

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

Generic Decoding in the Sum-Rank Metric

Puchinger, Sven; Renner, Julian; Rosenkilde, Johan

Published in:
IEEE Transactions on Information Theory

Link to article, DOI:
10.1109/TIT.2022.3167629

Publication date:
2022

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Puchinger, S., Renner, J., & Rosenkilde, J. (2022). Generic Decoding in the Sum-Rank Metric. IEEE
Transactions on Information Theory, 68(8), 5075 - 5097. https://doi.org/10.1109/TIT.2022.3167629

https://doi.org/10.1109/TIT.2022.3167629
https://orbit.dtu.dk/en/publications/0293b23f-a91c-47ba-a4c6-bd55c87a8421
https://doi.org/10.1109/TIT.2022.3167629

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , MONTH YEAR 1

Generic Decoding in the Sum-Rank Metric
Sven Puchinger, Member, IEEE, Julian Renner, Student Member, IEEE, Johan Rosenkilde

Abstract—We propose the first non-trivial generic decoding
algorithm for codes in the sum-rank metric. The new method
combines ideas of well-known generic decoders in the Hamming
and rank metric. For the same code parameters and number of
errors, the new generic decoder has a larger expected complexity
than the known generic decoders for the Hamming metric and
smaller than the known rank-metric decoders. Furthermore, we
give a formal hardness reduction, providing evidence that generic
sum-rank decoding is computationally hard. As a by-product of
the above, we solve some fundamental coding problems in the
sum-rank metric: we give an algorithm to compute the exact size
of a sphere of a given sum-rank radius, and also give an upper
bound as a closed formula; and we study erasure decoding with
respect to two different notions of support.

Index Terms—Decisional Sum-Rank Syndrome Decoding Prob-
lem, Erasure Decoding, Generic Decoding, Probabilistic Hardness
Reduction, Sum-Rank-Metric Codes

I . I N T R O D U C T I O N

THE sum-rank metric is a family of metrics which contains
both Hamming and rank metric as special cases and in

general can be seen as a mix of the two. It was introduced under
the name “extended rank metric” as a suitable distance measure
for multi-shot network coding in 2010 [2]. Since then, several
code constructions and efficient decoders have been proposed
for the metric [3]–[13]. The codes have also been studied in the
context of distributed storage [14], further aspects of network
coding [10], and space-time codes [15]. Recently, the authors
of [16] derived several fundamental results on sum-rank-metric
codes, including various bounds, MacWilliams identities, and
new code constructions.

This work was partly presented at the IEEE International Symposium on
Information Theory (ISIT), 2020 [1].

S. Puchinger is with Hensoldt Sensors GmbH, 89077 Ulm, Germany
(email: mail@svenpuchinger.de). This work was done while he was with
the Department of Applied Mathematics and Computer Science, Technical
University of Denmark (DTU), 2800 Kongens Lyngby, Denmark, and the
Department of Electrical and Computer Engineering, Technical University of
Munich, 80333 Munich, Germany.

J. Renner is with the Institute for Communications Engineering, Technical
University of Munich (TUM), Germany (e-mail: julian.renner@tum.de).

J. Rosenkilde is with GitHub Denmark Aps, 2100 Copenhagen, Denmark
(email: jsrn@jsrn.dk). Most of this work was done while he was with
the Department of Applied Mathematics and Computer Science, Technical
University of Denmark (DTU), 2800 Kongens Lyngby, Denmark.

S. Puchinger has been supported by the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant
agreement no. 713683 and by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under
the European Research Council (ERC) grant agreement no. 801434.

J. Renner has been supported by the European Union’s Horizon 2020 research
and innovation programme under the European Research Council (ERC) grant
agreement no. 801434.

Manuscript received December 11, 2020; revised October 26, 2021; accepted
April 4, 2022.

Copyright (c) 2017 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

A generic decoder is an algorithm that takes a code and a
received word as input and outputs a codeword that is close
to the received word, without any restriction on or knowledge
about the structure of the code. Designing such algorithms
has a long tradition in coding theory, both for theoretical and
practical reasons: studying the complexity of generic decoding
is essential to evaluate the practical security level of code-
based cryptosystems such as the McEliece [17], Niederreiter
[18] and Gabidulin–Paramonov–Tretjakov [19] cryptosystems,
or the numerous variants thereof. A trivial generic decoding
algorithm is to simply tabulate the input code and compare
each codeword with the received word, but there are much
more efficient approaches. For the Hamming metric, the related
decision problem is NP-hard [20], and there is also a hardness
reduction for the rank metric [21], so it is not surprising that all
known generic decoding algorithms have exponential running
time in the code parameters.

Prange [22] presented in 1962 a generic decoder for the
Hamming metric whose type is now known as information-set
decoding. The basic idea is to repeatedly choose n−k random
positions, where n is the length and k the dimension of the
code, until the chosen positions contain all the errors and the
complementary positions form an information set. This event
can be detected by re-encoding on the remaining k positions,
obtaining a codeword, and seeing that this is close to the
received word. There have been at least 27 papers improving
Prange’s algorithm (see the list in [23, Section 4.1]), which
have significantly reduced the exponent of the exponential in
the complexity expression.

In the rank metric, the first generic decoder was proposed
in 1996 [24] and since then, there have also been several
improvements [25]–[28]. One idea here is to repeatedly choose
a sub row space (or column space) of the received word until
this contains the error row space (resp. column space), and
when it does use rank-erasure decoding techniques to decode
using linear algebra. The complexity of generic decoding in the
rank metric remains significantly higher than in the Hamming
metric, which results in a substantial advantage of rank-metric-
based cryptosystems over their Hamming-metric analogs.

A. Contributions

In this paper, we propose the first non-trivial generic decoding
algorithm for arbitrary Fqm -linear codes in the sum-rank metric,
where Fqm denotes the field over which the code is defined. The
algorithm takes as input parameters which specify the metric,
a parity-check matrix of the code, the received word, and the
sum-rank weight of the additive error t. The algorithm outputs
a vector with weight at most t such that the difference of this
vector and the received word is a codeword. If t is at most
half the minimum distance of the code, the obtained vector is

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

2 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , MONTH YEAR

equal to the error of the received word. For this purpose, the
algorithm combines the sketched ideas for the Hamming and
rank metric: we first randomly choose a rank in each block
according to a carefully crafted distribution, and then for each
block choose a random row or column space of the given rank.
The process succeeds when the error row or column space in
each block is covered, whence decoding is performed using
sum-rank erasure decoding using linear algebra.

The most involved part is to design a suitable distribution
from which to draw random vectors of a given sum-rank. In
fact, we first observe that even counting the number of such
vectors is non-trivial, and so drawing uniformly at random is
also non-trivial. Our distribution is more involved than this,
since it turns out that the probability of successful decoding
depends on how the rank errors are distributed across blocks.
Roughly, the complexity of our decoding algorithm smoothly
interpolates between the basic generic decoders in the two
“extremal” cases of the sum-rank metric: Hamming and rank
metric.

Our work can be seen as a proof-of-concept that known
methods of generic decoding can be adapted to the sum-rank
metric. Though out of scope of this paper, it seems reasonable
that many improvements for generic decoding in Hamming and
rank metric can also be applied, which might further reduce
the complexity.

As related results, we study several fundamental problems
related to the sum-rank metric:
• We propose an efficient algorithm to compute the number

of vectors of a given sum-rank weight. Apart from the use
in our work, this can e.g. be used to efficiently compute the
sphere-packing and Gilbert–Varshamov bounds in [16].

• We give a simple upper bound on the size of a sum-rank-
metric sphere.

• Besides the existing notion of row support [29] and
an associated row-erasure decoder [14], we introduce a
“transposed” notion of column support and an associated
column-erasure decoder. We analyze the computational
complexity of both erasure decoders.

Finally, we generalize the formal hardness proof of [21]
from the rank metric to the sum-rank metric. We show that
if, for sufficiently large base field, the decisional sum-rank
syndrome decoding problem is in the complexity class ZPP,
then NP = ZPP. Loosely, ZPP is the set of problems which are
computationally easy if one is allowed to use randomness, and
includes the problems which are easy to solve deterministically,
i.e. P. Our result means that sum-rank syndrome decoding is
either hard (i.e. not in ZPP), or that all NP problems are easy.

B. Reader’s Guide

After giving some preliminaires in Section II, we study the
problem of counting vectors of a given sum-rank weight in
Section III. This gives a first comparative line for the generic
decoder and is also required for the formal hardness proof. In
Section IV, we introduce two notions of support in the sum-rank
metric and show how to efficiently erasure-decode w.r.t. these
types of support. Erasure decoding is an essential ingredient
of the new generic decoder. Section V presents the generic

decoder. We explain how to randomly find a super-support of
the error and show how to efficiently implement and bound
the complexity of the proposed algorithm. In Section VI, we
compare the generic decoder to other (naive) generic decoders,
as well as existing algorithms for the Hamming and rank metric.
Section VII presents the formal hardness proof.

I I . P R E L I M I N A R I E S

A. Notation

Let q be a prime power and m be a positive integer: the codes
we consider are over Fqm , the finite field with qm elements,
whose elements we often expand into Fmq vectors. For r ∈ Z>0

and a fixed basis of Fqm over Fq , we define the mapping

extrq,m : Frqm 7→ Fm×rq ,

x 7→X,

where the i-th column of X is the expansion of xi in the
fixed basis over Fq. We use the big-O notation family to
state asymptotic costs of algorithms, and O∼(·), which neglects
logarithmic terms in the input parameter. For a finite set S,
we denote by s

$←− S the operation of drawing uniformly at
random an element s from S.

B. Sum-Rank Metric

Throughout the paper, n is the length of the studied codes,
and ` is a blocking parameter satisfying ` | n. The length of
each block is η := n/`, and we let µ := min{η,m}. For a
vector x ∈ Fηqm , we define rkFq (x) := dimFq 〈x1, . . . , xη〉Fq =
rkFq (extηq,m(x)). Obviously, rkFq (x) ≤ µ. The sum-rank
metric is defined as follows.

Definition 1. The (`-)sum-rank weight is defined as

wtSR,` : Fnqm → Z≥0,
x 7→

∑`
i=1 rkFq (xi),

where we write x =
[
x1|x2| . . . |x`

]
with xi ∈ Fηqm . We call

[rkFq (x1), . . . , rkFq (x`)] ∈ {0, . . . , µ}`

the weight decomposition of x. Furthermore, the (`-)sum-rank
distance is defined as

dSR,` : Fnqm × Fnqm → Z≥0, [x,x′] 7→ wtSR,`(x− x′).

The family of sum-rank metrics includes two well-known
metrics as extremal cases: For ` = 1, it coincides with the rank
metric, wtR, and for ` = n, it is the Hamming metric, wtH. In
between, we have wtR(x) ≤ wtSR,`(x) ≤ min

{
µ`, wtH(x)

}
for x ∈ Fnqm .

Remark 1. Some results in this paper can be generalized in
a relatively straightforward way to the sum-rank metric with
varying block size (i.e., subblocks of x are of the form xi ∈ Fηiqm
for positive integers η1, . . . , η` with

∑`
i=1 ηi = n). We decided

to present only the constant block size case (ηi = η for all i)
to avoid an even more technical presentation.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

PUCHINGER et al.: GENERIC DECODING IN THE SUM-RANK METRIC 3

C. Gaussian Binomial and Number of Matrices

For non-negative integers a and b, the Gaussian binomial[
a
b

]
q

is defined by the number of b-dimensional subspaces of
Faq . We have [

a

b

]
q

=
b∏
i=1

qa−b+i − 1

qi − 1

and the bounds [30]

q(a−b)b ≤
[
a
b

]
q
≤ γqq(a−b)b, (1)

where

γq :=
∞∏
i=1

(1− q−i)−1. (2)

Note that γq is monotonically decreasing in q with a limit of
1, and e.g. γ2 ≈ 3.463, γ3 ≈ 1.785, and γ4 ≈ 1.452. We let
NMq(a, b, i) denote the number of a× b matrices over Fq of
rank exactly i, for 0 ≤ i ≤ min{a, b}. We have [31]:

NMq(a, b, i) =
i−1∏
j=0

(qa−qj)(qb−qj)
qi−qj ≤ 4qi(a+b)−i

2

. (3)

D. Weight Decompositions and Partitions

For a non-negative integer t ≤ `µ, we define the set

Tt,`,µ :=

{
t ∈ {0, . . . , µ}` :

∑̀
i=1

ti = t

}
,

which contains all possible weight decompositions of a vector
with `-sum-rank weight t.

The set Tt,`,µ has also a combinatorial interpretation: its
elements correspond exactly to the ordered partitions of the
integer t with part size at most µ and number of parts at most
`. Hence, its cardinality is the t-th coefficient of the generating
polynomial1

p(`,µ)(X) =

(
µ∑
i=0

Xi

)`
,

i.e.,

|Tt,`,µ| = p
(`,µ)
t =

b t
µ+1 c∑
i=0

(−1)i
(
`

i

)(
t+ `− 1− (µ+ 1)i

`− 1

)
.

In particular, |Tt,`,µ| can be computed efficiently, and we have
the upper bound

|Tt,`,µ| ≤
(
`+ t− 1

`− 1

)
.

Depending on the relative size of ` and µ, the cardinality |Tt,`,µ|
may grow super-polynomially in t.

1We would like to thank Cornelia Ott for deriving this closed-form expression
for |Tt,`,µ|.

E. Linear Codes

Throughout this paper, we consider Fqm-linear codes. An
Fqm-linear code C over Fqm of dimension k and length n is
an Fqm-linear k-dimensional subspace of Fnqm , and we write
C[n, k]Fqm . The minimum (`-)sum-rank distance of C is given
by

d = min
c,d∈C
c6=d

{dSR,`(c,d)}.

If d is known, we call the code C an [n, k, d]Fqm code. A
matrix G ∈ Fk×nqm is a generator matrix of C if and only if
its rows form a basis of C. Furthermore, a parity-check matrix
H ∈ F(n−k)×n

qm of C is matrix whose rows form a basis of the
right kernel of G.

In this paper, we aim at solving the following problem for
any given code C:

Problem 2 (Generic Sum-Rank-Metric Decoding).
Given:
• Parameters q,m, k, n, `, t with ` | n and 0 ≤ t ≤

min{n,m}`
• Parity-check matrix H ∈ F(n−k)×n

qm of an Fqm-linear
[n, k]Fqm code C

• Received vector r = c + e ∈ Fnqm , where c ∈ C and
wtSR,`(e) = t

Objective: Find a vector e′ with wtSR,`(e
′) ≤ t such that

r − e′ ∈ C.

Remark 3. We formulate Problem 2 such that the sum-rank
weight of the additive error is known and at least one solution
to the problem exists. This results from the fact that this is true
for most of the applications of generic decoding algorithms.
For instance in the code-based encryption schemes BIKE [32],
HQC [33], ROLLO [34], RQC [35], and ClassicMcEliece [36],
whose security relies on generic decoding in either the Ham-
ming or the rank metric (all systems reached at least the second
round of the NIST post-quantum standardization process [37]).

I I I . C O U N T I N G E R R O R V E C T O R S

As the generic decoding problem can be solved by brute-
forcing through all vectors of a given sum-rank weight, we are
interested in finding the number of such vectors. The question
of counting is also related to explicitly writing down a list of
such vectors (hence, how to realize this naive generic decoder)
and provides a comparative line for the complexity of our new
generic decoder that we present in the remainder of the paper.
In the extreme cases of the Hamming and rank metric, simple
closed-form expressions are easy to obtain. The question seems
more involved for the general sum-rank metric.

We denote by Nq,η,m(t, `) the number of vectors in Fη`qm of
`-sum- rank weight exactly t ≤ µ`. It is easy to see that we
have

Nq,η,m(t, `) =
∑

t∈Tt,`,µ

∏̀
i=1

NMq(m, η, ti).

However, the number of terms in this formula is |Tt,`,µ| and
it is not obvious how the sum can be computed efficiently.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

4 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , MONTH YEAR

For this reason, we propose an efficient dynamic programming
routine to compute the number. The method is based on the
following lemma and outlined in Algorithm 1 below; note that
q, η, and m remain constant throughout the recursion.

Lemma 4. Nq,η,m(t, `)= 0 for t > µ`. Otherwise:

Nq,η,m(t, `)=


NMq(m, η, t), if ` = 1,
min{η,m,t}∑

t′=0

NMq(m, η, t
′)

· Nq,η,m(t− t′, `− 1), if ` > 1.

Proof. The first claim is obvious since each of the ` blocks can
have at most rank weight µ. For ` = 1, the formula is simply
the number of m× η matrices of rank t. For larger `, we sum
up over the number of possibilities to choose the rank weight
t′ of the first block multiplied with the number of sum-rank
weight words in the remaining `− 1 blocks.

We also give a simple upper bound on Nq,η,m(t, `), which
we use for bounding the complexity of Algorithm 1, as well
as for proving the formal hardness of generic decoding in
Section VII.

Theorem 5. For ` > 1 and t ≤ µ`, the number of vectors in
Fη`qm of `-sum rank weight t can be bounded by

Nq,η,m(t, `) ≤ γ`q
(
`+ t− 1

`− 1

)
qt(m+η− t`),

where γq ≤ 3.5 is given in (2).

Proof. By definition,

Nq,η,m(t, `) =
∑

t∈Tt,`,µ

∏̀
i=1

NMq(m, η, ti)

≤ |Tt,`,µ| max
t∈Tt,`,µ

{∏̀
i=1

NMq(m, η, ti)

}

≤
(
`+ t− 1

`− 1

)
γ`qq

maxt∈Tt,`,µ

{∑`
i=1 ti(m+η−ti)

}
,

where the latter inequality follows from |Tt,`,µ| ≤
(
`+t−1
`−1

)
and

NMq(m, η, ti) ≤ γqqti(m+η−ti). Thus we should upper-bound
maxt∈Tt,`,µ

{∑`
i=1 ti(m + η − ti)

}
subject to

∑`
i=1 ti = t,

which simplifies to maximising

t(m+ η)−
∑̀
i=1

t2i .

By Jensen’s inequality, this is upper-bounded by choosing ti =
t/` for all i, i.e.

max
t∈Tt,`,µ

{∑̀
i=1

ti(m+ η − ti)

}
≤ t(m+ η)− t2/` .

Fig. 1 shows example values of Nq,η,m(t, `) and the bound
in Theorem 5 for different divisors ` of a fixed length n. It
seems that the bound is quite tight for most values of `, and
only significantly differs for ` close to n. This deviation is due

to the factor γ`q , which is large for these values of `, and which
is due to a relatively bad bound on the number of matrices.
Note that for ` = n, we know better bounds on Nq,η,m(t, `)
from the Hamming metric.

1 2 3 4 5 6 10 12 15 20 30 60
400

500

600

700

800

900

1,000

` (axis not linear)

Exact number log2(Nq,η,m(t, `))

Upper bound: log2

((
`+t−1
`−1

)
3.5`qt(m+η− t`)

)

Figure 1. Comparison of the exact number of vectors of sum-rank weight
t = 10 and the derived upper bound for q = 2, m = 40, n = 60 as a function
of `.

Algorithm 1: Compute Nq,η,m(t, `)

Input : Prime power q and η,m, `, t ∈ Z≥0 such that
0 < t ≤ µ` and µ := min{η,m}

Output : Number Nq,η,m(t, `) of vectors in Fη`qm of
`-sum-rank weight t

1 Initialize table of integers {N(t′, `′) = 0}`
′=1,...,`
t′=0,...,t

2 for t′ = 0, . . . , t do
3 N(t′, 1)← NMq(m, η, t

′)

4 for `′ = 2, . . . , ` do
5 for t′ = 0, . . . , t do
6 N(t′, `′)←

min{µ,t′}∑
t′′=0

NMq(m, η, t
′′)N(t− t′′, `′ − 1)

7 return N(t, `)

Theorem 6. Algorithm 1 is correct and has bit complexity

O∼
(
`2t2 + `t3(m+ η) log(q)

)
.

Proof. The algorithm computes a table that fulfills N(t′, `′) =
Nq,η,m(t′, `′) for all t′ = 0, . . . , t and `′ = 1, . . . , ` using the
recursive formula in Lemma 4. This implies the correctness.

Complexity-wise, the algorithm performs `t2 integer mul-
tiplications, where the size of the integers are such that they
impact performance. An upper bound is given by

Nq,η,m(t, `) ≤
(
`+ t− 1

`− 1

)
γ`qq

t(m+η− t`)

≤
(
e `+t−1`−1

)`−1
γ`qq

t(m+η− t`) (4)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

PUCHINGER et al.: GENERIC DECODING IN THE SUM-RANK METRIC 5

where the first inequality follows from Theorem 5, the second
inequality follows from an upper bound on binomial coefficients,
and e is Euler’s constant. Since integer multiplication can be
implemented with quasi-linear bit operations in the bit size of
the involved integers [38], each multiplication costs at most

O∼
(

(`− 1) log

(
eγq

`+ t− 1

`− 1

)
+ t(m+ η − t

`) log(q)

)
⊆ O∼

(
`+ t(m+ η − t

`) log(q)
)

⊆ O∼
(
`+ t(m+ η) log(q).

Corollary 7. There is a deterministic algorithm that solves
Problem 2 using at most Werrors operations in Fq , where

Werrors ∈ O
(
n(n− k)m2

(
`+t−1
`−1

)
γ`qq

t(m+η− t`)
)
. (5)

Proof. Algorithm 1 can be easily adapted to create a list of
all errors of sum-rank weight t: instead of storing the number
of vectors in the table N(·, ·), we store lists of the respective
vectors. By brute-forcing the overall list and checking whether
the received word minus each error is a codeword (this costs at
most O(n(n−k)m2) operations over Fq . Notably, the constant
in the O notation is small.), we obtain a generic decoder with
complexity

O
(
n(n− k)m2Nq,η,m(t, `)

)
≤ O

(
n(n− k)m2

(
`+t−1
`−1

)
γ`qq

t(m+η− t`)
)
,

using (4) in the proof of Theorem 6.

The binomial in the expression can be simplified, depending
on the relation between t and `: for instance, since t ≤ `µ,
then t

`−1 ≤ 2µ, and therefore(
`+t−1
`−1

)
≤
(
e `+t−1`−1

)`−1
∈ O

([
e(2µ+ 1)

]`)
,

where e is Euler’s constant.

Remark 8. The recursion in Lemma 4 can be turned into an
efficient algorithm to draw uniformly at random from the set
of vectors of sum-rank weight t, see Section A.

Remark 9. In [16], several fundamental bounds of sum-rank-
metric codes are derived. To evaluate two of their bounds, the
sphere-packing and Gilbert–Varshamov bound, one needs to
efficiently compute the volume of a ball of given sum-rank
radius, but this is not addressed in [16]. Algorithm 1 (and
a straightforward variant thereof for variable block size and
extension degree in each block) provides an efficient method
to do this. Furthermore, the upper bound in Theorem 5 allows
a significant simplification of their Gilbert–Varshamov bound,
though we have not investigated how much weaker it becomes.

I V. E R A S U R E D E C O D I N G A N D S U P P O R T I N T H E
S U M - R A N K M E T R I C

In Section V, we will present a new generic decoding
algorithm for the sum-rank metric. The idea is similar to the
generic decoders in the Hamming and rank metric: first we
find the “support” of an error (e.g., the error positions in the

Hamming metric) in a randomized fashion and second we
compute the full error by erasure decoding (e.g., computing
the error values after having found the error positions).

In this section, we therefore study two notions of support
in the sum-rank metric: row and column support. We describe
erasure decoding w.r.t. these two notions, i.e., we explain under
which conditions and in which complexity we can uniquely
recover an error from a received word given its support. We
will see in the next section that the two notions of support are
advantageous on different parameters: If η ≤ m, our generic
decoder is faster if we aim at finding a row support, and for
η ≥ m, it is faster to find a column support.

The notion of row support was already introduced in [29]
in a different context. From [14, Corollary 1], one can easily
derive that erasure decoding w.r.t. this support is unique if the
support weight is smaller than the minimum distance. For the
row support, our contributions are hence an explicit description
of an erasure decoder and a complexity bound. We are not aware
of previous work on the column support or erasure decoding
thereof.

A. Two Notions of Support

The following lemma gives rise to two notions of “support”
in the sum-rank metric, which we state in Definition 2 below.

Lemma 10. Let e ∈ Fnqm have `-sum-rank weight t and let t
be its weight decomposition. Then there are vectors

ai ∈ Ftiqm , rkFq (ai) = ti, for i = 1, . . . , `,

as well as matrices over the sub-field Fq:

Bi ∈ Fti×ηq , rkFq (Bi) = ti, for i = 1, . . . , `,

such that

e =

=:a∈ Ftqm︷ ︸︸ ︷[
a1 a2 a3 . . . a`

]
·

=:B ∈ Ft×nq︷ ︸︸ ︷
B1 0 0 . . . 0
0 B2 0 . . . 0
0 0 B3 . . . 0
0 0 0 . . . B`

 .
Furthermore, the decomposition is unique up to elementary Fq-
row operations on the matrices Bi. In particular, the Fq-row
spaces of the matrices Bi, as well as the Fq-column space of
exttiq,m(ai), are uniquely determined by e.

Proof. By basic linear algebra, see e.g. [39], there is an ai ∈
Ftiqm andBi ∈ Fti×ηq such that ei = aiBi. Also the uniqueness
up to row operations follows directly from the analogous results
in the rank metric.

Definition 2. Let e ∈ Fnqm be of sum-rank weight t.
• Row Support: The row support of e is defined as the

product of subspaces

E(R)e := E(R)1 × E(R)2 × · · · × E(R)` ,

where E(R)i ⊆ Fηq is the Fq-row space of Bi ∈ Fti×ηq as
in Lemma 10. A product

F (R) := F (R)
1 ×F (R)

2 × · · · × F (R)
`

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

6 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , MONTH YEAR

of subspaces F (R)
i ⊆ Fηq is called a row super-support of

e, denoted by E(R)e ⊆ F (R), if E(R)i ⊆ F (R)
i for all i.

• Column Support: The column support of e is defined by

E(C)e := E(C)1 × E(C)2 × · · · × E(C)` ,

where E(C)i ⊆ Fmq is the column space of exttiq,m(ai) ∈
Fm×tiq as in Lemma 10. A column super-support F (C) ⊇
E(C)e is defined analogously to the row case.

If it is clear from the context that we mean the row or column
support, we will simply write Ee, F , and Ee ⊆ F , and omit
the prefixes “row” and “column” to simplify notation.

Remark 11. It is easily seen that Definition 2 specializes the
usual notions of support for Hamming metric when ` = n, and
the row and column support, respectively, in the rank metric
for ` = 1.

The following notation will be useful in the next section.

Definition 3. Let ζ be a positive integer and 0 ≤ s ≤ `ζ . For
s ∈ Ts,`,ζ , we define the set

Ξq,ζ(s) :=
{
F =F1 × · · · × F` :

Fi is an si-dimensional subspace of Fζq
}
.

For any F ∈ Ξq,ζ(s), we say that its weight decomposition is
s and its weight is s.

B. Erasure Decoding

The following theorem generalizes the classical Hamming
metric statement that d− 1 is the maximal number of linearly
independent columns, as well as the analogous statement in
rank metric [39, Theorem 1]:

Lemma 12. Let H ∈ F(n−k)×n
qm be a parity-check matrix of

a code C[n, k]Fqm . Define for any integer 0 ≤ t ≤ n the set

B`,t :=



B1 0 0 . . . 0
0 B2 0 . . . 0
0 0 B3 . . . 0
0 0 0 . . . B`

 ∈ Ft×nq :

Bi ∈ Fti×(n/`)q , rk(Bi) = ti,
∑̀
i=1

ti = t

}
.

Then, C has minimum `-sum-rank distance d if and only if
• we have rkFqm

(
HB>

)
= d− 1 for any B ∈ B`,d−1 and

• we have rkFqm
(
HB>

)
< d for at least one B ∈ B`,d.

Proof. The proof follows by the decomposition of words of
a given `-sum-rank weight in Lemma 10, together with the
definition of the minimum sum-rank distance, i.e., that Hx> 6=
0 for any word of wtSR,`(x) = d− 1 and there is at least one
x ∈ Fnqm with wtSR,`(x) = d and Hx> = 0.

Lemma 12 implies the following statement about erasure
decoding w.r.t. the row support in the sum-rank metric. The
uniqueness of the recovered codeword can also be derived from
[14, Corollary 1].

Theorem 13 (Column Erasure Decoding). Let r = c+e ∈ Fnqm
be a received word, where c is an unknown codeword of a
code with minimum sum-rank distance d and e is an unknown
error of sum-rank weight at most d − 1. If we know a row
super-support F = F (C) of e of weight at most d− 1, then we
can uniquely recover c from r with complexity O((n−k)3m2)
operations over Fq .

Proof. It follows from Lemma 10 that e can be written as aB,
where B is a block-diagonal matrix containing bases of the
super-support entries Fi. Let H be a parity-check matrix of the
given code C of minimum sum-rank distance d. Since F has
weight t ≤ d−1, by Lemma 12, the matrix HB> ∈ F(n−k)×t

qm

has Fqm -rank t. Hence, the linear system

Hr> = He> = (HB>)a>,

where a is unknown, and r, H , and B are known, has a
unique solution a and we can uniquely determine a, e, and
thus c using linear-algebraic operations. Using elementary
matrix multiplication, Gaussian elimination, and polynomial
multiplication algorithms, the involved operations have the fol-
lowing complexities: Multiplying HB> costs O((n− k)sηm)
operations in Fq since each row of B has at most η non-zero
entries. The only remaining step is solving the linear system(
HB>

)
a> = s>, where s is the syndrome of the received

word. This costs O(s2(n− k)) operations over Fqm , and any
operation in Fqm costs again O(m2) operations in Fq .

Similarly, we can recover a codeword from the received word
and a column super-support of the error.

Theorem 14 (Row Erasure Decoding). Let r = c+ e ∈ Fnqm
be a received word, where c is an unknown codeword of a
code C with minimum distance d and parity check matrix H ∈
F(n−k)×n
qm . Further e is an unknown error of sum-rank weight
t < d. If we know a column super-support of dimension t′ ≤
d− 1, then we can uniquely recover c from r with complexity
O((n− k)3m3) in operations over Fq

Proof. Let H = [H1, . . . ,H`], where Hi ∈ F(n−k)×η
qm . Then,

using the same notation as in Theorem 13, the syndrome is
equal to

s> = HB>a> =
∑̀
i=1

HiB
>
i a
>
i =

∑̀
i=1

HiB̂
>
i â
>
i ,

where â = [â1, . . . , â`] ∈ Ft′qm is a basis of the known column
super-support (more precisely, the columns of exttiq,m(âi) form
a basis of the i-th constituent subspace of the super-support)
of the error and B̂i ∈ Ft

′
i×η
q . To perform erasure decoding, we

solve the latter system of equations for the ηt′ unknown entries
of B̂1, . . . , B̂` over Fq . The system over Fq can be written as

s>ext = Ĥextb̂
>,

where sext ∈ F(n−k)m
q is the expanded syndrome and the matrix

Ĥext ∈ Fm(n−k)×ηt′
q depends only on H and â. Further, the

vector b̂ is defined as

b̂ := [B̂111, . . . , B̂`t`η],

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

PUCHINGER et al.: GENERIC DECODING IN THE SUM-RANK METRIC 7

where B̂ijr denotes the entry in the j-th row and r-th column
of the matrix B̂i.

The system has a unique solution if and only if rk(Ĥext) =
ηt′. To see that this is always the case, suppose s>ext =
Ĥextb̂

> = 0 and rk(Ĥext) < ηt′. Then, there exists a vector
b̂ 6= 0 such that Ĥextb̂

> = H(âB̂)> = 0 which means
âB̂ ∈ C \ {0}. Since wtSR,`(âB̂) = t′ < d, this is a
contradiction.

The heaviest step is to solve an m(n−k)×ηt′ linear system
over Fq , where ηt′ ≤ m(n−k). This can be done in O(m3(n−
k)3) operations over Fq .

Remark 15. As we consider Fqm-linear codes in this paper,
it is necessary to treat row and column sum-rank supports
separately. However, in case Fq-linear or non-linear codes are
considered, this distinction can be neglected since transposition
preserves Fq-linearity, and therefore, the column support can
be thought of as the row support, and vice versa. Note that
the presented algorithm can be adapted to Fq-linear codes if
an erasure decoder of this code is known. However, deriving
an erasure decoder for Fq-linear codes is outside the scope of
this paper.

V. T H E G E N E R I C D E C O D E R

We have seen in the previous section that we can uniquely
recover an error e if we find a row or column super-support
F ⊇ Ee of sum-rank weight s with t ≤ s < d. In this
section, we describe a Las Vegas-type algorithm (Algorithm 2
below) that chooses row or column supports F of weight s at
random according to a designed probability mass function (here
denoted by DrawRandomSupport(s, t, ζ), see Algorithm 4 in
Section V-B). Notation-wise, there is no difference between
drawing random row or column supports if we allow the
ambient space dimension dimFis of a constituent support
subspace to be arbitrary. We denote this dimension by ζ and
set it ζ = η (i.e., Fi = F (R)

i ⊆ Fηq) in the row support case
and ζ = m (i.e., Fi = F (C)

i ⊆ Fηq) in the column support case.
We also omit the prefixes “row” or “column” in this section.
This allows us to treat both cases in a unified manner.

The main statement of this section is Theorem 16, which
bounds the expected runtime of Algorithm 2. Note that by
ignoring the cost of one iteration (i.e., setting Witer = 1)
in Theorem 16, one obtains lower and upper bounds on the
expected number of iterations that the algorithm takes until a
suitable support is found. Since the proof is rather technical,
we prove it in the course of this section. In the statement, we
use the notation Qt,`,µ, which is defined in (15) below.

Theorem 16. Let c be a codeword of a sum-rank metric code
C of minimum sum-rank distance d. Further, let e be an error of
sum-rank weight t < d. Then, Algorithm 2 with input r = c+e
and parameter s with t ≤ s < d returns an error e′ of sum-rank
weight t such that r − e′ is a codeword.

Each iteration (Lines 5–9) of Algorithm 2 costs Witer ∈
O∼
(
n3m3 log2(q)

)
bit operations. By including also the ex-

pected number of iterations, we can bound the overall expected
runtime (in bit operations) Wnew of Algorithm 2 by

W (LB)
new ≤Wnew ≤W (UB)

new ≤W (UB,simple)
new ,

Algorithm 2: Generic Sum-Rank Decoder
Input : Parameters q,m, k, n, `, t

Parity-check matrix H ∈ F(n−k)×n
qm of an

Fqm -linear [n, k]Fqm code C
Received vector r ∈ Fnqm
Integer s with t ≤ s ≤ n− k

Output : Vector e′ ∈ Fnqm such that wtSR,`(e
′) ≤ t and

r − e′ ∈ C
1 e′ ← 0
2 η ← n/`
3 ζ ← min{m, η}
4 while H(r − e′)> 6= 0 or wtSR,`(e

′)>t do
5 F ← DrawRandomSupport(s, t, ζ) (Algorithm 4 in

Section V-B)
6 if ζ = η then
7 e′ ← column erasure decoding w.r.t. F , H , r

(cf. Theorem 13)
8 else
9 e′ ← row erasure decoding w.r.t. F , H , r

(cf. Theorem 14)

10 return e′

where, for ζ = µ = min{η,m}, we define (see (15) for Qt,`,µ)

W (LB)
new := |Tt,`,µ|−1Qt,`,µ, (6)

W (UB)
new := WiterQt,`,µ and (7)

W (UB,simple)
new := Witer

(
`+t−1
`−1

)
γ`qq

t(ζ− s`), (8)

Furthermore, the more precise bounds (6) and (7) can be
computed in bit complexity O∼

(
tsn3µζ2 log2(q)

)
.

Proof. See Section V-F.

Remark 17. We can guarantee uniqueness of erasure decoding
in Algorithm 2 only for s < d, but it might work up to s =

min
{
n− k, bmη (n− k)c

}
, depending on the chosen super-

support. Most generic Hamming- and rank-metric decoding
papers use s = n− k without analyzing the erasure decoding
success probability. Since in practice, the latter probability is
high for many codes, s = min

{
n− k, bmη (n− k)c

}
is indeed

a good heuristic choice for a practical generic decoder.

A. Aim and Design of the Support Drawing Algorithm

Our aim in designing the probability distribution for drawing
a random support F of weight s is to minimize the worst-case
expected number of iterations until we find a super-support of
Ee. Since we draw random supports F until one of them is a
super-support of Ee, the expected number of required draws is
equal to the inverse of the probability that F contains Ee. As
we draw one support F per iteration, we have

max
e∈Fnqm :

wtSR,`(e)=t

E[#iterations] = max
e∈Fnqm :

wtSR,`(e)=t

{
1

Pr(Ee ⊆ F)

}
.

Our algorithm draws F in two steps: First, we choose
at random a weight decomposition s ∈ Ts,`,µ of weight s,

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

8 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , MONTH YEAR

according to a designed probability distribution p̃s. Then, we
draw the support F uniformly at random from the set Ξq,ζ(s)
of supports with weight decomposition s. The following lemma
states that the success probability of this decoder, conditioned
on a specific weight decomposition s, only depends on s and
the weight decomposition te of the error.

Lemma 18. Let e be of `-sum-rank weight t. Further, let
s ∈ Ts,`,µ and choose F uniformly at random from Ξq,ζ(s).
Then,

Pr(Ee ⊆ F | s) = %q,ζ(s, te),

where we define

%q,ζ(s, t) :=
∏̀
i=1

[
si
ti

]
q[

ζ
ti

]
q

. (9)

In particular, Pr(Ee ⊆ F | s) only depends on the decomposi-
tions s and te, and we have Pr(Ee ⊆ F | s) > 0 if and only if
s � te where � is the partial order given by coordinate-wise
comparisons.

Furthermore, we have (with 1 ≤ γq ≤ 3.5 as defined in (2))

γ−`q q−
∑`
i=1 ti(ζ−si) ≤ %q,ζ(s, t) ≤ γ`qq−

∑`
i=1 ti(ζ−si). (10)

Proof. Since F is drawn uniformly, the subspaces Fi are drawn
independently and uniformly from the set of si-dimensional
subspaces of Fζq . Hence, Pr(Ee ⊆ F | s) equals the product
of the probabilities that the i-th subspace Fi is a superspace
of Ei. This probability is given by

[
ζ−ti
si−ti

]
q

[
ζ
si

]−1
q

, where the
numerator counts the number of possibilities to expand the ti-
dimensional subspace Ei into an si-dimensional space and the
denominator gives the total number of si-dimensional subspaces
of Fζq . By properties of the Gaussian binomial coefficient, we get[
ζ−ti
si−ti

]
q

[
ζ
si

]−1
q

=
[
si
ti

]
q

[
ζ
ti

]−1
q

. The bounds immediately follow
from (1).

Lemma 18 allows us to compute the worst-case number of
iterations of the algorithm for a given probability mass function
p̃s of s by

max
e∈Fnqm :

wtSR,`(e)=t

E[#iterations] = max
t∈Tt,`,µ

 ∑
s∈Ts,`,µ

p̃s%q,ζ(s, t)

−1 .
(11)

The problem of minimizing (11) over all valid distributions
p̃s on Ts,`,µ can be formulated as a linear program and solved
numerically for small parameters `, ζ , s using standard methods.
Note that the unknowns are the p̃s ∈ [0, 1], and the number
of unknowns, |Ts,`,µ|, grows fast in `, ζ, and s. Due to this
limitation, we present a formal discussion in Appendix B of
this “optimal” choice of p̃s, and continue with a more scalable
solution.

We relax the problem of maximizing (11) as follows.
• We give a randomized mapping scompζ : Tt,`,µ → Ts,`,µ

that maximizes %q,ζ(scompζ(t, s), t) for a given t ∈ Tt,`,µ
(see Algorithm 18 and Lemma 19 below). This mapping is
randomized, i.e. for each input there are multiple possible

outputs and one is selected at random; we discuss this
further below.

• Instead of choosing a vector s ∈ Ts,`,µ directly, we first
choose a vector t ∈ Ts,`,µ at random according to a de-
signed distribution pt on Tt,`,µ, and set s← scompζ(t, s).
This means that for a fixed error e, we can bound

Pr(Ee ⊆ F) =
∑

s∈Ts,`,µ

p̃s%q,ζ(s, te)

≥ pte · %q,ζ(scompζ(te, s), te).

This bound is relatively tight for this choice of s (see
Proposition 20 below).

• Instead of minimizing (11), we minimize the following
upper bound on the worst-case expected number of itera-
tions

max
e∈Fnqm :

wtSR,`(e)=t

E[#iterations]

≤ max
t∈Tt,`,µ

[
pt · %q,ζ(scompζ(t, s), t)

]−1
, (12)

over all valid probability mass functions pt on Tt,`,µ.
This comes at the cost of a slightly smaller success probability
than the optimal choice of p̃s (cf. Section VI for a numerical
comparison), but allows us to give a support drawing strategy
that can be practically implemented and whose running time
we can bound.

Algorithm 3 formally defines the randomized mapping
scompζ and Lemma 19 proves that s = scompζ(t, s) max-
imizes %q,ζ(s, t) among all s ∈ Ts,`,µ. The randomization
in Line 6 prevents a bias in preferring certain positions
(compared to some deterministic choice), and seems to be
practically advantageous, especially for large `: in fact, for
the Hamming case with µ = 1 and n = `, then such a
randomization is essential for the efficacy of Prange’s generic
decoder (cf. Section VI-A). Our analysis, however, is not able
to take the randomness properly into account, and will depend
merely on %q,ζ,s(t), which is defined as

%q,ζ,s(t) := %q,ζ(scompζ(t, s), t) (13)

for all t ∈ Tt,`,µ and a fixed s ≥ t. Note that though scompζ
is randomized, then %q,ζ,s(t) is not.

Algorithm 3: scompζ(t, s)

Input : t ∈ Tt,`,µ and s ∈ Z with t ≤ s ≤ `µ.
Output : s ∈ Ts,`,µ

1 s = [s1, . . . , s`]← t; δ ← s− t
2 while δ > 0 do
3 J1 ←

{
i ∈ {1, . . . , n} : si 6= ζ

}
4 J2 ←

{
i ∈ J1 : ti = max

j∈J1

{
tj
}}

5 J3 ←
{
i ∈ J2 : si = min

j∈J2

{
sj
}}

6 h
$←− J3

7 sh ← sh + 1; δ ← δ − 1

8 return s

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

PUCHINGER et al.: GENERIC DECODING IN THE SUM-RANK METRIC 9

Lemma 19. Let t ∈ Tt,`,µ and let t ≤ s ≤ `µ. Then,
s = scompζ(t, s), with scompζ as in Algorithm 3, maximizes
%q,ζ(s, t), i.e.,

%q,ζ(scompζ(t, s), t) = max
s∈Ts,`,µ

%q,ζ(s, t).

Proof. As the denominator of (9) is independent of s, it suffices
to show that s = scompζ(t, s) maximizes

∏̀
i=1

[
si
ti

]
q

. (14)

for a given t. Say that we start with s = t and increase entries
of s by one until we have

∑`
i=1 si = s (note that we can

assume this since (14) is zero if si < ti for some i). We
observe that (14) is increased by a factor[

si+1
ti

]
q[

si
ti

]
q

if we increase position i of s. For si ≥ ti, we have[
si+1
ti

]
q[

si
ti

]
q

=

ti∏
µ=1

(
qsi+2−µ−1
qµ−1

)
(
qsi+1−µ−1
qµ−1

)
=

qsi+1 − 1

qsi−ti+1 − 1

For a fixed ti, the quantity qsi+1−1
qsi−ti+1−1 is monotonically decreas-

ing in si, and we have

qti <
qsi+1 − 1

qsi−ti+1 − 1
< qti+1.

It follows that the largest increase of (14) is achieved by
increasing a position i with smallest si among those positions
with largest ti. Increasing such a position in a greedy fashion
attains a global maximum since this choice will also maximize
the possible increase in the following steps. Hence, (14) is
maximized by iteratively increasing si by one such that si ≤ ζ
and

∑`
i=1 si ≤ s for some i with smallest si < ζ among

those positions that have a maximal ti. This is exactly what
scompζ(·, ·) does.

B. The Support-Drawing Algorithm

Based on the ideas presented above, Algorithm 4 outlines the
support-drawing algorithm that we propose. The probability dis-
tribution pt is chosen to minimize the bound on the worst-case
expected number of iterations in (12). The following proposition
presents bounds on the expected number of iterations. Note
that the lower and upper bound are independent of the error
and differ by only a factor |Tt,`,µ|, which is relatively small
compared to the absolute values of the bounds for not too large
`. For notational convenience, we define the following value:

Qt,`,µ :=
∑

t∈Tt,`,µ

%q,ζ,s(t)
−1. (15)

Algorithm 4: DrawRandomSupport(s, t, ζ)

Input : Integers t, s, ζ with µ ≤ ζ and t ≤ s ≤ `µ
Output :F of weight s

1 Draw t ∈ Tt,`,µ according to the distribution

pt := %q,ζ,s(t)
−1Q−1t,`,µ ∀ t ∈ Tt,`,µ,

where Q is defined as in (15)
2 s← scompζ(t, s)

3 F $←− Ξq,ζ(s)
4 return F

Proposition 20. Let e be an error of sum-rank weight t and
let s be an integer with t ≤ s ≤ `µ. If F is a super-support
that is drawn by Algorithm 4 with input t and s, then we have

|Tt,`,µ|−1Qt,`,µ ≤
1

Pr(Ee ⊆ F)
≤ Qt,`,µ ,

where Qt,`,µ is defined as in (15).

Proof. Denote by p̃s the distribution of s = scompζ(t, s),
where t is a random variable with probability mass function
pt. By (11), we have

Pr(Ee ⊆ F) =
∑

t∈Ts,`,µ

pt%q,ζ(scompζ(t, s), te)

≥ pte%q,ζ(scompζ(te, s), te)

= Q−1t,`,µ.

This proves the upper bound on Pr(Ee ⊆ F)−1. For the lower
bound, we first observe that for all t ∈ Tt,`,µ, Lemma 19 implies

%q,ζ(scompζ(t, s), te) ≤ %q,ζ(scompζ(t, s), t) = %q,ζ,s(t).

This yields

Pr(Ee ⊆ F) =
∑

t∈Ts,`,µ

pt%q,ζ(scompζ(t, s), te)

≤
∑

t∈Ts,`,µ

pt%q,ζ,s(t)

=
∑

t∈Ts,`,µ

Q−1t,`,µ = |Tt,`,µ|Q−1t,`,µ ,

which proves the claim.

At first glance, the lower and upper bounds in Proposition 20
appear infeasible to compute since the number of summands,
|Tt,`,µ|, may grow super-polynomially in t (depending on ` and
µ). Furthermore, it is at this point unclear how to efficiently
implement Line 1 of Algorithm 4. Below, we answer these two
questions, and also give a simple upper bound on Qt,`,µ.

C. A Simple Bound on the Success Probability

We start with a simple bound on Qt,`,µ from (15).

Proposition 21. For any t ≤ s ≤ `µ, we have

max
t∈Tt,`,µ

%q,ζ,s(t)
−1 ≤ γ`qqt(ζ−

s
`).

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

10 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , MONTH YEAR

In particular,

Qt,`,µ ≤
(
`+t−1
`−1

)
γ`qq

t(ζ− s`) ,

where γq ≤ 3.5 is defined as in (2).

Proof. By (10) in Lemma 18, we have

max
t∈Tt,`,µ

%q,ζ,s(t)
−1

≤γ`q max
t∈Tt,`,µ

{
q
∑`
i=1 ti(ζ−si) | s = scompζ(t, s)

}
=γ`qq

tζq−mint∈Tt,`,µ{
∑`
i=1 tisi|s=scompζ(t,s)}

We claim that the last exponent satisfies:

min
t∈Tt,`,µ

{∑̀
i=1

tisi | s = scompζ(t, s)

}
≥ ts

`
.

We will prove this by relaxing the variables to reals, and
consider only the ordered vectors t, so define the set:

T (R,ord)
t,`,µ :=

{
t ∈ R`≥0 :

∑̀
i=1

ti = t, ti ≤ µ, t1 ≥ t2 ≥ · · · ≥ t`

}

and the mapping scomp
(R)
ζ : T (R,ord)

t,`,µ → R`≥0,

t 7→
[
ζ, . . . , ζ︸ ︷︷ ︸
h times

, th+1 + ξ + 1, . . . , th+g + ξ + 1︸ ︷︷ ︸
g times

,

th+g+1 + ξ + δ, . . . , th+f + ξ + δ︸ ︷︷ ︸
f−g times

, th+f+1, . . . , t`
]
,

where

h := max
{
h′ ∈ {0, 1, . . . , `} :

h′∑
i=1

(ζ − ti) ≤ s− t, th′ > th′+1, t0 := ζ, t`+1 := −1
}
,

f := max{f ′ ∈ {1, . . . , `} : tf ′ = th+1} − h,

srem := s− t−
h∑
i=1

(ζ − ti),

ξ :=

⌊
srem

f

⌋
,

g := bsremc − ξf,

δ :=
srem − bsremc

f − g
.

Note that scomp
(R)
ζ agrees with a deterministic variant of2

scompζ on T (R,ord)
t,`,µ ∩ Z`. Since

∑`
i=1 tisi|s=scompζ(t,s)

is
independent of the ordering of the entries of t and the set

2The outputs are equal if we choose j ← min
{
j : sj = max

i : si 6=ζ
{si}

}
instead of a random choice in Line 6 of Algorithm 3. Note that in what follows
here, the choice of j is irrelevant, so we may w.l.o.g. assume that j is chosen
like this.

of sorted elements (vectors) of Tt,`,µ are subset of T (R,ord)
t,`,µ , we

have

min
t∈Tt,`,µ

{∑̀
i=1

tisi | s = scompζ(t, s)

}

≥ min
t∈T (R,ord)

t,`,µ

{∑̀
i=1

tisi | s = scomp
(R)
ζ (t, s)

}
.

For t ∈ T (R,ord)
t,`,µ and s = scomp

(R)
ζ (t, s), we have

∑̀
i=1

tisi = ζ
h∑
i=1

ti +

h+g∑
i=h+1

(ti + ξ + 1)ti+

h+f∑
i=h+g+1

(ti + ξ + δ)ti +
∑̀

i=h+f+1

t2i (16)

= ζ
h∑
i=1

ti + g(th+1 + ξ + 1)th+1+

(f − g)(th+1 + ξ + δ)th+1 +
∑̀

i=h+f+1

t2i

= ζ
h∑
i=1

ti + g(ξ + 1)th+1 + (f − g)(ξ + δ)th+1+

∑̀
i=h+1

t2i

= ζ
h∑
i=1

ti + (ξf + g︸ ︷︷ ︸
=bsremc

+ δ(f − g)︸ ︷︷ ︸
=srem−bsremc

)th+1 +
∑̀
i=h+1

t2i

= ζ

h∑
i=1

ti + sremth+1 +
∑̀
i=h+1

t2i . (17)

Since ti ≤ ti+1 + ξ+ δ ≤ ti+1 + ξ+1 ≤ ζ , it follows that (16)
is minimized by a sequence in T (R,ord)

t,`,µ with smallest-possible
h. Among these sequences with minimal h, it is minimized
by sequence with largest f . Since ti are non-increasing, these
requirements directly imply that (17) is minimized for

t =
[
t
` , . . . ,

t
`

]
,

for which we have∑̀
i=1

tisi =
t

`

∑̀
i=1

si =
ts

`
.

This proves the first claim.
We get the bound on Qt,`,µ by

Qt,`,µ =
∑

t∈Tt,`,µ

%q,ζ,s(t)
−1

≤ |Tt,`,µ| max
t∈Tt,`,µ

%q,ζ,s(t)
−1

≤
(
`+t−1
`−1

)
γ`qq

t(ζ− s`).

D. Computing Bounds on the Success Probability Efficiently

We turn to the question of computing Qt,`,µ, as in (15),
exactly. Below we give a dynamic-programming algorithm that

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

PUCHINGER et al.: GENERIC DECODING IN THE SUM-RANK METRIC 11

computes this sum efficiently using a recursion formula. The
algorithm is similar to the counting algorithm for the number
of vectors of a given sum-rank weight (Algorithm 1), with a
major complication: we have

%q,ζ,s(t)
−1 =

∏̀
i=1

[
ζ
ti

]
q[scompζ(t,s)i

ti

]
q

,

where scompζ(t, s)i (the i-th entry of the vector scompζ(t, s))
depends on the entire vector t and not only on ti. Hence, we
cannot easily split the product into a part depending only on t1
and one depending only on t2, . . . , t`. Note, however, that if t
is ordered in non-decreasing order and j is such that tj > tj+1,
then

j∏
i=1

[
scompζ(t, s)i

ti

]
q

depends only on t1, . . . , tj , and is invariant under the random-
ness of scompζ . This motivates the following statement, for
which we define the following two notions:

T (ord)
t,`,µ := {t ∈ Tt,`,µ : t1 ≥ t2 ≥ · · · ≥ t`} ,
δi(t) := |{j : tj = i}| ∀ i = 0, . . . , µ, t ∈ Tt,`,µ.

Lemma 22. For all ` ≥ 1, s ≤ `ζ, and 0 ≤ t ≤ min{s, `µ},
we have

Qt,`,µ = `! ·M(t, `, µ, s), (18)

where for any t′, `′, µ′, s′ ∈ Z≥0, we define

M(t′, `′, µ′, s′) :=
∑

t∈T (ord)

t′,`′,µ′

 µ′∏
i=0

δi(t)!

−1 `′∏
i=1

[
ζ
ti

]
q[scompζ(t,s
′)i

ti

]
q

,

for `′ ≥ 1, 0 ≤ t′ ≤ min{s′, `′µ′}, and s′ ≤ `′ζ,
M(t′, `′, µ′, s′) := 1, for `′ = t′ = s′ = 0, and
M(t′, `′, µ′, s′) := 0, else.

Furthermore, M(t′, `′, µ′, s′) fulfills the following recursive
relation.

M(t′, `′, µ′, s′) =

min{µ′,t′}∑
t1=d

t′

`′ e

max{δ : δ≤`′, t1δ≤t′}∑
δ=max{t′−`′(t1−1),1} 1

δ!

δ∏
i=1

[
ζ
t1

]
q

[scompζ([

δ times︷ ︸︸ ︷
t1, . . . , t1],min{s′−(t′−δt1),δζ})i

t1

]
q


·M
(
t′ − δt1, `′ − δ, t1 − 1, s′ −min{s′ − (t′ − δt1), δζ}

)
.

Proof. Equation (18) holds since, by definition, we have

Qt,`,µ =
∑

t∈Tt,`,µ

%q,ζ,s(t)
−1 =

∑
t∈Tt,`,µ

∏̀
i=1

[
ζ
ti

]
q[scompζ(t,s)i

ti

]
q

.

Furthermore, the term
∏`
i=1

[
ζ
ti

]
q

[scompζ(t,s)i
ti

]−1
q

is invariant
under permutations of t, so we can group these summands into
those that belong to a unique sorted vector t ∈ T (ord)

t,`,µ . The

number of these summands belonging to the same sorted t
equals the number of permutations of t, which is `!∏µ

i=0 δi(t)!
.

This proves (18).
The recursion formula is correct by the following argument.

The restrictions on the choice of t1 and δ are as follows (which
directly yield the limits of the sums):

• t1 ≤ min{t′, µ′} by definition of T (ord)
t′,`′,µ.

• t1 ≥ t′

`′ since for a given t1, the entire vector t may only
sum up to at most t1`′ (since δ ≤ `′ and ti ≤ t1). On
the other hand, the entries of the vector must sum to t′,
which is impossible for t1`′ < t′.

• 1 ≤ δ ≤ `′ since t1 may appear between 1 and `′ times.
• t1δ ≤ t′ since t sums to t′ and thus we must have t1δ ≤ t′.
• δ ≥ t′ − `′(t1 − 1) since the remaining entries of t have

values ≤ t1 − 1 and must nevertheless sum to t′. This is
only possible for (`′ − δ)(t1 − 1) ≥ t′ − t′1δ, which is
equivalent to δ ≥ t′ − `′(t1 − 1).

For fixed t1 and δ < `′, a vector t ∈ T (ord)
t′,`′,µ whose first δ

positions equal t1 and whose remaining positions are ≤ t1 − 1
can be split into two parts t =

[
t(1) | t(2)

]
, where

t(1) := [t1, . . . , t1] ∈ Zδ,
t(2) := [tδ+1, . . . , t`′] ∈ {0, . . . , t1 − 1}`

′−δ.

In particular, we have

t(2) ∈ T (ord)
t′−t1δ,`′−δ,t1−1.

Hence, we can split up the product

µ′∏
i=0

δi(t)! = δ! ·
t1−1∏
i=0

δi
(
t(2)
)
!.

Furthermore, note that by definition of scompζ , we have that[
s(1) | s(2)

]
is a valid output of scompζ(t, s

′), where

s(1) = scompζ
(
t(1),min{s′ − (t′ − δt1), δζ}

)
,

s(2) = scompζ
(
t(2), s′ −min{s′ − (t′ − δt1), δζ}

)
.

In particular, s(1) and s(2) only depend on t(1) and t(2),
respectively, and on the parameters s′, t1, and δ. Hence, we
can also split the product

`′∏
i=1

[
ζ
ti

]
q[scompζ(t,s
′)i

ti

]
q

=

 δ∏
i=1

[
ζ
t1

]
q[scompζ(t

(1),min{s′−(t′−δt1),δζ})i
t1

]
q


·

`′−δ∏
i=1

[ζ
t
(2)
i

]
q[scompζ(t

(2),s′−min{s′−(t′−δt1),δζ})i
t
(2)
i

]
q


For δ = `′, we have t = [t1, . . . , t1]. Hence, we get(

µ∏
i=0

δi(t)!

)−1 `′∏
i=1

[
ζ
ti

]
q[scompζ(t,s
′)i

ti

]
q

=


1
δ!

∏δ
i=1

[ζt1]q
[scompζ(t,s

′)i
t1

]
q

, if t′ = δt1 and s′ ≤ δζ,

0, else.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

12 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , MONTH YEAR

By definition of the base case,

M
(
t′, 0, µ′, s′

)
:=

{
1, if t′ = 0 and s′ = 0,

0, else,

we get exactly this summand for δ = `′. This proves the
recursion.

Proposition 23. If we initialize a table
{M(t′, `′, µ′, s′)}µ

′≤µ,s′≤s
t′≤t,`′≤` with M(t′, `′, µ′, s′) = −1

for all entries and call Algorithm 5 with input t, `, µ, s, then
the algorithm computes the entry M(t, `, µ, s) in

O∼
(
tsn3µζ2 log2(q)

)
,

bit operations. In particular, we can compute Qt,`,µ from (15)
in this bit complexity.

Proof. The correctness of the algorithm follows from
Lemma 22. For the complexity, we observe the following:
Lines 2–13 of the algorithm are only once called for each table
index [t′, `′, µ′, s′]. The number of table entries, and thus the
calls of these expensive lines, is in O(tsµ`) ⊆ O(tsn). It is neg-
ligible compared to the entire recursive call of the algorithm to

pre-compute the products δ!−1·
[
ζ
t1

]δ
q
·
∏δ
i=1

[
s(1)([t1,...,t1],s

′)i
t1

]−1
q

for all 0 ≤ δ ≤ `, 0 ≤ t1 ≤ min{t, µ}, and t1δ ≤ s′ ≤ ζδ.
The bottleneck of the algorithm is Line 10, where we multiply

two rational numbers and add the result to another rational
number. All these rational numbers are in ι−1Z, where

ι = `!

(
µ∏

t′=0

ζ∏
s′=t′

[
s′

t′

]
q

)`
≤ `!4`µζq

∑µ

t′=0

∑ζ

s′=t′ t
′(s′−t′)

≤ 2` log2(`)+2`µζ+`µ2ζ2 log2(q).

Hence, we can implement all operations in ι−1Z, and operations
have a quasi-linear cost [38] in the size of the numerators plus
the size of ι. Furthermore, the numerator is upper bounded
by ιQt,`,µ, which is again upper bounded by the bound in
Proposition 21. Thus, Line 10 costs

O∼
(
t(ζ− s

`) log2(q)+(`−1) log2(t+`−1) + `µ2ζ2 log2(q)
)

⊆ O∼(nµζ2 log2(q))

bit operations.
Since Line 10 is called O(`µ) ⊆ O(n) times for each table

entry, the overall bit complexity of the entire recursion is

O∼
(
tsn3µζ2 log2(q)

)
,

which proves the claim.

E. Efficiently Drawing Decomposition Vectors

With the help of Algorithm 5 and a bit of extra work, we
can draw efficiently from the distribution pt as in Algorithm 4.
The idea of the method (see Algorithm 6 below) is based on
enumerative encoding [40]. To formalize the idea, we need the
following notation. We denote by t ≤ t′ for t, t′ ∈ Z` the

lexicographical (total) ordering on Z`. For t ∈ Z`, t′ ∈ Z`′ ,
and i ≤ min{`, `′}, we define the preorder t ≤i t′ as

[t1, . . . , ti] ≤ [t′1, . . . , t
′
i].

Further, we write t =i t
′ if t ≤i t′ and t′ ≤i t, as well as

t <i t
′ if t ≤i t′, but not t =i t

′. The following lemma shows
how to compute the sum∑

t̃∈T (ord)
t,`,µ

t̃=`′t

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)
−1

efficiently, where we only sum over those vectors t̃ ∈ T (ord)
t,`,µ

who have a given prefix t of length `′. This is a key ingredient
for the enumerative-coding-based drawing method presented
below.

Lemma 24. Let 1 ≤ `′ ≤ ` and t ∈ T (ord)
t,`′,µ. Denote by t`′ the

`′-th entry of t and by 1 ≤ δ ≤ `′ the number of times t`′
occurs in t. Thus, we can split t into

t :=
[
t(1), t(2)

]
,

where t(1) ∈ {t`′+1, . . . , µ}`′−δ and t(2) = [t`′ , . . . , t`′] ∈ Zδ .
Write t(1) :=

∑`′−δ
i=1 t

(1)
i and s(1) := min{s−t+t(1), (`′−δ)ζ}.

Then,∑
t̃∈T (ord)

t,`,µ

t̃=`′t

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)
−1

= `!∏µ
i=t

`′+1 δi(t(1))!

`′−δ∏
j=1

[ζ
t
(1)
i

]
q[scompζ(t

(1),s(1))i

t
(1)
i

]
q



·
max{δ′ : δ′≤`−`′+δ, t`′δ

′≤t−t(1)}∑
δ′=max{t−t(1)−(t`′−1)(`−`′+δ),δ}

 1
δ′!

δ′∏
i=1

[
ζ
t`′

]
q

[scompζ([

δ′ times︷ ︸︸ ︷
t`′ , . . . , t`′],s(2)(δ′))i

t`′

]
q


·M
(
t−δ′t`′−t(1), `−(`′−δ+δ′), t`′−1, s−s(1)−s(2)(δ′)

)
,

where s(2)(δ′) := min{s − s(1) − (t − δ′t`′ − t(1)), δ′ζ} and
M(t′, `′, µ′, s′)} is defined as in Lemma 22.

In particular, if the table {M(t′, `′, µ′, s′)}µ
′≤µ,s′≤s
t′≤t,`′≤` is pre-

computed, we can compute
∑

t̃∈T (ord)
t,`,µ

t̃=`′t

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)
−1 in

O∼(n2ζ2 log2(q))

bit operations.

Proof. The statement follows by the same arguments as the
recursive formula for M(·, ·, ·, ·) in Lemma 22. The only
difference is that we split the sum (only) into those subsets of

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

PUCHINGER et al.: GENERIC DECODING IN THE SUM-RANK METRIC 13

Algorithm 5: Fill table {M(t′, `′, µ′, s′)}µ
′≤µ,s′≤s
t′≤t,`′≤`

Input : Integers t′ ≤ t, `′ ≤ `, µ′ ≤ µ, s′ ≤ s, global table {M(t′, `′, µ′, s′)}µ
′≤µ,s′≤s
t′≤t,`′≤` , global parameters q, ζ

Output :M(t′, `′, µ′, s′)
1 if M(t′, `′, µ′, s′) = −1 then
2 if `′ = t′ = s′ = 0 then
3 res← 1

4 else
5 if `′ ≥ 1 and 0 ≤ t′ ≤ min{s′, `′µ′} and s′ ≤ `′ζ then
6 res← 0

7 for t1 = d t
′

`′ e, . . . ,min{µ′, t′} do
8 for δ = max{t′ − `′(t1 + 1), 1}, . . . ,max{δ : δ ≤ `′, t1δ ≤ t′} do
9 s(1) ← scompζ([t1, . . . , t1],min{s′ − (t′ − δt1), δζ})

10 res← res+ M
(
t′ − δt1, `′ − δ, t1 − 1, s′ −min{s′ − (t′ − δt1), δζ}

)
· δ!−1 ·

[
ζ
t1

]δ
q
·
∏δ
i=1

[
s
(1)
i
t1

]−1
q

11 else
12 res← 0

13 M(t′, `′, µ′, s′)← res

14 return M(t′, `′, µ′, s′)

{t̃ ∈ T (ord)
t,`,µ : t̃ =`′ t} in which the value t`′ occurs exactly the

same number of times δ′. Since we know that t`′ is contained
δ times in the last positions of the prefix vector, it must occur
δ′ ≥ δ times in t̃. Furthermore, δ′ must be chosen large enough
such that

t− t(1) ≤ t`′δ′ + (t`′ − 1)(`− (`′ − δ + δ′)),

which gives the other lower bound (and sum limit) on δ′. On
the other hand, we must have δ′ ≤ `− `′ + δ since the length
of t̃ is ` and the length of t(1) is `′ − δ. After subtracting the
sum of the entries > t`′ of the prefix vector, the remaining part
of the vector t̃ can only sum up to t− t(1). In particular, we
must have t`′δ′ ≤ t − t(1). This gives the upper bound (and
sum limit) on δ′.

The formula follows by splitting the product (w.r.t. j) in

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)
−1 = `!∏µ

i=0 δi(t̃)!

∏̀
j=1

[ζ
t̃j

]
q[scompζ(t̃,s)j

t̃j

]
q

into the following subsets of positions j:
• the positions of the prefix vector with values tj > t`′ ,
• the part of t̃ in which t`′ is repeated δ′ times, and
• the remaining part of t̃.

The sum over the latter part is given by M
(
t− δ′t`′ − t(1), `−

`′+δ′−δ, t`′−1, s−s(1)−s(2)(δ′)
})

since this part of t̃ must

sum up to t−δ′t`′−t(1), it is a vector of length `−(`′−δ+δ′),
we have t̃i < t`′ for these entries of t̃. The choices of s(1),
s(2)(δ′), and s− s(1) − s(2)(δ′) are to ensure that

[
scompζ(t

(1), s(1)) | scompζ([

δ′ times︷ ︸︸ ︷
t`′ , . . . , t`′], s

(2)(δ′)) |

scompζ([t̃`′−δ+δ′+1, . . . , t̃`], s− s(1) − s(2)(δ′)
]

is a valid output of scompζ(t̃, s) (i.e., independent of scompζ’s
randomness, we can split the product

∏`
i=1

[scompζ(t̃,s)i
ti

]
q

into
the given three parts).

Complexity-wise, the bottleneck are at most ` multiplications
and additions of rational numbers in ι−1Z, where ι is the same
as in the proof of Proposition 23. Also the numerators of all
involved rational numbers are bounded as in Proposition 23.
Hence, computing

∑
t̃∈T (ord)

t,`,µ,t̃=`′t
`!∏µ

i=0 δi(t̃)!
%q,ζ,s(t̃)

−1 costs

O∼(`nµζ2 log2(q)) ⊆ O∼(n2ζ2 log2(q)) bit operations.

Proposition 25. Algorithm 6 is correct and has complexity

O∼(n3ζ2 log2(q))

bit operations. In particular, Line 1 of Algorithm 4 can be
implemented with this complexity.

Proof. Since pt′ = pt′′ for two vectors t′ and t′′ that are
permutationally equivalent, we can simply draw a sorted vector
from T (ord)

t,`,µ using the probability mass function

p̃t′ :=

`!∏µ
i=0 δi(t̃)!

%q,ζ(t
′)−1∑

t̃∈Tt,`,µ %q,ζ,s(t̃)
−1

=

`!∏µ
i=0 δi(t̃)!

%q,ζ(t
′)−1∑

t̃∈T (ord)
t,`,µ

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)−1

for all t′ ∈ T (ord)
t,`,µ (recall that `!∏µ

i=0 δi(t̃)!
is the number of

permutations of the vector t′). This is done in Lines 1–7.
Subsequently, we randomly permute this vector and obtain
a vector that is drawn according to the distribution pt′ (see
Lines 8 and 9).

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

14 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , MONTH YEAR

Algorithm 6: Draw Efficiently from Distribution pt as
in Algorithm 4
Input : Parameters q, ζ, t, s, `, µ, precomputed table

{M(t′, `′, µ′, s′)}µ
′≤µ,s′≤s
t′≤t,`′≤`

Output : t ∈ Tt,`,µ, drawn at random from the
distribution (Qt,`,µ as in (15))

pt = %q,ζ,s(t)
−1Q−1t,`,µ ∀ t′ ∈ Tt,`,µ.

1 ι← `!
(∏µ

t′=0

∏ζ
s′=t′

[
s′

t′

]
q

)`
2 x← uniformly at random from the set of non-negative

integers < ι
∑

t̃∈Tt,`,µ %q,ζ,s(t̃)
−1

3 x← x/ι
4 for i = 1, . . . , ` do
5 ti ←

max

t
′′ :
t′′−1∑
t′=0

∑
t̃∈T (ord)

t,`,µ

t̃=i[t1,...,ti−1,t
′]

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)
−1≤x


6 x← x−

ti−1∑
t′=0

∑
t̃∈T (ord)

t,`,µ

t̃=i[t1,...,ti]

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)
−1

7 t← [t1, . . . , t`]
8 π ← permutation drawn uniformly from the

permutations of a multiset with set multiplicities
δ0(t), δ1(t), . . . , δµ(t)

9 return π(t)

The idea of Lines 1–7 is to partition the interval

I :=

0,
∑

t̃∈Tt,`,µ

%q,ζ,s(t̃)
−1


=

0,
∑

t̃∈T (ord)
t,`,µ

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)
−1


into the intervals

It :=

 ∑
t̃∈T (ord)

t,`,µ

t̃<t

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)
−1,

∑
t̃∈T (ord)

t,`,µ

t̃≤t

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)
−1


for all t ∈ T (ord)

t,`,µ . Then, we draw a random rational number x
from I. Since the intervals It form a partition of I, there is
a unique t ∈ T (ord)

t,`,µ with x ∈ It. As all the interval borders
are rational numbers whose denominators divide ι, it follows
from the way of choosing x, that the probability that x ∈ It is

exactly the ratio of the lengths of the intervals It and I—hence,
t is drawn from the distribution p̃t′ .

The remaining question is how to determine which vector t
is such that x ∈ It. Algorithm 6 computes t efficiently using a
technique similar to enumerative coding [40]. The idea is that
we iteratively compute for which prefix of t of length i, the
real number x is contained in the interval

I(i)t =
[
I
(i,l)
t , I

(i,r)
t

)

: =


∑

t̃∈T (ord)
t,`,µ

t̃<it

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)
−1,

∑
t̃∈T (ord)

t,`,µ

t̃≤it

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)
−1

 .

Note that

I
(i,l)
t ≤ I(j,l)t < I

(j,r)
t ≤ I(i,r)t

for all 1 ≤ i ≤ j ≤ ` and

It = I(`)t .

Note that if x ∈ I(i−1)[t1,...,ti−1]
, then there is exactly one ti such

that x ∈ I(i)[t1,...,ti]
, and we can compute it as

ti = max
{
t′′ : I(i,l)[t1,...,ti−1,t′′]

≤ x
}

(19)

Furthermore, we have

I(i,l)[t1,...,ti−1,t′′]
=

= I(i−1,l)

[t1,...,ti−1]︷ ︸︸ ︷∑
t̃∈T (ord)

t,`,µ

t̃<i−1[t1,...,ti−1]

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)
−1

+

ti−1∑
t′=0

∑
t̃∈Tt,`,µ

t̃=i[t1,...,ti−1,t
′]

`!∏µ
i=0 δi(t̃)!

%q,ζ,s(t̃)
−1.

(20)

Equations (19) and (20) combined prove that Lines 1–7 indeed
compute the “index” t for which x ∈ It. This concludes the
correctness proof.

The complexity follows since we need to compute∑
t̃∈T (ord)

t,`,µ,t̃=`′t
`!∏µ

i=0 δi(t̃)!
%q,ζ,s(t̃)

−1 for at most `µ ≤ n

different vectors t, and the cost to compute each of these
sums from the precomputed table {M(t′, `′, µ′, s′)}µ

′≤µ,s′≤s
t′≤t,`′≤`

as derived in Lemma 24. The cost of drawing x corresponds
to drawing uniformly at random a non-negative integer smaller
than ι

∑
t̃∈Tt,`,µ %q,ζ,s(t̃)

−1, i.e., of bit size ∈ O(nµζ2 log2(q)).
This cost, as well as the cost of drawing a random permutation
of t, is negligible.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

PUCHINGER et al.: GENERIC DECODING IN THE SUM-RANK METRIC 15

F. Proof of the Main Statement

The following proof summarizes the statements shown in
this section, which all together imply the main statement,
Theorem 16.

Proof of Theorem 16. First note that for η ≤ m, the algorithm
sets ζ = η and draws a random row support. For η > m, we
do the same for the column case. Correctness follows since
if a suitable e exists, there is a non-zero probability that a
(row or column) super-support of e is drawn, and erasure
decoding has a unique result for a super-support of weight
s < d (cf. Theorem 13 and Theorem 14).

The expected complexity is given by the product of the
cost of one iteration Witer (erasure decoding plus random
support drawing) and the expected number of iterations. The
first value can be lower-bounded by 1 and upper-bounded by
O
(
n3m3 log2(q)

)
due to Theorem 13, Theorem 14, and Propo-

sition 25. The bounds on the expected number of iterations
directly follow from Proposition 20 and Proposition 21.

The claim that the bounds (6) and (7) can be computed
efficiently follows directly from Proposition 23.

V I . C O M PA R I S O N T O O T H E R G E N E R I C D E C O D E R S

We compare the new generic decoder to other (naive) generic
decoding strategies, as well as to existing generic decoders in
the extreme cases ` = 1 (rank metric) and ` = n (Hamming
metric).

A. Comparison to Extreme Cases: Hamming and Rank Metric

In the Hamming-metric case (` = n), the set Tt,`,µ consists
of all permutations of the vector [1, . . . , 1, 0, . . . , 0], where the
number of ones equals t. In particular, we have |Tt,`,µ| =

(
n
t

)
.

For t ∈ Tt,`,µ and t ≤ s ≤ n − k, the function scompζ(t, s)
(Algorithm 3) returns a random vector s ∈ {0, 1}n with exactly
s ones and whose support contains the support of t. In particular,
%q,ζ,s(t) = 1 for all t ∈ Tt,`,µ. Hence, Algorithm 2 uniformly
at random selects a subset of s positions in a vector of length
n, and succeeds if and only if these s positions contain the
error positions of an error corresponding an error e′ with r −
e′ ∈ C, where r is the received word. Although the bounds in
Theorem 16 are—as expected—quite bad for this case (we get
0 ≤Wnew ≤Witer

(
n
t

)
), this algorithm equals exactly Prange’s

information-set decoder [22], which has expected runtime

WPrange = Witer

(
n
t

)(
s
t

) .
where Witer denotes the (polynomial-time) cost of one iteration.

In the rank-metric case (` = 1), the set Tt,`,µ contains only
one element: [t] ∈ Z1. Algorithm 2 thus chooses uniformly
at random a row or column space of dimension s, and row-
or column-erasure decodes in the rank metric. This method
is exactly the rank-syndrome decoder by Gaborit, Ruatta,
and Schrek [26]. The complexity bound (8) in Theorem 16
simplifies to

WGRS = Witerq
t(min{n,m}−s),

where t ≤ s ≤ min
{
n− k, bmn (n− k)c

}
and Witer denotes

the (polynomial-time) cost of one iteration. This coincides
exactly with Gaborit, Ruatta, and Schrek’s complexity bound.

For arbitrary ` and t ≤ s ≤ min
{
n− k, bmη (n− k)c

}
, the

simple upper complexity bound (8) in Theorem 16 is

W (UB,simple)
new = Witer

(
`+t−1
`−1

)
γ`qq

t(ζ− s`)

≤Witer

(
`+t−1
`−1

)
γ`qq

t
min{n,`m}−s

` .

For constant `, the factor
(
`+t−1
`−1

)
γ`q is polynomial in the code

length, and can be neglected compared to the exponential term.
Hence, the exponent of the sum-rank-metric generic decoder
is roughly a factor ` smaller than in the rank-metric case
(` = 1). Note that the bound W

(UB,simple)
new appears to be a

loose approximation of the actual work factor for large ` (cf.
Figure 2, 3, and 4). Therefore, we refrain from a discussion of
W

(UB,simple)
new for ` ∈ Ω(n) as this does not necessarily give a

good intuition about the work factor.
Overall, the new generic decoding algorithm smoothly inter-

polates two generic decoding principles known for the extreme
cases: Prange’s information-set decoder [22] for the Hamming
metric and Gaborit, Ruatta, and Schrek’s decoder [26] for the
rank metric. The bounds on the work factor in Theorem 16
are, in a rough sense, good for ` not too large. For constant
`, the logarithm of the work factor of our generic `-sum-rank
decoder is roughly a factor ` smaller than Gaborit, Ruatta, and
Schrek’s rank-metric decoder.

B. Comparison to Naive Generic Sum-Rank Decoders

We compare the new generic decoder to other possible
generic decoding strategies. One naive strategy for generic
decoding is given by brute-forcing the codewords, which has
a complexity WC = qmkm2kn, where m2kn is the cost of en-
coding. Another naive approach is brute-forcing the errors with
complexity Werrors as in (5) (see Corollary 7 in Section III).
For the extreme cases ` = 1 and ` = n, we compare the bounds
on the work factor of the new decoder with the Gaborit–Ruatta–
Schrek decoder (WGRS) and Prange’s information-set decoder
(WPrange), respectively, cf. Section VI-A.

In Figures 2, 3, and 4, we compare the expected complexities
of these generic decoding algorithms with the algorithm that
we propose. We plot all bounds on the work factor of the
new generic decoder that we present in the main statement,
Theorem 16, as well as the work factor of the “optimal choice”
for p̃s as derived in Section B. We show the log2 of the number
of operations required.

For all considered parameters, we observe that the difference
of the derived upper and lower bound W (LB)

new and W (UB)
new is

small, which indicates that the bounds must be tight on the true
work factor. Furthermore, for small values of `, the simplified
upper bound W (UB,simple)

new is very close to W (UB)
new and becomes

loose only for large values of `. We note that the optimal
solution derived in Section B is almost exactly on the accurate
upper bound W (UB)

new , for all cases in which we can compute
it. Further, the work factor of Prange’s algorithm (case ` = n)
and the generic rank-metric decoder (case ` = 1) are close to
the upper bound W (UB)

new .

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

16 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , MONTH YEAR

1 2 3 4 5 6 10 12 15 20 30 60
0

100

200

300

400 Choosing
column support

Choosing
row support

` (not linear)

lo
g
2
(W

or
k

fa
ct

or
)

Werrors W
(LB)
new W

(UB)
new W

(UB,simple)
new

Woptimal WGRS WPrange

Figure 2. Comparison of different generic decoding strategies for q = 2, m = 20, n = 60, k = 30, t = 9, s = 10. The work factor WC is 2620 for all
values of ` and Werrors is equal to 2661 for ` = 1.

1 2 3 4 5 6 10 12 15 20 30 60
0

200

400

600

800

` (not linear)

lo
g
2
(W

or
k

fa
ct

or
)

Werrors W
(LB)
new W

(UB)
new W

(UB,simple)
new

Woptimal WGRS WPrange

Figure 3. Comparison of different generic decoding strategies for q = 2, m = 60, n = 60, k = 30, t = 10, s = 30, where we chose the row support for all
values of ` in the proposed algorithm. The work factor WC is 21823 for all values of ` and Werrors is equal to 21125 for ` = 1.

2 3 4 5 6 10 12 15 20 30 60
0

200

400

600

800

1,000

` (not linear)

lo
g
2
(W

or
k

fa
ct

or
) WC Werrors W

(LB)
new W

(UB)
new

W
(UB,simple)
new Woptimal WPrange

Figure 4. Comparison of different generic decoding strategies for q = 2, m = 25, n = 60, k = 20, t = 30, s = 30. The work factor Werrors is equal to
21225 for ` = 2. The case ` = 1 is not feasible since the condition t ≤ s ≤ min

{
n− k, bm

n
(n− k)c

}
is not fulfilled.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

PUCHINGER et al.: GENERIC DECODING IN THE SUM-RANK METRIC 17

V I I . F O R M A L H A R D N E S S P R O O F

In this section, we formally prove the hardness of the
decisional version of the generic decoding problem in the sum-
rank metric. We adapt the approach of Gaborit and Zémor
[21], who probabilistically reduced the decisional Hamming
syndrome decoding problem to the decisional rank syndrome
decoding problem over a sufficiently large field extension. We
generalize the method from ` = 1 to arbitrary `, where the size
of the extension field can be chosen smaller than in [21] for
` > 1.

A. Complexity Classes

Let A be an algorithm that gets as input a sequence of
random bits r and the input x of a problem. Then A is called
probabilistic polynomial time (PPT) algorithm if the size of
the random sequence |r| (number of bits) is polynomial in the
input |x| and A runs in time polynomial in |x|.

We make use of the following complexity classes (see, e.g.,
[41]). Here, L is a decision problem, 0 ≤ ∆ < 1 is any
constant:

• L ∈ P (polynomial time): there is a PPT algorithm
AP with output true, false such that ∀x ∈ L we have
∀r AP(x, r) = true; and ∀x 6∈ L we have ∀r AP(x, r) =
false.

• L ∈ RP (randomized polynomial-time): there is a PPT
algorithm ARP with output true, false such that ∀x ∈ L
then Pr[ARP(x, r) = true] ≥ ∆; and ∀x 6∈ L we have
∀r ARP(x, r) = false. Note that the probability is over
the randomness of the bits r, and the input x is considered
fixed.

• L ∈ coRP (co-randomized polynomial-time): there is a
PPT algorithm AcoRP with output true, false such that
∀x ∈ L then ∀r AcoRP(x, r) = true; and ∀x 6∈ L then
Pr[AcoRP(x, r) = false] ≥ ∆.

• L ∈ ZPP (zero-error probabilistic polynomial time): there
is a PPT algorithm AZPP with output true, false or fail
such that the following two are satisfied: 1) For all x
then Pr[AZPP(x, r) = fail] ≤ ∆; and 2) for all x and r
then AZPP(x, r) = true =⇒ x ∈ L and AZPP(x, r) =
false =⇒ x /∈ L. Note that ZPP = RP ∩ coRP.

• L ∈ NP (non-deterministic polynomial time): there is a
PPT algorithm ANP such that x ∈ L exactly when there
exists an r such that ANP(x, r) = true.

We have that P ⊆ ZPP ⊆ RP ⊆ NP. Assuming that
the widely believed conjecture ZPP 6= NP was true, then
our hardness reduction below would imply that the decisional
generic decoding problem in the sum-rank metric was in NP\P,
Hence, it appears likely that the problem is hard to solve.

B. Decoding Problems

We relate the complexity classes of the following decision
problems to each other.

Problem 26 (Decisional Hamming Syndrome Decoding
(SynDecH) Problem).

Given:
• Parity-check matrix H ∈ F(n−k)×n

q of a code C
• Syndrome s ∈ Fn−kq

• Integer 0 ≤ t ≤ n
Question: Is there an e ∈ Fnq with wtH(e) ≤ t such that
s = eH>?

The SynDecH problem was proven to be NP-complete in
[20].

Problem 27 (Decisional `-Sum-Rank Syndrome Decoding
(SynDec`−SR) Problem).

Given:
• Parameter ` | n
• Parity-check matrix H ∈ F(n−k)×n

qm of a code C
• Syndrome s ∈ Fn−kqm

• Integer 0 ≤ t ≤ n
Question: Is there an e ∈ Fnq with wtSR,`(e) ≤ t such that
s = eH>?

Note that the SynDecn−SR problem and the SynDecH
problem are the same. The SynDec1−SR problem is the
decisional rank-syndrome decoding problem, which was shown
to be hard in the following way [21]: If the SynDec1−SR
problem is in ZPP = RP ∩ coRP, then NP = ZPP. The
next subsection generalizes this statement to arbitrary `.

C. Hardness Reduction

The following statements constitute the formal hardness
proof, which is summarized in Theorem 31. The proof strategy
is similar to the proof of the probabilistic reduction of the
“decisional minimum rank weight problem” in [21] (note that
Gaborit and Zémor prove the reduction for the SynDec1−SR
by referring to the analogy to the latter problem). Compared
to the original statement in the case ` = 1, we can improve
the tightness of the reduction (for ` > 1) using the bound
on the sum-rank-metric sphere size derived in Theorem 5 in
Section III. We start with a technical lemma, which we will
use to bound some probabilities in our probabilistic reductions.

Lemma 28. Let ε > 0 be fixed and m,n, ` be positive integers
with m ≥ n2

` + n logq(8n) + logq(2ε
−1). Let H ∈ F(n−k)×n

q ,
s ∈ Fn−kq and x ∈ Fnq , where x is a vector of minimum
Hamming weight tH such that xH> = s. Further let β
be chosen uniformly at random from (F∗qm)n and let then
x′ ∈ Fnqm be a vector of minimum sum-rank weight such that
x′
(
H diag(β)

)>
= s. Then, the probability that wtSR,`(x

′) <
tH is at most ε.

Proof: Let H , s and tH be fixed. We define P as the
probability (randomness in β)

Pr
{
∃x′∈Fnqm :x′

(
H diag(β)

)>
= s ∧ wtSR,`(x

′) < tH

}
.

For randomly chosen β $←− (F∗qm)n, let Ea be the event that
for a fixed vector a ∈ Fnqm , the equality a

(
H diag(β)

)>
=

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

18 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , MONTH YEAR

s holds. Further define the set X (tH − 1) := {a ∈ Fnqm :
wtSR,`(a) < tH}. Then,

Pr
{
∃x′ ∈ Fnqm :x′

(
H diag(β)

)>
= s ∧ wtSR,`(x

′) < tH

}
= Pr

[⋃
x′∈X (tH)

Ex′
]

≤
∑

x′∈X (tH)

Pr[Ex′].

Next, we bound Pr[Ex′] for a given x′ ∈ Fnqm . If there
exists a β ∈ (F∗qm)n such that x′

(
H diag(β)

)>
= s, then, by

[21, Lemma 4], there exists a subset W ⊆ {i : x′i 6= 0} of
cardinality |W| = tH such that the columns hi of H indexed
by i ∈ W are linearly independent. Hence, if we fix βi for all
i /∈ W , then the set of vectors x′

(
H diag(β)

)>
obtained by

choosing the remaining βi ∈ F∗qm for i ∈ W has cardinality

(qm − 1)tH . Hence, for β $←− (F∗qm)n, we have

Pr[Ex′] ≤
1

(qm − 1)tH
.

Otherwise, if there is no β ∈ (F∗qm)n such that
x′
(
H diag(β)

)>
= s, then we have Pr[Ex′] = 0, which is

obviously ≤ 1
(qm−1)tH .

Define

Γ(q,m, tH) :=
qmtH

(qm − 1)tH
=

1

(1− q−m)tH
.

Since m ≥ tH by assumption, we have

Γ(q,m, tH) ≤ 1

(1− q−m)m

=
1∑m

i=0

(
m
i

)
(−q−m)i

(∗)
≤ 1

1−mq−m
≤ 2,

where we use mq−m ≤ 1
2 , and (∗) follows from the fact that

the terms in the sum in the second line are alternating and their
absolute values are strictly monotonically decreasing, i.e.,

(
m

i+ 1

)
q−(i+1)m = q−mm−i

i+1

(
m

i

)
q−im

≤ 1
2

(
m

i

)
q−im.

Combining the arguments above, we get

P ≤ 1

(qm − 1)tH
|X (tH − 1)|

= Γ(q,m, tH)
1

qmtH

tH−1∑
i=1

Nq,η,m(i, `)

≤ 2
1

qmtH
(tH − 1) max

i∈[1,tH−1]
Nq,η,m(i, `)

≤ 2
1

qmtH
(tH − 1)

(
`+ tH − 2

`− 1

)
4`q(tH−1)(m+η− tH−1

`)

= 2(tH − 1)

(
`+ tH − 2

`− 1

)
4`q−m+(tH−1)η−

(tH−1)2

`

≤ 2(tH − 1)

(
`+ tH − 2

`− 1

)
4`q−m+n2

` −
(tH−1)2

` .

≤ 2 (tH − 1)︸ ︷︷ ︸
≤ `+tH−2

(`+ tH − 2)`−14`q−m+n2

` −
(tH−1)2

`

≤ 2[4(`+ tH − 2)]`q−m+n2

` −
(tH−1)2

`

≤ 2q−m+n2

` −
(tH−1)2

` +` logq [4(`+tH−2)]

≤ 2q−m+n2

` +` logq [4(`+tH−2)]

≤ 2q−m+n2

` +n logq(8n)

≤ ε.

We first show, that if there is a coRP-algorithm for
SynDec`−SR, then we can make a coRP-algorithm for SynDecH
(Algorithm 7 below). The idea is simple: The algorithm
transforms the input into an instance of the SynDec`−SR
problem via a random linear map, and simply calls the coRP-
algorithm for SynDec`−SR. Using Lemma 28, we can show
that the solution to this problem will usually project back to a
solution to the SynDec`−SR instance.

Lemma 29. For any ` < n and m > n2

` +n logq(8n)+logq(2),
if the SynDec`−SR problem is in coRP, then the SynDecH
problem is in coRP.

Proof: Let AcoRP
SR be a hypothesised coRP-algorithm for

the SynDec`−SR problem, i.e. it inputs an instance (H ′ ∈
F(n−k)×n
qm , s ∈ Fn−kqm , t ∈ Z>0) and outputs true whenever
tSR ≤ t, while it outputs false with probability at least 1 − ε̃
if tSR > t, where tSR is the minimum sum-rank weight of the
vectors x′ ∈ Fnqm such that x′H ′> = s, and ε̃ ≥ 0 is some
fixed constant.

Then Algorithm 7 details an coRP-algorithm AcoRP
H for the

SynDecH problem that inputs an instance (H ∈ F(n−k)×n
q , s ∈

Fn−kq , t ∈ Z>0). We should show that AcoRP
H outputs true

whenever tH ≤ t, while it outputs false with at least some
non-zero constant probability if tH > t, where tH denotes the
minimum Hamming weight of the vectors x ∈ Fnq such that
xH> = s.

Observe first that if tH ≤ t, it follows that tSR ≤ t, so AcoRP
H

outputs true. Consider now the case tH > t. By the definition
of m, we may choose a non-negative constant ε < 1 such that
m ≥ n2

` + n logq(8n) + logq(2ε
−1). Hence by Lemma 28,

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

PUCHINGER et al.: GENERIC DECODING IN THE SUM-RANK METRIC 19

with probability ≥ 1− ε, we have tSR = tH > t, and so AcoRP
H

outputs false with probability at least (1− ε)(1− ε̃), which is
again a constant.

Algorithm 7: AcoRP
H

Input :H ∈ F(n−k)×n
q , s ∈ Fn−kq , integer t

Output : true or false
1 β

$←− (F∗qm)n

2 H ′ ←H diag(β) ∈ F(n−k)×n
qm

3 return AcoRP
SR (H ′, s)

The RP reduction is more involved: in order to solve the
SynDecH problem, we solve its related search problem by
calling a (hypothetical) RP-algorithm for SynDec`−SR at most
n times on certain punctured and randomly transformed parity-
check matrices.

Lemma 30. For any ` < n and m ≥ n2

` + n logq(8n) +
logq(4n), if the SynDec`−SR problem is in RP, then the
SynDecH problem is in RP.

Proof: Let ARP
SR be a hypothesised RP-algorithm for

SynDec`−SR, i.e. it inputs an instance (H ′ ∈ F(n−k)×n′
qm , s ∈

Fn−kq , t ∈ Z>0), and outputs false whenever tSR > t and
outputs true with probability 1− ε̃ if tSR ≤ t, where tSR is the
minimum sum-rank weight of the vectors x′ ∈ Fn′qm such that
x′H ′> = s, and ε̃ > 0 is some constant smaller than 1. By
iterating ARP

SR at most O(log n) times, we may assume ε̃ < 1
2n .

Then Algorithm 8 details an RP-algorithm ARP
H for the

SynDecH problem that inputs an instance (H ∈ F(n−k)×n
q , s ∈

Fn−kq , t ∈ Z>0). We should show that ARP
H outputs false

whenever tH > t, while it outputs true with at least some
constant non-zero probability if tH ≤ t, where tH denotes the
minimum Hamming weight of the vectors x ∈ Fnq such that
xH> = s.

The idea of the algorithm is to determine a Hamming super-
support S of cardinality at most t of a vector x ∈ Fnq such that
xH> = s. The function KeepCols(H, T) returns the sub-
matrix of H consisting of the columns indexed by the index
set T . Note that each line runs in polynomial time: in particular,
Line 9 is simply solving a linear system. From Lines 9–12,
we observe that the algorithm outputs true whenever a super-
support is found, and outputs false otherwise. Hence ARP

H
outputs false whenever tH > t, and we need to show that
if tH ≤ t then ARP

H returns true with some non-zero constant
probability.

So assume tH ≤ t. The purpose of Lines 3–7 is to answer
the following question:

(Q) Is S \ {i} a super-support of a vector x ∈ Fq with
Hamming weight wtH(x) ≤ t and syndrome s = Hx>?

Since we start with S = {1, . . . , n}, it is clear that if we
always get the correct answer to this question, at termination,
the set S will be the support of a vector x of Hamming weight
wtH(x) ≤ t and syndrome s = Hx>. If we get an incorrect
answer in only one of the ≤ n loops, then we are not guaranteed

that S has this property, but we can detect this event by Lines 9–
12.

We show that the probability that Lines 3–7 answer the
question (Q) correctly in all iterations of the loop is at least
a constant. Note that there are two types of randomness in
these lines, which both can influence the answer that we get:
the choice of β and the randomness in the algorithm ARP

SR .
We distinguish two cases and denote for given s ∈ Fn−kq ,
S, i, β ∈ F|S|−1qm , the smallest Hamming weight of a vector
x̃ ∈ F|S|−1q such that x̃H̄ = s by tH and the smallest `-sum-
rank weight of a vector x̃′ ∈ F|S|−1qm with x̃′H̄ ′ = s as t̃SR.
Note that the answer to (Q) is true if and only if t̃H ≤ t.
• Case 1: The answer to (Q) is true (i.e., t̃H ≤ t): Indepen-

dent of how β is chosen, we always have t̃SR ≤ t̃H ≤ t,
so ARP

SR (H̄
′
, s, t) returns true (the correct answer) with

probability at least 1− ε̃ > 1− 1
2n (randomness in ARP

SR)
and false (the incorrect answer) with probability at most
ε̃ < 1

2n .
• Case 2: The answer to (Q) is false (i.e., t̃H > t):

– With probability > 1− 1
2n (randomness in the choice

of β), the vector β is chosen such that t̃SR = t̃H due to
Lemma 28 where we set ε = 1

2n , which is permissible
with our restriction on m. In this case, we thus have
t̃SR > t, and ARP

SR (H̄
′
, s, t) outputs always false (the

true answer).
– The counter-event of the above occurs with probability
< 1

2n : the vector β is chosen such that t̃SR ≤ t < t̃H.
In this case, ARP

SR (H̄
′
, s, t) may return true (the wrong

answer) or false (the correct answer).
Hence, in both cases, Lines 3–7 answer the question (Q)
correctly with probability greater than 1− 1

2n . Since the question
is asked at most n times, we get the correct answer to (Q) in
all iterations with probability at least 1− n

2n = 1
2 by the union

bound.

Algorithm 8: ARP
H

Input :H ∈ F(n−k)×n
q , s ∈ Fn−kq , integer t

Output : true or false
1 S = {1, . . . , n}
2 for i = 1, . . . , n do
3 H̄ ← KeepCols(H,S \ {i}) ∈ F(n−k)×(|S|−1)

q

4 β
$←− (F∗qm)|S|−1

5 H̄
′ ← H̄ diag(β) ∈ F(n−k)×(|S|−1)

qm

6 if ARP
SR (H̄

′
, s, t) = true then

7 S ← S \ {i}

8 H̄ ← KeepCols(H,S) ∈ F(n−k)×|S|
q

9 if 1 ≤ |S| ≤ t and ∃x ∈ F|S|q s.t. xH̄> = s then
10 return true

11 else
12 return false

The lemmas above imply the main statement of this section.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

20 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , MONTH YEAR

Theorem 31. For ` < n and m ≥ n2

` +n logq(8n)+logq(4n),
if the SynDec`−SR problem is in ZPP = RP∩ coRP, then we
have NP = ZPP.

Proof. It is well-known that ZPP ⊆ NP. The other inclusion,
ZPP ⊇ NP, follows from the NP-hardness of SynDecH ,
Lemma 29, and Lemma 30.

Remark 32. In the special case of Theorem 31 for the rank
metric (` = 1), which was shown in [21], the restriction on
the extension degree is m > n2. It can be seen that our
assumption, m ≥ n2

` +n logq(8n)+logq(4n), is less restrictive
for ` > 1. An interesting special case is ` ∈ Ω(n), i.e. a sum-
rank metric close to the Hamming metric, for which we can
choose m ∈ O(n log(n)).

V I I I . C O N C L U S I O N

We have proposed the first generic decoder in the (`-
)sum-rank metric, which combines known generic decoding
algorithms in the Hamming metric (` = n) and rank metric
(` = 1). For ` = n, the algorithm resembles the information-set
decoder by Prange [22] and for ` = 1, it coincides with the
generic decoder for the rank metric by Gaborit, Ruatta, and
Schrek [26].

We have derived lower and upper bounds on the runtime
of our generic decoding algorithm, which can be computed in
small-degree polynomial time in the code parameters. Further-
more, we derived a simple upper bound on the complexity of
the new generic decoding algorithm. For a constant number of
blocks `, the bound shows that the exponent of our algorithm’s
work factor is roughly a factor ` smaller than for the generic
rank-metric decoder by Gaborit, Ruatta, and Schrek [26]. Our
formal hardness proof in Section VII extends a result by Gaborit
and Zémor [21] from the rank metric, and provides evidence
that generic decoding in the sum-rank metric is a hard problem.

Besides being of theoretical interest, the results open up
the possibility to study sum-rank-metric codes in code-based
cryptosystems. We have also derived results on the cardinality
of sum-rank-metric spheres, which can, among others, be used to
efficiently compute bounds on code parameters (cf. Remark 9).
Furthermore, the new notion of column support and the erasure
decoding algorithms can be of more general interest.

The article can be seen as a proof-of-concept that ideas for
generic decoding in the extreme cases, Hamming and rank
metric, can be adapted to the family of sum-rank metrics. An
obvious open problem is the study of the many improvements of
[22] in the Hamming and [26] in the rank metric. In particular,
it would be interesting to adapt the very recent significant
improvement of generic decoding in the rank metric based on
algebraic methods [28] to the sum-rank metric. As for the rank
metric, it is an open problem whether there is a deterministic
reduction from an NP-hard problem to the decisional sum-rank
syndrome decoding problem.

A P P E N D I X A
G E N E R AT I N G U N I F O R M LY AT R A N D O M E R R O R S O F

A G I V E N S U M - R A N K W E I G H T

The recursion in Lemma 4 can be turned into a variant
of enumerative coding [40] to efficiently draw uniformly at

random from the set of sum-rank vectors of weight t. Such
an algorithm is outlined in Algorithm 9, and its correctness is
proven in the following proposition:

Proposition 33. Let q,m, k, n, `, and t be integers such that
` | n and t ≤ µ`. Then, Algorithm 9 outputs a vector e ∈ Fnqm
drawn uniformly at random from {e′ ∈ Fnqm : wtSR,`(e

′) = t}.

Proof. The set {e′ ∈ Fnqm : wtSR,`(e
′) = t} has cardinality

Nq,η,m(t, `). Let ϕ : {1, . . . ,Nq,η,m(t, `)} → {e′ ∈ Fnqm :
wtSR,`(e

′) = t} be a bijective mapping. If we know an efficient
algorithm to realize the mapping ϕ, then the drawing could be
simply realized by choosing uniformly at random D(1) from
{1, . . . ,Nq,η,m(t, `)} and outputting ϕ(D(1)). However, the
drawing algorithm can also be realized with a different method.

Let φ : {e ∈ Fnqm : wtSR,`(e) = t} → Tt,`,µ, e 7→
[rkFq (e1), . . . , rkFq (e`)]. Then, the drawing can be conducted

by computing t = (φ ◦ ϕ)(D(1)) and sampling aj
$←− {a ∈

Ftjqm : rkFq (a) = tj} and Bj
$←− {B ∈ Ftj×ηq : rkFq (B) =

tj}, for j ∈ {1, . . . , `}. Since ej = ajBj ∈ Fηqm is a vector
drawn uniformly at random from {e′ ∈ Fηqm : rkFq (e

′) = tj},
it follows that e = [a1B1 | · · · | a`B`] is a vector drawn
uniformly at random from {e′ ∈ Fnqm : wtSR,`(e

′) = t}.
To derive the mapping φ◦ϕ : {1, . . . ,Nq,η,m(t, `)} → Tt,`,µ

suppose that t ≤ µ. Then, the number of vectors that have a
weight decomposition [0, . . . , 0, t] is equal to NMq(m, η, t),
and therefore, we map

D ∈ {1, . . . ,NMq(m, η, t)} 7→ [0, . . . , 0, t].

Furthermore, the number of vectors that have a
weight decomposition [0, . . . , 0, 1, t − 1] is equal to
NMq(m, η, 1)NMq(m, η, t− 1), which means that we map

D ∈ {NMq(m, η, t) + 1, . . .

. . . ,NMq(m, η, t) + NMq(m, η, 1)NMq(m, η, t− 1)}

to the vector [0, . . . , 1, t− 1]. It follows by induction that we
map

D ∈

{
tj−1∑
t′=0

NMq(m, η, t
′) · Nq,η,m(t− t′, `− j) + 1, . . .

. . . ,

tj∑
t′=0

NMq(m, η, t
′) · Nq,η,m(t− t′, `− j)

}

to [0, . . . , 0, tj , . . . , t`], where
∑`
i=j+1 ti = t− tj .

Algorithm 9 performs this routine. In Line 1, the integer
D(1) is drawn uniformly at random from {1, . . . ,Nq,η,m(t, `)},
and in Lines 2 to 6, the respective weight distribution vector
(φ ◦ ϕ)(D(1)) is determined (the cases of t > µ are taken into
account by starting to sum from t(j) − µ(`− j) instead of 0).
The method to compute (φ◦ϕ)(D(1)) is illustrated in Figure 5.
In Lines 7 to 10, the vectors ej ∈ Fηqm are drawn uniformly
at random from the set of vectors of rank weight tj , and the
vector [e1 | . . . | e`] is returned.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

PUCHINGER et al.: GENERIC DECODING IN THE SUM-RANK METRIC 21

Algorithm 9: Drawing Uniformly at Random an Error of Given Sum-Rank Weight
Input : Parameters q,m, k, n, `, t
Output : Vector e $←− {e′ ∈ Fnqm : wtSR,`(e

′) = t}
1 D(1) $←− {1, . . . ,Nq,η,m(t, `)}
2 t(1) ← t
3 for j ∈ {1, . . . , `} do
4 tj ← max

{
t′′ ∈

{
0, . . . , t(j)

}
:
∑t′′−1
t′=t(j)−µ(`−j) NMq(m, η, t

′) · Nq,η,m(t(j) − t′, `− j) < D(j)
}

5 D(j+1) ← D(j) −
∑tj−1
t′=t(j)−µ(`−j) NMq(m, η, t

′) · Nq,η,m(t(j) − t′, `− j)
6 t(j+1) ← t(j) − tj
7 for j ∈ {1, . . . , `} do
8 aj

$←− {a ∈ Ftjqm : rkFq (a) = tj}
9 Bj

$←− {B ∈ Ftj×ηq : rkFq (B) = tj}
10 e← [a1B1 | a2B2 | · · · | a`B`] ∈ Fnqm
11 return e

D′(0, 1) D′(1, 1) D′(2, 1)

t1 = 0 t1 = 1

. . .
D′(t(1) − 2, 1) D′(t(1) − 1, 1) D′(t(1), 1)

t1 = t(1) − 1 t1 = t(1)
D(1)

D′(0, 2) D′(1, 2) D′(2, 2)

t2 = 0 t2 = 1

. . .
D′(t(2) − 2, 2) D′(t(2) − 1, 2) D′(t(2), 2)

t2 = t(2) − 1 t2 = t(2)
D(2)

. .
.

D′(0, `) D′(1, `) D′(2, `)

t` = 0 t` = 1

. . .
D′(t(`) − 2, `) D′(t(`) − 1, `) D′(t(`), `)

t` = t(`) − 1 t` = t(`)
D(`)

Figure 5. Illustration of the mapping φ ◦ ϕ : {1, . . . ,Nq,η,m(t, `)} → Tt,`,µ, D(1) 7→ t. The variables are defined as in Algorithm 9, and the function
D′(t′′, j) :=

∑t′′−1

t′=t(j)−µ(`−j)
NMq(m, η, t′)Nq,η,m(t(j) − t′, `− j).

A P P E N D I X B
O P T I M A L S U P P O R T- D R AW I N G A L G O R I T H M

In Section V, we saw that the worst-case expected number of
iterations of a super-support drawing algorithm that first draws
a vector s ∈ Ts,`,µ according to a probability distribution p̃s
and then F $←− Ξq,ζ(s), can be given as (cf. (11))

max
e∈Fnqm :

wtSR,`(e)=t

E[#iterations] = max
t∈Tt,`,µ

 ∑
s∈Ts,`,µ

p̃s%q,ζ(s, t)

−1 .
Section V presented a scalable method to design p̃s that can
be implemented in polynomial time, but does not guarantee
to minimize (11). Here, we show how to achieve an optimal
solution, at the cost of a super-polynomial complexity. The

following theorem reformulates the optimization problem into
a linear programming instance.

Theorem 34. Fix arbitrary orders s1, . . . , s|Ts,`,µ| and
t1, . . . , t|Tt,`,µ| of elements in Ts,`,µ and Tt,`,µ, respectively.
Let

c =


0
0
...
0
1

 ∈ R(|Ts,`,µ|+1)×1, b =



0
0
...
0
1
−1


∈ R|Tt,`,µ|×1,

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

22 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , MONTH YEAR

and A ∈ R(|Tt,`,µ|+2)×(|Ts,`,µ|+1) be equal to

−%q,ζ(s1, t1) . . . −%q,ζ(s|Ts,`,µ|, t1) 1
−%q,ζ(s1, t2) . . . −%q,ζ(s|Ts,`,µ|, t2) 1

...
. . .

...
...

−%q,ζ(s1, t|Tt,`,µ|) . . . −%q,ζ(s|Ts,`,µ|, t|Tt,`,µ|) 1
1 . . . 1 0
−1 . . . −1 0


.

If x ∈ R(|Ts,`,µ|+1)×1 is a solution to the linear program

Maximize c>x

subject to Ax ≤ b (21)
and x ≥ 0,

then p̃si = xi, for all i = 1, . . . , |Ts,`,µ|, is a distribution that
maximizes (11), and we have

x−1|Ts,`,µ|+1 = min

 max
t∈Tt,`,µ

 ∑
s∈Ts,`,µ

p̃s%q,ζ(s, t)

−1 :

p̃s ∈ [0, 1] ∀s ∈ Ts,`,µ,
∑

s∈Ts,`,µ

p̃s = 1

 . (22)

Proof. We write p̃si = xi and ξ = x|Ts,`,µ|+1 for a solution x
of the linear program. The last two rows of A are equivalent
to

|Ts,`,µ|∑
i=1

p̃si = 1,

Together with x ≥ 0, we get that the p̃si form a valid
discrete probability mass function. The first |Tt,`,µ| rows of A
correspond to the constraints

|Ts,`,µ|∑
i=1

p̃si%q,ζ(si, tj) ≥ ξ ∀ j = 1, . . . , |Tt,`,µ|.

Since ξ is the maximal positive value for which this constaint
is fulfilled for all j = 1, . . . , |Tt,`,µ| and solutions p̃si , we have

ξ = max

 min
j=1,...,|Tt,`,µ|


|Ts,`,µ|∑
i=1

p̃si%q,ζ(si, tj)

 :

p̃si ∈ [0, 1]∀i = 1, . . . , |Ts,`,µ|,
|Ts,`,µ|∑
i=1

p̃si = 1

 ,

which is equivalent to (22). This proves the claim.

Using standard methods, the linear program (21) in Theo-
rem 34 can be solved in polynomial time in the number of
variables, |Ts,`,µ|+1 (note that the number of linear constraints
is in O(|Ts,`,µ|)). As, depending on the relative growth of s,
µ, and `, this number may grow super-polynomially in s, it
is usually not possible to solve the linear program efficiently
for large code parameters. Furthermore, even if a solution x is
found or pre-computed, it is not apparent how to draw efficiently
from the distribution p̃si = xi (for all i = 1, . . . , |Ts,`,µ|).

Nevertheless, we include this “optimal” solution to the design
of p̃s in the discussion in Section VI for all values of `, µ, s for

which we can retrieve a solution in short time (and ignore the
issue of efficient drawing). For these computations, we apply a
trick that reduces the number of variables and constraints: We
assume that the restriction to those solutions x such that xi =
xj for all i, j with permutationally equivalent si ∼ sj . Hence,
we can reduce the number of variables to |T (ord)

s,`,µ |+ 1 (which
may still be super-polynomially in s, though) and the number
of constraints to |T (ord)

t,`,µ | + 2 ≤ |T (ord)
s,`,µ | + 2. The complexity

of this generic decoding approach is roughly given by

Woptimal := Witer x
−1
|Ts,`,µ|+1,

where x1, . . . , x|Ts,`,µ|+1 is a solution vector to the optimization
problem in Theorem 34 and Witer is the cost of one iteration.
The latter value is at least the cost of erasure decoding, which
is in O∼(n3m3 log(q)), but the real cost might be larger since
we need to be able to efficiently draw from the distribution p̃s.
In the plots in Section VI, we use the same Witer as for the
other algorithms, which is an optimistic estimate.

It can be seen that in all cases in which we can compute the
expected runtime of a generic decoder that draws s according
to such an optimal distribution p̃s, the “optimal” runtime is
only insigificantly smaller than the practical solution presented
in Section V.

R E F E R E N C E S

[1] S. Puchinger, J. Renner, and J. Rosenkilde, “Generic decoding in the sum-
rank metric,” in IEEE International Symposium on Information Theory
(ISIT), 2020.

[2] R. W. Nóbrega and B. F. Uchoa-Filho, “Multishot codes for network
coding using rank-metric codes,” in IEEE International Workshop on
Wireless Network Coding, 2010.

[3] A. Wachter, V. R. Sidorenko, M. Bossert, and V. V. Zyablov, “On (partial)
unit memory codes based on gabidulin codes,” Problems of Information
Transmission, vol. 47, no. 2, pp. 117–129, 2011.

[4] A. Wachter-Zeh and V. Sidorenko, “Rank metric convolutional codes for
random linear network coding,” in IEEE International Symposium on
Network Coding (NetCod), 2012.

[5] A. Wachter-Zeh, M. Stinner, and V. Sidorenko, “Convolutional codes
in rank metric with application to random network coding,” IEEE
Transactions on Information Theory, vol. 61, no. 6, pp. 3199–3213, 2015.

[6] D. Napp, R. Pinto, J. Rosenthal, and P. Vettori, “MRD rank metric
convolutional codes,” in IEEE International Symposium on Information
Theory (ISIT), 2017.

[7] ——, “Faster decoding of rank metric convolutional codes,” in 23rd
International Symposium on Mathematical Theory of Networks and
Systems, 2018.

[8] U. Martínez-Peñas, “Skew and linearized reed–solomon codes and
maximum sum rank distance codes over any division ring,” Journal
of Algebra, vol. 504, pp. 587–612, 2018.

[9] D. Boucher, “An algorithm for decoding skew reed-solomon codes with
respect to the skew metric,” in Workshop on Coding and Cryptography,
2019.

[10] U. Martínez-Peñas and F. R. Kschischang, “Reliable and secure multishot
network coding using linearized reed-solomon codes,” IEEE Transactions
on Information Theory, 2019.

[11] X. Caruso, “Residues of Skew Rational Functions and Linearized Goppa
Codes,” arXiv preprint arXiv:1908.08430, 2019.

[12] H. Bartz, T. Jerkovits, S. Puchinger, and J. Rosenkilde, “Fast Decoding
of Codes in the Rank, Subspace, and Sum-Rank Metric,” arXiv preprint
arXiv:2005.09916, 2020.

[13] U. Martínez-Peñas, “Sum-rank bch codes and cyclic-skew-cyclic codes,”
arXiv:2009.04949, 2020.

[14] U. Martínez-Peñas and F. R. Kschischang, “Universal and dynamic locally
repairable codes with maximal recoverability via sum-rank codes,” IEEE
Transactions on Information Theory, 2019.

[15] M. Shehadeh and F. R. Kschischang, “Rate-diversity optimal multiblock
space-time codes via sum-rank codes,” in IEEE International Symposium
on Information Theory (ISIT), 2020.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3167629, IEEE
Transactions on Information Theory

PUCHINGER et al.: GENERIC DECODING IN THE SUM-RANK METRIC 23

[16] E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani, “Fundamental prop-
erties of sum-rank metric codes,” arXiv:2010.02779, 2020.

[17] R. J. McEliece, “A Public-Key Cryptosystem Based On Algebraic Coding
Theory,” Deep Space Network Progress Report, vol. 42, no. 44, pp. 114–
116, 1978.

[18] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding
theory,” Problems of Control and Information Theory, vol. 15, no. 2,
pp. 159–166, 1986.

[19] E. M. Gabidulin, A. Paramonov, and O. Tretjakov, “Ideals over a non-
commutative ring and their application in cryptology,” in Advances in
Cryptology—EUROCRYPT’91. Springer, 1991, pp. 482–489.

[20] E. Berlekamp, R. McEliece, and H. Van Tilborg, “On the inherent
intractability of certain coding problems (corresp.),” IEEE Transactions
on Information Theory, vol. 24, no. 3, pp. 384–386, 1978.

[21] P. Gaborit and G. Zémor, “On the hardness of the decoding and the
minimum distance problems for rank codes,” IEEE Transactions on
Information Theory, vol. 62(12), pp. 7245–7252, 2016.

[22] E. Prange, “The use of information sets in decoding cyclic codes,” IRE
Transactions on Information Theory, vol. 8, no. 5, pp. 5–9, 1962.

[23] Bernstein et al., “Supporting documentation of round-3 submission:
“classic mceliece” to the nist post-quantum standardization,” https://classic.
mceliece.org/nist.html, version as of October, 2020, 2020.

[24] F. Chabaud and J. Stern, “The cryptographic security of the syndrome
decoding problem for rank distance codes,” in Advances in Cryptology
— ASIACRYPT, 1996, pp. 368–381.

[25] A. V. Ourivski and T. Johansson, “New technique for decoding codes
in the rank metric and its cryptography applications,” Problems of
Information Transmission, vol. 38, no. 3, pp. 237–246, Jul 2002.

[26] P. Gaborit, O. Ruatta, and J. Schrek, “On the complexity of the rank
syndrome decoding problem,” IEEE Transactions on Information Theory,
vol. 62, no. 2, pp. 1006–1019, Feb 2016.

[27] N. Aragon, P. Gaborit, A. Hauteville, and J.-P. Tillich, “A new algorithm
for solving the rank syndrome decoding problem,” in IEEE International
Symposium on Information Theory (ISIT), 2018.

[28] M. Bardet, P. Briaud, M. Bros, P. Gaborit, V. Neiger, O. Ruatta, and J.-P.
Tillich, “An algebraic attack on rank metric code-based cryptosystems,”
in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2020, pp. 64–93.

[29] U. Martínez-Peñas, “Theory of supports for linear codes endowed with
the sum-rank metric,” Designs, Codes and Cryptography, vol. 87, no. 10,
pp. 2295–2320, 2019.

[30] R. Koetter and F. R. Kschischang, “Coding for errors and erasures in
random network coding,” IEEE Transactions on Information Theory,
vol. 54, no. 8, pp. 3579–3591, 2008.

[31] T. Migler, K. E. Morrison, and M. Ogle, “Weight and rank of matrices
over finite fields,” 2004.

[32] N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy,
J.-C. Deneuville, P. Gaborit, S. Ghosh, S. Gueron, T. Güneysu,
C. Aguilar-Melchor, R. Misoczki, E. Persichetti, N. Sendrier, J.-P. Tillich,
V. Vasseur, and G. Zémor, “BIKE: Bit Flipping Key Encapsulation,”
Third round submission to the NIST post-quantum cryptography call,
2020. [Online]. Available: https://bikesuite.org

[33] C. Aguilar-Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J. Bos,
J. Deneuville, A. Dion, P. Gaborit, J. Lacan, E. Persichetti, J. Robert,
P. Véron, and G. Zémor, “Hamming Quasi-Cyclic (HQC),” Third round
submission to the NIST post-quantum cryptography call, 2020. [Online].
Available: https://pqc-hqc.org

[34] C. Aguilar-Melchor, N. Aragon, M. Bardet, , S. Bettaieb, L. Bidoux,
O. Blazy, J. Deneuville, P. Gaborit, A. Hauteville, A. Otmani, R. Ruatta,
J. P. Tillich, and G. Zémor, “ROLLO (Rank-Ouroboros, LAKE and
LOCKER),” Second round submission to the NIST post-quantum
cryptography call, 2019. [Online]. Available: https://pqc-rollo.org

[35] C. Aguilar-Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy,
J. Deneuville, P. Gaborit, G. Zemor, A. Couvreur, and Hauteville, “Rank
Quasi-Cyclic (RQC),” Second round submission to the NIST post-quantum
cryptography call, 2019. [Online]. Available: https://pqc-rqc.org

[36] M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange,
V. Maram, I. von Maurich, R. Misoczki, R. Niederhagen, K. G. Paterson,
E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, C. J.
Tjhai, M. Tomlinson, and W. Wang, “Classic McEliece,” Third round
submission to the NIST post-quantum cryptography call, 2020. [Online].
Available: https://classic.mceliece.org

[37] National Institute of Standards and Technology (NIST), “Post-
Quantum Cryptography Standardization,” 2017. [Online]. Available:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

[38] D. Harvey and J. van der Hoeven, “Faster integer multiplication using
short lattice vectors,” The Open Book Series, vol. 2, no. 1, pp. 293–310,
2019.

[39] E. M. Gabidulin, “Theory of codes with maximum rank distance,”
Problems of Information Transmission, vol. 21, no. 1, pp. 3–16, 1985.

[40] T. Cover, “Enumerative source encoding,” IEEE Transactions on Infor-
mation Theory, vol. 19, no. 1, pp. 73–77, 1973.

[41] L. Trevisan, “Lecture notes in computational complexity,” May 2004.

Sven Puchinger (S’14, M’19) received the B.Sc. degree in electrical engi-
neering and the B.Sc. degree in mathematics from Ulm University, Germany,
in 2012 and 2016, respectively. During his studies, he spent two semesters
at the University of Toronto, Canada. He received his Ph.D. degree from
the Institute of Communications Engineering, Ulm University, Germany, in
2018. He has been a postdoctoral researcher with the Technical University
of Munich, Germany, from 2018 to 2019, at the Technical University of
Denmark, Denmark, from 2019 to 2021, and again at the Technical University
of Munich in 2021. Since 2021, he is with Hensoldt Sensors GmbH, Ulm,
Germany. His research interests are coding theory, its applications, and related
computeralgebra methods.

Julian Renner received the B.Sc., M.Sc., and PhD degree in electrical
engineering from the Technical University of Munich, Germany, in 2014, 2016,
and 2022, respectively. From February 2017, he conducted research in the field
of waveform design for joint automotive radar and V2X communication at the
Eindhoven University of Technology, Netherlands. Since November 2017, he
is with the Technical University of Munich, Germany. His research interests
include cryptography, coding theory, fiber-optic communication, and sensing.

Johan Rosenkilde is a Research Engineer at GitHub since 2021. Before that
he was at the Technical University of Denmark, first as assistant professor, then
as associate professor. He holds a Master’s degree in computer science and
a PhD in mathematics from the same university, and was a post-doc at both
Ulm University, Germany and Inria, France. His algebraic research interests
include coding theory and computer algebra.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 10,2022 at 09:24:52 UTC from IEEE Xplore. Restrictions apply.

https://classic.mceliece.org/nist.html
https://classic.mceliece.org/nist.html
https://bikesuite.org
https://pqc-hqc.org
https://pqc-rollo.org
https://pqc-rqc.org
https://classic.mceliece.org
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

