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Abstract

We study the Singleton-type bound that provides an upper limit on the minimum distance of locally repairable codes. We
present an improved bound by carefully analyzing the combinatorial structure of the repair sets. Thus, we show the previous
bound is unachievable for certain parameters. We then also provide explicit constructions of optimal codes that show that for
certain parameters the new bound is sharp. Additionally, as a byproduct, some previously known codes are shown to attain the
new bound and are thus proved to be optimal.

Index Terms

Locally repairable codes, Singleton-type bound

I. INTRODUCTION

DUE to the ever-growing need for more efficient and scalable systems for cloud storage and data storage in general,

distributed storage systems (DSSs) (such as the Google data centers and Amazon Clouds) have become increasingly

important. In a distributed storage system, a data file is stored at a distributed collection of storage devices/nodes in a network.

Since any storage device is individually unreliable and subject to failure, redundancy must be introduced to provide the

much-needed system-level protection against data loss due to device/node failure.

In today’s large distributed storage systems, where node failures are the norm rather than the exception, designing codes

that have good distributed repair properties has become a central problem. Several cost metrics and related tradeoffs have been

studied in the literature, for example repair bandwidth [4], [5], disk-I/O [24], and repair locality [4], [8], [13]. In this paper

repair locality is the subject of interest.

Motivated by the desire to reduce repair cost in the design of erasure codes for distributed storage systems, the notions of

symbol locality and locally repairable codes (LRC) were introduced in [8] and [14], respectively. The ith coded symbol of an

[n, k] linear code C is said to have locality r if it can be recovered by accessing at most r other symbols in C. Alternatively,

the ith code symbol with the r other symbols form a 1-erasure correcting code. The concept was further generalized to

(r, δ)-locality by Prakash et al. [15] to address the situation of multiple device failures. Here, the ith coordinate, together with

r + δ − 2 other coordinates, form a code capable of correcting δ − 1 erasures. When δ = 2 this coincides with the definition

of locality.

There are two types of linear codes with (r, δ)-locality considered in the literature. The first is information symbol locality,

pertaining to systematic linear codes whose information symbols all have (r, δ)-locality (denoted by (r, δ)i-locality for short).

The second is of all-symbol locality (or (r, δ)a-locality) pertaining to linear codes all of whose symbols have (r, δ)-locality.

For any [n, k, d]q-linear code with minimum Hamming distance d over the finite field Fq, the Singleton bound [19] is given

by

d 6 n− k + 1, (1)

which is one of the most classical theorems in coding theory. This bound was generalized for locally repairable codes in [8]

(the case δ = 2) and [15] (general δ) as follows. An [n, k, d]q-linear LRC with (r, δ)i-locality satisfies

d 6 n− k − 1−

(⌈
k

r

⌉
− 1

)
(δ − 1). (2)

It was also proved that a class of codes known as pyramid codes [9] achieves this bound when the alphabet is sufficiently

large, say q > n+1 and d > δ (for a weaker field-size requirement please refer to [3]). Since a linear code with (r, δ)a-locality

is also a linear code with (r, δ)i-locality, (2) also presents an upper bound for the minimum Hamming distance of (r, δ)a
codes. Other bounds for linear and nonlinear LRCs can be found in [1], [14], [16], [17], [22], [25]. An LRC is optimal if it
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has the highest minimum Hamming distance of any code of the given parameters n, k, r, and δ. In this paper, we focus on

Singleton-type bounds (like (1) and (2) above) and their corresponding optimal codes.

There are different constructions of LRCs that are optimal in the sense that they achieve the Singleton-type bound in (2),

e.g., [2], [15], [18], [20], [21], [23]. Tamo et al. [23] showed that the r-locality of a linear LRC is a matroid invariant, which

was used to prove that the minimum Hamming distance of a class of linear LRCs achieves the Singleton-type bound. In

[21], Tamo and Barg introduced an interesting construction that can generate optimal linear codes with (r, δ)a-locality over an

alphabet of size O(n). Under the assumption of a sufficiently large alphabet, Song et al. [20] investigated for which parameters

(n, k, r, δ) there exists a linear LRC with all-symbol locality and minimum Hamming distance d achieving the Singleton-type

bound (2). The parameter set (n, k, r, δ) was divided into eight different cases. In four of these cases it was proved that there

are linear LRCs achieving the bound, in two of these cases it was proved that there are no linear LRCs achieving the bound,

and the existence of linear LRCs achieving the bound in the remaining two cases remained an open problem. Independently

of [20], Wang and Zhang [25] used a linear-programming approach to strengthen these result when δ = 2. Ernvall et al. [6]

presented methods to modify already existing codes, and gave constructions for three infinite classes of optimal vector-linear

LRCs with all-symbol locality over an alphabet of small size. Recently, Westerbäck et al. [26] provided a link between matroid

theory and LRCs that are either linear or more generally almost affine, and derived new existence results for linear LRCs and

nonexistence results for almost affine LRCs, which strengthened the results for linear LRCs given in [20].

Thus, in general, the bound in (2) is not tight for LRCs with (r, δ)a-locality, even under the assumption of having a

sufficiently large finite field. In this paper, we further study the Hamming distance of LRCs with (r, δ)a-locality. We derive an

improved bound on the minimum Hamming distance, compared with (2). As a consequence, the improved bound shows that

some previously undecided cases are in fact unachievable for the bound in (2). The improved bound can also prove some LRCs

based on matroids in [26] are indeed optimal. We also give two new explicit constructions to generate optimal LRCs with

respect to the improved bound. In Fig. 1, we extend and refine the summary appearing in [20], and show the known and new

results concerning the tightness of the Singleton-type bound for LRCs under the assumption that the alphabet is sufficiently

large.

The paper is organized as follows. In Section II, we introduce some definitions and facts concerning LRCs with (r, δ)a-

locality. Section III mainly discusses the structure and properties of a collection of repair sets for locally repairable codes

with all-symbol locality. In Section IV, we prove an upper bound on the minimum Hamming distance, by applying the results

obtained in Section III. In Section V, we discuss the implications of our new upper bound. In Section VI, constructions of

locally repairable codes are given, which can generate optimal codes with respect to our new bound. Section VII concludes

the paper with a discussion of the results and some open questions.

II. PRELIMINARIES

Let C be an [n, k, d]q linear code over the finite field Fq. Assume C has a generator matrix G = (g1,g2, . . . ,gn), where

gi ∈ Fk
q is a column vector for i = 1, 2, . . . , n. While many different generator matrices exist for C, in what follows, the

choice of G is immaterial. Given C and the matrix G, we introduce some notation and concepts.

For an integer n ∈ N we denote [n] = {1, 2, . . . , n}. For any set N ⊆ [n], we denote GN = {gi : i ∈ N}. Then span(N)
denotes the linear space spanned by GN over Fq, and rank(N) denotes the dimension of span(N). Additionally, CN denotes

the punctured code of C associated with the coordinate set N . That is, CN is obtained from C by deleting all symbols in the

coordinates [n] \N .

The following lemma describes a useful fact about [n, k, d]q linear codes, which plays an important role in our paper.

Lemma 1 ([11]): The minimum Hamming distance of any [n, k, d]q linear codes satisfies

d = n−max {|N | : N ⊆ [n], rank(N) < k} .

We now recall the definition of repair sets, and locally repairable codes.

Definition 1 ([15]): Let C be an [n, k, d]q code. For 1 6 r 6 k and δ > 2, an (r, δ)-repair set of C is a subset S ⊆ [n]
such that

1) |S| 6 r + δ − 1;

2) For every l ∈ S, L ⊆ S \{l} and |L| = |S|− (δ−1), cl is a linear function of {ci : i ∈ L}, where c = (c1, · · · , cn) ∈ C.

We say that C is a locally repairable code (LRC) with all-symbol (r, δ)-locality (or C is an LRC with (r, δ)a-locality) if all

the n symbols of the code are contained in at least one (r, δ)-repair set.

Remark 1 ([20], [26]): Note that the symbols in an (r, δ)-repair set S can be used to recover up to δ − 1 erasures in the

same repair set, then each of the following statements are equivalent to Definition 1, item 2):

1) For any L ⊆ S with |L| = |S| − (δ − 1), we have rank(L) = rank(S);
2) For any l ∈ S, L ⊆ S \ {l} and |L| = |S| − (δ − 1), we have |CL∪{l}| = |CL|;
3) For any L ⊆ S with |L| > |S| − (δ − 1), we have |CL| = |CS |;
4) d(CS) > δ, where d(CS) is the minimum Hamming distance of CS .
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✬

✫

✩

✪

Tightness of the Singleton-type bound (2)

Optimal codes:

[17], q = Θ((r + δ − 1)(rn)/(r+δ−1))
[20], q = Θ(

(
n
k

)
)

[21], q = Θ(n)

[2], q = Θ(n1/δ)

(r + δ − 1)|n

Unachievable [20]

(r + δ − 1) ∤ n and r|k

n = w(r + δ − 1) +m, r = ur + v,

where 0 < v < r, 0 < m < r + δ − 1

(r + δ − 1) ∤ n and r ∤ k

Optimal codes:

[20], [23], q > knk

m > v + δ − 1

Unachievable [20]

m < v + δ − 1 and

u > 2(r − v) + 1

New tight bound:

Corollary 2

Optimal codes:

Theorem 4

2v > r, m > δ,

u > r + δ − 1, and

u > 2(r + δ − 1−m)

New tight bound:

Corollary 3

Optimal codes:

Theorem 5

m 6 δ − 1, 2v > r,

and u > 2r + δ − 1

m < v + δ − 1 and

u < 2(r − v) + 1

Optimal codes [20]

r − v > u, and

w > r + δ − 1−m

Optimal codes [20]

w > 2(r + δ − 1−m)

Unachievable [26]

r + δ − 1−m 6 w,

w < 2(r + δ − 1−m)− 1,

and r − v < u
w < r + δ − 1−m

Unachievable [26]

r − v < u

Unachievable

Corollary 4

u 6 r − v, 2v > r,

m < r + δ − 1− w (w+1)(r−v)
(u−1)u

Still open

u 6 r − v,

and 2v 6 r

Still open

u 6 r − v, 2v > r, and

m(u2 − u) > (r + δ − 1)(u2 − u)− w(w + 1)(r − v)

Fig. 1: The tightness of the Singleton-type bound for LRC in (2), where n = w(r+δ−1)+m, 0 6 m < r+δ−1, k = ur+v,

and 0 < v 6 r. The new contributions of this paper appear in bold frames. We do not consider the case u = 0, i.e., k = r,

since this is exactly the case of the classic Singleton bound.

In what follows, whenever we speak of an LRC with (r, δ)a-locality, we will by default assume it is an [n, k, d]q linear code

(i.e., its length is n, its dimension is k, its minimum Hamming distance is d, and its alphabet size is q).

III. PROPERTIES OF LRCS WITH (r, δ)a-LOCALITY

The goal of this section is to study the structure of (r, δ)-repair sets induced by (r, δ)a-locality, and propose some properties

which can be used to obtain a lower bound on the minimum Hamming distance in the next section. Generally speaking, we

would like to find a set that contains as many code coordinates as possible, under the condition that its rank does not exceed

k − 1. To this end, we distinguish among three cases. The relationship between repair sets, the number of code symbols, and

their rank, is easy to determine for the first case (refer to Proposition 2) The remaining two cases are reduced to the first case

in Propositions 3-5.

Throughout the paper we assume that C denotes an [n, k, d]q LRC with (r, δ)a-locality. The parameters n and k are written

in the following forms:
n = w(r + δ − 1) +m, 0 6 m < r + δ − 1,

k = ur + v, 0 < v 6 r,
(3)

where w,m, u, v are nonnegative integers. Observe that we represent k as ur + v with 0 < v 6 r to make sure that ur < k.

Remark 2: For the parameters of LRC with (r, δ)a-locality, we have the following simple observations:

1) If u = 0, then the fact that k > r implies that k = r and n > r + δ − 1, which is a trivial case for LRC.

2) The facts that k = ur+ v and the code has (r, δ)a-locality imply that w > u, since we need at least ⌈kr ⌉ = u+1 repair

sets to cover all the information symbols, i.e., w(r + δ − 1) +m = n > k+ (u+1)(δ − 1) = u(r+ δ− 1) + v+ δ− 1.

Note that each repair set contains at least δ − 1 parity check symbols.

3) For the nontrivial case k > r, we have n > r + δ − 1, which follows directly from the previous claims.
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Definition 2: Let n, T, s ∈ N. Additionally, let X be a set of cardinality n, whose elements are called points. Finally, let

B = {B1, B2, . . . , BT } ⊆ 2X be a set of blocks such that
⋃

i∈[T ] Bi = X , and for all i ∈ [T ], |Bi| 6 s and
⋃

j∈T\{i} Bj 6= X .

We then say (X ,B) is an (n, T, s)-essential covering family (ECF). If all blocks are the same size we say (X ,B) is a uniform

(n, T, s)-ECF.

For an LRC with (r, δ)a-locality, note that each code symbol may be contained in more than one repair set. Thus, to

simplify the discussion, we first use the (r, δ)-repair sets to form an ECF, which can be naturally obtained from Definition 1

and Remark 1, as described in [2].

Lemma 2 ([2]): For any [n, k]q linear code C with (r, δ)a-locality, let Γ ⊆ 2[n] be the set of all possible (r, δ)-repair sets.

Then we can find a subset S ⊆ Γ such that ([n],S) is an (n, |S| , r + δ − 1)-ECF with |S| >
⌈
k
r

⌉
.

Remark 3: The fact that the components of S cover all the element of [n] implies that

|S| >

⌈
n

r + δ − 1

⌉
= w +

⌈
m

r + δ − 1

⌉
> w.

In particular, |S| = w if and only if m = 0, S is uniform, and the repair sets in S form a partition of [n].

Let V be a subset of the set S that was obtained in Lemma 2. We observe that V must satisfy at least one of the following

three conditions:

C1:

∣∣∣Si ∩
(⋃

Sj∈V\{Si}
Sj

)∣∣∣ < |Si| − δ + 1 for any Si ∈ V ;

C2: |Si ∩ Sj | < min {|Si|, |Sj |} − δ + 1 for any distinct Si, Sj ∈ V ;

C3: there exist two distinct Si, Sj ∈ V , such that |Si ∩ Sj | > min {|Si|, |Sj |} − δ + 1.

In fact, since Conditions C2 and C3 are complementary, exactly one of them holds, and perhaps Condition C1 holds as well.

The following definitions introduce concepts required in several of our claims.

Definition 3: Assume r, δ > 1 are fixed. For all integers a > r + δ − 1, b > 0 we define the function Φ(a, b) as follows:

Φ(a, b) =

{
min

{
r + δ − 1− c,max

{⌊
b
2

⌋
,
⌈
b(b−1)(r+δ−1−c)

(ℓ+1)ℓ

⌉}}
if c 6= 0,

0 if c = 0,

and where c denotes the minimum nonnegative integer with c ≡ a mod (r + δ − 1), and ℓ =
⌊

a
r+δ−1

⌋
.

Definition 4: Let S denote the ECF induced by an LRC with (r, δ)a-locality via Lemma 2, and let V ⊆ S be some subset

of it. We define

Υ(V ,S) =

(
⋃

Si∈V

Si

)
\




⋃

Sj∈S\V

Sj




and denote

M(V ,S) = |Υ(V ,S)| .

We now present a sequence of results on the structure of S, depending at times on which of Conditions C1-C3 it satisfies.

The proofs are technical and tedious, and are therefore all deferred to the appendix to facilitate the reading.

Proposition 1: For any integer 0 6 t 6 |S|, there exists a t-subset V of S such that

|V|(r + δ − 1)−

∣∣∣∣∣
⋃

Si∈V

Si

∣∣∣∣∣ > Φ(n, t).

Proposition 2 ([2, Lemma 8]): Let V be a subset of S such that V satisfies Condition C1. Then

rank

(
⋃

Si∈V

Si

)
6

∣∣∣∣∣
⋃

Si∈V

Si

∣∣∣∣∣− |V|(δ − 1).

Proposition 3: Let V be a subset of S such that V satisfies Condition C2, but not Condition C1. Then there exists a subset

V∗ ⊆ V , such that

1) V∗ satisfies Condition C1;

2) |V∗|(r + δ − 1)−
∣∣⋃

Si∈V∗ Si

∣∣ > ⌈r/2⌉.
Proposition 4: Let V be a subset of S such that V satisfies Condition C3. Then there exists a pair of subsets V∗

1 ⊆ V1 ⊆ S
such that:

1) V1 \ V∗
1 satisfies Condition C1;

2) For any Sj ∈ V1 \ V∗
1 , there exists Si ∈ V∗

1 , such that span(Si) ⊆ span(Sj);
3) S \ V∗

1 satisfies Condition C2.
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Proposition 5: Assume the same setting as in Proposition 4, and let V∗
1 ⊆ V1 ⊆ S be the subsets guaranteed there. Denote

Υ = Υ(V∗
1 ,S) and M = M(V∗

1 ,S). Then

1) GΥ ⊆ span(
⋃

Si∈V1\V∗
1
Si);

2) |GΥ ∩ span(
⋃

Si∈U Si)| > |U|, for any subset U ⊆ V1 \ V∗
1 ;

3) |V∗
1 | 6 M , |V1 \ V∗

1 | 6 M , and |V1| 6 2M .

IV. AN IMPROVED BOUND

Having laid the foundation in the previous section, we now use the structure of the repair sets, together with Lemma 1,

to obtain a lower bound on the minimum Hamming distance of an LRC with (r, δ)a-locality. Thus, we aim to find a subset

S ⊆ [n] with rank(S) = k− 1, whose size is as large as possible. Particularly, in Lemma 3 below, we find such a set of code

symbols under Condition C1. By reducing the cases given Condition C2 and C3 to the case of Condition C1, we find such a

set for the general case in Proposition 6 below. We then describe our main bound in Theorem 1.

Throughout this section, we still assume that C is an [n, k, d]q linear code with (r, δ)a-locality, and S is the ECF given by

Lemma 2. The parameters n and k are written as in (3).

Lemma 3: If there exists a subset V1 ⊆ S satisfying Condition C1, |V1| 6 u, and

|V1|(r + δ − 1)−

∣∣∣∣∣
⋃

Si∈V1

Si

∣∣∣∣∣ > ∆ > 0,

then we can obtain a subset S ⊆ [n] with
⋃

Si∈V1
Si ⊆ S, rank(S) = k − 1, and

|S| > k − 1 +

(⌈
k +∆

r

⌉
− 1

)
(δ − 1).

Proof: The main idea of the proof is to extend V1 to a subset of S with rank less than k, and size as large as possible.

Note that k = ur+v with 0 < v 6 r means that |S| >
⌈
k
r

⌉
> u. If |V1| = u we set V2 = V1. Otherwise, we describe a method

for extending V1 to a u-subset of S, denoted as V2, as follows. The fact that rank(
⋃

Si∈V1
Si) 6 |V1|r 6 r(u − 1) < k − r

implies that there is a Sτ ∈ S \ V1, with

rank

(
⋃

Si∈V1

Si

)
< rank




⋃

Si∈V1∪{Sτ}

Si


 ,

which means that ∣∣∣∣∣Sτ ∩

(
⋃

Si∈V1

Si

)∣∣∣∣∣ < |Sτ | − δ + 1.

Thus, we can delete δ − 1 elements from Sτ \
(⋃

Si∈V1
Si

)
and keep the rank, i.e.,

rank




⋃

Si∈V1∪{Sτ}

Si


− rank

(
⋃

Si∈V1

Si

)
6

∣∣∣∣∣∣

⋃

Si∈V1∪{Sτ}

Si

∣∣∣∣∣∣
−

∣∣∣∣∣
⋃

Si∈V1

Si

∣∣∣∣∣− δ + 1.

By applying Proposition 2 to V1 ∪ {Sτ}, the above inequality implies that

rank




⋃

Si∈V1∪{Sτ}

Si



 6

∣∣∣∣∣∣

⋃

Si∈V1∪{Sτ}

Si

∣∣∣∣∣∣
− |V1 ∪ {Sτ}| (δ − 1).

Repeating the above procedure, we can find a subset V2 ⊆ S with |V2| = u, V1 ⊆ V2, and

rank

(
⋃

Si∈V2

Si

)
6

∣∣∣∣∣
⋃

Si∈V2

Si

∣∣∣∣∣− |V2|(δ − 1)

6 (u− |V1|) (r + δ − 1) +

∣∣∣∣∣
⋃

Si∈V1

Si

∣∣∣∣∣− u(δ − 1)

= ru +

∣∣∣∣∣
⋃

Si∈V1

Si

∣∣∣∣∣− |V1|(r + δ − 1)

6 k − v −∆.

(4)

Note that this holds even if in the case V2 = V1 when |V1| = u.
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Having obtained V2, we again apply the procedure on V2 to find a subset V3 ⊆ S with V2 ⊆ V3, |V3| =
⌈
k+∆
r

⌉
− 1, and

rank

(
⋃

Si∈V3

Si

)
6

∣∣∣∣∣
⋃

Si∈V3

Si

∣∣∣∣∣− |V3|(δ − 1). (5)

By (4), we also have

rank

(
⋃

Si∈V3

Si

)
6 rank

(
⋃

Si∈V2

Si

)
+ (|V3| − |V2|) r

= rank

(
⋃

Si∈V2

Si

)
+

(⌈
k +∆

r

⌉
− 1− u

)
r

< rank

(
⋃

Si∈V2

Si

)
+ v +∆

6 k.

Now let S be a subset of [n] with rank(S) = k − 1 and
⋃

Si∈V3
Si ⊆ S. Then by (5), we have

|S| > rank(S)− rank

(
⋃

Si∈V3

Si

)
+

∣∣∣∣∣
⋃

Si∈V3

Si

∣∣∣∣∣

> k − 1 + |V3| · (δ − 1)

= k − 1 +

(⌈
k +∆

r

⌉
− 1

)
(δ − 1).

Proposition 6: If the requirements of Proposition 4 hold, let V∗
1 ⊆ V1 ⊆ S by the two guaranteed sets, and otherwise set

V1 = V∗
1 = ∅. Denote M = M(V∗

1 ,S). Then there exists a subset S ⊆ [n] with rank(S) = k − 1, and

|S| > k − 1 +





min

{(⌈
k+⌈ r

2⌉
r

⌉
− 1

)
(δ − 1),M +

(⌈
k+Φ(n−M,u−M)

r

⌉
− 1
)
(δ − 1)

}
, if u > M ,

u+
(⌈

k
r

⌉
− 1
)
(δ − 1), if u 6 M ,

where Φ(·, ·) is from Definition 3.

Proof: Before proceeding with the proof, if V1 = V∗
1 = ∅, the claims in this proof also hold (mostly trivially so). Thus,

we concentrate on the case they are not empty.

Define Υ = Υ(V∗
1 ,S), N = [n] \Υ, and S∗ = S \ V∗

1 . Then CN is an [n−M,k]q linear code with (r, δ)a-locality, and S∗

is an ECF whose elements are (r, δ)-repair sets of CN , where additionally, |CN | = |C| by virtue of Proposition 5-1). To avoid

a conflict with the definition of Φ(·, ·), we highlight that n −M > r + δ − 1, since k > r and CN has (r, δ)a-locality (refer

to Remark 2, item 3). The remainder of the proof is divided into two cases.

Case 1: Assume u > M . The fact that rank(
⋃

Si∈S∗ Si) = k implies that |S∗| > ⌈k/r⌉ > u > u − M . Thus, by

Proposition 1, there is a (u−M)-subset V2 ⊆ S∗ with

|V2|(r + δ − 1)−

∣∣∣∣∣
⋃

Si∈V2

Si

∣∣∣∣∣ > Φ(n−M,u−M).

Recall that by Proposition 5-3), we have |V1 \ V∗
1 | 6 M . Define V3 = V2 ∪ (V1 \ V∗

1 ), then |V3| 6 u and

|V3|(r + δ − 1)−

∣∣∣∣∣
⋃

Si∈V3

Si

∣∣∣∣∣ > |V2|(r + δ − 1)−

∣∣∣∣∣
⋃

Si∈V2

Si

∣∣∣∣∣ > Φ(n−M,u−M).

If V3 satisfies Condition C1, then by Lemma 3, there is a subset S(1) ⊆ N with
⋃

Si∈V3
Si ⊆ S(1), rank(S(1)) = k − 1,

and

|S(1)| > k − 1 +

(⌈
k +Φ(n−M,u−M)

r

⌉
− 1

)
(δ − 1).

Note that GΥ ⊆ span
(⋃

Si∈V1\V∗
1
Si

)
⊆ span

(⋃
Si∈V3

Si

)
⊆ span(S(1)) by Proposition 5-1), and Υ ∩ S(1) ⊆ Υ ∩ N = ∅.

Define S = S(1) ∪Υ, then S is the desirable subset of [n] with rank(S) = k − 1, and

|S| = M + |S(1)| > M + k − 1 +

(⌈
k +Φ(n−M,u−M)

r

⌉
− 1

)
(δ − 1). (6)
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Let us now consider the case where V3 does not satisfy Condition C1. By Proposition 4-3), S \ V∗
1 satisfies Condition C2.

Since V3 ⊆ S \ V
∗
1 , we also have that V3 satisfies Condition C2. By Proposition 3, there exists a subset V∗

3 ⊆ V3 that satisfies

Condition C1 and

|V∗
3 | (r + δ − 1)−

∣∣∣∣∣∣

⋃

Si∈V∗
3

Si

∣∣∣∣∣∣
>
⌈ r
2

⌉
.

Now, by Lemma 3, there is a subset S ⊆ [n] with rank(S) = k − 1, and

|S| > k − 1 +

(⌈
k +

⌈
r
2

⌉

r

⌉
− 1

)
(δ − 1). (7)

Case 2: Assume u 6 M . Define V4 to be a u-subset of V1 \ V∗
1 if |V1 \ V∗

1 | > u. Otherwise define V4 = V1 \ V∗
1 . The set

V4 satisfies Condition C1 according to Proposition 4-1), and obviously

|V4|(r + δ − 1)−

∣∣∣∣∣
⋃

Si∈V4

Si

∣∣∣∣∣ > 0.

By Lemma 3, there is a subset S(2) ⊆ N with
⋃

Si∈V4
Si ⊆ S(2), rank(S(2)) = k − 1, and

|S(2)| > k − 1 +

(⌈
k

r

⌉
− 1

)
(δ − 1).

Note that |GΥ ∩ span(
⋃

Si∈V4
Si)| > u by Proposition 5-2) and the facts that |V4| = u or V4 = V1 \ V∗

1 , |Υ| = M > u. Define

S = S(2) ∪Υ′, where Υ′ =
{
i : gi ∈ GΥ ∩ span(

⋃
Si∈V4

Si)
}

. Recall that Υ′ ∩S(2) ⊆ Υ∩S(2) ⊆ Υ∩N = ∅. Thus, S is the

desirable subset of [n] with rank(S) = k − 1, and

|S| > u+
∣∣∣S(2)

∣∣∣ > u+ k − 1 +

(⌈
k

r

⌉
− 1

)
(δ − 1). (8)

The proof is now completed by combining (6), (7), and (8).

Now we are ready to obtain an upper bound on the minimum Hamming distance.

Theorem 1: Let C be an LRC with (r, δ)a-locality, and let S be the ECF given by Lemma 2. If the requirements of

Proposition 4 hold, let V∗
1 ⊆ V1 ⊆ S by the two guaranteed sets, and otherwise set V1 = V∗

1 = ∅. Denote M = M(V∗
1 ,S).

Then

d 6 n− k + 1−





min

{(⌈
k+⌈ r

2⌉
r

⌉
− 1

)
(δ − 1),M +

(⌈
k+Φ(n−M,u−M)

r

⌉
− 1
)
(δ − 1)

}
, if u > M ,

(
u+

(⌈
k
r

⌉
− 1
)
(δ − 1)

)
, if u 6 M ,

where Φ(·, ·) is from Definition 3.

Proof: The conclusion is obtained directly by combining Lemma 1 and Proposition 6.

Remark 4: We point out that the subsets V∗
1 ⊆ V1 ⊆ S, whose existence is guaranteed in Proposition 4, are not necessarily

unique. Thus, the value of M used in Theorem 1 is not unique as well. Of the (possibly many) choices for M , it is unclear

which one results in the best bound.

Remark 5: We make the following observations:

1) If M = 0, the bound in Theorem 1 becomes

d 6 n− k + 1−

(⌈
k +min

{⌈
r
2

⌉
,Φ(n, u)

}

r

⌉
− 1

)
(δ − 1),

which is tighter than the one given by (2) (see, [8], [15]) if and only if

min
{⌈r

2

⌉
,Φ(n, u)

}
> r − v.

In particular, the bound is exactly the one in (2) when m = 0, and it is tighter than the one in (2) when m 6= 0 and

v = r.

2) If M 6= 0 and k > r, the bound in Theorem 1 is tighter than the bound in (2) if and only if
⌈ r
2

⌉
> r − v.

In particular, the bound is tighter than the one in (2) when v = r, i.e., r | k and k > r.
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V. CASE ANALYSIS OF THE IMPROVED BOUND

The new bound of Theorem 1 depends on many parameters. In this section we highlight interesting cases of parameters for

this bound. Generally, we should consider all possible M in Theorem 1 to determine the upper bound on d, where M depends

on the structure of the (r, δ)-repair sets, i.e., S. However, for some special cases the expression for the bound can be further

simplified.

We again assume that C is an [n, k, d]q linear code with (r, δ)a-locality, and S is the ECF given by Lemma 2. The parameters

n and k are written as in (3).

Corollary 1: If an [n, k, d]q LRC with (r, δ)a-locality satisfies that the repair sets in S are pairwise disjoint, then

d 6 n− k + 1−

(⌈
k +Φ(n, u)

r
− 1

⌉)
(δ − 1).

Proof: If the repair sets in S are pairwise disjoint, then Condition C1 always holds for S. The conclusion is then obtained

directly by Proposition 1, Lemma 3 and Lemma 1.

In [26], Westerbäck et al. studied locally repairable codes via matroid theory, and obtained the following bound for dmax,

where dmax is the largest d such that there exists a linear [n, k, d]q code with (r, δ)a-locality.

Theorem 2 ([26, Theorem 36-(ii)]): Assume r+δ−1 ∤ n and r ∤ k, namely, m > 0 and v < r. If 0 < r < k 6 n−
⌈
k
r

⌉
(δ−1)

and v > m− δ + 1, then

dmax > n− k + 1−

⌈
k

r

⌉
(δ − 1) +

{
0, if m > δ,

δ − 1−m, if m 6 δ − 1,

where dmax is the largest d such that there exists a linear [n, k, d]q code with (r, δ)a-locality.

By applying the bound obtained in Lemma 1, we may now determine the exact value of dmax for certain classes of parameters.

Corollary 2: Under the setting of Theorem 2, if m > δ, r > v > max
{
m− δ + 1,

⌊
r
2

⌋}
, and u > max{2(r+δ−1−m),

r + δ − 1}, we have

d 6 n− k + 1−

⌈
k

r

⌉
(δ − 1).

Proof: By u > 2(r + δ − 1 −m), we have
⌊
u
2

⌋
> r + δ − 1 −m, which implies that Φ(n, u) = r + δ − 1 − m. By

v > max
{
m− δ + 1,

⌊
r
2

⌋}
, we have r − v < min

{
Φ(n, u),

⌈
r
2

⌉}
. Obviously

⌈
r
2

⌉
6 r, and since m > δ, also Φ(n, u) =

r + δ − 1−m 6 r. This implies that

⌈
k +Φ(n, u)

r

⌉
=

⌈
k +

⌈
r
2

⌉

r

⌉
=

⌈
k

r

⌉
+ 1. (9)

The remainder of the proof is divided into three cases.

Case 1: Assume u 6 M . We note that u > δ − 1, and then by Theorem 1, we have

d 6 n− k + 1− u−

(⌈
k

r

⌉
− 1

)
(δ − 1)

< n− k + 1−

⌈
k

r

⌉
(δ − 1).

Case 2: Assume u > M and M > δ − 1. Since

M +

(⌈
k +Φ(n−M,u−M)

r

⌉
− 1

)
(δ − 1) >

⌈
k

r

⌉
(δ − 1),

by Theorem 1 and (9), we have

d 6 n− k + 1−

(⌈
k +

⌈
r
2

⌉

r

⌉
− 1

)
(δ − 1)

= n− k + 1−

⌈
k

r

⌉
(δ − 1).

Case 3: Assume u > M and M < δ − 1. Obviously M < m since δ 6 m. Additionally,

n−M = w(r + δ − 1) + (m−M),

where 0 < m−M < r + δ − 1, thus m−M = (n−M) mod (r + δ − 1). Then

Φ(n−M,u−M) = min

{
r + δ − 1−m+M,max

{⌊
u−M

2

⌋
,

⌈
(u−M)(u−M − 1)(r + δ − 1−m+M)

w(w + 1)

⌉}}
.
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The facts that

r + δ − 1−m+M > r + δ − 1−m = Φ(n, u)

and ⌊
u−M

2

⌋
>

⌊
(r + δ − 1)− (δ − 2)

2

⌋
=

⌊
r + 1

2

⌋
=
⌈ r
2

⌉

imply that

Φ(n−M,u−M) > min
{
Φ(n, u),

⌈r
2

⌉}
.

Thus, by Theorem 1, (9) and the above discussion, we have

d 6 n− k + 1−

⌈
k

r

⌉
(δ − 1).

Combining the above three cases, the proof is now completed.

Corollary 3: Under the setting of Theorem 2, if m 6 δ − 1, r > v >
⌊
r
2

⌋
, and u > 2r + δ − 1, we have

d 6 n− k + 1−

⌈
k

r

⌉
(δ − 1) + (δ − 1−m).

Proof: We again use the upper bound obtained in Theorem 1. By the definition of Φ(·, ·), and since m > 0, we have

Φ(n, u) > min
{
r + δ − 1−m,

⌊
u
2

⌋}
. It follows that

⌈
k +Φ(n, u)

r

⌉
>

⌈
k

r

⌉
+ 1 =

⌈
k +

⌈
r
2

⌉

r

⌉
, (10)

where the first inequality holds by the fact that δ − 1 > m > 0 and
⌊
u
2

⌋
>
⌊
2r+δ−1

2

⌋
> r, and the second equality follows

from r > v >
⌊
r
2

⌋
. The rest of the proof is divided into three cases.

Case 1: Assume m > M . Obviously, we have u > δ − 1 > m > M > 0. Since u−M > 2r, we get
⌊
u−M

2

⌋
> r, and we

note that r + δ − 1−m+M > r. It follows that 0 < m−M < r + δ − 1, and so m−M = (n−M) mod (r + δ − 1), and

so Φ(n−M,u−M) > r. Thus,

M +

(⌈
k +Φ(n−M,u−M)

r

⌉
− 1

)
(δ − 1) >

⌈
k

r

⌉
(δ − 1),

and by Theorem 1 and

⌈
k+⌈ r

2⌉
r

⌉
=
⌈
k
r

⌉
+ 1 from (10), we have

d 6 n− k + 1−

⌈
k

r

⌉
(δ − 1).

Case 2: Assume m 6 M and u > M . We have

M +

(⌈
k +Φ(n−M,u−M)

r

⌉
− 1

)
(δ − 1) > m+

(⌈
k

r

⌉
− 1

)
(δ − 1)

and by (10) we have (⌈
k +

⌈
r
2

⌉

r

⌉
− 1

)
(δ − 1) =

⌈
k

r

⌉
(δ − 1) > m+

(⌈
k

r

⌉
− 1

)
(δ − 1).

Thus, by Theorem 1,

d 6 n− k + 1−

⌈
k

r

⌉
(δ − 1) + (δ − 1−m).

Case 3: Assume m 6 M and u 6 M . The fact that u > δ − 1 > m implies that

u+

(⌈
k

r

⌉
− 1

)
(δ − 1) > m+

(⌈
k

r

⌉
− 1

)
(δ − 1).

Thus, by Theorem 1, we have

d < n− k + 1−

⌈
k

r

⌉
(δ − 1) + (δ − 1−m).

Combining the above three cases, the proof is now completed.

We can now strengthen Theorem 2 by applying Corollaries 2 and 3.
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Theorem 3: Assume r + δ − 1 ∤ n and r ∤ k, namely, m > 0 and v < r. If 0 < r < k 6 n −
⌈
k
r

⌉
(δ − 1) and

v > max
{
m− δ + 1,

⌊
r
2

⌋}
, then

dmax = n− k + 1−

⌈
k

r

⌉
(δ − 1) +

{
0, if m > δ and u > max {2(r + δ − 1−m), r + δ − 1},

δ − 1−m, if m 6 δ − 1 and u > 2r + δ − 1,

where dmax is the largest d such that there exists a linear [n, k, d]q code with (r, δ)a-locality.

Based on the results in [20], [26], the remaining open cases for the tightness of the bound in (2) are summarized in the

following:

Open Problem [20]: Do there exist optimal [n, k, d]q codes with (r, δ)a-locality that achieve the minimum Hamming distance

bound in (2), under the conditions that v 6= 0, 0 < m < v+ δ− 1, 0 < u 6 r− v, and w < r+ δ− 1−m? (using the notation

of (3))

We can answer this open question in part.

Corollary 4: No [n, k, d]q code with (r, δ)a-locality achieves the bound in (2) under the conditions of 0 < m < v+ δ− 1,

and u > 1, if

min

{⌈ r
2

⌉
,
u(u− 1)(r + δ − 1−m)

(w + 1)w

}
> r − v.

In particular, when v > r
2 , u > 1, and 0 < m < r + δ − 1− w (w+1)(r−v)

u(u−1) , the bound in (2) is unachievable.

Proof: Since u > 1, i.e., k = ur + v > r and
⌈
r
2

⌉
> r − v, if additionally M > 0 then by Remark 5, the bound in

(2) is unachievable. Assume now that M = 0. The fact that m < v + δ − 1 means that r + δ − 1 −m > r − v. Recall that
u(u−1)(r+δ−1−m)

(w+1)w > r − v. Thus, Φ(n, u) > r − v by Definition 3, i.e.,

⌈
k +Φ(n, u)

r

⌉
>

⌈
k

r

⌉
+ 1 =

⌈
k +

⌈
r
2

⌉

r

⌉
,

which shows that

d 6 n− k + 1−

⌈
k

r

⌉
(δ − 1) < n− k + 1−

(⌈
k

r

⌉
− 1

)
(δ − 1).

Therefore, the bound in (2) is unachievable in this case.

Note that w > u (see Remark 2) means that r + δ − 1− w (w+1)(r−v)
u(u−1) 6 v + δ − 1. Thus, combining the above two cases,

the corollary follows from
⌈
r
2

⌉
> r− v and

u(u−1)(r+δ−1−m)
(w+1)w > r− v when v > r

2 and 0 < m < r+ δ− 1−w (w+1)(r−v)
u(u−1) .

Remark 6: By Corollary 4, the remaining open cases can be listed as:

1) 0 < v 6 r
2 , 0 < m < v + δ − 1, 1 6 u 6 r − v, and w < r + δ − 1−m.

2) v > r
2 , (r+δ−1)(u(u−1))−w(w+1)(r−v) 6 mu(u−1), 0 < m < v+δ−1, 1 6 u 6 r−v, and w < r+δ−1−m.

VI. OPTIMAL LRCS ACHIEVING THE IMPROVED BOUND

In this section, we introduce explicit constructions of locally repairable codes, which generate optimal codes with respect

to the improved bounds in Corollaries 2 and 3. These constructions are mainly a modification of the construction in [17] by

endowing the repair sets with a special structure so that the locally repairable codes can achieve the improved bound in the

pervious section.

Let Fq1 be an extension field of the finite field Fq, and let S = {α1, α2, . . . , αn} ⊆ Fq1 be a set of n elements. Let V (S, h)
denote the matrix

V (S, h) ,




α1 α2 α3 · · · αn

αq
1 αq

2 αq
3 · · · αq

n
...

...
... · · ·

...

αqh−1

1 αqh−1

2 αqh−1

3 · · · , αqh−1

n




h×n

.

We comment that in order for V (S, h) to be well defined, we fix some ordering of the elements of Fq1 , and index the elements

of S so that they are in non-descending order. Additionally, since Fq1 is a vector space over Fq , we use rank(S) to denote

the dimension of the space spanned by linear combinations of elements from S with coefficients from Fq.

Definition 5 ([7]): The set S ⊆ Fq1 is t-wise independent over a field Fq ⊆ Fq1 if every T ⊆ S, |T | 6 t, is linearly

independent over Fq.

The following conclusion is obtained directly from the above definition.

Lemma 4: Let S ⊆ Fq1 be t-wise independent over a field Fq ⊆ Fq1 . Then a subset S′ ⊆ S is a t′-wise independent over

the field Fq ⊆ Fq1 if t′ 6 t and |S′| > t′.
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With the above preparation, we give the following construction of linear codes.

Construction A: Fix Fq ⊆ Fq1 . With the notation of (3), define h = n−k−(w+1)(δ−1). Let A = (A1, A2)(δ−1)×(r+δ−1)

be a parity-check matrix of a [r+ δ− 1, r, δ]q MDS code, where A1 is a (δ− 1)× (r+ δ− 2) matrix and A2 is a (δ− 1)× 1
matrix. Let S ⊆ Fq1 , |S| = n, and w+1 > r+ δ− 1−m. Define C(S, h) ⊆ Fn

q1 to be a linear code with parity-check matrix

R =




R1 0 0 . . . 0
0 R2 0 . . . 0
0 0 R3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Rw+1

H1 H2 H3 . . . Hw+1




(n−k)×n

, (11)

where

Ri = A1 for 1 6 i 6 r + δ − 1−m, (12)

Ri = A for r + δ −m 6 j 6 w + 1, (13)

and

(H1, H2, · · · , Hw+1) = V (S, h). (14)

We cite the following lemmas from [7], [10].

Lemma 5 ([10]): If h > |S| and S ⊆ Fq1 is linearly independent over Fq ⊆ Fq1 , then rank(V (S, h)) = |S|.

Lemma 6 ([7]): Fix Fq ⊆ Fq1 . Let Ei, 1 6 i 6 t, be a parity-check matrix of an [ei, ei + 1 − δ, δ]q MDS code. For all

1 6 i 6 t + 1, let Si ⊆ Fq1 , |Si| = ei, and let H ′
i = V (Si, h). If h >

∑t+1
i=1 ei − t(δ − 1) and rank(∪t+1

i=1Si) =
∑t+1

i=1 |Si| =∑t+1
i=1 ei, then

rank




E1 0 0 . . . 0 0
0 E2 0 . . . 0 0
0 0 E3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Et 0
H ′

i H ′
2 H ′

3 . . . H ′
t H ′

t+1




=
t+1∑

i=1

ei,

i.e., the matrix has full column rank.

We can now prove the properties of Construction A.

Theorem 4: Let n = w(r+δ−1)+m, δ 6 m < r+δ−1, k = ur+v, 0 < v < r, and let S ⊆ Fq1 be (h+(w−u)(δ−1))-
wise independent over Fq . Denote by C(S, h) the code generated by Construction A. If r > v > max

{
m− δ + 1,

⌊
r
2

⌋}
, and

u > max {2(r + δ − 1−m), r + δ − 1}, then C(S, h) is an optimal [n, k, d]q1 linear code with (r, δ)a-locality and d =
h+ (w − u)(δ − 1) + 1.

Proof: By Remark 2 we have w > u > 2(r + δ − 1 −m), which means the condition w + 1 > r + δ − 1 −m holds in

Construction A. By (11)-(14), we have that the code C is an [n, k1]q1 code with all symbol (r, δ)-locality and k1 > k. Our

next goal is to prove that d > h+ (w − u)(δ − 1) + 1, i.e., that any h+ (w − u)(δ − 1) columns of R have full rank. Let

R∗ =




R∗
1 0 0 . . . 0
0 R∗

2 0 . . . 0
0 0 R∗

3 . . . 0
...

...
...

. . .
...

0 0 0 . . . R∗
w+1

H∗
1 H∗

2 H∗
3 . . . H∗

w+1




,

denote the arbitrary h+ (w − u)(δ − 1) columns chosen from R, where R∗
i and H∗

i denote the chosen part from Ri and Hi

for 1 6 i 6 w + 1, respectively. If R∗
i contains δ − 1 columns or less, then R∗

i has full rank since its columns are part of a

parity-check matrix for a code with distance δ. Let i1 < i2 < · · · < it be the indices such that R∗
ij

, 1 6 j 6 t, contains at

least δ columns. Thus, R∗ has full rank if and only if

R =




R∗
i1

0 0 . . . 0
0 R∗

i2
0 . . . 0

0 0 R∗
i3 . . . 0

...
...

...
. . .

...

0 0 0 . . . R∗
it

H∗
i1 H∗

i2 H∗
i3 . . . H∗

it
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has full rank. Let eij denote the number of columns of R∗
ij

for 1 6 j 6 t. Thus, we have eij > δ for 1 6 j 6 t and

t∑

j=1

eij 6 h+ (w − u)(δ − 1). (15)

We proceed by examining two cases, depending on the value of t.
Case 1: Assume 1 6 t 6 w − u. Since A is the parity-check matrix of an [r + δ − 1, r, δ]q MDS code, we have that any

δ − 1 columns of A have full rank. Thus, any δ − 1 columns of R∗
ij

for 1 6 j 6 t, also have rank δ − 1, by (12) and (13).

Hence, R∗
ij , 1 6 j 6 t, can be viewed as a parity-check matrix of an [eij , eij + 1− δ, δ]q MDS code. Recall that

h = n− k − (w + 1)(δ − 1)

= (w − u)r +m− v − δ + 1

(a)

>

{
(r + δ − 1)t− t(δ − 1) >

∑t
j=1(eij − δ + 1), if 1 6 t 6 w − u− 1,

h+ (w − u)(δ − 1)− (w − u)(δ − 1) >
∑t

j=1(eij − δ + 1), if t = w − u.

Here, the first case of (a) follows by t 6 w− u− 1, r > v, and m > δ (i.e., r+m− v − δ+ 1 > 0). The second case of (a)
follows by (15). Since S is (h+(w−u)(δ− 1))-wise independent over Fq and

∑t
j=1 |Sij | =

∑t
j=1 eij 6 h+(w−u)(δ− 1),

we have that
⋃t

j=1 Sij is linearly independent over Fq, where H∗
ij

= V (Sij , h) for 1 6 j 6 t. Thus, by Lemma 6, we have

rank(R) =
∑t

j=1 eij , i.e., any h+ (w − u)(δ − 1) columns of R have full rank when 1 6 t 6 w − u.

Case 2: Assume t > w − u.

rank(R) = rank




R∗
i1

0 0 . . . 0
0 R∗

i2 0 . . . 0
0 0 R∗

i3
. . . 0

...
...

...
. . .

...

0 0 0 . . . R∗
it

H∗
i1

H∗
i2

H∗
i3

. . . H∗
it




> rank




R∗
i1 0 · · · 0 0 . . . 0
0 R∗

i2
· · · 0 0 . . . 0

...
...

. . .
...

...
...

0 0 · · · R∗
iw−u

0 . . . 0

0 0 · · · 0 0 . . . 0
...

... · · ·
...

...
...

0 0 · · · 0 0 · · · 0
H∗

i1
H∗

i2
· · · H∗

iw−u
H∗

iw−u+1
. . . H∗

it




.

Now rank(R) =
∑t

j=1 eij follows by (15), Lemma 6, and the fact that S is (h+ (w − u)(δ − 1))-wise linearly independent.

Combining the above cases, we conclude that d > h+ (w − u)(δ − 1). By Corollary 2,

d 6 n− k1 + 1− (u + 1)(δ − 1) 6 n− k + 1− (u + 1)(δ − 1) = h+ (w − u)(δ − 1),

where n = w(r + δ − 1) +m, k = ur + v, and h = (w − u)r +m− v − δ + 1. Thus, we have d = h+ (w − u)(δ − 1) and

necessarily, k1 = k, which completes the proof.

Remark 7: We would like to mention that the method and main idea of Construction A was first introduced in [17],

based on Gabidulin codes. The purpose of Construction A that we brought here is only to show that optimal LRCs with

(r, δ)a-locality can be generated by arranging the repair sets carefully. For more constructions of LRCs based on Gabidulin

codes and their generalizations, the reader may refer to [7], [12], [17], [20].

Construction A was used in Theorem 4 with the requirement of m > δ. For the case 0 < m 6 δ−1, we apply the following

construction to generate optimal codes with respect to the bound in Corollary 3.
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Construction B: Fix Fq ⊆ Fq1 . With the notation of (3), define h = n−k−m−w(δ−1). Let P1 and P2 be parity-check

matrices of an [m+ r + δ − 1, r,m+ δ]q MDS code and an [r + δ − 1, r, δ]q MDS code, respectively. Let S ⊆ Fq1 , |S| = n.

Define C(S, h) ⊆ Fn
q1 to be a linear code with parity-check matrix

R =




R1 0 0 . . . 0
0 R2 0 . . . 0
0 0 R3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Rw

H1 H2 H3 . . . Hw




(n−k)×n

, (16)

where R1 = P1, Ri = P2 for 2 6 j 6 w, and

(H1, H2, H3, · · · , Hw) = V (S, h). (17)

Theorem 5: Let n = w(r + δ − 1) +m, k = ur + v, 0 < v < r, and let S ⊆ Fq1 be (h + (w + 1 − u)(δ − 1))-wise

linearly independent over Fq. Denote by C(S, h) the code generated by Construction B. If 0 < m 6 δ − 1, r > v >
⌊
r
2

⌋
, and

u > 2r+ δ− 1, then the code C(S, h) is an optimal [n, k, d]q1 linear code with (r, δ)a-locality and d = h+(w−u)(δ− 1)+1.

Proof: By (16) and R1 = P1, we have that C(S, h)[m+r+δ−1] is an [m + r + δ − 1,6 r,> m + δ]q1 linear code.

Thus, C(S, h)S1
and C(S, h)S2

are punctured codes with parameters [r + δ − 1,6 r,> δ]q1 , where S1 = [r + δ − 1] and

S2 = [m+ r+ δ− 1] \ [m]. Now, by (16)-(17), we can conclude that the code C(S, h) is an [n, k1]q1 code with (r, δ)a-locality

and k1 > k. By Corollary 3, it is sufficient to prove that d > h+ (w − u)(δ − 1) + 1, i.e., any h+ (w − u)(δ − 1) columns

of R have full rank. Let

R∗ =




R∗
1 0 0 . . . 0
0 R∗

2 0 . . . 0
0 0 R∗

3 . . . 0
...

...
...

. . .
...

0 0 0 . . . R∗
w

H∗
1 H∗

2 H∗
3 . . . H∗

w




denote the h + (w − u)(δ − 1) arbitrary columns chosen from R, where for 1 6 i 6 w, R∗
i and H∗

i denote the chosen part

from Ri and Hi, respectively. By (14), R∗ has full rank if and only if

R =




R∗
i1

0 0 . . . 0
0 R∗

i2 0 . . . 0
0 0 R∗

i3 . . . 0
...

...
...

. . .
...

0 0 0 . . . R∗
it

H∗
i1

H∗
i2

H∗
i3

. . . H∗
it




has full rank, where if i1 = 1 then R∗
1 contains at least m+ δ columns selected from R1, otherwise for 1 6 j 6 t, ij denotes

the block we choose at least δ columns from, with 2 6 ij 6 w.

For the case i1 = 1, rank
(
R
)
= rank(R̃), where

R̃ ,




R∗
1,1 0 0 0 0 . . . 0
0 0 R∗

i2
0 0 . . . 0

0 0 0 R∗
i2

0 . . . 0
0 0 0 0 R∗

i3 . . . 0
...

...
...

...
... . . .

...

0 0 0 0 0 . . . R∗
it

0 H∗
1,2 H∗

i2
H∗

i3
H∗

i3
. . . H∗

it




,

R∗
1 = (R∗

1,1, R
∗
1,2), with R∗

1,1, an (m+ δ−1)× (m+ δ−1) matrix, H∗
1 = (H1,1, H1,2), and H∗

1,2 = H1,2−H1,1(R
∗
1,1)

−1R∗
1,2.

Let ei denote the number of columns in R∗
i for 1 6 i 6 w and let e′1 denote the number of columns in H∗

1,2. The fact that

e1 6 m+ r + δ − 1 means that e′1 = e1 −m− δ + 1 6 r.

Case 1: Assume i1 = 1 and t 6 w − u. By Construction B

h =(w − u)r − v

>





(r + δ − 1)(t− 1)− (t− 1)(δ − 1) + 2r − v >
∑t

j=2(eij − δ + 1) + r

>
∑t

j=2(eij − δ + 1) + e′1, if 1 6 t 6 w − u− 1,∑t
j=2(eij − δ + 1) + e′1 +m, if t = w − u,
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where for the case t = w − u we use the facts that
∑w−u

j=1 eij 6 h + (w − u)(δ − 1) and e1 = e′1 + m + δ − 1, i.e.,∑t
j=2 eij +e′1 6 h+(w−u−1)(δ−1)−m. Since S is (h+(w−u)(δ−1))-wise linearly independent over Fq, by Lemma 6,

we have rank(R̃) =
∑t

j=1 eij .

Case 2: Assume i1 = 1 and t > w − u. Then

rank(R̃) = rank




R∗
1,1 0 0 0 0 . . . 0
0 0 R∗

i2 0 0 . . . 0
0 0 0 R∗

i2
0 . . . 0

0 0 0 0 R∗
i3

. . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . R∗
it

0 H∗
1,2 H∗

i2 H∗
i3 H∗

i3 . . . H∗
it




> rank




R∗
1,1 0 0 · · · 0 0 . . . 0
0 0 R∗

i2
· · · 0 0 . . . 0

...
...

...
. . .

...
... · · ·

...

0 0 0 · · · R∗
iw−u

0 . . . 0

0 H∗
1,2 H∗

i2 · · · H∗
iw−u

H∗
iw−u+1

. . . H∗
it




.

Recall that
∑t

j=1 eij 6 h + (w − u)(δ − 1) and e1 = e′1 +m + δ − 1, i.e., h > e′1 +m +
∑t

j=2 eij − (w − u − 1)(δ − 1).

Thus, by Lemma 6 and the fact that S is (h + (w − u)(δ − 1))-wise linearly independent over Fq, we have rank(R̃) =
m+ δ − 1 + e′1 +

∑t
j=2 eij =

∑t
j=1 eij .

Case 3: Assume i1 6= 1 and t 6 w − u. In this case, according to Lemma 6, rank(R) =
∑t

j=1 eij follows directly from

h =(w − u)r − v

>

{
(r + δ − 1)t− t(δ − 1) + r − v >

∑t
j=1(eij − δ + 1), if 1 6 t 6 w − u− 1,

h+ (w − u)(δ − 1)− (w − u)(δ − 1) >
∑t

j=1(eij − δ + 1), if t = w − u,

and S is (h+ (w − u)(δ − 1))-wise linearly independent over Fq .

Case 4: Assume i1 6= 1 and t > w − u. In this case

rank(R) = rank




R∗
t1 0 0 0 . . . 0
0 R∗

i2
0 0 . . . 0

0 0 R∗
i2

0 . . . 0
0 0 0 R∗

i3 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . R∗
it

H∗
i1

H∗
i2

H∗
i3

H∗
i3

. . . H∗
it




> rank




R∗
i1

0 · · · 0 0 . . . 0
0 R∗

i2 · · · 0 0 . . . 0
...

...
. . .

...
... · · ·

...

0 0 · · · R∗
iw−u

0 . . . 0

H∗
i1

H∗
i2
· · · H∗

iw−u
H∗

iw−u+1
. . . H∗

it




.

Similarly,
∑t

j=1 eij 6 h+ (w − u)(δ − 1) means that h >
∑t

j=1 eij − (w − u)(δ − 1). Now, by Lemma 6 the fact that S is

(h+ (w − u)(δ − 1))-wise linearly independent means that rank(R) =
∑t

j=1 eij .

Combining the above cases, we have d > h+(w−u)(δ− 1)+1. Thus, by Corollary 3, we have d = h+(w−u)(δ− 1)+1
and k1 = k, which completes the proof.

VII. CONCLUSION

In this paper, we improved the Singleton-type bound of [8], [15] for locally repairable codes with (r, δ)a-locality. For some

special cases, the improved bound is indeed tighter than the original one. As a byproduct, we prove some locally repairable

codes generated in [26] via matroid theory are indeed optimal. Two explicit optimal constructions were also introduced with

respect to the improved bound.

As presented in Fig. 1, there are two cases which are still open. Whether the Singleton-type bound in [8], [15] is achievable

or not in those two cases is still undecided. Those cases are:

RI: 0 < v 6 r
2 , 0 < m < v + δ − 1, 1 6 u 6 r − v, and w < r + δ − 1−m;
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RII: v > r
2 , (r+ δ−1)(u(u−1))−w(w+1)(r−v) 6 mu(u−1), 0 < m < v+ δ−1, 1 6 u 6 r−v, and w < r+ δ−1−m.

Additionally, the sharp bound is still unknown for many cases, namely, those cases for which the bound of (2) was proved to

be unachievable (refer to Fig. 1). Those problems are left for future research.

APPENDIX

This appendix contains the omitted proofs for the claims on the properties of the ECF induced by an LRC with (r, δ)a-

locality, namely, Propositions 1, 3, 4, and 5. Throughout this appendix, we assume that C is an LRC with (r, δ)a-locality, and

that the parameters n and k are as in (3). Furthermore, let S be the ECF that was obtained in Lemma 2.

A. Proof of Proposition 1

For any family of subsets, B ⊆ 2X , define its overlap, denoted D(B), as

D(B) =
∑

B∈B

|B| −

∣∣∣∣∣
⋃

B∈B

B

∣∣∣∣∣ .

It is easy to check that D(B) > 0 and D(B) > D(B′) for B′ ⊆ B. Additionally, D(B) = 0 if and only if its sets are pairwise

disjoint. We cite the following lemma, concerning the overlap, from [2].

Lemma 7 ([2, Lemma 5]): Let S∗ be a set of subsets of X . For any integer 0 6 t 6 |S∗|, there exists a t-subset V of S∗

such that

D(V) > min(D(S∗), ⌊t/2⌋).

We now further elaborate on the overlap.

Lemma 8: If S∗ is a set of (r+ δ− 1)-subsets of X with |S∗| > w+1, then for any integer 0 6 t 6 |S∗|, there exists a

t-subset V of S∗ such that

D(V) > min

{
r + δ − 1−m,

⌈
t(t− 1)(r + δ − 1−m)

(w + 1)w

⌉}
.

In particular, we have D(S∗) > r + δ − 1−m.

Proof: If t > w + 1, let V be any t-subset of S∗. Then

D(V) = t(r + δ − 1)−

∣∣∣∣∣∣

⋃

S∗
i
∈V

S∗
i

∣∣∣∣∣∣
> (w + 1)(r + δ − 1)− n = r + δ − 1−m.

If t 6 w, let Vw+1 be a (w+1)-subset of S∗. Define Θ to be the set of all the possible t-subsets of Vw+1. We arbitrarily index

the sets in Vw+1 = {A1, A2, . . . , Aw+1}. Let us consider the sum
∑

V′∈Θ D(V ′) in comparison with D(Vw+1). Consider a

fixed V ′ ∈ Θ, and some element x ∈ X . The definition of the overlap function may be equivalently read as: Ai, Aj ∈ V ′,

i < j contribute 1 to the overlap due to x, if and only if x ∈ Ai∩Aj and i is the minimal index such that x ∈ Ai. We observe

that if Ai, Aj contribute to D(Vw+1) due to x, they do so also for any V ′ that includes them, but not vice versa. Additionally,

Ai and Aj appear in exactly
(
w−1
t−2

)
elements of Θ. Combining all of this together we obtain

∑

V′∈Θ

D(V ′) >

(
w − 1

t− 2

)
D(Vw+1).

Since |Θ| =
(
w+1
t

)
, by an averaging argument there exists V ∈ Θ such that

D(V) >

⌈(
w−1
t−2

)
(
w+1
t

)D(Vw+1)

⌉
>

⌈(
w−1
t−2

)
(r + δ − 1−m)
(
w+1
t

)
⌉
=

⌈
t(t− 1)(r + δ − 1−m)

(w + 1)w

⌉
.

Then this V is the desired t-subset of S∗.

Corollary 5: If |S| > w + 1, then for any integer 0 6 t 6 |S|, there exists a t-subset V of S such that

|V|(r + δ − 1)−

∣∣∣∣∣
⋃

Si∈V

Si

∣∣∣∣∣ > min

{
r + δ − 1−m,max

{⌊
t

2

⌋
,

⌈
t(t− 1)(r + δ − 1−m)

(w + 1)w

⌉}}
.

Proof: First, we extend any Si ∈ S to an (r + δ − 1)-subset S∗
i of [n], that is, Si ⊆ S∗

i and |S∗
i | = r + δ − 1. Let

S∗ = {S∗
i : Si ∈ S}. Obviously

⋃
S∗
i
∈S∗ S∗

i = [n]. Define T ∗ to be the corresponding subset of S∗ for any subset T of S.

Then |T | = |T ∗| and

|T |(r + δ − 1)−

∣∣∣∣∣
⋃

Si∈T

Si

∣∣∣∣∣ > |T
∗|(r + δ − 1)−

∣∣∣∣∣∣

⋃

S∗
i
∈T ∗

S∗
i

∣∣∣∣∣∣
= D(T ∗). (18)
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By Lemmas 7 and 8, there exists a t-subset V∗
1 of S∗ such that

D(V∗
1 ) > min

{
D(S∗),

⌊
t

2

⌋}
> min

{
r + δ − 1−m,

⌊
t

2

⌋}
. (19)

By Lemma 8, there exists a t-subset V∗
2 of S∗ such that

D(V∗
2 ) > min

{
r + δ − 1−m,

⌈
t(t− 1)(r + δ − 1−m)

(w + 1)w

⌉}
. (20)

The conclusion is then obtained by combining (18), (19) and (20).

Remark 8: Recalling the definition of Φ(·, ·) (see Definition 3),

Φ(n, t) =

{
min

{
r + δ − 1−m,max

{⌊
t
2

⌋
,
⌈
t(t−1)(r+δ−1−m)

(w+1)w

⌉}}
if m 6= 0,

0 if m = 0.

Note that D(S) may be 0 when m = 0, i.e., (r + δ − 1)|n, which corresponds to the case Φ(n, t) = 0 when m = 0. We may

use Φ(n, t) to lower bound the value |V|(r + δ − 1)−
∣∣⋃

Si∈V Si

∣∣, for V ⊆ S.

Finally, the sought after proof for Proposition 1 is simply the combination of Corollary 5, Remark 3 and Remark 8.

B. Proof of Proposition 3

Proof: For any Si ∈ V , define Vi to be a smallest subset of V with Si ∈ Vi and
∣∣∣∣∣∣
Si ∩




⋃

Sj∈Vi\{Si}

Sj




∣∣∣∣∣∣
> |Si| − δ + 1, (21)

if

∣∣∣Si ∩
(⋃

Sj∈V\{Si}
Sj

)∣∣∣ > |Si| − δ + 1, and otherwise, define Vi = V . Note that V does not satisfy Condition C1. Thus,

there exists Si ∈ V such that |Si ∩ (
⋃

Sj∈V\{Si}
Sj)| > |Si| − δ + 1. Condition C2 implies that |Si ∩ Sj | < |Si| − δ + 1 for

any Sj ∈ Vi, Sj 6= Si, which means that |Vi| > 3, sine (21) cannot hold for |Vi| 6 2.

Without loss of generality, we choose Vτ to be the element with smallest size among {Vi : Si ∈ V}. Then, any proper subset

of Vτ must satisfy Condition C1. Now we pick one St ∈ Vτ \ {Sτ}. If

|Sτ ∩ St| >
|Sτ | − δ + 1

2

we set V∗ = {St, Sτ}. Otherwise, necessarily
∣∣∣∣∣∣
Sτ ∩




⋃

Si∈Vτ\{Sτ ,St}

Si




∣∣∣∣∣∣
>
|Sτ | − δ + 1

2
,

and we set V∗ = V \ {St}. In both cases D(V∗) > |Sτ |−δ+1
2 . Therefore, we have

|V∗|(r + δ − 1)−

∣∣∣∣∣
⋃

Si∈V∗

Si

∣∣∣∣∣ > r + δ − 1 +
∑

Si∈V∗\{Sτ}

|Si| −

∣∣∣∣∣
⋃

Si∈V∗

Si

∣∣∣∣∣

= r + δ − 1− |Sτ |+D(V∗)

> r + δ − 1− |Sτ |+
|Sτ | − δ + 1

2

=
r + (r + δ − 1− |Sτ |)

2

>
r

2
.

The last inequality is obtained by the fact that |Sτ | 6 r + δ − 1.
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Algorithm 1: Breaking Condition C3

Input: S =
{
S1, S2, · · · , S|S|

}
the ECF from Lemma 2

1 V1,V ′
1 ← ∅

2 while there exist Si ∈ S \ V1, Sj ∈ S, and Si 6= Sj with |Si ∩ Sj | > |Si| − δ + 1 do

3 V1 ← V1 ∪ {Si, Sj}
4 V ′

1 ← V
′
1 ∪ {Si}

5 end

6 while there exist Si ∈ V1 \ V ′
1 and Sj ∈ S \ V1 with |Si ∩ Sj | > |Si| − δ + 1 do

7 V1 ← V1 ∪ {Sj}
8 V ′

1 ← V
′
1 ∪ {Si}

9 end

10 return V1, V ′
1

C. Proofs of Propositions 4 and 5

The essence of the two propositions is to reduce the family of repair sets to a sub-family that satisfies Condition C1, such that

the rank of points in the union of the two families is the same. Loosely speaking, we delete some sets to break Condition C3, in

a way that preserves the rank. We then choose a sub-family with full rank that satisfies Condition C1. This is implemented by

Algorithm 1. It finds subsets V ′
1 ⊆ V1 ⊆ S such that S \V1 satisfies Condition C2, and rank(∪S∈S\V1

S) = rank(∪S∈S\V′
1
S),

where S is the ECF from Lemma 2.

Lemma 9: Let V1 and V ′
1 be the output of Algorithm 1. Then

rank



⋃

Sj∈V1

Sj


 = rank




⋃

Sj∈V1\V′
1

Sj




and S \ V1 satisfies Condition C2.

Proof: The first claim follows from the fact that |Si ∩ Sj | > |Si| − δ + 1 implies that rank(Sj) = rank(Si ∪ Sj). Thus,

by Algorithm 1, we have rank(
⋃

Sj∈V1
Sj) = rank(

⋃
Sj∈V1\V′

1
Sj). The second claim follows by the condition to terminate

for first while loop of Algorithm 1, and by noting that the second while loop only removes elements from S \ V1.

By Lemma 9, we may extend V ′
1 to a subset of V1, as large as possible, denoted as V∗

1 , such that

rank




⋃

Sj∈V1

Sj



 = rank




⋃

Sj∈V1\V′
1

Sj



 = rank




⋃

Sj∈V1\V∗
1

Sj



 . (22)

In other words, the set V∗
1 satisfies that for any Si ∈ V1 \ V∗

1

rank




⋃

Sj∈V1\V∗
1

Sj


 > rank




⋃

Sj∈(V1\V∗
1
)\{Si}

Sj


 . (23)

Note that a set V∗
1 which satisfies (22) and (23) is not necessarily unique. We can now prove Proposition 4 and Proposition 5.

Proof of Proposition 4: Let V1 and V ′
1 be the output of Algorithm 1, and let V∗

1 satisfy (22) and (23), as discussed above.

Claim 1): If there exists Sτ ∈ V1 \ V∗
1 with
∣∣∣∣∣∣
Sτ ∩




⋃

Sj∈(V1\V∗
1
)\{Sτ}

Sj




∣∣∣∣∣∣
> |Sτ | − δ + 1,

then rank(Sτ ) = rank(Sτ ∩ (
⋃

Sj∈(V1\V∗
1
)\{Sτ}

Sj)) by Remark 1-1), which contradicts (23).

Claim 2): By Algorithm 1, if Sj ∈ V1 \V∗
1 ⊆ V1 \V

′
1 there must exist Si ∈ V ′

1 such that |Si∩Sj | > |Si|− δ+1 due to Line

2 and Line 6 of the algorithm. Hence, rank(Si) = rank(Si ∩ Sj) and span(Si) ⊆ span(Sj) by Definition 1 and Remark 1.

Claim 3): Recall that by Lemma 9, the set S \ V1 satisfies Condition C2, i.e., for any Si, Sj ∈ S \ V1 we have |Si ∩ Sj | <
min {|Si|, |Sj |} − δ + 1. We further consider Si and Sj in the following three cases:

Case 1: There exist two distinct Si, Sj ∈ V1 \ V∗
1 with |Si ∩ Sj| > |Si| − δ + 1. However, this is impossible by Claim 1).

Case 2: There exist two distinct Si ∈ S \ V1 and Sj ∈ V1 \ V∗
1 with |Si ∩ Sj | > |Si| − δ+1. This is impossible by the first

while loop of Algorithm 1.

Case 3: There exist two distinct Si ∈ V1 \ V∗
1 ⊆ V1 \ V

′
1 and Sj ∈ S \ V1 with |Si ∩ Sj | > |Si| − δ + 1. This is impossible

by the second while loop of Algorithm 1.

Thus, the claim follows.
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Proof of Proposition 5: We proceed claim by claim.

Claim 1): By (22), we have rank(
⋃

Si∈V1
Si) = rank(

⋃
Si∈V1\V∗

1
Si), which implies that G⋃

Si∈V∗
1
Si
⊆ span(

⋃
Si∈V1\V∗

1
Si).

Thus, the conclusion is obtained by the fact that Υ ⊆
⋃

Si∈V∗
1
Si.

Claim 2): Define TSi
= Si \ (

⋃
St∈S\{Si}

St) for any Si ∈ S. The definition of the ECF implies that TSi
6= ∅ and

TSi
∩ TSj

= ∅ for any distinct Si, Sj ∈ S. By Proposition 4-2), for any Si ∈ V1 \ V∗
1 , there exists a set S∗

i ∈ V
∗
1 with

GS∗
i
⊆ span(Si). Note that TS∗

i
⊆ Υ∩S∗

i and GΥ∩S∗
i
⊆ GΥ∩span(Si). According to Algorithm 1, Lines 3, 7, and 8, whenever

a set Sj is included in V1 \ V ′
1 ⊇ V1 \ V

∗
1 a distinct set (we denote) S∗

j is included in V ′
1 ⊆ V

∗
1 with span(S∗

j ) ⊆ span(Sj).
Thus, we can assume that for any Sj1 6= Sj2 ∈ V1 \ V

∗
1 we have S∗

j1 6= S∗
j2 ∈ V

∗
1 . Now the desired result follows, namely,

∣∣∣∣∣GΥ ∩ span

(
⋃

Si∈U

Si

)∣∣∣∣∣ >
∣∣∣∣∣
⋃

Si∈U

TS∗
i

∣∣∣∣∣ > |U|

for any subset U ⊆ V1 \ V∗
1 .

Claim 3): Setting U = V1 \ V∗
1 , the above inequality becomes

|V1 \ V
∗
1 | 6

∣∣∣∣∣∣
GΥ ∩ span




⋃

Si∈V1\V∗
1

Si




∣∣∣∣∣∣
= |GΥ| = |Υ| = M. (24)

Let TSi
be the subset defined in Claim 2). Since for any Si ∈ V

∗
1 , we have ∅ 6= TSi

⊆ Si \ (
⋃

Sj∈S\V∗
1
Sj), it follows that

|V∗
1 | 6 |Υ| = M . Thus, in combination with (24), we have |V1| = |V∗

1 |+ |V1 \ V
∗
1 | 6 2M .
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