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Abstract

In real life we often deal with independent but not identically distributed observa-

tions (i.n.i.d.o), for which the most well-known statistical model is the multiple linear

regression model (MLRM) without random covariates. While the classical methods

are based on the maximum likelihood estimator (MLE), it is well known its lack of

robustness to small deviations from the assumed conditions. In this paper, and based

on the Rényi’s pseudodistance (RP), we introduce a new family of estimators in case

our information about the unknown parameter is given for i.n.i.d.o.. This family of

estimators, let say minimum RP estimators (as they are obtained by minimizing the

RP between the assumed distribution and the empirical distribution of the data), con-

tains the MLE as a particular case and can be applied, among others, to the MLRM

without random covariates. Based on these estimators, we introduce Wald-type tests

for testing simple and composite null hypotheses, as an extension of the classical

MLE-based Wald test. Influence functions for the estimators and Wald-type tests are

also obtained and analysed. Finally, a simulation study is developed in order to asses

the performance of the proposed methods and some real-life data are analysed for

illustrative purpose.

Keywords: asymptotic normality; consistency; independent not identically distributed

observations; influence function; minimum Rényi’s pseudodistance estimators, robustness;

Wald-type tests.

1 Introduction

In parametric estimation the role of divergence measures is very intuitive: minimizing a

suitable divergence measure between the data and the assumed model in order to estimate

the unknown parameters. These estimators are called “minimum divergence estimators”

(MDEs). There is a growing body of literature that recognizes the importance of MDEs

because their robustness, without a significant loss of efficiency, in relation to the max-

imum likelihood estimator (MLE). See, for instance, Beran [1], Tamura and Boos [2],

Simpson [3, 4], Lindsay [5], Pardo [6] and Basu et al. [7]. In the case of continuous

models is convenient to consider families of divergence measures for which non-parametric
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estimators of the unknown density function are not needed. From this perspective, the

density power divergence (DPD) family, leading to the minimum DPD estimators, is the

most important family of divergence measures. For more details see [7]. However, there

is another important family of divergence measures which neither needs non-parametric

estimators, the Rényi’s pseudodistances (RP).

LetX1, ..., Xn be a random sample of size n from a population having true and unknown

density function g, modelled by a parametric family of densities fθ with θ ∈ Θ ⊂ Rp. The

RP between the densities fθ and g is given , for α > 0, by

Rα (fθ, g) =
1

α+ 1
log

(∫
fθ(x)α+1dx

)
+

1

α (α+ 1)
log

(∫
g(x)α+1dx

)
− 1

α
log

(∫
fθ(x)αg(x)dx

)
. (1)

The RP can be defined for α = 0 taking continuous limits, yielding the expression

R0 (fθ, g) = lim
α↓0

Rα (fθ, g) =

∫
g(x) log

g(x)

fθ(x)
dx,

i.e., the RP coincides with the Kullback-Leibler divergence between g and fθ, DKullback(g, fθ),

at α = 0 (see [6]). The RP was considered for the first time in Jones et al. [8]; later Bro-

niatowski et al. [9] established that the RP is positive for any two densities and for all

values of the parameter α, Rα (fθ, g) ≥ 0 and further Rα (fθ, g) = 0 if and only if fθ = g.

This property embolden the definition of the minimum RP estimator as the minimizer of

the RP between the assumed distribution and the empiric distribution of the data. There-

fore, the minimum RP estimator based on the random sample X1, ..., Xn for the unknown

parameter θ is given, for α > 0, by

θ̂
∗
α = arg sup

θ∈Θ

n∑
i=1

fθ(Xi)
α

Cα(θ)
, (2)

where

Cα(θ) =
(∫
fθ(x)α+1dx

) α
α+1 .

Note that the value α = 0 was defined as the KL divergence and hence, the minimum RP

estimator coincides with the MLE at α = 0. Besides, [9] studied the asymptotic properties

and robustness of the minimum RP estimators and presented an application to the multiple

linear regression model (MLRM) with random covariates. In the same vein, [10] introduced

Wald-type tests based on the minimum RP estimators for the MLRM and [11] studied

the minimum RP estimator for the linear regression model in the ultra-high dimensional

set-up. Moreover, θ̂
∗
α is a M-estimator and thus it asymptotic distribution and influence

function (IF) can be obtained based on the asymptotic theory of the M-estimators.

However, far too little attention has been paid to the case of independent but non

identically distributed observations (i.n.i.d.o.), for which the most well-known statistical

model is the MLRM without random covariates. The nicest study for i.n.i.d.o. based

on divergence measures, until now, is the paper of Ghosh and Basu [12] based on DPD

measures. Some extensions are given in [13] and [14]. The main aim of this paper is to

introduce and study the minimum RP estimator for i.n.i.d.o. We study their asymptotic
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properties as well as we obtain its influence function in order to study its robustness.

In Section 2 we introduce the minimum RP estimator for i.n.i.d.o. The consistency and

asymptotic distribution is presented in Section 3. Section 4 is devoted to introduce and

study Wald-type tests based on minimum RP estimators. The robustness of these esti-

mators and Wald-type test is studied through its influence functions in Section 5. The

special case of MLRM is considered in Section 6. Finally, an extensively study and two

numerical examples of the MLRM are presented in Section 7 and 8, respectively.

2 The minimum RP estimator for independent but not iden-

tically distributed observations

Let Y1, ..., Yn be i.n.i.d.o. being g1, ..., gn the corresponding density functions with respect

to some common dominating measure. We are interested in modeling gi by the density

function fi(y,θ), i = 1, ..., n, being θ common for all the density functions fi(y,θ). For

each observation i, the “Rényi’s pseudodistance” between fi(y,θ) and ĝi, can be defined

for positives values of α as

Rα (fi(y,θ), ĝi) =
1

α+ 1
log

(∫
fi(y,θ)α+1dy

)
− 1

α
log

(∫
fi(y,θ)αĝi(y)dy

)
+ k, (3)

where

k =
1

α (α+ 1)
log

(∫
ĝi(y)α+1dy

)
does not depend on θ. As we only have one observation of Yi the best way to estimate ĝi

is assuming that the distribution is degenerate in yi. Therefore, (3) yields to the loss

Rα (fi(y,θ), ĝi) =
1

α+ 1
log

(∫
fi(y,θ)α+1dy

)
− 1

α
log fi(Yi,θ)α + k. (4)

At α = 0 the RP loss is given by

R0 (fi(y,θ), ĝi) = lim
α↓0

Rα (fi(y,θ), ĝi) = − log fi(Yi,θ) + k. (5)

Now, Expression (4) can be written as

Rα (fi(y,θ), ĝi) = − 1

α
log

fi(Yi,θ)α(∫
fi(y,θ)α+1dy

) α
α+1

+ k,

and thus minimizing Rα (fi(y,θ), ĝi) in θ, for α > 0, is equivalent to maximizing

Vi(Yi,θ) =
fi(Yi,θ)α(∫

fi(y,θ)α+1dy
) α
α+1

.

In the following, we shall denote,

Liα (θ) =

(∫
fi(y,θ)α+1dy

) α
α+1

.
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Based on this idea we are going to consider the objective function

Hα
n (θ) =

1

n

n∑
i=1

fi(Yi,θ)α(∫
fi(y,θ)α+1dy

) α
α+1

=
1

n

n∑
i=1

fi(Yi,θ)α

Liα (θ)
=

1

n

n∑
i=1
Vi(Yi,θ) (6)

and then the minimum RP estimator, θ̂α, for the common θ, is given by

θ̂α = arg max
θ∈Θ

Hα
n (θ), (7)

with Hα
n (θ) defined in (6) for α > 0 and H0

n(θ) = 1
n

n∑
i=1

log fi(Yi,θ).

It is interesting to observe that when Y1, ..., Yn are independent and identically dis-

tributed random variables, the estimator θ̂α coincides with the estimator θ̂
∗
α given in (2).

In the following section we shall establish the consistency of θ̂α, as well as its asymptotic

distribution.

3 Consistency and asymptotic distribution

We shall assume in the following that the true densities gi i = 1, ..., n, belong to the

assumed model, i.e., gi ≡ fi(y,θ), i = 1, ..., n, for some common parameter θ. We denote

by θ∗ the true value of the unknown parameter. In the following we shall denote Eθ∗ [Y ] =∫
yfi(y,θ

∗)dy, and we introduce the matrices

Ψn =
1

n

n∑
i=1
J (i), (8)

with

J (i) =

(
−Eθ∗

[
∂2Vi(Y ;θ)

∂θj∂θk

])
i,j=1,...,p

and

Ωn =
1

n

n∑
i=1
V arθ∗

[(
∂Vi(Y ;θ)

∂θj

)
j=1,..,p

]
. (9)

In order to get the asymptotic results we shall assume the following conditions:

C1. The support, X , of the density functions fi(y,θ) is the same for all i and does not

depend on θ.

C2. There exists an open subset Θ∗ of Θ containing the true value of the parameter θ∗

such that for almost all y ∈ X the density fi(y,θ) admits all third derivatives with

respect to θ and i = 1, ..., n.

C3. For i = 1, 2, ... the integrals ∫
fi(y,θ)1+αdy

can be differentiated thrice with respect to θ and we can interchange integration and

differentiation.
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C4. For i = 1, 2, ... the matrices J (i) are positive definite. We denote by λn the minimum

eigenvalue of Ωn and

λ0 = inf
n
λn > 0.

C5. There exists functions M
(i)
jkl such that∣∣∣∣∂3Vi(y;θ)

∂θj∂θk∂θl

∣∣∣∣ ≤M (i)
jkl (y) , ∀θ ∈ Θ∗, ∀j, k, l

and

Eθ∗
[
M

(i)
jkl (Y )

]
= mjkl <∞, ∀j, k, l.

C6. For all j, k, l the sequences
{
∂Vi(Y ;θ)
∂θj

}
j=1,...,p

,
{
∂2Vi(Y ;θ)
∂θj∂θk

}
j,k=1,..,p

and
{
∂3Vi(Y ;θ)
∂θj∂θk∂l

}
j,k,l=1,..,p

are uniformly integrable in the Cesáro sense, i.e.

lim
N→∞

(
sup
n>1

1

n

n∑
i=1
Eθ∗

[∣∣∣∣∂Vi(Y ;θ)

∂θj

∣∣∣∣ I{ ∂Vi(Y ;θ)

∂θj
>N

}(Y )

])
= 0,

lim
N→∞

(
sup
n>1

1

n

n∑
i=1
Eθ∗

[∣∣∣∣∂2Vi(Y ;θ)

∂θj∂θk

∣∣∣∣ I{ ∂2Vi(Y ;θ)

∂θj∂θk
>N

}(Y )

])
= 0,

lim
N→∞

(
sup
n>1

1

n

n∑
i=1
Eθ∗

[∣∣∣∣∂3Vi(Y ;θ)

∂θj∂θk∂θl

∣∣∣∣ I{ ∂2Vi(Y ;θ)

∂θj∂θk∂θl
>N

}(Y )

])
= 0.

C7. For all ε > 0

lim
n→∞

 1

n

n∑
i=1
Eθ∗

∥∥∥∥Ω− 1
2

n
∂Vi(Y, θ)

∂θ

∥∥∥∥2

2

I{∥∥∥∥Ω− 1
2

n
∂Vi(Y,θ)

∂θ

∥∥∥∥2
2

}(Y )

 > ε
√
n

 = 0.

Note that C6. gives sufficient conditions for the weak law of large numbers with

i.n.i.d.o. ([15]), while C7. is the assumption required for the multivariate central limit

theorem for i.n.i.d.o. ([16]). The following theorem states the consistency of θ̂α and the

second one establishes its asymptotic distribution. Proof of both theorems are given in

Appendix A.1 and Appendix A.2, respectively.

Theorem 3.1 Let Y1, ..., Yn be i.n.i.d.o. each with a density function fi(y,θ), θ ∈ Θ ⊂
Rp. If conditions C1.–C6. holds, there exists a consistent sequence θ̂n of the system of

equations
∂Hα

n (θ)

∂θ
= 0p. (10)

Theorem 3.2 Let Y1, ..., Yn be i.n.i.d.o. each with a density function fi(y,θ), θ ∈ Θ ⊂
Rp. If conditions C1.–C7. are satisfied the asymptotic distribution of the minimum RP

estimator is given by

√
nΩ
− 1

2
n Ψn

(
θ̂α − θ∗

)
L→

n→∞
N(0p, Ip), (11)

being Ip the p-dimensional identity matrix and the matrices Ψn and Ωn were defined in

(8) and (9), respectively.
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4 Wald-type test for i.n.i.d.o.

4.1 Wald-type tests for simple null hypotheses

We define a family of Wald-type test statistics based on minimum RP estimators for

testing the hypothesis

H0 : θ = θ0 against H1 : θ 6= θ0, (12)

for a given θ0 ∈ Θ.

Definition 4.1 Let θ̂α be the minimum RP estimator of θ. The family of proposed Wald-

type test statistics for testing the null hypothesis (12) is given by

W 0
n(θ0) = n(θ̂α − θ0)TΣ−1

α (θ0)(θ̂α − θ0), (13)

where Σα(θ0) = limn→∞Ψn(θ0)Ω−1
n (θ0)Ψn(θ0).

Theorem 4.2 The asymptotic distribution of the Wald-type test statistics W 0
n(θ0), de-

fined in (13), under the null hypothesis (12), is a chi-square distribution with p degrees of

freedom.

Based on Theorem 4.2, we shall reject the null hypothesis in (12) if

W 0
n(θ0) > χ2

p,ν , (14)

being χ2
p,ν the upper ν-th quantile of χ2

p.

Theorem 4.3 Let θ∗ be the true value of θ, with θ∗ 6= θ0, and let us denote

`(θ) = (θ − θ0)TΣ−1
α (θ − θ0)

and σ2
W 0

n(θ0)
(θ∗) = 4(θ∗ − θ0)T

[
Σ−1
α (θ0)Σα(θ∗)Σ−1

α (θ0)
]

(θ∗ − θ0). Then,

√
n
(
`(θ̂α)− `(θ∗)

)
L→

n→∞
N(0, σ2

W 0
n(θ0)

(θ∗)).

Corollary 4.4 Theorem 4.3, makes it possible to have an approximation of the power

function for the test given in (14). This is given by

πα
W 0

n(θ0)
(θ∗) = P (Rejecting H0|θ = θ∗) = P (W 0

n(θ0) > χ2
p,ν |θ = θ∗)

= P

(
`(θ̂α)− `(θ∗) >

χ2
p,ν

n
− `(θ∗)

)

= 1− Φn

( √
n

σW 0
n(θ0)(θ

∗)

(
χ2
p,ν

n
− `(θ∗)

))
,

where Φn(·) is a sequence of distribution functions which tends uniformly to the standard

normal distribution function Φ(·). We can observe that

lim
n→∞

πα
W 0

n(θ0)
(θ∗) = 1 ∀α ≥ 0,

so the Wald-type tests are consistent in the sense of Fraser.
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From here, it can be deduced that the necessary sample size for the Wald-type tests

to have a predetermined power, πα
W 0

n(θ0)
(θ∗) ≈ π∗, is given by

n =

[
A+B +

√
A(A+ 2B)

2`2(θ∗)

]
,

where A = σ2
W 0

n(θ0)
(θ∗)(Φ−1(1− π∗))2, and B = 2`(θ∗)χ2

p,ν .

4.2 Wald-type tests for composite null hypotheses

We may be also interested on testing a set of r < p redundant restrictions on the parameter

vector θ. In this context, we are interested in testing

H0 : MTθ = m against H1 : MTθ 6= m, (15)

where M is p× r full rank matrix with r < p and m is a r-vector.

Definition 4.5 Let θ̂α be the minimum RP estimator of θ. The family of proposed Wald-

type test statistics for testing the null hypothesis (15) is given by

W n(θ̂α) = n(MT θ̂α −m)T
[
MTΣα(θ̂α)M

]−1
(MT θ̂α −m). (16)

Theorem 4.6 The asymptotic distribution of the Wald-type test statistics W n(θ̂α), de-

fined in (16), under the null hypothesis (15), is a chi-square distribution with r degrees of

freedom.

Based on Theorem 4.6, we shall reject the null hypothesis in (15) if

W n(θ̂α) > χ2
r,ν . (17)

We could generalize our results to a more general restricted space Θ0 ⊂ Θ defined by

a set of r < p non-redundant restrictions of the form h(θ) = 0, by substituting the matrix

MTΣα(θ̂α)M by HTΣα(θ̂α)H with H = ∂h(θ)

∂θT
in (16). The asymptotic distribution

stated in Theorem 4.6 still holds.

4.3 Contiguous alternatives hypothesis

The previous results provides an asymptotic approximation to the power function of the

proposed Wald-type tests. We now consider the particular set of contiguous alternatives

hypothesis of the form

H1 : θn = θ0 + n−1/2d, (18)

where d is a fixed vector in Rp such that d ∈ Θ and θ0 is an element of Θ0. Note that the

alternative hypothesis move towards θ0 and it get closer when the sample size n increases.

Theorem 4.7 Under the contiguous alternative hypotheses given in (18), the asymptotic

distribution of the Wald-type test statistics, W n(θ̂α), defined in (15) is a non-central chi-

square distribution with r degrees of freedom and non-centrality parameter

δ = dTM [MTΣα(θ̂α)M ]−1MTd.
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5 Influence function analysis

In this section we shall obtain the influence function (IF) of the minimum RP functional for

the non-homogeneous case. We shall denote by Gi the true distribution function associated

to the observation Yi whose density function is denoted by gi and by T α(G1, . . . , Gn) the

minimum RP functional defined as the minimizer of

n∑
i=1

Hα,(i)
n =

1

n

n∑
i=1

{
1

1 + α
log

(∫
fi(y,θ)α+1dy

)
− 1

α
log

(∫
fi(y,θ)αdGi(y)

)}
(19)

or, fixed a value of α, under appropriate differentiability conditions, as the solution of the

system of equations obtained after differentiating (19) and equalling to zero

1

n

n∑
i=1

{∫
fi(y,θ)α+1ui(y,θ)gi(y)dy∫

fi(y,θ)α+1gi(y)dy
−
∫
fi(y,θ)αui(y,θ)gi(y)dy∫

fi(y,θ)αgi(y)dy

}
= 0p. (20)

By ui(y,θ) we are denoting

ui(y,θ) =
∂ log(fi(y,θ))

∂θ

and by

gi,ε = (1− ε)gi + ε∆ti , i = 1, . . . , n

the contaminated density where ∆ti is the degenerated distribution at point ti.

Let θ = T α(G1, . . . , Gn) and we denote by

θi0ε = T α(G1, . . . , Gi0−1, Gi0,ε, Gi0+1, . . . , Gn)

the minimum Renyi pseudodistance functional with contamination only in the i0-th direc-

tion, where Gi0,ε is the distribution function associated to the denisty function

gi0,ε(y) = (1− ε)fi(y,θ) + ε∆i0(y)

and

gi(y) =

{
fi(y,θ) if i 6= i0;

(1− ε)fi(y,θ) + ε∆i0 if i = i0.

It is also possible to contaminate in all the directions and in this case we shall denote

by

θε = T α(G1,ε, . . . Gn,ε)

the minimum RP functional with contamination in all directions.

In the following theorem we present the expressions of the IF. See Appendix A.7 for

details.
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Theorem 5.1 The influence function in the i0-th direction is given by

IF (ti0 ,T α, G1, . . . , Gn) = (Mn,α(θ))−1 −`i0,α(θ)(∫
fi0(y,θ)αgi0(y)dy

)2 ,
where

`i0,α(θ) = fi0(y,θ)

∫
fi0(y,θ)α+1ui0(y,θ)dy − fi0(y,θ)ui0(y,θ)

∫
fi0(y,θ)α+1dy,

Mn,α(θ) =
1

n

n∑
i=1

[
Ai,α(θ)(∫

fi(y,θ)1+αdy
)2 − A∗i,α(θ)(∫

fi(y,θ)αgi(y)dy
)2
]
, (21)

and

Ai,α(θ) =

[
(1 + α)

∫
fi(y,θ)α+1uTi (y,θ)ui(y,θ)dy +

∫
fi(y,θ)α+1 ∂ui(y,θ)

∂θ
dy

] ∫
fi(y,θ)α+1dy

− (1 + α)

(∫
fi(y,θ)α+1ui(y,θ)dy

)(∫
fi(y,θ)α+1ui(y,θ)dy

)T
,

A∗
i,α(θ) =

[
α

∫
fi(y,θ)αgi(y)uTi (y,θ)ui(y,θ)dy +

∫
fi(y,θ)αgi(y)

∂ui(y,θ)

∂θ
dy

] ∫
fi(y,θ)αgi(y)dy

− α
(∫

fi(y,θ)αgi(y)ui(y,θ)dy

)(∫
fi(y,θ)αgi(y)ui(y,θ)dy

)T
.

Similarly, the influence function in all directions is given by

IF (t1, . . . , tn,T α, G1, . . . , Gn) = (Mn,α(θ))−1
n∑
i=1

−`i,α(θ)(∫
fi(y,θ)αgi(y)dy

)2 .
Remark 5.2 When the true distribution gi belongs to the model so that gi(y) = fi(y,θ)

for i = 1, . . . , n, then Mn,α(θ) given in (21) coincides with Ψn(θ) given in (8) and

IF (ti0 ,T α, F1,θ, . . . , Fn,θ) = Ψ−1
n (θ)Di0,α(θ),

IF (t1, . . . , tn,T α, F1,θ, . . . , Fn,θ) = Ψ−1
n (θ)

n∑
i=1

Di,α(θ),

with Di,α(θ) =
−`i,α(θ)(∫

fi(y,θ)α+1dy
)2 .

Remark 5.3 In particular, letting ti = t, Gi = G, fi(y,θ) = f(y,θ) for i = 1, . . . , n (this

situation corresponds to the case of independent and identically distributed, i.i.d., random

variables) and g(y) = f(y,θ), we have

IF (t,T α, G) = (Mα(θ))−1 [f(y,θ)αu(y,θ)− cα(θ)f(y,θ)α] ,

where

cα(θ) =

∫
f(y,θ)α+1u(y,θ)dy∫

f(y,θ)α+1dy

and

Mα(θ) =
1∫

f(y,θ)α+1dy

[∫
f(y,θ)α+1dy

∫
f(y,θ)α+1u(y,θ)uT (y,θ)dy

−
(∫

f(y,θ)α+1u(y,θ)dy

)(∫
f(y,θ)α+1u(y,θ)dy

)T]
,

as in [9].
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5.1 Influence function of the Wald-type test statistics

Once we have computed the IF for the minimum RP estimators, we can define and study

the IF for the Wald-type test statistics. First, we define the associated statistical func-

tional, evaluated at G1, . . . , Gn as

W 0
α(G1, . . . , Gn) = (T α(G1, . . . , Gn)− θ0)TΣ−1

α (θ0)(T α(G1, . . . , Gn)− θ0), (22)

corresponding to (12) for the simple null hypothesis. Let us consider first the contam-

ination only in one direction, say i0-th direction. The corresponding IF is then defined

as

IF (ti0 ,W
0
α, G1, . . . , Gn) =

∂

∂ε
W 0
α(G1, . . . , Gi0−1, Gi0,ε, Gi0+1, . . . , Gn)

∣∣
ε=0

(23)

= 2T α(G1, . . . , Gn)− θ0)TΣ−1
α (θ0)IF (ti0 ,T α, G1, . . . , Gn).

However, if we evaluate (23) at the null distribution Gi = Fi,θ0 , it becomes identically

zero. Therefore, it becomes necessary to consider the second order IF of the proposed

Wald-type test functional

IF (2)(ti0 ,W
0
α, G1, . . . , Gn) =

∂2

∂2ε
W 0
α(G1, . . . , Gi0−1, Gi0,ε, Gi0+1, . . . , Gn)

∣∣
ε=0

= 2IF (ti0 ,T α, G1, . . . , Gn)Σ−1
α (θ0)IF (ti0 ,T α, G1, . . . , Gn).

Similarly, we can consider contamination in all directions, obtaining that the second or-

der influence function of the proposed Wald-type tests functional for testing simple null

hypothesis is given by

IF (2)(t1, . . . , tn,W
0
α, G1, . . . , Gn)

=
∂2

∂2ε
W 0
α(G1, . . . , Gi0−1, Gi0,ε, Gi0+1, . . . , Gn)

∣∣
ε=0

= 2IF (t1, . . . , tn,T α, G1, . . . , Gn)Σ−1
α (θ0)IF (t1, . . . , tn,T α, G1, . . . , Gn).

Remark 5.4 When the true distribution belongs to the model, then the second order influ-

ence functions of the proposed Wald-type tests functional for testing simple null hypothesis

in (12) are given by

IF (2)(ti0 ,Wα, F1,θ0 , . . . , Fn,θ0)

= 2
[
Di0,α(θ0)

]T [
Ψ−1
n (θ0)Σ−1

α (θ0)Ψ−1
n (θ0)

] [
Di0,α(θ0)

]
,

IF (2)(t1, . . . .tn,Wα, F1,θ0 , . . . , Fn,θ0)

= 2

[
n∑
i=1

Di,α(θ0)

]T [
Ψ−1
n (θ0)Σ−1

α (θ0)Ψ−1
n (θ0)

] [ n∑
i=1

Di,α(θ0)

]
.

Remark 5.5 In a similar manner, when the true distribution belongs to the model, the

second order influence functions of the proposed Wald-type tests functionals for testing
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composite null hypothesis in (15) are given by

IF (2)(ti0 ,W
0
α, F1,θ0 , . . . , Fn,θ0)

= 2
[
Ψ−1
n (θ0)Di0,α(θ0)

]T
M
[
MTΣα(θ0)M

]−1
MT

[
Ψ−1
n (θ0)Di0,α(θ0)

]
,

IF (2)(t1, . . . .tn,W
0
α, F1,θ0 , . . . , Fn,θ0)

= 2

[
Ψ−1
n (θ0)

n∑
i=1

Di0,α(θ0)

]T
M
[
MTΣα(θ0)M

]−1
MT

[
Ψ−1
n (θ0)

n∑
i=1

Di0,α(θ0)

]
.

6 Multiple linear regression model

Consider the MLRM

Yi = XT
i β + εi, i = 1, . . . , n, (24)

where the errors ε′is are i.i.d. normal random variables with mean zero and variance

σ2, XT
i = (Xi1, ..., Xip) is the vector of independent variables corresponding to the i-th

condition and β = (β1, ..., βp)
T is the vector of regression coefficients to be estimated.

We will consider that, for each i, Xi is fixed, yielding to independent but not identically

distributed Y ′i s (i.n.i.d.o.), with Yi ∼ N (XT
i β, σ

2). Under the previous notation, with

fi ≡ N (XT
i β, σ

2), we have, for α > 0,

Vi(Yi;θ,Xi) =

1
(2π)α/2σα

exp
(
−α(Yi−XT

i β)2

2σ2

)
(
(2π)α/2σα

√
1 + α

)− α
α+1

=

(
1 + α

2π

) α
2(α+1)

σ−
α
α+1 exp

(
−α

2

(
Yi −XT

i β

σ

)2
)
.

Thus, our objective function to be minimized becomes

1

n

n∑
i=1

Vi(Yi;θ,Xi) =

(
1 + α

2π

) α
2(α+1) 1

n

n∑
i=1

σ−
α
α+1 exp

(
−α

2

(
Yi −XT

i β

σ

)2
)
.

Taking into account that the term
(

1+α
2π

) α
2(α+1) does not depend on the model parameters,

we have that, for α > 0

(
β̂α, σ̂α

)
= arg max

β,σ

n∑
i=1
σ−

α
α+1 exp

(
−α

2

(
Yi −XT

i β

σ

)2
)
. (25)

Derivating with respect to β and σ we see that the estimators β̂α and σ̂α are solutions of

the system
n∑
i=1

exp

(
−α

2

(
Yi−XT

i β
σ

)2
)(

Yi−XT
i β

σ

)
Xi = 0p

n∑
i=1

exp

(
−α

2

(
Yi−XT

i β
σ

)2
){(

Yi−XT
i β

σ

)2
− 1

1+α

}
= 0

, (26)

which is exactly the same as the one suggested by Castilla et al. (2020) for the case of

homogeneous data. If α = 0, we have
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(
β̂α=0, σ̂α=0

)
= arg max

β,σ

1

(2πσ2)n/2
exp

(
−
‖Y − Xβ‖22

2σ2

)
(27)

and we get the system necessary to get the MLE of β and σ, whose well-known solution

is given by

β̂0 = (XTX)−1XTY and σ̂2
0 =

1

n

n∑
i=1

(
Yi −XT

i β̂0

)2
,

where XT = (X1, . . . ,Xn)p×n is the matrix of explanatory variables.

Lemma 6.1 Consider the set-up of the MLRM with i.n.i.d.o. defined in (24) and assume

that the true data generating density belongs to the model family. If the following mild

conditions about the explanatory variables hold

M1. The values of the explanatory variables are such that, for all j, k and l

sup max
n>1 1≤i≤n

|Xij | = O(1), and sup max
n>1 1≤i≤n

|XijXij | = O(1)

and
1

n

n∑
i=1

|xijxikxil| = O(1).

M2. The matrix XT satisfies

inf
n

[
min eigenvalue of

1

n
XTX

]
> 0,

n× max
1≤i≤n

[
XT

i (XTX)−1Xi

]
= O(1),

then C1.–C7. are satisfied.

On the other hand, after some heavy computations we follow that expressions (8) and

(9) are given by

Ψn =

[ −1
σ2(α+1)3/2

(
1
n

∑n
i=1XiX

T
i

)
0

0 −2
σ2(α+1)5/2

]
, (28)

and

Ωn =

( 1
n

∑n
i=1XiX

T
i )

(2α+1)3/2
0

0 (3α2+4α+2)

σ2(α+1)2(2α+1)5/2

 . (29)

Theorem 6.2 Consider the set-up of the MLRM with i.n.i.d.o. defined in (24) and as-

sume that the true data generating density belongs to the model family and the observed

explanatory variables satisfy conditions M1. and M2.. Then,

1. There exists a consistent sequence as θ̂α = (β̂α, σ̂α) of solutions to the minimum

Rényi estimating equations (26).
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2. β̂α and σ̂α are asymptotically independent and their asymptotic distribution is given

by

√
n
(
θ̂α − θ∗

)
L→

n→∞
N(0,Σα),

with

Σα = lim
n→∞

Σn,

Σn =

 σ2(α+1)3

(2α+1)3/2

(
1
n

∑n
i=1XiX

T
i

)−1
0

0 σ2(α+1)3(3α2+4α+2)

4(2α+1)5/2

 .
We could now apply the theory stated to test any simple or composite hypothesis on the

linear regression parameters. The asymptotic distribution under the null hypothesis of the

Wald type tests defined in (16) is given in Theorem 6.2 and the asymptotic distribution of

the Wald-type test statistics under contiguous alternative hypothesis is given in Theorem

4.7. The non-centrality parameter in Theorem 4.7 can be expressed as

δ = d∗T [MTΣnM ]−1d∗,

with d∗ = MTd. If we consider the composite null hypothesis (15), then

δ =
(2α+ 1)3/2

σ(α+ 1)3
d∗T [MT

(
1

n

n∑
i=1

XiX
T
i

)
M ]−1d∗.

Now, based on Remark 5.2 we can obtain the IF of the functional associated to the

minimum RP estimator of θ. These are given by

IF (ti0 ,T α, F1,θ, . . . , Fn,θ) = Ψ−1
n (θ)

(
DT
i0,α(β),Di0,α(σ)

)T
,

IF (2)(ti0 ,Wα, F1,θ, . . . , Fn,θ) = 2
(
DT
i0,α(β),Di0,α(σ)

) [
Ψ−1
n (θ)Σ−1

n (θ)Ψ−1
n (θ)

]
×
(
DT
i0,α(β),Di0,α(σ)

)T
,

IF (2)(ti0 ,W
0
α, F1,θ, . . . , Fn,θ) = 2

[
Ψ−1
n (θ)

(
DT
i0,α(β),Di0,α(σ)

)T ]T
M
[
MTΣn(θ)M

]−1

×MT
[
Ψ−1
n (θ)

(
DT
i0,α(β),Di0,α(σ)

)]
,

with

Di0,α(β) =
−1

σ
exp

−α
2

(
ti0 − xTi0β

σ

)2
( ti0 − xTi0β

σ

)
xi0 ,

Di0,α(σ) =
−1

σ2
exp

−α
2

(
ti0 − xTi0β

σ

)2
( ti0 − xTi0β

σ

)2

− 1

α+ 1

 .
Note that, since Ψn(θ) and Σn(θ) are diagonal matrices, we could express separately the

IF of the functional T α(β) and T α(σ) associated to the minimum RP estimator, β̂α and

σ̂α respectively. Following [14], we consider two different fixed design matrices for the

univariate lineal regression model:

13



Design 1 Two-points design.We fix xi = (1, xi1)T , with xi1 = a, i = 1, .., n/2 and xi1 =

b, i = n/2 + 1, .., n.

Design 2 Fixed-Normal design. We fix xi = (1, xi1)T , where xi1, i = 1, ..., n are prefixed

independent and identically distributed observations from a N (µx = 0, σx = 1).

Figure 2 presents the `2-norm of the first order IF of the minimum RP estimator and

second order IF of Wald type test estimators for testing (12) with θ0 = (1, 1, 1)T with

both fixed designs and contamination in one direction for different values of α. Clearly,

the IF is bounded for positives values of the parameter α and is unbounded at the MLE,

highlighting it lack of robustness. Moreover, the supremum of the `2-norm of the IF

indicates the robustness of the estimator. Hence, we could study the optimal parameter

of α trough the gross error sensitivity function. We define the gross error sensitivity of

the functional T α considering contamination in the i0 direction as

γ∗(T α, F1,θ, . . . , Fn,θ) = supti0 {||IFi0(ti0 ,T α, F1,θ, . . . , Fn,θ)| |}. (30)

Considering separately the influence function of the functionals T α(β) and T α(σ), it is

easy to show that

γ∗(T α(β), F1,θ, . . . , Fn,θ) = σ
(α+ 1)3/2

α1/2
exp

(
−1

2

) ∣∣∣∣∣∣∣∣
(

1

n

n∑
i=1

XiX
T
i

)−1

xi0

∣∣∣∣∣∣∣∣,
γ∗(T α(σ), F1,θ, . . . , Fn,θ) =

(α+ 1)5/2

α
exp

(
− 3α+ 2

2(α+ 1)

)
.

(31)

Figure 1 represents the gross error sensitivity functions depending on the parameter α,

using Design 1 and fixing the true standard error σ = 1. The optimal value of α depends on

the functional, being α = 1/2 and α =
√

2/3 for T α(β) and T α(σ) respectively. Therefore,

a global optimal value of α, in terms of robustness, should varies between values α = 0.5

to α = 0.82 if the true standard error is σ = 1.

Finally, we study the Asymptotic Relative Efficiency (ARE) of the proposed minimum

RP estimators with respect to the MLE, which is B.A.N. (Best Asymptotically Normal).

The ARE of is computed as the ratio of their asymptotic variances. Note that this ratio

does not depend on the regression parameters, but is only determined by α.

ARE(β̂α) =
(2α+ 1)3/2

(α+ 1)3
,

ARE(σ̂α) =
2(2α+ 1)5/2

(α+ 1)3(3α2 + 4α+ 2)
.

(32)

Table 1 represents the ARE of the minimum RP estimator, (β̂α, σ̂α). As shown, the

increment of α leads to an efficiency loss, which is heightened for the standard error

estimator. Therefore, to ensure sufficing efficiency, the parameter α should be chosen from

low values. However, the efficiency reduction might worth in contrast with the robustness

advantage. In view of the error sensitivity function study, values above α = 0.82 are not

advocated.
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Figure 1: Gross error function for T α(β) (left) and T α(σ) (right).

Table 1: ARE of the minimum RP estimator with respect to the MLE for the multiple

linear regression model for different values of α.

α 0 0.1 0.2 0.3 0.4 0.5 0.8 1 1.5

ARE(β̂α) (×100) 100.00 98.76 95.86 92.12 88.01 83.81 71.89 64.95 51.20 1

ARE(σ̂α) (×100) 100.00 97.54 91.92 84.95 77.65 70.57 52.50 43.30 27.77

7 Numerical results

We empirically evaluate the performance of the proposed Wald-type test statistics based

on minimum RP estimator for MLRM through an extensive simulation study. We consider

the univariate regression model with fixed design matrix

yi = β0 + β1x1i + εi, i = 1, .., n

and the two different design matrices presented in Section 6. We generate the response

variable from the linear regression model (24) with regression parameters β0 = (1, 1) and

σ0 = 1. To introduce contamination on the data, we swap the true regression vector

to β0 = (1.5, 2) for a 10% of the sample size. We analyse the performance of Wald-

type tests for simple null hypothesis on both regression parameters, β and σ, at different

values of the tuning parameter α. Note that, for the proposed design matrices, the matrix
1
n

∑n
i=1XiX

T
i is finitely defined and is positive definite.

We consider two different null hypotheses

H0 : β1 = 1, (33)

H0 : σ = 1, (34)

corresponding with the composite null hypothesis

H0 : MTβ = m,

15



−6 −4 −2 0 2 4 6

0
2

4
6

8

ti0

IF
(T

α)

●

α
0
0.3
0.5
0.7
1

−6 −4 −2 0 2 4 6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

ti0

IF
(T

α)

●

α
0
0.3
0.5
0.7
1

−6 −4 −2 0 2 4 6

0
5

10
15

20

ti0

IF
2 (W

α)

●

α
0
0.3
0.5
0.7
1

−6 −4 −2 0 2 4 6

0
5

10
15

20

ti0

IF
2 (W

α)

●

α
0
0.3
0.5
0.7
1

Figure 2: `2-norm of the first order IF of the minimum RP estimator (top) and second

order IF of Wald type test estimators for testing (12) with θ0 = (1, 1, 1)T (bottom) with

fixed Design 1 (left) and Design 2 (right), and contamination in the direction i0 = 1.
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with

Mβ1 = [0, 1, 0] and mβ1 = 1,

Mσ = [0, 0, 1] and mσ = 1,

respectively. The Wald-type test statistics for testing (33)-(34), which we will denote

Wn(β̂1α) and Wn(σ̂α), are given in (16) by substituting the corresponding matrices. So

as to investigate the trade-off between efficiency and robustness depending on the tuning

parameter α, we compute the empirical levels for the proposed Wald-type tests and powers

when the true parameter values are β0
1 = 0.45 and σ0 = 0.8, respectively. These levels

and powers are computed as the number of times that the null hypothesis is rejected over

the total simulated samples R = 1000. Figures 3-6 contain the root mean square error

(RMSE), empirical level and power results for the null hypothesis tests (33) and (34), for

a 5% significance level. The results show the clear improvement in robustness when α

increases, in detriment to the efficiency. The MLE produces the best performance with

pure data, showing its major efficiency, and the behaviour of the minimum RP estimator

improves when α decreases, i.e., estimators based in low values of the parameter enjoy

greater efficiency. However, in presence of data contamination, the RMSE and empirical

level of the Wald-type test statistics rise for low values of α, highlighting its lack of

robustness. The most revealing setting is Design 1, at which the empirical level and power

of the Wald-type tests based on the MLE reaches their worst results, but the proposed

Wald-type test based on RP loss statistics continues to perform adequately for sufficiently

high values of α.

For the first hypothesis test (33), we could apply Theorem 4.7 to obtain the power

under the contiguous alternative hypothesis (18). The distribution of the Wald-type tests

Wn(β̂1) is given by a chi-squared with 1 degree of freedom and non-centrality parameter

δ =
σ(α+ 1)3

(2α+ 1)3/2
d∗T

(
1

n

n∑
i=1

X2
1i

)−1

d∗,

depending on the standard deviation error σ, the tuning parameter α and the fixed value

dx = d∗T
(

1
n

∑n
i=1X

2
1i

)−1
d∗. The choice dx = 0 corresponds with the level of the test.

Table 2 summarizes the empirical power results over different values of α and dx, with

σ = 1.

Table 2: Empirical power values of the null hypothesis (33) under contiguous hypothesis.

dx

α 0 2 5 10 15 20 25 30

0 0.05 0.28 0.59 0.88 0.97 0.99 1.00 1.00

0.2 0.05 0.27 0.58 0.86 0.97 0.99 1.00 1.00

0.5 0.05 0.25 0.52 0.81 0.94 0.98 1.00 1.00

0.8 0.05 0.22 0.44 0.75 0.90 0.97 0.99 1.00

1 0.05 0.21 0.41 0.71 0.87 0.95 0.98 0.99

1.5 0.05 0.17 0.35 0.60 0.78 0.89 0.95 0.97
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Figure 3: RMSE (top) empirical level (middle) and empirical power(bottom) against sam-

ple size for the null hypothesis (33) (left) and (34) (right) for the corresponding Wald type

tests with pure data and Design 1.
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Figure 4: RMSE (top) empirical level (middle) and empirical power(bottom) against sam-

ple size for the null hypothesis (33) (left) and (34) (right) for the corresponding Wald-type

tests with 10% of outliers and Design 2.
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Figure 5: RMSE (top) empirical level (middle) and empirical power(bottom) against sam-

ple size for the null hypothesis (33) (left) and (34) (right) for the corresponding Wald-type

tests with pure data and Design 2.
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Figure 6: RMSE (top) empirical level (middle) and empirical power(bottom) against sam-

ple size for the null hypothesis (33) (left) and (34) (right) for the corresponding Wald-type

tests with 10% of outliers and Design 2.
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Note that greater values of dx produces greater power values as expected, and empirical

power decreases with α. However, the efficiency loss is not very significant in comparison

to the robustness advantage.

8 Real Data examples

8.1 Brain and Weight Data

These data, adapted from a larger data set in [18], were presented in Rousseeuw and

Leroy ([19], pp. 57) as an example of the unrobustness of the classical MLE in simple

linear regression. In this sample, the body weight (in kilograms) and the brain weight

(in grams) of n = 28 animals are compared, to investigate if a larger brain is required to

govern a heavier body. As suggested in in [19], a transformation should be done to clearly

represent either the larger or smaller measurements. In this case, we take the Napierian

logarithm of both brain and body weights. Observations 6, 16 and 25, those corresponding

to dinosaurs, posses an unusual small brain as compared with a heavy body, which clearly

affects to the slope of the classical estimation method (α = 0) as can be seen in Figure 7

and Table 3. The estimates of the regression coefficients and the error variance obtained

from the minimum RP estimation for various α are also presented here, observing how

the estimation based on α > 0 is more robust to the presence of these outliers.
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Figure 7: Plots of the data-points and fitted regression lines for the Brain and Weight

Data using several minimum RP estimators before and after deleting the outliers.
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Table 3: The parameter estimates of the linear regression model for the Brain and Weight

Data using several minimum RP estimators.

With outliers Without outliers

α σ β0 β1 σ β0 β1

0 1.4714 2.5523 0.4958 0.6962 2.1504 0.7522

0.2 0.6410 2.0617 0.7509 0.6309 2.0580 0.7519

0.4 0.4929 1.9378 0.7560 0.4929 1.9378 0.7560

0.6 0.4092 1.8616 0.7634 0.4092 1.8616 0.7634

0.8 0.3640 1.8265 0.7694 0.3640 1.8265 0.7694

1 0.3378 1.8142 0.7731 0.3378 1.8142 0.7731

In order to compare the performance of the Wald-type test with different values of the

tunning parameter α, we consider the following tests

H0 : β0 = 1.98, (35)

H0 : β1 = 0.73, (36)

H0 : (β0, β1) = (1.98, 0.73), (37)

where the values 1.98 and 0.73 are respectively the mean value of the estimated coefficients

β0 and β1 with the different values of α and using the original data (with outliers) listed

in Table 3. Table 8.1 shows the p-values obtained by using the corresponding Wald-type

test statistics, Wn(β̂0), Wn(β̂1) and Wn(β̂).

Table 4: p-value obtained for the tests (35)-(37) using the corresponding Wald-type test

statistics.
With outliers Without outliers

α Wn(β̂0) Wn(β̂1) Wn(β̂) Wn(β̂0) Wn(β̂1) Wn(β̂)

0 0.080 0.000 0.000 0.452 0.542 0.072

0.2 0.713 0.556 0.204 0.723 0.537 0.197

0.4 0.833 0.437 0.358 0.833 0.437 0.358

0.6 0.539 0.310 0.305 0.539 0.310 0.305

0.8 0.423 0.236 0.235 0.423 0.236 0.235

1 0.393 0.203 0.203 0.393 0.203 0.203

As shown, the robustness of the test increases with α, showing the robustness improve-

ment of the proposed Wald-type test statistics. Note that the major difference between

the p-value using clean data and data with outliers is obtained with the value α = 0

corresponding to the classical MLE.

8.2 First Word Data

These data, originally presented in Mickey et al. [20], consist on n = 21 observations and

relate the age in which children speak their first word to their Gesell adaptative score,

a meassure of mental ability. By means of a sequential approach to detect outliers via
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stepwise regression, [20] concluded that observation 18 was an outlier. While estimates of

the regression coefficients obtained with the MLE do not change excesively when omitting

this outlier (Figure 8), we do observe a greater change in the error variance estimation

(Table 5). As expected, minimum RP estimates for α > 0 remain more robust.
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Figure 8: Plots of the data-points and fitted regression lines for the First Word Data using

several minimum RP estimators before and after deleting the outliers.

Table 5: The parameter estimates of the linear regression model for the First Word Data

using several minimum RP estimators.

With outliers Without outliers

α σ β0 β1 σ β0 β1

0 10.4845 109.8730 -1.1269 8.1976 109.2816 -1.1916

0.2 9.7860 110.2068 -1.1897 8.5501 110.0225 -1.2183

0.4 9.2980 110.8118 -1.2338 8.7780 110.8276 -1.2451

0.6 9.0319 111.7370 -1.2710 8.8019 111.8168 -1.2767

0.8 8.3349 113.4011 -1.3246 8.1972 113.5345 -1.3292

1 4.4187 116.6086 -1.4065 4.4187 116.6086 -1.4065

As in the previous example, we consider the following tests

H0 : β0 = 112.56, (38)

H0 : β1 = −1.28, (39)

H0 : (β0, β1) = (112.56,−1.28), (40)
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where the values 112.56 and 0.73 are respectively the mean value of the estimated coeffi-

cients β0 and β1 with the different values of α and using the original data (with outliers)

listed in Table 5. Table 8.2 shows the p-values obtained by using the corresponding Wald-

type test statistics, Wn(β̂0), Wn(β̂1) and Wn(β̂).

Table 6: p-value obtained for the tests (38)-(40) using the corresponding Wald-type test

statistics.
With outliers Without outliers

α Wn(β̂0) Wn(β̂1) Wn(β̂) Wn(β̂0) Wn(β̂1) Wn(β̂)

0 0.072 0.098 0.071 0.013 0.293 0.001

0.2 0.110 0.331 0.065 0.065 0.485 0.007

0.4 0.243 0.636 0.098 0.234 0.719 0.061

0.6 0.596 0.949 0.318 0.628 0.997 0.311

0.8 0.590 0.620 0.588 0.529 0.583 0.529

1 0.001 0.078 0.000 0.001 0.078 0.000

The results highlight again the gain in robustness.

9 Concluding remarks

In this paper we have presented the minimum RP estimators for the case of i.n.i.d.o. Wald-

type tests based on them are also developed. Classical MLE and Wald-test are obtained

as a particular case of these new estimators and tests. In particular, we have studied the

case of MLRM. Through the study of the influence functions and the development of an

extensive simulation study we prove their robustness from a theoretical and practical point

of view, respectively. Application to different models is a problem that will be of interest

for further consideration.

Acknowledgements: This research is supported by the Spanish Grants no. PGC2018-

095194-B-100, no. FPU19/01824 and no. FPU16/03104.

A Proof of Results

A.1 Proof of Theorem 3.1

The proof follows similar steps that the proof presented in [12] for the minimum DPD

estimators for i.n.i.d.o and the proof presented in [17] for the MLE with i.n.i.d.o.

To prove the existence, with probability tending to 1, of a consistent sequence of

solutions of the system of equations (10), we study the behaviour of the objective function

in (6), Hα
n (θ), on a neighbourhood of the true parameter value. We consider the sphere

Qa with center at the true value of the parameter θ∗ and radius a. We will show that for

any sufficiently small a

Hα
n (θ) < Hα

n (θ0)
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with probability tending to 1 at all points θ on the surface of Qa. This inequality ensures

that the objective function Hα
n (θ) has a local maximum in the interior of Qa. Since

Hα
n (θ) is differentiable the system of equations (10) must be satisfied at a local maximum.

Therefore, for any a > 0, the system of equations (10) has a solution θ̂n(a) within Qa

verifying

lim
n→∞

Pθ∗
(∥∥∥θ̂n(a)− θ∗

∥∥∥) = 1.

We consider a Taylor series expansion of Hα
n (θ) around θ0 =

(
θ1

0, ..., θ
p
0

)
,

Hα
n (θ)−Hα

n (θ∗) =
p∑
j=1

(
∂Hα

n (θ)

∂θj

)
θ=θ0

(
θj − θ0

j

)
(41)

+
1

2

p∑
j=1

p∑
k=1

(
∂2Hα

n (θ)

∂θj∂θk

)
θ=θ0

(
θj − θ0

j

) (
θk − θ0

k

)
+

1

6

p∑
j=1

p∑
k=1

p∑
l=1

(
∂3Hα

n (θ)

∂θj∂θk∂θl

)
θ=θ∗

(
θj − θ0

j

) (
θk − θ0

k

) (
θl − θ0

l

)
=

p∑
j=1

1

n

n∑
i=1

(
∂Vi(Yi;θ)

∂θj

)
θ=θ0

(
θj − θ0

j

)
+

1

2

p∑
j=1

p∑
k=1

1

n

n∑
i=1

(
∂2Vi(Yi;θ)

∂θj∂θk

)
θ=θ0

(
θj − θ0

j

) (
θk − θ0

k

)
+

1

6

p∑
j=1

p∑
k=1

p∑
l=1

1

n

n∑
i=1

(
∂3Vi(Yi;θ)

∂θj∂θk∂θl

)
θ=θ∗

(
θj − θ0

j

) (
θk − θ0

k

) (
θl − θ0

l

)
= L1 + L2 + L3,

where θ∗ belong to the interior of the ball centred on θ∗ and radius a. We study separately

right-hand terms L1, L2 and L3 in (41).

Using assumption C6., we have that

A
(n
j =

(
∂Hα

n (θ)

∂θj

)
θ=θ0

=
1

n

n∑
i=1

(
∂Vi(Yi;θ)

∂θj

)
θ=θ0

P→ 1

n

n∑
i=1
Eθ∗

[(
∂Vi(Y ;θ)

∂θj

)
θ=θ0

]
= 0.

We are going to establish the last equality,

∂Vi(Yi;θ)

∂θj
=

1

Liα (θ)2

(
αfi(Y,θ)αuj(Y,θ)Liα (θ)− ∂Liα (θ)

∂θj
fi(Y,θ)α

)
.

with uj(y,θ) = ∂ log(fi(Y,θ))
∂θj

. But

∂Liα (θ)

∂θj
=

α

α+ 1

(∫
fi(y,θ)α+1dy

) α
α+1
−1

(α+ 1)

∫
fi(y,θ)α+1uj(y,θ)dy

= α

(∫
fi(y,θ)α+1dy

) α
α+1
−1 ∫

fi(y,θ)α+1uj(y,θ)dy.

Therefore,

Liα (θ)2 ∂Vi(Y ;θ)

∂θj
= αfi(Y,θ)αuj(Y,θ)Liα (θ)[
α

(∫
fi(y,θ)α+1dy

) α
α+1
−1 ∫

fi(y,θ)α+1uj(y,θ)dy

]
fi(Y,θ)α
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and

Eθ∗

[(
∂Vi(Yi;θ)

∂θj

)
θ=θ0

]
=

∫ (
αfi(y,θ

∗)αuj(y,θ
∗)Liα (θ0)

)
fi(y,θ

∗)dy

−
∫ [

α

(∫
fi(y,θ

∗)α+1dy

) α
α+1−1 ∫

fi(y,θ0)α+1uj(y,θ
∗)dy

]
fi(y,θ

∗)α+1dy

= 0.

On the other hand, we denote

B
(n
jk =

(
∂2Hα

n (θ)

∂θj∂θk

)
θ=θ0

,

and applying again condition C6., we obtain the convergence

B
(n
jk =

(
∂2Hα

n (θ)

∂θj∂θk

)
θ=θ0

=
1

n

n∑
i=1

(
∂2Vi(Yi;θ)

∂θj∂θk

)
θ=θ0

P→ 1

n

n∑
i=1

Eθ∗

[(
∂2Vi(Y ;θ)

∂θj∂θk

)
θ=θ0

]
= (−Ψn)jk .

Finally, applying condition C6. to the third derivative, we have(
∂3Hα

n (θ)

∂θj∂θk∂θl

)
θ=θ∗

=
1

n

n∑
i=1

(
∂3Vi(Yi;θ)

∂θj∂θk∂θl

)
θ=θ∗

P→ 1

n

n∑
i=1
Eθ∗

[(
∂3Vi(Y ;θ)

∂θj∂θk∂θl

)
θ=θ∗

]
.

Assumption C5. ensures the existence of Mjkl, j, k, l = 1, .., p s.t.∣∣∣∣(∂3Vi(Yi;θ)

∂θj∂θk∂θl

)
θ=θ∗

∣∣∣∣ ≤M (i)
jkl (y) ,

and therefore there exists γ
(i)
jkl(y) verifying

0 ≤ |γjkl(y)| ≤ 1 (42)

in such a way that (
∂3Vi(Yi;θ)

∂θj∂θk∂θl

)
θ=θ∗

= M
(i)
jkl (Yi) γ

(i)
jkl(Yi).

and

Eθ∗

[
M

(i)
jkl (Yi)

]
= mjkl,

with ∣∣∣∣ 1n n∑
i=1
Eθ∗

[(
∂3Vi(Y ;θ)

∂θj∂θk∂θl

)
θ=θ∗

]∣∣∣∣ < mjkl.

The previous convergence provide that for all a and for all ε there exists n0 such that for

all n > n0 we have

P
(∣∣∣A(n

j

∣∣∣ > a2
)
< ε

p+p2+p3

P
(∣∣∣B(n

jk − (Ψn)jk

∣∣∣ ≥ a) < ε
p+p2+p3

P

(∣∣∣∣ 1
n

n∑
i=1

(
∂3Vi(Yi;θ)
∂θj∂θk∂θl

)
θ=θ∗

∣∣∣∣ ≥ 2mjkl

)
≤ ε

p+p2+p3
.
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We shall denote now by S∗ the event containing the p+ p2 + p3 inequalities,{∣∣∣A(n
j

∣∣∣ > a2;
∣∣∣B(n

jk − (−Ψn)jk

∣∣∣ ≥ a;

∣∣∣∣ 1n n∑
i=1

(
∂3Vi(Yi;θ)

∂θj∂θk∂θl

)
θ=θ•

∣∣∣∣ ≥ 2mjkl

}
.

It is clear that P (S∗) < ε and P ((S∗)C) ≥ 1− ε. In the following we denote S = (S∗)C .

We finally study the sign of Hα
n (θ)−Hα

n (θ∗) under the event S and for θ ∈ Qa.

Since θ ∈ Qa in S holds

|L1| =

∣∣∣∣∣ 1n p∑
j=1

n∑
i=1

(
∂Vi(Yi;θ)

∂θj

)
θ=θ0

(
θj − θ0

j

)∣∣∣∣∣ ≤ p a a2 (43)

and ∣∣∣∣∣12 p∑
j=1

p∑
k=1

{(
B

(n
jk − (−Ψn)jk

)} (
θj − θ0

j

) (
θk − θ0

k

)∣∣∣∣∣ ≤ 1

2
p2 a2 a.

We now consider the negative quadratic form

A = −1

2

p∑
j=1

p∑
k=1

(
θj − θ0

j

) (
θk − θ0

k

) 1

n

n∑
i=1
Eθ∗

[(
∂2Vi(Y ;θ)

∂θj∂θk

)
θ=θ0

]
.

An orthogonal transformation can reduce the quadratic form A to its diagonal form A =
p∑
i=1
λiξ

2
i with

p∑
i=1
ξ2
i =

p∑
i=1

(θi − θpi )
2

= a2. Shorting the negatives eigenvalues λi we get

p∑
i=1
λiξ

2
i ≤ −λ0a

2 < 0.

A study of the sign of the function 1
2p

2a3 − λ0a
2 proves that we can find c > 0, a0 > 0 so

that for a < a0

|L2| =

∣∣∣∣∣12 p∑
j=1

p∑
k=1

{(
B

(n
jk − (−Ψn)jk

)}(
θj − θpj

) (
θk − θpk

)
+

1

2

p∑
j=1

p∑
k=1

(
θj − θpj

) (
θk − θpk

)
(−Ψn)jk

∣∣∣∣∣ < −ca2.

Lastly,

|L3| =

∣∣∣∣∣16 p∑
j=1

p∑
k=1

p∑
l=1

1

n

n∑
i=1

(
∂3Vi(Yi;θ)

∂θj∂θk∂θl

)
θ=θ•

(
θj − θpj

) (
θk − θpk

) (
θl − θpl

)∣∣∣∣∣
<

2

6

p∑
j=1

p∑
k=1

p∑
l=1

mjkla
3 = a3b,

being

b =
2

6

p∑
j=1

p∑
k=1

p∑
l=1

mjkl.

Therefore,

Hα
n (θ)−Hα

n (θ0) < pa3 − ca2 + ba3
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and pa3 − ca2 + ba3 < 0 if and only if a < c
b+p . Therefore assuming a < c

b+p we get that

in the event S

Hα
n (θ)−Hα

n (θ0) < 0 ∀θ ∈ Qa.

Thus the event C involving all θ ∈ Qa s.t. Hα
n (θ) − Hα

n (θ∗ < 0, is contained in S, i.e.

P (C) ≥ P (S) > 1− ε. Choosing a lower than min
(
a0,

c
b+p

)
, we have

lim
n→∞

P (∀θ ∈ Qa/Hα
n (θ)−Hα

n (θ0) < 0) = 1.

Thus, there exists θ̂n(a) ∈ Qa, i,e.,
∥∥∥θ̂n(a)− θ0

∥∥∥ < a such that Hα
n (θ) has a local maxi-

mum in θ̂n(a), i.e.,

∀ a ≤ min

(
a0,

c

b+ p

)
,

we obtain the required convergence

lim
n→∞

P
(∥∥∥θ̂n(a)− θ∗

∥∥∥ < a
)

= 1.

A.2 Proof of Theorem 3.2

We denote

Hα
n,j(θ) =

∂Hα
n (θ)

∂θj

with Hα
n (θ) defined in (6). A Taylor expansion of Hα

n,j(θ) around θ∗, gives,

Hα
n,j(θ) =Hα

n,j(θ
∗) +

p∑
k=1

(
∂2Hα

n (θ)

∂θj∂θk

)
θ=θ0

(
θk − θ0

k

)
+

1

2

p∑
k=1

p∑
l=1

(
∂3Hα

n (θ)

∂θj∂θk∂θl

)
θ=θ∗

(
θk−θ

0
k

) (
θl − θ0

l

)
with θ∗ in the segment conecting θ and θ∗. It is clear that at the minimum RP estimator

the function Hα
n,j vanishes, Hα

n,j(θ̂α) = 0. Therefore,

Hα
n,j(θ

∗) =−
p∑

k=1

(
∂2Hα

n (θ)

∂θj∂θk

)
θ=θ0

(
θ̂α,k − θ0

k

)
− 1

2

p∑
k=1

p∑
l=1

(
∂3Hα

n (θ)

∂θj∂θk∂θl

)
θ=θ∗

(
θ̂α,k − θ0

k

)(
θ̂α,l − θ0

l

)
.

Using that

Hα
n,j(θ

∗) =
1

n

n∑
i=1

(
∂Vi(Y,θ)

∂θj

)
θ=θ0

,

it holds

1√
n

n∑
i=1

(
∂Vi(Y,θ)

∂θj

)
θ=θ0

=
√
n

p∑
k=1

(
θ̂α,k − θ0

k

){
−
(
∂2Hα

n (θ)

∂θj∂θk

)
θ=θ0

− 1

2

p∑
k=1

p∑
l=1

(
∂3Hα

n (θ)

∂θj∂θk∂θl

)
θ=θ∗

(
θ̂α,l − θ0

l

)}
.
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If we denote,

Zkn =
√
n

p∑
k=1

(
θ̂α,k − θ0

k

)
,

Ajkn = −
(
∂2Hα

n (θ)

∂θj∂θk

)
θ=θ0

− 1

2

p∑
k=1

p∑
l=1

(
∂3Hα

n (θ)

∂θj∂θk∂θl

)
θ=θ∗

(
θ̂α,l − θ0

l

)
,

Tjn =
1√
n

n∑
i=1

(
∂Vi(Y,θ)

∂θ

)
θ=θ0

,

we can write

Tjn =
p∑

k=1

AjknZkn.

Finally, we define the following vectors

Zn = (Z1n, ..., Zpn)T ,

T n = (T1n, ..., Tpn)T ,

An = (Ajkn)j=1,...,p;k=1,...,p.

It is clear that

T n = AnZn

=

(
1√
n

n∑
i=1

(
∂Vi(Y,θ)

∂θ1

)
θ=θ0

, ...,
1√
n

n∑
i=1

(
∂Vi(Y,θ)

∂θp

)
θ=θ0

)T
=

1√
n

n∑
i=1

(
∂Vi(Y,θ)

∂θ

)
θ=θ0

,

and it is a simple exercise to verify that Vi(Y,θ), i = 1, . . . , n, are independent with

Eθ∗

[(
∂Vi(Y,θ)

∂θ

)
θ=θ0

]
= 0

and

V arθ∗

[(
∂Vi(Y,θ)

∂θ

)
θ=θ0

]
<∞.

By Assumption C7. and applying the multivariate extension of Lindeberg-Levy central

limit theorem we get
√
nΩ
− 1

2
n T n

L→
n→∞

N(0p, Ip)

or equivalently
√
nΩ
− 1

2
n AnZn

L→
n→∞

N(0p, Ip).

By assumption C5., (
∂3Hα

n (θ)

∂θj∂θk∂θl

)
θ=θ∗

is bounded with probability tending to one. Therefore based on the consistency of θ̂α we

have that the second term of Ajkn converges to zero in probability. Moreover

−
(
∂2Hα

n (θ)

∂θj∂θk

)
θ=θ0

P→
n→∞

(Ψn)jk
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and hence

Ω
− 1

2
n (An −Ψn)Zn

P→
n→∞

0p.

Therefore,

Ω
− 1

2
n ΨnZn

L→
n→∞

N(0p, Ip)

and finally

Ω
− 1

2
n Ψn

(
θ̂α − θ∗

)
L→

n→∞
N(0p, Ip).

A.3 Proof of Theorem 4.2

We have by (11) that
√
n(θ̂α − θ∗)

L→
n→∞

N(0p,Σα(θ∗)),

where Σα(θ∗) = limn→∞Ψn(θ∗)Ω−1
n (θ∗)Ψn(θ∗). Therefore,

√
n(MT θ̂α −m)

L→
n→∞

N(0p,M
TΣα(θ∗)M).

As rank(M) = p, we have that

n(MT θ̂α −m)T (MTΣα(θ∗)M)−1(MT θ̂α −m)

converges in law to a chi-square distribution with p degrees of freedom. But under H0,

Σα(θ0) = Σα(θ∗), and thus W 0
n(θ0) converges to a chi-square distribution with p degrees

of freedom.

A.4 Proof of Theorem 4.3

A first-order Taylor expansion of `(θ) around θ∗ at θ̂α is given by

`θ̂α − `(θ∗) =
∂`(θ)

∂θT

∣∣∣∣
θ=θ∗

(θ̂α − θ∗) + op(n
−1/2).

Then the asymptotic distribution of the random variable
√
n(θ̂α−θ∗) matches the asymp-

totic distribution of the random variable ∂`(θ)

∂θT

∣∣∣
θ=θ∗

√
n(θ̂α − θ∗ and the result follows.

A.5 Proof of Theorem 4.6

We have by (11) that
√
n(θ̂α − θ∗)

L→
n→∞

N(0p,Σα(θ∗)),

where Σα(θ∗) = limn→∞Ψn(θ∗)Ω−1
n (θ∗)Ψn(θ∗). Therefore,

√
n(MT θ̂α −m)

L→
n→∞

N(0p,M
TΣα(θ∗)M).

As rank(M) = r, we have that

n(MT θ̂α −m)T (MTΣα(θ∗)M)−1(MT θ̂α −m)

converges in law to a chi-square distribution with r degrees of freedom. But Σα(θ̂α) is a

consistent estimator of Σα(θ∗), and thus W 0
n(θ̂α) converges to a chi-square distribution

with r degrees of freedom.
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A.6 Proof of Theorem 4.7

A Taylor series expansion of MTθ −m around θn yields

MT θ̂α −m = MTθn −m+MT (θ̂α − θn) + o(||θ̂α − θn||1)

= n−1/2MTd−m+MT (θ̂α − θn) + o(||θ̂α − θn||1).

Using Theorem 6.2,
√
n(θ̂α − θn)

L→
n→∞

N(0,Σα) and
√
no(||θ̂α − θn||1) = op(1), we get

the asymptotic convergence

√
n
(
MT θ̂α

)
L→

n→∞
N(MTd,MTΣαM).

We now consider the random variable Z =
√
nMT θ̂α

(
MTΣαM

)−1/2
satisfying

Z
L→

n→∞
N(
(
MTΣαM

)−1/2
MTd, Ir×r).

Hence, the asymptotic distribution of the quadratic form W = ZTZ is given by a non-

central chi-square distribution with r degrees of freedom and non-centrality parameter

δ = dTM [MTΣα(θ̂α)M ]−1MTd.

A.7 Proof of Theorem 5.1

The IF of the functional T α(G1, . . . , Gn) with contamination in the i0-th direction will be

obtained replacing θi0ε and gi0,ε in θ and gi0 respectively in the equality (20), differentiating

with respect to ε and evaluating the corresponding equality in ε = 0.

In (20) we replace θ by θi0ε and gi0(y) by

gi0,ε = (1− ε)gi0(y) + ε∆ti0
(y),

and for i 6= i0 we consider the original gi(y). We get

1

n

n∑
i=1

∫
fi(y,θ

i0
ε )1+αui(y,θ

i0
ε )dy∫

fi(y,θ
i0
ε )1+αdy

− 1

n

n∑
i 6=i0

∫
fi(y,θ

i0
ε )αgi(y)ui(y,θ

i0
ε )dy∫

fi(y,θ
i0
ε )αgi(y)dy

−
∫
fi0(y,θi0ε )αgi0,ε(y)ui0(y,θi0ε )dy∫

fi0(y,θi0ε )αgi0,ε(y)dy
= 0p. (44)

Now, we denote

ζi,α(θi0ε ) =

∫
fi(y,θ

i0
ε )1+αui(y,θ

i0
ε )dy∫

fi(y,θ
i0
ε )1+αdy

,

ζ∗i,α(θi0ε ) =

∫
fi(y,θ

i0
ε )αgi(y)ui(y,θ

i0
ε )dy∫

fi(y,θ
i0
ε )αgi(y)dy

,

ζ∗∗i,α(θi0ε ) =

∫
fi0(y,θi0ε )αgi0,ε(y)ui0(y,θi0ε )dy∫

fi0(y,θi0ε )αgi0,ε(y)dy
.
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Therefore, (44) can be written as,

1

n

n∑
i=1

ζi,α(θi0ε )− 1

n

n∑
i 6=i0
ζ∗i,α(θi0ε )− ζ∗∗i0,α(θi0ε ) = 0. (45)

Now, we have

∂ζi,α(θi0ε )

∂ε
=

(∫
fi(y,θ

i0
ε )1+αdy

)−2{[
(1 + α)

∫
fi(y,θ

i0
ε )α

∂fi(y,θ
i0
ε )

∂θi0ε

∂θi0ε
∂ε

ui(y,θ
i0
ε )dy

+

∫
fi(y,θ

i0
ε )1+α∂ui(y,θ

i0
ε )

∂θi0ε )

∂θi0ε
∂ε

dy

] ∫
fi(y,θ

i0
ε )1+αdy

−
[
(1 + α)

∫
fi(y,θ

i0
ε )α

∂fi(y,θ
i0
ε )

∂θi0ε

∂θi0ε
∂ε

dy

] ∫
fi(y,θ

i0
ε )α dy

}
,

and

∂ζi,α(θi0ε )

∂ε

∣∣∣∣∣
ε=0

=
IF (ti0 ,T α, G1, . . . , Gn)(∫

fi(y,θ
i0
ε )1+αdy

)2
×
{[

(1 + α)

∫
fi(y,θ)α+1uTi (y,θ)ui(y,θ)dy +

∫
fi(y,θ)α+1∂ui(y,θ)

∂θ
dy

] ∫
fi(y,θ)α+1dy

−(1 + α)

(∫
fi(y,θ)α+1ui(y,θ)dy

)(∫
fi(y,θ)α+1ui(y,θ)dy

)T}

=
IF (ti0 ,T α, G1, . . . , Gn)(∫

fi(y,θ
i0
ε )1+αdy

)2 Ai,α(θ),

with

Ai,α(θ) =

[
(1 + α)

∫
fi(y,θ)α+1uTi (y,θ)ui(y,θ)dy +

∫
fi(y,θ)α+1∂ui(y,θ)

∂θ
dy

] ∫
fi(y,θ)α+1dy.

Therefore,

∂

∂ε

n∑
i=1

ζi,α(θi0ε )

∣∣∣∣∣
ε=0

=
n∑
i=1

∂ζi,α(θi0ε )

∂ε

∣∣∣∣∣
ε=0

= IF (ti0 ,T α, G1, . . . , Gn)
n∑
i=1

Ai,α(θ)(∫
fi(y,θ

i0
ε )1+αdy

)2 .
Now,

∂ζ∗i,α(θi0ε )

∂ε
=

(∫
fi(y,θ

i0
ε )αgi(y)dy

)−2{[
α

∫
fi(y,θ

i0
ε )α−1gi(y)

∂fi(y,θ
i0
ε )

∂θi0ε

∂θi0ε
∂ε

ui(y,θ
i0
ε )dy

+

∫
fi(y,θ

i0
ε )αgi(y)

∂ui(y,θ
i0
ε )

∂θi0ε )

∂θi0ε
∂ε

dy

] ∫
fi(y,θ

i0
ε )αgi(y)dy

−
[
α

∫
fi(y,θ

i0
ε )α−1gi(y)

∂fi(y,θ
i0
ε )

∂θi0ε

∂θi0ε
∂ε

dy

] ∫
fi(y,θ

i0
ε )αdy

}
.

This is,
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∂ζ∗i,α(θi0ε )

∂ε

∣∣∣∣∣
ε=0

=
IF (ti0 ,T α, G1, . . . , Gn)(∫

fi(y,θ
i0
ε )αgi(y)dy

)2
×
{[
α

∫
fi(y,θ)αgi(y)uTi (y,θ)ui(y,θ)dy +

∫
fi(y,θ)αgi(y)

∂ui(y,θ)

∂θ
dy

] ∫
fi(y,θ)αgi(y)dy

−α
(∫

fi(y,θ)αgi(y)ui(y,θ)dy

)(∫
fi(y,θ)αgi(y)ui(y,θ)dy

)T}

=
IF (ti0 ,T α, G1, . . . , Gn)(∫

fi(y,θ
i0
ε )αgi(y)dy

)2 A∗
i,α(θ),

with

A∗
i,α(θ) =

[
α

∫
fi(y,θ)αgi(y)uTi (y,θ)ui(y,θ)dy +

∫
fi(y,θ)αgi(y)

∂ui(y,θ)

∂θ
dy

] ∫
fi(y,θ)αgi(y)dy

− α
(∫

fi(y,θ)αgi(y)ui(y,θ)dy

)(∫
fi(y,θ)αgi(y)ui(y,θ)dy

)T
.

Therefore,

∂

∂ε

n∑
i=1

ζ∗i,α(θi0ε )

∣∣∣∣∣
ε=0

=
n∑
i=1

∂ζ∗i,α(θi0ε )

∂ε

∣∣∣∣∣
ε=0

= IF (ti0 ,T α, G1, . . . , Gn)
n∑
i=1

A∗i,α(θ)(∫
fi(y,θ

i0
ε )αgi(y)dy

)2 .
In a similar manner,

∂

∂ε
ζ∗∗i0,α(θi0ε )

∣∣∣∣
ε=0

=
∂ζ∗∗i0,α(θi0ε )

∂ε

∣∣∣∣∣
ε=0

=
`i0,α(θ)(∫

fi0(y,θ)αgi0(y)dy
)2 ,

with

`i0,α(θ) = fi0(y,θ)

∫
fi0(y,θ)α+1ui0(y,θ)dy − fi0(y,θ)ui0(y,θ)

∫
fi0(y,θ)α+1dy.

Therefore, equality (45) can be written as

IF (ti0 ,T α, G1, . . . , Gn)

{
1

n

n∑
i=1

[
Ai,α(θ)(∫

fi(y,θ)1+αdy
)2 − A∗i,α(θ)(∫

fi(y,θ)αgi(y)dy
)2
]}

+
`i0,α(θ)(∫

fi0(y,θ)αgi0(y)dy
)2 = 0.

Finally,

IF (ti0 ,T α, G1, . . . , Gn) = (Mn,α(θ))−1 −`i0,α(θ)(∫
fi0(y,θ)αgi0(y)dy

)2 ,
where

Mn,α(θ) =
1

n

n∑
i=1

[
Ai,α(θ)(∫

fi(y,θ)1+αdy
)2 − A∗i,α(θ)(∫

fi(y,θ)αgi(y)dy
)2
]
.
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A.8 Proof of Lemma 6.1

This proof is very similar to that of [12] (Lemma 6.1).

A.9 Proof of Theorem 6.2

The consistence follows directly from Lemma 6.1 and Theorem 3.1, while the asymptotic

distribution is obtained applying Lemma 6.1 and Theorem 3.2 to the MLRM.
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