
1

Sparse and Balanced MDS Codes over Small Fields
Tingting Chen, and Xiande Zhang

Abstract

Maximum Distance Separable (MDS) codes with a sparse and balanced generator matrix are appealing in distributed storage
systems for balancing and minimizing the computational load. Such codes have been constructed via Reed-Solomon codes over
large fields. In this paper, we focus on small fields. We prove that there exists an [n, k]q MDS code that has a sparse and balanced
generator matrix for any q ≥ n provided that n ≤ 2k, by designing several algorithms with complexity running in polynomial
time in k and n.

Index Terms

MDS codes, Reed-Solomon codes, finite fields, constrained generator matrices.

I. INTRODUCTION

MDS codes with constrained generator matrices have been attracting much attention recently due to their applications in
weakly secure cooperative data exchange [1]–[3], multiple access networks [4], [5], wireless sensor networks [6], and

so on. The relations among them are well explained in [7], [8]. An interesting problem of this topic is to construct an [n, k]q
MDS code with a sparse and balanced generator matrix (SBGM) G, where ‘sparse’ means that each row of G has the least
possible number of nonzeros, i.e., n−k+ 1 nonzeros, and ‘balanced’ means that the numbers of nonzeros in any two columns
differ by at most one, i.e., n − dk(k−1)

n e or n − bk(k−1)
n c. This problem was first considered in [6]. Such a matrix gives us

some benefits during the encoding process [9], [10]. On the one hand, since the time required to compute each code symbol is
a function of the number of nonzeros in a specified column of G, each code symbol is computed in roughly the same amount
of time due to the balanced property of G. This ensures that the computational load is balanced, which is required in scenarios
such as the storage system. On the other hand, when G is sparse, then updating a single message symbol impacts exactly
n− k + 1 storage nodes in the storage system.

In the recent few years, progress has been reported on the above problem. In [6], it was shown that there always exists
an MDS code with an SBGM over any finite field of size q >

(
n−1
k−1

)
through a probabilistic argument. The authors in [10],

[11] constructed an [n, k]q cyclic Reed-Solomon code that has an SBGM for any prime power q = n + 1 and any k such
that 1 ≤ k ≤ n. Song and Cai [12] further extended their results by proving that for any positive integers n and k such
that 1 ≤ k ≤ n, there exists an [n, k]q generalized Reed-Solomon code that has an SBGM over any finite field Fq of size
q ≥ n+ dk(k−1)

n e. But there is still a gap between the code length and the field size when k ≥ 3. It is natural to ask whether
there exists an [n, k]q MDS code with an SBGM over a smaller field with q < n+ dk(k−1)

n e. Motivated by this problem, we
focus on constructions of [n, k]q MDS codes with an SBGM for all q ≥ n and k ≥ 3 in this paper.

A. Related Work

One of the challenging problems referring to MDS codes is the well known MDS conjecture, which states that there exists
an [n, k]q MDS code if and only if n ≤ q+ 1 for all q and 2 ≤ k ≤ q− 1, except when q is even and k ∈ {3, q− 1}, in which
case n ≤ q+ 2. The sufficiency of the MDS conjecture has been proved via the use of (extended) Generalized Reed-Solomon
codes [13].

The problem of MDS codes with support constrained generator matrices is asking whether an MDS code exists with
a prescribed zero patterns in the generator matrix. This problem has been studied in [7], [8], [14] for MDS codes with
Hamming distance and in [15], [16] for MDS codes with rank metric (Gabidulin codes). Let G be the k × n generator
matrix of an [n, k]q MDS code with k ≤ n. Define the zero pattern of G as a set system S1, . . . , Sk ⊂ {1, 2, . . . , n}, where
Si = {j ≤ n : Gi,j = 0}. The necessary condition of this set system is known as the MDS condition: |I| + | ∩i∈I Si| ≤ k
for any nonempty I ⊆ {1, 2, . . . , k}. It is conjectured that the MDS condition is sufficient for the existence of MDS codes
whose generator matrices have the given zero pattern when q ≥ n + k − 1 [7]. This conjecture is known as the GM-MDS
Conjecture, and attracts a lot of interest, see [17]–[19]. Recently the GM-MDS Conjecture was proved to be true by Lovett
[20] and independently by Yildiz and Hassibi [8], which we restated as a theorem as follows.

T. Chen (ttchenxu@mail.ustc.edu.cn) is with School of Cyber Security, University of Science and Technology of China, Hefei, 230026, Anhui,
China.

X. Zhang (drzhangx@ustc.edu.cn) is with School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, Anhui,
China.

ar
X

iv
:2

01
1.

05
63

4v
1

 [
cs

.I
T

]
 1

1
N

ov
 2

02
0

2

Theorem I.1 ([7], [8], [20, GM-MDS Theorem]). Let S = {S1, . . . , Sk} be a set system where Si ⊆ {1, 2, . . . , n}, 1 ≤ i ≤ k.
Then for q ≥ n + k − 1, there exists an [n, k]q MDS code with a generator matrix G over Fq such that Gi,j = 0 whenever
j ∈ Si, if and only if S satisfies the MDS condition.

Further results on the existence of MDS codes with slightly stronger support constraint than the MDS condition on the
generator matrices but with field size q ≥ n or q ≥ n+ 1 are considered in [14]. However, their results can not be used to give
sparse and balanced MDS codes. The authors in [14] gave two constructions of some special classes of [n, k]q Reed-Solomon
codes whose generator matrices have constrained support. One of them is that over any finite field Fq with q ≥ n, there exists
an [n, k]q Reed-Solomon code if the zero pattern S = {S1, . . . , Sk} of its generator matrix satisfies the MDS condition, and
further | ∩ij=1 Sj | = k − i for all 1 ≤ i ≤ k. Notice that when i = k − 1, it is required that | ∩k−1

j=1 Sj | = 1. This means there
is at least one column of the generator matrix G containing k − 1 zeros. So only when dk(k−1)

n e ≥ k − 1, that is, n = k or
k + 1, G can be sparse and balanced. The second construction [14] they gave is that over any finite field Fq with q ≥ n+ 1,
there exists an [n, k]q Reed-Solomon code if the zero pattern S = {S1, . . . , Sk} of its generator matrix satisfies |Si| ≤ i− 1
for all i = 1, . . . , k. Notice that when i ≤ k − 1, |Si| ≤ k − 2, the generator matrix G obtained from this construction is not
sparse.

B. Our Contribution

In this paper, we construct an [n, k]q MDS code with an SBGM G over any finite field of size q ≥ n when 3 ≤ k ≤ n ≤ 2k.
It suffices to find a k×n matrix G over Fq with a sparse and balanced zero pattern, such that all minors of G have full rank. We
first give a sufficient condition for the existence of a sparse generator matrix G described by the set system S = {S1, . . . , Sk},
see Theorem II.1, which extends [14, Theorem II.5]. Then we show that the set system S satisfying the sufficient condition in
Theorem II.1 is balanced only if n ≤ 2k. Finally, the binary matrix corresponding to S is proved to exist whenever n ≤ 2k,
by several algorithms. We state our main result in the following theorem.

Theorem I.2. For any integer k ≥ 3, let n ≤ 2k if k is even, and n ≤ 2k − 1 if k is odd. For any finite field Fq with q ≥ n,
there exists an [n, k]q MDS code, whose generator matrix is sparse and balanced.

The proof of Theorem I.2 is completed by designing several algorithms that have complexity running in polynomial time
in k and n. These algorithms output a sparse and balanced binary matrix, which is the complement of the incidence matrix of
a set system S satisfying Theorem II.1.

C. Organization

This paper is organized as follows. In Section II, necessary notations and definitions are given first, and then a sufficient
condition on the zero pattern of a sparse generator matrix of an [n, k]q MDS code with q ≥ n is provided. Details of
constructions of balanced zero patterns satisfying the sufficient condition are given in Section III, which rely on several key
operations on matrices. Finally, a brief conclusion is given in Section IV.

II. SUPPORT CONSTRAINTS OF MDS CODES

We start by introducing some basic notations and definitions, and then proceed to the sufficient condition on the zero pattern
of a sparse generator matrix of an [n, k]q MDS code.

A. Notations and Definitions

For any integers a < b, let [a, b] denote the set of integers {a, a+1, . . . , b}. We further abbreviate [1, b] as [b]. Let a mod+ n
denote the unique r ∈ [n] such that n divides a− r, and let [a, b] mod+ n denote the set {x mod+ n : x ∈ [a, b]}.

We use Fq to denote the finite field with q elements. A linear code C over Fq of length n, dimension k and minimum
distance d is denoted by [n, k, d]q . When C is an MDS code, i.e., d = n− k + 1, we sometimes omit d and write [n, k]q . A
generator matrix G of C is said to be sparse and balanced [12] if G satisfies the following two conditions:
(1) Sparse condition: the weight of each row of G is exactly n− k + 1;
(2) Balanced condition: the weight of each column of G is either dk(n−k+1)

n e or bk(n−k+1)
n c.

An MDS code that has a sparse and balanced generator matrix (SBGM) is simply called a sparse and balanced MDS code.
In this paper, we focus on constructions of sparse and balanced Reed-Solomon codes. An [n, k]q Reed-Solomon (RS) code
is a special MDS code, which is given by {(f(a1), . . . , (f(an)) : f ∈ Fq[x], deg(f) < k}, where the evaluation points
a1, . . . , an ∈ Fq are all distinct.

Let P be a sequence of k polynomials f1, f2, . . . , fk in Fq[x] such that deg(fi) ≤ t− 1, then the coefficient matrix C(P)
of P is a k × t matrix with the (i, j)th entry being the coefficient of xt−j in fi, that is [xt−j]fi. If P consists of only one
polynomial f , we simply write C(f) as the row vector recording all coefficients of f .

3

Given a set system S = {S1, S2, . . . , Sk} with Si ⊂ [n] and |Si| ≤ k − 1 for each i ∈ [k]. Let a1, . . . , an be any fixed n
distinct elements of the field Fq . Define PSi(x) ,

∏
j∈Si

(x−aj) = pi,0x
k−1 +pi,1x

k−2 + · · ·+pi,k−1 ∈ Fq[x], for all i ∈ [k].
In the rest of this paper, we denote P the sequence PS1 , PS2 , . . . , PSk

, then C(P) = (pi,j)k×k for i ∈ [k] and j ∈ [0, k − 1].
Let G = (gi,j) be the k × n matrix over Fq with gi,j = PSi

(aj) for i ∈ [k] and j ∈ [n]. Then

G =

p1,0 p1,1 · · · p1,k−1

p2,0 p2,1 · · · p2,k−1

pk,0 pk,1 · · · pk,k−1

ak−1
1 ak−1

2 · · · ak−1
n

ak−2
1 ak−2

2 · · · ak−2
n

a0
1 a0

2 · · · a0
n


= C(P) · V,

where V is the Vandermonde matrix. It is easy to check that if PS1
, PS2

, . . . , PSk
are linearly independent over Fq , then

det(C(P)) 6= 0, and hence any k columns of G are linearly independent, so G can be seen as a generator matrix of an [n, k]q
RS code with the evaluation points a1, . . . , an. In other words, to construct an [n, k]q MDS code, one would like to construct
a set system S = {S1, S2, . . . , Sk}, such that the polynomials PS1

, PS2
, . . . , PSk

defined by S are linearly independent.
Let MS = (mi,j) be the k×n binary matrix with mi,j = 0 if and only if j ∈ Si. Then mi,j = 0 if and only if gi,j = 0, so we

call MS the complementary support matrix of G, or of S. Given a generator matrix G of an [n, k]q MDS code, we can determine
its complementary support matrix, and then obtain a set system S = {S1, S2, . . . , Sk} with Si = {j ∈ [n] : gi,j = 0} ⊂ [n]
for each i ∈ [k]. The size of each Si is at most k− 1 by the minimum distance d = n− k+ 1, and |Si| = k− 1 for all i if G
is sparse.

Next, we show that a set system S = {S1, S2, . . . , Sk} with certain properties will produce k linearly independent polynomials
P over Fq with q ≥ n, that is det(C(P)) 6= 0, and consequently a generator matrix G for an [n, k]q RS code.

B. Support Constraints of Sparse Codes

Assume that n ≥ k > 1 in this section. Let S = {S1, S2, . . . , Sk} be a (k−1)-uniform set system over [n], that is |Si| = k−1
for each i ∈ [k]. If there exists i ∈ [k − 1], such that |S1 ∩ S2 ∩ · · · ∩ Si| = k − i and |Si+1 ∩ Si+2 ∩ · · · ∩ Sk| = i, then we
call S is separable at i. If ∩i∈[k]Si = ∅, we say S is non-intersecting.

Given a non-intersecting set system S = {S1, S2, . . . , Sk} which is separable at some i ∈ [k − 1], assume that A =
S1 ∩ S2 ∩ · · · ∩ Si is of size k − i and B = Si+1 ∩ Si+2 ∩ · · · ∩ Sk is of size i. By the non-intersecting property, A ∩B = ∅.
Denote S′j = Sj \A for j ∈ [i], and S′j = Sj \B for j ∈ [i+ 1, k]. We say A = {S′1, . . . , S′i} and B = {S′i+1, . . . , S

′
k} are the

two residual set systems of S with index i. Note that A is (i− 1)-uniform and B is (k − i− 1)-uniform. In particular, when
i = 1 or i = k − 1, then A or B will degenerate into {∅}. Let P1 be the sequence of polynomials PS′1 , PS′2 , . . . , PS′i defined
by A, and P2 be the sequence PS′i+1

, . . . , PS′k defined by B. Here, if the set S′ = ∅, we simply define PS′(x) = 1. Denote
f0 =

∏
u∈A(x−au) and g0 =

∏
v∈B(x−av). Finally, let Q1 be the sequence xi−1f0, xi−2f0, . . ., f0 and Q2 be the sequence

xk−i−1g0, xk−i−2g0, . . ., g0. Note that each polynomial in Q1 and Q2 has degree at most k − 1. Under these notations, we
give the following lemmas, which generalize [14, Lemma II.2]. Proofs of Lemmas II.1 and II.2 are given in Appendix.

Lemma II.1. Suppose that the (k − 1)-uniform set system S = {S1, S2, . . . , Sk} is non-intersecting and separable at some
i ∈ [k − 1]. Then

C(P) =

[
C(P1) 0

0 C(P2)

] [
C(Q1)
C(Q2)

]
.

Lemma II.2. The determinant of [C(Q1) C(Q2)]T is nonzero. In particular det([C(Q1) C(Q2)]T) =
∏
u∈A,v∈B(au − av).

By Lemmas II.1 and II.2, we have

det(C(P)) = det(C(P1)) det(C(P2))
∏

u∈A,v∈B
(au − av),

when S is non-intersecting and separable. To make sure that det(C(P)) 6= 0, we need both det(C(P1)) and det(C(P2))
are nonzero, which are the coefficient matrices of polynomials defined by the residual set systems of S. This motivates us to
define a binary tree from a set system S in the following way. Let the (k − 1)-uniform system S = {S1, S2, . . . Sk} be the
root node. If S is not non-intersecting and separable, then stop. Otherwise, let the two residual set systems A and B of S be
the left and right children of S . Then consider A and B, say for example A. If A is not non-intersecting and separable or
A = {∅}, then stop. Otherwise, we can extend A by its two residual set systems. Keep doing this until we can not extend
any more. If the resulting binary tree has all leaf nodes being {∅}, then we say that it is a good binary tree. Note that the
binary tree constructed from S may not be unique. We say S is good if it can produce at least one good binary tree. For
convenience, we use the sequence of indices separating the nodes from top to bottom to indicate a specific binary tree, where
indices for different layers are separated by a semi-colon. To be clear about the structure of S, in the sequence, we use the
original indices from S instead of indices from its decedents. See Example II.1 and Fig. 1.

4

Example II.1. Let S1 = {5, 6, 7, 8}, S2 = {1, 6, 7, 8}, S3 = {1, 2, 7, 8}, S4 = {1, 2, 3, 4}, S5 = {2, 3, 4, 5}. Then S = {S1,S2,
S3,S4,S5} is a 4-uniform set system over [8]. We show that S is good and corresponds to a good binary tree.

In fact, S is non-intersecting and separable at 3 since |S1 ∩ S2 ∩ S3| = |{7, 8}| = 2 and |S4 ∩ S5| = |{2, 3, 4}| = 3. Then
we have two residual set systems A = {S′1, S′2, S′3} and B = {S′4, S′5} with index 3, where S′1 = {5, 6}, S′2 = {1, 6}, S′3 =
{1, 2}, S′4 = {1} and S′5 = {5}. Both A and B are non-intersecting and separable since S′1 ∩ S′2 = {6}. Let S′′1 = {5}, S′′2 =
{1}, C = {S′′1 , S′′2 }. Then the corresponding binary tree in Fig. 1 is denoted by (3; 2, 4; 1), which is good since all leaf nodes
are {∅}.

  



Fig. 1. The binary tree (3; 2, 4; 1) in Example II.1.

Note that if a set system has only one member which is an empty set, that is {∅}, then there is only one constant polynomial
defined by it. Hence the corresponding coefficient matrix is a 1 × 1 matrix with entry 1, i.e., C({∅}) = (1), which has
determinant 1. Combining Lemmas II.1 and II.2, and all analysis before together, we know that if the (k− 1)-uniform system
S = {S1, . . . , Sk} is good, then picking any n distinct elements a1, . . . , an ∈ Fq to define PSi

, will result in an invertible
coefficient matrix C(P), and consequently a generator matrix G of an [n, k]q RS code whose complementary support matrix
is MS . We summarize this result into the following theorem.

Theorem II.1. Let S = {S1, . . . , Sk} be a good (k− 1)-uniform set system over [n]. Then for any finite field Fq with q ≥ n,
there exists a sparse [n, k]q RS code, whose generator matrix G has the property that Gij = 0 if and only if j ∈ Si, i.e., MS
is the complementary support matrix of G.

Example II.2. Let n = 8, S = {S1, S2, S3, S4, S5} be the set system given in Example II.1, then S satisfies the assumptions
of Theorem II.1. We will construct a 5× 8 matrix G over Fq = GF (23) with the property that Gij = 0 if and only if j ∈ Si.
Let P = {PS1

(x), · · · , PS5
(x)}, where

PS1
(x) = (x− a5)(x− a6)(x− a7)(x− a8)

PS2(x) = (x− a1)(x− a6)(x− a7)(x− a8)

PS3
(x) = (x− a1)(x− a2)(x− a7)(x− a8)

PS4
(x) = (x− a1)(x− a2)(x− a3)(x− a4)

PS5
(x) = (x− a2)(x− a3)(x− a4)(x− a5).

Then the determinant of the coefficient matrix C(P) is

det(C(P)) =
∏

u∈{7,8},v∈{2,3,4}

(au − av) ·
∏

v′∈{1,2}

(a6 − av′) · (a1 − a5) · (a5 − a1).

The determinant of C(P) will be nonzero in Fq if all ai are distinct elements of Fq . Let ζ be a primitive element of Fq that
satisfies ζ3 + ζ + 1 = 0, and a1 = 0, ai = ζi−2 for i ∈ [2, 8]. Then det(C(P)) = 1 6= 0, and the 5× 8 matrix G over Fq is

G =


ζ4 ζ5 ζ6 ζ2 0 0 0 0
0 ζ4 1 ζ6 ζ 0 0 0
0 0 ζ ζ4 ζ3 ζ5 0 0
0 0 0 0 ζ2 ζ5 ζ4 ζ6

ζ6 0 0 0 0 1 ζ ζ4


By Theorem II.1, there exists an [8, 5] RS code whose generator matrix is G. Furthermore, G is also sparse and balanced.

A good (k − 1)-uniform set system S satisfying the conditions of Theorem II.1 simply exists, for example, let Si =
[i, i+ k − 2] mod+ n. That is, sparse RS codes always exist. However, this can not give us a balanced code. To get a sparse
and balanced RS code, we need to find a good (k−1)-uniform set system, which simultaneously has almost the same element
occurrences. For convenience, we say a set system S or the matrix MS is sparse and balanced if the matrix G is sparse and
balanced, and MS is good if S is good.

5

III. CONSTRUCTIONS OF SPARSE AND BALANCED MDS CODES

In this section, we prove our main result Theorem I.2, which gives the existence of MDS codes with an SBGM over a small
field Fq with q ≥ n. For the reader’s convenience, we restate Theorem I.2 here.

Theorem (Theorem I.2). For any integer k ≥ 3, let n ≤ 2k if k is even, and n ≤ 2k − 1 if k is odd. For any finite field Fq
with q ≥ n, there exists an [n, k]q MDS code, whose generator matrix is sparse and balanced.

By Theorem II.1, we need to construct a good and balanced (k−1)-uniform set system S. Equivalently, we need to construct
a k × n binary matrix M = (mi,j) = MS satisfying the following properties:

(P1) Sparse condition: each row of M has k − 1 zeros;
(P2) Balanced condition: there are µ columns of M containing dk(k−1)

n e zeros and the rest containing bk(k−1)
n c zeros, where

µ , k(k − 1) mod+ n;
(P3) Good condition: for i ∈ [k], let Si = {j : mi,j = 0} ⊆ [n], then the set system S = {S1, . . . , Sk} is good.

In the sequential of this paper, we do not distinguish S and MS . Note that Si = [i, i + k − 2] mod+ n, i ∈ [k] gives a
matrix MS satisfying both (P1) and (P3). It is also easy to construct a matrix satisfying both (P1) and (P2). However, it is
not easy to construct a matrix satisfying all of the three properties. We first give necessary conditions in Theorem I.2 for the
restriction of n and k in a matrix satisfying (P1)-(P3).

Lemma III.1. Given two positive integers n ≥ k ≥ 3, if there exists a sparse, good and balanced k × n binary matrix, then
n ≤ 2k. Further if n = 2k, then k must be even.

Proof. Suppose S = {S1, . . . , Sk} and MS is sparse, good and balanced. By the good condition, there exist i ∈ [k − 1], such
that |S1 ∩S2 ∩ · · · ∩Si| = k− i and |Si+1 ∩Si+2 ∩ · · · ∩Sk| = i. Suppose that n ≥ 2k. Then by the balanced condition, both
i and k − i are at most dk(k−1)

n e ≤ dk(k−1)
2k e = dk−1

2 e. If i < dk(k−1)
n e ≤ dk−1

2 e, then

k − i ≥ k −
⌈
k − 1

2

⌉
+ 1 = k − 1−

⌈
k − 1

2

⌉
+ 2

=

⌊
k − 1

2

⌋
+ 2 ≥

⌈
k − 1

2

⌉
+ 1.

This contradicts to k − i ≤ dk−1
2 e. The case k − i < dk(k−1)

n e is similarly not possible. Hence i = k − i = k
2 = dk(k−1)

n e.
Hence, k must be even. Since S is separable at i = k/2, then there are at least k columns in MS each containing at least k

2
zeros. This excludes the cases when n = 2k+ 1, 2k+ 2 for all k ≥ 4, or n = 2k+ 3 and for k = 4, since for these cases, the
value µ = k(k − 1) mod+ n is strictly less than k.

Next, we exclude all other cases due to the equation k
2 = dk(k−1)

n e. Assume that n = 2k + t with t ≥ 4, or t = 3 and
k ≥ 6. Then ⌈

k(k − 1)

n

⌉
=

⌈
k(k − 1)

2k + t

⌉
=

⌈
k

2
− (t+ 2)k

4k + 2t

⌉
≤ k

2
− 1,

thus a contradiction.
So we conclude that n = 2k and k is even by assumption, or n < 2k.

By Lemma III.1, we only need to consider n < 2k or n = 2k and k is even. When n = 2k and k is even, we have µ = k,
that is, there are exactly k columns each containing k

2 zeros and k columns each containing k
2 −1 zeros in MS . A valid matrix

can be constructed by cyclically shifting the vectors (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, . . . , 1) and (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
k−1

, 1) each for k
2 times. Formally,

the construction is given below.

Construction III.1. Let n = 2k for any even k ≥ 4. For i ∈ [1, k2], let Si = [i, i + k − 2]; for i ∈ [k2 + 1, k], let
Si = [k2 + i, 3k

2 + i − 2] mod+ n. Then the set system S = {S1, . . . , Sk} is good due to the good binary tree (k/2; 1, k −
1; 2, k − 2; . . . ; k/2− 1, k/2 + 1). Further, the jth column in MS has k

2 − 1 zeros if j ∈ [1, k2 − 1] ∪ [k, 3k
2 − 1] ∪ {2k}, and

k
2 zeros if j ∈ [k2 , k − 1] ∪ [3k

2 , 2k − 1]. Hence MS is sparse and balanced.

From now on, we assume that n < 2k. We next prove a key ingredient in our algorithms.

A. Key Operations in Algorithms

Notice that in Construction III.1, the matrix MS is obtained by cyclically shifting two vectors. When n < 2k, this method
fails since the number of zeros is always k(k− 1), but n becomes smaller, which may lead to insufficient zeros in the middle
columns of MS .

A circulant matrix from a binary vector is good since it trivially satisfies the sparse and good conditions. However, it is not
balanced in general. Next, we show that if MS is a circulant binary matrix, then we can adjust the positions of zeros restricted
in the same row, so that the new MS is still sparse and good, but becomes more balanced. See the following example.

6

Example III.1. Suppose k = 6 and n = 10. Let MS be the following matrix which is obtained by cyclically shifting the vector
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1). Note that S can produce a good binary tree (3; 1, 5; 2, 4). We partition MS into several blocks by
drawing lines at the (i− 1)th and the (i+ 1)th rows, the (i− 1)th and the (i+ k − 1)th columns for i = 3.

MS =


0 0 0 0 0 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 1 1
1 1 1 1 0 0 0 0 0 1
1 1 1 1 1 0 0 0 0 0


All our exchanges will be restricted in the same row. We observe that the following exchanges do not destroy the good

condition. The zeros in the upper left and lower right corners can be exchanged with any ones in the row where they are,
except for the red ones. For the blue and yellow zeros in the center block, we can exchange them with any one in the same
row, but the two blue and the two yellow zeros cannot be in the same column, respectively. Otherwise, they produce repeated
rows. For all other zeros, let them stay where they are. For example, we can update MS to the following MS′ , where the
binary tree (3; 1, 5; 2, 4) from S ′ is still good.

MS′ =


1 0 0 0 0 1 1 1 1 0
1 1 0 0 0 0 1 1 0 1
1 1 0 0 0 0 1 1 1 0
1 0 1 1 0 0 0 0 1 1
0 1 1 1 0 0 0 0 1 1
1 0 0 1 1 0 0 0 1 1


We extend Example III.1 to a more general case in the following lemma.

Lemma III.2. (Key Operations) Given positive integers n ≥ k and α ∈ [n]. Let S = {S1, . . . , Sk} be a (k − 1)-uniform set
system which corresponds to a good binary tree with the first layer index β. Suppose Sj = [α+ j− 1, α+ j+ k− 3] mod+ n,
j ∈ [β − 1]. For any s ∈ [β], define a new set system S ′ with each set of them mod+ n as follows:
(1) for any t ∈ [s− 1], S′t = [α+ s− 1, α+ k + t− 3] ∪ {at,1, . . . , at,s−t} with α+ k + t− 2 6∈ {at,1, . . . , at,s−t};
(2) for t ∈ [s+ 2, β], S′t = [α+ t− 1, α+ k + s− 2] ∪ {at,1, . . . , at,t−s−1} with α+ t− 2 6∈ {at,1, . . . , at,t−s−1};
(3) S′s = [α + s − 1, α + k + s − 3] ∪ {as,1} with as,1 6= as−1,1 and S′s+1 = [α + s + 1, α + k + s − 2] ∪ {as+1,1} with

as+1,1 6= as+2,1.
Then the new set system S ′ = {S′1, . . . , S′β , Sβ+1, . . . , Sk} is still good.

Proof. Let S̄ = {S1, . . . , Sβ}, consider the matrix MS̄ . The left picture in Fig. 2 draws the positions of zeros in MS̄ , which
are enclosed by the solid lines. Each row of MS̄ represents a set Si, i ∈ [β]. In this picture, we assume that α = 1 and
k + β − 2 < n for simplicity, and the proof is still true if we remove these conditions. Let S̄ ′ = {S′1, . . . , S′β}. Then in the
new matrix MS̄′ , we only exchange zeros in the red area with any ones in its own row, except for the ones identified by red
stars. Further, the exchange of the two red zeros are restricted by (3), so that no repeat rows are produced.

Since S′1 ∩ · · · ∩S′β = [α+β− 1, α+ k− 2], which is of size k−β, then S ′ is still separable at β. Let A′ = {A′1, . . . , A′β}
be a (β − 1)-uniform system with A′i = S′i \ [α+ β − 1, α+ k − 2] for each i ∈ [β]. We only need to show that A′ is good.
Since |A′1 ∩ · · · ∩ A′s| = |[α + s − 1, α + β − 2]| = β − s and |A′s+1 ∩ · · · ∩ A′β | = |[α + k − 1, α + k + s − 2]| = s, A′ is
non-intersecting and separable at s, and has two residual set systems C′ = {C ′1, . . . , C ′s} with C ′i = A′i \ [α+ s− 1, α+β− 2]
for i ∈ [s], and D′ = {D′1, . . . , D′β−s} with D′j = A′s+j \ [α + k − 1, α + k + s − 2] for j ∈ [β − s]. Hence C′ and D′ are
two descendants of A′. It is easy to check that both C′ and D′ correspond to a good binary tree, and so does A′. In fact, the
binary tree (s; 1, β − 1; 2, β − 2; . . .) from A′ is good. See the right figure in Fig. 2, where all red nodes are {∅}.

In Lemma III.2, S is separable at β. So we can update the last k − β rows simultaneously, and the resulting S ′ =
{S′1, . . . , S′β , S′β+1, . . . , S

′
k} is still good. Example III.1 is a case of Lemma III.2 by picking α = 1, β = 6 and s = 3.

Lemma III.2 tells us that, starting from a circulant block of MS , which satisfies the sparse and good condition, we can
modify it to a more balanced block keeping the sparse and good property. In the next subsections, we will apply Lemma III.2
repeatedly in our algorithms to output a sparse, good and balanced matrix, which could be used as the complementary support
matrix of a generator matrix for an RS code.

B. Constructions of MS with n < 2k

In this section, we show the existence of a sparse, good and balanced k × n binary matrix for all n < 2k. Let n = 2k − t
with t ∈ [k]. For convenience, we always assume that k is even. The constructions for odd k are similar and can be provided
upon requests. For t = 1, 2, we construct the desired matrix explicitly. For t ∈ [3, k], we show the existence of such a matrix
by several algorithms of applying Lemma III.2.

7

*
*

*

.

*

.
.

*

*

.
.
.

0
0

2S

1S

1sS 

1sS 

sS

2sS 

s+3S

S

'

' '

Fig. 2. The left picture draws the positions of zeros in MS̄ , while the right picture is the binary tree (s; 1, β − 1; 2, β − 2; . . .) from A′.

TABLE I
THE DISTRIBUTION OF r.

u = 0 u = 1 u = 2 u = 3

r t
2

t−1
2

t+2
2

t+1
2

Let a , dk(k−1)
n e and b , bk(k−1)

n c be the required numbers of zeros in each column. Remember µ , k(k − 1) mod+ n
is the required number of columns each containing a zeros.

Construction III.2. When t = 1, then n = 2k − 1, µ = 3k
2 − 1 and a = k

2 . Construct S = {S1, . . . , Sk} as follows: for
i ∈ [1, k2], Si = [i, i + k − 2]; for i ∈ [k2 + 1, k], Si = [1, i − k

2 − 2] ∪ [k2 + i − 1, 2k − 1]. The good binary tree from S is
(k2 ; 1, k − 1; 2, k − 2; . . . ; k2 − 1, k2 + 1).

Construction III.3. When t = 2, then n = 2k − 2, µ = n and a = k
2 . Construct S = {S1, . . . , Sk} as follows: for

i ∈ [1, k2], Si = [i, i + k − 2]; for i ∈ [k2 + 1, k], Si = [1, i − k
2 − 1] ∪ [k2 + i − 1, 2k − 2]. The good binary tree from S is

(k2 ; 1, k − 1; 2, k − 2; . . . ; k2 − 1, k2 + 1).

When t ∈ [3, k], write t = 4m+ u with u = 0, 1, 2, 3. Then

k(k − 1)

2k − t
=
k(k − t

2) + (t2 − 1)k

2(k − t
2)

=
k

2
+

(t− 2)k

4(k − t
2)

=
k

2
+
t− 2

4
+
t2 − 2t

8k − 4t
.

When 3 ≤ t < 1+
√

8k
2 , we have t2−2t

8k−4t <
1
4 . Then a = dk(k−1)

n e = k+r
2 and b = bk(k−1)

n c = k+r−2
2 , where the values of r are

depicted in Table I.
Now we assume that 3 ≤ t < 1+

√
8k

2 , and take u = 1 as an example to illustrate our algorithm. All the other three cases
are similar. In this case, t = 4m+ 1 with m < 2

√
2k−1
8 , a = k+2m

2 , b = k+2m−2
2 and µ = 3k

2 + 4m2 − 3m− 1.
Start from an initial matrix MS = [M1,M2]>, where M1 and M2 are both circulant k

2 × n matrices. The first row of
M1 corresponds to the set [k − 1], and the first row of M2 corresponds to the set [k − 3m + 1, 2k − 3m − 1] mod+ n =
[k − 3m+ 1, n] ∪ [1,m]. See the left picture in Fig. 3 about the zero positions of MS . All zeros are in the enclosed area by
solid lines. It is easy to check that MS is sparse and good, but not balanced. We will apply the key operations in Lemma III.2
to make MS a balanced matrix. The construction is given in Algorithm 1, and we illustrate it in the right picture of Fig. 3.

Now we explain Algorithm 1 by following the notations in Fig. 3. In the initial matrix MS , each column with index in
[A,B] already has exactly a zeros. After Steps 3-6 of Algorithm 1, the number of zeros of column j ∈ [1, A − 1] ∪ [J,O]
is a, and the number of zeros of column j ∈ [O + 1, P] is b. Notice that |[O + 1, P]| = k

2 − 4m2 −m = n − µ, so these
are the all columns containing b zeros, and we need to make all other columns to contain a zeros. Thus, for each column j
from [E + 2, F], or [F + 1, G − 1], or [G,H], or [H + 1, J − 1], we need to delete j − (k − 2m), 2m − 1,m,m − 1 zeros,
respectively. We do not need to modify the (E + 1)th column since it already has a zeros. Steps 7 and 8 further make the
number of zeros in columns [B + 1, C] ∪ [D,E] ∪ [I − 1, J − 1] to a.

The Steps 3-8 are explicit. It is left to check the feasibility of Steps 9 and 10 in Algorithm 1. There are m zeros to be moved
in for each column from [C + 1, D− 1]. For each column j in [E + 2, F], or [F + 1, G− 1], or [G,H], or [H + 1, I − 2], we
need to move out j − (k − 2m), 2m− 1,m,m− 1 zeros from column j, respectively. Hence we only need to check whether
the number of zeros we move in is the same as the number of zeros we move out. The number of zeros we need to move in
is (k2 − 4m+ 1)m = k

2m− 4m2 +m, and the number of zeros we need to move out is

m(2m− 1) + (2m− 1)(2m− 1) + (
k

2
− 4m2 −m)m+ (4m2 − 4m+ 1−m)(m− 1) =

k

2
m− 4m2 +m.

8

J

N

A B C

D P
F

5
3 3

4

7 7

88

J

K

A B C

D

L

4

56 6FE

N O
IG H

P

Fig. 3. The left picture is the initial matrix MS . The right picture is an illustration of Algorithm 1. A pair of blocks with the same index indicates the
beginning (red) and ending (yellow) of a step with the same index in the algorithm. For example, in Step 3 of Algorithm 1, zeros in the red triangle with
index 3 move to the place of the yellow one. The column coordinates of the points in these two figures are the same and listed as follows: A = m, B = k

2
,

C = k
2
+m − 1, D = k − 3m + 1, E = k − 2m − 1, F = k − 1, G = k + 2m − 1, H = 3k

2
− 4m2 +m − 2, I = 3k

2
− 4m + 1, J = 3k

2
− 3m,

K = 3k
2
− 2m − 1, L = 3k

2
−m − 2, N = 3k

2
− 2, O = 3k

2
+ 4m2 − 3m − 1, P = n. Furthermore, the coordinates of two adjacent points differ by

one, so do all the following figures.

Algorithm 1 Construction of MS with t = 4m+ 1 and k is even.
Input: Integers n, k, t = 4m+ 1 with n ≥ k and n = 2k − t;
Output: A sparse, good and balanced binary matrix MS .

1: Construct the initial matrix MS = (mi,j) as follows: for i ∈ [1, k2] and j ∈ [i, i+ k − 2], mi,j = 0; for i ∈ [k2 + 1, k], j ∈
[1,m− 1 + i− k

2] ∪ [k − 3m+ i− k
2 , n], mi,j = 0; for all the rest positions, mi,j = 1.

2: Change the positions of zeros.
3: For i ∈ [k2 −m+ 2, k2], j ∈ [1, i− (k2 −m+ 1)] and j′ ∈ [3k

2 − 2m, 3k
2 − 2m+ i− (k2 −m+ 2)], mi,j = 0 and mi,j′ = 1.

4: For i ∈ [k2 − 2m+ 2, k2 −m], j ∈ [3k
2 − 3m, 3k

2 − 3m+ i− (k2 − 2m+ 2)] and j′ ∈ [3k
2 − 2− (i− (k2 − 2m+ 2)), 3k

2 − 2],
mi,j = 1 and mi,j′ = 0.

5: For i ∈ [k2 −m + 1, k2], j ∈ [3k
2 − 4m2 + m − 1, 3k

2 − 2m − 1] and j′ ∈ [3k
2 − 1, 3k

2 + 4m2 − 3m − 1], mi,j = 1 and
mi,j′ = 0.

6: For i ∈ [k2 −m+ 2, k2], j ∈ [k + 2m− 1, 3k
2 − 4m2 +m− 2] and j′ ∈ [3k

2 + 4m2 − 3m,n], mi,j = 1 and mi,j′ = 0.
7: For i ∈ [k2 + 1, k2 +m− 1], j ∈ [i, k2 +m− 1] and j′ ∈ [3k

2 − 4m+ (i− k
2), 3k

2 − 3m− 1], mi,j = 0 and mi,j′ = 1.
8: For i ∈ [k2 + 2, k2 +m], j ∈ [k− 3m+ 1, k− 3m+ (i− k

2 − 1)] and j′ ∈ [3k
2 − 4m, 3k

2 − 4m− 1 + (i− k
2 − 1)], mi,j = 0

and mi,j′ = 1.
9: For any two columns j ∈ [k2 +m, k− 3m] and j′ ∈ [k− 2m+ 1, 3k

2 − 4m− 1]. Find a row i ≥ k
2 + 1 satisfying mi,j = 1

and mi,j′ = 0, then swap them: mi,j = 0 and mi,j′ = 1.
10: Repeat Step 9 until all columns from [k2 +m, k − 3m] ∪ [k − 2m+ 1, 3k

2 − 4m− 1] have k+2m
2 zeros.

11: return MS ;

Thus Steps 9 and 10 in Algorithm 1 are feasible, which finally gives us a sparse and balanced binary matrix. Since the initial
matrix MS is good, and all steps in Algorithm 1 satisfy the key operations of Lemma III.2, the final new matrix MS still
corresponds to a good binary tree which is (k2 ; k2 − 1, k2 + 1; k2 − 2, k2 + 2; . . . ; 1, k − 1).

In the sections to follow, we consider t ≥ 1+
√

8k
2 , and give three algorithms for constructing MS for different ranges of t.

For convenience, we assume that µ ≥ n
2 and k > 176, and the case when µ < n

2 or k ≤ 176 are similar. In fact, these three
algorithms are generalizations of Algorithm 1, but not explicit any more, since we do not know the exact values of µ and a.

1) When t ∈ [d 1+
√

8k
2 e, k2 + 2]:

In this case, n = 2k − t ≥ 3k
2 − 2 and 2k − a− 1 ≥ k + a− t+ 1. Start from an initial matrix MS = [M1,M2]>, where

M1 and M2 are both circulant k
2 × n matrices. The first row of M1 corresponds to the set [k − 1], and the first row of M2

corresponds to the set [k2 + a+ 2− t, 3k
2 + a− t] mod+ n = [k2 + a+ 2− t, n]∪ [1, a− k

2]. See Fig. 4 about the zero positions
of MS , where yellow areas are excluded.

It is easy to check that MS is sparse and good, but not balanced. The columns with index in [a− k
2 ,

k
2] each have a zeros.

Since µ ≥ n
2 ≥

3k
4 − 1, we do not have to modify these columns. In order that each column from [1, a− k

2 − 1] has a zeros,
we need some zero blocks as the yellow triangle labeled by 4 in Fig. 4, which can be moved from the red triangle labeled by
4 in columns [2k − a, 3k

2 − 2]. After this modification, any column in [2k − a, n] has k
2 zeros. We need to move some zeros

from the (i, j)th position with i ∈ [2, k2] and j ∈ [k, 2k−a−1] to columns [2k−a, n], since each column from [k, 2k−a−1]
has at least a zeros.

The most challenge of our approach is that after the above modifications, all columns in [1, k2] ∪ [2k − a, n] has a zeros,
but there are still some columns in [k + a− t+ 1, 2k − a− 1] having extra zeros; these extra zeros can not be moved to any
other columns in row [1, k2] directly since it will increase extra zeros to columns in [1, k2] ∪ [2k − a, n]; and they are also can

9

44

77

9

1 a-k
/2

-1
a-k

/2

2
a-k

/2
-t

k
/2

-2

k
/2

k
/2

+
1

a-1

k
+
a-t

k
+
a-t+

1

n

k
-1

k 2
k
-a-1

2
k
-a

3
k
/2

-2

k
/2

+
a-t+

2

Fig. 4. The illustration of Algorithm 2. The indices in the blocks are consistent with the indices of the Steps in algorithms, while the red and yellow blocks
correspond to the beginning and ending places of a movement.

not be moved to any other columns in rows [k2 + 1, k], otherwise it may destroy the good condition of the bottom block since
they are not key operations allowed in Lemma III.2.

To make the matrix balanced while preserving the good property of MS , we first move the extra zeros from columns
[k + a − t + 1, 2k − a − 1] which are inside the red echelon labeled by 7 in Fig. 4, to columns [2a − k

2 − t,
k
2 − 2] which

are inside the yellow echelon labeled by 7. Then the columns in [2a− k
2 − t,

k
2 − 2] have extra zeros, so we move these extra

zeros identified by red echelon labeled by 9 in Fig. 4 to columns in [k2 + 1, 2a− t]. These steps are detailed in Algorithm 2.

Algorithm 2 Construction of MS with t ∈ [d 1+
√

8k
2 e, k2 + 2] and k is even.

Input: Integers k, t with t ∈ [d 1+
√

8k
2 e, k2 + 2] and k is even;

Output: A sparse, good and balanced binary matrix MS .
1: Compute n = 2k − t, a = dk(k−1)

2k−t e, b = bk(k−1)
2k−t c and c = k + t− 2a− 1.

2: Construct the initial matrix MS = (mi,j) as follows: for i ∈ [1, k2] and j ∈ [i, i+ k − 2], mi,j = 0; for i ∈ [k2 + 1, k], j ∈
[1, a− k

2 − 1 + i− k
2] ∪ [k2 + a+ 1− t+ i− k

2 , n], mi,j = 0; for all the rest positions, mi,j = 1.
3: Change the positions of zeros.
4: For i ∈ [k − a+ 2, k2], j ∈ [1, i− (k − a+ 1)] and j′ ∈ [2k − a, 2k − a− 1 + i− (k − a+ 1)], mi,j = 0 and mi,j′ = 1.
5: For any two columns j1 ∈ [k, 2k − a − 1] and j2 ∈ [2k − a, n], find a row i ∈ [2, k − a] and j1 as large as possible

satisfying mi,j1 = 0 and mi,j2 = 1, then swap them: mi,j1 = 1 and mi,j2 = 0.
6: Repeat Step 5 until all columns from [2k − a, n] have a zeros and all columns from [k + a− t+ 1, 2k − a− 1] have at

least b zeros, then we record the last j1.
7: If j1 ≥ k + a − t + 1, find a row i ∈ [2a − t − k

2 + 2, k2] and two columns s1 ∈ [k + a − t + 1, 2k − a − 1] and
s2 ∈ [2a− k

2 − t,
k
2 − 2] with s2 ≤ i− 2, such that mi,s1 = 0 and mi,s2 = 1, then swap them: mi,s1 = 1 and mi,s2 = 0.

8: Repeat Step 7 until all columns from [k + a− t+ 1, 2k − a− 1] have at least b zeros.
9: If Steps 7 and 8 are executed, then for i ∈ [2a−t+2, k], find two columns s1 ∈ [2a− k

2 −t,
k
2 −2] and s2 ∈ [k2 +1, 2a−t],

such that mi,s1 = 0 and mi,s2 = 1, then swap them: mi,s1 = 1 and mi,s2 = 0.
10: Repeat Step 9 until all columns from [2a− k

2 − t,
k
2 − 2] have a zeros, and all columns from [k2 + 1, 2a− t] have at most

a zeros.
11: For s1 ∈ [k2 + 1, 2a − t + 1] and s2 ∈ [2a − t + 1, k + a − t], find a row i ∈ [k2 + 1, k2 + c], such that mi,s1 = 1 and

mi,s2 = 0 and (i, s1) 6= (i, a− k + i), then swap them: mi,s1 = 0 and mi,s2 = 1.
12: Repeat Step 11 until all columns have a or b zeros.
13: return MS ;

Remark III.1. In Algorithm 2, whether a column has a or b zeros depends on the integers n, k, t. We can make a rule in
advance that in the first few steps we try to obtain the required number (or close to) of columns containing a zeros, then the
remaining steps of the algorithm focus on making most of the rest columns to have b zeros. All algorithms in this section will
follow this rule.

Lemma III.3. Algorithm 2 is executable and will terminate after finitely many iterations.

Proof. Algorithm 2 runs according to the agreement that all columns in [1, k2]∪ [2k−a, n] will have a zeros, which is feasible
since µ ≥ k− t

2 ≥
k
2 +a− t+ 1. Our goal is to have a or b zeros in each column. Before Step 5, the number of extra zeros of

10

all columns in [k, k+a−t] or [k+a−t+1, 2k−a−1] is at least ε1 = (k+t−2a−2)(a−t+1) or ε2 = (k+t−2a−2)(k+t−2a−1)
2

respectively; the columns in [2k − a, n] lacks ι zeros with ι = (a − t + 1)(a − k
2) in total. If the number of extras zeros of

all columns in [k + a − t + 1, 2k − a − 1] is smaller than ε2, then the last j1 in Step 6 satisfies j1 < k + a − t + 1 and the
program will skip Steps 7-10 and go to Step 11 directly, since ε1 + ε2 ≥ ι, which is obtained by taking derivative with respect
to t. Steps 5 and 6 must terminate after ι iterations.

If ε2 > ι, Steps 5 and 6 again terminate after ι iterations. Then the program will go through all Steps 7-10 before Step 11.
The difference between the number of extra zeros in columns [k + a − t + 1, 2k − a − 1] and the number of zeros that we
need to move in columns [2k− a, n] is at most δ, where δ = ε2 + k− 2a+ t− 1− ι = 2a2−3ak−2at+k2+kt+t2−t

2 . Furthermore,
before Step 7, mi1,s2 = 1 for all i1 ∈ [2a − t − k

2 + 2, k2] and s2 ∈ [2a − k
2 − t,

k
2 − 2] with s2 ≤ i1 − 2; before Step 9, all

columns have at least a zeros except columns in [k2 + 1, 2a− t]. Thus, Steps 7, 8, 9 and 10 must terminate after δ iterations.
Before Step 11, the number of zeros in the jth column is at most a if j ∈ [k2 + 1, 2a − t + 1], and at least a if j ∈

[2a−t+1, k+a−t]. We only need to adjust the positions of zeros in these columns to make the matrix balanced. Furthermore,
for i ∈ [k2 + 1, k2 + c], j ∈ [2a− t+ 1, k + a− t], there are enough zeros to move, we can find a row i to complete Step 11.
Hence, Steps 11 and 12 must terminate after finitely many iterations.

Lemma III.4. Algorithm 2 returns a good MS .

Proof. The initial matrix MS corresponds to a good binary tree (k2 ; k2 − 1, k − 1; k2 − 2, k − 2; . . . ; 1, k2 + 1). In Steps 4, 5
and 7, we only refine the (i, j)th position with i ∈ [2, k2], j ∈ [1, a − k

2 − 1] ∪ [k, n]. By Lemma III.2, the new S is still
good with the same tree. Similarly, in Steps 9 and 11, for the ith row with i ∈ [2a− t+ 2, k], we only refine the columns in
[2a − k

2 − t, 2a − t]; for the ith row with i ∈ [k2 + 1, k2 + c], we only refine the columns in [k2 + 1, k + a − t]. In fact, the
maximum number of extra zeros in columns [2a− t+ 1, k+ a− t− 1] is at most c, where c is defined in Algorithm 2. Since
k
2 + c < 2a− t+ 2, we see that each step in Algorithm 2 does some operations allowed in Lemma III.2, and the final new S
still corresponds to a good binary tree (k2 ; k2 − 1, k2 + c; k2 − 2, k2 + 1, k − 1; k2 − 3, k2 + 2, k − 2; . . .).

2) When t ∈ [k2 + 3, bk −
√
kc]:

In this case, n < 3k
2 − 2 and a − 1 ≥ k

2 + a + 2 − t. Start from an initial matrix MS = [M1,M2]>, where M1 and M2

are defined in the last subsection. See Fig. 5 about the zero positions of MS , which is slightly different from Fig. 4 due to a
small n.

4
5

5 7

9

7

5

11

13 13

t-k
/2

-2

1 a-k
/2

a-k
/2

-1

aa-1

k
+
a-t+

1

k
+
a-t

k
/2

k
/2

+
1

n

k
/2

+
2
t-2

a-3

a-k
/2

+
1

k
/2

+
a-t+

2

k
+
a-d

-t

k
-1

k 2
k
+
t-2

a-3
2
k
+
t-2

a-2

2
k
-a-2

4

2
k
-a

Fig. 5. The illustration of Algorithm 3. The indices of blocks corresponds to the indices of Steps in Algorithm 3.

Any column of MS in [a− k
2 ,

k
2] has a zeros, which is the same as before, but each column with index in [1, t− k

2 − 2] has
t − 1 zeros which is different from before. Further, MS has a smaller number of columns, but it contains the same amount
of zeros as before, so each column in MS will have more zeros. Since µ ≥ n

2 ≥ k − t
2 ≥ k + a − 2t + 4, we can make all

columns in [a − k
2 ,

k
2] ∪ [2k + t − 2a − 2, n] to have a zeros. The (2k − a − 1)th column already has exactly a zeros in the

initial matrix. For columns from [2k − a, n], we still need some zeros like the yellow triangle labeled by 4 in Fig. 5, which
can be moved from columns [2k + t− 2a− 2, 2k − a− 2] like the red triangle labeled by 4. Unlike Algorithm 2, we can not
find a regular shape of zeros in the last k− a columns of MS to fill in the first a− k

2 − 1 columns, but we can move the zeros
like the red echelon labeled by 5 to the yellow 5.

If the number of zeros of the red 5 is more than the yellow 5, after the above modification, all columns in [1, k2] ∪ [2k +
t− 2a− 2, n] have a or b zeros. There are still some columns in [k + a− t+ 1, 2k + t− 2a− 3] having extra zeros. These
extra zeros can not be moved to any other column in row [1, k2] directly since it will increase extra zeros to columns in
[1, k2]∪ [2k+ t− 2a− 2, n]; and they also can not be moved to any other column in rows [k2 + 1, n], otherwise it may destroy

11

the good condition of the bottom block since they are not operations allowed in Lemma III.2. To make the matrix balanced
while keeping the good property, we first move the extra zeros in columns [k + a − t + 1, 2k + t − 2a − 3] to columns
[a− k

2 + 1, k2 + 2t− 2a− 3]. This modification is illustrated in Fig. 5 by moving some zeros in the red echelon labeled by 7
to the yellow 7. Then the columns in [a− k

2 + 1, k2 + 2t− 2a− 3] have extra zeros. We move these extra zeros identified by
the red echelon labeled by 9 in Fig. 5 to columns in [k2 + 1, 2a− t].

The challenge of our approach is when the number of zeros of the red 5 is less than the yellow 5. We need to bring extra
zeros from the jth column with j ∈ [k, k + a− t], like the blue echelon labeled by 5. The worst thing is that the number of
zeros of the red 5 and blue 5 is still less than the yellow 5. Then we bring extra zeros from the red triangle labeled by 11. To
compensate the red triangle 11 for zeros, we move in the yellow triangle labeled by 13 from the red triangle 13. These steps
are detailed in Algorithm 3.

Algorithm 3 Construction of MS with k
2 + 3 ≤ t ≤ bk −

√
kc and k is even.

Input: Integers k, t with k
2 + 3 ≤ t ≤ bk −

√
kc and k is even;

Output: A sparse, good and balanced binary matrix MS .
1: Compute n = 2k − t, a = dk(k−1)

2k−t e, b = bk(k−1)
2k−t c, c = k − 2a+ t− 1 and d = max{a− k

2 + 2, k − a+ 1}.
2: Construct the initial matrix MS = (mi,j) as follows: for i ∈ [1, k2] and j ∈ [i, i + k − 2] mod+ n, mi,j = 0; for
i ∈ [k2 + 1, k], j ∈ [1, a− k

2 − 1 + i− k
2] ∪ [k2 + a+ 1− t+ i− k

2 , n], mi,j = 0; for all the rest positions, mi,j = 1.
3: Change the positions of zeros.
4: For i ∈ [k+ t− 2a, k− a], s1 ∈ [2k+ t− 2a− 2, 2k+ t− 2a− 2 + i− (k+ t− 2a)] and s2 ∈ [n− (i− (k+ t− 2a)), n],
mi,s1 = 1 and mi,s2 = 0.

5: For any two columns s1 ∈ [1, a− k
2 −1] and s2 ∈ [k, 2k+ t−2a−3], find a row i ∈ [3, k−a] with s2 as large as possible

but s1 as small as possible, and then i is as small as possible satisfying mi,s1 = 1 and mi,s2 = 0 and (i, s1) 6= (s1 +1, s1),
then swap them: mi,s1 = 0 and mi,s2 = 1.

6: Repeat Step 5 until all columns from [1, a − k
2 − 1] have a or b zeros, then we record the last s2 and go to Step 7; Or

until all columns from [k, 2k + t− 2a− 3] have a or b zeros, then we go to Step 11.
7: If the s2 in Step 6 satisfies s2 ≥ k+a−t+1, find a row i ∈ [2a−t− k

2 +2, k2] and two columns s1 ∈ [a− k
2 +1, k2 +2t−2a−3]

and s2 ∈ [k + a− t+ 1, 2k + t− 2a− 3], such that mi,s1 = 1 and mi,s2 = 0 and (i, s1) 6= (s1 + 1, s1), then swap them:
mi,s1 = 0 and mi,s2 = 1.

8: Repeat Step 7 until all columns from [k + a− t+ 1, n] have a or b zeros.
9: If Steps 7 and 8 are executed, then for i ∈ [2a − t + 2, k], find two columns s1 ∈ [a − k

2 + 1, k2 + 2t − 2a − 3] and
s2 ∈ [k2 + 1, 2a− t], such that mi,s1 = 0 and mi,s2 = 1, then swapping them: set mi,s1 = 1 and mi,s2 = 0.

10: Repeat Step 9 until all columns from [a− k
2 + 1, k2 + 2t− 2a− 3] have a zeros, and all columns from [k2 + 1, 2a− t] have

at most a zeros, then turn to Step 15.
11: For any two columns s1 ∈ [1, a − k

2 − 1] and s2 ∈ [d, k2 − 1], find a row i ∈ [d, k2 − 1] as large as possible satisfying
mi,s1 = 1 and mi,s2 = 0 with (i, s1) 6= (s1 + 1, s1), then swap them: mi,s1 = 0 and mi,s2 = 1.

12: Repeat Step 11 until all columns from [1, a− k
2 − 1] have a or b zeros.

13: If Steps 11 and 12 are executed, then for s1 ∈ [d, k2 − 1] and s2 ∈ [k2 + a + 2 − t, k + a − d − t + 1], find a row
i ∈ [k2 + 1, k − d] as small as possible and s1 ≥ a − k + i + 1, such that mi,s1 = 1 and mi,s2 = 0, then swap them:
mi,s1 = 0 and mi,s2 = 1.

14: Repeat Step 13 until all columns in [d, k2 − 1] have a zeros.
15: For s1 ∈ [k2 + 1, 2a − t + 1] and s2 ∈ [2a − t + 1, k + a − t], find a row i ∈ [k2 + 1, k2 + c], such that mi,s1 = 1 and

mi,s2 = 0, then swap them: mi,s1 = 0 and mi,s2 = 1.
16: Repeat Step 15 until all columns have a or b zeros.
17: return MS ;

Lemma III.5. Algorithm 3 is executable and will terminate after finitely many iterations.

Proof. Algorithm 3 runs according to the rule that all columns in [a− k
2 ,

k
2]∪ [2k+ t− 2a− 2, n] will have a zeros, which is

feasible since µ ≥ n
2 ≥ k −

t
2 ≥ k + a− 2t+ 4.

After Step 4, any column in [2k + t − 2a − 2, n] does not have extra zeros. Before Step 5, the number of extra zeros
of all columns in [k, k + a − t] or [k + a − t + 1, 2k + t − 2a − 3] is at least ε1 = (k + t − 2a − 2)(a − t + 1) or
ε2 = 3a−3k−4ak−2at+2kt+3a2+k2

2 respectively; the columns in [1, a − k
2 − 1] lacks at most ι = 3t−k−a−ka+kt+a2−t2−2

2 zeros
in total. If the number of extra zeros of columns in [k, 2k+ t− 2a− 3] is no more than the zeros that columns [1, a− k

2 − 1]
need, Steps 5 and 6 will terminate after at most ε1 + a− t+ 1 + ε2 + k + 2t− 3a− 3 = ε1 + ε2 + k + t− 2a− 2 iterations.

After that, all columns from [k, 2k+t−2a−3] have a or b zeros, and then go to Step 11 directly. There are (k/2−d)(k/2−d+1)
2

zeros in the columns from d to (k2 −1) and in the rows from d to (k2 −1), where d is defined in Algorithm 3. If d = k−a+1,
then k

2 − d = a− k
2 − 1. Thus we have enough zeros to be moved out. If d = a− k

2 + 2, there are (k−a−2)(k−a−1)
2 zeros in

12

the columns from (a − k
2 + 2) to (k2 − 1) and in the rows from (a − k

2 + 2) to (k2 − 1). Then the number of extra zeros in
the red 5, blue 5 and red 11 is bigger than that in the yellow 5, since

ε1 + ε2 +
(k − a− 2)(k − a− 1)

2
− ι

=
(k + a− t)(k − a)− (3a− k − t)(k − t)− a− 3k + 3t

2
> 0.

The above inequality is obtained by assuming a = k
2 + t−2

4 in the term k + a− t, and a = k
2 + t−1

2 in the rest. By the above
analysis, Steps 11 and 12 must terminate after at most (k/2−d−1)(k/2−d)

2 iterations, so do Steps 13 and 14.
If ε2 > ι, Steps 5 and 6 must terminate after ι iterations, then the program will go to Steps 7, 8, 9 and 10. These steps will

terminate after at most

ε2 − ι+ a− k

2
− 1 =

2a2 − 3ak − 2at+ 6a+ k2 + kt− 3k + t2 − 3t

2

iterations, which equals the maximum possible number of extra zeros in columns [k+a− t+ 1, 2k+ t−2a−3] before Step 7.
After Step 14, the number of zeros in the jth column is at most a if j ∈ [k2 +1, 2a−t+1], at least a if j ∈ [2a−t+1, k+a−t],

and exactly a or b for all the rest columns. The goal of Steps 15 and 16 is to make all columns in [k2 + 1, k+ a− t] balanced,
which will terminate after finitely many iterations.

Lemma III.6. Algorithm 3 returns a good MS .

Proof. The initial matrix MS corresponds to a good binary tree (k2 ; k2 − 1, k − 1; k2 − 2, k − 2; . . . ; 1, k2 + 1). In Steps 4 and
5, from the 2th row to the (k − a)th row, we only refine columns in [k, n]. In Step 7, we only refine the (i, j)th position
with i ∈ [2a − t − k

2 + 2, k2] and j ∈ [a − k
2 + 1, k2 + 2t − 2a − 3] ∪ [k + a − t + 1, 2k + t − 2a − 3]. By Lemma III.2,

the new S is still good with the same tree. In Step 11, from the dth row to the (k2 − 1)th row, we only refine columns
in [d, k2 − 1], where d is defined in Algorithm 3. Since d ≥ k − a + 1, the new S still corresponds to a good binary tree
(k2 ; d, k − 1; d− 1, d+ 1, k − 2; d− 2, d+ 2, k − 3; . . .).

Similarly, in Step 9, for rows in [2a−t+2, k], we only refine columns in [a− k
2 +1, k2 +2t−2a−3]∪[k2 +1, 2a−t]; in Step 13,

for rows in [k2 +1, k−d], we only refine columns in [d, k2−1]∪[k2 +a+2−t, k+a−d−t]; in Step 15, for rows in [k2 +1, k2 +c],
we only refine columns in [k2 + 1, k+ a− t]. Notice that only one of Steps 9 and 13 will be performed. If Steps 13 and 15 are
executed, the final new S corresponds to a good binary tree (k2 ; d, k2 +c; d−1, d+1, k2 +1, k−1; d−2, d+2, k2 +2, k−2; . . .). If
Steps 9 and 15 are executed, since k

2 +c < 2a−t+2, it is easy to see each step in Algorithm 3 does some operations allowed in
Lemma III.2, and the finial new S corresponds to a good binary tree (k2 ; k2−1, k2 +c; k2−2, k2 +1, k−1; k2−3, k2 +2, k−2; . . .).

3) When t ∈ [dk −
√
ke, k]:

For dk −
√
ke ≤ t ≤ k − 1, we give a little more explicit construction, see Algorithm 4. When t = k, the matrix MS is

given by setting all entries 1 except the diagonal entries. Let u = k − t, then 1 ≤ u ≤ b
√
kc and n = k + u. Since

k(k − 1)

k + u
= k − k(u+ 1)

k + u
= k − u− 1 +

u(u+ 1)

k + u
,

we have a = k − u, b = k − u− 1 and µ = u(u+ 1).

Algorithm 4 Construction of MS with dk −
√
ke ≤ t ≤ k and k is even.

Input: Integers k, u with 1 ≤ u ≤ b
√
kc and k is even;

Output: A sparse, good and balanced binary matrix MS .
1: Compute n = k + u, a = k − u, b = k − u− 1.
2: Construct the initial matrix MS = (mi,j) as follows: for i ∈ [1, k] and j ∈ [i, i + k − 2] mod+ n, mi,j = 0; for all the

rest positions, mi,j = 1.
3: Change the positions of zeros.
4: For any two columns in s1 ∈ [1, k2 − 2] and s2 ∈ [k, n − 1], find a row i ∈ [3, k2] as large as possible and i ≥ s1 + 2

satisfying mi,s1 = 1 and mi,s2 = 0, then swap them: mi,s1 = 0 and mi,s2 = 1.
5: Repeat Step 4 until all columns from [1, a− k

2 − 1] have a or b zeros, and all columns from [k, n− 1] have a zeros.
6: For any two columns s1 ∈ [k2 − 1, a− 1] and s2 ∈ [a, k− 1], find a row i ∈ [k2 + 1, k] satisfying mi,s1 = 1 and mi,s2 = 0

and s1 ≥ i− u, then swap them: mi,s1 = 0 and mi,s2 = 1.
7: Repeat Step 6 until all columns have a or b zeros.
8: return MS ;

Lemma III.7. Algorithm 4 returns a good MS .

13

Proof. Algorithm 4 runs according to the rule that all columns in [a, k − 1] ∪ [k, n − 1] will have a zeros, which is feasible
since µ = u(u+ 1) ≥ 2u. The initial matrix MS in Algorithm 4 is a circulant matrix with the first row corresponding to the
set [1, k − 1]. The jth column of MS has b zeros if j ∈ [1, a− 1], j zeros if j ∈ [a, k − 1] and 2k − j − 1 zeros if j ∈ [k, n].
Observe that columns in [a, k − 1] have u(u−1)

2 extra zeros in total, and so do columns in [k, k + u− 1].
In Step 4, we remove the extra zeros in columns [k, n− 1] to columns [1, k2 − 2]. Notice that we can only move one zero

to each column in [1, k2 − 2]. Since u(u−1)
2 ≤ k−

√
k

2 ≤ k
2 − 2 for k ≥ 16, Step 5 will terminate after u(u−1)

2 iterations. By
Lemma III.2, the new MS still corresponds to a good binary tree (k2 ; k2 − 1, k2 + 1; k2 − 2, k2 + 2; . . . ; 1, k− 1). Same analysis
to Steps 6 and 7, and the good binary tree does not change. When k < 16, it is easy to construct a sparse, good and balanced
MS .

C. The Complexity of the Algorithms

In Algorithms 1–4, each initial matrix MS satisfies the good condition, and each step satisfies the conditions of Lemmas III.2,
so we do not need to take time for the verification of the good condition. According to the proofs of Lemmas III.3, III.5, and
III.7, and the analysis of Algorithm 1, it is obvious that Algorithms 1–4 run in polynomial time in k and n.

IV. CONCLUSION

To conclude, we first present a new sufficient constraint on the zero patterns so that an [n, k]q MDS code exists with a sparse
generator matrix satisfying the given zero pattern for all q ≥ n. Then based on this constraint, we construct an [n, k]q MDS
code with a sparse and balanced generator matrix for all q ≥ n provided that n ≤ 2k, by designing several polynomial-time
algorithms in k and n. The condition n ≤ 2k is restricted from the sufficient constraint of the zero patterns. So we need a
new method to deal with the case when n > 2k. Further, it is interesting to consider a smaller field size, that is q = n − 1.
We leave these problems for future study.

APPENDIX

Lemma (Lemma II.1). Suppose that the (k − 1)-uniform set system S = {S1, S2, . . . , Sk} is non-intersecting and separable
at some i ∈ [k − 1]. Then

C(P) =

[
C(P1) 0

0 C(P2)

] [
C(Q1)
C(Q2)

]
.

Proof. For j ∈ [i], let PS′j (x) =
∏
`∈S′j

(x− a`) = cj,0x
i−1 + cj,1x

i−2 + · · ·+ cj,i−1. Then

PSj
=f0 · PS′j = cj,0x

i−1f0 + cj,1x
i−2f0 + · · ·+ cj,i−1f0.

So the coefficient of xe in PSj
is [xe]PSj

=
∑i−1
`=0 cj,`× [xe](xi−`−1f0), e ∈ [0, k− 1]. Since [xe]PSj

is the (j, k− e)th entry
of C({PS1

, . . . , PSi
}), then

C({PS1
, . . . , PSi

})

=


c1,0 · · · c1,i−1

c2,0 · · · c2,i−1

...
...

ci,0 · · · ci,i−1




[xk−1](xi−1f0) · · · [x0](xi−1f0)
[xk−1](xi−2f0) · · · [x0](xi−2f0)

...
...

[xk−1]f0 · · · [x0]f0


=C(P1)C(Q1).

The bottom part is similar. We can get C({PSi+1
, . . . , PSk

}) = C(P2)C(Q2). This completes the proof by noting that
C(P) = (C({PS1

, . . . , PSi
}) C({PSi+1

, . . . , PSk
}))T .

Lemma (Lemma II.2). The determinant of [C(Q1) C(Q2)]T is nonzero. In particular det([C(Q1) C(Q2)]T) =∏
u∈A,v∈B(au − av).

Proof. Let A = {u1, . . . , uk−i} and B = {v1, . . . , vi}. Let fs = (x−aus+1
) · · · (x−auk−i

) = cs,0x
k−i−s+ · · ·+cs,k−i−s, s ∈

[k − i] and gt = (x− avt+1
) · · · (x− avi) = dt,0x

i−t + · · ·+ dt,i−t, t ∈ [i]. Note that fs and gt can be obtained from f0 and
g0 by deleting some linear factors. Further, cs,0 = dt,0 = 1 for all s ∈ [k − i] and t ∈ [i], fk−i = gi = 1.

Let M0 = [C(Q1) C(Q2)]T = [C(xi−1f0) · · · C(f0) C(xk−i−1g0) · · · C(g0)]T . We compute the determinant of M0 by
doing elementary row operations. Since each row corresponds to a polynomial, we use polynomial operations to consider row
operations. For convenience, let R`, ` ∈ [i] denote the row C(x`−1f0), and R`, ` ∈ [k − i] denote the row C(x`−1g0).

14

Step 1. Change Rk−i to c1,0Rk−i + · · · + c1,k−i−1R1 − (d1,0R
i + · · · + d1,i−1R

1). Remember that c1,0 = 1. Then the
polynomial corresponding to this row becomes

k−i−1∑
j=0

c1,jx
k−i−1−jg0 −

i−1∑
j=0

d1,jx
i−1−jf0

=f1g0 − f0g1 = (x− av1)f1g1 − (x− au1)f1g1

=(au1 − av1)f1g1.

Continuing row operations to the new Rk−i by subtracting (au1
−av1)(d2,0R

i−1+· · ·+d2,i−2R
1), the corresponding polynomial

becomes

f1g0 − f0g1 − (au1
− av1)f0g2

=(au1
− av1)(x− av2)f1g2 − (au1

− av1)(x− au1
)f1g2

=(au1
− av1)(au1

− av2)f1g2.

Repeat similar row operations to Rk−i, we obtain a polynomial

f1g0 − f0g1 −
i−1∑
t=1

(
t∏

s=1

(au1
− avs))f0gt+1 = f1

i∏
t=1

(au1
− avt).

Hence we change the row C(xk−i−1g0) to C(f1

∏i
t=1(au1 − avt)) without changing the determinant. We extract the

nonzero factors
∏i
t=1(au1

− avt) and assume the new row is C(f1). Observe that for each j = 0, 1, · · · , i − 1,
xjf0 + xjau1

f1 = xj(x − au1
)f1 + xjau1

f1 = xj+1f1. Then we can do a sequence of row operations: add au1
× Rk−i

to R1, add au1 × R` to R`+1, ` = 1, . . . , i − 1. Then after these operations, the matrix M0 is changed to M1 =∏i
t=1(au1

− avt))[C(xif1) · · · C(f1) C(xk−i−2g0) · · · C(g0)]T .
Step 2. Note that the matrix M1 has a similar pattern with the original matrix M0. So we can update our row notations

as follows. Let R`, ` ∈ [i + 1] denote the row C(x`−1f1), and R`, ` ∈ [k − i − 1] denote the row C(x`−1g0). Under this
new notation, we do similar row operations to Rk−i−1 as Step 1, to get M2 =

∏
t∈[i],j∈[2](auj

− avt)[C(xi+1f2) · · · C(f2)

C(xk−i−3g0) · · · C(g0)]T . We illustrate these operations in the rth step.
Step r ≤ k − i. Now we have a matrix Mr−1 =

∏
t∈[i],j∈[r−1] (auj − avt)[C(xi+r−2fr−1) · · · C(fr−1) C(xk−i−rg0)

· · · C(g0)]T . Update the row notations as follows. Let R`, ` ∈ [i + r − 1] denote the row C(x`−1fr−1), and R`, ` ∈
[k − i − r + 1] denote the row C(x`−1g0). Consider the row Rk−i−r+1 which corresponds to C(xk−i−rg0), do the row
operations cr,0Rk−i−r+1 + · · · + cr,k−i−rR1 − (d1,0R

i + · · · + d1,i−1R
1) first to get frg0 − fr−1g1, then continue row

operations to the new Rk−i−r+1 by subtracting
∑i−1
t=1(

∏t
s=1(aur − avs))(dt+1,0R

i−t + · · ·+ dt+1,i−t−1R
1) to get

frg0 − fr−1g1 −
i−1∑
t=1

(

t∏
s=1

(aur
− avs))fr−1gt+1 = fr

i∏
t=1

(aur
− avt).

Hence we update the row C(xk−i−rg0) to C(fr
∏i
t=1(aur

− avt)) without changing the determinant. Observe that for 0 ≤
j ≤ i+ r− 2, xj+1fr = xjfr−1 + aur

xjfr. Then we can do a sequence of the following operations: add aur
×Rk−i−r+1 to

R1 and add aur
× R` to R`+1, ` = 1, . . . , i + r − 2. After the rth step, we change the matrix Mr−1 in Step (r − 1) to the

following, ∏
t∈[i],j∈[r]

(auj − avt)[C(xi+r−1fr) · · · C(fr) C(xk−i−r−1g0) · · · C(g0)]T .

After (k − i) steps, we change the initial matrix to the following form,∏
t∈[i],j∈[k−i]

(auj − avt)[C(xk−1) C(xk−2) · · · C(1)]T .

Since all the row operations in above steps do not change the determinant, we complete the proof.

REFERENCES

[1] M. Yan and A. Sprintson, “Algorithms for weakly secure data exchange,” in 2013 International Symposium on Network Coding (NetCod). IEEE, 2013,
pp. 1–6.

[2] M. Yan, A. Sprintson, and I. Zelenko, “Weakly secure data exchange with generalized Reed Solomon codes,” in 2014 IEEE International Symposium
on Information Theory. IEEE, 2014, pp. 1366–1370.

[3] S. Li and M. Gastpar, “Cooperative data exchange based on MDS codes,” in 2017 IEEE International Symposium on Information Theory (ISIT). IEEE,
2017, pp. 1411–1415.

15

[4] W. Halbawi, T. Ho, H. Yao, and I. Duursma, “Distributed Reed-Solomon codes for simple multiple access networks,” in 2014 IEEE International
Symposium on Information Theory. IEEE, 2014, pp. 651–655.

[5] S. H. Dau, W. Song, and C. Yuen, “On simple multiple access networks,” IEEE Journal on Selected Areas in Communications, vol. 2, no. 33, pp.
236–249, 2015.

[6] S. H. Dau, W. Song, Z. Dong, and C. Yuen, “Balanced sparsest generator matrices for MDS codes,” in Proceedings of the 2013 IEEE International
Symposium on Information Theory, Istanbul, Turkey, July 7-12, 2013. IEEE, 2013, pp. 1889–1893.

[7] S. H. Dau, W. Song, and C. Yuen, “On the existence of MDS codes over small fields with constrained generator matrices,” in 2014 IEEE International
Symposium on Information Theory, Honolulu, HI, USA, June 29 - July 4, 2014, 2014, pp. 1787–1791.

[8] H. Yildiz and B. Hassibi, “Optimum linear codes with support-constrained generator matrices over small fields,” IEEE Trans. Inf. Theory, vol. 65, no. 12,
pp. 7868–7875, 2019.

[9] W. Halbawi, Z. Liu, I. M. Duursma, H. Dau, and B. Hassibi, “Sparse and balanced Reed–Solomon and Tamo–Barg codes,” IEEE Transactions on
Information Theory, vol. 65, no. 1, pp. 118–130, 2018.

[10] W. Halbawi, Z. Liu, and B. Hassibi, “Balanced Reed-Solomon codes for all parameters,” in 2016 IEEE Information Theory Workshop, ITW 2016,
Cambridge, United Kingdom, September 11-14, 2016, 2016, pp. 409–413.

[11] ——, “Balanced reed-solomon codes,” in 2016 IEEE International Symposium on Information Theory (ISIT). IEEE, 2016, pp. 935–939.
[12] W. Song and K. Cai, “Generalized Reed-Solomon codes with sparsest and balanced generator matrices,” in 2018 IEEE International Symposium on

Information Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018, 2018, pp. 1–5.
[13] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes. Elsevier, 1977, vol. 16.
[14] G. R. W. Greaves and J. Syatriadi, “Reed-Solomon codes over small fields with constrained generator matrices,” IEEE Trans. Inf. Theory, vol. 65, no. 8,

pp. 4764–4770, 2019.
[15] H. Yildiz and B. Hassibi, “Gabidulin codes with support constrained generator matrices,” IEEE Transactions on Information Theory, vol. 66, no. 6, pp.

3638–3649, 2020.
[16] H. Yildiz, N. Raviv, and B. Hassibi, “Support constrained generator matrices of gabidulin codes in characteristic zero,” in 2020 IEEE International

Symposium on Information Theory (ISIT), 2020, pp. 60–65.
[17] M. Effros, F. Kschischang, and M. Langberg, “Between shannon and hamming: Network information theory and combinatorics (15w5130),” 2015.
[18] A. Heidarzadeh and A. Sprintson, “An algebraic-combinatorial proof technique for the GM-MDS conjecture,” in 2017 IEEE International Symposium

on Information Theory (ISIT). IEEE, 2017, pp. 11–15.
[19] H. Yildiz and B. Hassii, “Further progress on the GM-MDS conjecture for reed-solomon codes,” in 2018 IEEE International Symposium on Information

Theory (ISIT). IEEE, 2018, pp. 16–20.
[20] S. Lovett, “MDS matrices over small fields: A proof of the GM-MDS conjecture,” in 2018 IEEE 59th Annual Symposium on Foundations of Computer

Science (FOCS). IEEE, 2018, pp. 194–199.

	I Introduction
	I-A Related Work
	I-B Our Contribution
	I-C Organization

	II Support Constraints of MDS Codes
	II-A Notations and Definitions
	II-B Support Constraints of Sparse Codes

	III Constructions of Sparse and Balanced MDS codes
	III-A Key Operations in Algorithms
	III-B Constructions of MS with n<2k
	III-B1 When t[1+8k2,k2+2]
	III-B2 When t[k2+3, k-k]
	III-B3 When t[k-k, k]

	III-C The Complexity of the Algorithms

	IV Conclusion
	References

