T = 0, then

(µ22m+2m+1 + 1)a2
s

+ µ22m+2m

a+ µ22m

a2
m

+ a2
2m

= 0. (15)

Raising (15) to the 2m-th power, one gets

(µ22m+2m+1 + 1)a2
m+s

+ µ22m+1a2
m

+ µa2
2m

+ a = 0. (16)

Comparing (15) and (16), one can eliminate µ22m+1a2
m

+ µa2
2m

in (16) and obtain

(µ22m+2m+1 + 1)L(a) = 0,

which is impossible since µ22m+2m+1 ̸= 1 and L(a) ̸= 0 for any a ∈ F∗
23m .

(iii) It is trivial that U4 = C22m+2m+1 +E22m+2m+1 = 0 due to the fact E = C2m

a1−22m

. The statement

V4 = 0 holds due to the following four equations, which can be checked directly.

B2m+1 +AD2m

= (L(a)2
m

+ µ2m

L(a))2
m+1a2

2m+s+2m+s

+ µ2m

L(a)2
2m+1a2

2m+s+2m+s

= a2
2m+s+2m+s

L(a)2
m
(
L(a)2

2m

+ µ22m

L(a)2
m

+ µ22m+2m

L(a)
)
,
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AB22m

+D22m+1 = L(a)a2
2m+s

(L(a)2
m

+ µ2m

L(a))2
2m

a2
s

+ µ22m+1L(a)2
m+1a2

2m+s+2s

= a2
2m+s+2s

L(a)
(
µL(a)2

2m

+ µ22m+1L(a)2
m

+ L(a)
)
,

A22m+1 +BD22m

= L(a)2
2m+1a2

2m+s+2m+s

+ (L(a)µ2m

+ L(a)2
m

)a2
m+s

µ22m

L(a)a2
2m+s

= a2
2m+s+2m+s

L(a)
(
L(a)2

2m

+ µ22m

L(a)2
m

+ µ22m+2m

L(a)
)

and
A2m+1 +B2m

D = L(a)2
m+1a2

2m+s+2s

+ (L(a)µ2m

+ L(a)2
m

)2
m

a2
2m+s

µL(a)2
m

a2
s

= a2
2m+s+2s

L(a)2
m
(
µL(a)2

2m

+ µ22m+1L(a)2
m

+ L(a)
)
.

(iv) Plugging (13) and (14) into U2V
2s

1 + U1V
2s

2 + U3V
2s

1 + U1V
2s

3 , we get

U2V
2s

1 + U1V
2s

2 + U3V
2s

1 + U1V
2s

3

=∆
(
a2

m+s

U2m

(a2
2m

V 22m

)2
s

+ a2
2m+s

U22m

(a2
m

V 2m

)2
s

+ a2
s

U(a2
2m

V 22m

)2
s

+ a2
2m+s

U22m

(aV )2
s
)

=a2
2m+s

∆
(
a2

m+s

U2m

V 22m+s

+ a2
m+s

U22m

V 2m+s

+ a2
s

UV 22m+s

+ a2
s

U22m

V 2s
)
,

where ∆ = v2
s+1a2

2m+2s+1+2m+2s+2m

C22m

L(a)2
s

T 2s

. Moreover, it is easy to check

a2
2m+s

U22m

+ a2
m+s

U2m

+ a2
s

U = 0 (17)

and

a2
2m

V 22m

+ a2
m

V 2m

+ aV = 0. (18)

By multiplying both sides of (17) with V 22m+s

, we get

a2
m+s

U2m

V 22m+s

+ a2
s

UV 22m+s

= a2
2m+s

U22m

V 22m+s

.

In addition, by raising (18) to its 2s-th power and multiplying both sides with U22m

, we obtain

a2
m+s

U22m

V 2m+s

+ a2
s

U22m

V 2s

= a2
2m+s

U22m

V 22m+s

.

Together with the above two equations, we have

a2
m+s

U2m

V 22m+s

+ a2
m+s

U22m

V 2m+s

+ a2
s

UV 22m+s

+ a2
s

U22m

V 2s

= 0

and therefore

U2V
2s

1 + U1V
2s

2 + U3V
2s

1 + U1V
2s

3 = 0.

(v) By direct computations, we have

U2V
2s

1 + U1V
2s

2

=∆
(
a2

m+s

U2m

(a2
2m

V 22m

)2
s

+ a2
2m+s

U22m

(a2
m

V 2m

)2
s
)

=∆a2
2m+s+2m+s

(
UV 2m+s

+ U2m

V 2s
)2m

,
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where ∆ = v2
s+1a2

2m+2s+1+2m+2s+2m

C22m

L(a)2
s

T 2s

. Thus in order to prove U2V
2s

1 +U1V
2s

2 ̸= 0, it suffices

to show UV 2m+s

+ U2m

V 2s ̸= 0. If there exists some a ∈ F∗
23m such that UV 2m+s

+ U2m

V 2s

= 0, then

U = γV 2s

for some γ ∈ F∗
2m . In addition, since U = V 22m

+ µV , we obtain

V 22m

+ µV + γV 2s

= 0.

Let ϵ ∈ F∗
2m satisfy ϵ1−2s

= γ. Replacing V with ϵV in the above equation and multiplying both sides of

the equation with ϵ−1, we have V 22m

+ µV + V 2s

= 0. By raising the above equation to its 2m-th power,

we get

V 2m+s

+ µ2m

V 2m

+ V = 0,

which is impossible by Lemma 7 and the fact that L permutes F23m .

Now we give the proof of Theorem 3.

Proof of Theorem 3. Since f is a quadratic function, it suffices to show that for any a ∈ F∗
23m , the equation

f(az + a) + f(az) + f(a) = 0 has exactly two solutions z ∈ {0, 1} in F23m . More specifically, we need to

show that the equation

(L(az) + L(a))2
m+1 + L(az)2

m+1 + L(a)2
m+1 + v(az + a)2

m+1 + v(az)2
m+1 + va2

m+1

=Az2
2m+s

+Bz2
m+s

+ Cz2
m

+Dz2
s

+ Ez = 0
(19)

where A,B,C,D,E are defined as in (11), has exactly two solutions z ∈ {0, 1}. By Lemma 8 (i), we know

ABCDE ̸= 0 for any a ∈ F∗
23m . Raising (19) to its 2m-th power and its 22m-th power, we have

A2m

z2
s

+B2m

z2
2m+s

+ C2m

z2
2m

+D2m

z2
m+s

+ E2m

z2
m

= 0 (20)

and

A22m

z2
m+s

+B22m

z2
s

+ C22m

z +D22m

z2
2m+s

+ E22m

z2
2m

= 0, (21)

respectively. In the following, we will use the method of elimination twice and finally acquire two equations

(23) and (26).

After computing the summation of (19) multiplied by E2m

and (20) multiplied by C and simplifying it,

we get

(AE2m

+B2m

C)z2
2m+s

+ C2m+1z2
2m

+ (BE2m

+ CD2m

)z2
m+s

+ (DE2m

+A2m

C)z2
s

+ E2m+1z = 0.

(22)
By computing the summation of (21) multiplied by E2m+1 and (22) multiplied by C22m

, we have

U1z
22m+s

+ U2z
2m+s

+ U3z
2s

+ U4z
22m

= 0,

i.e.,

U1z
22m+s

+ U2z
2m+s

+ U3z
2s

= 0, (23)
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where Ui with i = 1, 2, 3, 4 are defined as in (12) and U4 = 0 by Lemma 8 (iii).

After computing the summation of (19) multiplied by B2m

and (20) multiplied by A and simplifying it,

we get

AC2m

z2
2m

+ (B2m+1 +AD2m

)z2
m+s

+ (B2m

C +AE2m

)z2
m

+ (B2m

D +A2m+1)z2
s

+B2m

Ez = 0.

(24)
By calculating the summation of (20) multiplied by D22m

and (21) multiplied by B2m

, we obtain

(C2m

D22m

+B2m

E22m

)z2
2m

+ (D22m+2m

+A22m

B2m

)z2
m+s

+D22m

E2m

z2
m

+

(A2m

D22m

+B22m+2m

)z2
s

+B2m

C22m

z = 0. (25)

Now computing the summation of (24) multiplied by (D22m+2m

+A22m

B2m

) and (25) multiplied by (B2m+1+

AD2m

), we have

V1z
22m

+ V2z
2m

+ V3z + V4z
2s

= 0,

i.e.,

V 2s

1 z2
2m+s

+ V 2s

2 z2
m+s

+ V 2s

3 z2
s

= 0, (26)

where Vi with i = 1, 2, 3, 4 are defined as in (12) and V4 = 0 by Lemma 8 (iii).

Now the summation of (23) multiplied by V 2s

1 and (26) multiplied by U1 gives(
U2V

2s

1 + V 2s

2 U1

)
z2

m+s

+
(
U3V

2s

1 + V 2s

3 U1

)
z2

s

= 0,

i.e., (
U2V

2s

1 + V 2s

2 U1

) (
z2

m+s

+ z2
s
)
= 0

since U2V
2s

1 +V 2s

2 U1+U3V
2s

1 +V 2s

3 U1 = 0 by Lemma 8 (iv). Moreover, by Lemma 8 (v), U2V
2s

1 +V 2s

2 U1 ̸= 0

and thus z2
m+s

+ z2
s

= 0. In other words, z ∈ F2m . Plugging it into (19), we get

(C + E)(z2
s

+ z) = 0.

By Lemma 8 (i), C + E ̸= 0 and thus z2
s

+ z = 0. Then z ∈ F2gcd(m,s) = F2.

In conclusion, Eq. (19) has only two solutions z ∈ {0, 1} in F23m for any a ∈ F∗
23m and then f is APN

over F23m .

Remark 9. The existence of the parameter µ ∈ F∗
23m in Theorem 3 for any m is a crucial problem to the

significance of the theorem. During the review process, by using techniques from algebraic varieties over

finite fields, Bartoli et al. [1] proved that when m ≥ 3, for the particular case s = 1, there always exists

µ ∈ F∗
23m satisfying µ22m+2m+1 ̸= 1 such that L(z) = z2

m+s

+ µz2
s

+ z permutes F23m . That is to say,

Theorem 3 indeed always produces APN functions over F23m for any positive integer m ≥ 3.
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5. CONCLUSION AND FURTHER WORK

In this paper, we obtained two new infinite families of APN functions over F22m and F23m . It is demon-

strated that our APN families are CCZ-inequivalent to all known infinite families of APN functions by

comparing their Γ-ranks over F28 or F29 . Furthermore, it is worth mentioning that our two APN families

cover two known sporadic APN functions over F28 and F29 , which were found by Edel and Pott [21] in 2009

using the switching method and Beierle and Leander [3] in 2021 using a recursive tree search, respectively.

Note that the newly found APN family over F2
2m can be expressed using

f(z) = z3 +Az3q +Bz2q+1 + Czq+2 +Dz5 + Ez5q + Fz4q+1 +Gzq+4 +Hzq+1 + Iz2(q+1)

over Fq2 with q = 2m. Thus the next question is whether it is possible to obtain new infinite families of

APN functions over Fq2 of the above form, or more generally,

f(z) = z(Az2 +Bz4 + Czq +Dz2q + Ez4q) + z2(Gz4 +Hzq + Iz2q + Jz4q)

+z4(Kzq + Lz2q +Mz4q) + zq(Nz2q + Pz4q) +Qz6q,

which was discussed in [10]. In addition, for the newly found APN family over F23m , it is important to study

the CCZ-equivalence among the APN functions f(z) = (z2
m+s

+ µz2
s

+ z)2
m+1 + vz2

m+1 with different

parameters µ, s, v and to determine a lower bound on the number of CCZ-inequivalent APN functions over

F23m of this form.
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Appendix

A. The MAGMA code in the proof of Theorem 2: In order to calculate the resultant of F (x, y) and G(x, y)

for any (a, b) ̸= (1, 1), we treat them as polynomials in indeterminates x, y, a, b. In this way, we have

polynomials{
F (x, y, a, b) = ax2 +

(
a2 + b2 + b

)
x+ (a+ b)y2 +

(
a+ b2

)
y

G(x, y, a, b) = (a+ b)x4 + b2x2 +
(
a4 + b

)
x+ by4 + a2y2 +

(
a4 + a+ b4

)
y

Observe that the resultant of F (x, y) and G(x, y) with respect to y is the same as the resultant of F (x, y, a, b)

and G(x, y, a, b) with respect to y over F2, where the indeterminates a, b take values from F2m . In this way,

we obtain the resultant of F (x, y) and G(x, y) with respect to y and further factorize it over F2 with the

following Magma code:

P<x , y , a , b> := Po lynomia lR ing (GF ( 2 ) , 4 ) ;

F := a *x ˆ 2 + ( a ˆ2+ b ˆ2+ b )* x +( a+b )* y ˆ 2 + ( a+b ˆ 2 ) * y ;

G := ( a+b )* x ˆ4+ b ˆ2* x ˆ 2 + ( a ˆ4+ b )* x+b*y ˆ4+ a ˆ2* y ˆ 2 + ( a ˆ4+ a+b ˆ 4 ) * y ;

Res := R e s u l t a n t ( F , G, y ) ;

F a c t o r i z a t i o n ( Res ) ;

B. The MAGMA code in the proof of Lemma 8.

In the equation system (11), we assume that a1 := a2
m

, a2 := a2
2m

, as := a2
s

, as1 := a2
m+s

,
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as2 := a2
2m+s

, u := µ, u1 := µ2m

and u2 := µ22m

. Then A,B,C,D,E can be seen as polynomi-

als in F2[a, a1, a2, as, as1, as2, u, u1, u2, v]. We also suppose X1 := X2m

and X2 := X22m

for X ∈
{A,B,C,D,E}. Then we can use the following MAGMA code to compute the factorizations of the

polynomials U1, U2, U3, V 1, V 2, V 3.

P<a , a1 , a2 , as , as1 , as2 , u , u1 , u2 , v> := Po lynomia lR ing (GF ( 2 ) , 1 0 ) ;

A := ( as1 +u* as +a )* as2 ;

A1 := ( as2 +u1* as1 +a1 )* as ;

A2 := ( as +u2* as2 +a2 )* as1 ;

B := ( as2 +u1* as1 +a1+u1 *( as1 +u* as +a ) ) * as1 ;

B1 := ( a s +u2* as2 +a2+u2 *( as2 +u1* as1 +a1 ) ) * as2 ;

B2 := ( as1 +u* as +a+u *( as +u2* as2 +a2 ) ) * as ;

C := ( as1 +u* as +a+v* a )* a1 ;

C1 := ( as2 +u1* as1 +a1+v* a1 )* a2 ;

C2 := ( a s +u2* as2 +a2+v* a2 )* a ;

D := u *( as2 +u1* as1 +a1 )* as ;

D1 := u1 *( as +u2* as2 +a2 )* as1 ;

D2 := u2 *( as1 +u* as +a )* as2 ;

E := ( as2 +u1* as1 +a1+v* a1 )* a ;

E1 := ( a s +u2* as2 +a2+v* a2 )* a1 ;

E2 := ( as1 +u* as +a+v* a )* a2 ;

U1 := D2*E1*E+A*C2*E1+B1*C2*C ;

U2 := A2*E1*E+B*C2*E1+C2*C*D1 ;

U3 := B2*E1*E+C2*D*E1+A1*C2*C ;

V1 := A2*Aˆ2* C1+A*B*C1*D2+A*B1*B*E2+Aˆ2*D1*E2 ;

V2 := A2*Aˆ2* E1+A*B*D2*E1+A2*A*B1*C+A*C*D2*D1 ;

V3 := A2*A*B1*E+A*B1*B*C2+Aˆ2* C2*D1+A*D2*D1*E ;

F a c t o r i z a t i o n ( U1 ) ;

F a c t o r i z a t i o n ( U2 ) ;

F a c t o r i z a t i o n ( U3 ) ;

F a c t o r i z a t i o n ( V1 ) ;

F a c t o r i z a t i o n ( V2 ) ;

F a c t o r i z a t i o n ( V3 ) ;


