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Abstract
For fixed integers n and b ≥ k, letA(b, k, n) the largest size of a subset of {1, 2, . . . , b}n

such that, for any k distinct elements in the set, there is a coordinate where they all
differ. Bounding A(b, k, n) is a problem of relevant interest in information theory and
in computer science, relating to the zero-error capacity with list decoding and with the
study of (b, k)-hash families of functions. It is known that, for fixed b and k, A(b, k, n)
grows exponentially in n. In this paper, we determine new exponential upper bounds
for different values of b and k.

A first bound on A(b, k, n) for general b and k was derived by Fredman and Komlós
in the ’80s and improved for certain b 6= k by Körner and Marton and by Arikan.
Only very recently better bounds were derived for general b and k by Guruswami and
Riazanov, while stronger results for small values of b = k were obtained by Arikan,
by Dalai, Guruswami and Radhakrishnan, and by Costa and Dalai. In this paper, we
strengthen the bounds for some specific values of b and k. Our contribution is a new
computational method for obtaining upper bounds on the values of a quadratic form
defined over discrete probability distributions in arbitrary dimensions, which emerged
as a central ingredient in recent works. The proposed method reduces an infinite-
dimensional problem to a finite one, which we manage to further simplify by means of
a series of optimality conditions.

Keywords: perfect hashing, list decoding, zero-error capacity, extremal combinatorics
MSC: 68R05

1 Introduction
The problem considered in this paper has a twofold history that connects it naturally with
combinatorial aspects of computer science and information theory. Let b, k, and n be
integers and let C be a subset of {1, 2, . . . , b}n with the property that for any k distinct
elements we can find a coordinate where they all differ. Such a set can be interpreted, by
looking at it coordinate-wise, as a family of n hashing functions on some universe of size
|C|. The required property then says that the family is a perfect hash family, that is, any
k elements in the universe are k-partitioned by at least one function. Alternatively, C can
be interpreted as a code of rate log(|C|)/n for communication over a channel with b inputs.
Assume that the channel is a b/(k − 1) channel, meaning that any k − 1 of the b inputs
share one output but no k distinct inputs do (see Figure 1). The required property for C
is what is needed for the receiver to always be able to produce a list of k − 1 codewords of
C which must necessarily include the one that was sent; that is, zero-error communication
with (k − 1)-list decoding is possible. Indeed, the condition implies that any k codewords
use, in at least one coordinate, k different symbols, and one of them will not be compatible
with the received symbol in that coordinate. We refer the reader to [8], [9], [13], [14] for an
overview of the more general context of this problem. Some recent important results in a
different asymptotic setting can be found in [4].
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Figure 1: A 4/2 channel. Edges represent positive probabilities. Here, zero-error communi-
cation is possible when decoding with list-size equal to 2.

We will call any subset C of {1, 2, . . . , b}n with the described property a (b, k)-hash code.
For the reasons mentioned above, bounding the size of (b, k)-hash codes is a combinatorial
problem that has been of interest in both computer science and information theory. Let
A(b, k, n) be the largest size of such a code. It is known that for fixed b and k, A(b, k, n)
grows exponentially in n, and a challenging problem consists in bounding the exponent. We
will thus study the quantity

R(b,k) = lim sup
n→∞

1

n
logA(b, k, n) . (1)

Note that, throughout the paper, all logarithms are to base 2.
Few lower bounds on R(b,k) are known. First results in this sense were given by [9], [8]

and a better bound was derived by [12] for b = k = 3. More recently, new lower bounds were
derived in [16] for infinitely many other values of k. The first, landmark result concerning
the upper bounds was obtained by Fredman-Komlós [9], who showed that

R(b,k) ≤
bk−1

bk−1
log(b− k + 2) , (2)

where bk−1 = b(b− 1) · · · (b− k + 2). Progress has since been rare. A generalization of the
bound given in equation (2) was derived by Körner and Marton [12] in the form

R(b,k) ≤ min
2≤j≤k−2

bj+1

bj+1
log

b− j
k − j − 1

. (3)

Nilli [14] provided an elementary proof of (3) without considerations of graph entropy or
hypergraph entropy. This bound was further improved for different values of b and k by
Arikan [3]. In the case b = k, an improvement was first obtained for k = 4 in [2] and then in
[6], [7]. The latter only focuses on b = k = 4, but the procedure can be extended to general
b and k. As shown in the next sections, it leads to the following bound.

Lemma 1. For general b and k, we have

R(b,k) ≤

(
1

log b
+

b2

(b2 − 3b+ 2) log b−2
k−3

)−1

. (4)

In [10], the authors prove that the Fredman-Komlós bound is not tight for any b ≥
k > 3; explicit better values were given there for b = k = 5, 6, and for larger b = k
modulo a conjecture which is proved in [5], where further improvements are also obtained
for b = k = 5, 6. The case of b 6= k is not described in detail in [10] but, as the authors
mention, it is straightforward. We do not write here the bound since it has a complicated
expression.
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In this paper, we attack some of the cases which appear not to be optimally handled
by those methods. In particular, we build on the results obtained in [5] and add an im-
provement that leads to better bounds for many pairs of (b, k) values. The results of [5] for
b = k were derived following an approach common to many recent works by introducing a
symmetrization which reduces to the problem of bounding a quadratic form on probability
distributions. We give a more general exposition for the general b, k case, anticipating here
the key lemma whose proof we give for completeness in the next section. Fix an integer j
in the range 2, . . . , k − 2 and define, for probability vectors p, q ∈ Rb, the function

Ψj(p; q) =
1

(b− j − 1)!

∑
σ

pσ(1)pσ(2) . . . pσ(j)qσ(j+1) + qσ(1)qσ(2) . . . qσ(j)pσ(j+1), (5)

where σ ranges over all permutations of {1, 2, . . . , b}. Define then

Mj = sup
λ

∑
p,q

λpλqΨj(p; q) (6)

where λ ranges over all probability distributions on finite sets of probability vectors in Rb, so
that λp is the probability associated to the probability vector p. Then, the following bound
holds.

Lemma 2. For j = 2, . . . , k − 2,

R(b,k) ≤

 2

Mj log b−j
k−j−1

+
1

log
(

b
j−1

)
−1

. (7)

The results in [5] were obtained using in (7), for b = k and j = k − 2, the upper bound

Mj ≤ max
p,q

Ψj(p; q) . (8)

A weakness in this bound comes from the fact that distributions p and q that maximize
Ψj(p; q) exhibit in many cases some opposing asymmetries, in the sense that they give higher
probabilities to different symbols. When used as a replacement for each of the pairs of p and
q in (6), we have a rather conservative bound, because pairs (p, q) which give high values for
Ψj(p; q) will give low values for Ψj(p; p) and Ψj(q; q), and equation (6) contains a weighted
contribution from all pairings of p and q. In this paper, we present a computational method
for obtaining more refined bounds on Mj for general b, k values which lead to improvements
on the best-known bounds on R(b,k) for many b, k pairs.

In Table 1 we give a comparison between bounds (4) and (3), the bounds of [3] and [10]
and our new bounds for different values of b and k. In Table 2 we show that for some (b, k)-
cases the bound (4) is the best bound among all the current known bounds, in particular
when b is much larger than k. Finally, in Table 3 we provide some (b, k)-cases where the
bound of [10] is the current best known bound, in particular when b and k are large and
nearly equal. Clearly, the cases reported in Tables 2 and 3 are not exhaustive, but they
have been properly selected to point out that our method does not always provide the best
bounds. The integers in the parentheses for bounds [10], [3] and [12] in Table 2 represent
the optimal value of a parameter which has the same role as j in (3). When its value is not
reported, as well as in Tables 1 and 3, it is equal to k − 2 for our bounds and for bounds of
[10], [3] and [12]. Instead, for bound (4) it is always equal to 2.

The paper is structured as follows. In Section 2 we give some background proving
Lemmas 1 and 2. In Section 3 we present the first part of our computational method to
bound Mj by partitioning the domain of possible p and q distributions and then working
on the subdomains. The second part is presented in Section 4, where we derive optimality
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Table 1: Upper bounds on R(b,k). All numbers are rounded upwards.
(b, k) Our method [3] [10] [12] (b, k) Our method [3] [10] [12]
(5, 5) 0.168941 0.23560 0.19079 0.19200 (6, 5) 0.345121 0.44149 0.43207 0.44027
(6, 6) 0.084751 0.15484 0.09228 0.09260 (7, 6) 0.198972 0.30554 0.23524 0.23765
(8, 6) 0.317992 0.44888 0.40330 0.41016 (9, 6) 0.432372 0.58303 0.58486 0.59455
(10, 6) 0.539092 0.73304 0.76977 0.78170 (11, 6) 0.637662 0.87038 0.95285 0.96640
(12, 6) 0.728482 0.99588 1.13118 1.14584 (13, 6) 0.812272 1.11084 1.30322 1.31855
(14, 6) 0.889782 1.21657 1.46822 1.48388 (7, 7) 0.040901 0.09747 0.04279 0.04284
(8, 7) 0.108652 0.20340 0.12134 0.12189 (9, 7) 0.190542 0.31204 0.22547 0.22761
(10, 7) 0.277412 0.41982 0.34615 0.35108 (11, 7) 0.364242 0.52472 0.47856 0.48538
(12, 7) 0.448502 0.65160 0.61698 0.62549 (13, 7) 0.529022 0.77148 0.75796 0.76792
(14, 7) 0.605382 0.88384 0.89915 0.91027 (8, 8) 0.018891 0.05769 0.01922 0.01923
(9, 8) 0.056161 0.12874 0.06001 0.06013 (10, 8) 0.107912 0.20754 0.12048 0.12096
(11, 8) 0.168782 0.29023 0.19680 0.19818 (12, 8) 0.234512 0.37434 0.28470 0.28797
(13, 8) 0.302142 0.45827 0.38245 0.38694 (14, 8) 0.369742 0.56612 0.48658 0.49227
(10, 9) 0.027731 0.07668 0.02874 0.02876 (11, 9) 0.057962 0.13098 0.06197 0.06208
(12, 9) 0.097302 0.19157 0.10746 0.10778 (13, 9) 0.143322 0.25611 0.16368 0.16444
(14, 9) 0.193822 0.32294 0.22865 0.23033 (11, 10) 0.013211 0.04289 0.01342 0.01343
(12, 10) 0.029781 0.07806 0.03093 0.03095 (13, 10) 0.053422 0.12009 0.05674 0.05681
(14, 10) 0.083322 0.16726 0.09071 0.09090 (13, 11) 0.014761 0.04400 0.01506 0.01506
(14, 11) 0.028152 0.07141 0.02915 0.02916 (14, 12) 0.007121 0.02361 0.00718 0.00718
(15, 13) 0.003351 0.01218 0.00336 0.00336

1Bounds obtained with the procedure of Section 3, strictly improving also the generalization of [5] to the
(b, k)-case.
2Bounds where the procedure of Section 3 reduces to the same solution obtained by generalization of [5].

Table 2: Upper bounds on R(b,k). All numbers are rounded upwards.
(b, k) [6]* [5]* [3] [10] [12]
(5, 4) 0.57303 0.66126 0.61142 0.74834 0.73697(0)
(6, 4) 0.77709 0.87963 0.83904 1.09604 1.00000(0)
(7, 4) 0.94372 1.03711 1.02931 1.40593 1.22239(0)

(100, 6) 2.81342 — 3.61848(2) 4.87959(2) 4.32193(0)
(100, 7) 2.67473 — 3.41158(2) 4.47696(2) 4.05889(0)

Missing values indicate impossibility to compute the bound due to high computational complexity.
∗The generalized bound for the (b, k) case.

Table 3: Upper bounds on R(b,k). All numbers are rounded upwards.
(b, k) [10] [5]* [3] [12]
(9, 9) 8.4288 ·10−3 0.00946 0.03182 8.4300 · 10−3

(10, 10) 3.6287 ·10−3 0.00419 0.01642 3.6288 · 10−3

(11, 11) 1.53895 ·10−3 0.00181 0.00803 1.53897 · 10−3

(12, 11) 6.13036 ·10−3 0.00664 0.02266 6.13075 · 10−3

(12, 12) 6.44678 ·10−4 0.00077 0.00377 6.44679 · 10−4

(13, 12) 2.75350 ·10−3 0.00305 0.01143 2.75355 · 10−3

(13, 13) 2.672760 ·10−4 0.00033 0.00172 2.672761 · 10−4

(14, 13) 1.218595 ·10−3 0.00138 0.00556 1.218599 · 10−3

∗The generalized bound for the (b, k) case.

conditions on p and q over such subdomains, which allow us to reduce the problem to a
manageable one that can be solved exactly. Finally, in Section 5 we show that at least some
of the bounds that we obtain are not tight, although a quantitative improvement is not
explicitly derived.
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2 Background
The best upper bounds on R(b,k) available in the literature can all be seen as different
applications of a central idea, which is the study of (b, k)-hashing by comparison with a
combination of binary partitions. This mainline of approach to the problem comes from the
original work of Fredman and Komlós [9]. A clear and productive formulation of the idea
was given by Radhakrishnan in terms of Hansel’s lemma [15], which remained the main tool
used in all recent results [7], [10] and [5].

A hypergraph H is a family E of subsets of a finite set V where the subsets in E are
called edges and the elements of V are called vertices. If all the edges have size d then we
say that H is a d-uniform hypergraph. We state the Hansel’s Lemma here for the reader’s
convenience.

Lemma 3 (Hansel for Hypergraphs [11], [14]). Let Kd
r be the complete d-uniform hypergraph

on r vertices and let G1, . . . , Gm be c-partite d-uniform hypergraphs on those vertices such
that ∪iGi = Kd

r . Let τ(Gi) be the number of non-isolated vertices in Gi. Then

log
c

d− 1

m∑
i=1

τ(Gi) ≥ log
r

d− 1
. (9)

Using this main ingredient, we provide here a proof of Lemma 2, which extends the bound
used in [5] to general b and k. We refer the reader to [5] for a more detailed discussion on
connections with other previous bounds in the literature.

Proof of Lemma 2. Given a (b, k)-hash code C of rate R, fix any j elements x1, x2, . . . , xj in
C, with j in the range 2, . . . , k − 2. For any coordinate i let Gx1,...,xj

i be the (b− j)-partite
(k − j)-uniform hypergraph with vertex set C \ {x1, x2, . . . , xj} and edge set

E =
{
{y1, . . . , yk−j} : x1,i, . . . , xj,i, y1,i, . . . , yk−j,i are all distinct

}
. (10)

Since C is a (b, k)-hash code, then
⋃
iG

x1,...,xj

i is the complete (k − j)-uniform hypergraph
on C \ {x1, x2, . . . , xj} and so

log
b− j

k − j − 1

n∑
i=1

τ(G
x1,...,xj

i ) ≥ log
|C| − j
k − j − 1

. (11)

Inequality (11) holds for any choice of x1, x2, . . . , xj , so the main goal is proving that the
left hand side is not too large for all possible choices of x1, x2, . . . , xj . The choice can be
deterministic or we can take the expectation over any random selection.

First note that if the x1,i, x2,i, . . . , xj,i are not all distinct (let us say that they “collide”)
then the hypergraph defined by (10) is empty, that is the corresponding τ in the left hand
side of (11) is zero. Otherwise, τ(G

x1,...,xj

i ) depends on the frequency of different symbols in
the i-th coordinate of the code. Let fi be their distribution, meaning that fi,a is the fraction
of elements of C whose i-th coordinate is a. Then, we have

τ(G
x1,...,xj

i ) =

{
0 x1, . . . , xj collide in coordinate i(
|C|
|C|−j

)(
1−

∑j
h=1 fi,xh,i

)
otherwise

. (12)

We partition the code C into subcodes Cω, ω ∈ Ω in such a way that each subcode has
a size which grows unbounded with n and uses in any of its first ` coordinates only j − 1
symbols, where ` denotes the length of the prefix. It can be shown, by an easy extension of
the method used for the case b = k and j = k − 2 in [5], that if the original code has rate
R, then for any ε > 0 one can do this with a choice of ` = n(R − ε)/ log

(
b
j−1

)
for n large

enough. Given such a partition of our code, if we select codewords x1, . . . , xj within the same
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subcode Cω, they will collide in the first ` coordinates and the corresponding contribution
to the left-hand side of (11) will be zero. The next step is to add randomization. Pick
randomly one of the subcodes Cω and randomly select the codewords x1, . . . , xj within Cω.
Then an upper bound on |C| is obtained by taking an expectation on the left-hand side of
(11)

log
|C| − j
k − j − 1

≤ log
b− j

k − j − 1
Eω

E

 ∑
i∈[`+1,n]

τ(G
x1,x2,...,xj

i )|ω


= log

b− j
k − j − 1

∑
i∈[`+1,n]

Eω(E[τ(G
x1,x2,...,xj

i )|ω]). (13)

Here, each subcode Cω is taken with probability λω = |Cω|/|C|, and x1, . . . , xj are taken
uniformly at random (without repetitions) from Cω.

Let now fi|ω be the distribution of the i-th coordinate of the subcode Cω (with compo-
nents, say, fi,a|ω) . Then, for i > `, we can write

E[τ(G
x1,...,xj

i )|ω] = (1 + o(1))
∑

distinct
a1,...,aj

fi,a1|ωfi,a2|ω · · · fi,aj |ω(1− fi,a1 − . . .− fi,aj ) (14)

where the o(1) is meant as n → ∞ and is due, under the assumption that Cω grows un-
bounded with n, to sampling without replacement within Cω. Now, since λω = |Cω|/|C|,
fi is actually the expectation of fi|ω over ω, that is, using a different dummy variable µ to
index the subcodes for convenience,

fi =
∑
µ

λµfi|µ .

Using this in (14), one notices that when taking a further expectation over ω it is possible to
operate a symmetrization in ω and µ. The expectation of (14) over ω can then be written
as

Eω[τ(G
x1,x2,...,xj

i )] = (1 + o(1))
1

2

∑
ω,µ∈Ω

λωλµΨj(fi|ω, fi|µ) , (15)

so that
Eω[τ(G

x1,x2,...,xj

i )] ≤ (1 + o(1))
1

2
Mj . (16)

This leads to
log |C| ≤ (1 + o(1))

1

2
(n− `)Mj log

b− j
k − j − 1

, (17)

from which, using the value of ` described above, one deduces

R ≤ (1 + o(1))
1

2

1− R

log
(

b
j−1

)
Mj log

b− j
k − j − 1

.

Explicitating in R we conclude the proof of the Lemma.

The first part of the above derivation follows the same method used in [6]. In particular,
the proof of Lemma 1 can be obtained using j = 2 and looking at (14) as a quadratic form
in fi|ω with kernel of elements (1 − fi,a1 − fi,a2). The procedure used in [6] can then be
applied also for b ≥ k with some simple variations.
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Proof of Lemma 1. Set j = 2 in (14). Proceeding as in [6], it can be shown that the right
hand side, as a quadratic form in fi|ω, is a concave function on the simplex of probability
distributions if all the values fi,a are not larger than 1/2. Assume first that this holds for all
i ∈ [`+1, n]. The expectation over ω is then bounded by the value obtained by replacing both
fi|ω and fi with a uniform distribution, which is easily evaluated to be (b2−3b+2)/b2. When
used in (13) this gives the bound of Lemma 1. It remains to show that we can assume without
loss of generality that fi,a ≤ 1/2 for all i and a. Again the procedure is a generalization
of what was done in [6]. Suppose that there exists a coordinate i ∈ {1, 2, . . . , n} for which
(rename the symbols if needed) fi,1 ≥ fi,2 ≥ . . . ≥ fi,b with fi,1 > 1/2. Note that we must
then have fi,1 + fi,2 + . . .+ fi,k−1 ≥ (b+ k − 3)/(2b− 2). We can build another (b, k)-hash
code C ′ by removing all the codewords in C for which the symbol in the i-th coordinate
is in {k, k + 1, . . . , b} and by deleting this coordinate in the remaining codewords. Clearly
C ′ has length n − 1 and cardinality |C ′| ≥ |C| · (b + k − 3)/(2b − 2). This process can be
iterated, say t times, in order to get a code C̃ of length n − t in which fi,a ≤ 1/2 for all
i ∈ {1, 2, . . . , n− t} and for all a ∈ {1, 2, . . . , b} and such that

|C̃| ≥ |C|
(
b+ k − 3

2b− 2

)t
. (18)

Let B(b, k) be the right hand side of (4). We can apply the previous part of the proof to C̃
and bound the rate R of C as

1

n
log |C| ≤ 1

n
log |C̃|+ t

n
log

(
2b− 2

b+ k − 3

)
≤ n− t

n
B(b, k) +

t

n
log

(
2b− 2

b+ k − 3

)
+ o(1)

≤ B(b, k)− t

n

[
B(b, k)− log

(
2b− 2

b+ k − 3

)]
+ o(1) .

The proof of the Lemma is concluded if we prove that B(b, k) > log 2b−2
b+k−3 for b ≥ k ≥ 4.

We verify this inequality considering the following three different ranges of b and k:

1. Suppose that 12 ≤ k ≤ b ≤ (k − 3)2. Then

B(b, k)
(i)
>

2

3
·

(b2 − 3b+ 2) log b log
(
b−2
k−3

)
b2 log(b)

>
2

3
(1− 3/b) log

(
b− 2

k − 3

)
(ii)

≥ 1

2
log

(
b− 2

k − 3

)
,

where (i) is true since log
(
b−2
k−3

)
≤ 1/2 log b for b ≤ (k − 3)2, while (ii) since b ≥ 12.

Then, it can be verified that for b ≥ k ≥ 12 we have that

1

2
log

(
b− 2

k − 3

)
> log

(
2b− 2

b+ k − 3

)
.

2. Suppose that b ≥ 8k − 22 and k ≥ 4. Then

B(b, k) >
(b2 − 3b+ 2) log b log

(
b−2
k−3

)
2b2 log(b)

>
1

2
(1− 3/b) log

(
b− 2

k − 3

)
(i)
>

1

3
log

(
b− 2

k − 3

)
,
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where (i) is true since b > 9. Then, it can be easily verified that for b ≥ 8k − 22 we
have that

1

3
log

(
b− 2

k − 3

)
≥ 1 > log

(
2b− 2

b+ k − 3

)
.

3. All the cases b ≥ k = 4, 5, . . . , 11 can be verified manually or by using a symbolic
computation software.

Finally, we see that the ranges of b, as functions of k, in the first two cases intersect because

(k − 3)2 ≥ 8k − 22

is verified for every k ≥ 12. Therefore the thesis of the lemma follows.

3 Bounding the quadratic form
We now enter the problem of determining better upper bounds on the value of Mj defined
in (6). We consider partitions of Pb, the set of probability distributions on b elements, into
disjoint subsets to find upper bounds on the quadratic form (6) in terms of simpler ones. If
we have a partition {P0

b ,P1
b , . . . ,Prb } of Pb and we define

mi,h = sup
p∈Pi

b,q∈P
h
b

Ψj(p, q) , ηi =
∑
p∈Pi

b

λp ,

then clearly ∑
p,q

λpλqΨj(p, q) ≤
∑
i,h

∑
p∈Pi

b

∑
q∈Ph

b

λpλqmi,h ≤
∑
i,h

ηiηhmi,h . (19)

This is a convenient simplification since we have now an r-dimensional problem which we
might be able to deal with in some computationally feasible way. We will use this procedure
with two different partitions in terms of how balanced or unbalanced the distributions are.
We take b+1 subsets with some symmetry which allows us to further reduce the complexity.

Partition based on maximum value. We first consider a partition of Pb in terms
of the largest probability value which appears in a distribution. We use a parameter ε ≤
1/(j + 1); all quantities will depend on ε but we do not write this to avoid cluttering the
notation. We define b sets of unbalanced distributions

qPib = {p ∈ Pb : pi > 1− ε}

for every 1 ≤ i ≤ b, and correspondingly a set of balanced distributions

qP0
b = {p ∈ Pb : pi ≤ 1− ε ∀i} .

Note that these are all disjoint sets since ε < 1/2 when j ≥ 2. Following the scheme
mentioned above, we can consider the values mi,h and ηi for this specific partition. However,
due to symmetry, the values mi,h can be reduced to only four cases, depending on whether
p and q are both balanced, one balanced and one unbalanced, or both unbalanced, either on
the same coordinate or on different coordinates.
Assuming 1 ≤ i, h ≤ b with i 6= h, the following quantities are then well defined and
independent of the specific values chosen for i and h

|M1 = sup
p,q∈ qP0

b

Ψj(p; q) |M2 = sup
p∈ qP0

b ,q∈ qPi
b

Ψj(p; q)

|M3 = sup
p,q∈ qPi

b

Ψj(p; q) |M4 = sup
p∈ qPi

b,q∈ qPh
b

Ψj(p; q)
(20)

8



These values can then be used in (19) in place of the values mi,h.
Partition based on the minimum value. We also consider a partition of Pb using

constraints from below. Again we use a parameter ε which will be then tuned. We assume
here ε < 1/b. Consider now the following disjoint sets of unbalanced distributions

P̂ib = {p ∈ Pb : pi < ε , ph ≥ pi ∀h , ph > pi ∀h < i}

for 1 ≤ i ≤ b, that is, distributions in P̂ib have a minimum component in the i-th coordinate,
which is smaller than ε, and strictly smaller than any of the preceding components (unless
of course i = 1). Correspondingly, define a set of balanced distributions as

P̂0
b = {p ∈ Pb : pi ≥ ε ∀i} .

The symmetry argument mentioned before also applies in this case and we can continue in
analogy replacing the mi,h of (19) with the following quantities

M̂1 = sup
p,q∈P̂0

b

Ψj(p; q) M̂2 = sup
p∈P̂0

b ,q∈P̂
i
b

Ψj(p; q)

M̂3 = sup
p,q∈P̂i

b

Ψj(p; q) M̂4 = sup
p∈P̂i

b,q∈P̂
h
b

Ψj(p; q)
(21)

where again 1 ≤ i, h ≤ b with i 6= h.
Quadratic form. Applying the above scheme with the symmetric partitions we just

defined, we can now rewrite the upper bound of equation (19) in the form

∑
p,q

λpλqΨj(p; q) ≤ η2
0M1 + 2η0

b∑
i=1

ηiM2 +

b∑
i=1

η2
iM3 + 2

∑
i<h

ηiηhM4 , (22)

where either the M̂i’s or the |Mi’s can be used in place of the Mi’s.
Call M the maximum value achieved by the right hand side of (22) over all possible

probability distributions η = (η0, η1, . . . , ηb). We show that under assumptions that are
verified in our setting, the value of M can be determined explicitly.

Lemma 4. Let M1,M2,M3 and M4 be positive numbers such that M4 > M3 and, for a
probability distribution η = (η0, η1, . . . , ηb), define the function

f(η) = η2
0M1 + 2η0

b∑
i=1

ηiM2 +

b∑
i=1

η2
iM3 + 2

∑
i<h

ηiηhM4 .

Then
M = max

η
f(η) (23)

is attained at η1 = η2 = . . . = ηb and

η0 =


M2− 1

bM3− b−1
b M4

2M2−M1− 1
bM3− b−1

b M4
, if M2 > M1,M3,M4

0 or 1, otherwise
.

Proof. Since
∑b
i=1 ηi = (1− η0), f can be written as

η2
0M1 + 2(1− η0)η0M2 +

b∑
i=1

η2
iM3 + 2

∑
i<h

ηiηhM4.

Note that
b∑
i=1

η2
iM3 + 2

∑
i<h

ηiηhM4 =

b∑
i=1

η2
i (M3 −M4) + (1− η0)2M4.

9



Since M3 < M4 and
∑b
i=1 ηi = 1 − η0, this sum is maximized when η1 = η2 = . . . = ηb =

(1− η0)/b. Therefore we have to maximize the quantity

η2
0M1 + 2(1− η0)η0M2 +

1

b
(1− η0)2(M3 −M4) + (1− η0)2M4 ,

which is just a quadratic in η0 that achieves its maximum in [0, 1] at the point described in
the statement of the Lemma.

We will describe in the next Section our procedure to determine, or upper bound the
values M̂i, |Mi. Using these bounds in equation (22) we thus obtain an upper bound on Mj

defined in (6). Applying Lemma 2 we obtain our main result.

Theorem 1. The bounds of Table 1 hold.

Remark 1. The bounds on R(7,7), R(8,8), R(9,8), R(10,9), R(11,10), R(12,10), R(13,11), R(14,12)

and R(15,13) are obtained using the partition based on the maximum value { qPib}i=0,...,b. The
bounds on R(5,5), R(6,5) and R(6,6) are obtained using the partition based on the minimum
value {P̂ib}i=0,...,b.

All other cases, those underlined in Table 1, are obtained computing, as done in [5],
the global maximum of Ψk−2, which is attained for uniform distributions. Therefore, the
partitioning process in these particular cases cannot make any improvements.

Based on the result in [7], or its generalization given in equation (4) and on Theorem 1
for (b, k) = (6, 6), we are led to formulate the following conjecture.

Conjecture 1. For b ≥ k > 3,

R(b,k) ≤ min
2≤j≤k−2

(
1

log b
j−1

+
bj+1

bj+1 log b−j
k−j−1

)−1

.

Note that the conjectured expression can be seen as a modification of the Körner-Marton
bound in (3) which takes into account the effects of prefix-based partitions.

4 Computation of M in (23)

In light of Lemma 4, the main problem for the computation of M is determining the |Mi’s
and M̂i’s defined in equations (20) and (21). This requires determining the maximum values
taken by Ψj(p; q) for p and q constrained to specific subsets qPib or P̂ib. Following a procedure
similar to that of [5], here we prove that, under certain conditions, the distributions p
and q achieving those maxima have many equal components. This, together with other
simplifications that will be presented later, allows us to greatly reduce the complexity in the
search for the maxima (see Remarks 2 and 3 below). For this purpose we first present three
Lemmas, which generalize Lemmas 3, 4 and 5 of [5].

Lemma 5 (Extension of Lemma 3 in [5]). Let ` be an integer in [2, b] and, for i ∈ [1, `],
consider the nonempty intervals Ii = [ai, bi] and Ji = [ci, di]. Set Dp = I1 × I2 × · · · × I` ×
p`+1 × · · · × pb and Dq = J1 × J2 × · · · × J` × q`+1 × · · · × qb. Consider the set D of pairs of
probability vectors (p, q) such that p belongs to Dp and q belongs to Dq. Then if (p; q) is a
maximum point for Ψj in D then either pi = ph and qi = qh for any i, h ∈ [1, `] or there is
a maximum for Ψj on the boundary of D (as projected on the first ` coordinates).

Note that, in particular, in the latter case, we have a maximum point (p; q) for Ψj with
at least one index i ∈ [1, `] such that either pi ∈ {ai, bi} or qi ∈ {ci, di}.
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Proof. Let us assume that P = (p; q) is a maximum point for Ψj in D and p1, p2, . . . , p` or
q1, q2, . . . , q` are not all equal. By symmetry, assume without loss of generality that p1 6= p2.
Now, if P is a maximum for Ψj not on the boundary D, then it is a maximum also under
the stronger constraints p1 + p2 = c1, q1 + q2 = c2 where c1 = p1 + p1, c2 = q1 + q2, and
pi = pi, qi = qi for i ∈ {3, 4, . . . , `}. Then, let us consider the line L of points P (t) such that

P (t) = P (0) + t

(
p1 − p2

2
,
−p1 + p2

2
, 0, . . . , 0;

q1 − q2

2
,
−q1 + q2

2
, 0, . . . , 0

)
,

where P (0) = (p1+p2
2 , p1+p2

2 , p3, . . . , pb;
q1+q2

2 , q1+q2
2 , q3, . . . , qb), so that P (1) = P̄ .

It is easy to see that Ψj(P (t)) is of degree 2 and, if P is not on the boundary of D,
then, t = 1 must be a stationary point for Ψj(P (t)). Moreover Ψj(P (t)) is an even function
because:

Ψj(P (−t)) = P (0)− t
(
p1 − p2

2
,
−p1 + p2

2
, 0, . . . , 0;

q1 − q2

2
,
−q1 + q2

2
, 0, . . . , 0

)
= P (0) + t

(
p2 − p1

2
,
−p2 + p1

2
, 0, . . . , 0;

q2 − q1

2
,
−q2 + q1

2
, 0, . . . , 0

)
= Ψj(P (t)).

This means that Ψj(P (t)) = αt2 + β for some α and β in R. Therefore t = 0 would be
another stationary point for Ψj(P (t)) but this is possible only if α = 0 that is Ψj(P (t)) is
a constant.

The thesis follows because, in this case, the maximum is also attained on the boundary
of D.

With essentially the same proof we obtain

Lemma 6 (Extension of Lemma 4 in [5]). Let ` be an integer in [2, b] and, for i ∈ [1, `],
consider the nonempty intervals Ii = [ai, bi]. Set Dp = I1 × I2 × · · · × I` × p`+1 × · · · × pb
and Dq = q1 × q2 × · · · × q` × q`+1 × · · · × qb where qi = qh for any i, h ∈ [1, `]. Consider
the set D of pairs of probability vectors (p, q) such that p belongs to Dp and q belongs to Dq.
Then if (p; q) is a maximum point for Ψj in D then either pi = ph for any i ∈ [1, `] or there
is a maximum for Ψj on the boundary of D.

Note that, in particular, in the latter case, we have a maximum point (p; q) for Ψj with
at least one index i ∈ [1, `] such that pi ∈ {ai, bi}.

Now we present a Lemma that allows us to assume that the coordinates of p and q are
properly rearranged depending on their values.

Lemma 7 (Extension of Lemma 5 in [5]). If p1 ≤ p2, and q1 ≤ q2, then

Ψj(p1, p2, p3, . . . , pb; q1, q2, q3, . . . , qb) ≤ Ψj(p1, p2, p3, . . . , pb; q2, q1, q3, . . . , qb). (24)

Proof. Using the definition of Ψj in eq. (5), inequality (24) can be restated by only consid-
ering the terms in the summation which differ in the two sides, that is, those corresponding
to permutations σ such that 1 ∈ {σ(1), . . . , σ(j)}, σ(j + 1) = 2 and 2 ∈ {σ(1), . . . , σ(j)},
σ(j + 1) = 1. Hence inequality (24) becomes

(p1q2 + p2q1)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)

≤ (p1q1 + p2q2)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)

which can be restated as

(p2 − p1)(q2 − q1)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1) ≥ 0

This is always true since p1 ≤ p2 and q1 ≤ q2.
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Using the above lemmas, we are able to isolate a relatively small set of possible configu-
rations for the p and q which give the value |M1.

Proposition 1. |M1 is attained in one of the following points:

1) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
β, . . . , β , γ, 1− ε;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
η, . . . , η , 1− ε, ζ)

where α, δ > 0, β, η, γ, ζ ≥ 0 and

l2α+ (b− l1 − l2 − 2)β + γ + (1− ε) = 1 = l1δ + (b− l1 − l2 − 2)η + (1− ε) + ζ;

2) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β , γ;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η , 1− ε)

where α, δ > 0, β, η, γ ≥ 0 and

l2α+ (b− l1 − l2 − 1)β + γ = 1 = l1δ + (b− l1 − l2 − 1)η + (1− ε);

3) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β, . . . , β;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
η, . . . , η)

where α, δ > 0, β, η ≥ 0 and

l2α+ (b− l1 − l2)β = 1 = l1δ + (b− l1 − l2)η.

Proof. Remember that the value |M1 is the maximum of Ψj over pairs (p, q) with p and q in
qP0
b . Moreover, due to Lemma 7, we have that p and q do not have a value 1− ε in the same

coordinate. Similarly, again because of Lemma 7, either the zeros of p and q are in different
positions (i.e. if pi = 0 then qi 6= 0) or for any i at least one between pi and qi is zero.

According to the positions where values 1 − ε and zero can appear as coordinates of p
and q, we have that |M1 is attained in one of the following points:

1A) p and q have respectively l1 and l2 zeros in different positions, both have a coordinate
with value 1− ε and those are in different positions:

(

l1︷ ︸︸ ︷
0, . . . , 0, α1, . . . , αl2︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
β1, . . . , βb−l1−l2−2, γ, 1−ε;

l1︷ ︸︸ ︷
δ1, . . . , δl1 , 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
η1, . . . , ηb−l1−l2−2, 1−ε, ζ);

1B) p and q have respectively l1 and l2 zeros in different positions, additional b− l1− l2−2
zeros in the same positions, both have a coordinate with value 1− ε and those are in
different positions:

(

l1︷ ︸︸ ︷
0, . . . , 0, α1, . . . , αl2︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
0, . . . , 0 , 0, 1− ε;

l1︷ ︸︸ ︷
δ1, . . . , δl1 , 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
0, . . . , 0 , 1− ε, 0);
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2A) p and q have respectively l1 and l2 zeros in different positions, p has no coordinate of
value 1− ε but q has:

(

l1︷ ︸︸ ︷
0, . . . , 0, α1, . . . , αl2︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β1, . . . , βb−l1−l2−1, γ;

l1︷ ︸︸ ︷
δ1, . . . , δl1 , 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η1, . . . , ηb−l1−l2−1, 1−ε);

2B) p and q have respectively l1 and l2 zeros in different positions, additional b− l1− l2−1
zeros in the same positions, p has no coordinate of value 1− ε but q has:

(

l1︷ ︸︸ ︷
0, . . . , 0, α1, . . . , αl2︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
0, . . . , 0 , 0;

l1︷ ︸︸ ︷
δ1, . . . , δl1 , 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
0, . . . , 0 , 1− ε);

3A) p and q have respectively l1 and l2 zeros in different positions and both have no
coordinates with value 1− ε:

(

l1︷ ︸︸ ︷
0, . . . , 0, α1, . . . , αl2︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β1, . . . , βb−l1−l2 ;

l1︷ ︸︸ ︷
δ1, . . . , δl1 , 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
η1, . . . , ηb−l1−l2);

3B) p and q have respectively l1 and l2 zeros in different positions, additional b − l1 − l2
zeros in the same positions and neither has a coordiante of value 1− ε:

(

l1︷ ︸︸ ︷
0, . . . , 0, α1, . . . , αl2︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
0, . . . , 0;

l1︷ ︸︸ ︷
δ1, . . . , δl1 , 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
0, . . . , 0).

Moreover, in all those cases, the allowed domains for p and q satisfy either the hypothesis of
Lemma 5 or those of Lemma 6. This means that we can average the α’s (i.e. we can assume
that all the α’s are equal), the β’s, the δ’s, and the η’s. The thesis follows allowing β and
η to possibly be zero and noting that the case 1B becomes a subcase of 1A, 2B becomes a
subcase of 2A and 3B becomes a subcase of 3A.

Remark 2. As seen in Proposition 1, Lemmas 5, 6 and 7 reduce the maxima candidates
to a finite set of possible configurations. Still, the number of such configurations increases
with b, and the ensuing optimization problems depend on 4 free variables in the case 1. The
direct evaluation of the maxima of Ψj on those configurations can in principle be performed
by symbolic computation software, but the resources needed are excessive. In the following
lemmas, we provide additional simplifications to obtain the exact evaluations of the maxima.

Due to the following lemma, whose proof can be found in the appendix, we can assume
that the number of zeros that appear in p (resp. in q) is either b− 2 or at most b− j. Note
that this simplification does not decrease the number of free variables but it reduces the
total number of cases.

Lemma 8 (Extension of Lemma 6 in [5]). Suppose that q1 ≤ q2 ≤ . . . ≤ qj−1. If all the pi
are less than or equal to 1− α where 0 ≤ α < 1, then

Ψj(p1, p2, . . . , pj−1, 0, . . . , 0; q1, q2, . . . , qb)

≤ Ψj(1− α, α, 0, . . . , 0; q1, q2, . . . , qb). (25)
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The following lemma, whose proof can be found in the appendix, takes care of the cases
when there is at least one element greater or equal to 1− ε in p or q vector. If this element
is p1, because of Lemma 7 we can assume q1 is the minimum among the q-values if we are
maximizing Ψj . For the evaluation of |M1, this implies that q1 = 0 whenever p1 = 1− ε and
vice-versa.

Lemma 9. Assume that ε ≤ 1
j+1 , p1 ≥ 1− ε and q1 ≤ q2 ≤ . . . ≤ qb. Then

Ψj(p1, p2, . . . , pb; q1, q2, . . . , qb) ≤ Ψj(p1, p2, . . . , pb; 0, q1 + q2, q3, . . . , qb). (26)

Thanks to Lemmas 8 and 9, we obtain the following proposition.

Proposition 2. |M1 is attained in one of the following points:

1) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
β, . . . , β , 0, 1− ε;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
η, . . . , η , 1− ε, 0)

where α, β, δ, η ≥ 0 and

l2α+ (b− l1 − l2 − 2)β + (1− ε) = 1 = l1δ + (b− l1 − l2 − 2)η + (1− ε);

2) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β , 0;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η , 1− ε)

where α, β, δ, η ≥ 0 and

l2α+ (b− l1 − l2 − 1)β = 1 = l1δ + (b− l1 − l2 − 1)η + (1− ε);

3) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β, . . . , β;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
η, . . . , η)

where α, β, δ, η ≥ 0 and

l2α+ (b− l1 − l2)β = 1 = l1δ + (b− l1 − l2)η.

Moreover, we can assume that the number of zeros that appear in p and in q is either b− 2
or at most b− j.

Proof. We consider the finite list of cases provided by Proposition 1 and we relax the domains
of p and q allowing α and δ to be 0. Here, due to Lemma 9, a maximum with exactly one
element equal to 1 − ε in p (resp. q) implies a zero in the same coordinate of q (resp.
p). Finally, because of Lemma 8, a maximum with b − j + 1 or more coordinates in p
(resp. q) equal to zero is also attained in a point of the form p = (1 − ε, ε, 0, . . . , 0) (q =
(1− ε, ε, 0, . . . , 0)).
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Proposition 3. |M2 is upper bounded by the global maximum of Ψj which is attained in a
point (p; q) of the following form:

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β, . . . , β;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
η, . . . , η)

where α, β, δ, η ≥ 0 and

l2α+ (b− l1 − l2)β = 1 = l1δ + (b− l1 − l2)η.

Moreover, we can assume that the number of zeros that appear in p and in q is either b− 1
or at most b− j.

Proof. In order to find the global maximum of Ψj we need no restriction on the pairs (p, q),
i.e., p ∈ [0, 1]b and q ∈ [0, 1]b. Using Lemmas 5, 6, 7 and 8, we can easily derived the desired
points.

Now, to provide a list of possible maxima also for the other |Mi and M̂i, we need also
the following additional lemma.

Lemma 10. Assume that ε < 1
2 , q1 ≥ 1− ε and 0 < δ ≤ ε, then

Ψj(1− ε+ δ, p2, p3, . . . , pb; q1, q2, . . . , qb) < Ψj(1− ε, p2 + δ, p3, . . . , pb; q1, q2, . . . , qb). (27)

Thanks to Lemma 10, whose proof can be found in the appendix, we obtain the following
proposition.

Proposition 4. |M3 is attained in a point (p; q) of the following form:

(1− ε,
l1︷ ︸︸ ︷

0, . . . , 0, α, . . . , α︸ ︷︷ ︸
l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β ; 1− ε,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η )

where α, β, δ, η ≥ 0 and

l2α+ (b− l1 − l2 − 1)β = ε = l1δ + (b− l1 − l2 − 1)η.

Moreover, we can assume that the number of zeros that appear in p and in q is either b− 2
or at most b− j.

Proof. In order to find the values |M3 we need to restrict the function Ψj to the pairs (p, q)

such that p and q belong to qP1
b (by symmetry we can fix an arbitrary coordinate).

Using Lemmas 5, 6, 7 and 8, we see that |M3 is attained in a point of the following form:

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β ; ζ,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η )

where α, β, δ, η ≥ 0, γ, ζ ≥ 1− ε and

γ + l2α+ (b− l1 − l2 − 1)β = 1 = ζ + l1δ + (b− l1 − l2 − 1)η.

Finally, because of Lemma 10 a maximum with γ, ζ ≥ 1− ε is also attained in a point with
γ = ζ = 1− ε.

Proposition 5. |M4 is attained in one of the following points:
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1) for (p; q) of the form
(γ, α, . . . , α, 0; 0, δ, . . . , δ, ζ)

where α, δ ≥ 0, γ, ζ ≥ 1− ε, and

γ + (b− 2)α = 1 = (b− 2)δ + ζ.

2) for (p; q) of the form

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

b−l1−2

, 0; 0,

l1︷ ︸︸ ︷
δ, . . . , δ, η, . . . , η︸ ︷︷ ︸

b−l1−2

, ζ)

where α, δ, η ≥ 0, γ ≥ 1− ε, ζ ∈ {1− ε, 1}, and

(b− l1 − 2)α+ γ = 1 = l1δ + (b− l1 − 2)η + ζ.

3) for (p; q) of the form

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
β, . . . , β , 0; 0,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
η, . . . , η , ζ)

where α, β, δ, η ≥ 0, γ, ζ ∈ {1− ε, 1}, and

l2α+ (b− l1 − l2 − 2)β + γ = 1 = l1δ + (b− l1 − l2 − 2)η + ζ.

Moreover, we can assume that the number of zeros that appear in p and in q is either b− 1
or at most b− j.

Proof. In order to find the values |M4 we need to restrict the function Ψj to the pairs (p; q)

such that p belongs to qP1
b and q belongs to qPbb (by symmetry we can choose, arbitrarily, two

different coordinates).
Using Lemmas 5, 6, 7, 8 and 9 we see that |M4 is attained in a point of the following

form:

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
β, . . . , β , 0; 0,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
η, . . . , η , ζ)

where α, β, δ, η ≥ 0, γ, ζ ≥ 1− ε, and

l2α+ (b− l1 − l2 − 2)β + γ = 1 = l1δ + (b− l1 − l2 − 2)η + ζ.

Finally, we can split this case into three cases. The first one is for l1 = l2 = 0, the second
one for l1 > 0, l2 = 0 and the third one for l1, l2 > 0. By symmetry the case l1 = 0, l2 > 0
is included in the second case. For the second case, by Lemma 6 it is easy to see that δ or
ζ must be on the boundary in order to be a valid point for |M4. The same argument can be
carried out for the third case which implies that γ, ζ ∈ {1− ε, 1}.

Proposition 6. M̂1 is attained in a point (p; q) of the following form:

(

l1︷ ︸︸ ︷
ε, . . . , ε, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β, . . . , β;

l1︷ ︸︸ ︷
δ, . . . , δ, ε, . . . , ε︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
η, . . . , η)

where α, β, δ, η ≥ ε and

l1ε+ α+ (b− l1 − l2)β = 1 = l2ε+ l1δ + (b− l1 − l2)η.
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Proof. In order to find the values M̂1 we need to restrict the function Ψj to the pairs (p, q)

such that p and q belong to P̂0
b . Using Lemmas 5, 6 and 7 we obtain the thesis.

Proposition 7. M̂2 is attained in one of the following points:

1) for (p; q) of the form

(

l1︷ ︸︸ ︷
α, . . . , α, β, . . . , β︸ ︷︷ ︸

b−l1

;

l1︷ ︸︸ ︷
η, . . . , η, ε, . . . , ε︸ ︷︷ ︸

b−l1

)

where 0 ≤ α ≤ ε, β ≥ 0, η ≥ ε, and

l1α+ (b− l1)β = 1 = l1η + (b− l1)ε.

2) for (p; q) of the form

(ε,

l1︷ ︸︸ ︷
α, . . . , α, β, . . . , β︸ ︷︷ ︸

b−l1−1

; ζ,

l1︷ ︸︸ ︷
η, . . . , η, ε, . . . , ε︸ ︷︷ ︸

b−l1−1

)

where α, β ≥ 0, ζ, η ≥ ε, and

ε+ l1α+ (b− l1 − 1)β = 1 = ζ + l1η + (b− l1 − 1)ε.

3) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β, . . . , β;

l1︷ ︸︸ ︷
δ, . . . , δ, η, . . . , η︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
ε, . . . , ε)

where α, β ≥ 0, δ, η ≥ ε and

l2α+ (b− l1 − l2)β = 1 = l1δ + (b− l1 − l2)η.

Moreover, we can assume that the number of zeros that appear in p is either b− 1 or
at most b− j.

Proof. In order to find the values M̂2 we need to restrict the function Ψj to the pairs (p, q)

such that p belongs to P̂1
b and q belongs to P̂0

b . In addition, we relax the domain of p
by removing the constraint on p1 to be a minimum coordinate., i.e., p ∈ [0, ε] × [0, 1]b−1.
However, this implies that p belongs to P̂ib for some i ∈ [1, b]. Therefore, by symmetry, we
are still considering valid candidates for M̂2 under this domain.

Using Lemmas 5, 6, 7 and 8, we see that M̂2 is attained in a point of the following form:

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

b−l1−l2−1

,

l2︷ ︸︸ ︷
β, . . . , β; ζ,

l1︷ ︸︸ ︷
δ, . . . , δ, η, . . . , η︸ ︷︷ ︸

b−l1−l2−1

,

l2︷ ︸︸ ︷
ε, . . . , ε)

where α, β ≥ 0, 0 ≤ γ ≤ ε, ζ, δ, η ≥ ε, and

γ + (b− l1 − l2 − 1)α+ l2β = 1 = ζ + l1δ + (b− l1 − l2 − 1)η + l2ε.

Finally, we can split this case into three cases. The first one is when l1 = 0 and the average
between γ and the α-components is less than or equal to ε, the second one for γ = ε and
l1 = 0 while the third one for γ = 0 and l1 ≥ 0. We have not considered the case γ = ε and
l1 > 0 since it is a subcase of the third one.
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Proposition 8. An upper bound on M̂3 is obtained by computing the maximum of Ψj over
points of the following form:

1) for (p; q) of the form

(β,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β ; η,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η )

where α, δ ≥ 0, 0 ≤ β, η ≤ ε and

l2α+ (b− l1 − l2)β = 1 = l1δ + (b− l1 − l2)η.

2) for (p; q) of the form

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β ; 0,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η )

where α, β, δ, η ≥ 0, 0 ≤ γ ≤ ε and

γ + l2α+ (b− l1 − l2 − 1)β = 1 = l1δ + (b− l1 − l2 − 1)η.

3) for (p; q) of the form

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β ; ε,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η )

where α, β, δ, η ≥ 0, 0 ≤ γ ≤ ε and

γ + l2α+ (b− l1 − l2 − 1)β = 1 = ε+ l1δ + (b− l1 − l2 − 1)η.

Moreover, we can assume that the number of zeros that appear in p and in q is either b− 1
or at most b− j.

Proof. In order to find and upper on the values M̂3 we need to restrict the function Ψj

to the pairs (p, q) such that p and q belong to P̂1
b (by symmetry we can fix an arbitrary

coordinate). In addition, we relax the domains of p and q by removing the constraints on
p1 and q1 to be minimum components, i.e., p, q ∈ [0, ε]× [0, 1]b−1.

Using Lemmas 5, 6, 7 and 8, we see that under this extended domain an upper bound
on M̂3 is attained in a point of the following form:

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β ; ζ,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η )

where α, β, δ, η ≥ 0, 0 ≤ γ, ζ ≤ ε and

γ + l2α+ (b− l1 − l2 − 1)β = 1 = ζ + l1δ + (b− l1 − l2 − 1)η.

Finally, we can split this case into three cases. The first one is when the averages between
γ and the β-components and between ζ and the η-components are less than or equal to ε,
the second one for 0 ≤ γ ≤ ε and ζ = 0, and the third one for 0 ≤ γ ≤ ε and ζ = ε. By
symmetry, the cases in which γ = 0 and 0 ≤ ζ ≤ ε or γ = ε and 0 ≤ ζ ≤ ε are included in
the second and third cases.
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Proposition 9. M̂4 is upper bounded by the global maximum of Ψj which is attained in a
point (p; q) of the following form:

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β, . . . , β;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
η, . . . , η)

where α, β, δ, η ≥ 0 and

l2α+ (b− l1 − l2)β = 1 = l1δ + (b− l1 − l2)η.

Moreover, we can assume that the number of zeros that appear in p and in q is either b− 1
or at most b− j.

Proof. Analogous to the proof of Proposition 3.

Remark 3. Each configuration that appears in the list of possible maxima in the previ-
ous propositions leads to an optimization problem that depends on at most 3 free variables.
Therefore, for given b and k, we can analytically determine, using Mathematica, those max-
ima.

The previous propositions allow us to determine a finite list of maxima candidates for
each |Mi and M̂i. We have analytically determined and inspected using Mathematica all the
possible maximum points. We have restricted our attention to (b, k)-cases for small b and k
in order to avoid excessive computational complexity. It is important to note that for the
(b, k)-cases that we have considered (see Propositions 10 and 11) the global maximum of
Ψj , for j = k − 2, satisfy the domains of |M2 and M̂4. Therefore for these particular cases,
we are not upper bounding the values of |M2 and M̂4 but, instead, we are computing the
exact values. Based on the results of computations, we choose the values of j and ε for each
(b, k)-case to improve the current best-known bounds on R(b,k). A more careful choice of
these parameters could lead to better bounds except for the case b = k = 6 (see Remark 5).

Proposition 10. For j = k − 2, for the values of ε shown, the |Mi’s are as shown in the
following table

(b, k) ε |M1
|M2

|M3
|M4

(7, 7) 9/100 0.085679 0.092593 0.000006 0.000107
(8, 8) 3/25 0.038453 0.042840 0.000002 0.000022
(9, 8) 1/10 0.075870 0.076905 0.000001 0.000015
(10, 9) 1/15 0.036289 0.037935 3.4 · 10−9 8.5 · 10−8

(11, 10) 1/11 0.016928 0.018144 1.4 · 10−9 2.7 · 10−8

(12, 10) 1/20 0.030945 0.031036 2.1 · 10−11 7.0 · 10−9

(13, 11) 1/25 0.015057 0.015473 7.8 · 10−14 3.5 · 10−12

(14, 12) 1/13 0.007176 0.007529 1.2 · 10−12 2.6 · 10−11

(15, 13) 1/12 0.003360 0.003588 1.1 · 10−13 2.3 · 10−12

|M1 is attained at ( 1
b , . . . ,

1
b ; 1

b , . . . ,
1
b )

|M2 is attained at (1, 0, . . . , 0; 0, 1
b−1 , . . . ,

1
b−1 )

|M3 is attained at (1− ε, ε
b−1 , . . . ,

ε
b−1 ; 1− ε, ε

b−1 , . . . ,
ε
b−1 )

|M4 is attained at (1− ε, ε
b−2 , . . . ,

ε
b−2 , 0; 0, ε

b−2 , . . . ,
ε
b−2 , 1− ε)
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Proposition 11. For j = 3, (b, k) = (5, 5) and ε = 1
44 (4 +

√
5), the M̂i’s are as shown in

the following table

M̂i Attained at point (p; q) Value ≈

M̂1 (ε, 1−ε
b−1 , . . . ,

1−ε
b−1 ; γ, δ, . . . , δ), δ ≈ 0.185275 0.384033

M̂2 (0, 1
b−1 , . . . ,

1
b−1 ; γ, δ, . . . , δ), δ = ε 0.389226

M̂3 (ε, 1−ε
b−2 , . . . ,

1−ε
b−2 , 0; ε, α, . . . , α, β), β ≈ 0.454183 0.374759

M̂4 (0, 1
b−1 , . . . ,

1
b−1 ; γ, δ, . . . , δ), δ = ε 0.389226

For j = 3, (b, k) = (6, 5) and ε = 1
10 , the M̂i’s are as shown in the following table

M̂i Attained at point (p; q) Value ≈

M̂1 (ε, 1−ε
b−1 , . . . ,

1−ε
b−1 ; γ, δ, . . . , δ), δ ≈ 0.153159 0.555625

M̂2 (0, 1
b−1 , . . . ,

1
b−1 ; γ, δ, . . . , δ), δ ≈ 0.130217 0.558467

M̂3 (ε, 1−ε
b−2 , . . . ,

1−ε
b−2 , 0; ε, α, . . . , α, β), β ≈ 0.376930 0.535106

M̂4 (0, 1
b−1 , . . . ,

1
b−1 ; γ, δ, . . . , δ), δ ≈ 0.130217 0.558467

For j = 4, (b, k) = (6, 6) and ε = 1
20 , the M̂i’s are as shown in the following table

M̂i Attained at point (p; q) Value ≈

M̂1 ( 1
b , . . . ,

1
b ; 1

b , . . . ,
1
b ) 0.185185

M̂2 (ε, 1−ε
b−1 , . . . ,

1−ε
b−1 ; γ, δ, . . . , δ), δ ≈ 0.147757 0.178857

M̂3 (ε, 0, 1−ε
b−2 , . . . ,

1−ε
b−2 ; 0, 1, 0, . . . , 0) 0.140664

M̂4 (1, 0, . . . , 0; 0, 1
b−1 , . . . ,

1
b−1 ) 0.192000

Remark 4. The values reported for M̂3 are not approximate values of the exact values of
M̂3 but upper bounds. We point out that the value M̂1 for b = k = 6 is only attained for
uniform distributions. This will be important for a qualitative analysis of our bound on
R(b,k) for different values of b and k, see Section 5.

As a consequence of Propositions 10, 11 and equation (22) we are able to evaluate the
values ofM for both the partitions { qP ib}i=0,...,b and {P̂ ib}i=0,...,b. Then we state the following
theorem

Theorem 2. Using the partition { qP ib}i=0,...,b we have

(b, k) (7, 7) (8, 8) (9, 8) (10, 9) (11, 10)

M ≈ 0.0861594 ≈ 0.0388599 ≈ 0.0758830 ≈ 0.0363565 ≈ 0.0170049

(b, k) (12, 10) (13, 11) (14, 12) (15, 13)

M ≈ 0.0309448 ≈ 0.0150674 ≈ 0.0071917 ≈ 0.0033733

Using the partition {P̂ ib}i=0,...,b we have
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(b, k) (5, 5) (6, 5) (6, 6)

M ≈ 0.3873676 ≈ 0.5567010 5
27 ≈ 0.185185

Remark 5. For the underlined (b, k)-cases reported in Table 1, it is interesting to note
that the maximum in (8) is only achieved for uniform distributions. This means that, for
these particular cases, any new upper bounds that can be found on the quadratic form in
equation (15) cannot further improve those bounds. Note that, for (b, 4)-cases when b ≥ 4,
the maximum of the quadratic form in (15) is only achieved for uniform distributions if we
suppose that the frequency of each symbol in all the coordinates of the code is less than or
equal to 1/2. For the special case b = k = 6, the values we obtained for the Mi constants are
such that the resulting η0 in the statement of Lemma 4 is equal to 1. That is, the constant
M is actually M1, which means that in our bound the worst-case scenario is given by the
balanced subcodes. The resulting value M1 = 5/27 is actually the value attained by Ψj(p, q)
for uniform p and q. Roughly speaking, this should be interpreted as saying that our procedure
is unable to give for R(6,6) a bound smaller than 5/59 because such a rate might in principle
be achieved if all subcodes have a uniform distribution on each coordinate. However, for such
globally balanced codes, one can use a different argument based on the minimum distance of
the code to get even stronger upper bounds on R(b,k). In the next section, we combine the
two procedures to deduce a rigorous proof that indeed the bounds shown in Table 1 are not
sharp for different values of b and k.

5 A qualitative analysis on R(b,k)

In this section we show that, at least for the underlined (b, k)-cases in Table 1 and for case
(b, k) = (6, 6), the bound in equation (7), for j = k − 2 with Mk−2 = Ψk−2(1/b, . . . , 1/b;
1/b, . . . , 1/b), is not sharp. We also show that, the bound given in equation (4) is not sharp
for every (b, 4)-cases with b ≥ 5 and j = 2. In this discussion, we use continuity arguments
whose quantitative analysis would require long and complicated computations. For this
reason, we do not provide explicit numerical improvements on R(b,k) and only show that the
bounds on R(b,k) can be improved.

To prove our statement, we invoke an upper bound from [1] on the minimum hamming
distance dH(C) of a b-ary code C with a given rate R. It suffices here to mention that,
set δ := dH(C)/n, this bound is of the form δ ≤ F (R) for a suitable decreasing continuous
function F . Due to the monotonicity of F there exists a maximum value of R for which the
inequality R ≤ (b−2)!

(b−k+1)!bk−3F (R) is satisfied.
Using Mathematica on the specific bound in [1], one finds that

R ≤ (b− 2)k−3

bk−3
F (R) =⇒ R < U(b,k)

where (b − 2)k−3 = (b − 2) · · · (b − k + 2) and U(b,k) takes the values shown in Table 4 for
some (b, k) pairs. Note that most of these pairs are actually those underlined in Table 1.

Because of the continuity of F , this implies that there exist ε1 > 0 and ε2 > 0 such that

R ≤
(

(b− 2)k−3

bk−3
+ ε1

)
F (R) + ε2 =⇒ R < U(b,k) + 10−5

We note that, if p1 = p2 = · · · = pb = 1/b, given i 6= h ∈ [1, b] and chosen at random
x1, . . . , xk−4, z ∈ [1, b] according to the distribution p, the probability that i, h, x1, . . . , xk−4,
z are all different is (b− 2)k−3/bk−3. Therefore, by continuity, there exists ε3 > 0 such that
given i 6= h ∈ [1, b] and chosen at random x1, . . . , xk−4, z ∈ [1, b] according to the distribution
p′ where p′1, p′2, . . . , p′b ∈ [1/b − ε3, 1/b + ε3], the probability that i, h, x1, . . . , xk−4, z are all
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Table 4: U(b,k) values

U(6,6) = 0.08469 U(7,6) = 0.13440 U(8,6) = 0.18125 U(9,6) = 0.22405

U(10,6) = 0.26268 U(11,6) = 0.29744 U(12,6) = 0.32874 U(13,6) = 0.35699

U(14,6) = 0.38258 U(8,7) = 0.07200 U(9,7) = 0.10510 U(10,7) = 0.13822

U(11,7) = 0.17025 U(12,7) = 0.20068 U(13,7) = 0.22930 U(14,7) = 0.25609

U(10,8) = 0.05749 U(11,8) = 0.08043 U(12,8) = 0.10419 U(13,8) = 0.12808

U(14,8) = 0.15163 U(11,9) = 0.03006 U(12,9) = 0.04465 U(13,9) = 0.06081

U(14,9) = 0.07799 U(13,10) = 0.02386 U(14,10) = 0.03412 U(14,11) = 0.01236

different is less than (b− 2)k−3/bk−3 + ε1. Now we divide the coordinates i ∈ [1, n] into two
sets according to whether the distribution fi has all its values in [1/b− ε3, 1/b+ ε3] or not.
More precisely, we define:

Uε3 := {i ∈ [1, n] : fi,h ∈ [1/b− ε3, 1/b+ ε3], ∀h ∈ [1, b]}.

We can assume, up to reordering the coordinates, that Uε3 = [1, t] for some value t. Here
we divide the discussion into two cases, according to the size of t, and we show that in both
cases a better bound on R(b,k) can be obtained.

A) Let us assume that t < n(1 − ε2)

As a consequence of Hansel’s Lemma, we have the following

log(|C|) ≤ (1 + o(1))
1

2

∑
i∈[`+1,n]

∑
ω,µ∈Ω

λωλµΨk−2(fi|ω, fi|µ)

≤ (1 + o(1))
1

2

 ∑
i∈[`+1,t]

M +
∑

i∈[t+1,n]

∑
ω,µ∈Ω

λωλµΨk−2(fi|ω, fi|µ)


where M is the upperbound of equation (22) given in Theorem 2. Due to the following
lemma, we are able to provide a better upper bound to the second term of the sum.

Lemma 11. Assume that fi,h 6∈ [1/b − ε3, 1/b + ε3] for some h ∈ [1, b]. Then there exists
M ′ < M such that: ∑

ω,µ∈Ω

λωλµΨk−2(fi|ω, fi|µ) ≤M ′.

Proof. Consider first for simplicity the case when fi,h < 1/b− ε3. Let Ω′ ⊆ Ω be the subset
of the ω for which fi,h|ω ≥ 1/b− ε3/2. Then, since

fi,h =
∑
ω∈Ω

λωfi,h|ω ≥
∑
ω∈Ω′

λωfi,h|ω ≥ (1/b− ε3/2)
∑
ω∈Ω′

λω ,

we deduce that ∑
ω∈Ω′

λω ≤
1/b− ε3

1/b− ε3/2
.

From Remarks 1, 4 and 5, we know that the maximum of the quadratic form in (15) is only
achieved for uniform distributions. This means that M = Ψk−2(1/b, . . . , 1/b; 1/b, . . . , 1/b)
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for the (b, k)-cases under consideration. Therefore there is some constant Mε3 < M such
that if either fi,h|ω or fi,h|µ are not Ω′, then Ψk−2(fi|ω, fi|µ) ≤Mε3 . This implies

∑
ω,µ∈Ω

λωλµΨk−2(fi|ω, fi|µ) ≤
(

1/b− ε3
1/b− ε3/2

)2

M +

(
1−

(
1/b− ε3

1/b− ε3/2

)2
)
Mε3

and hence the statement of the lemma for the case fi,h < 1/b− ε3. A similar proof holds for
fi,h > 1/b+ ε3.

In the case ` ≥ t, we immediately obtain that log(|C|) ≤ (n − `)M
′

2 which leads to the
upperbound R < M ′

2+M ′ that is better than the one shown in Table 1. So we can assume
` < t and therefore:

log(|C|) ≤ (t− `)M
2

+ (n− t)M
′

2
≤ (n− nε2 − `)

M

2
+ nε2

M ′

2
.

Since ` =
⌊
nR−2 logn

log(2+ε̄)

⌋
= bnR− 2 log nc (1 + o(1)), dividing by n we get:

R ≤ 1

2

[
M(1− ε2 −R+ 2 logn

n )

1−R+ 2 logn
n

+
M ′ε2

1−R+ 2 logn
n

]
(1−R+ 2

log n

n
)(1 + o(1)).

Set M ′′ = M(1−ε2−R)
1−R + M ′ε2

1−R we have that M ′′ < M and, taking n→∞, we obtain:

R ≤ M ′′

2
(1−R)(1 + o(1)).

It means that R < M ′′

2+M ′′ and since M ′′ < M , it follows that the bound is not sharp under
the assumption of the case A.

B) Let us assume that t ≥ n(1 − ε2)

Let us fix two words u, u′ ∈ C at minimum hamming distance and let us choose at random
x, y. Because of Hansel Lemma we have that:

log(|C|) ≤
n∑
i=1

E[τ(G
u,u′,x1,...,xk−4

i )].

We recall that 0 ≤ τ(G
u,u′,x1,...,xk−4

i ) ≤ 1 and, if ui 6= u′i, τ(G
u,u′,x1,...,xk−4

i ) is the proba-
bility that given z 6∈ {u, u′, x1, . . . , xk−4} we have that ui, u′i, x1i, x(k−4)i, zi are all different.
Since we have chosen at random also x1, . . . , xk−4, E[τ(G

u,u′,x1,...,xk−4

i )] coincides with the
probability that given x1, . . . , xk−4, z 6∈ {u, u′} we have that ui, u′i, x1i, x(k−4)i, zi are all dif-
ferent. Therefore E[τ(G

u,u′,x1,...,xk−4

i )] ≤ (b−2)k−3/bk−3 + ε1 for any i ∈ [1, t] when ui 6= u′i,
otherwise if ui = u′i then the expected value is 0. This means that

log(|C|) ≤
(

(b− 2)k−3

bk−3
+ ε1

) t∑
i=1

1ui 6=u′i +

n∑
i=t+1

1

≤
(

(b− 2)k−3

bk−3
+ ε1

) n∑
i=1

1ui 6=u′i +

n∑
i=n(1−ε2)

1

and hence

log(|C|) ≤
(

(b− 2)k−3

bk−3
+ ε1

)
dH(u, u′) + nε2.
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Dividing by n and remembering that u, u′ are at minimal hamming distance, we obtain that:

R ≤
(

(b− 2)k−3

bk−3
+ ε1

)
δ + ε2 ≤

(
(b− 2)k−3

bk−3
+ ε1

)
F (R) + ε2.

But, because of the definition of ε1 and ε2, this implies that R < U(b,k) + 10−5. It can be
easily checked that the bound in Theorem 3 is strictly greater than U(b,k) + 10−5 for every
(b, k)-cases under consideration and therefore:

Theorem 3.

R(b,k) <

(
1

log b
k−3

+
bk−1

bk−1 log(b− k + 2)

)−1

for the (b, k)-cases shown in Table 4.

For cases (b, 4) when b ≥ 4 we know thanks to [6] that the maximum of (14), under
the constraint that fi,a ≤ 1

2 for every i = 1, . . . , n and every a = 1, . . . , b, is only achieved
for uniform distributions. Therefore we can use the Plotkin bound instead of the Aaltonen
bound in order to prove that bound (4) is not sharp when k = 4 and b ≥ 5.

Let C be a (b, 4)-hash code with rate R and suppose that the frequency of the symbols
in all the coordinates of C is uniform. Then by Hansel we get

R ≤ b− 2

b
· δ, (28)

where δ = dH(C)/n. The Plotkin bound for q-ary codes with δ ≤ (b− 1)/b is the following

R ≤ log b

(
1− δ · b

b− 1

)
. (29)

Since equation (28) is increasing in δ while (29) is decreasing then we can combine the two
bounds to get

R ≤ b(b− 1) log b

(b− 1)(b− 2) + b2 log(b)
. (30)

It is easy to see that the bound given in (4) for k = 4 is always strictly greater than (30) for
every b > 4. Then, by a continuity argument (as done previously) one can show that bound
(4) for k = 4 is not sharp for every b ≥ 5. Therefore we have the following theorem.

Theorem 4. For every integer b > 4

R(b,4) <

(
1

log b
+

b2

(b2 − 3b+ 2) log(b− 2)

)−1

.
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Appendix
Here we provide the proofs of Lemmas 8, 9, and 10 stated in Section 4.

Proof of Lemma 8. Let 0 ≤ δ ≤ p2. We first prove that

Ψj(p1, p2, . . . , pj−1, 0, . . . , 0; q1, q2, . . . , qb)

≤ Ψj(p1 + δ, p2 − δ, . . . , pj−1, 0, . . . , 0; q1, q2, . . . , qb). (31)

Using the definition of Ψj in eq. (5), inequality (31) can be restated by only considering
the terms in the summation which differ in the two sides, that is, those corresponding to
permutations σ such that 1 ∈ {σ(1), . . . , σ(j)}, σ(j + 1) = 2 and 2 ∈ {σ(1), . . . , σ(j)},
σ(j + 1) = 1. This gives

(p1q2 + p2q1)
∑

σ∈Sym(3,...,b)

qσ(3) · · · qσ(j+1)

≤ ((p1 + δ)q2 + (p2 − δ)q1)
∑

σ∈Sym(3,...,b)

qσ(3) · · · qσ(j+1) .

Rearranging the terms we have

δ(q2 − q1)
∑

σ∈Sym(3,...,b)

qσ(3) · · · qσ(j+1) ≥ 0 .

Therefore, inequality (31) is thus satisfied since q1 ≤ q2 and δ ≥ 0. Moreover, given h > i
and δ such that 0 ≤ δ ≤ ph, with the same argument we have

Ψj(p1, . . . , pi, . . . , ph, . . . , pj−1, 0, . . . , 0; q1, q2, . . . , qb)

≤ Ψj(p1, . . . , pi + δ, . . . , ph − δ, . . . , pj−1, 0, . . . , 0; q1, q2, . . . , qb). (32)

Using multiple times inequality (32) we get the following chain of inequalities

Ψj(p1, p2, . . . , pj−1, 0, . . . , 0; q1, q2, . . . , qb)

≤ Ψj(p1, α, p
′
3, . . . , p

′
j−1, 0, . . . , 0; q1, q2, . . . , qb)

≤ Ψj(1− α, α, 0, . . . , 0; q1, q2, . . . , qb) ,

where p′3 + . . .+ p′j−1 = 1− p1 − α and p′i ∈ [0, 1− α] for i = 3, . . . , j − 1.

Proof of Lemma 9. Using the definition of Ψj in eq. (5), inequality (26) can be restated
by only considering the terms in the summation which differ in the two sides, that is,
those corresponding to permutations σ such that 1 ∈ {σ(1), . . . , σ(j)}, σ(j + 1) = 2 and
2 ∈ {σ(1), . . . , σ(j)}, σ(j + 1) = 1 and {1, 2} ⊆ {σ(1), . . . , σ(j)}. Hence inequality (26)
becomes:

(p1q2 + p2q1)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)q2q1

∑
σ∈Sym(3,...,b)

qσ(3) · · · qσ(j)pσ(j+1)

≤ p1(q1 + q2)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1).
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That is

p2q1

∑
σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)q2q1

∑
σ∈Sym(3,...,b)

qσ(3) · · · qσ(j)pσ(j+1)

≤ p1q1

∑
σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1).

We have

p2q1

∑
σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)q2q1

∑
σ∈Sym(3,...,b)

qσ(3) · · · qσ(j)pσ(j+1)

(i)

≤ q1ε
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)q1ε
∑

σ∈Sym(3,...,b)

q2qσ(3) · · · qσ(j)

(ii)

≤ q1ε
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + jq1ε
∑

σ∈Sym(3,...,b)

qσ(3) · · · qσ(j+1)

(iii)

≤ (1− ε)q1

∑
σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)

(iiii)

≤ p1q1

∑
σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)

Inequality (i) holds because p2, p3, . . . , pb ≤ ε, inequality (ii) because q2 ≤ q3 ≤ . . . ≤ qb,
inequality (iii) due to the assumption ε ≤ 1

j+1 and inequality (iiii) since p1 ≥ 1− ε.

Proof of Lemma 10. Using the definition of Ψj in eq. (5), inequality (27) can be restated
by only considering the terms in the summation which differ in the two sides, that is,
those corresponding to permutations σ such that 1 ∈ {σ(1), . . . , σ(j)}, σ(j + 1) = 2 and
2 ∈ {σ(1), . . . , σ(j)}, σ(j + 1) = 1 and {1, 2} ⊆ {σ(1), . . . , σ(j)}. Therefore we have that

((1− ε+ δ)q2 + q1p2)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)(1− ε+ δ)p2

∑
σ∈Sym(3,...,b)

pσ(3) · · · pσ(j)qσ(j+1)

< ((1− ε)q2 + q1(p2 + δ))
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)(1− ε)(p2 + δ)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j)qσ(j+1).

That is

δ(q1 − q2)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)δ(1− ε− p2)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j)qσ(j+1) > 0.

Which is satisfied because q2 < q1, p2 < 1− ε and δ > 0.
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