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A generalization of Costa’s Entropy Power
Inequality

Luca Tamanini

Abstract—Aim of this short note is to study Shannon’s
entropy power along entropic interpolations, thus generalizing
Costa’s concavity theorem. We shall provide two proofs of inde-
pendent interest: the former by Γ-calculus, hence applicable to
more abstract frameworks; the latter with an explicit remainder
term, reminiscent of [28], allowing us to characterize the case
of equality.

Index Terms—Entropy, information theory, entropy power,
Schrödinger problem, heat equation

I. INTRODUCTION AND STATEMENT OF THE RESULT

G IVEN a random variable X with density u in Rn,
Shannon’s entropy and entropy power are respectively

defined as

H(X) = H(u) := −
ˆ
Rn

u log udLn,

N(X) = N(u) := exp
( 2

n
H(u)

)
,

(I.1)

where Ln denotes the n-dimensional Lebesgue measure. If
Y is a second random variable, then the Entropy Power
Inequality (EPI) states that N(X + Y ) ≥ N(X) + N(Y ),
see [24], [25]. As a refinement, in the case Y =

√
tZ

with Z a standard normal Costa [8] proved that Shannon’s
entropy power is concave along X+

√
tZ. In the language of

semigroups [4], this means that N is concave along the heat
flow, namely: if u is a non-negative probability density on
Rn and Pt is the semigroup associated to the heat equation,
i.e. Ptu = ut if and only if ∂

∂tut = ∆ut and u|t=0 = u, then

d2

dt2
N(Ptu) ≤ 0, ∀t > 0. (I.2)

In fact, inequality is strict for all t > 0 unless u is an
isotropic Gaussian distribution (in which case, equality holds
for all t > 0). The proof, originally quite involved, was
eventually simplified in [9], [10], [28]. This result plays an
important role in information theory, as it strengthens the EPI
(see [23] for an exhaustive list of references), and it is also
useful in connection to some functional inequalities, e.g. the
dimensional logarithmic Sobolev inequality, as pointed out
in [1, Chapter 10].
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The proof of (I.2) relies on De Bruijn’s identity
d
dtH(Ptu) = I(Ptu) relating Shannon’s entropy and Fisher
information, the latter being defined as

I(u) :=

ˆ
Rn

|∇u|2

u
dLn =

ˆ
Rn

|∇ log u|2udLn.

An interpolation problem strictly related with the heat semi-
group is the so-called Schrödinger system, which reads as
follows: given two probabilty measures µ = uLn, ν = vLn

and a parameter T > 0, find two non-negative Borel functions
fT , gT (also called “decomposition”) such that

u = fT PT g
T , v = gT PT f

T . (I.3)

If this system is solvable, then ρTt := Ptf
TPT−tg

T is a
probability density which interpolates between u at time t =
0 and v at time t = T and we will eventually refer either
to it or to µT

t := ρTt L
n as “T -entropic interpolation”. It is

worth mentioning that the heat flow is a particular entropic
interpolation: indeed, if µ = uLn and ν = PTuL

n (in the
sequel, with a slight abuse of notation we will write ν = PTµ
for sake of brevity), then (I.3) is trivially solved by fT = u
and gT = 1.

From a physical point of view (see [16] for a detailed
discussion and [6] for a more recent insight), µ and ν can
be thought of as probability distributions of a cloud of inde-
pendent Brownian particles observed at two different times
and the entropic interpolation is the most-likely evolution
between them. Indeed, in a quite surprising way [18], if one
maximizes the relative entropy

Q 7→ H(Q |R) := −
ˆ
Ω

log
(dQ
dR

)
(ω)dQ(ω)

among all probability measures Q on Ω := C([0, T ],Rn)
under the marginal constraints (X0)♯Q = µ and (XT )♯Q = ν
(where Xt : Ω → Rn, Xt(ω) := ωt, is the canonical process
and R is the law of the reversible Brownian motion on Rn, i.e.
the Brownian motion with Ln as initial distribution), then the
marginal flow of the (unique) maximizer is exactly µT

t . This
explains why the interpolation µT

t is called “entropic”. More-
over, up to reparametrization T can be interpreted either as
a diffusion parameter or (as in the present paper) as the time
interval between the two observations. In the former case,
the link between Schrödinger problem and optimal transport
appears naturally by large deviations theory, whereas in the
latter the convergence of the T -entropic interpolation towards
the heat flow as T → ∞ is rather easy to guess. With this
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physical interpretation in mind, we recognize the following
quantity

ET (µ, ν) :=
1

2

ˆ
Rn

|vTt |2 dµT
t − 1

2
I(µT

t )

as the total energy of the system and by the conservation of
energy principle it is not surprising that ET (µ, ν) does not
depend on t, although the right-hand side might a priori do
(cf. [15, Lemma 3.2] for a rigorous proof). In the definition
above

vTt := ∇ logPT−tg
T −∇ logPtf

T

is the velocity field driving the T -entropic interpolation, since
ρTt and vTt are linked together by the continuity equation,
namely ∂tρ

T
t + div(vTt ρ

T
t ) = 0, as proved for instance in

[12, Proposition 4.3] in a very general framework.

In this paper we show that if we look at the entropy
power N defined in (I.1) along the entropic interpolation
(ρTt )t∈[0,T ] rather than along the heat flow on [0, T ], then
a generalization of Costa’s EPI (I.2) involving N, I and ET

can be deduced, at least if (ρTt )t∈[0,T ] interpolates between
two suitable measures. For a more precise statement, let us
first define S′ as the space of L∞ functions with bounded
support and the Schwartz-like space

S′′ :=

 f ∈ L∞ ∩ C∞(Rn) :
∥xαDβf∥∞ < ∞, ∀α ∈ Nn, β ∈ Nn \ {0n}
| log f(x)| ≤ C(1 + |x|2) for some C > 0

 ,

where 0n is the null n-tuple; relying on these two spaces, let
us introduce the class ΥT of regular constraints for (I.3) as
follows

ΥT :=

{
(µ, ν) : µ, ν ∈ P(Rn) and
∃fT , gT ∈ S′ ∪ S′′ solving (I.3)

}
.

By [12, Proposition 2.1] we know that all couples (µ, ν) of
absolutely continuous measures with bounded densities and
supports belong to ΥT . Furthermore, also (uLn,PTuL

n) ∈
ΥT for any u ∈ S′∪S′′, since in the associated decomposition
gT ≡ 1 and constant functions belong to S′′: this is the reason
behind the choice of excluding β = 0n (but still asking for
f ∈ L∞) in the definition of S′′. As a consequence of this
simple fact, any statement valid for all (µ, ν) ∈ ΥT implies
as a byproduct a particular statement for the heat flow: this
is the case of Theorem I.1 below, where Costa’s EPI (I.2)
appears as a particular case of its “entropic” version (I.4).

After this preamble, we can finally state our main results.

Theorem I.1. Let (µ, ν) ∈ ΥT for some T > 0 and denote
by (ρTt )t∈[0,T ] the T -entropic interpolation between µ and ν.
Then t 7→ N(ρTt ) belongs to C([0, T ]) ∩ C2((0, T )) and it
holds

d2

dt2
N(ρTt ) ≤

4

n2
N(ρTt )I(ρ

T
t )ET (µ, ν). (I.4)

If ν = PTµ, then (I.4) reduces to Costa’s inequality (I.2).

As a consequence of the proof provided in Section III,
we can also characterize the equality case in (I.4). Roughly
speaking, it always reduces to the equality case in (I.2), so

that in particular inequality in (I.4) is always strict along
non-trivial entropic interpolations.

Theorem I.2. With the same assumptions and notations as
in Theorem I.1, there exists t ∈ (0, T ) where (I.4) holds with
equality if and only if either µ = uLn, ν = PTuL

n or ν =
uLn, µ = PTuL

n for some isotropic Gaussian distribution
u.

As pointed out by Villani [28], the concavity of Shannon’s
entropy power along the heat flow can also be deduced by
relying on the so-called Γ-calculus, introduced by Bakry
and Émery [5] in the study of hypercontractive diffusions,
although this approach does not allow to obtain a precise
error term. This means that Costa’s result holds not only
in the Euclidean setting but also on Riemannian manifolds
with non-negative Ricci curvature and even more generally
(and with suitable modifications) on Riemannian manifolds
with Ricci curvature bounded from below by some constant
K ∈ R. In this case (I.2) becomes

d2

dt2
N(Ptu) ≤ −4K

n
N(Ptu)I(Ptu), ∀t > 0, (I.5)

as recently proved in [19]. In a completely analogous fashion,
if we move from the Euclidean to the Riemannian framework,
Theorem I.1 reads as follows.

Theorem I.3. Let (M, g) be an m-dimensional smooth, con-
nected and complete Riemannian manifold without boundary,
V ∈ C2(M) and m = e−V vol, where vol is the volume
measure. Assume that for some K ∈ R and n ≥ m the
Bakry-Émery Ricci tensor RicV,n satisfies the lower bound

RicV,n := Ricg +Hess(V )− ∇V ⊗∇V

n−m
≥ Kg. (I.6)

Let µ, ν ≪ m be probability measures with bounded densi-
ties and supports and denote by (ρTt )t∈[0,T ] the T -entropic
interpolation between them. Then t 7→ N(ρTt ) belongs to
C([0, T ]) ∩ C2((0, T )) and it holds

d2

dt2
N(ρTt ) ≤

4

n2
N(ρTt )I(ρ

T
t )ET (µ, ν)

− 2K

n
N(ρTt )

(ˆ
M

|vTt |2ρTt dm+ I(ρTt )
)
.

(I.7)

If M is compact and ν = PTµ, then (I.7) reduces to (I.5).

Of course, this change of framework needs some remarks.
Both in (I.5) and (I.7) it is understood that the reference
measure in the definition of H, N, and I is no longer Ln but
m. As concerns the semigroup Pt, it denotes the diffusion
semigroup associated with the Witten Laplacian L = ∆g −
∇V · ∇, where ∆g is the Laplace-Beltrami operator: this
means that Ptu solves ∂tPtu = LPtu. It is such a semigroup
that has to be considered in (I.3), in the definition of the
entropic interpolation (ρTt ) as well as in (I.5). The reader
who is not familiar with the language of Markov semigroups
is addressed e.g. to [4].

As regards the link between (I.5) and (I.7), it is still
formally true that the former is a particular case of the
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latter, as we shall discuss in Section II-A, but a rigorous
proof is technical without compactness assumption. Already
(I.5) requires more effort than (I.2). The reason preventing
us from saying that, in full generality, (I.7) reduces to (I.5)
when ν = PTµ is the fact that (I.7) will be proven under
a boundedness assumption on the supports of µ, ν, whereas
the support of PTµ is the whole manifold: thus ν = PTµ is
never satisfied, unless M is compact.

In the rest of the paper we shall give two different proofs of
Theorem I.1. In Section II we present a first abstract argument
based on Γ-calculus, which proves Theorems I.1 and I.3 at
the same time. In Section III we provide a second (algebraic)
proof of Theorem I.1, whence Theorem I.2 immediately
follows.

II. PROOF BY Γ-CALCULUS

Otto and Γ-calculus are powerful tools: the former allows
to obtain in a rather easy way heuristic explanations for
technical statements on the Wasserstein space; the latter is an
abstract formalism based on semigroup theory, which fits well
to diffusions in both the Euclidean and Riemannian setting.
For this reason in Section II-A we first provide a heuristics for
Theorems I.1 and I.3 to hold, while Section II-B is devoted
to the real proof by Γ-calculus.

A. Heuristics

After Otto’s seminal work [22], it is well established that
a formal Riemannian structure is associated with the Wasser-
stein space (P2(M),W2). This means that we can treat H
as a smooth function defined on a manifold (or, in an even
simpler way, on Rn) and (µT

t )t∈[0,T ] as a smooth trajectory
on it. Furthermore, it is also well known that several PDEs on
M can be lifted to gradient flow equations on P2(M) w.r.t.
the Wasserstein metric of suitable functionals: this is the case
of the heat flow, which reads as the gradient flow of −H,
namely µ̇t = ∇H(µt) where µt := Ptµ, µ ∈ P2(M). Since
in (P2(M),W2) it is more common to work with measures
rather than the corresponding densities w.r.t. m, with a slight
abuse we keep the same notations introduced before, e.g.
H(µ) denotes H(u) provided µ = um; analogously for N

and I.

As (I.7) is a statement on the second derivative of t 7→
N(t) := N(µT

t ), let us differentiate it twice. The first
derivative reads as

N′(t) = N(t) · 2
n
⟨∇H(µT

t ), µ̇
T
t ⟩,

so that the second derivative is given by

N′′(t)

N(t)
=

4

n2

(
⟨∇H(µT

t ), µ̇
T
t ⟩

)2
+

2

n
Hess(H)(µ̇T

t , µ̇
T
t )

+
2

n
⟨∇H(µT

t ), µ̈
T
t ⟩.

A look at the dynamical aspects of entropic interpolations
is required in order to move forward; more precisely, the
“acceleration” of t 7→ µT

t (or, in more geometric terms,

the covariant derivative of t 7→ µ̇T
t along t 7→ µT

t ) has to
be determined. The desired information is provided by the
following Newton’s law (see [6])

µ̈T
t =

1

2
∇|∇H(µT

t )|2, (II.1)

so that the previous identity becomes

N′′(t)

N(t)
=

( 4

n2

(
⟨∇H(µT

t ), µ̇
T
t ⟩

)2
+

2

n
Hess(H)(µ̇T

t , µ̇
T
t )

+
2

n
Hess(H)(∇H(µT

t ),∇H(µT
t )).

Now we rely on the geometric structure of (P2(M),W2)
and, more specifically, on the role played by the curvature-
dimension condition (I.6) in connection with the Boltzmann
entropy −H. After the seminal works [26], [27], [11] it is
well known that (I.6) is equivalent to the (K,n)-convexity
of −H. Let us recall that a functional F : P2(M) → R is
said to be (K,n)-convex provided

Hess(F) ≥ KId +
1

n
∇F ⊗∇F. (II.2)

This information turns into an upper bound on Hess(H),
whence

N′′(t)

N(t)
≤ 2

n2

(
⟨∇H(µT

t ), µ̇
T
t ⟩

)2 − 2

n2
|∇H(µT

t )|4

− 2K

n

(
|µ̇T

t |2 + |∇H(µT
t )|2

)
.

It we further note that |⟨∇H(µT
t ), µ̇

T
t ⟩| ≤ |∇H(µT

t )||µ̇T
t |

by Cauchy-Schwarz inequality and use De Bruijn’s identity,
which reads as |∇H|2 = I in Otto’s formalism (namely the
Fisher information is nothing but the squared norm of the
gradient of Shannon’s entropy), we obtain

N′′(t)

N(t)
≤ 2

n2
I(µT

t )
(
|µ̇T

t |2 − I(µT
t )

)2 − 2K

n

(
|µ̇T

t |2 + I(µT
t )

)
.

It only remains to remark that the speed of a curve (µt)
solving the continuity equation with drift vt can be expressed
as |µ̇t| = ∥vt∥L2(µt), so that we recognize

´
M

|vTt |2 dµT
t

in (I.7) as |µ̇T
t |2 and, as a consequence, |µ̇T

t |2 − I(µT
t ) as

2ET (µ, ν).
The fact that (I.5) is a particular case of (I.7) is not

surprising, since, as already mentioned, the heat flow is a
particular case of entropic interpolation. If µ = um and
ν = PTum, then the Schrödinger system (I.3) is solved by
fT = u and gT = 1, whence

|µ̇T
t |2 = I(µT

t ) = I(Ptu) and ET (µ, ν) = 0.

Plugging these identities into (I.7) yields (I.5).

Remark II.1. The heuristics described in this section actu-
ally applies to a wider class of variational problems, known
as generalized Schrödinger problems and introduced in [14].
Given F : P2(M) → R ∪ {+∞} and µ, ν ∈ P2(M), they
read as the following action minimizing problem

inf
(νt)t∈[0,T ]

ˆ T

0

(1
2
|ν̇t|2 +

1

2
|∇F|2(νt)

)
dt,
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where the infimum runs over all paths (νt)t∈[0,T ] joining µ
to ν, and they indeed generalize the dynamic formulation of
the entropic cost à la Benamou-Brenier (see [13]). A rigorous
investigation of these problems has been started in [21] (the
setting is even more general, since P2(M) is replaced by an
abstract metric space), but the possibility to turn the heuristic
arguments of this section into rigorous ones for this class of
problems seems, at present, out of reach: the main difficulty
is the lack of information on the regularity of the minimizers,
more precisely the lack of a Newton’s law, which is instead
available for the Schrödinger problem, as we are about to see
in the next section. ■

B. Proof of the result

Let us first discuss Theorem I.1. In order to turn the heuris-
tic approach presented above into a precise one, rigorous
counterparts of (II.1) and (II.2) are required. As concerns
the former, we shall rely on the following formulas for the
first and second derivatives of the entropy along entropic
interpolations, computed for the first time in [17]:

d

dt
H(ρTt ) = −

ˆ
Rn

⟨∇ρTt ,∇ϑT
t ⟩dLn, (II.3a)

d2

dt2
H(ρTt ) = −

ˆ
Rn

(
Γ2(ϑ

T
t ) + Γ2(log ρ

T
t )

)
ρTt dLn,

(II.3b)

where ϑT
t := logPT−tg

T − logPtf
T and Γ2 is the iterated

carré du champ operator defined as

Γ2(ϕ) :=
1

2
∆|∇ϕ|2 − ⟨∇ϕ,∇∆ϕ⟩, ∀ϕ ∈ C∞

c (Rn).

As Ptϕ is the convolution of ϕ with the n-dimensional
Gaussian density having 0n mean and 2tIdn as covariance
matrix, Pt maps S′ ∪ S′′ into S′′ for all t > 0; actually, a
stronger statement holds: for any ϕ ∈ S′∪S′′, Ptϕ is, locally
in t ∈ (0,∞), uniformly bounded by an integrable function
and the same is true for |∂tPtϕ| and |∂2

t Ptϕ|. Therefore the
same arguments that justify the (twice) differentiability of
the entropy along the heat flow in Costa’s EPI, namely of
t 7→ −

´
Rn Φ(Ptϕ) dL

n for ϕ ∈ S′′ with Φ(z) := z log z,
allow to deduce that

α(s, t) := −
ˆ
Rn

Φ(Psf
T )PT−tg

T dLn

β(s, t) := −
ˆ
Rn

Φ(PT−sg
T )Ptf

T dLn

are C2 on (0, T )×(0, T ) and continuous up to the boundary;
since H(ρTt ) = α(t, t) + β(t, t), as a byproduct t 7→ H(ρTt )
belongs to C([0, T ]) ∩ C2((0, T )). The validity of (II.3a),
(II.3b) for all t ∈ (0, T ) is then a matter of computations
(see the already cited [17]).

On the other hand, it is not difficult to verify that in Rn it
holds

Γ2(ϕ) = |Hess(ϕ)|2HS ≥ 1

n
(∆ϕ)2, ∀ϕ ∈ C∞

c (Rn)

(II.4)

and this replaces (II.2) with K = 0. With this premise,
the heuristic argument of the previous section becomes fully
rigorous in the following way.

Proof of Theorem I.1. As t 7→ H(ρTt ) is C([0, T ]) ∩
C2((0, T )), so is t 7→ N(ρTt ). For sake of brevity set
N(t) := N(ρTt ) and write its first derivative as

N′(t) = N(t) · 2
n

d

dt
H(ρTt ),

so that by (II.3a), (II.3b) and (II.4) N′′ can be estimated as
follows

N′′(t)

N(t)
=

4

n2

( d

dt
H(ρTt )

)2

+
2

n

d2

dt2
H(ρTt )

=
4

n2

(ˆ
Rn

⟨∇ρTt ,∇ϑT
t ⟩dLn

)2

− 2

n

ˆ
Rn

(
Γ2(ϑ

T
t ) + Γ2(log ρ

T
t )

)
ρTt dL

n

≤ 4

n2

(ˆ
Rn

⟨∇ρTt ,∇ϑT
t ⟩dLn

)2

− 2

n2

ˆ
Rn

(
(∆ϑT

t )
2 + (∆ log ρTt )

2
)
ρTt dL

n.

Then by Jensen’s inequality and integration by partsˆ
Rn

(
(∆ϑT

t )
2 + (∆ log ρTt )

2
)
ρTt dL

n

≥
( ˆ

Rn

∆ϑT
t ρTt dL

n
)2

+
( ˆ

Rn

∆ log ρTt ρTt dL
n
)2

=
(
−
ˆ
Rn

⟨∇ρTt ,∇ϑT
t ⟩dLn

)2

+
(
−
ˆ
Rn

|∇ log ρTt |2 ρTt dLn
)2

=
( ˆ

Rn

⟨∇ log ρTt ,∇ϑT
t ⟩ρTt dLn

)2

+ I(ρTt )
2

and plugging this inequality into the previous one yields

N′′(t)

N(t)
≤ 2

n2

( ˆ
Rn

⟨∇ log ρTt ,∇ϑT
t ⟩ρTt dLn

)2

− 2

n2
I(ρTt )

2.

By Cauchy-Schwarz inequality the first summand on the
right-hand side can be controlled as( ˆ

Rn

⟨∇ log ρTt ,∇ϑT
t ⟩ ρTt dLn

)2

≤
ˆ
Rn

|∇ log ρTt |2ρTt dLn

ˆ
Rn

|∇ϑT
t |2ρTt dLn

(II.5)

and this implies

N′′(t)

N(t)
≤ 2

n2
I(ρTt )

(ˆ
Rn

|∇ϑT
t |2ρTt dLn − I(ρTt )︸ ︷︷ ︸
=2ET (µ,ν)

)
,

whence (I.4). Finally, if ν = PTµ (and say µ = uLn), then
as already said the associated Schrödinger system (I.3) is
solved by fT = u and gT = 1. By the very definition of the
total energy ET , this implies ET (µ, ν) = 0 and plugging this
information into (I.4) yields (I.2).
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Let us now discuss Theorem I.3. The fact that t 7→ H(ρTt )
belongs to C([0, T ]) ∩ C2((0, T )) and (II.3a), (II.3b) hold
true for all t ∈ (0, 1) (with Rn, Ln replaced by M , m
respectively) is justified by [12, Proposition 4.8]. On the other
hand, the curvature-dimension assumption (I.6) is equivalent
to the generalized Bochner inequality

Γ2(ϕ) ≥ K|∇ϕ|2 + 1

n
(Lϕ)2, ∀ϕ ∈ C∞

c (M), (II.6)

which replaces (II.2); of course, in the definition of Γ2 on M ,
L substitutes ∆. After this digression, the proof of Theorem
I.3 is a minor modification of the previous one.

Proof of Theorem I.3. Computing N′′ as in the proof of
Theorem I.1 and using (II.6) instead of (II.4) we get

N′′(t)

N(t)
≤ 4

n2

(ˆ
M

⟨∇ρTt ,∇ϑT
t ⟩dm

)2

− 2

n2

ˆ
M

(
(LϑT

t )
2 + (L log ρTt )

2
)
ρTt dm

− 2K

n

ˆ
M

(
|∇ϑT

t |2 + |∇ log ρTt |2
)
ρTt dm

)
.

Now it suffices to follow the same argument as in the proof
of Theorem I.1 (replacing ∆, Ln with L, m respectively, the
same integration by parts formula is valid) and keep track of
the additional term until the end to obtain (I.7).

If M is compact and ν = PTµ with µ = um, then
ET (µ, ν) = 0 as in Theorem I.1 and moreover ρTt = Ptu,
|∇ϑT

t | = |∇ logPtu|.

Remark II.2. A further way to see that (I.7) implies (I.5)
relies on the long-time behavior of T -entropic interpolations
and the energy ET (µ, ν), investigated in [7]. From an intuitive
point of view, the more the time parameter T grows, the less
the final condition v = gTPT f

T in (I.3) is influent, so that
in the limit (I.3) is in fact a decoupled system and the T -
entropic interpolation is nothing but the heat flow starting at
µ.

Under the further assumption that K ≥ 0 and m is
a probability (for K > 0 this is always true thanks to
[26, Theorem 4.26]), by [7, Theorem 1.2] we know that
ET (µ, ν) → 0 as T → ∞. Moreover, if µ = um and ν = vm,
by [7, Lemma 3.6] we also know that

lim
T→∞

fT = u, lim
T→∞

gT = v

and
lim

T→∞
PT f

T = lim
T→∞

PT g
T = 1,

where all limits are in Lp(m) for any p ∈ [1,∞), so that
ρTt → Ptu in Lp(m) as T → ∞. Therefore it is intuitively
clear that (I.5) can be recovered as the long-time limit of (I.7),
since as T → ∞ we expect the first term on the right-hand
side of (I.7) to vanish, whereas

lim
T→∞

ˆ
M

|vTt |2ρTt dm+ I(ρTt ) = 2I(Ptu).

To turn this sketch of proof into a rigorous demonstration,
one should only pass through an integrated version of (I.7)
and argue by dominated convergence. ■

Remark II.3. For the reader who is familiar with the Lott-
Sturm-Villani [20], [26] and Ambrosio-Gigli-Savaré [2], [3]
theories of synthetic Ricci lower bounds in metric measure
spaces, Theorem I.3 actually holds true on any RCD(K,n)
space. Indeed, the C2-regularity of t 7→ H(ρTt ) has been
proved in [12, Proposition 4.8] in the RCD setting and (II.6)
is known to be equivalent to the RCD(K,n) condition by
[11]. ■

III. PROOF OF THEOREM I.1 WITH DEFICIT

In this section we shall give a direct proof of Theorem
I.1 with an (almost) exact error term, in the same spirit of
[28]. This means that we shall put aside (II.4) and argue by
explicit computations: the disadvantage is the validity of the
approach only in the Euclidean setting, but as an advantage
we are able to characterize the case of equality in (I.4), thus
proving Theorem I.2.

Inspired by [28], let us first observe that, thanks to the
computations carried out in the proof of Theorem I.1 (and in
particular thanks to the formula for N′′), (I.4) is equivalent
toˆ

Rn

(
Γ2(ϑ

T
t ) + Γ2(log ρ

T
t )

)
ρTt dLn

− 2

n

(ˆ
Rn

⟨∇ρTt ,∇ϑT
t ⟩dLn

)2

+
2

n
I(ρTt )ET (µ, ν) ≥ 0

(III.1)

and define

A1(λ) :=

n∑
i,j=1

ˆ
Rn

(
∂ijϑ

T
t + λδij

)2
ρTt dLn,

A2(η) :=

n∑
i,j=1

ˆ
Rn

(
∂ij log ρ

T
t + ηδij

)2
ρTt dLn.

By expanding A1 as a binomial in λ, using integration by
parts and the fact that ρTt is a probability density, we get

A1(λ) =
n∑

i,j=1

ˆ
Rn

(
∂ijϑ

T
t

)2
ρTt dLn

− 2
n∑

i=1

λ

ˆ
Rn

∂iρ
T
t ∂iϑ

T
t dLn + λ2n

=

ˆ
Rn

Γ2(ϑ
T
t )ρ

T
t dLn

− 2λ

ˆ
Rn

⟨∇ρTt ,∇ϑT
t ⟩dLn + λ2n,

the second identity being motivated by Bochner’s identity in
Rn, namely

n∑
i,j=1

(∂ijϕ)
2 = |Hess(ϕ)|2HS =

1

2
∆|∇ϕ|2−⟨∇ϕ,∇∆ϕ⟩ = Γ2(ϕ).

In particular, if we choose

λ∗ =
1

n

ˆ
Rn

⟨∇ρTt ,∇ϑT
t ⟩dLn,
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then

A1(λ
∗) =

ˆ
Rn

Γ2(ϑ
T
t )ρ

T
t dLn− 1

n

(ˆ
Rn

⟨∇ρTt ,∇ϑT
t ⟩dLn

)2

.

Arguing in the same way for A2, we obtain

A2(η) =

ˆ
Rn

Γ2(log ρ
T
t )ρ

T
t dLn − 2ηI(ρTt ) + η2n

and if we choose

η∗ =
1

n
I(ρTt ),

then

A2(η
∗) =

ˆ
Rn

Γ2(log ρ
T
t )ρ

T
t dLn − 1

n
I(ρTt )

2.

Hence

A1(λ
∗) +A2(η

∗)

=

ˆ
Rn

Γ2(ϑ
T
t )ρ

T
t dLn +

ˆ
Rn

Γ2(log ρ
T
t )ρ

T
t dLn

− 2

n

( ˆ
Rn

⟨∇ρTt ,∇ϑT
t ⟩dLn

)2

+
1

n

( ˆ
Rn

⟨∇ρTt ,∇ϑT
t ⟩dLn

)2

− 1

n
I(ρTt )

2

and by (II.5) and the very definition of ET (µ, ν)

1

n

(ˆ
Rn

⟨∇ρTt ,∇ϑT
t ⟩dLn

)2

− 1

n
I(ρTt )

2 ≤ 2

n
I(ρTt )ET (µ, ν).

(III.2)
Plugging this inequality into the previous identity exactly
yields (III.1), since trivially A1(λ

∗) + A2(η
∗) ≥ 0. Note

that if equality occurs in (III.1) for some t, then in particular
equality must hold in (III.2) and this is true if and only if
(II.5) is actually an identity. As Cauchy-Schwarz inequality
is an equality only for parallel vectors, this means that

either ∇ log ρTt = ∇ϑT
t , or ∇ log ρTt = −∇ϑT

t .

By definition of ρTt and ϑT
t , this means that

either ∇ logPtf
T = 0, or ∇ logPT−tg

T = 0,

namely either fT or gT is constant and this implies that
the entropic interpolation (µT

t )t∈[0,T ] is in fact a forward
or backward heat flow. Therefore the case of equality in the
entropic EPI (I.4) reduces to equality in Costa’s EPI (I.2) and
the latter is already well understood (see e.g. [8, Theorem 3]).
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inégalités de Sobolev logarithmiques. Société mathématique de France
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[14] Ivan Gentil, Christian Léonard, and Luigia Ripani. Dynamical aspects
of generalized Schrödinger problem via Otto calculus - A heuristic point
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