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On the Generalized Covering Radii
of Reed-Muller Codes

Dor Elimelech Student Member, IEEE, Hengjia Wei, and Moshe Schwartz Senior Member, IEEE

Abstract

We study generalized covering radii, a fundamental property of linear codes that characterizes the trade-off between storage,
latency, and access in linear data-query protocols such as PIR. We prove lower and upper bounds on the generalized covering
radii of Reed-Muller codes, as well as finding their exact value in certain extreme cases. With the application to linear data-query
protocols in mind, we also construct a covering algorithm that gets as input a set of points in space, and find a corresponding set
of codewords from the Reed-Muller code that are jointly not farther away from the input than the upper bound on the generalized
covering radius of the code. We prove that the algorithm runs in time that is polynomial in the code parameters.

Index Terms
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I. INTRODUCTION

THE generalized covering radius has recently been proposed [10] as a new fundamental property of linear codes, generalizing
the classical notion of a covering radius. As a motivating application, these radii characterize a trade-off between

storage, latency, and access complexities in linear data-query protocols, a prime example of which is the PIR (Private
Information Retrieval) protocol. Several equivalent definitions of the generalized covering radii were given in [10], showing
their combinatorial, geometric, and algebraic aspects. It has also been observed that there is an intriguing similarity between
the generalized covering radii and the well known generalized Hamming weights of linear codes [28], hinting at a deeper
theory and perhaps additional applications of these parameters that are yet to be revealed.

A crucial part in our understanding of any fundamental parameter of codes, is the values that it takes in specific examples
and in parametric families of codes. In [10], the generalized covering radius hierarchy was found only for Hamming codes
and shortened Hamming codes, whereas the remaining results did not pertain to specific code families. The Hamming code,
in its extended version, is a specific case of the famous family of Reed-Muller codes, which is one of the most studied
families of linear error-correcting codes. Reed-Muller codes have been extensively studied in the recent decades due to their
practical applications and fascinating relations with various mathematical objects. Reed-Muller codes were recently proved to
achieve asymptotically the capacity of erasure channels [17]. They have long been conjectured to achieve Shannon’s capacity
on symmetric channels, and a recent paper [3] took a step towards a proof of this conjecture, by showing a polarization
property in Reed-Muller codes. Other applications of Reed-Muller codes include locally decodable code [29], probabilistic
proof systems [1], sequence design for wireless communication [8], [9], [23], [26], and Boolean functions [4], [18], [21]. For
a recent survey, the readers are referred to [2].

While many aspects of Reed-Muller codes have been investigated, of particular interest to us is the (regular) covering radius.
Its relation to the maximum nonlinearity of Boolean functions, motivated many of the papers on the subject. The covering
radius of Reed-Muller codes has been studied in different settings [5], [7], [13]–[16], [20], [22], [24], [25]. However, despite
decades of research on the subject, the exact covering radius of Reed-Muller codes is mostly unknown, except for a handful
of specific cases, and many papers resorted to finding lower and upper bounds.

The goal of this paper is to explore the generalized covering radii of Reed-Muller codes. Our main contributions are the
following:

1) We prove lower and upper bounds on the generalized covering radii of Reed-Muller codes, RM(r, m), in various
asymptotic regimes of its parameters: constant r, constant m− r, and constant r/m. We also find the exact t-th generalized
covering radius of RM(r, m) in simple cases, r ∈ {0, m− 2, m− 1, m}. These results are summarized in Table I and
Table II.

2) Motivated by the application for linear data-querying protocols, we construct a t-covering algorithm for Reed-Muller
codes. Loosely speaking, given t vectors in the space, the algorithm finds t codewords that are jointly not farther away
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from the given points than the best upper bound that we have on the t-th generalized covering radius of the code. We
analyze the run-time complexity of the algorithm and show it is polynomial in the code parameters.

The paper is organized as follows: Preliminaries and notations are presented in Section II. Section III is devoted to the
derivation of bounds on the generalized covering radii of Reed-Muller codes. The construction of our covering algorithm and
its analysis are in Section IV. We conclude with a discussion of the results and some open questions in Section V.

II. PRELIMINARIES

We use lower-case letters, v, to denote scalars, overlined lower-case letters, v, to denote vectors, and either bold lower-case
letters, v, or upper-case letter, V, to denote matrices. Whether vectors are row vectors or column vectors is deduced from
context.

Let Fq denote the finite field of size q. For n ∈N, we define [n] , {1, . . . , n}, and denote by ([n]t ) the set of all subsets of
[n] of size t. For a vector v = (v1, . . . , vn) ∈ Fn

q , the support of v is defined as supp(v) , {i ∈ [n] | vi 6= 0}, and its Hamming
weight is defined as wt(v) , |supp(v)|. The Hamming distance between v, v′ ∈ Fn

q is then defined as d(v, v′) , wt(v′ − v).
We say C is an [n, k, d]q linear code if C ⊆ Fn

q is a k-dimensional vector space, and the minimum Hamming distance
between distinct codewords is d. The code C may be specified using a k× n generator matrix G ∈ Fk×n

q , whose row space

is C, or by an (n− k)× n parity-check matrix H ∈ F
(n−k)×n
q , whose null space is C. The dual code of C, denoted C⊥, is

the code whose generator matrix is H, and parity-check matrix is G, namely,

C⊥ ,
{

v ∈ Fn
q

∣∣∣ ∀c ∈ C, v · c = 0
}

.

The dual code, C⊥, is an [n, n− k, d′]q code. We say d′ is the dual distance of C.
For any vector v ∈ Fn

q , the distance between v and the code C is defined as

d(v, C) , min
c∈C

d(c, v).

The covering radius of C, denoted R(C), is then defined as

R(C) , max
v∈Fn

q
d(v, C).

It is therefore the minimum radius at which balls centered at the codewords of C cover the entire space Fn
q . A generalization

of this property will be presented shortly when we introduce the generalized covering radii of C. Later, we shall also make
use of a connection between the covering radius of C, and the dual distance of C. To that end we recall the definition of
Krawtchouk polynomials,

Kk(x; n, q) ,
k

∑
j=0

(−1)j
(

x
j

)(
n− x
k− j

)
(q− 1)k−j,

where (
x
j

)
,

x(x− 1) . . . (x− j + 1)
j!

. (1)

We further denote the minimal root of Kk(x; n, q) by

x(k, n; q) , min{x ∈ R |Kk(x; n, q) = 0}.

Lemma 1 [27, Theorem 3.3] Let C be an [n, k]q code with dual distance d′. Then

R(C) 6

{
x(u, n− 1; q) d′ = 2u− 1,
x(u, n; q) d′ = 2u.

A. The generalized covering radii

The generalized covering radii of a linear code were introduced in [10]. They have several equivalent definitions, which we
bring here and use interchangeably. We begin with a geometric definition. Consider the set of matrices Ft×n

q , in which we
have a generalized notion for the Hamming weights. For a matrix v ∈ Ft×n

q , with row vectors denoted by vi, the t-weight is
defined to be

wt(t)(v) ,

∣∣∣∣∣∣⋃i∈[t] supp(vi)

∣∣∣∣∣∣.
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The t-weight naturally induces a metric on Ft×n
q by

d(t)(v, u) , wt(t)(v− u),

for all v, u ∈ Ft×n
q . Let B(t)

r (v) denote the ball of radius r centered in v ∈ Ft×n
q , with respect to the metric d(t), namely

B(t)
r (v) ,

{
v′ ∈ Ft×n

q

∣∣∣ d(t)(v, v′) 6 r
}

.

Since this metric is translation invariant, the volume of the ball does not depend on the choice of its center. We denote this
volume by

Vqt ,n,r ,
∣∣∣B(t)

r (v)
∣∣∣ = r

∑
i=0

(
n
i

)
(qt − 1)i, (2)

which is exactly the size of a ball of radius r in Fn
qt using the Hamming metric. We now have the following definition for the

t-th generalized radius:

Definition 2 Let C be an [n, k]q linear code. Then for every t ∈ N, we define the t-th generalized covering radius, denoted
by Rt(C), to be the minimal integer r such that the balls of radius r centered at

Ct ,


c1

...
ct

 ∈ Ft×n
q

∣∣∣∣∣∣∣ ∀i ∈ [t], ci ∈ C

, (3)

cover Ft×n
q , i.e., ⋃

c∈Ct

B(t)
r (c) = Ft×n

q .

One can easily see that R1(C) = R(C) is indeed the regular covering radius of the code C. Let us now turn to an equivalent
definition via the parity-check matrix of a code. Assume C is a linear [n, k]q code with a (full-rank) parity-check matrix
H ∈ F

(n−k)×n
q . Let the columns of H be denoted by h1, . . . , hn. Then for I ∈ ([n]t ), 1 6 t 6 n, we denote the linear span of

{hi}i∈I by 〈HI〉. We have the following equivalent definition for the t-th generalized covering radius of C:

Definition 3 The t-th covering radius of C, denoted by Rt(C), is the smallest integer r such that for any t vectors v1, . . . , vt ∈
Fn−k

q , there exists I ∈ ([n]r ) such that {v1, . . . , vt} ⊆ 〈HI〉.

The final equivalent definition that we recall for the generalized covering radius is algebraic in nature:

Definition 4 Let C ⊆ Fn
q be a linear code with a generator matrix G ∈ Fk×n

q and a parity-check matrix H ∈ F
(n−k)×n
q . Let

Ct be the code over Fqt , with generator matrix G and parity-check matrix H, namely,

Ct ,
{

uG
∣∣∣ u ∈ Fk

qt

}
=
{

v ∈ Fn
qt

∣∣∣Hcᵀ = 0ᵀ
}

. (4)

The t-th covering radius is defined to be
Rt(C) , R1(Ct),

where R1(Ct) is the (regular, first) covering radius of Ct.

According to Definition 4, the problem of finding the t-th covering radius of a code C ⊆ Fn
q , is equivalent to finding the

regular covering radius of Ct defined over Fqt . Since the code Ct will be used many times, we briefly show that, unlike the
covering radius, its minimum distance does not change.

Lemma 5 Let C be an [n, k, d]q code. Then for any t ∈N, the code Ct of (4) is an [n, k, d]qt code.

Proof: The fact that Ct has length n is trivial. Let H ∈ F
(n−k)×n
q be parity-check matrix for C. Since a set of vectors

from Fn
q is linearly independent over Fq if and only if it is linearly independent over Fqt , the matrix H has the same rank

over Fqt , and its null-space, Ct, has dimension k. Finally, it is well known that the minimum distance d of C is the minimal
number of columns of H that are linearly dependent. By the same argument as before, this number does not change when
considering columns of H and linear dependence over Fqt . Hence, the minimum distance of Ct is also d.

The generalized covering radius has a subadditivity property that proves to be useful for establishing many of the results in
this work:
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Lemma 6 [10, Proposition 15] Let C be an [n, k]q code. Then for all t1, t2 ∈N,

Rt1+t2(C) 6 Rt1 + Rt2(C).

In particular, Rt(C) 6 tR1(C) for all t ∈N.

A simple ball-covering argument is used in the following lemma.

Lemma 7 For an [n, k]q code C and t ∈N,

logqt

(
Vqt ,n,Rt(C)

)
> n− k.

Proof: Recalling (4), consider the code Ct over Fqt , generated by the same generator matrix as C. Clearly, Ct has the
same dimension and length as C. By the standard ball-covering argument (see [6, Theorem 6.2.1]),

logqt

(
Vqt ,n,R1(Ct)

)
> n− k.

By Definition 4, R1(Ct) = Rt(C), and we conclude.
Since we shall be interested in asymptotic results, we recall facts about the asymptotics of binomial coefficients as well as

the volume of balls in the Hamming metric. Let Hq(x) denote the q-ary entropy function,

Hq(x) , x logq(q− 1)− x logq(x)− (1− x) logq(1− x).

A useful Taylor expansion near the entropy function’s maximum was presented in [12, Proposition 3.3.5], showing that, as
ε→ 0,

Hq

(
1− 1

q
− ε

)
= 1− ε2q2

2(q− 1) ln q
(1 + o(1)). (5)

For any real 0 < α < 1, such that αn ∈N, it is known (e.g., see [19, Ch. 10, Lemma 7]) that

1√
8nα(1− α)

2nH2(α) 6
(

n
αn

)
6

1√
2πnα(1− α)

2nH2(α), (6)

and this holds for n ∈ R, n > 1 (recall the definition of the binomial in (1), and see [11, p. 482]). As for the Hamming ball,
it is well known (see [19, Ch. 10, Corollary 9] and [12, Proposition 3.3.1]) that for q > 2, and α 6 1− 1

q ,

1√
8nα(1− α)

qnHq(α) 6 Vq,n,αn 6 qnHq(α). (7)

B. Reed-Muller codes

Reed-Muller codes have been extensively studied (e.g., see [19], and the many references therein). We recall the relevant
definitions and properties needed for this paper. For m ∈ N and 0 6 r 6 m, the r-th order Reed-Muller code, denoted by
RM(r, m), is a binary linear [n, k] code with parameters

n = 2m, k =
r

∑
i=0

(
m
i

)
. (8)

Reed-Muller codes have multiple equivalent definitions, and one that will be useful for our needs is a recursive definition, given
by the (u, u + v) construction. Assume C1 and C2 are [n, k1]q and [n, k2]q codes, respectively. The (u, u + v) construction
uses C1 and C2 to produce a code

C = {(u, u + v) | u ∈ C1, v ∈ C2}.

As a base for the recursion, we define
RM(0, m) ,

{
0, 1
}

,

i.e., the repetition code. Additionally, we define
RM(m, m) , F2m

2 ,

i.e., the entire set of binary vectors of length 2m. Finally, for 1 6 r 6 m− 1, we define RM(r, m) to be the code produced
by the (u, u + v) construction using RM(r, m− 1) and RM(r− 1, m− 1).

Reed-Muller codes are nested, namely, for all 1 6 r 6 m,

RM(r− 1, m) ⊆ RM(r, m). (9)
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Additionally, the family of Reed-Muller code is closed under code duality, and in particular

RM(r, m)⊥ = RM(m− r− 1, m).

This implies that
dim(RM(r, m)) = 2m − dim(RM(m− r− 1, m)). (10)

To avoid cumbersome notation, we denote the t-th generalized covering radius of the r-th order Reed-Muller code by

Rt(r, m) , Rt(RM(r, m)).

The following fundamental property of Rt(r, m) will be used frequently in this work:

Proposition 8 For all m, t ∈N, and 1 6 r 6 m− 1,

Rt(r, m) 6 Rt(r− 1, m− 1) + Rt(r, m− 1).

Proof: The claim follows from the (u, u + v) construction of Reed-Muller codes. In [10, Proposition 24] it is proved that
if a code C is produced using the (u, u + v) construction with C1 and C2, then Rt(C) 6 Rt(C1) + Rt(C2).

III. BOUNDS

Our main results are presented in this section. We prove bounds on the generalized covering radii of Reed-Muller codes,
RM(r, m), in three different asymptotic regimes, as m→ ∞:
• r is constant.
• m− r is constant.
• r/m is constant.

Upper bounds will be derived using two main strategies: The first is by considering the upper bounds from [7] and using the
subadditivity formula from Lemma 6. The second strategy involves the use of the recursive formula from Proposition 8 and
analysis of the base cases. Our lower bounds will essentially be the well known ball-covering lower bound (over the field Fqt ),
analyzed separately for each of the different cases.

A. The case where r is constant

In this parameter regime, the Reed-Muller codes have vanishing asymptotic rate, and high covering radius. We first consider
the extreme case of RM(0, m), which is none other than the repetition code. In this simple case we can determine the generalized
covering radii exactly.

Proposition 9 For all m, t ∈N,
Rt(0, m) = 2m −

⌈
2m−t⌉.

Proof: The Reed-Muller code C = RM(0, m) is the binary repetition code of length 2m, namely, its generator matrix is
G = (1, 1, . . . , 1). Thus, Ct of (4) is just the 2t-ary repetition code of the same length. Given a vector v ∈ F2m

2t , the closest
codeword of Ct to v is c = (c, c, . . . , c) ∈ Ct where c ∈ F2t is the symbol appearing the most times in v. By simple averaging,
there exists a symbol appearing at least d2m−te times in v, giving us Rt(0, m) 6 2m − d2m−te. For the lower bound, define
` , min{t, m}, and let v ∈ F2m

2t be a vector with 2` different symbols, such that each symbol appears exactly 2m−` times.
Clearly, we have

d(v, RM(0, m)) = 2m − 2m−` > 2m − d2m−te.

This proves the lower bound.
For the more general cases of RM(r, m) with r > 1, we provide separate upper and lower bound on the generalized covering

radii. The upper bounds are proved by induction on r. The base case of RM(1, m) is proved first.

Lemma 10 For all m, t ∈N,

Rt(1, m) 6
(

1− 1
2t

)
2m −

√
2t − 1
2t 2m/2.

Proof: Denote C = RM(1, m). It is well known that C⊥ = RM(m− 2, m) is the extended binary Hamming code (see [19,
Ch. 13]), and hence the dual distance of C is d′ = 4. By Lemma 5, d′ = 4 is the dual distance of Ct of (4) as well. By
Lemma 1, the covering radius of Ct is upper bounded by

Rt(C) = R1(Ct) 6 x(2, 2m; 2t),
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i.e., the smallest root of the Krawtchouk polynomial K2(x; 2m, 2t). Since

K2(x; q, n) =
1
2

(
q2x2 − q(2qn− q− 2n + 2)x + (q− 1)2n(n− 1)

)
,

it follows that

x(2, n; q) =
(

1− 1
q

)
n− 1

2
+

1
q
−
√
(4q− 4)n + (q− 2)2

2q
6
(

1− 1
q

)
n−

√
(q− 1)n

q
.

Plugging in n = 2m and q = 2t, we obtain the desired result.
We can now prove the general upper bound on Rt(r, m) for r > 1.

Theorem 11 For all m, t ∈N, 1 6 r 6 m,

Rt(r, m) 6
(

1− 1
2t

)
2m −

√
2t − 1
2t (1 +

√
2)r−12m/2 + O(mr−2).

where we consider r and t to be constants.

Proof: We prove the claim by induction on r. Lemma 10 shows the claim holds for r = 1, and for all m ∈N. Assume that
the claim holds for all ` 6 r− 1, and all m ∈N. We now show that it holds for r as well. By repeatedly using Proposition 8
and the induction hypothesis, we have,

Rt(r, m) 6 Rt(r, m− 1) + Rt(r− 1, m− 1)

6 Rt(r, m− 1) +
(

1− 1
2t

)
2m−1 −

√
2t − 1
2t (1 +

√
2)r−22(m−1)/2 + O(mr−3)

...

6 Rt(r, r) +
m−1

∑
i=r

((
1− 1

2t

)
2i −

√
2t − 1
2t (1 +

√
2)r−22i/2 + O(mr−3)

)

6 Rt(r, r) +
(

1− 1
2t

) m−1

∑
i=0

2i −
√

2t − 1
2t (1 +

√
2)r−2

m−1

∑
i=r

2i/2 + O(mr−2)

=

(
1− 1

2t

)
2m −

√
2t − 1
2t (1 +

√
2)r−1

(
2m/2 − 2r/2

)
+ O(mr−2)

=

(
1− 1

2t

)
2m −

√
2t − 1
2t (1 +

√
2)r−12m/2 + O(mr−2).

Here we also use the fact Rt(r, r) = 0, since RM(r, r) = F2r

2 , and so RM(r, r)t = F2r

2t , whose covering radius is 0.
The corresponding lower bound on Rt(r, m) is proved next. It is obtained by carefully considering both a ball-covering

argument, and the upper bound we just proved.

Theorem 12 For all m, t ∈N, 1 6 r 6 m,

Rt(r, m) >
(

1− 1
2t

)
2m −

√
2t(2t − 1) ln 2

2t
√

r!
mr/22m/2(1 + o(1)), (11)

where we consider r and t to be constants.

Proof: By Lemma 7, we have that

log2t

(
V2t ,2m ,Rt(r,m)

)
> 2m −

r

∑
i=0

(
m
i

)
= 2m − mr

r!
(1 + o(1)).

According to Theorem 11,
Rt(r, m)

2m = 1− 1
2t − o(1), (12)

and in particular, for all large enough m,
Rt(r, m)

2m < 1− 1
2t .

Using (7),

log2t

(
V2t ,2m ,Rt(r,m)

)
6 2m H2t

(
Rt(r, m)

2m

)
.
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Combining the two inequalities above, we have

2m H2t

(
Rt(r, m)

2m

)
> 2m − mr

r!
(1 + o(1)). (13)

Denote y , 1− 1/2t − Rt(r, m)/2m. Then y = o(1) by (12), and y > 0 for all large enough m. Thus, by (5) we have

H2t

(
Rt(r, m)

2m

)
= H2t

(
1− 1

2t − y
)
= 1− cy2(1 + o(1)),

where c = 22t

2t(2t−1) ln 2 . Hence,

1− cy2(1 + o(1)) > 1− mr

2mr!
(1 + o(1)),

and so,

y 6
mr/2

2m/2
√

r! · c
(1 + o(1)).

The conclusion follows since Rt(r, m) = (1− 1/2t − y)2m.

B. The case where m− r is constant

The opposite case to the one studied in the previous section, is that of Reed-Muller codes RM(r, m) with m − r being
constant. These codes have a high rate and a vanishing normalized covering radius. As we show shortly, in this asymptotic
regime, the t-th generalized covering radius is approximately linear in t. We begin, however, with the two extreme cases of
RM(m− 1, m) and RM(m− 2, m).

Proposition 13 For all m, t ∈N,

Rt(m, m) = 0,
Rt(m− 1, m) = 1,
Rt(m− 2, m) = min{t, m}+ 1.

Proof: The case of Rt(m, m) is trivial since RM(m, m) = F2m

2 . For the next case, RM(m− 1, m) is the binary [2m, 2m −
1, 2] parity code. Its parity-check matrix is H1 = (1, 1, . . . , 1). Then, by directly using Definition 3, we get that for all t ∈N,
Rt(m− 1, m) = 1.

Finally, RM(m− 2, m) is the binary [2m, 2m −m− 1, 4] extended Hamming code. A parity-check matrix for this code is
the (m + 1)× 2m matrix H2 containing all the binary column vectors that start with a 1. Let ei denote the i-th standard unit
column vector. We again use Definition 3 directly: for any 1 6 t 6 m, we contend that the set {e2, e3, . . . , et+1} cannot be
spanned by t columns of H2. That is because 〈e2, . . . , et+1〉 is a t-dimensional vector space, all of whose vectors contain a
0 in the first coordinate. However, the span of any t columns from H2 is, at best, a t-dimensional vector space, but whose
vectors’ first coordinate is not always 0. Thus, Rt(m− 2, m) > t + 1. However, given any set of t column vectors of length
m + 1, {v1, . . . , vt}, the set is spanned by the t + 1 vectors

{
v′1, v′2, . . . , v′t, e1

}
where v′i = vi if the first coordinate of vi

is 1 and v′i = vi + e1 otherwise. Clearly,
{

v′1, v′2, . . . , v′t, e1
}

are all columns of H, and therefore, Rt(m − 2, m) 6 t + 1.
Combining the two bounds we get that Rt(m− 2, m) = t + 1, for all t 6 m. Finally, for t > m the claim is trivial since
rank(H2) = m + 1, and any set of column vectors of length m + 1 can be spanned by m + 1 linearly independent columns
of H2.

Turning to the more general case of RM(m− s, m), we first prove a technical lemma. The proof of this lemma is primarily
based on the estimation of binomial coefficients by Stirling’s approximation.

Lemma 14 Let t ∈N be a constant, and r = o(2m). Then

log2t
(
V2t ,2m ,r

)
=

mr
t
−O(r log(r)).

Proof: Since r = o(2m), for sufficiently large m we have that r < 2m−1, and therefore(
2m

i

)
(2t − 1)i 6

(
2m

i + 1

)
(2t − 1)i+1,

for all 0 6 i 6 r. It follows that(
2m

r

)
2r(t−1) 6 V2t ,2m ,r =

r

∑
i=0

(
2m

i

)
(2t − 1)i 6 (r + 1)

(
2m

r

)
2rt. (14)
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By Stirling’s approximation (e.g., see [11, p. 251]),(
2m

r

)r
6
(

2m

r

)
6
(

e
2m

r

)r
.

Applying log2t and simplifying we obtain,

mr
t
− r log2t(r) 6 log2t

(
2m

r

)
6

mr
t
− r log2t

( r
e

)
. (15)

Combining (14) and (15) we have

log2t
(
V2t ,2m ,r

)
6 log2t

(
(r + 1)

(
2m

r

)
2rt
)
6 log2t(r + 1) +

mr
t
− r log2t

( r
e

)
+ r

=
mr
t
−O(r log(r)).

Similarly,

log2t
(
V2t ,2m ,r

)
> log2t

((
2m

r

)
2r(t−1)

)
>

mr
t
− r log2t(r) +

r(t− 1)
t

=
mr
t
−O(r log(r)).

We can now state the main bounds for this asymptotic regime.

Theorem 15 For all m, t ∈N, 3 6 s 6 m,
t

(s− 1)!
ms−2 + O(ms−3 log(m)) 6 Rt(m− s, m) 6

t
(s− 2)!

ms−2 + O(ms−3),

where we consider s and t to be constants.

Proof: In [7, Section 3] it is proved for the (first) covering radius that

R1(m− s, m) 6
ms−2

(s− 2)!
+ O(ms−3).

Combining this with Lemma 6, the upper bound follows immediately.
Having proven the upper bound, we see that Rt(m− s, m) = o(2m). Thus, by Lemma 14,

log2t

(
V2t ,2m ,Rt(m−s,m)

)
=

mRt(m− s, m)

t
−O(ms−2 log(m)).

Combining this with the ball-covering argument from Lemma 7 and (10), it follows that

mRt(m− s, m)

t
−O(ms−2 log(m)) = log2t

(
V2t ,2m ,Rt(m−s,m)

)
> 2m − dim(RM(m− s, m))

= dim(RM(s− 1, m)) =
s−1

∑
i=0

(
m
i

)
>
(

m
s− 1

)
>

ms−1

(s− 1)!
−O(ms−2).

After rearranging we get the claim.

C. The case where r/m is constant

The final asymptotic regime we study is when r/m = α is constant. For technical reasons, we divide the discussion into
two different cases: 1

2 < α < 1, and 0 < α 6 1
2 . We begin with the range 1

2 < α < 1.

Theorem 16 For all m, t ∈N and 1
2 < α < 1,

t ·
√

1− α

8(αm)3 · 2
mH2(α) · (1 + o(1)) 6 Rt(αm, m) 6 t · 4H2(α) · 2mH2(α) · (1 + o(1)),

where we consider t and α to be constants.

Proof: In [6, Theorem 9.4.25] it is proved that for 1
2 < α < 1, the (first) covering radius satisfies

R1(αm, m) 6 4H2(α) · 2mH2(α) · (1 + o(1)).
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By applying the subadditivity property from Lemma 6 we immediately obtain the claimed upper bound.
For the lower bound, as in the proof of Theorem 15,

log2t

(
V2t ,2m ,Rt(αm,m)

)
> dim(RM((1− α)m− 1, m)) =

(1−α)m−1

∑
i=0

(
m
i

)
>
(

m
(1− α)m− 1

)
=

(1− α)m
αm + 1

(
m

(1− α)m

)
=

1− α

α

(
m

(1− α)m

)
(1 + o(1))

>

√
1− α

8mα3 · 2
mH2(α) · (1 + o(1)),

where the last inequality follows from (6). By the Upper bound presented above, Rt(αm, m) = o(2m), and Lemma 14 may
be applied to obtain

mRt(αm, m)

t
(1 + o(1)) = log2t(V2t ,2m ,Rt(αm,m)) >

√
1− α

8mα3 · 2
mH2(α) · (1 + o(1)).

By rearranging we obtain the desired lower bound.
We now move on to the range 0 < α 6 1

2 . We begin with two lemmas, laying the groundwork for the bounds. The first
lemma is a weaker, more general version of an upper bound on Rt(r, m).

Lemma 17 For all m, t ∈N, 1 6 r 6 m,

Rt(r, m) 6
(

1− 1
2t

)
2m −

√
2t − 1
2t

(
m
r

)
.

Proof: We prove the claim by induction on m. We first observe that the the claim holds in the extreme cases where r = 1
and r = m. Since 2m/2 > m = (m

1 ) for any m ∈N, by Lemma 10 we have

Rt(1, m) 6
(

1− 1
2t

)
2m −

√
2t − 1
2t 2

m
2 6

(
1− 1

2t

)
2m −

√
2t − 1
2t

(
m
1

)
.

In the case where r = m, RM(m, m) = F2m

2 , and thus Rt(m, m) = 0 and the claim holds. In particular, this proves the claim
for m = 1, 2, serving as the induction base.

Assume the claim holds for m− 1, and we now prove it holds for m. We already know the claim holds for Rt(1, m) and
Rt(m, m). Thus, we only need to show it holds for 2 6 r 6 m− 1. By Proposition 8 and the induction hypothesis,

Rt(r, m) 6 Rt(r− 1, m− 1) + Rt(r, m− 1)

6
(

1− 1
2t

)
2m−1 −

√
2t − 1
2t

(
m− 1
r− 1

)
+

(
1− 1

2t

)
2m−1 −

√
2t − 1
2t

(
m− 1

r

)
=

(
1− 1

2t

)
2m −

√
2t − 1
2t

(
m
r

)
,

thus completing the induction step.
The next technical lemma proves the limit of Rt(αm, m)/2m.

Lemma 18 Let 0 < α 6 1
2 be a constant. Then

lim
m→∞

Rt(αm, m)

2m = 1− 1
2t .

Proof: Using Lemma 7 and (7), we have

log2t

(
V2t ,2m ,Rt(αm,m)

)
> 2m −

αm

∑
i=0

(
m
i

)
> 2m − 2mH2(α) = 2m

(
1− 2−m(1−H2(α))

)
. (16)

Assume to the contrary that Rt(αm, m) 6 µ2m for some µ < 1− 1
2t and infinitely values of m. In that case, by (16) and (7),

H2t(µ)2m > log2t

(
V2t ,2m ,Rt(r,m)

)
> 2m

(
1− 2−m(1−H2(α))

)
.

That is,
H2t(µ) > 1− 2−m(1−H2(α)).
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Since α 6 1
2 , we have H2(α) < 1, and therefore taking m → ∞ we get H2t(µ) > 1. That is a contradiction as µ < 1− 1

2t .
This proves that

lim inf
m→∞

Rt(αm, m)

2m > 1− 1
2t .

From the upper bound presented in Lemma 17 we have

lim sup
m→∞

Rt(αm, m)

2m 6 1− 1
2t .

Combining these two inequalities we have claim.
Using the previous two lemmas, we can now state the bound on Rt(αm, m).

Theorem 19 For all m, t ∈N, and 0 < α 6 1
2 ,(

1− 1
2t

)
2m −

√
2t(2t − 1) ln 2

2t · 2
m
2 (1+H2(α)) · (1 + o(1))

6 Rt(αm, m)

6
(

1− 1
2t

)
2m −

√
2t − 1
2t · 1√

8mα(1− α)
· 2mH2(α),

where t and α are constants.

Proof: The upper bound follows immediately from (6) and Lemma 17. We turn to prove the lower bound. By Lemma 7
and (7) again,

2m H2t

(
Rt(αm, m)

2m

)
> log2t

(
V2t ,m,Rt(αm,m)

)
> 2m − 2mH2(α). (17)

Since Lemma 17 implies Rt(αm, m) < (1− 1
2t )2m, we denote y , 1− 1/2t− Rt(αm, m)/2m > 0. By Lemma 18, y = o(1).

In a similar fashion to the proof of Theorem 12, by (5) we have

H2t

(
Rt(αm, m)

2m

)
= 1− cy2(1 + o(1)),

where c = 22t

2t(2t−1) ln 2 . Substituting this back into (17) we get

1− cy2(1 + o(1)) > 1− 2m(H2(α)−1),

and therefore,

y 6 c−
1
2 2

m
2 (H2(α)−1)(1 + o(1)).

Since Rt(αm, m) = (1− 1/2t − y)2m, we reach the claimed lower bound.
In the region 0 < α 6 1− 1√

2
, we follow a similar procedure to that of [7], in order to improve the upper bound of

Theorem 19. The following lemma is a sharpening of Lemma 17, requiring more involved work.

Lemma 20 For all m, t ∈N, 2 6 r 6 m
2+
√

2
, and m > 3,

Rt(r, m) 6
(

1− 1
2t

)
2m −

√
2t − 1
2t

(
1 +
√

2
)r−1

2
m−1

2 +

√
2t − 1

2t 4
√

2
r
(

m
r

)
.

Proof: Like the proof of Lemma 17, we proceed by induction on m. Throughout this proof we denote the constant
√

2t−1
2t

by c. As base cases we shall consider both the case of m = d(2 +
√

2)re and r > 2, as well as the case of r = 2 for all m.
Assume that m = d(2 +

√
2)re and r > 2. We first observe that

H2

(
1

2 +
√

2

)
=

1
2
+

1
2 +
√

2
log2

(
1 +
√

2
)

. (18)

Additionally, by simply monotonicity, as well as (6) and the comment following it,(
m
r

)
=

(
dr(2 +

√
2)e

r

)
>
(

r(2 +
√

2)
r

)
>

4
√

2√
8r

2r(2+
√

2)H2

(
1

2+
√

2

)
. (19)
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We now have the following sequence of inequalities proving the first base case,

Rt(r, m)
(a)
6
(

1− 1
2t

)
2m

(b)
6
(

1− 1
2t

)
2m − c

(
1

1 +
√

2
−
√

r√
8

)
2r log2(1+

√
2)+ r

2 (2+
√

2)

(c)
=

(
1− 1

2t

)
2m − c

1 +
√

2
(1 +

√
2)r2

r
2 (2+

√
2) +

cr√
8r

2r(2+
√

2)H2

(
1

2+
√

2

)
(d)
6
(

1− 1
2t

)
2m − c(1 +

√
2)r−12

m−1
2 +

cr
4
√

2

(
m
r

)
,

where (a) follows from Lemma 17, (b) follows since for all r > 2 we have 1
1+
√

2
6
√

r√
8

, (c) follows from (18), and (d)

follows since m = d(2 +
√

2)re as well as by (19).
We now check that the claim holds for the second base case, where r = 2. We observe that,

Rt(2, m)
(a)
6

m−1

∑
i=2

Rt(1, i)

(b)
6
(

1− 1
2t

)(m−1

∑
i=2

2i

)
− c

m−1

∑
i=2

(
√

2)i

6
(

1− 1
2t

)
2m − c

m−1

∑
i=2

(
√

2)i

=

(
1− 1

2t

)
2m − c

(
(1 +

√
2)2

m
2 − 2√

2− 1

)
,

where (a) follows by repeated application of Proposition 8 and the fact that Rt(2, 2) = 0, and (b) follows from Lemma 10.
We note that the base case is proved when

(1 +
√

2)2
m
2 − 2√

2− 1
> (1 +

√
2)2

m−1
2 − 1

4
√

2
· 2 ·

(
m
2

)
, (20)

is satisfied. Indeed, one can easily check that (20) holds for all m > d(2 +
√

2)2e = 7.
Having completed the induction base cases, assume the claim holds for m− 1, i.e., for all 2 6 r 6 m−1

2+
√

2
. We shall now

prove the claim also holds for m, and all 2 6 r 6 m
2+
√

2
. The two extreme cases, i.e., r = 2, and m = d(2 +

√
2)re, have

already been proved in the base cases. For the remaining values of r,

Rt(r, m) 6 Rt(r− 1, m− 1) + Rt(r, m− 1)

6
(

1− 1
2t

)
2m−1 − c(1 +

√
2)r−22

m−2
2 +

c
4
√

2
(r− 1)

(
m− 1
r− 1

)
+

(
1− 1

2t

)
2m−1 − c(1 +

√
2)r−12

m−2
2 +

c
4
√

2
r
(

m− 1
r

)
6
(

1− 1
2t

)
2m − c(1 +

√
2)r−1

(
1 +

1
1 +
√

2

)
2

m−2
2 +

cr
4
√

2

((
m− 1

r

)
+

(
m− 1
r− 1

))
=

(
1− 1

2t

)
2m − c(1 +

√
2)r−12

m−1
2 +

cr
4
√

2

(
m
r

)
,

where the first inequality follows from Proposition 8, and then we use the induction hypothesis.

Theorem 21 For all m, t ∈N, and 0 < α < 1− 1√
2
,

Rt(αm, m) 6
(

1− 1
2t

)
2m −

√
2t − 1

2t(2 +
√

2)
2m( 1

2+α log2(1+
√

2))(1 + o(1)),

where t and α are constants.
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TABLE I
A SUMMARY OF EXACT VALUES

Rt(0, m) 2m −
⌈
2m−t⌉ Proposition 9

Rt(m− 2, m) min{t, m}+ 1 Proposition 13

Rt(m− 1, m) 1 Proposition 13

Rt(m, m) 0 Proposition 13

TABLE II
A SUMMARY OF THE BOUNDS

Rt(r, m)
6
(

1− 1
2t

)
2m −

√
2t−1
2t (1 +

√
2)r−12m/2 + O(mr−2) Theorem 11

>
(

1− 1
2t

)
2m −

√
2t(2t−1) ln 2

2t
√

r!
mr/22m/2(1 + o(1)) Theorem 12

Rt(m− s, m)
6 t

(s−2)! ms−2 + O(ms−3)
Theorem 15

> t
(s−1)! ms−2 + O(ms−3 log(m))

Rt(αm, m)

6
(

1− 1
2t

)
2m −

√
2t−1

2t(2+
√

2)
2m( 1

2 +α log2(1+
√

2))(1 + o(1)) Theorem 21, assuming 0 < α < 1− 1√
2

6
(

1− 1
2t

)
2m −

√
2t−1
2t · 1√

8mα(1−α)
· 2mH2(α) Theorem 19, assuming 1− 1√

2
6 α 6 1

2

6 t · 4H2(α) · 2mH2(α) · (1 + o(1)) Theorem 16, assuming 1
2 < α < 1

>
(

1− 1
2t

)
2m −

√
2t(2t−1) ln 2

2t · 2 m
2 (1+H2(α)) · (1 + o(1)) Theorem 19, assuming 0 < α 6 1

2

> t ·
√

1−α
8(αm)3 · 2mH2(α) · (1 + o(1)) Theorem 16, assuming 1

2 < α < 1

Proof: By Lemma 20,

Rt(αm, m) 6
(

1− 1
2t

)
2m −

√
2t − 1
2t

(
(1 +

√
2)αm−12

m−1
2 − αm

4
√

2

(
m

αm

))
=

(
1− 1

2t

)
2m −

√
2t − 1

2t(2 +
√

2)
2m( 1

2+α log2(1+
√

2)) + 2m(H2(α)+o(1))

=

(
1− 1

2t

)
2m −

√
2t − 1

2t(2 +
√

2)
2m( 1

2+α log2(1+
√

2))(1 + o(1)),

where we made use of (6), and the fact that

1
2
+ α log2(1 +

√
2) > H2(α).

IV. COVERING ALGORITHM

In this section we describe an algorithm which receives as input a matrix v ∈ Ft×2m

2 , and returns a codeword matrix
c ∈ RMt(r, m) that is no farther away from v than the upper bounds described in the previous section, namely

d(t)(v, c) 6 Ut(r, m),

where Ut(r, m) is any upper bound on Rt(r, m) from Table II. We call this a covering algorithm, and it may be thought of
as the analogue to a decoding algorithm for an error-correcting code.

To motivate our study of a covering algorithm, we recall the motivating example described in [10]. We look at linear data
querying schemes, the most prominent example of which is private information retrieval (PIR), in which the user queries a
database by linear combinations. We think of the database as a sequence of elements x = (x1, . . . , xm) ∈ Fm

q` . The user
may query the contents of the database by providing s = (s1, . . . , sm) ∈ Fm

q , and getting in response the linear combination
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s · x = ∑m
i=1 sixi. The access complexity in such protocols is the number of database items that need to be read in order to

compute the desired linear combination. In a straightforward implementation, the access complexity is the number of non-zero
coefficients in s1, . . . , sm. Thus, in a typical PIR scheme, which selects random coefficients, the expected fraction of non-zero
coefficients is 1− 1

q , resulting in a prohibitively high access complexity.
In order to reduce the access complexity one may pre-compute and store some linear combinations of data elements. If

the original database is x = (x1, . . . , xm) ∈ Fm
q` , the linear combinations h1 · x, h2 · x, . . . , hn · x are pre-computed and stored

instead of the original database x, where h1, . . . , hn ∈ Fm
q . Assume now that the database receives a query given by s ∈ Fm

q .
If we can find r 6 m vectors hi1 , . . . , hir such that s ∈ 〈hi1 , . . . , hir 〉, then we may answer the query by accessing the
r pre-computed linear combinations hi1 · x, . . . , hir · x, instead of accessing all the m elements in the database, x1, . . . , xm.
Considering the vectors h1, . . . , hn as the columns of a parity-check matrix H of an [n, n−m]q linear code C, Definition 3
guarantees that r 6 R1(C) such vectors may always be found. Thus, by storing the n pre-computed linear combinations instead
of the original database, we increased the storage, but we reduced the access complexity since we need to access at most
R1(C) elements of the database. As an additional step, assume the database does not answer queries individually, but instead
groups together t queries given by s1, . . . , st ∈ Fm

q . We now need the r vectors hi1 , . . . , hir to satisfy s1, . . . , st ∈ 〈hi1 , . . . , hir 〉
in order to answer the queries. By Definition 3, r 6 Rt(C) such vectors exist, and by Lemma 6, Rt(C) 6 tR1(C). Thus, by
delaying the answers to queries, namely, increasing the latency, we have further reduced the access complexity from tR1(C)
(the access complexity of treating t queries individually) to Rt(C).

We translate this problem into a more convenient form. Let us write the vectors s1, . . . , st as rows of a matrix s ∈ Ft×m
q .

Since the parity-check matrix of C is a full-rank matrix, H ∈ Fm×n
q , by solving a set of linear equations we can efficiently find

a matrix v ∈ Ft×n
q such that Hvᵀ = sᵀ. We would now like to solve the following task: Given v ∈ Ft×n

q , find c ∈ Ct such that
d(t)(v, c) 6 r. We observe that by finding such c, since H(v− c)ᵀ = sᵀ, the rows of v− c describe linear combinations of
the columns of H that both result in s1, . . . , st, and use no more than r columns. Ideally, we would like to choose r = Rt(C).

We call such an algorithm a t-covering algorithm for C, with radius r. It bears a resemblance to a decoding algorithm for
an error-correcting code, however some crucial differences are to be noted. To guarantee unique decoding, standard decoding
algorithms assume the input is a point in the space that is no more than b d−1

2 c away from a codeword, where d is the minimum
distance of the code. The covering algorithm may receive as input any point in the metric space. Additionally, the decoding
algorithm returns the closest (and only) codeword within radius of b d−1

2 c from the input point. In contrast, the covering
algorithm may return any codeword whose distance from the input as it most r, and not necessarily the closest codeword.
Thus, the covering algorithm discussed here does not perform maximum-likelihood decoding.

As we saw in Section III, computing the the generalized covering radii of Reed-Muller codes is a difficult task in general.
Even for the case of t = 1, and despite having been studied for decades, the covering radius of Reed-Muller codes is still
not fully known. Thus, finding an efficient t-covering algorithm for RM(r, m), with radius Rt(r, m), poses a great challenge,
if only for the fact that Rt(r, m) is unknown in general. An inefficient, brute-force implementation of such an algorithm is
trivial, yet, uninteresting.

Instead, in what follows, we devise an efficient t-covering algorithm for RM(r, m), with radius Ut(r, m), where Ut(r, m) is
any of the upper bounds on Rt(r, m) found in this paper, and summarized in Table II. Our approach stems from the fact that all
the bounds in Table II are derived recursively using the (u, u + v) construction (Proposition 8) and subadditivity (Lemma 6),
as well as simple base cases.

Theorem 22 For any t, r, m ∈ N, r 6 m, and any v ∈ Ft×2m

2 , running c = cover(v, r), from Algorithm 1, produces
c ∈ RM(r, m)t such that d(t)(v, c) 6 Ut(r, m). Additionally, its run-time complexity is O(t2t(2t+1)m+1(2t+1− 1)−r + tm2m).

Proof: The algorithm clearly stops since, during the recursive calls, either r or m strictly decrease, and the base cases
of r = 1 and r = m are eventually reached. The returned c is clearly a codeword, stemming from the base cases and the
(u, u + v) structure of Reed-Muller codes. Finally, d(t)(v, c) 6 Ut(r, m) due to Proposition 8, Lemma 6, and the fact that all
the bounds in Table II are relaxations of both (including Theorem 15 which is based on a result from [7]).

We move on to the analysis of the run-time complexity. We first analyze recursive(v, r), whose running time we denote
by T(t, r, m). We contend that for some constant c ∈N,

T(t, r, m) 6 f (t, r, m) , c
(

t2t(2t+1)m+1(2t+1 − 1)−r + tm2m
)

.

This proof is by induction. For the first simple base case of r = m we have T(t, m, m) = c′, a constant, and indeed

T(t, m, m) = c′ 6 c
(

t2t(2t+1)m+1(2t+1 − 1)−m + tm2m
)
= f (t, m, m),

for a proper choice of c. Next, we check the base case r = 1. In this case, a brute-force distance measurement is performed
between v and the codewords of RM(1, m)t. Each codeword is a t× 2m matrix, and we have a total of |RM(1, m)t| = 2(m+1)t

such codewords. Thus, for some constant c′,

T(t, 1, m) = c′ · t2m · 2(m+1)t 6 c
(

t2t(2t+1)m+1(2t+1 − 1)−1 + tm2m
)
= f (t, 1, m),
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Algorithm 1: A t-covering algorithm for RM(r, m) with radius Ut(r, m)

Function recursive(v, r)
Input : v ∈ Ft×2m

2 , r ∈N, 1 6 r 6 m
// Check edge cases
if r = m then return v
if r = 1 then return argminc∈RM(1,m)t d(t)(v, c)
// Use the (u, u + v) recursion

Let v1, v2 ∈ Ft×2m−1

2 s.t. v = (v1, v2)
c1 ← recursive(v1, r)
c2 ← recursive(v2 − c1, r− 1)
return (c1, c1 + c2)

Function subadditive(v, r)
Input : v ∈ Ft×2m

2 , r ∈N, 1 6 r 6 m
// Use subadditivity
Let vi be the i-th row of v
forall i ∈ [t] do

ci ← recursive(vi, r)
return (cᵀ1 , . . . , cᵀt )

ᵀ

Function cover(v, r)
Input : v ∈ Ft×2m

2 , r ∈N, 1 6 r 6 m
cmin ← recursive(v, r)
c′min ← subadditive(v, r)
return argminc∈{cmin,c′min}

d(t)(v, c)

for any c > c′. Moving on to the main recursion, assume the claim holds for T(t, r, m− 1), for all 1 6 r 6 m− 1, and we
prove it also holds for T(t, r, m) for all 1 6 r 6 m. If r = 1 or r = m, we have a base case which we have already proved.
Otherwise, the algorithm manipulates a t× 2m matrix and runs two recursive instances. Hence, for some constant c′, and after
choosing any c > c′, we have

T(t, r, m) = c′t2m + T(t, r− 1, m− 1) + T(t, r, m− 1)

6 ct2m + c
(

t2t(2t+1)m(2t+1 − 1)−r+1 + t(m− 1)2m−1
)
+ c
(

t2t(2t+1)m(2t+1 − 1)−r + t(m− 1)2m−1
)

= c
(

t2t(2t+1)m+1(2t+1 − 1)−r + tm2m
)

= f (t, r, m).

This completes the induction. To complete the proof as well, we note that the complexity of subadditive(v, r) is always
subsumed by the complexity of recursive(v, r).

As in the previous section, we analyze three asymptotic regimes for r and m:

Corollary 23 Let t ∈ N be a constant, let n = 2m be the length of the code RM(r, m), and denote β , log2
t+1
√

2t+1 − 1.
Then the run-time complexity of Algorithm 1 is:
• O(nt+1) when r is constant.
• O(n(t+1)(1−αβ)) when r = αm, and 0 < α < t

(t+1)β
is a constant.

• O(n log n) when r = m− s, s is constant, or when r = αm, and t
(t+1)β

6 α < 1 is a constant.

Proof: This is a straightforward application of Theorem 22. The t
(t+1)β

cutoff point stems from the fact that the complexity

is in fact O(n(t+1)(1−αβ) + n log n). Thus, for α < t
(t+1)β

, we have that (t + 1)(1− αβ) > 1, and n(t+1)(1−αβ) dominates
the complexity. However, when α > t

(t+1)β
, we have that (t + 1)(1− αβ) 6 1 and n log n dominates the complexity.

V. CONCLUSION

In this work, we studied the generalized covering radii of Reed-Muller codes, Rt(r, m). In some simple cases we found the
exact generalized covering radii (see Table I). For most other cases we found lower and upper bounds on the generalized covering
radii (see Table II). These bounds were found in three asymptotic regimes: r constant, m− r constant, and r/m constant. We
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Fig. 1. A comparison of the bounds on κ3(ρ, 2): (a) the ball-covering lower bound [10, Prop. 12], (b) the general upper bound [10, Prop. 14], and (c) our
upper bound obtained from the upper bound on the t-th generalized covering radius of Reed-Muller codes.

also constructed a t-covering algorithm with radius no worse than the upper bounds that we found (see Algorithm 1). We
analyzed the algorithm’s run-time complexity and showed it is polynomial in the code parameters.

We remark that our upper bounds on the covering radii of Reed-Muller codes may also be used for the study of the asymptotic
behaviour of generalized covering radii of linear codes in general. Given the parameters t ∈N, ρ ∈ [0, 1] and a prime power
q, the asymptotic minimal rate of a code over Fq with a normalized t-th generalized covering radius of no more than ρ, is
denoted by κt(ρ, q). Since the t-th generalized covering radius of a direct sum of codes is the sum of the t-th generalized
covering radii of its component codes (see [10, Prop. 25]), an [n, k]q linear code with t-th generalized covering radius of r
immediately creates an infinite family of codes with rate k

n and normalized t-th generalized covering radius r
n . It then follows

that κt(r/n, q) 6 k/n. By the monotonicity of κt(ρ, q) in ρ, this upper bound holds for all ρ > r/n. Thus, our upper bounds
on the generalized covering radii of Reed-Muller codes (denoted by Ut(r, m)) give the following upper bounds:

κt(ρ, 2) 6
dim(RM(r, m))

2m for all ρ >
Ut(r, m)

2m (21)

In Figure 1, the bound obtained by applying (21) in the range 2 6 m 6 20, 1 6 r 6 m in the case where t = 3 is presented.
Each pair (r, m), results in a point depicted in the graph. We observe that some of the points obtained in this way improve
upon the upper bound from [10, Prop. 14],

κt(ρ, q) 6 1− Hq

(ρ

t

)
, (22)

where Hq(·) is the q-ary entropy function. A similar comparison, with t = 2, is shown in Figure 2. However, specifically for
t = 2, the upper bound of [10, Theorem 22] is stronger than (22), and so the bound of (21) offers no improvement.

We would like to mention a couple of interesting open questions pertaining to the results of this paper. We first observe
that, apart from the base cases, our bounds are obtained using the (u, u + v) recursion, and subadditivity. We suspect that for
improved bounds, a different approach may be needed, perhaps an approach that exploits the unique geometric and combinatorial
properties of Reed-Muller codes.

Another open problem concerns Algorithm 1. The edge case of RM(1, m) is solved in the algorithm using a brute-force
approach: the distance between the input, v, and the codewords of RM(1, m)t is measured exhaustively and naively. However,
for t = 1, the codewords of RM(1, m) form a Sylvester-type Hadamard matrix and its complement. Thus, by using the Walsh-
Hadamard transform, an efficient measurement of the distance from v to the codewords of RM(1, m) is possible in O(n log n)
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Fig. 2. A comparison of the bounds on κ2(ρ, 2): (a) the ball-covering lower bound [10, Prop. 12], (b) the improved upper bound [10, Thm. 22], and (c) our
upper bound obtained from the upper bound on the t-th generalized covering radius of Reed-Muller codes.

time, instead of the Θ(n2) of a naive implementation, where n = 2m is the code length. Whether a similar approach can
improve Algorithm 1 is still unknown.

Finally, and more generally, it is known that the generalized covering radii are monotone non-decreasing in t. Thus, any
improvement in the bounds on Rt(r, m) may perhaps bring about an improvement in the bounds on the (regular) covering
radius of Reed-Muller codes, R1(r, m). These problems, and others, are left for future research.
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