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Mean Estimation from One-Bit Measurements

Alon Kipnis and John C. Duchi

Abstract

We consider the problem of estimating the mean of a symmetric log-concave distribution under the constraint

that only a single bit per sample from this distribution is available to the estimator. We study the mean squared

error as a function of the sample size (and hence the number of bits). We consider three settings: first, a centralized

setting, where an encoder may release n bits given a sample of size n, and for which there is no asymptotic

penalty for quantization; second, an adaptive setting in which each bit is a function of the current observation

and previously recorded bits, where we show that the optimal relative efficiency compared to the sample mean is

precisely the efficiency of the median; lastly, we show that in a distributed setting where each bit is only a function

of a local sample, no estimator can achieve optimal efficiency uniformly over the parameter space. We additionally

complement our results in the adaptive setting by showing that one round of adaptivity is sufficient to achieve

optimal mean-square error.

I. INTRODUCTION

We consider estimation of parameters from data collected by multiple units under communication constraints

between the units. Such scenarios arise in sensor arrays, where sensor motes collect information, which they transmit

to a central estimation unit [2], [3]. More generally, communication is substantially more expensive than computation

in modern computing infrastructure [4]. It is thus of interest to understand the extent to which communication

constraints induce fundamental accuracy and efficiency limits in parametric estimation problems.

We answer this question in a sylized version of this problem: the estimation of the mean θ of a symmetric

log-concave distribution under the constraint that only a single bit can be communicated about each observation
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Fig. 1. Three encoding settings: (i) Centralized – an encoder sends n bits after observing n samples. (ii) Adaptive (sequential) – the ith
encoder sends the bit Bi depending on its private sample Xi and previous bits B1, . . . , Bi−1. (iii) Distributed – each encoder send the bit

Bi based on its private sample Xi only.
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from this distribution. Different information sharing schemes strongly affect the performance of estimators for θ;

we illustrate the three main settings we consider in Figure 1.

(i) Centralized encoding: all n encoders confer and produce a single message consists of n bits.

(ii) Adaptive or sequential encoding: The nth encoder observes the nth sample and the n− 1 previous bits.

(iii) Distributed encoding: The nth message is only a function of the nth sample.

The distributed setting (iii) is the most restrictive; as it turns out, (ii) is slightly more restrictive than the fully

centralized setting (i), and in our setting, a variant of the adaptive setting (ii) in which there is only one round of

adaptivity—as we make formal later—is enough to achieve the same efficiency as the fully sequential setting (ii).

Each setting has natural applications:

• Signal acquisition (i): A quantity is measured n times at different instances. The results are averaged in order

to reduce measurement noise and the averaged result is then stored or communicated using n bits.

• Analog-to-digital conversion (ii): A sigma-delta modulator (SDM) converts an analog signal into a sequence

of bits by sampling the signal at a very high rate and then using one-bit threshold detector combined with a

feedback loop to update an accumulated error state [5]. Therefore, the expected error in tracking an analog

signal using an SDM falls under our setting (ii) when we assume that the signal at the input to the modulator

is a constant (direct current) corrupted by, say, thermal noise [6]. Since the sampling rates in SDM are usually

many times more than the bandwidth of its input, analyzing SDM under a constant input provides meaningful

lower bound even for non-constant signals.

• Privacy (ii)–(iii): A business entity is interested in estimating the average income of its clients. In order to

keep this information as confidential as possible, each client independently provides an answer to a yes/no

question related to its income [7].

Let us provide an informal description of our results and setting. For an estimator θn with finite quadratic risk

(mean squared error (MSE)) Rn = Eθ[(θn − θ)2], we study the limit

lim sup
n→∞

nRn. (1)

By comparing this quantity to achievable rates of convergence without communication constraints, we can evaluate

the efficiency losses—asymptotic relative efficiency—of the estimator to appropriately optimal (unconstrained)

estimators. (We shall be more formal in the sequel.) By lower bounding the quantity (1), we also provide limits on

estimation of single-bit-per-measurement constrained signals in more general settings [8], [9], [10], [11], [12].

In setting (i), the estimator can evaluate any optimal estimator of location (e.g., the sample mean if the data is

Gaussian), then quantize it using n bits. As the accuracy in describing the empirical mean decreases exponentially

in the number of bits, the quantization error is negligible compared to the statistical error in mean estimation [13],

[14]. That is, centralized encoding induces no asymptotic efficiency loss. The story is different in settings (ii) and

(iii). Precisely, we show that in the adaptive setting (ii), the optimal efficiency of a one-bit scheme is (asypmtotically)

precisely that of the sample median, and that this efficiency is achievable. As a concrete example, when Xi are

i.i.d. Gaussian, we necessarily lose a factor of π/2 ≈ 1.57 in the asymptotic risk; the one-bit constraint decreases

the effective sample size by a factor of π/2 compared to estimating it without the bit constraint. It turns out that,

in the settings we consider, only a single round of adaptivity (see Fig. 3 for an illustration) is sufficient to achieve

optimal convergence rates. In distinction from setting (ii), in setting (iii) when the messages must be independent,

there is no distributed estimation scheme that achieves the efficiency of the sample median uniformly over θ. We

establish this result via Le Cam’s local asyptotic normality theory, allowing us to provide exact characterizations

of the asymptotic efficiency of suitably regular encoding schemes.

Our asymptotic setting is important in that it allows us to elide difficulties present in finite sample settings. For

example, in setting (i), developing an optimal quantizer at finite n requires choosing a 2n level scalar quantizer,

which is non-trivial [15]. In interactive and sequential settings (e.g. (ii)), the situation is more challenging, as it is

unclear whether any type of compositionality applies, in that an n− 1-step optimal estimator may be only vaguely

related to the n-step optimal estimator. Thus, to provide our lower bounds, we rely on stronger information-based

inequalities, including the Van Trees inequality [16] and Le Cam’s local asymptotic normality theory [17], [18],

[19].
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Related Work

The many challenges of estimation under communication constraints have given rise to a large literature

investigating different aspects of constrained estimation. While our setting—in which we observe a single bit

per signal Xi—is restrictive, it inspires substantial work. Perhaps the most related is that of Wong and Gray [6],

who study one-bit analog-to-digital conversion of a constant input corrupted by Gaussian noise using a Sigma-Delta

Modulator (SDM). They show almost sure convergence, but provide no rate (and no rates follow from their analysis);

in contrast, we provide an optimal procedure and matching lower bound achieving risk π
2σ

2 in the limit (1) when

Xi
iid∼ N (θ, σ2). A growing literature on one-bit measurements in high-dimensional problems [8], [20], [21] shows

how to reconstruct sparse signals, where Baraniuk et al. [8] show that in noiseless settings, exponential decay in

MSE is possible; our results make precise the penalty for noise under one-bit sensing, showing that the error can

decay (under Gaussian noise) at best as π
2
σ2

n .

In fully distributed settings (iii), the challenges are different, and there is also a substantial literature with one-bit

(quantized) measurements [22], [23], [24], [25], [26]. We complement these results by providing precise lower

bounds and optimality results; previous performance bounds are suboptimal. Work on the remote multiterminal

source coding problem, or CEO problem [27], [28], [29], [30], provides lower bounds on the MSE in setting (iii);

because of the somewhat distinct setting, these bounds are looser than ours (which have optimal constants). In

settings more similar to our statistical estimation scenario—such as estimation of parameters in a multi-dimensional

linear model—a line of work provides lower bounds on statistical estimation [31], [32], [33], [34], [35], [36], [37],

[38]. These results are finite sample and apply more broadly than ours, but as a consequence, they have unusable

constants, while our stylized model allows precise identification of exact constants. Work subsequent to the initial

draft of this paper [39] uses an approach similar to ours—bounding quantized Fisher information—to derive lower

bounds on the error in parametric estimation problems from quantized measurements in non-adaptive settings.

Testing (and discrete estimation) problems also enjoy a robust literature, though as a consequence of our results

to come, the results for testing, i.e., when the parameter space Θ is finite, are quite different from those for

estimation, as it is possible to construct optimal decision (testing) rules in a completely distributed fashion. In this

context, Longo et al. [40] propose procedures for distributed testing based on optimizing a Bhattacharyya distance.

Tsitsiklis [41] shows that when the cardinality of Θ is at most M and the probability of error criterion is used,

then no more than M(M − 1)/2 different detection rules are necessary in order to attain probability of error with

optimal exponent. Moreover, in a distributed setting, feedback is unnecessary for optimal testing/detection [42], in

strong distinction to the estimation case we consider.

The remainder of this paper is organized as follows. In Section II we describe the problem, notation, and our

basic assumptions. In Section III we provide two simple bounds on the efficiency and MSE. Our main results for

the adaptive and distributed cases are given in Sections IV and V, respectively. In Section VI we provide concluding

remarks.

II. PROBLEM FORMULATION AND NOTATION

Let f : R → R+ be a symmetric and log-concave probability density, which necessarily has finite second moment

σ2, and let Θ ⊂ R be closed and convex. For θ ∈ R, let Pθ be the probability distribution with density f(x− θ),
so that θ indexes the location family {Pθ}θ∈Θ. The log-concavity and symmetry f(x) imply that Pθ has a unique

mean and median at θ [43]. We observe a sample X1, . . . ,Xn
iid∼ Pθ, where θ is unknown, and wish to estimate θ

given only binary messages B1, . . . , Bn ∈ {0, 1} about each Xi. We study this under three distinct computational

scenarios, which we illustrate in Figure 1:

(i) Centralized, where Bi = Bi(X1, . . . ,Xn), i = 1, . . . , n.

(ii) Adaptive, where Bi = Bi(Xi, B1, . . . , Bi−1), i = 2, . . . , n.

(iii) Distributed, where Bi = Bi(Xi), i = 1, . . . , n.

We also consider a hybrid of the fully distributed setting (where the bits Bi are independent) and the adaptive

setting (where each bit Bi may depend on the previous bits) to a one-step adaptive setting, where the quantization

scheme may be modified to depend on one fixed function of the previous information.

(ii’) One-step adaptive, where for some function g and a (fixed) t, if i ≤ t then Bi = Bi(Xi) while if i > t, then

Bi = Bi(Xi, g(B1, . . . , Bt)).
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We measure the performance of an estimator θn , θn(B1, . . . , Bn) by one of a few notions. In the simplest case,

we assume a prior π on θ (which may be a point mass) and consider the quadratic risk

Rn = Rn(π) ,
∫

Eθ (θn − θ)2 dπ(θ), (2)

where the expectation is taken with respect to the distribution of X1, . . . ,Xn
iid∼ Pθ. The main problems we consider

in this paper are the minimal value of the risk (2) as a function of the sample size n and the density f , under

different choices of the encoding functions in cases (i)–(iii). The quadratic risk (2) may be infinite in some cases;

we defer discussion of this case to later sections, as it is technically demanding and detracts from the presentation

here.

Now, let σ2f , E[f
′(X)2

f(X)2 ] be the Fisher information for the location in the family {Pθ}, which is finite when f is

log-concave and symmetric. We give particular attention to the asymptotic relative efficiency (ARE) of estimators

with respect to asymptotically normal efficient estimators achieving the information bound [19]. In this case, if

{m(n), n ∈ N} is a sequence such that

√

m(n)(θn − θ)
d N (0, σ2f ),

then the ARE of the estimator is [44, Def. 6.6.6]

ARE(θn) , lim inf
n→∞

m(n)

n
. (3)

In the special case where there exists V ∈ R such that

m(n)Rn = m(n)Eθ (θn − θ)2 = V + o(1),

the ARE of θn is σ2f/V , so that θn requires a sample V/σ2f -times larger than that of an efficient estimator for

comparable accuracy to the (information) efficient estimator.

Notation and basic assumptions

To describe our results and make them formal, we require some additional notation and one main assumption,

which restricts the class of distributions we consider. We use the typical notation that F (x) =
∫ x
−∞ f(t)dt is the

cumulative distribution function of the Xi, and we let

h(x) ,
f(x)

1− F (x)
=

f(x)

F (−x)
be the hazard function (or the failure rate or force of mortality), which is monotone increasing as f is log-

concave [45]. Given the centrality of the median to our efficiency bounds, it is unsurprising that the quantity

η(x) ,
f2(x)

F (x)(1− F (x))

(⋆)
=

f(x)f(−x)
F (x)F (−x) (4)

appears throughout our development (equality (⋆) is immediate by the symmetry of f ). For p ∈ (0, 1) and x =
F−1(p),

1

η(x)
=

1

η(F−1(p))
=

p(1− p)

f(F−1(p))2
(5)

is of course the familiar asymptotic variance of the pth quantile of the sample X1, . . . ,Xn (cf. [19], Ch. 21).

For f the normal density, classical results [46], [47] show that η(x) is a strictly decreasing function of |x|, as we

illustrate in Fig. 2. We consider log-concave symmetric distributions sharing this property. Specifically, we require

the following.

Assumption A1: The density f is log-concave and symmetric. Additionally, the origin x = 0 uniquely maximizes

η(x), and η(x) is non-increasing in |x|.
Under this assumption,

4f2(x) ≤ η(x) ≤ η(0),
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Fig. 2. The function η(x) = f2(x)/F (x)F (−x) for f(x) = φ(x) the standard normal density.

where η(0) = 4f2(0) is the asymptotic variance of the sample median (Eq. (5) at p = 1/2). Combined with

log-concavity of f(x), Assumption A1 implies that η(x) vanishes as |x| → ∞. Several distributions satisfy

Assumption A1, including the generalized normal distributions with a shape parameter between 1 and 2 (including

the normal and Laplace distributions). Symmetric log-concave distributions failing Assumption A1 include the

uniform distribution and the generalized normal distribution with shape parameter greater than 2. Some restriction

on the class of distributions is necessary to develop our results; indeed, in Appendix VII we provide a brief

discussion on the uniform distribution, where a one-step adaptive estimator with single bit observations can achieve

convergence rates faster than the familiar
√
n paramateric rate.

III. CONSISTENT ESTIMATION AND OFF-THE-SHELF BOUNDS

We begin our technical treatment by deriving a few bounds on the efficiency of estimators in setting (iii). These

bounds establish the following facts:

1. A consistent estimator with an asymptotically normal distribution always exists in setting (iii), and hence in the

adaptive settings (ii) and (ii’).

2. For the normal distribution, the asymptotic relative efficiency (3) in the distributed setting (iii) is at most 3/4.

No estimator can be as efficient as the sample mean.

A. Consistent Estimation

The simplest estimator is simply to invert a quantile. Indeed, fix θ0 ∈ R and define the ith message by

Bi = 1{Xi < θ0} ,
where 1{A} is the indicator of the event A. We have

B̄n ,
1

n

n
∑

i=1

Bi
a.s.→ F (θ0 − θ),

so that

θn = θ0 − F−1
(

B̄n
)

(6)

is a consistent estimator for θ in the distributed setting of Figure 1-(iii), where we note that F is invertible over the

support of f . As the variance of B̄n is F (θ0 − θ) (1− F (θ0 − θ)), a delta method calculation [19, Ch. 23] implies

that θn is asymptotically normal with variance

F (θ0 − θ) (1− F (θ0 − θ))

f2(θ0 − θ)
=

1

η(θ0 − θ)
.

In the Gaussian case where the Xi
iid∼ N (θ, σ2), the ARE of θn is η(θ0 − θ)σ2.

Assumption A1 implies that the optimal asymptotic variance for an estimator of the form (6) is 1/η(0), the

asymptotic of the sample median. Unfortunately, as θ is (by definition) a priori unknown and η(x) monotonically

decreases in |x|, this naive estimator θn may be very inefficient when θ is far from the initial guess θ0. As an

example, when f is a the normal density, the ARE of θn is less than 0.15 when |θ0 − θ| ≥ 2σ, and more broadly,

ARE(θn) asymptotes to |θ0| exp(−θ20/2)/
√
2π as |θ0 − θ| gets large. Yet that θ0 = θ minimizes this asymptotic

variance, and η is continuous, is suggestive: if we can use a suitably good initial estimate θinit
n for θ, it is possible

that a one-step adaptive estimator (recall (ii’)) may be asymptotically strong, as we see in Section IV.



6

B. Multiterminal Source Coding

A related problem is the CEO problem, which considers the estimation of a sequence θ1, θ2 . . ., where a noisy

version of each θj is available at n terminals. At each terminal i, an encoder observes the k noisy samples

Xi,j = θj + Zi,j, j = 1, . . . , k, i = 1, . . . , n,

and transmits rik bits to a central estimator [27]. The central estimator produces estimates θ̂1, . . . , θ̂k with the goal

of minimizing the quadratic risk:

RCEO =
1

k

k
∑

j=1

E

[

(

θ̂j − θj

)2
]

.

Note that any distributed encoding scheme using one-bit per sample can be replicated k times and thus leads

to a legitimate encoding and estimation scheme for the CEO problem with r1 = . . . = rn = 1. It follows that,

assuming that θ is drawn once from the prior π, our mean estimation problem from one-bit samples under distributed

encoding corresponds to the CEO setting with k = 1 realization of θ observed under noise at n different locations,

and communicated at each location using an encoder sending a single bit. Consequently, a lower bound on the MSE

in estimating θ in the distributed encoding setting is given by the minimal MSE in the CEO setting as k → ∞.

Note that the difference between the CEO setting and ours lays in the privilege of each of the encoders to describe

k realizations of θ using k bits with MSE averaged over these realizations, rather than a single realization using a

single bit in ours.

When the prior on θ and the noise corrupting it at each location are Gaussian, Prabhakaran et al. [30] characterize

the optimal encoding and its asymptotic risk as k → ∞. Chen et al. [48] also provide an expression for the quadratic

risk in the CEO setting under Gaussian priors. Adapting to our setting, this expression provides the following

proposition:

Proposition 1: Assume that Θ = R and π(θ) = N (0, σ2θ ) where σ2θ ∈ R is arbitrary. Then any estimator θn of

θ in the distributed setting satisfies

n · E
[

(θ − θn)
2
]

≥ 4

3
σ2 +O(n−1), (7)

where the expectation is with respect to θ and X1, . . . ,Xn.

See Appendix VII-A for a proof.

As we shall see, this bound is loose: the difference between the MSE lower bound (7) and the actual MSE in the

distributed setting (case (iii)) occurs because in the CEO setting, each encoder may encode an arbitrary number of

k independent realizations of θ using k bits; in our situation, k = 1. That blocking allows more efficient encoding

and exploiting the high-dimensional geometry of the product probability space in the CEO problem is perhaps

unsurprising, and our goal in the sequel will be to characterize the performance degradation one bit encoding

engenders.

IV. ADAPTIVE ESTIMATION

The first main result of this paper (Theorem 2) gives that the asymptotic variance of any adaptive estimator must

be at least η(0)σ2, which is precisely the efficiency of the median of the sample X1, . . . ,Xn. Conveniently, the

stochastic (sub)gradient estimator for the median—which minimizes E[|X − θ|]—is a sequence of signs (single

bits), so that we can exhibit an asymptotically optimal adaptive estimation scheme.

We begin with our first theorem, whose proof we provide in Appendix VIII.

Theorem 2 (Fundamental limits): Let Assumption A1 hold. Let θn be any estimator of θ in the adaptive setting

of Figure 1(ii). Assume that the prior density π(·) on θ converges to zero at the endpoints of the interval Θ and

define the prior Fisher information I0 , Eπ[(π
′(θ)/π(θ))2]. Then

E
[

(θ − θn)
2
]

≥ 1

4f2(0)n + I0
.

We now turn to asymptotically optimal estimators, first showing how a simple stochastic gradient scheme is

asymptotically optimal (in the fully adaptive setting), after which we show that a one-round adaptive scheme can

also achieve this optimal efficiency.
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A. Asymptotically optimal estimator

The starting point for our first estimator is to note that the median of a distribution minimizes E[|X − θ|] over

θ ∈ R, and moreover, we have the familiar result (cf. [19], Ch. 21) that given a sample X1, . . . ,Xn
iid∼ P , if

θ = med(P ) and P has continuous density f(· − θ) near θ, then

√
n(med(Xn

1 )− θ)
d N

(

0,
1

4f(0)2

)

,

which is precisely the variance lower bound in Theorem 2. Thus, it is natural to consider a stochastic gradient

procedure for minimizing E[|X − θ|]. To that end, let {γn}n∈N be a strictly positive sequence of stepsizes, and

define the sequence

θn = θn−1 + γnBn, n = 1, 2, . . . , (8)

where

Bn = sgn(Xn − θn−1).

We make one of two assumptions on the stepsizes γn, which are relatively standard: we always have γn non-

increasing, and For some 0 < λ ≤ 1,

γn − γn+1

γ2n
→ 0,

∑

n

γ
1+λ

2
n√
n
<∞ or (9a)

γn = o(n−2/3),
∑

n

γn = ∞. (9b)

Then we can adapt the results of Polyak and Juditsky [49] on the asymptotic normality of averaged stochastic

gradient estimators to establish the following theorem.

Theorem 3: Define the average θ̄n , 1
n

∑n
i=1 θi. Assume that in a neighborhood of θ = med(P ), the distribution

P has a Lipschitz continuous density f . Then

(i) Assume that {γn}n∈N satisfies condition (9a). Then

√
n
(

θ̄n − θ
) d N

(

0,
1

4f(0)2

)

.

(ii) Let {Pθ}θ∈R be the family of distributions with density f(· − θ), where f has median 0. Let hn → h ∈ R,

and define the distributions Pn = Pn
θ+hn/

√
n

. Then

√
n
(

θ̄n − θ − hn/
√
n
) d 
Pn

N
(

0,
1

4f(0)2

)

,

and for any bounded, symmetric, and quasi-convex function L,

sup
c<∞

lim sup
n→∞

sup
τ : |θ−τ |≤ c√

n

Eτ

[

L
(√
n(θ̄n − τ)

)]

= E [L(Z/2f(0))] , (10)

where Z ∼ N (0, 1).
(iii) Assume the stepsizes γn satisfy both conditions (9a) and (9b). Let π be a distribution on R with a finite

second moment. Then
∫

E

[

(θ̄n − θ)2
]

π(dθ) =
1

4nf(0)2
+ o(n−1). (11)

We provide the proofs of items (i)-(iii) in Appendices IX-A, IX-B, IX-C, respectively.

As an immediate corollary to Theorem 3, we obtain the following asymptotic optimality results of the averaged

stochastic gradient sequence. Specifically, the average of the stochastic gradient iterates (8) is locally asymptotically

minimax, and they achieve the lower bound of Theorem 2.

Corollary 4: Let the conditions of Theorem 2 hold and θn be defined by the iteration (8). Let {Pθ}θ∈R be the

family of distributions with densities f(· − θ).
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Fig. 3. Distributed encoding with one round of threshold adaptation. The estimation obtained from the first n1 bits in a distributed manner

is utilized in obtaining another n− n1 bits in a distributed manner.

(i) Define the shorthand Pn = Pn
θ+hn/

√
n

. If the stepsizes satisfy condition (9a), then

√
n(θ̄n − θ − hn/

√
n)

d 
Pn

N
(

0,
1

η(0)

)

.

(ii) If in addition the stepsizes satisfy condition (9b), then they achieve the lower bound of Theorem 2 for any

prior π on R.

B. Maximal Efficiency using One Round of Threshold Adaptation

In the encoding and estimating procedure (8), each one-bit message Bn depends on its private sample as well as

the current gradient descent estimate θn−1. In this sense, each encoder in this algorithm interacts with previous one

by using the current estimate. This amount of adaptivity is unnecessary: as we now consider, a similar encoding

yields an asymptotically normal estimator attaining the lower variance bound 1/η(0), provided we allow one adaptive

update to the threshold value θ0 based on previously observed bits. In this procedure we separate the sample into

the disjoint sets X1, . . . ,Xn1
and Xn1+1, . . . ,Xn for some n1 < n. We first use the estimator (6) to obtain an

estimate θn1
based on B1, . . . , Bn1

, and then use θn1
as the new threshold value to obtain messages Bn1+1, . . . , Bn.

Figure 3 illustrates a diagram of this procedure.

More formally, we consider the following estimation scheme. Given n1 ∈ {1, . . . , n}, set the individual bits

Bi =

{

1{Xi ≤ θ0} i = 1, . . . , n1,

1{Xi ≤ Tn} i = n1 + 1, . . . , n,

where

Tn , θ0 − F−1

(

1

n1

n1
∑

i=1

Bi

)

θn , Tn − F−1

(

1

n− n1

n
∑

i=n1

Bi

)

.

The intuition here is that the estimator θn is a one-step correction (cf. [44, Thm. 6.4.3]) of the initial estimator Tn,

which approximately estimates θ0 − F−1 (F (θ0 − θ)) = θ. We then have the following convergence result.

Theorem 5: Assume that Xi = Zi+θ, where Zi are i.i.d. with density f and CDF F and med(Zi) = 0. Assume

that f is continuous at 0, and that as n→ ∞, n1(n) → ∞ and n1/n→ 0. Then

√
n (θn − θ)

d N
(

0,
1

4f(0)2

)

.

That is, under Assumption A1, the method is asymptotically optimal.
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Proof: We abuse notation and instead of assuming we receive n observations, assume we receive the n+ n1
observations X−n1

, . . . ,X−1 and X1, . . . ,Xn, defining Tn = θ0 − F−1( 1
n1

∑−1
i=−n1

Bi) and Bi = 1{Xi ≤ Tn}
for i ≥ 1. Letting Xi = Zi + θ for Zi i.i.d. with fixed density f = F ′, we have E [Bi]

a.s.→ F (θ0 − θ), so that
1
n1

∑−1
i=−n1

Bi
a.s.→ F (θ − θ0) and by the continuous mapping theorem we have Tn

a.s.→ θ as n1 → ∞.

Now let En = E[Bi | Tn] = P (Xi ≤ Tn), so that Var(Bi | Tn) = En(1− En). Define also the random variable

Yn ,
√
n

1
√

En(1− En)

[

1

n

n
∑

i=1

Bi − En

]

,

and let Fn(· | Tn) be its cumulative distribution function. Then because

E
[

|Bi − En|3 | Tn
]

≤ En(1− En),

we have

E

[ |Bi − En|3
(En(1− En))3/2

| Tn
]

≤ 1
√

En(1− En)
.

The Berry-Esseen theorem implies that there exists a constant C ≤ 1 such that

sup
t

|Fn(t | Tn)−Φ(t)| ≤ C
√

En(1− En)
√
n
∧ 2,

where Φ is the standard Gaussian CDF. As En(1 − En)
a.s.→ 1

4 by definition of the median, we have that (with

probability 1)

sup
t

|Fn(t | Tn)− Φ(t)| ≤ C√
n

eventually.

By dominated convergence and Jensen’s inequality we thus obtain

sup
t

|P(Yn ≤ t)−Φ(t)| ≤ E

[

sup
t

|Fn(t | Tn)− Φ(t)|
]

→ 0,

which gives that Yn
d N (0, 1). Now, Slutsky’s lemmas imply

√
n · 2

n

n
∑

i=1

(Bi −En) (12)

=
1 + oP (1)

√

nEn(1− En)

n
∑

i=1

(Bi − En)
d N (0, 1). (13)

where oP (1) denotes sequence of random variables converging to zero in probability as n goes to infinity. With

B̄n , 1
n

∑n
i=1Bi and using that En = E[Bi | Tn] = F (Tn − θ), we may use the delta method to write

√
n(θn − θ) =

√
n
(

Tn − F−1
(

B̄n
)

− θ
)

=
√
n
[

Tn − F−1
(

F (Tn − θ) + B̄n − F (Tn − θ)
)

− θ
]

=
√
n [Tn − (Tn − θ)

+(F−1)′ (Tn − θ + oP (1)) ·
(

B̄n − En
)

− θ
]

=
√
n(F−1)′(0)(B̄n − En) + oP (1)

d N
(

0,
1

4f(0)2

)

,

where we have used the limiting distribution (13). �

Figure 4 illustrates the empirical risks of the estimator (8) and an estimator obtained using one round of threshold

adaptation under a series of Monte Carlo simulations when f(x) is the standard normal desnity.
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Fig. 4. Normalized empirical risk versus number of samples n for 10, 000 Monte Carlo trials with f(x) the standard normal density. In

each trial, θ is chosen uniformly over the interval (−1.64, 1.64). The one round threshold adaptation strategy uses n1 = ⌊√n⌋ samples

before adapting the threshold.

V. DISTRIBUTED ESTIMATION

We now consider the distributed encoding setting in Figure 1-(iii) where each one-bit message Bi is a function

only of its private sample Xi. In this case, the ith encoder is of the form Bi = 1{Xi ∈ Ai}, where the detection

region Ai is a Borel set independent of X1,X2, . . ..

A. Optimal Efficiency

We begin by making a few restrictions on the collections of the sets Ai, which we believe not unreasonable, but

which allow us to develop fundamental limits for estimation. We require a bit of notation to define the assumptions.

As we work with a location family based on a density f with associated probability distribution P on variables Z ,

we define

Pθ(A) , P (Z − θ ∈ A)

for Z with density f . Whenever A is a collection of disjoint intervals A = ∪i[t−i , t+i ], we may define

Ṗθ(A) ,
∂

∂θ
Pθ(A) =

∑

i

(

f(t−i − θ)− f(t+i − θ)
)

,

and similarly we define the score function ℓ̇θ(A) , Ṗθ(A)/Pθ(A). For B = 1{X ∈ A}, we abuse notation and

also write ℓ̇θ(B) = ℓ̇θ(A) and similarly for Ṗθ. With this, we may define the variance of the scores ℓ̇θ(Bi) under

Pθ via

Ln(A1, . . . , An; θ) ,
1

n

n
∑

i=1

Ṗθ(Ai)
2

Pθ(Ai)(1 − Pθ(Ai))
. (14)

We then make the following assumption.

Assumption A2: The density and detection regions satisfy

(i) The density function f of Xn − θ is Lipschitz continuous.

(ii) Each set Ai is the finite union of ki disjoint intervals (which may include ±∞), where

1

n
·max
i≤n

k3i
Pθ(Ai)4(1− Pθ(Ai))4

→ 0.

(iii) The limit

κ(θ) , lim
n→∞

Ln(A1, . . . , An; θ) (15)

exists and is finite.

Roughly speaking, (ii) above holds whenever the intervals consisting each Ai are appropriately seperated and

their number is relatively small. For example, it applies when each set Ai is a half-bounded interval (ti,∞)
with min{Pθ((ti,∞)), Pθ((−∞, ti])} = ω(1/n) as we dicscuss in more detail below. More generally, let ∆i the

minimal distance between any two interval endpoints in Ai. Then, if Ai = ∪kij=1[t
−
i,j, t

+
i,j], we have that Pθ(Ai) ≥

∆i
∑ki

j=1 F (t
−
i,j) and 1− Pθ(Ai) ≥ ∆i

∑ki
j=1 F (t

+
i,j). Therefore, A2(ii) holds whenever maxi≤n k3i∆

−4
i = o(n) as

long as
∑ki

j=1 F (t
−
i,j) and

∑ki
j=1 F (t

+
i,j) are bounded away of zero.
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Under Assumption A2, we have the following theorem, which provides a local asymptotic minimax lower bound

on the efficiency of any non-adaptive estimator.

Theorem 6: Let Assumption A2 hold, and let θn be an estimator of θ ∈ Θ from observations Bi = 1{Xi ∈ Ai}.

Then for Z ∼ N (0, 1) and any symmetric and quasi-convex function L,

lim inf
c→∞

lim inf
n→∞

sup
τ : |θ−τ |≤ c√

n

E
[

L
(√
n(θn − τ)

)]

≥ E

[

L(Z/
√

κ(θ))
]

.

See Appendix X for a proof.

Theorem 6 shows that the limiting variance term κ(θ) provides a strong lower bound on the efficiency of any

non-adaptive estimator, and moreover, that this bound necessarily depends on θ. As a particular consequence, for

the squared error L(x) = x2, for any δ > 0 and θ, there exists a c < ∞ such that sup|τ−θ|≤c/√n Eτ [(θn − τ)2] ≥
(1−δ)
nκ(θ) + o(1/n). Consequently, attaining any type of good (uniform) efficiency with non-adaptive estimators will

be challenging.

Yet, Theorem 6 limits non-adaptive strategies in stronger ways. Under the density models we have considered,

with the additional Assumption A1, we can show stronger optimality results that adaptivity is essential for achieving

optimal convergence guarantees. Recall the transformation (4) of the hazard rate function, η(x) = f2(x)
F (x)(1−F (x)) ,

which has unique maximum at x = 0 under Assumption A1. When each detection region An consists of a bounded

number of intervals, the next theorem shows that the minimal risk 1/η(0) can only be attained at finitely many

points within Θ. In particular, distinct from the adaptive setting, no distributed estimation scheme can achieve

asymptotic variance η(0) uniformly in θ ∈ Θ.

Theorem 7: Let Assumptions A1 and A2 hold. Additionally, assume that Ai is the union of at most K intervals.

The number of points θ ∈ Θ satisfying κ(θ) = η(0) is at most 2K.

See Appendix XI for a proof.

B. Threshold Detection

We now consider a restricted case where each detection region is a half-open interval, i.e., the ith message is

obtained by comparing Xi against a single threshold. Under the adaptive signal acquisition setting, this is sufficient

for asymptotic optimality; in non-adaptive settings, it is not sufficient, though we may characterize a few additional

optimality results. Assume now that each Bi is of the form

Bi = sgn(ti −Xi) =

{

1 Xi < ti,

−1 Xi ≥ ti,
(16)

where ti ∈ R is the threshold of the ith encoder. In other words, the detection region of Bi is Ai = (ti,∞) and

P(Xi ∈ Ai) = F (Bi(ti − θ)). It follows that

Ln(A1, . . . , An; θ) =
1

n

n
∑

i=1

(f(ti − θ))2

F (ti − θ)F (θ − ti)
(17)

=
1

n

n
∑

i=1

η(ti − θ). (18)

A natural condition for the existence of the limit (18) as n→ ∞ is that the empirical distribution of the threshold

values converges to a probability measure. Specifically, for an interval I ⊂ R, define

λn(I) =
card (I ∩ {t1, t2, . . .})

n
.

Then an investigation of the proof of Theorem 6 in Section X, specifically Sec. X-B and the bounds (51), show

that as η(t) ≤ η(0) for all t ∈ R under Assumption A1, the following corollary follows. (The corollary relies on

local asymptotic normality [19, Ch. 7]; see Appendix IX-B for some brief discussion of such conditions.)
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Corollary 8: Let {tn}∞n=1 be a sequence of threshold values such that λn converges (weakly) to a probability

measure λ on R. Then the conclusions of Theorem 6 apply with

κ(θ) =

∫

R

η(t− θ)λ(dt).

Moreover, the family of laws of {Bi = sgn(Xi − ti)}ni=1 under {Pθ}θ∈Θ is locally asymptotically normal with

information κ(θ).
The condition that λn converges to a probability measure is satisfied, for example, whenever t1, . . . , tn are drawn

independently from a probability distribution λ(dt) on R.

When the conclusions of Corollary 8 hold, local asymptotic normality of {Bn}∞n=1 implies that the maximum

likelihood estimator (ML) of θ from B1, . . . , Bn, denoted here by θML
n , is local asymptotic minimax in the sense

that √
n
(

θML
n − θ

) d N (0, 1/κ(θ)) .

We note that θML
n solves

0 =

n
∑

i=1

Bi
f (ti − θ)

F (Bi(ti − θ))
. (19)

If the collection {t1, t2 . . .} is bounded (for example {t1, t2 . . .} ⊂ Θ), then

lim
n→∞

n · E
[

(

θML
n − θ

)2
]

= 1/κ(θ),

so that the ML estimator attains the local asymptotic MSE of Theorem 6.

By Assumption A1, η(x) attains its maximum at the origin, so we conclude that

κ(θ) ≤ sup
t∈R

η (t− θ) = η(0).

Moreover, this upper bound on κ(θ) is attained only when λ is the point mass at θ. Since θ is a priori unknown,

estimation in the distributed setting using threshold detection is strictly suboptimal compared to the adaptive setting;

the ability to choose the thresholds ti adaptively conditional on previous messages is necessary for optimal efficiency.

C. Minimax Threshold Density

We conclude this section by considering the distribution of the threshold values that maximizes the worst-case

information infθ κ(θ) = κλ(θ) where κλ(θ) =
∫

η(t− θ)λ(dt). The optimal distribution λ⋆ solves the optimization

problem

maximize inf
θ∈Θ

∫

η(t− θ)λ(dt)

subject to λ(dt) ≥ 0,

∫

λ(dt) ≤ 1.

(20)

The objective function (20) is concave in λ(dt) and continuous in the weak topology over measures on Θ, so

that by discretizing, we can approximately solve this problem using convex optimization. We let κ⋆ denote the

maximal value of problem (20) and λ⋆(dt) be the density achieving the maximum. By drawing thresholds ti
iid∼ λ⋆,

Corollary 8 guarantees that for any θ ∈ Θ, the maximum likelihood estimator using {Bi = sgn(Xi − ti)}i∈N is at

least κ⋆.
Figure 5 illustrates an approximation to λ⋆(dt) obtained by solving a discretized version of (20) for the case when

f(x) is the normal density with variance σ2 and Θ = [−1/2, 1/2]. The minimax asymptotic precision parameter κ⋆

obtained this way is illustrated in Fig. 6 as a function of σ. Also illustrated in these figures is κunif , the precision

parameter corresponding to threshold values uniformly distribution over Θ,

κunif , min
θ∈[−T,T ]

1

2T

∫ T

−T
η (t− θ)dt

=
1

2T

∫ T

−T
η (t± T ) dt =

1

2T

∫ 2T

0
η(t)dt. (21)
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Fig. 5. Optimal threshold density under distributed encoding. The threshold density λ⋆(dt) (blue) that maximizes the asymptotic relative

efficiency for f(x) the normal density with variance σ2 and Θ = [−1/2, 1/2]. The continuous curve (red) is the ARE for each θ ∈ [−1/2, 1/2]
under the optimal density, hence the minimax ARE is the minimal value of this curve. The dashed curve (green) is the ARE when the threshold

values are uniformly distributed over [−1/2, 1/2]; its minimal value is κunif (21).
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Fig. 6. Minimax relative efficiency under distributed encoding. ARE versus σ for f(x) the standard normal density with variance σ2 and

parameter space Θ = [−1/2, 1/2]. The dashed curve (green) is the ARE under a uniform threshold density over Θ given by Kunifσ
2 of

(21). The line π/2 is attained under adaptive encoding uniformly over the parameter space for any σ.

VI. CONCLUSIONS

We considered the risk and efficiency in estimating the mean of a symmetric and log-concave distribution from

a sequence of bits, where each bit is obtained by encoding a single sample from this distribution. In an adaptive

encoding setting, we showed that, asymptotically, no estimator can be more efficient than the median of the samples.

We also showed that this bound is tight by presenting two adaptive encoding and estimation procedures that are

as efficient as the median. Furthermore, we showed that only one round of adaptivity is required to attain optimal

efficiency. In the distributed setting we provided conditions for local asymptotic normality of the encoded samples,

which implies asymptotic minimax bound on both the risk and efficiency relative to the mean. Under local asymptotic

normality, the optimal estimation performance derived for the adaptive case can only be attained over a finite number

of points, i.e., no scheme is uniformly optimal in this setting. We further considered the special case where the

sequence of bits is obtained in a distributed manner by comparing against a prescribed sequence of thresholds. We
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characterized the performance of the optimal estimator from such bit-sequence using the density of the thresholds

and considered the density that minimizes the minimax risk.

Natural extensions of this work include situations when the communication bit-budget b is larger than one and

when each sample is a d-dimensional vector. Bounds on rate of convergence of the MSE in this general case follow

from several recent works (e.g. [31], [50], [51], [52], [53], [14]), that in particular imply that in some cases the

MSE decreases in the regular parametric rate of 1/n when b and d are held fixed in the sample size n. Nevertheless,

the coefficient of the leading 1/n term corresponding to the ARE, which we characterized here in the case b = 1
and d = 1, is still unknown in the general case.
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APPENDICES

VII. FAST CONVERGENCE OF UNIFORM ESTIMATORS UNDER BIT CONSTRAINTS

Here we consider the uniform distribution as our location family, demonstrating that in the adaptive setting (ii)

or even the one-step adaptive setting (ii’), constrained estimators can attain rates faster than the 1/
√
n rates regular

estimands allow. Indeed, define c(x) = − log 2 for x ∈ [−1, 1] and c(x) = −∞ for x 6∈ [−1, 1]. Then f(x) = e−c(x)

is log-concave and symmetric, and we may consider the location family with densities f(x − θ). For notational

simplicity, we assume we have a sample of size 2n. We provide a proof sketch that there is a one-step adaptive

estimator θn such that

sup
|θ|≤logn

Pθ

(

|θn − θ| ≥ 16 log n

n3/4

)

≤ 2

n2
. (22)

for all large n, and so (by the Borel-Cantelli lemmas), for any θ ∈ R we have Pθ(|θn − θ| ≤
16 log n/n3/4 eventually) = 1. This is of course faster than the 1/

√
n rates we prove throughout.

To prove inequality (22), we proceed in two steps, both quite similar. First, we define an initial estimator θinit
n .

Let ǫ > 0, which we will determine presently, though we will take nǫ → ∞ as n → ∞, so that we may assume

w.l.o.g. that θ ∈ [−nǫ/2, nǫ/2]. Take the interval [−nǫ, nǫ], and construct m thresholds at intervals of size 2nǫ/m;

let the jth such threshold be

tj , −nǫ+ 2n(j − 1)ǫ

m

Then we “assign” observations to each pair of thresholds, so that threshold j corresponds to observations Ij ,
{n(j−1)

m + 1, . . . , njm }, of which there are n/m. For each index i ∈ Ij , we set

Bi =

{

1 if Xi−1 ≥ tj

0 otherwise.

Then we simply set θinit
n to be the minimal threshold for which Bi = 0 for all observations Xi corresponding to

that threshold. Denote by j∗ the index of the threshold corresponding to θinit
n .

Let us now consider the probability that θinit
n is substantially wrong. Set θM ≡ maxi∈I∗j Xi − 1. Note that we

always have θinit
n ≥ θM because no observations will be above t∗j + 1, and that θinit

n ≤ θM + 2nǫ/m. In addition,

Pθ

(

|θM − θ| ≥ 2nǫ

m

)

=

(

1− 2nǫ

m

)n/m

.

Putting it all together using the triangle inequality, we have

Pθ

(

∣

∣θinit
n − θ

∣

∣ ≥ 4nǫ

m

)

≤
(

1− 2nǫ

m

)n/m

≤ e−2 n2

m2 ǫ.

Therefore, setting the number of bins m =
√
n and the resolution ǫ = log n/n,

sup
|θ|≤logn

Pθ

(

|θinit
n − θ| ≥ 4 log n√

n

)

≤ 1

n2
. (23)

The second stage estimator follows roughly the same strategy, except that the resolution of the bins is tighter.

In particular, let us assume that |θinit
n − θ| ≤ 8 logn√

n
, which happens eventually by inequality (23). (We will assume

this tacitly for the remainder of the argument.) Consider the interval Θn , θinit
n + [−16 logn√

n
, 16 logn√

n
] centered at

θinit
n ; we know that the interval includes [θ − 8 logn√

n
, θ + 8 logn√

n
]. Without loss of generality we assume θinit

n = 0.

Following precisely the same discretization strategy as that for θinit
n , we divide Θn into m equal intervals, with

thresholds tj = −16 logn√
n

+ 32(j−1) logn
m
√
n

; let ǫn = 32 logn
m
√
n

be the width of these intervals. Then following exactly the

same reasoning as above, we assign indices Ij = {n(j−1)
m +1, . . . , njm } and for i ∈ Ij , set Bi = 1 if Xi−1 ≥ tj . We
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define θn to be the minimal threshold tj for which Bi = 0 for all observations Xi ∈ Ij . Then following precisely

the reasoning above, we have (on the event that |θinit
n − θ| ≤ 8 logn√

n
)

Pθ(|θn − θ| ≥ 2ǫn) ≤ (1− ǫn)
n

m ≤ exp
(

−nǫn
m

)

= exp

(

−32
√
n log n

m2

)

.

Set m = 4n1/4 to obtain the claimed result (22).

A. Proof of Proposition 1

Denote by D⋆ the optimal MSE in the Gaussian CEO with L observers and under a total sum-rate r = r1+. . .+rL.

An expression for D⋆ as a function of r is give as [48, Eq. 10]:

r =
1

2
log+

[

σ2θ
D⋆

(

D⋆L

D⋆L− σ2 +D⋆σ2/σ2θ

)L
]

. (24)

For the special case where r = n and L = n, we have

n =
1

2
log2

[

σ2θ
D⋆

(

D⋆n

D⋆n− σ2 +D⋆σ2/σ2θ

)n]

. (25)

Consider the distributed encoding setting (iii) in the case where f(x) = N (0, σ2) and the prior on Θ is π =
N (0, σ2θ ). The Gaussian CEO problem of [28] with a unit bitrate r1 = . . . = rn = 1 at each terminal and

blocklength k = 1 reduces to our distributed setting (iii). Since D⋆ satisfying (25) describes the MSE in the CEO

setting under an optimal allocation of the sum-rate r = n among n encoders, it provides a lower bound to the

minimal MSE in estimating θ in the distributed setting. By noting that 1/D⋆ grows no faster than a polynomial in

n [28], we rely on the expansion

(

σ2θ
D⋆

)1/n

= 1 +
log
(

σ2
θ

D⋆

)

n
+

log2
(

σ2
θ

D⋆

)

2n2
+O

(

n−3
)

,

to obtain that, in limit n→ ∞, (25) behaves as

D⋆ =
4σ2

3n
+

16σ2

9n2σ2θ
−

4σ2 log
(

σ2
θ

D⋆

)

9n2
+O(n−3).

This implies Proposition 1.

VIII. PROOF OF THEOREM 2

We begin with two technical lemmas.

Lemma 9: Let f be a log-concave and symmetric density function for which Assumption A1 holds. For any

x1 ≥ . . . ≥ xn ∈ R,
∣

∣

∑n
k=1(−1)k+1f(xk)

∣

∣

2

(
∑n

k=1(−1)k+1F (xk)) (1−
∑n

k=1(−1)k+1F (xk))

≤ 4f(0)2. (26)

Lemma 10: Let X be a random variable with a symmetric, log-concave, and continuously differentiable density

function f(x) such that Assumption A1 holds. For a Borel measurable set A, define

B(x) ,

{

1 if x ∈ A,

−1 if x /∈ A.

The Fisher information of B with respect to θ is bounded from above by η(0).
Lemma 9 is the special case δ = 0 of Lemma 11 to come in Section VIII-A. We now prove Lemma 10.
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Proof of Lemma 10: We first note that in the special case where f is a normal density, Lemma 10 follows

from [39, Thm. 3]. The proof below, valid for any log-concave symmetric density satisfying Assumption A1, is

based on a different techique than that of [39].

Write the Fisher information of B with respect to θ as

Iθ = E

[

(

d

dθ
log P (B|θ)

)2

|θ
]

=

(

d
dθP (B = 1|θ)

)2

P (B = 1|θ) +

(

d
dθP (B = −1|θ)

)2

P (B = −1|θ)

=

(

d
dθ

∫

A f (x− θ)dx
)2

P (B = 1|θ) +

(

d
dθ

∫

A f (x− θ) dx
)2

P (B = −1|θ)
(a)
=

(

−
∫

A f
′ (x− θ) dx

)2

P (B = 1|θ) +

(

−
∫

A f
′ (x− θ)dx

)2

P (B = −1|θ)

=

(∫

A f
′ (x− θ) dx

)2

P (B = 1|θ) (1− P (B = 1|θ)) ,

=

(∫

A f
′ (x− θ)dx

) (∫

A f
′ (x− θ) dx

)

(∫

A f (x− θ) dx
) (

1−
∫

A f (x− θ) dx
) , (27)

where differentiation under the integral sign in (a) is justified since f is log-concave hence a.e. differentiable

(cf. [54]) with a.e. derivative f ′(x). By regularity of the Lebesgue, for any ǫ > 0 there exists a finite number k of

disjoint open intervals I1, . . . Ik such that
∫

A\∪k
j=1Ij

dx < ǫ.

It follows that for any ǫ′ > 0, the set A in (27) can be replaced by a finite union of disjoint intervals without

increasing Iθ by more than ǫ′. Consequently, we may proceed assuming that A is of the form

A = ∪kj=1(t
+
j , t

−
j ),

with ∞ ≤ t−1 ≤ . . . ≤ t−k , t+1 ≤ . . . ≤ t+k ≤ ∞ and t−j ≤ t+j for j = 1, . . . , k. Under this assumption,

Pθ(Bn = 1) =

k
∑

j=1

(

F
(

t+j − θ
)

− F
(

t−j − θ
))

,

so we may rewrite Eq. (27) as

Iθ =

(

∑k
j=1

[

f
(

t+j − θ
)

− f
(

t−j − θ
)])2

(

∑k
j=1

[

F
(

t+j − θ
)

− F
(

t−j − θ
)])

× 1

1−
(

∑k
j=1

[

F
(

t+j − θ
)

− F
(

t−j − θ
)])

It follows from Lemma 9 that for any θ ∈ R and any choice of the intervals’ endpoints,

Iθ ≤ max
t∈{t±1 ,...,t±k }

4f(t)2 ≤ 4f(0)2.

�

We now prove Theorem 2. Write the Fisher information of B1, . . . , Bn with respect to θ as

Iθ(B1, . . . , Bn) =

n
∑

i=1

Iθ(Bi|B1, . . . , Bi−1),
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where Iθ(Bi|Bi−1, . . . , B1) is the Fisher information of the distribution of Bi given B1, . . . , Bi−1. By the definition

of the adaptive setting, Pθ(Bi|B1, . . . , Bi−1) = Pθ(Xi ∈ Ai) for some Borel measurable Ai. Consequently,

Lemma 10 applies, leading to the bound

Iθ(Bi|Bi−1, . . . , B1) ≤ 4f(0)2,

We conclude

Iθ(B1, . . . , Bn) ≤ 4f(0)2n. (28)

The Van Trees inequality in the version of [55] holds under the regularity conditions on π(·), which implies

E

[

(θn − θ)2
]

≥ 1

Eπ [Iθ(B1, . . . , Bn)] + I0
.

Combining the last display with (28), we get

E

[

(θn − θ)2
]

≥ 1

4f(0)2n+ I0
.

A. Isoperimetric Lemma

The following lemma is essential to the proofs of Theorems 2 and 7.

Lemma 11: Let f be a log-concave and symmetric density function. Let δ ≥ 0. Assume that the function

ηδ(x) , η1+δ(x)/f δ(x) =
(f(x))2+δ

(F (x)(1 − F (x)))1+δ

is non-increasing in |x|. Then for any x1 ≥ . . . ≥ xn ∈ R,

∣

∣

∑n
i=1(−1)i+1f(xi)

∣

∣

2+δ

|∑n
i=1(−1)i+1F (xi)|1+δ |1−

∑n
k=1(−1)i+1F (xi)|1+δ

≤ max
i
ηδ(xi). (29)

In particular,

∣

∣

∑n
i=1(−1)i+1f(xi)

∣

∣

2+δ

|∑n
i=1(−1)i+1F (xi)|1+δ |1−

∑n
i=1(−1)i+1F (xi)|1+δ

≤ ηδ(0) = 41+δf2+δ(0).

Proof of Lemma 11: Denote

δn(x1, . . . , xn) ,
n
∑

i=1

sif(xi),

∆n(x1, . . . , xn) ,
n
∑

i=1

siF (xi),

where si , (−1)i+1. We use induction on n ∈ N to show that

|δn(x1, . . . , xn)|2+δ

|∆n(x1, . . . , xn) (1−∆n(x1, . . . , xn))|1+δ
≤ max

i
ηδ(xi). (30)

Since

ηδ(x) =
|δ1(x)|2+δ

|∆1(x)(1 −∆1(x))|1+δ
,
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The case n = 1 is trivial. Assume that (30) holds for all integers up to n = N and for any x1 ≥ . . . ≥ xN .

Consider the case n = N + 1. Let i∗ be the index such that xi∗ has minimal absolute value among x1, . . . , xN .

The assumption on ηδ(x) implies that

ηδ(xi∗) = max
i
ηδ(xi).

Since the LHS of (29) is invariant to a sign flip of all x1, . . . , xN+1, we may assume that xi∗ is positive without

loss of generality. Set x∗ = xi∗ and let k = i∗ − 1. Consider the function

g(y1, . . . , yN ) , g(y1, . . . , yN |x∗, k) (31)

,
|δN+1(y1, . . . , yk, x

∗, yk+1 . . . , yN )|2+δ
|∆N+1(y1, . . . , yk, x∗, yk+1 . . . , yN )|

× 1

|1−∆N+1 (y1, . . . , yk, x∗, yk+1 . . . , yN )|1+δ

The LHS of (30) is obtained by taking yi = xki where ki is the ith element in {1, . . . , N +1}\{i∗}. It is therefore

enough to prove that

max
(y1,...,yN)∈AN (x∗,k)

g(y1, . . . , yN ) ≤ ηδ(x
∗),

where

AN (x
∗, k) ,

{

(y1, . . . , yN ) ∈ R
N

: y1 ≥ . . . ≥ yk ≥ x∗ ≥ −x∗ ≥ yk+1 . . . ≥ yN} .

Since f(x) is log-concave and symmetric, we may write f(x) = ec(x) where c(x) is concave, symmetric, and

superdifferentiable on the interior of its domain with supergradient set ∂c(x) = {v ∈ R | c(y) ≤ c(x) + v(y −
x) for all y}; c is also differentiable a.e. with derivative

c′(x) ,
f ′(x)
f(x)

(when it exists), and we otherwise simply treat f ′(x)/f(x) = c′(x) ∈ ∂c(x) as an arbitrary element of the

superdifferential. The supergradient sets ∂c(x) are increasing, in that v0 ∈ ∂c(x0) and v1 ∈ ∂c(x1) implies that

(v1 − v0)(x1 − x0) ≤ 0. We first prove the lemma under the assumption that c is strictly concave, or, equivalently,

that vi ∈ ∂c(xi) implies that (v1 − v0)(x1 − x0) < 0 whenever x1 6= x0; that is, c′ is strictly decreasing.

The maximal value of g(y1, . . . , yN ) is attained for the same (y1, . . . , yN ) ∈ AN (x
∗, k) that maximizes

log(g)(y1, . . . , yN )

= (2 + δ) log (δN )− (1 + δ) log (∆N )− (1 + δ) log (1−∆N ) ,

where in the last display and henceforth we suppress the arguments y1, . . . , yk, x
∗, yk+1, . . . , yN of the functions

δN and ∆N . Within the interior of AN (x
∗, k), all three expressions in (31) within an absolute value are positive.

It follows that partial derivative of log(g)(y1, . . . , yN ) with respect to yi within the interior of AN (x
∗, k) is

∂ log(g)

∂yi
=

(2 + δ)sif
′(xi)

δN
− (1 + δ)sif(xi)

∆N
+

(1 + δ)sif(yi)

1−∆N
.

We conclude that the gradient of log(g) vanishes if and only if

c′(yi) =
f ′(yi)
f(yi)

=
1 + δ

2 + δ

δN
2

(

1

∆N
− 1

1−∆N

)

, (32)

for i = 1, . . . , N . Since we assumed that ∂c(x) is injective, equality (32) holds if and only if y1 = . . . = yN . In

this case, g(y1, . . . , yN ) = ηδ(x
∗) if N is even. If N is odd and y1 = . . . = yN > x∗, then

g(y1, . . . , yN )

=
|f(y1)− f(x∗)|2+δ

|F (y1)− F (x∗)|1+δ |1− (F (y1)− F (x∗))|1+δ
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which is bounded from above by ηδ(x
∗) by the induction hypothesis. The case where N is odd and −x∗ ≤ y1 =

. . . = yN is similar. We now consider the possibility that the maximum of g(y1, . . . , yN ) is attained at the boundaries

of AN (x
∗, k). At boundary points for which yi = yi+1 for some i, the contribution of yi and yi+1 to g(y1, . . . , yN )

is zero and the induction assumption for n = N − 1 implies that

g(y1, . . . , yN ) ≤ ηδ(x
∗).

The remaining boundary points of AN (x
∗, k) are covered by the following cases:

(i) yN = −∞.

(ii) y1 = ∞.

(iii) yk = x∗.

(iv) yk+1 = −x∗.

For case (i),

g(y1, . . . , yN )

→

∣

∣

∣

∑k
i=1 sif(yi) + si∗f(x

∗)−∑N−1
i=k+1 sif(yi)

∣

∣

∣

2+δ

∣

∣

∣

∑k
i=1 siF (yi) + si∗F (x∗)−

∑N−1
i=k+1 siF (yi)

∣

∣

∣

1+δ

× 1
∣

∣

∣
1−∑

k

i=1
siF (yi)− si∗F (x∗) +

∑

N−1

i=k+1
siF (yi)

∣

∣

∣

1+δ
,

which is smaller than ηδ(x
∗) by the induction hypothesis. Similarly, under case (ii),

g(y1, . . . , yN )

→
∣

∣

∣

∑

k

i=2
sif(yi) + si∗f(x

∗)−∑

N

i=k+1
sif(yi)

∣

∣

∣

2+δ

∣

∣

∣
1 +

∑

k

i=2
siF (yi) + si∗F (x∗)−∑

N

i=k+1
siF (yi)

∣

∣

∣

1+δ

× 1
∣

∣

∣
−
(

∑

k

i=2
siF (yi) + si∗F (x∗)−∑

N

i=k+1
siF (yi)

)∣

∣

∣

1+δ

=

∣

∣

∣
−∑

k

i=2
sif(yi)− si∗f(x

∗) +
∑

N

i=k+1
sif(yi)

∣

∣

∣

2+δ

∣

∣

∣
1−

(

−∑

k

i=2
siF (yi)− si∗F (x∗) +

∑

N

i=k+1
siF (yi)

)∣

∣

∣

1+δ

× 1
∣

∣

∣
−∑

k

i=2
siF (yi)− si∗F (x∗) +

∑

N

i=k+1
siF (yi)

∣

∣

∣

1+δ
,

which is smaller than ηδ(x
∗) by the induction hypothesis. Under case (iii), the terms in δN and ∆N corresponding

to yk and x∗ cancel each other. As a result, g(y1, . . . , yN ) reduces to an expression with N − 2 variables hence

this case is handled by the induction hypothesis. Finally, under case (iv), set

d , skF (−x∗) + si∗F (x
∗) = si∗ (1− 2F (−x∗)) ,

σ ,
k−1
∑

i=1

sif(yi)−
N
∑

i=k+1

sif(yi).

and

Σ ,
k−1
∑

i=1

siF (yi)−
N
∑

i=k+1

siF (yi).
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We have

g(y1, . . . , yN ) =

=

∣

∣

∣

∑k−1
i=1 sif(yi)−

∑N
i=k+1 sif(yi)

∣

∣

∣

2+δ

∣

∣

∣

∑k−1
i=1 siF (yi) + d(x∗)−∑N

i=k+1 siF (yi)
∣

∣

∣

1+δ

1
∣

∣

∣
1−∑k−1

i=1 siF (yi)− d(x∗) +
∑N

i=k+1 siF (yi)
∣

∣

∣

1+δ
,

=
|σ|2+δ

|Σ+ d|1+δ |1− Σ− d|1+δ

=
|σ|2+δ

|Σ|1+δ |1− Σ|1+δ
∣

∣

∣

∣

Σ(1− Σ)

Σ(1− Σ) + d(1− 2Σ)− d2

∣

∣

∣

∣

1+δ

.

By the induction hypothesis,

|σ|2+δ

|Σ|1+δ |1− Σ|1+δ
≤ ηδ(x

∗),

hence it is left to show that
Σ(1− Σ)

Σ(1− Σ) + d(1− 2Σ)− d2
≤ 1.

Whenever d > 0,

Σ(1− Σ) + d(1 − 2Σ)− d2

Σ(1− Σ)
≥ 1 ⇔ 1− 2Σ ≥ d,

while for d < 0,

Σ(1− Σ) + d(1 − 2Σ)− d2

Σ(1− Σ)
≥ 1 ⇔ 1− 2Σ ≤ d.

Therefore, it is enough to show that Σ ≤ F (−x∗) if si∗ = 1 and Σ ≥ F (−x∗) if si∗ = −1. Indeed, if si∗ = 1,

then sk+1 = −1 and monotonicity of F (x) implies that

Σ+ d ≤ F (y1)− F (yk) + F (x∗)− F (−x∗) + F (yk+2)− F (yN ),

and hence

Σ ≤ 1− F (x∗) = F (−x∗).
Similarly, if si∗ = −1 then

1− Σ ≤ 1− F (−x∗).
This conclude the proof in the case where c′(x) is an injection.

In the case where c(x) is not strictly concave, so that c′ does not strictly decrease, we approximate c using

another concave symmetric function with decreasing derivative. We assume w.l.o.g. that c(0) = 0 maximizes c.
For α > 0 consider the function fα(x) = κ(α)e−|c(x)|1+α

, where κ(α) normalizes fα. Then cα(x) is concave,

symmetric, and a.e. differentiable with

c′α(x) ,
f ′α(x)
fα(x)

= (1 + α)|c(x)|αc′(x).

Now c′α(x) is non-increasing since it is the derivative of a concave function. Furthermore, since c(x) is non-constant

on any interval and c′(x) is non-increasing, c′α(x) is non-constant on any interval hence an injection. It follows

from the first part of the proof that, for any α > 0,

(δn,α)
2+δ

(∆n,α(1−∆n,α))
1+δ

≤ max
i
ηδ,α(xi), (33)
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where

δn,α ,
n
∑

k=1

(−1)k+1fα(xk),

∆n,α ,
n
∑

k=1

(−1)k+1Fα(xk),

and

ηδ,α(x) ,
(fα(x))

2+δ

(Fα(x)(1− F (x)))1+δ
.

The proof is completed by noting that

lim
α→0

(δn,α)
2+δ

(∆n,α(1−∆n,α))
1+δ

=
(δn)

2+δ

(∆n(1−∆n))
1+δ

,

and, since the maximum is over a finite set,

lim
α→0

max
i
ηδ,α(xi) = max

i
ηδ(xi).

�

IX. PROOF OF THEOREM 3

The estimation algorithm (8) is a special case of the stochastic gradient procedures in the papers [49], [56].

We rely on several of their results. Throughout this proof, we assume without loss of generality that the median

θ = med(P ) = 0.

A. Proof of Theorem 3(i)

Consider the following simplified version of [49, Thm. 4]:

Corollary 12: [49, Thms. 3 & 4] Let ϕ : R → R and {Zi} be i.i.d. zero-mean random variables, and

Xi = θ + Zi.

Define

θi = θi−1 + γiϕ(Xi − θi−1),

θ̄n =
1

n

n−1
∑

i=0

θi,
(34)

where in addition,

(i) There exists K1 such that |ϕ(x)| ≤ K1(1 + |x|) for all x ∈ R.

(ii) The sequence {γi}∞i=1 satisfies condition (9a).

(iii) The function ψ(x) , E [ϕ(x+ Z1)] satisfies ψ(0) = 0 and xψ(x) > 0 for x 6= 0. Moreover, ψ is differentiable

at 0 with ψ′(0) > 0 and there exists K2, 0 < λ ≤ 1, and r > 0, such that
∣

∣ψ(x)− ψ′(0)x
∣

∣ ≤ K2|x|1+λ (35)

for all |x| < r.

(iv) The function χ(x) , E
[

ϕ2(x+ Z1)
]

is continuous at zero.

Then θ̄n
a.s.→ θ and

√
n(θn − θ)

d N (0, V ) for V = χ(0)
ψ′(0)2 .

Using the notation in Corollary 12, we set ϕ(x) = sgn(x) and Zi = Xi − θ, where θ = med(P ). Without loss

of generality and for notational convenience, we assume for the remainder of this derivation that θ = 0. As a

consequence, we have med(Z) = 0, and χ(x) = E
[

sgn2(x+ Z1)
]

= 1, so χ(0) = 1. In addition,

ψ(x) = E [sgn(x+ Z1)] = P (Z ≥ −x)− P (Z < −x)
= 1− 2P (Z ≤ −x).
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Using that P has a density f near its median, it follows that ψ′(x) = 2f(−x) and thus ψ′(0) = 2f(0) > 0. We

may now verify that the conditions in Corollary 12 hold for λ = 1. Condition (i) is obvious, and the convexity of

| · | gives most of condition (iii) excepting inequality (35). For that, note that as f is Lipschitz near 0 with constant

Lip0(f), we have for small x that

ψ(x) = 2

∫ x

0
f(−t)dt ≤ 2

∫ x

0
[f(0) + Lip0(f)t] dt

= 2f(0)x+ Lip0(f)x
2 = ψ′(0)x+ Lip0(f)x

2,

ψ(x) = 2

∫ x

0
f(−t)dt ≥ 2

∫ x

0
[f(0)− Lip0(f)t] dt

= 2f(0)x− Lip0(f)x
2 = ψ′(0)x− Lip0(f)x

2,

so that condition (iii) holds. As evidently χ(0)/ψ′(0)2 = 1
4f(0)2 , Corollary 12 gives Theorem 3(i).

B. Proof of Theorem 3(ii)

This proof requires somewhat more technicality than the first part of the theorem, including a brief detour into

local asymptotic normality theory, regular estimators, and quadratic-mean differentiability [19, cf.]. We assume

without loss of generality that the median of the density f is 0, so that if Pθ has density f(· − θ), the median of

Pθ is θ. We begin by recalling the statistical concepts we require.

Definition 1: A sequence of estimators Tn for a parameter θ in the parametric family {Pθ}θ∈Θ is regular at θ
if there exists a distribution Q such that for any bounded sequence hn,

√
n(Tn − (θ + hn/

√
n))

d 
Pθ+hn/

√
n

Q.

Definition 2: Let {Pθ}θ∈Θ have densities pθ with respect to a base measure µ. The family is quadratic mean

differentiable (QMD) at θ with score ℓ̇θ if

∫
(√

pθ+h −
√
pθ −

1

2
h⊤ℓ̇θ

√
pθ

)2

dµ = o(‖h‖2) (36)

as h→ 0.

Definition 3: A family of distributions {Pθ}θ∈Θ is locally asymptotically normal with information matrix Iθ
(LAN) at θ if there exists a sequence of random vectors {Zn} such that for all hn → h,

n
∑

i=1

log
dPθ+hn/

√
n

dPθ
(Xi) = h⊤Zn −

1

2
h⊤Iθh+ oP (1)

where Zn
d N (0, Iθ) under Pθ , where Xi

iid∼ Pθ .
These three definitions are linked in our case by a few important results. First [19, Theorem 7.2], if {Pθ} is

QMD (Def. 2) at the point θ, then it is locally asymptotically normal with Zn = 1√
n

∑n
i=1 ℓ̇θ(Xi) and information

matrix Iθ = Eθ[ℓ̇θ ℓ̇
⊤
θ ]. Moreover, in any family {Pθ} that is LAN (Def. 3) at θ, if Tn is a regular estimator (Def. 1)

at θ with limiting distribution Q, then for any bounded, symmetric, quasi-convex loss L and c <∞,

lim sup
n

sup
‖h‖≤c

EPθ+h/
√

n

[

L(
√
n(Tn − θ − h/

√
n))
]

= E[L(W )] for W ∼ Q (37)

(see Beran [57], Eq. (4.2)). Thus, we show two results: first, that the family {Pθ} of distributions defined by

the shifted densities {f(· − θ)}θ∈R is quadratic-mean-differentiable at any θ, and second, that θ̄n is regular and

asymptotically normal. The combination evidently gives the theorem.

For quadratic mean differentiability, we have the following lemma, somewhat more general than we need; we

defer proof to Sec. IX-E.
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Lemma 13 (Extension of [19], Lemma 7.6): Let pθ be a density with respect to µ, and assume that θ 7→
sθ(x) ,

√

pθ(x) is absolutely continuous for all x. Let ṗθ(x) = ∇θpθ(x) (when it exists), and assume that

µ({x : ṗθ(x) fails to exist}) = 0.

Assume that Iθ , EPθ
[ṗθṗ

⊤
θ /p

2
θ] is continuous at θ0. Then Pθ is QMD (Definition 2) at θ = θ0 with ℓ̇θ = ṗθ/pθ.

By the assumption in Theorem 3 that the density f is Lipschitz continuous, f is absolutely continuous hence√
f is absolutely continuous. We see that the location family {Pθ}θ∈R defined by dPθ(x) = f(x− θ) satisfies the

conditions of Lemma 13.

It remains to show that the average θ̄n is regular at θ with the limiting distribution N (0, (4f(0)2)−1):
Lemma 14: Let hn → h ∈ R, and define Pn,h = Pn

θ+hn/
√
n

. Then

√
n
(

θ̄n − θ
) d 
Pn,h

N
(

h,
1

4f(0)2

)

. (38)

Proof: To show the convergence (38) we use the following refinement of Corollary 12, which provides a

generalized convergence result for iteratively defined θn, and whose proof we defer to Section IX-D.

Corollary 15: Let the conditions of Corollary 12 hold, meaning that θi = θi−1+γiϕ(Xi−θi−1) for Xi = θ+Zi,
where {Zi} are i.i.d. with E[Z1] = 0 and E[ϕ(Z1)] = 0. Additionally assume the local smoothness condition that

there exist 0 < λ ≤ 1 and K <∞ such that

E[|ϕ(x+ Z1)− ϕ(Z1)|2] ≤ K(|x|λ + x2). (39)

Set ∆i , θi − θ and ∆̄n , 1
n

∑n
i=1∆i. Then

(i) The sequence {∆i} is regular, that is,

√
n∆̄n = − 1√

n

1

ψ′(0)

n−1
∑

i=1

ϕ(Zi) + oP,n(1). (40)

(ii) Let {Zi} as in Corollary 12 have absolutely continuous density p with median 0, define ℓ̇h(z) =
p′(z−h)
p(z−h) , and

assume that Ih , Ep[ℓ̇h(Z1)
2] is continuous in h near 0. Then for any converging sequence hn → h,

√
n∆̄n

d 
Pn

θ+hn/
√

n

N
( −h
ψ′(0)

Ep[ϕ(Z1)ℓ̇0(Z1)],
χ(0)

ψ′2(0)

)

.

We now verify that the setting of Theorem 3 (and Lemma 14) satisfies the conditions of Corollary 15. First, we

have the obvious fact that

|sgn(z)− sgn(x+ z)| ≤ 2 · 1{|x| ≥ |z|} .
Recalling that the density f is Lipschitz with median 0, for ϕ(z) = sgn(z), and Z = X−θ distributed with density

f , we have

E [|ϕ(Z)− ϕ(x+ Z)|] ≤ 2P (|Z1| ≤ |x|)

= 2

∫ |x|

−|x|
f(t)dt ≤ 4f(0)|x|+ 2

∫ |x|

−|x|
Lip(f)tdt

= 4f(0)|x| + 2Lip(f)x2

where Lip(f) is the Lipschitz constant of f . It follows that condition (39) holds. In addition, we have

Ep[ϕ(Z1)ℓ̇0(Z1)] =

∫

R

ϕ(x)f ′(x)dx =

∫

R

sgn(x)f ′(x)dx

=

∫ ∞

0
f ′(x)dx−

∫ 0

−∞
f ′(x)dx = −2f(0) = −ψ′(0).

Corollary 15 now implies the convergence (38). �

Combining Lemmas 13 and 14 with the limit (37) gives Theorem 3(ii).



25

C. Proof of Theorem 3(iii)

We begin with the following result from [56]:

Corollary 16 ([56], Theorem 2): Define the iteration
{

Un = Un−1 − γnϕ(Yn), Yn = g′(Un−1) + Zn

Ūn = 1
n

∑n
i=1 Un, n = 1, 2, . . . .

(41)

Assume that the function g is C2, strictly convex, has Lipschitz derivative, and is minimized by x⋆. Moreover,

assume that the noises {Zn} are i.i.d. with density p and that the Fisher information E[(p′(Z1))
2/p(Z1)

2] exists

and is finite. Let ψ(x) and χ(x) be defined as in Corollary 12 and satisfy the conditions in the corollary. Assume

in addition that χ(0) > 0, condition (35) with λ = 1, and there exits K3 such that

E
[

|ϕ(x+ Z1)|4
]

≤ K3(1 + |x|4).

Finally, assume that the sequence {γn} satisfies conditions (9a) and (9b). Then

Vn , E

[

(Ūn − x⋆)2
]

= n−1 χ(0)

(ψ′(0))2(g′′(x⋆))2
+ o(n−1).

Fix θ ∈ R. Apply Corollary 16 with g(x) = 0.5(x− θ)2, ϕ(x) = sgn(x), Zn = θ −Xn. The update (41) gives

Un = Un−1 + γnsgn(Xn − Un−1),

so the estimator Ūn is identical to the stochastic gradient estimator (8) with θ̄n = 1
n

∑n
i=1 θi. We have E[ϕ(x+Z)4] =

1 and by assumption the Fisher information E[(f ′(Z))2/f(Z)2] exists, and the functions ψ and χ have the desired

conditions of Corollary 12 (as we verify in Section IX-A). Finally, the function θ 7→ EPθ
[(θ̄n − θ)2] is continuous

in θ, so that for x⋆ = θ and g′′ , 1, we may apply Corollary 16 to obtain

E
[

(θ̄n − θ)2
]

=
1

4nf(0)2
+ o(n−1).

From here, existence of the second moment of π implies (11).

D. Proof of Corollary 15

Proof of Corollary 15(i): The proof of part (i) requires two additional lemmas of Polyak and Juditsky [49].

Lemma 17 ([49], Lemma 2): Define the process ∆1
i = ∆1

i−1 − γi(A∆
1
i−1 + ξi) for i = 1, 2, . . .. Assume that

A > 0 and the stepsizes γi satisfy condition (9a). Then for ∆̄1
n = 1

n

∑n
i=1∆

1
i , we have

√
n∆̄1

n =
αn∆

1
0√

nγ0
+

1√
nA

n−1
∑

i=1

ξi +
1√
n

n−1
∑

i=1

wni ξi, (42)

where αn and wni are real numbers such that |αn| ≤ K and |wni | ≤ K for some K < ∞, and

limn→∞
1
n

∑n−1
i=1 |wni | = 0.

Lemma 18 ([49]): Under the conditions of Corollary 15, with probability 1,

∞
∑

i=1

|∆i|1+λ√
i

<∞.

Lemma 18 follows from the proof of Theorem 2 in [49, page 851].

We separate the proof of part (i) into two lemmas, which mirror the proofs of Polyak and Juditsky [49]; together

they immediately give the result.

Lemma 19: The expansion (40) holds for the process ∆̄1
n defined by the iteration

∆1
i = ∆1

i−1 − γiψ
′(0)∆1

i−1 − γiϕ(Zi), ∆1
0 = ∆0

∆̄1
n =

1

n

n−1
∑

i=0

∆1
i . (43)
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Proof: To prove this claim, use Lemma 17 with A = ψ′(0) and ξi = −ϕ(Zi), which by condition (iii) in

Corollary 12 gives that E[ξi] = 0 and that the ξi are independent. The first term αn∆
1
0/γ0

√
n→ 0 in Eq. (42). In

addition, by independence and that the ξi are mean-zero, we have

E





(

1√
n

n−1
∑

i=1

wni ξi

)2




=
1

n

n
∑

i=1

(wni )
2
E
[

ξ2i
]

+
1

n

n
∑

i 6=j
wni w

n
j E [ξiξj ]

=
1

n

n
∑

i=1

(wni )
2
E
[

ϕ(Zi)
2
]

= χ(0)
1

n

n
∑

i=1

(wni )
2 → 0

by Lemma 17. Thus, the expansion (42) in Lemma 17 gives

√
n∆̄1

n = − 1√
n

1

ψ′(0)

n−1
∑

i=1

ϕ(Zi) + oP,n(1)

as desired. �

We then have the following asymptotic equivalence.

Lemma 20: The sequences ∆̄n and ∆̄1
n are asymptotically equivalent, meaning that

√
n(∆̄n − ∆̄1

n)
p→ 0.

Proof: From the recursions (34) and (43), the difference δi = ∆i −∆1
i satisfies

δi = δi−1 − γiψ
′(0)δi−1

+ γi
(

ψ′(0)∆i−1 + ϕ(Zi)− ϕ(∆i−1 + Zi)
)

,

where δ0 = 0. Applying Lemma 17 with the choices ξi = ψ′(0)∆i−1 + ϕ(Zi)− ϕ(∆i−1 + Zi) yields

√
nδ̄n =

1√
n

n−1
∑

i=1

(

1

ψ′(0)
+ wni

)

ξi

=
1√
n

n−1
∑

i=1

(

1

ψ′(0)
+ wni

)

(

ψ′(0)∆i−1 − ψ(∆i−1)
)

(44)

+
1√
n

n−1
∑

i=1

(

1

ψ′(0)
+ wni

)

(45)

× (ψ(∆i−1) + ϕ(Zi)− ϕ(∆i−1 + Zi))

For the term (44), the assumption (35) that |ψ(x) − ψ′(0)x| = O(x1+λ) and that supi,n |wni | < ∞ by Lemma 17

give that there exists K <∞ such that |ψ′(0)−1 +wni ||ψ′(0)∆i−1 − ψ(∆i−1)| ≤ K|∆i|1+λ. Lemma 18 gives that
∑n

i=1
1√
i
|∆i|1+λ <∞, and so the Kronecker lemma gives that

1√
n

n−1
∑

i=1

(

1

ψ′(0)
+ wni

)

(

ψ′(0)∆i−1 − ψ(∆i−1)
) a.s.→ 0.

The term (45) is somewhat more challenging to control. We define

ǫi , ψ(∆i−1) + ϕ(Zi)− ϕ(∆i−1 + Zi),

and let Fi = σ(Z1, . . . , Zi) be the σ-field of the randomness through time i. We use a square integrable martingale

convergence theorem [58, Exercise 5.3.35]. Noting that ∆i ∈ Fi, we have

E[ǫ2i | Fi−1]

= E[(ψ(∆i−1) + ϕ(Zi)− ϕ(∆i−1 + Zi))
2 | Fi−1]

≤ 2ψ(∆i−1)
2 + 2E[(ϕ(∆i−1 + Zi)− ϕ(Zi))

2 | Fi−1]

≤ K
[

|∆i−1|1+λ + |∆i−1|λ +∆2
i−1

]

, (46)
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where inequality (46) follows by the conditions (35) and (39), and E[εi | Fi−1] = 0 for all i by definition of

ψ(x) = E[ϕ(x + Z)] and that ψ(0) = 0. We now control the expectations of these quantities. For R < ∞,

define the the stopping time τR , inf{i : |∆i| > R}, which satisfies {τR ≤ i} ∈ Fi for each i. Then using [49,

Eq. (A13-A14)], we have

E[∆2
i 1{τR > i}] ≤ Kγi,

and so inequality (46) gives that

E

[ ∞
∑

i=1

1

i
|εi|21{τR > n}

]

≤ K

∞
∑

i=1

γλi
i
<∞

so

∞
∑

i=1

1

i
ǫ2i 1{τR > n} <∞ a.s.

by Condition (9a). As in the proof of Theorems 2 and 4 in [49], the Robbins-Siegmund Theorem [59] applied to

the increment of |∆t|2 implies that for every ǫ > 0 there exists some R′ > 0 such that

P

(

sup
i

|∆i| ≤ R′
)

≥ 1− ǫ. (47)

Consequently, there exists some R′′ <∞ such that τR′′ = ∞. We obtain that
∞
∑

i=1

1

i
ε2i <∞ a.s..

Applying the square integrable martingale convergence theorem of [58, Ex. 5.3.35], we have

1√
n

n
∑

i=1

(

1

ψ′(0)
+ wni

)

ǫi
a.s.→ 0,

so that both equations (44) and (45) converge almost surely to 0. �

Proof of Corollary 15(ii): This is essentially an immediate consequence of Le Cam’s third lemma [19, Example

6.7]. Recall [19, Thm. 7.2] that if a family {Pθ}θ∈Θ is quadratic mean differentiable at θ with score ℓ̇θ, then it is

LAN at θ (Definition 3) with information matrix Iθ = E[ℓ̇θ ℓ̇
⊤
θ ].

The regularity result (40) gives

√
n∆̄n = − 1√

n

n
∑

i=1

ϕ(Zi)

ψ′(0)
+ oP,n(1).

The conditions in Corollary 15(ii) imply that the Fisher information Ih = Eh[ℓ̇h(Z1)
2] exists and is continuous for

ℓ̇h(z) =
p′(z−h)
p(z−h) , and the asymptotic expansion Definitions 2 and 3 combined with the preceding display, give the

joint convergence
(

√
n∆̄n,

n
∑

i=1

log
Phn/

√
n

P0
(Zi)

)

d N (µ,Σ) ,

where

µ =

(

0,−h
2

2
I0

)

, and

Σ =

(

χ(0)
ψ′(0)2

−h
ψ′(0)Ep[ϕ(Z1)ℓ̇0(Z1)]

−h
ψ′(0)Ep[ϕ(Z1)ℓ̇0(Z1)] h2I0

)

.

Le Cam’s third lemma [19, Exm. 6.7] then implies the convergence

√
n∆̄n

d 
Pn

hn/
√

n

N
( −h
ψ′(0)

Ep[ϕ(Z)ℓ̇(Z)],
χ(0)

ψ′(0)2

)

under the alternatives Pn
hn/

√
n

, which gives Corollary 15(ii).
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E. Proof of Lemma 13

The proof is essentially completely parallel to that of [19, Lemma 7.6]. Define ṡθ = 1
2
ṗθ
pθ

√
pθ, which exists

µ-almost surely, so that
∫

ṡθṡ
⊤
θ dµ is well-defined (though it may be infinite). By Lebesgue’s integration theorem,

we have

sθ+h(x)− sθ(x) =

∫ 1

0
h⊤ṡθ+th(x)dt,

and so By Jensen’s inequality (or Cauchy-Schwartz) we have

(sθ+h(x)− sθ(x))
2 ≤

∫ 1

0
h⊤ṡθ+th(x)ṡθ+th(x)

⊤hdt.

Thus, for any ht we have

∫
(

sθ+tht
(x)− sθ(x)

t

)2

dµ(x)

≤
∫ ∫ 1

0
(h⊤t ṡθ+utht

)2dudµ

=

∫ 1

0
h⊤t

∫

ṡθ+utht
ṡ⊤θ+utht

dµ(x)htdu

=
1

4
h⊤t

(
∫ 1

0
Iθ+utht

du

)

ht.

By continuity, as ht → h and t → 0 the assumed continuity of θ 7→ Iθ gives that the final display converges to

h⊤Iθh.

Now, we note that

lim
t↓0

(

sθ+tht
(x)− sθ(x)

t
− h⊤ṡθ(x)

)2

= 0

for all x excepting a µ-null set, and the variant of the dominated convergence theorem in [19, Prop. 2.29] implies

that

lim
t→0

1

t2

∫

(

sθ+tht
(x)− sθ(x)− th⊤ṡθ(x)

)2
dµ(x)

= lim
t→0

∫
(

sθ+tht
(x)− sθ(x)

t
− h⊤ṡθ(x)

)2

dµ(x) = 0,

completing the proof.

X. PROOF OF THEOREM 6

We follow a similar outline to the optimality results we establish in the proof of Theorem 3(ii) in Sec. IX-B.

Roughly, we establish that the family Pθ of distributions on the bits Bi is locally asymptotically normal (Definition 3)

via a quadratic mean differentiability argument. After this, the result follows by standard local asymptotic minimax

theory.

We begin with an argument on the smoothness properties of the densities, which is important for our Taylor

expansions to come.

Lemma 21: Let Assumption A2(i) hold. Then for any A = ∪ki=1[ai, bi] and h ∈ R,
∣

∣

∣
Pθ+h(A) − Pθ(A)− Ṗθ(A)h

∣

∣

∣
≤ k · Lip(f)h2, (48)

where

Ṗθ(A) =

k
∑

i=1

f(ai − θ)− f(bi − θ).
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Additionally, we have the bounds

|f(b)− f(a)| ≤ 2
√

Lip(f)P ([a, b]) (49)

and |Ṗθ(A)| ≤ 2
√

kLip(f).

See Section X-A for a proof.

The second lemma provides the local asymptotic normality we require.

Lemma 22: Let Assumption A2(i) and (ii) hold, and let Bi = 1{Xi ∈ Ai}. Let hn → h ∈ R. Then for any

θ ∈ intΘ,

n
∑

i=1

log
Pθ+hn/

√
n(Bi)

Pθ(Bi)

=
h√
n

n
∑

i=1

ℓ̇θ(Bi)−
h2

4n

n
∑

i=1

Var(ℓ̇θ(Bi))

− h2

4n

n
∑

i=1

ℓ̇θ(Bi)
2 + oP (1).

If additionally Assumption A2(iii) holds, then

n
∑

i=1

log
Pθ+hn/

√
n(Bi)

Pθ(Bi)
=

h√
n

n
∑

i=1

ℓ̇θ(Bi)−
h2

2
κ(θ) + oP (1).

The proof of Lemma 22 is quite technical, so we defer it to Section X-B.

With this lemma, it is not too challenging to demonstrate the local asymptotic normality (Definition 3) of the

family {Pθ}. Indeed, Lemma 21 guarantees that |Ṗθ(An)| ≤ 2
√

knLip(f) for all n, so that Eθ[|ℓ̇θ(Bi)|3] ≤
C k3/2

i Lip(f)3/2

Pθ(Ai)2(1−Pθ(Ai))2
, while Assumption A2(ii) guarantees that 1

n3

∑n
i=1 Eθ[|ℓ̇θ(Bi)|3] → 0. Because E[ℓ̇θ(Bi)] = 0,

the Lyapunov central limit theorem applies to give

1√
n

n
∑

i=1

ℓ̇θ(Bi)
d N (0, κ(θ))

under Assumption A2(iii), so that the family {Pθ} is locally asymptotically normal (Def. 3).

We now recall the familiar Hájek-Le-Cam local asymptotic minimax result [19, Thm. 8.11]: if the family {Pθ}
is LAN with precision κ(θ), then

lim inf
c→∞

lim inf
n

sup
‖τ−θ‖≤c/√n

Eτ

[

L(
√
n(θn − τ))

]

≥ E[L(Z/
√

κ(θ))]

for any symmetric quasi-convex loss L, where Z ∼ N (0, 1). This immediately gives Theorem 6.
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A. Proof of Lemma 21

To see the first claim of the lemma, we consider the simpler special case that A = [a, b]. Then as f is Lipschitz

(and hence absolutely continuous and a.e. differentiable with ‖f ′‖∞ ≤ Lip(f)), we have

Pθ+h(A)− Pθ(A) =

∫ b

a
(f(z − θ − h)− f(z − θ))dz

= −
∫ b

a

∫ h

0
f ′(z − θ − u)dudz

= −
∫ h

0

∫ b

a
f ′(z − θ − u)dzdu

=

∫ h

0
f(a− θ − u)− f(b− θ − u)du

⋚
∫ h

0
(f(a− θ)− f(b− θ))du± 2

∫ h

0
Lip(f)udu

= [f(a− θ)− f(b− θ)]h± Lip(f)h2.

This gives the first two claims of the lemma.

For the second, we require a bit more work. Let L = Lip(f) for shorthand. Let a < b. Then we always have

P ([a, b]) ≥
∫ b

a
f(z)dz (50)

≥
∫ b

a
max{f(b)− L(b− z), f(a)− L(z − a), 0}dz.

If f(a)+f(b) ≥ L(b−a), then the point ẑ = a+b
2 − f(b)−f(a)

2L satisfies both f(b)−L(b−ẑ) ≥ 0 and f(a)−L(ẑ−a) ≥
0. The integral (50) then becomes

∫ ẑ

a
(f(a)− L(z − a)dz) +

∫ b

ẑ
(f(b)− L(b− z))dz

=
f(a) + f(b)

2

(

b− a

2

)

− L

(

b− a

2

)2

+
(f(b)− f(a))2

4L
,

and using the assumption that
f(a)+f(b)

2 ≥ L(b− a), we obtain

(f(b)− f(a))2

4L
≤ f(b) + f(b)

2

b− a

2

− L

(

b− a

2

)2

+
(f(b)− f(a))2

4L

≤ P ([a, b]).

That is, |f(b)−f(a)| ≤ 2
√

Lip(f)P ([a, b]). In the converse case that f(a)+f(b) ≤ L(b−a), then the integral (50)

becomes

P ([a, b]) ≥
∫ a+ f(a)

L

a
(f(a)− L(z − a))dz

+

∫ b

b− f(b)

L

(f(b)− L(b− z))dz

=
f(a)2

L
− f(a)2

2L
+
f(b)2

L
− f(b)2

2L
,

so that

f(a) + f(b)√
2

≤
√

f(a)2 + f(b)2 ≤
√

2Lip(f)P ([a, b]),

where the left inequality follows from concavity of
√·. In sum, we have demonstrated that always the first bound (49)

holds. To show the second inequality in expression (49), note that
∑

i P ([ai, bi]) ≤ 1, and apply Cauchy-Schwarz.



31

B. Proof of Lemma 22

Our proof follows that of [19, Thm. 7.2] closely. We first demonstrate a type of uniform quadratic mean

differentiability (Definition 2) for sets A that are finite unions of intervals. By a Taylor approximation and concavity

of
√·, we have

√
a+

b

2
√
a
− b2

4a3/2
≤

√
a+ b ≤ √

a+
b

2
√
a

for any a > 0 and |b| ≤ 3a/4. Consequently, recalling that ℓ̇θ(A) = Ṗθ(A)/Pθ(A), for any h ∈ R and A =
∪ki=1[t

−
i , t

+
i ] the union of k intervals, the expansion (48) yields

(

√

Pθ+h(A)−
√

Pθ(A)−
1

2
hℓ̇θ(A)

√

Pθ(A)

)2

≤
(

kLip(f)

2
√

Pθ(A)
h2 +

(|Ṗθ(A)h| + h2Lip(f))2

Pθ(A)3/2

)2

,

valid for h such that |Ṗθ(A)h| ≤ Pθ(A)/4 and kh2Lip2(f) ≤ Pθ(A)/4. Thus, under Assumption A2(ii), there

exists a numerical constant C <∞ such that
(

√

Pθ+h(A)−
√

Pθ(A)−
1

2
hℓ̇θ(A)

√

Pθ(A)

)2

≤
(

h2k · Lip(f)

2
√

Pθ(A)
+

(|Ṗθ(A)h| + kh2Lip(f))2

Pθ(A)3/2

)2

≤ C

Pθ(A)

[

k2Lip2(f) + ℓ̇θ(A)
2 +

k4h4Lip4(f)

Pθ(A)2

]

· h4, (51a)

valid whenever |Ṗθ(A)h| ≤ Pθ(A)/4 and kh2Lip2(f) ≤ Pθ(A)/4, and similarly, we have

(

√

Pθ+h(Ac)−
√

Pθ(Ac)−
1

2
hℓ̇θ(A

c)
√

Pθ(Ac)

)2

≤ C

Pθ(Ac)

[

k2Lip2(f) + ℓ̇θ(A
c)2 +

k4h4Lip4(f)

Pθ(Ac)2

]

· h4. (51b)

That is, the family {Pθ} with bit observationsBn satisfies a uniform type of quadratic-mean differentiability (Def. 2).

For shorthand, define Pn = Pθ+hn/
√
n and P = Pθ , and let pn, p be shorthand for the p.m.f.s of the two

distributions. For the sets Ai we recall that Bi = 1{Xi ∈ Ai}. The random variables

Wn,i , 2

(
√

pn
p
(Bi)− 1

)

are with P -probability 1 well-defined, and by the inequalities (51), we have that

Var

(

Wn,i −
hn√
n
ℓ̇θ(Bi)

)

(52)

≤ C
k2i Lip2(f) + ℓ̇θ(Ai)

2 + ℓ̇θ(A
c
i )

2

Pθ(Ai)Pθ(A
c
i )

· h
4
n

n2

+ C
k4Lip4(f)

Pθ(Ai)3Pθ(A
c
i )

3

h8n
n4

≤ C
k2i Lip2(f) + ℓ̇θ(Ai)

2 + ℓ̇θ(A
c
i )

2

Pθ(Ai)Pθ(A
c
i )

· h
4
n

n2
(53)

+ C
k4Lip4(f)

Pθ(Ai)3Pθ(A
c
i )

3

h8n
n4

(54)
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whenever

h√
n
max{ℓ̇θ(Ai), ℓ̇θ(Aci )} ≤ 1

4

and
kih

2
n

n
Lip2(f) ≤ min{Pθ(Ai), Pθ(Aci )}

4

Now, we use Assumption A2(ii), coupled with Lemma 21 to show that the summed variances converge to zero.

Indeed, Lemma 21 and inequality (52) give that

Var

(

Wn,i −
hn√
n
ℓ̇θ(Bi)

)

≤ C ·
[

k2i
Pθ(Ai)Pθ(A

c
i )

1

n

+
ki

Pθ(Ai)Pθ(A
c
i )

1

n
+

k4i
Pθ(Ai)3Pθ(A

c
i )

3

1

n3

]

1

n
,

where C <∞ depends only on Lip(f) and hn (both of which are uniformly bounded) whenever

ki
Pθ(Ai)Pθ(A

c
i )

1

n
≤ 1

C
.

Assumption A2(ii) thus implies that E[ℓ̇θ(Bi)] = 0 and

Var

(

n
∑

i=1

Wn,i −
hn√
n
ℓ̇θ(Bi)

)

=

n
∑

i=1

Var

(

Wn,i −
hn√
n
ℓ̇θ(Bi)

)

→ 0. (55)

We now control the expectation of the Wn,i. Defining µi to be the induced counting measure on Bi = 1{Xi ∈ Ai},

n
∑

i=1

E[Wn,i] = 2

n
∑

i=1

(
∫

√

pn(b)
√

p(b)dµi(b)− 1

)

= −
n
∑

i=1

∫

(

√

pn(b)−
√

p(b)
)2
dµi(b)

= −h
2
n

4n

n
∑

i=1

E[ℓ̇θ(Bi)
2]

−
n
∑

i=1

∫
(

√

pn(b)−
√

p(b)− hn√
n
ℓ̇θ(b)

√

p(b)

)2

dµi(b)

−
n
∑

i=1

∫
(

√

pn(b)−
√

p(b)− hn√
n
ℓ̇θ(b)

√

p(b)

)

hn√
n
ℓ̇θ(b)

√

p(b)dµi(b)

= −
(

h2

4n

n
∑

i=1

E[ℓ̇θ(Bi)
2]

)

− o(1)

uniformly in h, with a derivation completely paralleling that above. Therefore, we obtain

n
∑

i=1

Wn,i =

n
∑

i=1

(

Wn,i −
hn√
n
ℓ̇θ(Bi)

)

+
hn√
n

n
∑

i=1

ℓ̇θ(Bi)

= −h
2

4n

n
∑

i=1

E[ℓ̇θ(Bi)
2] +

h√
n

n
∑

i=1

ℓ̇θ(Bi) + oP (1),

where we have used that hn → h.
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Now, we write the log-likelihood ratio. We have

n
∑

i=1

log
pn(Bi)

p(Bi)
= 2

n
∑

i=1

log

(

1 +
1

2
Wn,i

)

=

n
∑

i=1

Wn,i −
1

4

n
∑

i=1

W 2
n,i +

1

2

n
∑

i=1

W 2
n,iR(Wn,i)

where the remainder |R(Wn,i)| ≤ |Wn,i| for |Wn,i| ≤ 1. Using the Taylor expansions of
√· and Lemma 21, we

have
∣

∣

∣

∣

1

2
Wn,i

∣

∣

∣

∣

≤ 1

2

∣

∣

∣
ℓ̇θ(Bi)

∣

∣

∣

hn√
n

+

∣

∣

∣

∣

h2n
n

kiLip(f)

p(Bi)
+
h2n
n
ℓ̇θ(Bi)

2 +
h4n
n2
k2i Lip(f)2

p(Bi)2

∣

∣

∣

∣

=
1

2
ℓ̇θ(Bi)

hn√
n

+ C

∣

∣

∣

∣

√
ki√

np(Bi)
+

ki
np(Bi)

+

√
ki

p(Bi)2n
+

k2i
p(Bi)2n2

∣

∣

∣

∣

(56)

where |C| <∞ depends only on Lip(f) and hn and so is uniformly bounded. From Assumption A2(ii) we get

C

∣

∣

∣

∣

√
ki√

np(Bi)
+

ki
np(Bi)

+

√
ki

p(Bi)2n
+

k2i
p(Bi)2n2

∣

∣

∣

∣

→ 0.

Consequently maxiWn,i → 0, so that

n
∑

i=1

log
pn(Bi)

p(Bi)
=

hn√
n

n
∑

i=1

ℓ̇θ(Bi)−
1

4

n
∑

i=1

E[ℓ̇θ(Bi)
2] (57)

− 1

4

n
∑

i=1

W 2
n,i + oP (1).

It remains to compute E[W 2
n,i]. Using the bounds that |ℓ̇θ(Bi)| ≤ C

√
ki/p(Bi) from Lemma 21, the expansion (56)

yields

∣

∣

∣

∣

E

[

W 2
n,i −

h2n
2n
ℓ̇θ(Bi)

2

]
∣

∣

∣

∣

≤ C

n

[

k
3/2
i

p(Ai)(1− p(Ai))
√
n
+

k
3/2
i

p(Ai)2(1− p(Ai))2
√
n

+
k2i

p(Ai)(1− p(Ai))

1

n3/2

]

+
C

n

[

k2i
p(Ai)(1 − p(Ai))

1

n
+

ki
p(Ai)3(1− p(Ai))3

1

n

+
k4i

p(Ai)3(1− p(Ai))3
1

n3

]

,

where C depends only on h and Lip(f). Thus

n
∑

i=1

W 2
n,i =

h2n
n

n
∑

i=1

ℓ̇θ(Bi)
2 + o(1),

giving Lemma 22.
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XI. PROOF OF THEOREM 7

Let Ξ be the set of points θ ∈ Θ for which κ(θ) = η(0). Since B1, B2, . . . satisfy the conditions in Theorem 6,

θ is in Ξ if and only if limn→∞Ln(A1, . . . , An; θ) = η(0). By assumption, we have Bi = 1{Xi ∈ Ai}, Ai =
∪Kk=1(t

−
i,k, t

+
i,k), where t−i,1 ≤ t+i,1 ≤ . . . ≤ t−i,K ≤ t+i,K , and t−i,1 and t+i,K may take the values −∞ and ∞,

respectively. Denote the set of endpoints

Ei =

K
⋃

k=1

{t−i,k, t+i,k},

and for θ and ǫ > 0, define

Sn(θ, ǫ) , {i ≤ n s.t. (θ − ǫ, θ + ǫ) ∩ Ei 6= ∅}

In words, Sn contains all integers smaller than n in which an ǫ-ball around θ contains an endpoint of one of the

intervals defining Ai. We now claim that if θ ∈ Ξ then card(Sn(θ, ǫ))/n → 1. Indeed, for such θ we have

Ln(A1, . . . , An; θ)

=
1

n

∑

i∈Sn(ǫ,θ)

(

∑K
k=1 f(θ − t+i,k)− f(θ − t−i,k)

)2

∑K
k=1

(

F (θ − t+i,k)− F (θ − t−i,k)
)

× 1
(

1−∑K
k=1

(

F (θ − t+i,k)− F (θ − t−i,k)
))

+
1

n

∑

i/∈Sn(ǫ,θ)

(

∑K
k=1 f(t

+
i,k − θ)− f(t−i,k − θ)

)2

∑K
k=1

(

F (θ − t+i,k)− F (θ − t−i,k)
)

× 1
(

1−∑K
k=1

(

F (θ − t+i,k)− F (θ − t−i,k)
))

≤ card (Sn(θ, ǫ))

n
η(0) +

n− card (Sn(θ, ǫ))

n
η(ǫ) (58)

where the last transition follows from Lemma 11 with δ = 0 and the fact that for i ∈ Sn(θ, ǫ),

max

{

max
k

η(t+i,k − θ),max
k

η(t−i,k − θ)

}

≤ η(ǫ) < η(0).

Unless card (Sn(θ, ǫ)) /n → 1, we get that (58), hence Ln(A1, . . . , An; θ), are bounded from above by a constant

that is smaller then η(0) in contradiction to the fact that θ ∈ Ξ.

Assume for the sake of contradiction that there exists N ≥ 2K +1 distinct elements θ1, . . . , θN ∈ Ξ. Since each

Ai consists of at most K intervals, we have that

card

(

n
⋃

i=1

Ai

)

≤ 2nK. (59)

Fix ǫ > 0 such that

ǫ <
1

2
min
i 6=j

|θi − θj |.

Since for each θ ∈ Θ we have card (Sn(θ, ǫ)) → 1, there exists n large enough such that

card (Sn(θi, ǫ)) ≥ n

(

1− 1

2N

)

for all i = 1, . . . , N . However, Sn(θ1, ǫ), . . . Sn(θN , ǫ) are disjoint, so the cardinality of their union is at least

n
(

1− 1
2N

)

N > 2nK + n/2, a contradiction to inequality (59).
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