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Markov Random Fields, Homomorphism
Counting, and Sidorenko’s Conjecture

Péter Csikvári, Nicholas Ruozzi, and Shahab Shams

Abstract—Graph covers and the Bethe free energy (BFE)
have been useful theoretical tools for producing lower
bounds on a variety of counting problems in graphical
models, including the permanent and the ferromagnetic
Ising model. Here, we investigate weighted homomorphism
counting problems over bipartite graphs that are related to
a conjecture of Sidorenko. We show that the BFE does yield
a lower bound in a variety of natural settings, and when
it does yield a lower bound, it necessarily improves upon
the lower bound conjectured by Sidorenko. Conversely,
we show that there exist bipartite graphs for which the
BFE does not yield a lower bound on the homomorphism
number. Finally, we use the characterizations developed as
part of this work to provide a simple proof of Sidorenko’s
conjecture in a number of special cases.

Index Terms—Bethe free energy, graph covers, homo-
morphism counting, Markov random fields, Sidorenko’s
conjecture

I. INTRODUCTION

A homomorphism from a simple graph G =
(VG, EG) to a graph H = (VH , EH) (possibly with
self-loops) is defined to be an adjacency preserving
map h : VG → VH , i.e., h is a homomorphism if
for all (i, j) ∈ EG it holds that (h(i), h(j)) ∈ EH .
Our interest here will be in counting the number of
homomorphisms from a bipartite graph G into a graph
H , denoted as hom(G,MH), where MH ∈ R|VH |×|VH |
is the unweighted adjacency matrix of graph H such
that MH

ij = 1 if (i, j) ∈ EH and 0 otherwise. Given
MH , the product

∏
(i,j)∈EGM

H
h(i),h(j) is equal to one

if the mapping h defines a valid homomorphism and
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zero otherwise. As each map h : VG → VH can be
viewed as assigning each vertex in G one of |VH | labels,
we can express the unweighted homomorphism counting
problem as

hom(G,MH) ,
∑

x∈[|VH |]|VG|

∏
(i,j)∈EG

MH
xi,xj , (1)

where [|VH |] = {1, . . . , |VH |}. Note that hom(G,H)
has been used to denote the set of all homomorphisms
from G to H , but in this work hom(G,MH) denotes the
cardinality of set hom(G,H), i.e., the homomorphism
number.

Many combinatorial counting problems can be for-
mulated as homomorphism counting problems from a
graph G into a specific graph H [1]. For example, if
MH is the adjacency matrix of a complete graph on n
vertices, then hom(G,MH) counts the number of ways
in which the vertices of G can be colored with n colors
such that no two adjacent vertices receive the same color.
The problem of counting the number of independent sets
in G (subsets of the vertices of G such that no two
adjacent vertices are in the set) can be expressed as a
homomorphism counting problem by choosing MH to
be the adjacency matrix of a complete graph on two
nodes in which exactly one of the nodes has a self loop.

In this work we will focus on a weighted gener-
alization of the homomorphism counting problem to
edge weighted graphs, see for example [2], [3]. In the
weighted setting, each edge of the target graph H is
associated with a nonnegative weight. Let G be a simple
graph and M ∈ R|VH |×|VH |≥0 a symmetric nonnegative
matrix such that Mij is the weight associated with
the edge (i, j) in the target graph. A zero weight
corresponds to the absence of an edge in the target
graph, so in general, we can assume that the target graph
is a complete graph with self-loops. The weight of a
map h from the vertices of the bipartite graph G into
the target graph H is then defined to be∏

(i,j)∈EG

Mh(i),h(j),

and the weighted homomorphism counting problem is
defined as

hom(G,M) ,
∑

x∈[|VH |]|VG|

∏
(i,j)∈EG

Mxi,xj . (2)
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The above discussion generalizes to directed graphs in
a straightforward way, i.e., maps from G to H that pre-
serve directed edges. In this work, we will specifically
be interested in the case in which G = (AG, BG, EG)
is a directed bipartite graph in which all edges are
directed from AG to BG, and H is a weighted directed
graph whose edge weights are given by a nonnegative
matrix M ∈ R|VH |×|VH |≥0 . The weighted homomorphism
counting problem in (directed) bipartite graphs is then
to compute

hom(G,M) =
∑

x∈[|VH |]|VG|

∏
i∈AG

∏
j∈NG(i)

Mxi,xj , (3)

where VG = AG ∪ BG and NG(i) ⊆ BG is the set of
neighbors of the vertex i ∈ AG. Bipartite graphs are
of particular interest as Simonovits [4] and Sidorenko
[5], [6] conjectured a lower bound, widely known as
Sidorenko’s conjecture, on hom(G,M) in this case.

Conjecture I.1 (Sidorenko’s Conjecture). For a bipartite
graph G = (AG, BG, EG) and an arbitrary weight
matrix M ∈ Rm×m≥0 ,

hom(G,M) ≥ hom(K2,M)|EG|m|VG|−2|EG|

, homS(G,M), (4)

where K2 is the complete graph on two vertices.
Note that since M ∈ Rm×m≥0 , hom(K2,M) =∑
x1,x2∈[m]Mx1,x2

, equals to the sum over all the
entries of matrix M . In the special case that MH corre-
sponds to the adjacency matrix of an unweighted graph
H , the lower bound given by Sidorenko’s conjecture is
equivalent to

hom(G,MH) ≥ |VH ||VG|
(
2|EH |
|VH |2

)|EG|
.

Different approaches have led to a partial resolution
of this conjecture in special cases: the case in which G
is a tree or an even cycle [4], [6], a cube [7], or any
bipartite graph that has one vertex complete to the other
side [8], [9]. Many of these results can be proved using
information theoretic inequalities and clever repeated
application of Jensen’s inequality [10], [11]. Separately,
work on approximate counting in Markov random fields
based on graph covers and the Bethe free energy [12]
has produced lower bounds for a variety of counting
problems: matrix permanents [13], real-stable polyno-
mials [14], the ferromagnetic Ising model with arbitrary
external field [15], the ferromagnetic Potts model with
uniform external field [15], weight enumerators of linear
codes [15], the weighted homomorphism counting prob-
lem when rank(M) ≤ 2 [15], and others. In particular,
this line of work yields a proof of Conjecture I.1 in
the cases that M ∈ R2×2

≥0 [16] or M = aaT + bbT for
a, b ∈ Rm≥0 [15].

Given the positive results for homomorphism count-
ing in the above special cases, a natural question is
whether or not a similar result can be shown for the
general weighted homomorphism counting problem over
bipartite graphs. In this work, we explore this question
using, again, the Bethe free energy optimization problem
from statistical physics (see Section II for the definition),
which defines an approximation to hom that is, in
general, neither an upper nor a lower bound. Denoting
the Bethe free energy approximation as homB, we will
be interested in the veracity of the following conjecture.

Conjecture I.2. If G is a bipartite graph, then

hom(G,M) ≥ homB(G,M).

This paper provides both positive and negative results
related to Conjecture I.2. Section III proves that for all
bipartite graphs G and all M ∈ Rm×m≥0 , homB(G,M) ≥
homS(G,M) . Consequently, proving Conjecture I.2
would resolve Sidorenko’s conjecture in the affirma-
tive. On the other hand, Section IV disproves Con-
jecture I.2 by constructing an explicit counterexample,
a bipartite graph G and a matrix M ∈ Rm×m≥0 , for
which hom(G,M) < homB(G,M). Section V provides
two simpler formulations of Conjecture I.2. Those two
formulations are then used to demonstrate that homB

yields a better lower bound than Sidorenko’s bound in a
number of interesting special cases. Finally, we conclude
with a few results on an interesting special case of the
conjecture that has not received much attention, i.e., the
case of doubly stochastic matrices.

II. PRELIMINARIES

In this section, we review Markov random fields
(MRFs), the Bethe free energy, log-supermodularity, and
related results that are relevant to this work.

A. Markov random fields and partition functions

A pairwise Markov random field is defined by a graph
G = (VG, EG) together with a collection of nonnegative
potential functions φi : X → R≥0 for each i ∈ VG
and ψij : X 2 → R≥0 for each (i, j) ∈ EG. The
product of these potential functions defines a probability
distribution

p(X) =
1

Z(G;φ, ψ)

∏
i∈VG

φi(Xi)
∏

(i,j)∈EG

ψij(Xi, Xj),

where X ∈ X |VG| is a vector of random variables, X is
the domain of the random variables, e.g., X = [m] or
R, and Z is the normalizing constant/partition function
defined as

Z(G;φ, ψ) ,
∑

X∈X |VG|

∏
i∈VG

φi(Xi)
∏

(i,j)∈EG

ψij(Xi, Xj).
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A detailed review of Markov random fields and their
properties can be found in [17].

Given a bipartite graph G = (AG, BG, EG) and M ∈
Rm×m≥0 , hom(G,M) is the partition function of an MRF
over the state space X = [m], where for all i ∈ AG and
j ∈ NG(i) the potential function on the edge (i, j) is
given by

ψij(xi, xj) =Mxi,xj .

Note that φi(xi) = 1 for all i ∈ AG ∪BG.
A variety of different approximations to the partition

function of an MRF have been proposed. One particular
approximation, the Bethe free energy approximation
[18], has been shown to provide lower bounds on the
partition function, Z, for certain nice families of MRFs,
e.g., log-supermodular models [16]. We consider this
approximation here in the context of the MRF for the
weighted homomorphism counting problem with weight
matrix M ∈ Rm×m≥0 .

Let the local marginal polytope, T , consist of vectors
of probability distributions. There is exactly one entry
in the vector τ ∈ T for each i ∈ VG and each edge
(i, j) ∈ EG. The marginals in any given vector should
agree on single variable overlaps. More formally, T (G)
consists of all vectors of probability distributions τ such
that

∀(i, j) ∈ EG, xi ∈ [m],
∑
xj

τij(xi, xj) = τi(xi),

∀i ∈ VG,
∑
xi

τi(xi) = 1,

∀i ∈ VG, xi ∈ [m], τi(xi) ≥ 0,

∀(i, j) ∈ EG, xi ∈ [m], xj ∈ [m], τij(xi, xj) ≥ 0.

The Bethe free energy approximation is given by

logFB(G, τ ;M) = U(G, τ ;M) + Ẽ(G, τ),

where U is the negative energy,

U(G, τ ;M) ,
∑
i∈AG

∑
j∈NG(i)

∑
xi,xj

τij(xi, xj) logMxi,xj ,

and Ẽ is an entropy approximation,

Ẽ(G, τ) ,−
∑
i∈VG

∑
xi

τi(xi) log τi(xi)

−
∑

(i,j)∈EG

∑
xi,xj

τij(xi, xj) log
τij(xi, xj)

τi(xi)τj(xj)
.

The Bethe partition function for the weighted homomor-
phism counting problem is obtained by exponentiating

the maximum value achieved by this approximation over
T (G). More specifically,

homB(G,M
H) , exp

(
max
τ∈T (G)

FB(G, τ ;M
H)

)
,

where M is the given weight matrix.
In this exploration, we will also make use of an

equivalent combinatorial characterization of the Bethe
free energy as a limit of exact counting problems on
graph covers of G. Recall that G′ is a covering graph
(lift) of G if there exists a homomorphism h : VG′ → VG
such that for any vertex v ∈ VG′ , h maps ∂G′(v), the
neighborhood of v in G′, bijectively onto ∂G(h(v)). A
covering graph G′ is called a k-cover if |VG′ | = k|VG|.
Theorem II.1 (Special Case of Vontobel [12]). For
every graph G and every matrix M ∈ Rm×m≥0 ,

homB(G,M) = lim sup
k→∞

k

√∑
G′∈Ck(G) hom(G′,M)

(k!)|EG|
,

where Ck(G) is the set of all k-covers of G. Note that
|Ck(G)| = k!|E(G)|.

Proof. The detailed proof can be found in Theorem 33
of [12]. While the presentation therein is based on so-
called normal factor graphs in which edges correspond
to variables and nodes correspond to functions, the same
argument can be applied, with minor modification for
standard factor graphs. To see this, simply replace every
variable node in a standard factor graph with an equality
node (variables that are adjacent to a single factor are
replaced with a half-edge). There is a bijection between
graph covers of the new normal factor graph and graph
covers of the standard factor graph such that elements
in each bijective pair correspond to exactly the same
counting problem.

B. Log-supermodularity

Definition II.2. A non-negative, real-valued function,
g : Rn → R+ is log-supermodular (equivalently,
multivariate totally positive of order two) if

g(x)g(y) ≤ g(x ∧ y)g(x ∨ y),
for all x, y ∈ Rn, where x ∨ y is the componentwise
maximum of the vectors x and y and x ∧ y is their
componentwise minimum. By Topkis’ characterization
theorem [19], a strictly positive twice continuously
differentiable function g : Rn → R is log-supermodular
if and only if ∂2 log g

∂xi∂xj
≥ 0 for all i 6= j.

Log-supermodular functions play an important role
in the study of correlation inequalities, e.g., in the
FKG inequality. Prior work has generalized the Four
Functions Theorem of Ahlswede and Daykin [20] to
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prove a general relationship between log-supermodular
MRFs and their graph covers.

Theorem II.3 (Ruozzi [21]). If Gk is a k-cover of the
graph G given by the covering map h and the potential
functions ψij:(i,j)∈EG are all log-supermodular, then

Z(G;φ, ψ)k ≥ Z(Gk; φ̂, ψ̂),
where φ̂i = φh(i) for each i ∈ VGk and ψ̂ij = ψh(i)h(j)
for each (i, j) ∈ EGk .

III. GRAPH COVERS AND WEIGHTED
HOMOMORPHISM COUNTING

We begin by showing that the Bethe free energy,
homB(·, ·), always yields an upper bound on the posited
lower bound in Sidorenko’s conjecture.

Theorem III.1. For any bipartite graph G =
(AG, BG, EG) and arbitrary graph H with correspond-
ing adjacency matrix MH ,

homB(G,M
H) ≥ homS(G,M

H).

Proof. We will assume that G is connected with no
isolated vertices. If not, a similar argument can be made
for each connected component, and the results for each
component can be combined using the observation that
homB(G,M

H) = homB(G1,M
H) · homB(G2,M

H)
whenever G is the disjoint union of G1 and G2. The
Bethe free energy is then

log homB(G,M
H) =

sup
τ∈T

[ ∑
i∈AG,j∈BG
(i,j)∈EG

∑
xi,xj

τij(xi, xj) logM
H
xi,xj

−
∑

i∈AG∪BG

∑
xi

τi(xi) log τi(xi)

−
∑

i∈AG,j∈BG
(i,j)∈EG

∑
xi,xj

τij(xi, xj) log
τij(xi, xj)

τi(xi)τj(xj)

]
.

For all (i, j) ∈ EG, let τ ′i,j(xi, xj) ,
MH
xi,xj

2|EH | for all

xi, xj , and for all i ∈ AG ∪ BG, let τ ′i(xi) ,
degH(xi)
2|EH |

for all xi. We have that

log homB(G,M
H)

(a)

≥
∑

i∈AG,j∈BG
(i,j)∈EG

∑
xi,xj

τ ′ij(xi, xj) logM
H
xi,xj

−
∑

i∈AG∪BG

∑
xi

τ ′i(xi) log τ
′
i(xi)

−
∑

i∈AG,j∈BG
(i,j)∈EG

∑
xi,xj

τ ′ij(xi, xj) log
τ ′ij(xi, xj)

τ ′i(xi)τ
′
j(xj)

(b)
=

∑
i∈AG,j∈BG
(i,j)∈EG

∑
xi,xj

τ ′ij(xi, xj) log τ
′
ij(xi, xj)xi,xj

+ |EG| log(2|EH |)−
∑

i∈AG∪BG

∑
xi

τ ′i(xi) log τ
′
i(xi)

−
∑

i∈AG,j∈BG
(i,j)∈EG

∑
xi,xj

τ ′ij(xi, xj) log
τ ′ij(xi, xj)

τ ′i(xi)τ
′
j(xj)

=|EG| log(2|EH |)−
∑

i∈AG∪BG

∑
xi

τ ′i(xi) log τ
′
i(xi)

+
∑

i∈AG,j∈BG
(i,j)∈EG

∑
xi,xj

τ ′ij(xi, xj) log[τ
′
i(xi)τ

′
j(xj)]

(c)
= |EG| log(2|EH |)

+
∑

i∈AG∪BG

∑
xi

(degG(i)− 1)τ ′i(xi) log τ
′
i(xi)

(d)

≥|EG| log(2|EH |)

+
∑

i∈AG∪BG

[
(degG(i)− 1) log

1

|V (H)|

]
(e)
= (|AG ∪BG| − 2|EG|) log |VH |

+ |EG| log hom(K2,M
H),

where (a) follows from the observation that τ ′ is in
the local marginal polytope (i.e., it represents local
probability distributions that satisfy the marginaliza-
tion conditions), (b) follows from the observation that
MH
xi,xj = 2|EH |τ ′ij(xi, xj), (c) follows from the fact

that for all edges (i, j) ∈ EG and all xi, τ ′i(xi) =∑
xj
τ ′ij(xi, xj), (d) follows from the observation that

the entropy is maximized by the uniform distribution
(and consequently that the negative entropy is min-
imized there), and (e) uses the fact that 2|EH | =∑
xi,xj

MH
xi,xj = hom(K2,M

H). From the definition
of Sidorenko’s lower bound in (4),

homB(G,M
H) ≥ |VH ||VG|−2|EG| hom(K2,M

H)|EG|

= homS(G,M
H).

Using the same reasoning as in the proof of Theorem
III.1, we can conclude a similar result for general non-
negative weight matrices M ∈ Rm×m≥0 .

Corollary III.2. For any bipartite graph G and arbi-
trary M ∈ Rm×m≥0 ,

homB(G,M) ≥ hom(K2,M)|EG|m|VG|−2|EG|

= homS(G,M).

Proof. Set z ,
∑
x,y∈[m]Mx,y . For all (i, j) ∈ EG

and xi, xj ∈ [m], let τ ′i,j(xi, xj) , Mxi,xj/z, for all
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i ∈ AG and xi ∈ [m], let τ ′i(xi) , (
∑
xj∈[m]Mxi,xj )/z,

for all j ∈ BG and xj ∈ [m], let τ ′j(xj) ,
(
∑
xi∈[m]Mxi,xj )/z. We can then apply the same ar-

gument except that we replace 2|EH | with z in step (b)
of the proof.

Remark III.3. While there exist situations in which
equality is achieved in Theorem III.1, e.g., the triv-
ial case in which G is a disjoint union of single
edges, homB is often significantly larger than homS.
For example, let MC4 be the adjacency matrix of
the 4-cycle. We have hom(K3,3,M

C4) = 164 while
homS(K3,3,M

C4) = 8 and homB(K3,3,M
C4) = 64.

IV. DISPROOF OF CONJECTURE I.2

First, note that Conjecture I.2 is easily seen to be false
if we remove the bipartite requirement on the graph G.
That is, in general, the Bethe approximation need not
yield a lower bound on the desired counting problem.
In this section, as a counter example to Conjecture I.2,
we show that there exists a bipartite graph G and a graph
H such that

hom(G,MH) < homB(G,M
H).

We will make use of the following construction. First,
let G be the graph obtained by gluing together d disjoint
4-cycles together along a common edge. Now, let H ′ be
an r-regular bipartite graph with vertex set X ∪ Y such
that |X| = |Y | = n. Construct a graph H by adding
a vertex a to H ′ and connecting it to every vertex in
X , adding a vertex b and connecting it to every vertex
in Y , and then adding a self-loop to both a and b. For
appropriate choices of n, r, d, these constructions (see
Figure 1) yield a counterexample to Conjecture I.2.

Theorem IV.1. Let G be the graph obtained by gluing
together d disjoint 4-cycles together along a common
edge, and let the graph H be obtained from an r-regular
bipartite graph H ′ = (A,B,E) where |A| = |B| = n
as described above. Then,

hom(G,MH) ≤ 4(n+ 1)2 · sd,
and

homB(G,M
H) ≥

(nr
2

)d
,

where MH is the unweighted adjacency matrix of graph
H and s = max(r(r + 1) + n+ 1, 2(n+ 1)).

Proof. The proof is divided into two parts. First we
will show that hom(G,MH) ≤ 4(n + 1)2 · sd. Let
e = (u, v) ∈ EG be the common edge of the 4-cyles in
G. Let u,wu, wv, v be the vertices of a 4-cycle in G (see
Figure 1), and let C denote its vertex-induced subgraph.
We will bound the number of valid homomorphisms

wv,1 wv,2 · · · wv,d−1 wv,d

wu,1 wu,2 · · · wu,d−1 wu,d

u

v

Y

X

a

b

y1 y2 · · · yn−1 yn

x1 x2 · · · xn−1 xn

Fig. 1. A bipartite graph G (left) and a target graph H (right) that
yield a counter example for Conjecture I.2.

from each 4-cycle into H , and then, by symmetry, use
this to bound the total number homomorphisms from G
to H .

For a homomorphism φ : VC → VH , we can divide
its behavior on the edge (u, v) into three possible cases.

1) If φ(u) = φ(v) = a, then either φ(wu) = a, or
φ(wv) = a, or both. So, there are less than 2(n+1)
such homomorphisms.

2) If φ(u) = a and φ(v) = xi for any xi ∈ X ,
then either φ(wv) ∈ NH(xi) ∩ Y and φ(wu) ∈
NH(φ(wv))∩X , which yields less than r(r+1) ho-
momorphisms, or φ(wv) = a and φ(wu) ∈ NH(a),
which adds (n+1) more. So, all together there are
at most r(r + 1) + (n+ 1).

3) If φ(u) = xi, for any xi ∈ X and φ(v) = yj
for any yj ∈ Y , then φ(wu) ∈ NH(xi) and
φ(wv) ∈ NH(yj) both yield (r + 1) homomor-
phisms, which implies that there are at most (r+1)2

homomorphisms of this form. Note that (r+1)2 ≤
r(r + 1) + n+ 1 ≤ s.

Up to symmetry of H , e.g., by swapping b for a in
case 1, these are the only choices for φ(u) and φ(v) that
can be extended to a valid homomorphism. So, given
any φ its behavior on the edge (u, v) falls into one of
the three cases above, and hence the number of valid
homomorphisms for the cycle u,w1, w2, v is at most s.
Finally, there are at most 2(n+ 1) possible choices for
each of φ(u) and φ(v) (each of which results in at most s
valid homomorphisms) and there are exactly d 4-cycles
in the graph G. So, the number of homomorphisms from
G to H is at most 4(n+ 1)2 · sd.
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Before proceeding to the second statement of the
theorem, consider deleting the edge e = (u, v) from
G. If φ(u) = a, φ(v) = b, φ(wu) ∈ X , and φ(wv) ∈
NH(φ(wu))∩Y , then φ is a valid homomorphism. From
this we can conclude that hom(G − e,H) ≥ (nr)d.
In other words, adding the edge e dramatically de-
creases the number of homomorphisms from G to H .
With this observation, we will proceed to show that
homB(G,M

H) ≥ (nr/2)d.
In the remaining argument we will analyze the graph

covers of G. Let k be an even number. We claim that
there are k-covers of G that contradict Conjecture I.2.
Denote the d neighbors of u in VG \v as wu,1, . . . , wu,d
and the d neighbors of v in VG \ u as wv,1, . . . , wv,d
(see Figure 1, left). Any k-cover of G can be built by
the following process. First, from vertices of graph G,
take k copies of both u and v and label them u1, . . . , uk
and v1, . . . , vk respectively. Then for all j ∈ [k] connect
uj and vj together. Next, for all i ∈ [d] add k copies of
wu,i for each uj and label them wju,i, and add k copies
of wv,i for each vj and label them wjv,i. Connect each
wju,i to ui and each wjv,i to vj . To complete the k-cover,
for all i ∈ [d] and j ∈ [k], wju,i has to be connected to
a wzv,i for some z ∈ [d] (note that z does not have to be
equal to j). Figure 2 visualizes this construction.

We call a cover good if each neighbor of uj with
j ≤ k/2 is paired with a neighbor of vz with z > k/2,
and each neighbor of uj with j > k/2 is paired with
a neighbor of vz with z ≤ k/2. In a good cover, we
think of dividing the copies of the vertices in G into
two blocks, each of which contains exactly k/2 copies
of each vertex in G. A cover is good if all edges from
the copies of u to the copies of wu and the edges from
the copies of v to the copies of wv are inside one of
the two blocks while the edges from a copy of a wu to
a copy of a wv must go between the two blocks. See
Figure 2 for a visualization of this construction.

By symmetry, there are (k/2)!2d(k!)2d+1 good cov-
ers. Note that there are (k!)3d+1 k-covers of G and that

(k/2)!2d(k!)2d+1

(k!)3d+1
=

(
(k/2)!2

(k)!

)d
>

(
1

2k

)d
. (5)

The remainder of the argument is to show that these
good covers have too many valid homomorphisms into
H .

For a good cover Gk∗, we will lower bound the
number of homomorphisms by counting the homomor-
phisms φ : VGk∗ → VH such that φ({u1, . . . , uk/2}) =
φ({v1, . . . , vk/2}) = {a} and φ({uk/2+1, · · · , uk}) =
φ({vk/2+1, . . . , vk}) = {b}. By construction, φ(wiu,j) 6∈
{a, b} for any i and j. In H , the vertices a and b have n
neighbors in VH \ {a, b}. So, each of the kd neighbors
of the uis can be mapped to one of n different choices.

w1
u,d . . . wk/2

u,d

...

w1
u,1 . . . wk/2

u,1

w1
v,d . . . wk/2

v,d

...

w1
v,1 . . . wk/2

v,1

u1

...

uk/2

v1

...

vk/2

wk/2+1

u,d . . . wk

u,d

...

wk/2+1

u,1 . . . wk

u,1

wk/2+1

v,d . . . wk

v,d

...

wk/2+1

v,1 . . . wk

v,1

uk/2+1

...
uk

vk/2+1

...
vk

(a)

(b)

Fig. 2. The vertices of an k-cover of the graph G in the proof of
Theorem IV.1. In a valid k-cover, wi

u,j can only pair with w`
v,j when

i, ` ∈ {1, . . . , k}. In the case of good covers, wi
u,j with i ≤ k/2

pairs with w`
v,j with ` > k/2, i.e., only edges of the form (b) are

allowed. As there are 2d paired groups, there are (k/2)!2d number
of ways to pair every w in a good cover. In an k-cover, there are k!d

number of ways to pair every w.

Consequently, for each of the kd neighbors of vis there
are r feasible choices. As a result, we have nkdrkd

of these special homomorphisms. Therefore, the total
number of homomorphisms from VGk∗ to VH is at least
(nr)kd. This implies, by Equation (5), that the average
homomorphism number among all k-covers is at least
(nr/2)kd. Hence,

homB(G,M
H) ≥

(nr
2

)d
.

Corollary IV.2. Conjecture I.2 is false.

Proof. Using Theorem IV.1, any choice of r, n, and d
such that (nr

2

)d
> 4(n+ 1)2sd,

yields a counterexample to Conjecture I.2, e.g., d = 100,
n = 24 and r = 5. Note, however, that Sidorenko’s con-
jecture holds independent of the choice of n, r, and d:
gluing C4’s (or in fact any graphs satisfying Sidorenko’s
conjecture) along an edge preserves Sidorenko’s prop-
erty [11].

V. SPECIAL CASES OF THE CONJECTURE

While Conjecture I.2 is false in general, in this
section, we aim to demonstrate special cases in which
Conjecture I.2 is true. These results are still useful: by
Theorem III.1 if Conjecture I.2 is true for a specific
bipartite graph G, then so is Sidorenko’s conjecture.
Additionally, the lower bound produced by the Bethe
free energy can only improve upon Sidorenko’s lower
bound in these cases. Key to most of the arguments is
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a matrix reformulation of the Bethe free energy based
on the combinatorial characterization.

A. A Matrix Reformulation

In this section, we will show that homB(G,M) =
lim supk→∞

k
√
hom(G,Mk) for an appropriately cho-

sen matrix Mk. To begin, notice that every k-cover
of a bipartite graph G = (AG, BG, EG), call it G′,
can be obtained in the following way. First, and by
definition of k-covers, VG′ consists of k copies of each
vertex i ∈ VG, denoted by i1, . . . , ik. For each edge
(i, j) ∈ EG, select a permutation σij ∈ Sk, where Sk
is the set of all permutations on k elements. Then add
the edge (ia, jσij(a)) to G′ for each a ∈ [k]. With this
construction, and recalling that NG′(i) denotes the set
of neighbors of node i in graph G′, we observe that

hom(G′,M) =
∑

x∈[m]|VG′ |

∏
i∈AG′ ,j∈BG′
(i,j)∈EG′

Mxi,xj

=
∑

x∈[m]|VG′ |

∏
i∈AG,j∈BG
(i,j)∈EG

k∏
a=1

Mxia ,xjσij(a)
.

The average number of weighted homomorphisms from
a k-cover of G to M is then given by the sum over all
possible σij ∈ Sk for each (i, j) ∈ EG, as∑
G′∈Ck(G)

hom(G′,M)

(k!)|E|

=
∑

G′∈Ck(G)

∑
x∈[m]|VG′ |

∏
i∈AG,j∈BG
(i,j)∈EG

1

k!

k∏
a=1

Mxia ,xjσij(a)

=
∑

x∈[m]|VG′ |

∑
G′∈Ck(G)

∏
i∈AG,j∈BG
(i,j)∈EG

1

k!

k∏
a=1

Mxia ,xjσij(a)

(a)
=

∑
x∈[m]|VG′ |

∏
i∈AG,j∈BG
(i,j)∈EG

[
1

k!

∑
σ∈Sk

k∏
a=1

Mxia ,xjσ(a)

]
,

where (a) holds because the choice of k-cover can
be done via choosing a permutation for every edge
independently. Now, let φ : [m]k → [mk] be the
bijection that sends an element of [m]k to its position in
lexicographical order among all vectors in [m]k. Then
for each I, J ∈ [m]k we define matrix

Rk(M)φ(I),φ(J) ,
1

k!

∑
σ∈Sk

k∏
a=1

MIa,Jσ(a) .

The matrix Rk(M) can be equivalently expressed as
the product of a matrix depending only on M and a
symmetrizing matrix that we will denote as Tm,k. To

see this, let D ∈ Rm×m be the identity matrix, and
define Dσ,k ∈ Rm

k×mk
≥0 as

Dσ,k
φ(I),φ(J) ,

k∏
a=1

DIa,Jσ(a) ,

for all I, J ∈ [m]k,
Notice that Dσ,k ∈ Rmk×mk is a permutation matrix.

If σ ∈ Sk is the identity permutation, then Dσ,k = D⊗k,
the standard k-fold Kronecker product. Define Tm,k ,
1
k!

∑
σ∈Sk D

σ,k. With this definition,

Rk(M)φ(I),φ(J) =
1

k!

∑
σ∈Sk

k∏
a=1

MIa,Jσ(a)

=
1

k!

∑
σ∈Sk

(
M⊗kDσ,k

)
φ(I),φ(J)

=
(
M⊗kTm,k

)
φ(I),φ(J)

.

The “symmetrizing” matrix Tm,k arises naturally in a
variety of mathematical applications and has a number
of interesting properties that follow from simple alge-
braic manipulations (see [22] for additional discussion
of this operation).

Proposition V.1. For each m, k ∈ N,
• Tm,k · Tm,k = Tm,k.
• For every M ∈ Rm×m, Tm,k ·M⊗k =M⊗k ·Tm,k.
• Tm,k is symmetric and doubly stochastic.
• For any k vectors v1, . . . , vk ∈ Rm,

Tm,k ·(v1⊗· · ·⊗vk) =
1

k!

∑
σ∈Sk

vσ(1)⊗· · ·⊗vσ(k).

As a consequence of the above arguments, we can
reduce the counting problem over graph covers to a
counting problem over the original graph with a different
matrix on each edge. Specfically, we can write∑

G′∈Ck(G)

hom(G′,M)

(k!)|E|
= hom(G,Rk(M))

= hom(G,M⊗kTm,k).

(6)

Theorem II.1, together with (6), implies the following
proposition.

Proposition V.2. For every bipartite graph G and
nonnegative matrix M ∈ Rm×m≥0 ,

homB(G,M) = lim sup
k→∞

k
√

hom(G,M⊗kTm,k).

B. A Bilinear Characterization

We can also express the weighted homomorphism
counting problem in a bilinear form (see Section VI for
an application of this construction). Fix a bipartite graph
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G, and observe that hom(G,M) = hom(G, IMI)
where I is the m × m identity matrix. We can think
of IMI as subdividing each edge of G, in the form of
an MRF, into three edges:

hom(G, IMI)

=
∑

x∈[m]|AG|,y∈[m]|BG|

∏
i∈AG,j∈BG
(i,j)∈EG

(IMI)xi,yj

=
∑

x∈[m]|AG|,y∈[m]|BG|

r∈[m]|EG|,s∈[m]|EG|

∏
i∈AG,j∈BG
(i,j)∈EG

Ixi,rijMrij ,sijIsij ,yj .

As was done in Section V-A, let φk : [m]k → [mk] be
the bijection that sends an element of [m]k to its position
in lexicographical order among all vectors in [m]k. For
ease of notation, we will suppress the dependence on
k. For each x ∈ [m]|AG| and r ∈ [m]|EG|, define the
matrix

Vφ(x),φ(r) ,
∏

i∈AG,j∈BG
(i,j)∈EG

Ixi,rij .

Given V , define vector v ∈ Rm|EG| such that vj =∑
i∈[m|AG|] Vi,j , for all j ∈ [m|EG|]. Similarly, for each

s ∈ [m]|EG| and y ∈ [m]|BG| define the matrix

Wφ(s),φ(y) ,
∏

i∈BG,j∈AG
(i,j)∈EG

Isij ,yj

and the vector w ∈ Rm|EG| such that wi =∑
j∈[m|B|]Wi,j . For a connected bipartite graph G =

(AG, BG, EG), v, w ∈ {0, 1}m
|EG| with

∑
i vi = m|AG|

and
∑
i wi = m|BG|.

Intuitively, the 0-1 vectors v and w act as indicators
for valid assignments to the row and column indices of
the matrix M for each edge of G. The homomorphism
counting problem can then be expressed as the bilinear
form

hom(G,M) = vTM⊗|EG|w. (7)

Further, suppose that G = (A,B,E) is symmetric
in the sense that if i ∈ A is connected to j ∈ B,
then i ∈ B is connected to j ∈ A. In this case, w
and v are equivalent up to a permutation matrix P of
the form Dσ,|E|, where D is the m|E| ×m|E| identity
matrix and σ ∈ S|E|. So we can express the weighted
homomorphism counting problem as

hom(G,M) = vTM⊗|EG|Pv. (8)

For symmetric bipartite graphs, we can, without loss of
generality, assume that v and P are chosen so that P is a
symmetric permutation matrix (v and w encode equality
constraints on the left and right endpoints of the disjoint

union of |EG| edges, which means that, in the symmetric
case, v and w encode the same constraints but in a
different ordering of the edges). Note also that the square
of any homomorphism number can be put into this
form: given a bipartite G = (AG, BG, EG), construct
H by forming the disjoint union of G with itself and
arranging the partitions of H so that each partition
contains one copy of AG and one copy of BG that are
not connected, i.e., given G1 and G2 as two copies of
G, define H = (AG1

∪ BG2
, AG2

∪ BG1
, EG1

∪ EG2
).

This construction gives hom(G,M)2 = hom(H,M).

C. Quasiconvexity and Weakly Norming Graphs

Lovász [1] asked under what circumstances the
weighted homomorphism counting problem induces a
norm. This question gave rise to the study of the so-
called weakly norming graphs and the convexity of
hom(G, ·).
Definition V.3. Let W be the space of all two-variable
bounded measurable functions on [0, 1]2, such that for
all W ∈ W and u, v ∈ [0, 1], W (v, u) = W (u, v). A
graph G is weakly norming if for all W ∈ W ,∫

x∈[0,1]V (G)

∏
(i,j)∈EG

|W (xi, xj)|
∏
i∈VG

dxi

1/|EG|

is a norm on W when considered as a function of W ,
and the integral is with respect to the Lebesgue measure.

All weakly norming graphs are necessarily bipar-
tite and edge transitive [23]. Even cycles, complete
bipartite graphs, and hypercubes [7] are known to be
weakly norming. However, a complete characterization
of weakly norming graphs is still an open problem.

It has been shown that weakly norming graphs satisfy
Sidorenko’s conjecture, i.e., for a weakly norming graph
G, hom(G,MH) ≥ homS(G,M

H) [7]. Further, it has
been shown that a graph G is weakly norming if and
only if hom(G, ·) is convex on the set of so-called
signed graphons [24], [25], a continuous extension of
the discrete problem considered herein. An interesting
question, then, in our context is whether or not con-
vexity of hom(G, ·), or more generally quasiconvexity,
implies anything about its relationship to homB. Re-
call that a function f : Rn → R is quasiconvex if
f(λx+(1−λ)y) ≤ max{f(x), f(y)} for all x, y ∈ Rn
and all λ ∈ [0, 1]. The following theorem shows that
quasiconvexity of hom(G, ·) combined with permutation
invariance on bipartite graphs is enough to conclude
that the Bethe free energy yields a lower bound on the
weighted homomorphism counting problem.

Theorem V.4. If G is a bipartite graph such that
hom(G,M) is a quasiconvex function of M ∈ Rm×m≥0 ,
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then for any matrix M ∈ Rm×m≥0 and any doubly
stochastic matrix S ∈ Rm×m≥0 ,

hom(G,M) ≥ hom(G,MS).

Proof. As G is a bipartite graph, the function hom(G, ·)
is permutation invariant, i.e., hom(G,MP ) =
hom(G,M) = hom(G,PM) for any permutation ma-
trix P . This follows from the observation that permuting
the rows or columns of M is equivalent to a change of
the variables in the model.

This permutation invariance combined with quasicon-
vexity implies that hom(G,MS) ≤ hom(G,M) for
any doubly stochastic matrix S ∈ Rm×m. To see this,
recall that by the Birkhoff-von Neumann theorem [26],
[27], any doubly stochastic matrix S can be written as
S =

∑
σ∈Sm λσPσ , where

∑
σ∈Sm λσ = 1, λ ≥ 0,

and Pσ is the permutation matrix corresponding to the
permutation σ. We have

hom(G,MS) = hom

(
G,M(

∑
σ∈Sm

λσPσ)

)

= hom

(
G,

∑
σ∈Sm

λσMPσ

)
(a)

≤ max
σ∈Sm

hom(G,MPσ)

(b)
= hom(G,M)

where the inequality (a) follows from quasiconvexity of
hom(G, ·) and (b) follows from permutation invariance.

Corollary V.5. If G is a bipartite graph and
hom(G,M) is a quasiconvex function of M ∈ Rm×m≥0 ,
then hom(G,M) ≥ homB(G,M).

Proof. Applying Proposition V.2,

homB(G,M) = lim sup
k→∞

k

√
hom(G,M⊗kTm,k)

(a)

≤ lim sup
k→∞

k

√
hom(G,M⊗k)

= lim sup
k→∞

k

√
hom(G,M)k

= hom(G,M),

where the inequality (a) follows from Theorem V.4 and
the fact that Tm,k is a doubly stochastic matrix.

VI. DOUBLY STOCHASTIC MATRICES

Corollary V.5 implies that for any bipartite graph
G for which hom(G, ·) is quasiconvex and any
m × m doubly stochastic matrix M , hom(G,M) ≥

hom(G, ( 1
m )1m1Tm), where 1m ∈ Rm×1 has all of

its entries equal to 1. In fact, for any m × m doubly
stochastic matrix M , we can check that homS(G,M) =
m|VG|−|EG| = hom(G, ( 1

m )1m1Tm). Sidorenko’s con-
jecture for doubly stochastic matrices is then equivalent
to the claim that for any bipartite graph G and any m×m
doubly stochastic matrix M ,

hom(G,M) ≥ hom(G, (
1

m
)1m1Tm),

which is reminiscent of the van der Waerden conjecture
for the permanent [28]. In this section, we explore this
special case of the conjecture in more detail, i.e., when
the domain of hom(G, ·) is the set of m × m doubly
stochastic matrices. We will denote the convex set of all
m×m doubly stochastic matrices by Dm.

We will provide several interesting observations
in this special case. We begin with two proposi-
tions demonstrating that hom(G, ·) is monotonically
nondecreasing along the line segement starting at
( 1
m )1m1Tm and ending at any permutation matrix and

that hom(G, ·) attains its maximum over Dm at the
permutation matrices.

Proposition VI.1. For any bipartite graph G =
(AG, BG, EG), any m×m permutation matrix P , and
any λ ∈ [0, 1],

hom(G, (1− λ)( 1
m
)1m1Tm + λP ) ≥ hom(G, (

1

m
)1m1Tm).

Proof. Given Q ⊆ EG, define GQ = (AG, BG, Q).
Having graph GQ we have

hom(G, (1− λ)( 1
m
)1m1Tm + λP )

=
∑

x∈[m]|VG|

∏
i∈AG,j∈BG
(i,j)∈EG

[
(1− λ)( 1

m
)1m1Tm + λP

]
xi,xj

=
∑

x∈[m]|VG|

∏
i∈AG,j∈BG
(i,j)∈EG

[
1− λ
m

+ λPxi,xj

]

=
∑

x∈[m]|VG|

∑
Q⊆EG

fG,Q(λ,m)

 ∏
i∈AG,j∈BG

(i,j)∈Q

λPxi,xj

 ,
where

fG,Q(λ,m) =

 ∏
i∈AG,j∈BG
(i,j)∈EG\Q

1− λ
m


=

(
1− λ
m

)|EG\Q|
.
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Since fG,Q(λ,m) does not depend on the value of x,
swapping the order of summation results in

hom(G, (1− λ)( 1
m
)1m1Tm + λP )

=
∑
Q⊆EG

fG,Q(λ,m)λ|Q| hom(GQ, P )

(a)

≥
∑
Q⊆EG

fG,Q(λ,m)λ|Q| hom(GQ, (
1

m
)1m1Tm)

(b)
=

∑
Q⊆EG

(1− λ)|EG\Q|λ|Q| hom(G, (
1

m
)1m1Tm)

= hom(G, (
1

m
)1m1Tm),

where (a) holds because graph GQ is bipartite and (b)
follows from the observation that for any bipartite graph
H = (VH , EH),

hom(H, (
1

m
)1m1Tm) = (

1

m
)|EH |−|VH |

≤ mc

= hom(H,P ),

where c is the number of connected components of H .
Therefore, hom(GQ, ( 1

m )1m1Tm) ≤ hom(GQ, P ).

Proposition VI.2. For any connected bipartite graph
G = (AG, BG, EG), any m×m permutation matrix P ,
and any m×m doubly stochastic matrix M ,

hom(G,P ) ≥ hom(G,M).

Proof. From Equation (7), hom(G,M) = vTM⊗|EG|w
for appropriately chosen v and w. Define the function
g : Rm|EG|×m|EG| → R as

g(A) , max
σ1,...,σ|EG|∈Sm

trace(wvTA⊗|EG|k=1 Pσk).

Note that g is convex and permutation invariant with
respect to the subgroup of permutation matrices that can
be written as the Kronecker product of |EG|, m × m
permutation matrices. Denote this subgroup as Q. In
what follows, let I represent the m×m identity matrix.
We have

hom(G,M) = vTM⊗|EG|w

= trace(wvTM⊗|EG|)

(a)

≤ g(M⊗|EG|)

(b)

≤ g(I⊗|EG|)

= max
σ1,...,σ|EG|∈Sm

trace(vT ⊗|EG|k=1 Pσkw)

(c)

≤ m

= hom(G,P ),

where (a) follows from the definition of g and the
observation that the m|EG| × m|EG| identity matrix is
in Q, (b) follows from the fact that M⊗|EG| is in the
convex hull of the elements of Q and that g is convex
and permutation invariant over Q (use essentially the
same argument as that of Theorem V.4), and (c) follows
from the observation that if we put a possibly different
m × m permutation matrix on each edge of G, then
there are at most m assignments to the vertices of G
that result in a non-zero value.

Proposition VI.3. For any bipartite graph G =
(AG, BG, EG) that is the disjoint union of trees and
any m×m doubly stochastic matrix M ,

hom(G,M) = hom(G, (
1

m
)1m1Tm).

Proof. Without loss of generality, we can assume that G
is a connected tree-structured graph. If |EG| = 0, then
the result is trivial. Otherwise, it is easy to verify that for
any leaf v of G, hom(G,M) = hom(G \ v,M), where
G \ v is the graph obtained by deleting the vertex v and
its incident edge from G. Repeating this process until a
single vertex remains shows that hom(G,M) = m for
any doubly stochastic matrix M .

Proposition VI.4. Let C2k be the simple cycle on 2k
nodes with k ≥ 2. For all M ∈ Dm

hom(C2k,M) ≥ hom(C2k, (
1

m
)1m1Tm),

where equality holds if and only if M = ( 1
m )1m1Tm.

Proof. Since hom(C2k,M) = trace((MMT )k), it
is enough to show that ( 1

m )1m1Tm is the unique
minimizer of minM∈Dm trace

(
(MMT )k

)
. Clearly,

trace((MMT )k) =
∑m
i=1 λ

k
i , where λ1, λ2, . . . , λm ≥

0 are the eigenvalues of the positive semidefinite
doubly stochastic matrix MMT . Since any doubly
stochastic matrix has one eigenvalue equal to 1,
trace((MMT )k) =

∑m
i=1 λ

k
i ≥ 1, where the mini-

mum is attained at the unique rank 1 doubly stochas-
tic matrix, i.e., MMT = ( 1

m )1m1Tm. Finally, M =
( 1
m )1m1Tm is the unique doubly stochastic solution to
MMT = ( 1

m )1m1Tm, and hence, the unique minimizer
of minM∈Dm trace

(
(MMT )k

)
.

Proposition VI.5. Let G be a bipartite graph. If
hom(G, ·) = hom(G, ( 1

m )1m1Tm) has a unique solu-
tion on Dm or G is cycle free, then hom(G,M) ≥
hom(G, ( 1

m )1m1Tm) for all M ∈ Dm.

Proof. If G is cycle free the result follows by Propo-
sition VI.3. As a result, we need only consider the
case in which hom(G, ·) = hom(G, ( 1

m )1m1Tm) has
a unique solution on Dm and G is a bipartite graph
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with at least one cycle. Suppose by way of contra-
diction that there exists some M ∈ Dm such that
hom(G,M) ≤ hom(G,N) for all N ∈ Dm and that
hom(G,M) < hom(G, ( 1

m )1m1Tm). By Proposition
VI.1, we have that for all permutation matrices P ,

hom(G,M) ≤ hom(G, (
1

m
)1m1Tm) ≤ hom(G,P ).

By continuity and the assumption that hom(G,M) =
hom(G, ( 1

m )1m1Tm) has a unique solution on Dm, for
each permutation matrix P , there exists a unique tP ∈
[0, 1] such that M + tP (P −M) = ( 1

m )1m1Tm. That
is, for every permutation matrix P , the line from M
to P must pass through ( 1

m )1m1Tm. As this cannot be
simultaneously true for all permutation matrices unless
M = ( 1

m )1m1Tm, we encounter a contradiction and the
result follows.

Definition VI.6. For every bipartite graph G =
(AG, BG, EG), with Q ⊆ EG, let homG,Q(M,M ′)
correspond to the homomorphism counting problem in
which the matrix M ′ is placed on every e ∈ Q and
matrix M is placed on every e ∈ EG \Q, i.e.,

homG,Q(M,M ′) ,∑
x∈{1,...,m}|V |

∏
i∈AG,j∈BG
(i,j)∈EG\Q

Mxi,xj

∏
i∈AG,j∈BG

(i,j)∈Q

M ′xi,xj .

Now with U,D ∈ Rm×m≥0 , the sth directional deriva-
tive of hom(G, ·) at U in the direction D, is given by

ds

dts
hom(G,U + tD)

∣∣∣
t=0

=
ds

dts

 ∑
Q⊆EG

t|Q| homG,Q(U,D)

 ∣∣∣
t=0

= s!
∑
Q⊆EG
|Q|=s

homG,Q(U,D),

That is, the sth derivative sums over all
(|EG|

s

)
edge

subsets of size s in which the matrix on the chosen s
edges is set to D while the matrix U is placed on the
remaining edges.

Proposition VI.7. For all bipartite G with at least one
cycle, hom(G, ·) has a local minimum at ( 1

m )1m1Tm
over Dm.

Proof. Fix a doubly stochastic matrix M ∈ Dm such
that M 6= ( 1

m )1m1Tm. We will use the general derivative
test to show that f(t) , hom(G, ( 1

m )1m1Tm + t[M −
( 1
m )1m1Tm]) has a local minimum at the point t = 0.

The sth derivative of f(t) is

ds

dts
f(t) =

s!(
1

m
)|EG|−s

∑
Q⊆EG
|Q|=s

∑
xAG∪BG

∏
i∈AG,j∈BG

(i,j)∈Q

(Mxi,xj −
1

m
).

(9)

Now let k, an even integer, be the length of the
shortest cycle in G. From Proposition VI.3 and (9) the
first k − 1 derivatives of hom(G, ( 1

m )1m1Tm) in the
M − ( 1

m )1m1Tm direction are equal to zero. Intuitively,
placing matrix ( 1

m )1m1Tm on an edge effectively deletes
that edge from the graph as ( 1

m )1m1Tm is a constant.
For the kth derivative, each of the subsets of k edges

corresponds to either a single even cycle or a forest,
and by assumption, there must be at least one k-cycle
among them. We can then apply the same reasoning as
Proposition VI.4 to conclude that the kth derivative is
strictly positive. The result then follows by the general
derivative test.

We note that for general, non-bipartite graphs G, the
matrix ( 1

m )1m1Tm need not be a local minimum.

VII. CONCLUSION

We investigated lower bounds for the weighted homo-
morphism counting problem on bipartite graphs via the
BFE and graph covers. When the BFE yields a lower
bound for a given bipartite graph, it can only improve
over the lower bound conjectured by Sidorenko. We
showed that while this does indeed happen in several
special cases, it need not happen for every biparite
graph. Indeed, we constructed an explicit counterexam-
ple for general bipartite graphs. We believe that the
matrix and bilinear characterizations of the hom and
homB may be useful for establishing lower bounds in
other scenarios. A similar symmetrizing construction
can be made for general MRFs, i.e., those that contain
potentials that depend on more than a pair of variables,
but we leave the details of such a construction for future
work.

APPENDIX

In this appendix, we provide alternative proofs for the
lower bound in the case of single cycles and complete
bipartite graphs (that do not rely on the notion of weakly
norming). These arguments are based on the notion of
majorization.

Definition A.1. A vector v ∈ Rn is majorized by a
vector w ∈ Rn, written v ≺ w, if

k∑
i=1

v[i] ≤
k∑
i=1

w[i], for all k ∈ {1, . . . , n} (10)
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and
n∑
i=1

v[i] =

n∑
i=1

w[i],

where w[i] denotes the ith largest entry of w.

Equivalently, v ≺ w if and only if there exists a
doubly stochastic matrix D such that v = Dw. The
vector v is said to be weakly majorized by w, denoted
v ≺w w, if only condition (10) holds. Moreover, if
f : R→ R is a convex function, then v ≺ w implies that
f(v) ≺w f(w), where f(v) denotes the vector obtained
by applying f to each component of v [29].

Proposition A.2. For every n > 1 and every M ∈
Rm×m≥0 , hom(C2n,M) ≥ homB(C2n,M), where C2n

is the simple cycle on 2n nodes.

Proof. Observe that, for a single cycle, hom(C2n,M) =
tr((MMT )n). From Proposition V.2, it suffices to show
that hom(C2n,M

⊗kTm,k) ≤ hom(C2n,M)k for each
k > 1. Consider,

hom(C2n,M
⊗kTm,k)

(a)
= tr

((
M⊗kM⊗k

T
)n

Tm,k
)

(b)

≤ tr
(((

MMT
)⊗k)n)

(c)
= tr

((
MMT

)n)k
= hom(C2n,M)k,

where (a) follows from Proposition V.1, (b) follows
from a standard majorization argument on the eigenval-
ues of positive semidefinite matrices, see H.1.g. Mar-
shall and Olkin [29], and (c) is a consequence of the
observation that hom(G,M⊗k) = hom(G,M)k for all
graphs G.

Proposition A.3. For every complete bipartite graph
Ka,b and every M ∈ Rm×m≥0 , hom(Ka,b,M) ≥
homB(Ka,b,M).

Proof. The proof considers a reformulation of the count-
ing problem in which the variables in one of the parts
of Ka,b = (A,B,E) have been summed out. For
N ∈ Rm×m≥0 ,

hom(Ka,b, N) =
∑

xB∈[m]b

∑
xA∈[m]a

∏
i∈A

∏
j∈B

Nxi,xj

=
∑

xB∈[m]b

∏
i∈A

 ∑
xi∈[m]

∏
j∈B

Nxi,xj


=

∑
xB∈[m]b

∑
y∈[m]

∏
j∈B

Ny,xj

a

.

We can think of the product
∏
j∈B Ny,xj as a vector

indexed by assignments to the variables xB , i.e.,∏
j∈B

Ny,xj =
[
(Ny,:)

⊗b
]
xB
,

where Ny,: denotes the yth row of N . Now, consider
hom(Ka,b,M

⊗kTm,k) for some k > 1. Following the
above argument and substituting M⊗kTm,k for N yields∑
y∈[mk]

∏
j∈B

(M⊗kTm,k)y,xj

=
∑

y∈[mk]

[(
M⊗ky,: T

m,k
)⊗b]

xB

=
∑

y∈[mk]

[
(M⊗ky,: )

⊗b
(Tm,k)

⊗b]
xB

=

 ∑
y∈[mk]

(M⊗ky,: )
⊗b

(Tm,k)
⊗b


xB

for each xB ∈ [mk]b. Since Tm,k is doubly stochastic,
so is (Tm,k)

⊗b, and we have∑
y∈[mk]

(M⊗ky,: )
⊗b

(Tm,k)
⊗b ≺

∑
y∈[mk]

(M⊗ky,: )
⊗b
.

As f(x) = xa is a convex function for all a > 1, x ≥ 0,
raising each component to the ath power preserves weak
majorization.

hom(Ka,b,M
⊗kTm,k)

=
∑

xB∈[mk]b

 ∑
y∈[mk]

(M⊗ky,: )
⊗b

(Tm,k)
⊗b

a
xB

≤
∑

xB∈[mk]b

 ∑
y∈[mk]

(M⊗ky,: )
⊗b

a
xB

= hom(Ka,b,M
⊗k),

which, in conjunction with Proposition V.2, yields the
desired result.

An stronger version of Proposition A.3 for the case in
which M is an adjacency matrix follows from observa-
tions of Galvin and Tetali [2]. In particular, their results
imply that hom(G′,MH) ≤ hom(Ka,b,M

H)k for any
k-cover G′ of Ka,b and any graph H with adjacency
matrix MH . The above proof argues the result for the
k-covers on average but is somewhat simpler than that
of [2].
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