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Abstract

Optimal rates for achieving an information processing task are often characterized in terms
of regularized information measures. In many cases of quantum tasks, we do not know how to
compute such quantities. Here, we exploit the symmetries in the recently introduced D# in order
to obtain a hierarchy of semidefinite programming bounds on various regularized quantities. As
applications, we give a general procedure to give efficient bounds on the regularized Umegaki
channel divergence as well as the classical capacity and two-way assisted quantum capacity of
quantum channels. In particular, we obtain slight improvements for the capacity of the amplitude
damping channel. We also prove that for fixed input and output dimensions, the regularized
sandwiched Rényi divergence between any two quantum channels can be approximated up to an
ǫ accuracy in time that is polynomial in 1/ǫ.

1 Introduction

The optimal rates for many quantum information processing tasks of interest can be characterized in
terms of a regularized divergence between quantum channels. For a divergence D defined on quantum
states, the corresponding channel divergence is defined by maximizing the divergence between the
channel outputs over the set of possible inputs. There are two natural variants: for quantum channels
N and M the non-stabilized divergence is given by only allowing input states ρ in the input space of
N and M

D(N‖M) = sup
ρ

D(N (ρ)‖M(ρ)) ,

whereas the stabilized version allows arbitrary input states

D(N‖M) = sup
ρ

D((I ⊗ N )(ρ)‖(I ⊗M)(ρ)) ,

where I is the identity channel. The most well-known example illustrating these two variants is when
D is the trace distance, then D(N‖M) is the superoperator trace norm and D(N‖M) is the diamond
norm, and it is known that we can have D(N‖M) ≪ D(N‖M) [KSV02].

When analyzing tasks in the independent and identically distributed limit, an important divergence
D is the Umegaki divergence D defined by D(ρ‖σ) = tr (ρ log ρ)−tr (ρ log σ). For example, in asymmet-
ric hypothesis testing between channels N and M, the Stein exponent is characterized using D, namely
in terms of the regularized channel divergence Dreg(N‖M) := supn

1
nD(N⊗n‖M⊗n) [WBHK20,

WW19, FFRS20]. In fact, it turns out that the channel divergence D is in general non-additive [FFRS20],
in which case we have Dreg(N‖M) > D(N‖M).

A preliminary version of this paper was presented at IEEE International Symposium on Information Theory, 2021
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Another example is the Holevo information of a quantum channel N , which is given by χ(N ) =
minσ D(N‖Tσ) where Tσ is the replacer channel that outputs σ for any input density operator [OPW97].
The Holevo-Schumacher-Westmorland theorem (see e.g., [Wil13]) states that the classical capacity of
N is given by χreg(N ) := supn

1
nχ(N⊗n) and the regularization is needed for some channels, as shown

by [Has09].
The objective of this paper is to provide efficient ways of computing, or more specifically upper

bounding, such regularized channel divergences. In order to achieve this, we use the recently introduced
D# Rényi divergences [FF21b] which were shown to give a converging hierarchy of upper bounds on
regularized channel divergences. We exploit the symmetries of the resulting hierarchy of optimization
programs to obtain a concise representation and solve it efficiently. Specifically, for quantum channels
N ,M, we show in Theorem 4.3 that the permutation symmetry of the optimization program defining
D#

α (N⊗k‖M⊗k) can be used to transform it into a semidefinite program with poly(k) variables and
constraints compared to the straightforward representation which is of size exponential in k. How-
ever, as we will see, a direct implementation of this transformation would require an exponential time
computation. In Theorem 4.6, we provide an algorithm which performs this transformation in poly(k)
time, for fixed input and output dimensions. As a first application, we consider the task of approxi-
mating the regularized sandwiched Rényi divergence between two channels. Note that the sandwiched
Rényi divergence (see Section 2 for the definition) is in general non-additive [FFRS20], and it is not
known whether its regularization is efficiently computable. Ref. [FF21a] shows that the regularized
quantity can be approximated up to arbitrary accuracy by 1

kD
#
α (N⊗k‖M⊗k), for sufficiently large

k. Our results imply that the regularized sandwiched Rényi divergence between two channels can be
approximated up to an accuracy ǫ ∈ (0, 1], in time that is polynomial in 1/ǫ (for fixed input/output
dimensions). Furthermore, when the channels admit additional group symmetries, we present a general
approach to combine these symmetries with the intrinsic permutation invariance to further simplify
the problem. As an example demonstrating the potential of this approach, in Section 4.2, we apply
our method to generalized amplitude damping channels and we show how a very simple symmetry
of these channels leads to considerable reductions in the size of the convex optimization program for
computing the channel divergence (see Table 4.2.1).

In Section 5, we present a procedure for efficiently computing improved strong converse bounds on
the classical capacity of quantum channels by considering the generalized Upsilon-information [WFT19]
induced by the D# Rényi divergences. To illustrate our method, we apply it to the amplitude damping
channel (see Table 3 for a comparison with the best previously known bounds). Even though the
improvements we obtain for the classical capacity are very small for this channel, the amplitude
damping channel Ap is one of the current challenges as far as the classical capacity is concerned. In
particular, it remains open whether χreg(Ap) = χ(Ap). Finally, in Section 6, we use our method
for computing improved upper bounds on the two-way assisted quantum capacity of channels by
considering the generalized Theta-information [FF21a] induced by the D# divergences and apply it to
the amplitude damping channel, as an example (see Figure 2 for a comparison with the best previously
known bounds).

2 Preliminaries

Basic notation

Let H be a finite dimensional complex Hilbert space; we denote by L (H) the set of linear operators on
H, P(H) denotes the set of positive semidefinite operators onH, and D(H) := {ρ ∈ P(H) : tr (ρ) = 1}
is the set of density operators on H. For any two Hermitian operators ρ, σ ∈ L (H), we write ρ ≤ σ
if σ − ρ ∈ P(H). Given ρ ∈ L (H), the support of ρ, denoted supp(ρ), is the orthogonal complement
of its kernel. For ρ, σ ∈ L (H), we write ρ ≪ σ, if supp(ρ) ⊆ supp(σ). Let X,Y be finite dimensional
complex Hilbert spaces. For A ∈ P(X ⊗ Y ), we often explicitly indicate the quantum systems as a
subscript by writing AXY . The marginal on the subsystem X is denoted AX = tr Y (AXY ). Let {|x〉}x
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and {|y〉}y be the standard bases for X and Y , respectively. We will use a correspondence between
linear operator in L (Y,X) and vectors in X ⊗ Y , given by the linear map vec : L (Y,X) → X ⊗ Y ,
defined as vec (|x〉〈y|) = |x〉|y〉.

We denote by CP(X : Y ) the set of completely positive (CP) maps from L (X) to L (Y ). A
quantum channel NX→Y is a CP and trace-preserving linear map from L (X) to L (Y ). A subchannel
MX→Y is a CP and trace-nonincreasing linear map from L (X) to L (Y ). Let X ′ be isomorphic to X
and |Φ〉XX′ =

∑
x |x〉X |x〉X′ be the unnormalized maximally entangled state. For a linear mapNX′→Y ,

we denote by JN
XY ∈ P(X⊗Y ) the corresponding Choi matrix defined as JN

XY = (IX⊗N )(|Φ〉〈Φ|XX′),
where IX denotes the identity map on L (X).

Polynomial on a vector space. For a finite dimensional complex vector space H, the dual vector
space H∗ of H is the vector space of all linear transformations ϕ : H → C. The coordinate ring of H,
denoted O(H), is the algebra consisting of all C-linear combinations of products of elements from H∗.
An element of O(H) is called a polynomial on H. A polynomial p ∈ O(H) is called homogeneous if
it is a C-linear combination of a product of k non-constant elements of H∗ (for a fixed non-negative
integer k). We denote by Ok(H) the set all homogeneous polynomials of degree k.

Quantum divergences

A functional D : D(H)× P(H) → R is a generalized quantum divergence [PV10, SW13] if it satisfies
the data-processing inequality

D(N (ρ)‖N (σ)) ≤ D(ρ‖σ).

Let ρ ∈ D(H) and σ ∈ P(H) such that ρ≪ σ. The sandwiched Rényi divergence [MDS+13], [WWY14]
of order α ∈ (1,∞) is defined as

D̃α(ρ‖σ) :=
1

α− 1
log tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
.

The geometric Rényi divergence [PR98, Mat15, Tom15, HM17, FF21a] of order α is defined as

D̂α(ρ‖σ) :=
1

α− 1
log tr

[
σ1/2

(
σ−1/2ρσ−1/2

)α
σ1/2

]
.

The max divergence is defined as

Dmax(ρ‖σ) := log inf{λ > 0 : ρ ≤ λσ}.

The inverses in these formulations are generalized inverses, i.e., the inverse on the support. When
ρ ≪ σ does not hold, these quantities are set to ∞. Recently, in [FF21b], the authors introduced an
interesting quantum Rényi divergence called #-Rényi divergence. To define this divergence, we recall
the geometric mean of two positive definite matrices.

For α ∈ (0, 1), the α-geometric mean of two positive definite matrices ρ and σ is defined as

ρ#ασ = ρ1/2(ρ−1/2σρ−1/2)αρ1/2.

The α-geometric mean has the following properties (see Refs. [KA80] and [FF21b]):

1. Monotonicity: A ≤ C and B ≤ D implies A#αB ≤ C#αD.

2. Transformer inequality: M(A#αB)M∗ ≤ (MAM∗)#α(MBM∗), with equality ifM is invertible.

3. (aA)#α(bB) = a(b/a)α(A#α)B, for any a > 0 and b ≥ 0.

4. Joint-concavity/sub-additivity: for any Ai, Bi ≥ 0 we have

∑

i

Ai#αBi ≤
(
∑

i

Ai

)
#α

(
∑

i

Bi

)
.
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5. Direct sum: for any A1, A2, B1, B2 ≥ 0, we have

(A1 ⊕A2)#α(B1 ⊕B2) = (A1#αB1)⊕ (A2#αB2) ,

where A1 ⊕A2 form a block diagonal matrix

[
A1 0
0 A2

]
.

The #-Rényi divergence [FF21b] of order α between two positive semidefinite operators is defined
as

D#
α (ρ‖σ) :=

1

α− 1
logQ#

α (ρ‖σ),

Q#
α (ρ‖σ) := min

A≥0
tr (A) s.t. ρ ≤ σ# 1

α
A.

We note that the above convex program may be expressed as a semidefinite program when α is a
rational number [FS17, Sag13]. The order between these divergences is summarized in the proposition
below.

Proposition 2.1. For any ρ, σ ∈ P(H) and α ∈ (1, 2], we have

D(ρ‖σ) ≤ D̃α(ρ‖σ) ≤ D#
α (ρ‖σ) ≤ D̂α(ρ‖σ) ≤ Dmax(ρ‖σ).

For a quantum channel NX′→Y , a subchannel MX′→Y and a generalized quantum divergence D

the corresponding channel divergence [LKDW18] is defined as

D(N‖M) := sup
ρX∈D(X)

D(NX′→Y (φXX′)‖MX′→Y (φXX′)) ,

where φXX′ is a purification of ρX . For D = D#
α , the channel divergence can be expressed in terms of

a convex optimization program [FF21b] as follows.

D#
α (N‖M) :=

1

α− 1
logQ#

α (N‖M), (1)

Q#
α (N‖M) := min

AXY ≥0
‖tr Y (AXY )‖∞ s.t. (JN

XY ) ≤ (JM
XY )#1/αAXY , (2)

where ‖.‖∞ denotes the operator norm.
The generalization of D#

α to channels is subadditive under tensor products [FF21b]: For any α ∈
(1,∞), quantum channels N1,N2, and subchannels M1,M2, we have

D#
α (N1 ⊗N2‖M1 ⊗M2) ≤ D#

α (N1‖M1) + D#
α (N2‖M2) .

3 Tools for efficiently representing structured convex programs

In this section, we provide the necessary mathematical background on how symmetries in a convex
optimization problem can be utilized to represent the program efficiently, we refer the interested reader
to references such as [LM11] for more information.

3.1 Matrix ∗-algebra background

A subset A of the set of all n×n complex matrices is said to be a matrix ∗-algebra over C, if it contains
the identity operator and is closed under addition, scalar multiplication, matrix multiplication, and
taking the conjugate transpose. For our applications, the structure in the optimization programs we
consider will allow us to assume that the variables live in such an algebra. A map ϕ : A → B between
two matrix ∗-algebras A and B is called a ∗-isomorphism if
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• ϕ is a linear bijection,

• ϕ(AB) = ϕ(A)ϕ(B) for all A,B ∈ A,

• ϕ(A∗) = ϕ(A)∗ for all A ∈ A.

The matrix algebras A and B are called isomorphic and we write A ∼= B. Note that, by the second
property above, ∗-isomorphisms preserve positive semidefiniteness. From a standard result in the
theory of matrix ∗-algebra, we get the following structure theorem.

Theorem 3.1 (Theorem 1,[Gij05]). Let A ⊆ Cn×n be a matrix ∗-algebra. There are numbers t,
m1, . . . ,mt such that there is a ∗-isomorphism φ between A and a direct sum of complete matrix
algebras

φ : A →
t⊕

i=1

C
mi×mi . (3)

In other words, under the mapping φ, all the elements ofA have a common block-diagonal structure.
Moreover, this is the finest such decomposition for a generic element of A. We remark that the ∗-
isomorphism φ can be computed in polynomial time in the dimension of the matrix ∗-algebra A (see
e.g., Theorem 2.7 in Ref. [LM11] and the following discussion, or Ref. [Gij05]).

Regular ∗-representation
In general, computing the block-diagonal decomposition above and the corresponding mapping is a
non-trivial procedure. In this section, we introduce a simpler ∗-isomorphism which embeds A into
Cm×m, where m = dimA.

Let A be a matrix ∗-algebra of dimension m and C = {C1, . . . , Cm} be an orthonormal basis for
A with respect to the Hilbert-Schmidt inner product. Let L be the linear map defined for every
A ∈ A by the left-multiplication by A. Consider the matrix representation of L with respect to the
orthonormal basis C. For every A ∈ A, L(A) is represented by an m × m complex matrix given
by L(A)ij = 〈Ci, ACj〉, for every i, j ∈ [m]. The map L : A → Cm×m, is called the regular ∗-
representation of A associated with the orthonormal basis C. Since L is a linear map, it is completely
specified by its image for the elements of the basis C. Let (ptrs)r,s,t∈[m] be the multiplication parameters
ofA with respect to the basis C defined by CrCs =

∑m
t=1 p

t
rsCt. Then, L(Cr)ij = pirj, for every r ∈ [m].

Theorem 3.2 ([KPS07]). Let L be the matrix ∗-algebra generated by the matrices L(C1), . . . , L(Cm).
Then the map ψ defined as

ψ : A → L , ψ(Cr) = L(Cr) , r ∈ [m] , (4)

is a ∗-isomorphism.

Note that under the ∗-isomorphism ψ of Theorem 3.2, for A ⊆ Cn×n, the matrix dimensions are
reduced from n×n tom×m, whereas the ∗-isomorphism φ of Theorem 3.1 provides a fine block-diagonal
decomposition into t blocks where the block matrix i is of size mi ×mi, satisfying m = m2

1 + . . .+m2
t .

3.2 Representation theory

We recall some basic facts in representation theory of finite groups. For further details, we refer the
reader to Refs. [Ser77] and [FH13]. Let H be a finite dimensional complex Hilbert space and G be
a finite group. A linear representation of G on H is a group homomorphism ̺ : G → GL(H), where
GL(H) is the general linear group on H. The space H is called a G-module. For v ∈ H and g ∈ G, we
write g · v as shorthand for ̺(g)v. For X ∈ L (H), the action of g ∈ G on X is given by ̺(g)X̺(g)∗.
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A representation ̺ : G→ GL(H) of G is called irreducible if it contains no proper submodule H′ of
H such that gH′ ⊆ H′. Let H and H′ be G-modules, a linear map ψ : H → H′ is called a G-equivariant
map if g · ψ(v) = ψ(g · v) for all g ∈ G, v ∈ H. Two G-modules H and H′ are called G-isomorphic,
write H ∼= H′, if there is a bijective equivariant map from H to H′. We denote by EndG(H), the set
of all G-equivariant maps from H to H, i.e.,

EndG(H) = {T ∈ L (H) : T (g · v) = g · T (v), ∀v ∈ H, g ∈ G}.
Let G be a finite group acting on a finite dimensional complex vector space H. Then the space

H can be decomposed as H = H1 ⊕ · · · ⊕ Ht such that each Hi is a direct sum Hi,1 ⊕ · · · ⊕ Hi,mi

of irreducible G-modules with the property that Hi,j
∼= Hi′,j′ if and only if i = i′. The G-modules

H1, . . . ,Ht are called the G-isotypical components and (m1, . . . ,mt) are called the multiplicities of the
corresponding irreducible representations.

It is straightforward to see that EndG(H) corresponds to the subset of G-invariant matrices and has
the structure of a matrix ∗-algebra. ForA = EndG(H), the structural parameters of Theorem 3.1 have a
representation theoretic interpretation. In particular, the number of the direct summands t corresponds
to the number of isomorphism classes of irreducible G-submodules and mi is the multiplicity of the
irreducible G-submodules in class i.

For each i ∈ [t] and j ∈ [mi], let ui,j ∈ Hi,j be a nonzero vector such that for each i and all
j, j′ ∈ [mi], there is a bijective G-equivariant map from Hi,j to Hi,j′ that maps ui,j to ui,j′ . For i ∈ [t],
we define a matrix Ui as [ui,1, . . . , ui,mi

], with ui,j forming the j-th column of Ui. The matrix set
{U1, . . . , Ut} obtained in this way is called a representative for the action of G on H. The columns of
the matrices Ui can be viewed as elements of the dual space H∗ (by taking the standard inner product).
Then each Ui is an ordered set of linear functions on H.

Since Hi,j is the linear space spanned by G · ui,j (for each i, j), we have

H =

t⊕

i=1

mi⊕

j=1

CG · ui,j ,

where CG =
{∑

g∈G αgg : αg ∈ C

}
denotes the complex group algebra of G. Moreover, note that

dimEndG(H) = dimEndG




t⊕

i=1

mi⊕

j=1

Hi,j


 =

t∑

i=1

m2
i . (5)

Note that with the action of the finite group G on the space H, any inner product 〈 , 〉 on H gives
rise to a G-invariant inner product 〈 , 〉G on H via the rule 〈x, y〉G := 1

|G|

∑
g∈G〈g · x, g · y〉. Let 〈 , 〉

be a G-invariant inner product on H and {U1, . . . , Ut} be a representative for the action of G on H.
Consider the linear map φ : EndG(H) →⊕t

i=1 C
mi×mi defined as

φ(A) :=
t⊕

i=1

(〈Aui,j′ , ui,j〉)mi

j,j′=1 , ∀A ∈ EndG(H) . (6)

For i ∈ [t] and A ∈ EndG(H), we denote the matrix (〈Aui,j′ , ui,j〉)mi

j,j′=1 corresponding to the i-th

block of φ(A) by Jφ(A)Ki.
Lemma 3.3 (Proposition 2.4.4, [Pol19]). The linear map φ of Eq. (6) is bijective and for every
A ∈ EndG(H), we have A ≥ 0 if and only if φ(A) ≥ 0. Moreover, there is a unitary matrix U such
that

U∗AU =

t⊕

i=1

di⊕

j=1

Jφ(A)Ki , ∀A ∈ EndG(H) ,

where di = dim(Hi,1), for every i ∈ [t].
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Lemma 3.3 plays a very important role in our symmetry reductions. Note that dim(EndG(H)) =∑t
i=1m

2
i can be significantly smaller than dimH. Moreover, by this lemma, for any A ∈ EndG(H), the

task of checking whether A is a positive semidefinite matrix can be reduced to checking if the smaller
mi ×mi matrices Jφ(A)Ki are positive semidefinite, for every i ∈ [t]. The mapping φ in Eq. (6) is a
special case of the ∗-isomorphism of Theorem 3.1, where A is the matrix ∗-algebra EndG(H).

3.3 Representation theory of the symmetric group

Fix k ∈ N and a finite-dimensional vector space H with dim(H) = d. We consider the natural action
of the symmetric group Sk on H⊗k by permuting the indices, i.e.,

π · (h1 ⊗ · · · ⊗ hk) = hπ−1(1) ⊗ · · · ⊗ hπ−1(k) , hi ∈ H , ∀π ∈ Sk .

Based on classical representation theory of the symmetric group, we describe a representative set
for the action of Sk on H⊗k. The concepts and notation we introduce in this section will be used
throughout this paper.

A partiton λ of k is a sequence (λ1, . . . , λd) of natural numbers with λ1 ≥ . . . λd > 0 and λ1 + · · ·+
λd = k. The number d is called the height of λ. We write λ ⊢d k if λ is a partition of k with height d.
Let Par(d, k) := {λ : λ ⊢d k}. The Young shape Y (λ) of λ is the set

Y (λ) := {(i, j) ∈ N
2 : 1 ≤ j ≤ d, 1 ≤ i ≤ λj} .

Following the French notation [Pro07], for an index j0 ∈ [d], the j0-th row of Y (λ) is set of elements
(i, j0) in Y (λ). Similarly, fixing an element i0 ∈ [λ1], the i0-th column of Y (λ) is set of elements (i0, j)
in Y (λ). We label the elements in Y (λ) from 1 to k according the lexicographic order on their positions.
Then the row stabilizer Rλ of λ is the group of permutations π of Y (λ) with π(L) = L for each row L
of Y (λ). Similarly, the column stabilizer Cλ of λ is the group of permutations π of Y (λ) with π(L) = L
for each column L of Y (λ).

For λ ⊢d k, a λ-tableau is a function τ : Y (λ) → N. A λ-tableau is semistandard if the entries
are non-decreasing in each row and strictly increasing in each column. Let Tλ,d be the collection of
semistandard λ-tableaux with entries in [d]. We write τ ∼ τ ′ for λ-tableaux τ, τ ′ if τ ′ = τr for some
r ∈ Rλ. Let e1, . . . , ed be the standard basis of H. For any τ ∈ Tλ,d, define uτ ∈ H⊗k as

uτ :=
∑

τ ′∼τ

∑

c∈Cλ

sgn(c)
⊗

y∈Y (λ)

eτ ′(c(y)) . (7)

Here the Young shape Y (λ) is ordered by concatenating its rows. Then the matrix set

{Uλ : λ ⊢d k} with Uλ = [uτ : τ ∈ Tλ,d] (8)

is a representative for the natural action of Sk on H⊗k [LPS17, Section 2.1]. Moreover, we have

|Par(d, k)| ≤ (k + 1)d and |Tλ,d| ≤ (k + 1)d(d−1)/2 , ∀λ ∈ Par(d, k) . (9)

4 Efficient approximation of the regularized divergence of chan-

nels

For α ∈ (1,∞), the regularized sandwiched α-Rényi divergence between channels NX→Y and MX→Y

is defined as

D̃reg
α (N‖M) := lim

k→∞

1

k
D̃α(N⊗k‖M⊗k) . (10)
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The regularized sandwiched Rényi divergence between channels can be used to obtain improved
characterization of many information processing tasks such as channel discrimination [FF21a, FF21b].
However, the sandwiched Rényi divergence between channels is non-additive in general [FFRS20] and
it is unclear whether its regularization can be computed efficiently. Ref. [FF21b] provides a converging
hierarchy of upper bounds on the regularized divergence between channels:

Theorem 4.1 ([FF21b]). Let α ∈ (1,∞) and N ,M be completely positive maps from L (X) to L (Y ).
Then for any k ≥ 1,

1

k
D#

α (N⊗k‖M⊗k)− 1

k

α

α− 1
(d2 + d) log(k + d) ≤ D̃reg

α (N‖M) ≤ 1

k
D#

α (N⊗k‖M⊗k) ,

where d = dimX dim Y .

We note that 1
kD

#
α (N⊗k‖M⊗k) is decreasing in k (since the D# channel divergence is subadditive).

Moreover, D#
α (N⊗k‖M⊗k) can be written in terms of a convex program as ([FF21b])

1

α− 1
log min

A
X⊗kY ⊗k≥0

‖tr Y ⊗k(AX⊗kY ⊗k)‖∞ s.t. (JN⊗k

) ≤ (JM⊗k

)#1/αAX⊗kY ⊗k . (11)

Therefore, Theorem 4.1 establishes that D̃reg
α (N‖M) can be approximated by 1

kD
#
α (N⊗k‖M⊗k) with

arbitrary accuracy for sufficiently large k in finite time. Namely, if we take k = ⌈ 8αd3

(α−1)ǫ⌉ then we have

|D̃reg
α (N‖M)− 1

k
D#

α (N⊗k‖M⊗k)| ≤ ǫ .

However, the size of Program (11) grows exponentially with k.

4.1 Exploiting symmetries to simplify the problem

In this section, we will show how the symmetries of Program (11) can be used to simplify this optimiza-
tion problem and solve it in time polynomial in k. We first focus on the natural symmetries arising
due to invariance under permutation of physical systems. In Section 4.2, we show how additional
symmetries can be utilized to further simplify the problem. Our approach can be summarized as fol-
lows: First, we show that program (11) is invariant with respect to the action of the symmetric group.
Using this observation, we show that the program can be transformed into an equivalent program
with polynomially many constraints, each of polynomial size in k. In order to show this, we use the
block-diagonal decomposition given by Lemma 3.3. A naive implementation of this transformation,
however, involves exponential time computations. We show that the simplified form of the program
can be directly computed in poly(k) time.

Recall that, for every π ∈ Sk, we consider the action of π on k copies of a finite dimensional Hilbert
space H as

π · (h1 ⊗ · · · ⊗ hk) = hπ−1(1) ⊗ · · · ⊗ hπ−1(k) , hi ∈ H , ∀i ∈ [k] .

Let PX(π) and PY (π) be the permutation matrices corresponding to the action of π on X⊗k and Y ⊗k,
respectively. Note that the action of π on (X ⊗ Y )⊗k corresponds to the simultaneous permutation
of the X and Y tensor factors and the corresponding permutation matrix, when the subsystems are
reordered as X⊗k ⊗ Y ⊗k, is given by PX⊗Y (π) = PX(π)⊗ PY (π).

The following lemma shows that the feasible region of the convex program (11) may be restricted
to the permutation invariant algebra of operators on X⊗k ⊗ Y ⊗k without changing the optimal value.

For a linear operator X ∈ L (H⊗k), we define its group average operator denoted X as

X :=
1

|Sk|
∑

π∈Sk

PH(π)XPH(π)∗ .

8



Lemma 4.2. The convex program of Eq. (11) has an optimal solution A ∈ EndSk
(
X⊗k ⊗ Y ⊗k

)
.

Proof. It is straightforward to check that by Slater’s condition the optimal value is achieved by a
feasible solution. We will prove that for every feasible solution A, the corresponding group-average
operator A is a feasible solution with an objective value not greater than the original value.

To simplify the notation, let Π(π) := PX⊗Y (π). We have

A #1/α J
M⊗k

=

(
1

|Sk|
∑

π∈Sk

Π(π)AΠ(π)∗

)
#1/α

(
1

|Sk|
∑

π∈Sk

Π(π)JM⊗k

Π(π)∗

)
(12)

≥
∑

π∈Sk

(
1

|Sk|
Π(π)AΠ(π)∗

)
#1/α

(
1

|Sk|
Π(π)JM⊗k

Π(π)∗
)

(13)

=
1

|Sk|
∑

π∈Sk

Π(π)
(
A#1/αJ

M⊗k
)
Π(π)∗ (14)

≥ 1

|Sk|
∑

π∈Sk

Π(π)
(
JN⊗k

)
Π(π)∗ (15)

= JN⊗k

, (16)

where Eq. (12) holds since JM⊗k ∈ EndSk
(
X⊗k ⊗ Y ⊗k

)
, inequality (13) follows from the joint-

concavity property of the geometric mean, Eq. (14) is a consequence of properties 2 and 3 of the

geometric mean, inequality (15) holds by feasibility of A, and finally, Eq. (16) follows since JN⊗k ∈
EndSk

(
X⊗k ⊗ Y ⊗k

)
.

For the objective function, note that since Π(π) = PX(π) ⊗ PY (π), we have

tr Y ⊗k

(
Π(π)AΠ(π)T

)
= PX(π) tr Y ⊗k(A)PX(π)T .

Therefore, by the triangle inequality and the unitary invariance of the operator norm, we have

‖tr Y ⊗k

(
A
)
‖∞ =

∥∥∥∥∥tr Y ⊗k

(
1

|Sk|
∑

π∈Sk

Π(π)AΠ(π)T

)∥∥∥∥∥
∞

=

∥∥∥∥∥
1

|Sk|
∑

π∈Sk

P (πX)tr Y ⊗k(A)P (πX)T

∥∥∥∥∥
∞

≤ 1

|Sk|
∑

π∈Sk

∥∥P (πX)tr Y ⊗k(A)P (πX)T
∥∥
∞

= ‖tr Y ⊗k(A)‖∞.

This concludes the proof.

Recall that in the convex program (11), the number of the variables and the size of the PSD
constraints grow exponentially with k. Using the observation made in Lemma 4.2, we show that this
optimization problem can be transformed into a form having a number of variables and constraints
that is polynomial in k. Before doing so, we introduce some notation.

Let H ∈ {X,Y,X ⊗ Y } and dH := dimH. The algebra of Sk-invariant operators on H⊗k is given
by

EndSk
(
H⊗k

)
= {A ∈ L (H⊗k) : PH(π)APH(π)∗ = A, ∀π ∈ Sk} .
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Let φH denote the linear map defined in Eq. (6) that maps the elements of EndSk
(
H⊗k

)
into block-

diagonal form:

φH : EndSk
(
H⊗k

)
→

⊕

λ∈Par(dH,k)

C
mH

λ ×mH
λ

A 7→
⊕

λ∈Par(dH,k)

(〈Auγ , uτ 〉)τ,γ∈Tλ,dH

. (17)

In this decomposition, the number of blocks and the size of the blocks are bounded by a polynomial
in k. In particular, we have

tH := |Par(dH, k)| ≤ (k + 1)dH , (18)

mH
λ := |Tλ,dH

| ≤ (k + 1)dH(dH−1)/2 , ∀λ ∈ Par(dH, k) . (19)

From Eqs. (18) and (19), we get

mH := dim
[
EndSk(H⊗k)

]
≤ (k + 1)d

2

H (20)

Theorem 4.3. The channel divergence D#
α (N⊗k‖M⊗k) can be formulated as a convex program with

O
(
kd

2

)
variables and O

(
kd
)
PSD constraints involving matrices of size at most (k+1)d(d−1)/2, where

d = dXdY .

Proof. By Lemma 4.2 and Property 2 of the α-geometric mean, after a permutation of the X and Y
tensor factors, the formulation (11) for D#

α (N⊗k‖M⊗k) can be written as

1

α− 1
log min

A,y
y (21)

s.t. tr Y ⊗k(A) ≤ y IX⊗k , (22)
(
JN
)⊗k ≤

(
JM

)⊗k
#1/αA , (23)

where A ∈ P

(
(X ⊗ Y )

⊗k
)
∩ EndSk

(
(X ⊗ Y )

⊗k
)
and y ∈ R.

For H ∈ {X,X ⊗ Y }, let φH : EndSk(H⊗k) → ⊕tH

i=1 C
mH

i ×mH
i be the bijective linear map de-

fined in Eq. (17) which block-diagonalizes the corresponding invariant algebra, where to simplify the
notation, the blocks are indexed by i ∈ [tH] instead of λ ∈ Par(dH, k). For Z ∈ EndSk(H⊗k),
we denote the i-th block of φH(Z) by JφH(Z)Ki. Note that by Lemma 3.3, φH preserves posi-
tive semidefiniteness. Therefore, since tr Y ⊗k(A), IX⊗k ∈ EndSk(X⊗k), the constraint (22) can be
mapped by φX into the direct sum form. By Lemma 3.3 and Property 2 of the α-geometric mean,

we have φX⊗Y

((
JM

)⊗k
#1/αA

)
= φX⊗Y

((
JM

)⊗k
)
#1/αφX⊗Y (A). Therefore, by Property 5 of

the α-geometric mean (direct sum property), the constraint (23) can be decomposed into constraints
involving the smaller diagonal blocks as well. The transformed convex program can be written as

1

α− 1
log min y

s.t.
q(
φX ◦ tr Y ⊗k ◦ φ−1

X⊗Y

)
(⊕lAl)

y
j
≤ y ImX

j
, j ∈

[
tX
]

r
φX⊗Y

((
JN
)⊗k
)z

i
≤

r
φX⊗Y

((
JM

)⊗k
)z

i
#1/αAi , i ∈

[
tX⊗Y

]

Ai ∈ P

(
C

mX⊗Y
i

)
, i ∈

[
tX⊗Y

]

The statement of the theorem follows since for H ∈ {X,X⊗Y }, by Eq. (18), we have tH ≤ (k+1)dH

and by Eq. (19), for every i ∈
[
tH
]
, we have mH

i ≤ (k + 1)dH(dH−1)/2.
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Note that a direct implementation of the transformation mapping the convex program (11) into
the polynomial-size form of Theorem 4.3 involves exponential computations. Next, we show how to
do this efficiently.

A basis for the invariant subspace. The canonical basis of the matrix ∗-algebra EndSk
(
H⊗k

)

consists of zero-one incidence matrices of orbits of the group action on pairs (see [KPS07, LM11] for
more information). In particular, let the standard basis of H⊗k be indexed by i ∈

[
(dH)k

]
. Then the

orbit of the pair (i, j) ∈
[
(dH)k

]2
under the action of the group Sk is given by

O(i, j) = {(π(i), π(j)) : π ∈ Sk},

where π(i) is the index of the basis vector PH(π)|i〉. With this notation, for every A ∈ EndSk
(
H⊗k

)
,

and every π ∈ Sk, we have Aij = Aπ−1(ij) = Aπ−1(i),π−1(j). The set
[
(dH)k

]2
decompose into orbits

OH
1 , . . . , O

H
mH under the action of Sk. For each r ∈ [mH], we construct a zero-one matrix CH

r of size
(dH)k × (dH)k given by

(CH
r )ij =

{
1 if (i, j) ∈ OH

r ,

0 otherwise.
(24)

The set CH = {CH
1 , . . . , C

H
mH} forms an orthogonal basis of EndSk

(
H⊗k

)
with mH ≤ (k + 1)d

2

H .

Enumerating all orbits. For each r = 1, . . . ,mH, we need to compute a representative element
of OH

r . In order to do so, we define a matrix E(i,j) ∈ Z
dH×dH

≥0

(E(i,j))a,b := |{v ∈ [k] : iv = a, jv = b}| , ∀a, b ∈ [dH] . (25)

By the construction in Eq. (25), for two pairs (i, j), (i′, j′) ∈ [dH]k × [dH]k, we have (i′, j′) =
(π(i), π(j)), for some π ∈ Sk if and only if E(i,j) = E(i′,j′). Therefore, there is a one-to-one correspon-
dence between the orbits

{
OH

r

}
r∈[mH]

and E ∈ Z
dH×dH

≥0 such that
∑

a,bEa,b = k. Therefore, we can

determine a representative element for every OH
r in poly(k) time by listing all non-negative integer

solutions of the equation
∑

a,b∈[dH]Ea,b = k.

Any matrix in EndSk(H⊗k) can be written in the basis CH as

M(z) :=
mH∑

r=1

zrC
H
r , for some z ∈ C

[mH] . (26)

Using the representative matrix for the action of Sk on the space H⊗k in Eq. (8), we get

φH(M(z)) =

mH∑

r=1

zrφH
(
CH

r

)
=

mH∑

r=1

zr
⊕

λ⊢dH
k

UT
λ C

H
r Uλ . (27)

Note that Uλ is real matrix for all λ ∈ Par(dH, k).
We show that, for every r ∈ [mH], φH(CH

r ) can be computed in poly(k) time. In order to do so,
we show how to efficiently compute each block UT

λ C
H
r Uλ indexed by λ ∈ Par(dH, k). This in fact boils

down to efficiently computing uTτ C
H
r uγ , for every τ, γ ∈ Tλ,dH

. We note that uτ , uγ , and C
H
r all have

exponential size in k.
For H ∈ {X,Y,X ⊗ Y }, let WH := H⊗H. For every p = (i, j) ∈ [dH]2, define

ap := ei ⊗ ej ∈ WH ,

where {ei}i∈[dH] is the standard basis of H. Then the set B :=
{
ap : p ∈ [dH]2

}
is a basis of WH. Let

B∗ :=
{
a∗p : p ∈ [dH]2

}
be the corresponding dual basis for W ∗

H.
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Using the natural identification of
[
(dH)k

]2
and ([dH]

2
)k, for every r ∈ [mH], we map OH

r ⊆[
(dH)k

]2
to OH

r ⊆ ([dH]2)k. Then corresponding to each operator CH
r , we define

C
H
r :=

∑

(p1,...,pk)∈OH
r

ap1
⊗ · · · ⊗ apk

∈W⊗k
H . (28)

Note that CH
r can be obtained from vec

(
CH

r

)
by applying the permutation operator which maps(

H⊗k
)⊗2

to
(
H⊗2

)⊗k
. For every (p1, . . . , pk) ∈

[
(dH)2

]k
, let

m(p1, . . . , pk) := a∗p1
· · ·a∗pk

∈ Ok(WH) (29)

be a degree k monomial expressed in the basis B∗. Note that, for a fixed r ∈ [mH], m(p1, . . . , pk)
is the same monomial, for every (p1, . . . , pk) ∈ OH

r . We denote this monomial by m
(
OH

r

)
. More-

over,
{
O

H
r

}
r∈[mH]

partitions
[
(dH)2

]k
into disjoint subsets. Therefore, there is a bijection between{

OH
i

}
i∈[mH]

and the set of degree k monomials expressed in the basis B∗.

Let ζ : (W ∗
H)⊗k → Ok(WH) be the linear map defined as

ζ(w∗
1 ⊗ · · · ⊗ w∗

k) := w∗
1 · · ·w∗

k , ∀w∗
1 , . . . , w

∗
k ∈W ∗

H .

To simplify the notation we write w = ζ(w), for every w ∈ (W ∗
H)⊗k.

For every λ ∈ Par(dH, k) and τ, γ ∈ Tλ,dH
, define the polynomial fτ,γ ∈ C[xi,j : i, j ∈ [dH]] by

fτ,γ(X) :=
∑

τ ′∼τ
γ′∼γ

∑

c,c′∈Cλ

sgn(cc′)
∏

y∈Y (λ)

xτ ′c(y),γ′c′(y) , (30)

for X = (xi,j)
dH

i,j=1 ∈ CdH×dH . Refs. [LPS17, Proposition 3] and [Gij09, Theorem 7] show that the
polynomial in Eq. (30) can be computed (i.e., expressed as a linear combination of monomials in
variables xi,j) in polynomial time.

Lemma 4.4. For every λ ∈ Par(dH, k) and every τ, γ ∈ Tλ,dH
, expressing the polynomial fτ,γ(X) as

a linear combination of monomials can be done in poly(k) time, for fixed dH.

We use this to prove the following lemma:

Lemma 4.5 (Lemma 2, [LPS17]). Let λ ∈ Par(dH, k), τ, γ ∈ Tλ,dH
, and r ∈ [mH]. Then uTτ C

H
r uγ

can be computed in polynomial time in k, for fixed dH.

Proof. The proof can be found in [LPS17], but we include a concise proof for the reader’s convenience.
For every r ∈ [mH], it is straightforward to see that uTτ C

H
r uγ = (uτ ⊗ uγ)

T vec
(
CH

r

)
. Therefore, by a

permutation of the tensor factors, we get uTτ C
H
r uγ = w CH

r , for w ∈ (W ∗
H)⊗k given by

w =
∑

τ ′∼τ
γ′∼γ

∑

c,c′∈Cλ

sgn(cc′)
⊗

y∈Y (λ)

(A)τ ′(c(y)),γ′(c′(y)) ,

where A ∈ (W ∗)dH×dH with (A)x,y = a∗(x,y). Then

∑

r∈[mH]

(
uTτ C

H
r uγ

)
m(OH

r ) =
∑

r∈[mH]

(
wC

H
r

)
m(OH

r )

=
∑

(p1,...,pk)∈([dH]2)k

(w (ap1
⊗ · · · ⊗ apk

)) a∗p1
· · ·a∗pk

= w =
∑

τ ′∼τ
γ′∼γ

∑

c,c′∈Cλ

sgn(cc′)
∏

y∈Y (λ)

(A)τ ′(c(y)),γ′(c′(y))

= fτ,γ(A) .
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Therefore, uTτ C
H
r uγ is exactly the coefficient of the monomialm(OH

r ) in fτ,γ(A), which by Lemma 4.4
can be computed in poly(k) time.

Theorem 4.6. There exists an algorithm which given as input JM, JN , and k ∈ N, outputs in poly(k)
time (for fixed dim(X ⊗ Y )) the description of a convex program of size described in Theorem 4.3 for
computing D#

α (N⊗k‖M⊗k).

Proof. For H ∈ {X ⊗ Y,X}, let
{
OH

r

}
r∈[mH]

denote the set of orbits of pairs and
{
CH

r

}
r∈[mH]

denote

the canonical basis of EndSk
(
H⊗k

)
defined in Eq. (24). For every r ∈ [mX⊗Y ], we define Dr :=

tr Y ⊗k

(
CX⊗Y

r

)
. Note that Dr ∈ EndSk

(
X⊗k

)
. Then by Theorem 4.3, D#

α (N⊗k‖M⊗k) can be
formulated as the following convex program:

1

α− 1
log min y

s.t.

mX⊗Y∑

r=1

zr JφX(Dr)Kj ≤ y ImX
j
, j ∈

[
tX
]

r
φX⊗Y

((
JN
)⊗k
)z

i
≤

r
φX⊗Y

((
JM

)⊗k
)z

i
#1/α

mX⊗Y∑

r=1

zr
q
φX⊗Y (C

X⊗Y
r )

y
i
, i ∈

[
tX⊗Y

]

mX⊗Y∑

r=1

zr
q
φX⊗Y (C

X⊗Y
r )

y
i
≥ 0 , i ∈

[
tX⊗Y

]

y, zr ∈ R , r ∈
[
mX⊗Y

]

Here, we use the notation introduced in Theorem 4.3. By Lemma 4.5, the block diagonal matrices
φX⊗Y (C

H
r ) can be computed in poly(k) time, for every r ∈ [mH]. Therefore, to complete the proof it

suffices to show how to expand
(
JN
)⊗k

,
(
JM

)⊗k
in the basis

{
CX⊗Y

r

}
r∈[mX⊗Y ]

and Dr in the basis{
CX

r

}
r∈[mX ]

, for every r ∈ [mX⊗Y ].

For
(
JM

)⊗k ∈ EndSk
(
(X ⊗ Y )⊗k

)
, if we take an arbitrary representative element (p1, . . . , pk) of

OX⊗Y
r , for every r ∈

[
mX⊗Y

]
, and define

zr :=

k∏

t=1

(JM)pt
,

then we have
(
JM

)⊗k
=
∑mX⊗Y

r=1 zrC
X⊗Y
r . The same method can be used for

(
JN
)⊗k

.

Recall that, for every r ∈
[
mX⊗Y

]
, we have

CX⊗Y
r =

∑

(i,j)∈OX⊗Y
r

|i〉〈j| ,

where i =
(
iX1 i

Y
1 · · · iXk iYk

)
and j =

(
jX1 j

Y
1 · · · jXk jYk

)
. For any representative element (i, j) of OX⊗Y

r if
iY = (iY1 · · · iYk ) 6= jY = jY1 · · · jYk then tr Y ⊗k (|i〉〈j|) = 0. Therefore,

Dr =
∑

(i,j)∈OX⊗Y
r

iY =jY

|iX〉〈jX |.

Moreover, for any representative element (i, j) of OX⊗Y
r , we can determine the orbit OX

t that contains
(iX , jX) in poly(k) time. So if we define α := |{π ∈ Sk : π(iX) = iX , π(jX) = jX}|, then

Dr = αCX
t .
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Furthermore, we have α =
∏

a,b∈[dX ][(E
(iX ,jX ))a,b]! with E

(iX ,jX ) ∈ Z
dX×dX

≥0 defined in Eq. (25). This
concludes the proof.

Alternatively, the regular ∗-representation approach can be used to show that the convex pro-
gram (11) can be computed in poly(k) time. ForH ∈ {X,X⊗Y }, let ψH be the regular ∗-representation
of EndSk

(
H⊗k

)
, defined explicitly in Theorem 3.2. We denote by {OH

r }r∈[mH] and {CH
r }r∈[mH], the

orbits of pairs and the canonical basis of EndSk(H⊗k), following the construction in Eq. (24). The
convex program can be reformulated as

1

α− 1
log min y

s.t.
∑mX⊗Y

r=1 xr ψX(Dr) ≤ yImX ,

ψX⊗Y

((
JN
)⊗k
)
≤ ψX⊗Y

((
JM

)⊗k
)
#1/α

∑mX⊗Y

r=1 xr ψX⊗Y

(
CX⊗Y

r

)
,

∑
r xr ψX⊗Y

(
CX⊗Y

r

)
≥ 0 ,

x1, . . . , xmX⊗Y , y ∈ R .

Recall that ψH

(
EndSk

(
H⊗k

))
⊆ CmH×mH

, where mH ≤ (k + 1)d
2

H .

Note that ‖CH
r ‖ :=

√
〈CH

r , C
H
r 〉 equals the size of the orbit OH

r . Using the structure of the orbits,

we can compute the multiplication parameters of EndSk
(
H⊗k

)
with respect to the orthogonal basis

{CH
1 , . . . , C

H
mH} as

ptrs =
∣∣{l ∈

[
(dH)k

]
: (i, l) ∈ OH

r , (l, j) ∈ OH
s

}∣∣ ,

where (i, j) ∈ OH
t . Here, ptrs does not depend on the choice of i and j. Let Es, Er, Et be the matrices

defined in Eq. (25) for orbits OH
s , O

H
r , O

H
t , respectively. The following proposition implies that ptrs can

be computed in poly(k) time.

Proposition 4.7 ([Gij09]). The numbers ptrs are given by

ptrs =
∑

B

dH∏

x,y=1

(
(Et)x,y

Bx,1,y, . . . , Bx,dH,y

)
,

where the sum runs over all B ∈ Z
dH×dH×dH

≥0 that satisfy
∑

z Bx,y,z = (Er)x,y,
∑

xBx,y,z = (Es)y,z,∑
y Bx,y,z = (Et)x,z for all x, y, z ∈ [dH] and

∑
x,y,z∈[dH]Bx,y,z = k.

Table 1 compares the reduction in the size of the matrices for different values of k, using both
methods of regular ∗-representation and block-diagonal decomposition. The first column contains
dim

[
L (X⊗k ⊗ Y ⊗k)

]
, for X = Y = C

2 and different values of k. The numbers in the second column
correspond to the reduced matrix sizes using regular ∗-representation and the third column contains
the block sizes in the block-diagonal decomposition. As illustrated by these examples, the size of
the variables and the constraint matrices can be significantly reduced by using block-diagonalization.
While the reduction obtained by using the regular ∗-representation is not as strong, it has the advantage
that it is easy to compute using the explicit formula given in Eq. (4).

4.2 Beyond permutation invariance

So far, we have only focused on the permutation symmetries of convex optimization problem (11)
arising from considering multiple copies of quantum channels. In this section, we discuss how the
group symmetries of the underlying channels may be used to further simplify these convex programs.
In particular, we show how the symmetries of the channels can be combined with the permutation
symmetry and expressed as invariance under the action of a single group. Theorem 3.1 is then used
to simplify the programs.
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k dimL (X⊗k ⊗ Y ⊗k) dimEndSk
(
X⊗k ⊗ Y ⊗k

)
Block sizes

2 256 136 10, 6
3 4096 816 20, 20, 4
4 65536 3876 45, 35, 20, 15, 1

Table 1: Dimensions of L (X⊗k⊗Y ⊗k), EndSk(X⊗k⊗Y ⊗k), and the block sizes in the block-diagonal
form with X = Y = C2.

Let G be a finite group, and denote by Gk, the k-fold direct product of G. Consider the group
H := Gk ⋊γ Sk, an outer semi-direct product of Gk and Sk, defined as follows:

• The underlying set is the Cartesian product of the sets Gk and Sk, i.e., the set of ordered pairs
(g, π), where g = (g1, g2, . . . , gk) ∈ Gk and π ∈ Sk.

• γ : Sk → Aut
(
Gk
)
is a group homomorphism given by

γ(π) (g1, g2, . . . , gk) =
(
gπ(1), gπ(2), . . . , gπ(k)

)
,

for every π ∈ Sk and g = (g1, g2, . . . , gk) ∈ Gk.

• The group operation ∗ is defined for any pair (g, π), (g′, π′) ∈ H as

(g′, π′) ∗ (g, π) = (g′γ(π′)(g), π′π).

Consider an arbitrary action of G on a finite dimensional Hilbert space H, and the natural action
of Sk on H⊗k defined for every π ∈ Sk as

π · (h1 ⊗ · · · ⊗ hk) = hπ−1(1) ⊗ · · · ⊗ hπ−1(k) , hi ∈ H , ∀i ∈ [k] . (31)

Then it is easy to check that the following defines an action of H = Gk
⋊γ Sk on H⊗k:

(g, π) · (h1 ⊗ · · · ⊗ hk) = g1 · hπ−1(1) ⊗ · · · ⊗ gk · hπ−1(k) , hi ∈ H , ∀i ∈ [k] , (32)

for all π ∈ Sk and g ∈ Gk. In particular, we have

(g′, π′) · ((g, π) · (h1 ⊗ · · · ⊗ hk)) = ((g′, π′) ∗ ((g, π)) · (h1 ⊗ · · · ⊗ hk)) ,

for every (g, π), (g′, π′) ∈ H .
For H ∈ {X,Y }, let ρH : G → GL(H) be the representation of G defined by its action on

H and ρX⊗Y := ρX ⊗ ρY . Let σH denote the representation of Gk on H⊗k given by σH(g) :=
ρH(g1) ⊗ . . . ⊗ ρH(gk), for every g ∈ Gk. As before, denote by PH the representation of Sk on H⊗k

defined by the action (31). Then the representation of H = Gk⋊γSk defined above on H⊗k is given by
σH(g)PH(π), for every (g, π) ∈ H . Note that in (32), for H = X⊗Y , the action of (g, π) on (X⊗Y )⊗k

corresponds to the simultaneous permutation of the X and Y tensor factors followed by applying
ρX(gi)⊗ ρY (gi) on i-th X ⊗ Y tensor factor. When the subsystems are reordered as X⊗k ⊗ Y ⊗k, this
action is simply given by σX(g)PX(π) ⊗ σY (g)PY (π). With the above notation, we are now ready to
state the following proposition:

Proposition 4.8. Let NX→Y and MX→Y be a quantum channels with Choi operators JN , JM ∈
EndG(X ⊗ Y ), for some finite group G. Then the convex program (11) has an optimal solution A ∈
EndH(X⊗k ⊗ Y ⊗k), where H = Gk ⋊γ Sk.

Proof. The proof is based on convexity and exactly follows the steps of the proof of Lemma 4.2, except
the group average operator Ā is now obtained with respect to the group H .
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Next, we discuss the irreducible representations of Gk ⋊γ Sk and the corresponding multiplicities
for the action of H on H⊗k, defined in Equation (32). First, we need to introduce some notations.

Suppose that G has t irreducible representations and let mi denote the multiplicity of the i-th
irreducible representation in the representation ρH of G on H. Let T (k) be the collection of all t-tuples
(k1, . . . , kt) of non-negative integers such that

∑t
i=1 ki = k. For (k1, . . . , kt) ∈ T (k) and (λ1, . . . , λt)

satisfying λi ⊢mi
ki, for every i ∈ [t], we write (λ1, . . . , λt) ⊢m (k1, . . . , kt), where m = (m1, . . . ,mt).

We then use a result from [Pol19].

Proposition 4.9 (Proposition 3.1.1, [Pol19]). The irreducible representations of H = Gk ⋊γ Sk are
labeled by

{(k1, . . . , kt), (λ1, . . . , λt) : (k1, . . . , kt) ∈ T (k), (λ1, . . . , λt) ⊢m (k1, . . . , kt)}.

and the corresponding multiplicities are
∏t

i=1 |Tλi,mi
|.

Note that |T (k)| =
(
k+t−1
t−1

)
, where t, the number of irreducible representations of G, is a property

of G and independent of k. Since G is a finite group, we have t ≤ |G|. Moreover, for a fixed
tuple (k1, . . . , kt) ∈ T (k), by Inequality (18), we have the size of the set {(λ1, . . . , λt) : (λ1, . . . , λt) ⊢
(k1, . . . , kt)} is at most

∏t
i=1(ki+1)mi . Since mi ≤ dim(H), for every i ∈ [t], the number of irreducible

representations of H is polynomial in k. Since |Tλi,mi
| ≤ (ki + 1)mi(mi−1)/2, the multiplicity of the

corresponding irreducible representation of H is at most
∏t

i=1 |Tλi,mi
| ≤∏t

i=1(ki + 1)mi(mi−1)/2.

4.2.1 Application to the generalized amplitude damping channel

As an application, we consider the generalized amplitude damping (GAD) channel defined as

Ap,q(ρ) =

4∑

i=1

AiρA
∗
i , p, q ∈ [0, 1] (33)

with the Kraus operators

A1 =
√
1− q(|0〉〈0|+

√
1− p|1〉〈1|), A2 =

√
p(1− q)(|0〉〈1|),

A3 =
√
q(
√

1− p|0〉〈0|+ |1〉〈1|), A4 =
√
pq|1〉〈0|.

(34)

The GAD channel reduces to the conventional amplitude damping (AD) channel, when q = 0. In
this case we have X = Y = C2. Let Np,q be the Choi matrix of Ap,q. Note that for the Pauli Z
operator given by

Z =

(
1 0
0 −1

)
,

we have, (Z⊗ Z)Np,q(Z⊗ Z) = Np,q for all p, q ∈ [0, 1]. Let G = Z2 be the cyclic group of order 2 and
define the group representation ρ : G→ GL(C2) given by ρ(1) = Z. Then for the representation ρX⊗Y

defined for every g ∈ Z2 as ρX⊗Y (g) = ρ(g)⊗ ρ(g), we have Np,q ∈ EndG(X ⊗ Y ). The representation
ρX⊗Y has two irreducible representations, which are both 1-dimensional (since G is an Abelian group).
In this representation, the multiplicities are (m1,m2) = (2, 2). Therefore, the multiplicities in the
representation ofH = Gk⋊γSk onX

⊗k⊗Y ⊗k are at most (k1+1)(k2+1) ≤ (k1+k2+2)2/4 = (k+2)2/4.
Furthermore, since t = 2, we have |T (k)| = k, and for any (k1, k2) ∈ T (k), the size of the set
{(λ1, λ2) : (λ1, λ2) ⊢ (k1, k2)} is at most (k1 + 1)2(k2 + 1)2 ≤ (k + 2)4/16. Therefore the number
of irreducible representations of H is at most k(k + 2)4/16. Since the dimension of the invariant
subspace is equal to the sum of squares of the multiplicities of the irreducible representations, we have

dimEndH(X⊗k ⊗ Y ⊗k) ≤
(
(k + 2)2/4

)2
k(k + 2)4/16 = k(k + 2)8/256.

Therefore, in this example, by considering the additional Z symmetry discussed above, we can
reduce the dimension of the invariant subspace from O

(
k16
)
for the permutation action (see Eq. (20))
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to O
(
k9
)
, when we combine the two symmetries. Moreover, the maximum block size is reduced from

O
(
k6
)
(see Eq. (19)) to O

(
k2
)
. This shows the potential of the approach introduced above for channels

with stronger symmetries.
In the following table, we compare the dimensions of the Sk-invariant and H-invariant subspace

of operators for X = Y = C2 and different values of k. We also list the number of irreducible
representations and the maximum block size of the invariant operators in the block-diagonal form.

k
Sk Gk

⋊Sk

dimEndSk(H⊗k) max.block size #-irreps dimEndG
k
⋊Sk(H⊗k) max.block size #-irreps

2 136 10 2 36 4 5

3 816 20 3 120 6 8

4 3876 45 5 330 9 14

5 15504 84 6 792 12 20

6 54264 140 9 1716 16 30

7 170544 224 11 3432 20 40

8 490314 360 15 6435 25 55

9 1307504 540 18 11440 30 70

10 3268760 770 23 19448 36 91

Table 2: The comparison of the reductions obtained by considering invariance under the action of Sk

and Gk
⋊Sk on H⊗k, where H = C

2 ⊗ C
2.

We use our method for efficient computation of the #-Rényi divergence between multiple copies
of channels to provide improved upper bounds on the regularized Umegaki divergence between the
AD channel A0.3,0 and the GAD channel Ap,0.9, over the range p ∈ [0.4, 0.8]. Note that the Umegaki
divergence between these channels is known to be non-additive [FFRS20], i.e., Dreg(A0.3,0‖Ap,0.9) >
D(A0.3,0‖Ap,0.9). Figure 1 illustrates the improvement obtained using D#

α on k = 1 and k = 6 copies

compared to D̂α, for α = 2. The convex programs are implemented in MATLAB using the CVX
package [GB14] and the CVXQUAD package [FSP18], via the MOSEK solver [ApS19]. Computations
in this paper were done using Intel(R) Core i5-6300U with 16GB of RAM memory. The running time
for k = 6 copies on our program is less than 45 minutes while the program without using symmetry
cannot be carried out due to insufficient memory. We note that without using the symmetry reduction
the matrices are of size 4096× 4096.

5 Efficient bounds on classical capacity of quantum channels

The (unassisted) classical capacity of a quantum channel is defined as the maximum rate at which
classical information can be transmitted over the quantum channel in the asymptotic limit of many
channel uses. For a quantum channel N , the classical capacity is characterized by the regularized
Holevo information [Hol98, SW97] as

C(N ) = lim
k→∞

1

k
χ(N⊗k) ,

where χ(N ) is the Holevo capacity of the channel N defined as

χ(N ) := max
E={pi,ρi}i

H

(
∑

i

piρi

)
−
∑

i

piH(N (ρi)) ,

where the maximization is over all quantum ensembles E = {pi, ρi}i. Here, H denotes the von Neumann
entropy, defined as H(σ) := −tr (ρ log ρ), for every positive semidefinite operator ρ. Note that the
Holevo information is in general non-additive [Has09].
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Figure 1: Comparison between different bounds on Dreg(A0.3,0‖Ap,0.9) over the range p ∈ [0.4, 0.8].

We denote by Vcb(X,Y ) the set of constant bounded subchannels from L (X) to L (Y ) defined as

Vcb(X,Y ) := {M ∈ CP(X : Y ) : ∃σ ∈ D(Y ) s.t. MX→Y (ρ) ≤ σ, ∀ρ ∈ D(X)} .

Let V(X,Y ) := {M ∈ CP(X : Y ) : β(JM
XY ) ≤ 1}, with β(JM

XY ) defined in terms of the following SDP

β(JM
XY ) := min

RXY ,SY

tr (SY ) s.t. RXY ± (JM
XY )

TY ≥ 0 , IX ⊗ SY ±RTY

XY ≥ 0 ,

where (·)TY denotes the partial transpose on system Y . Note that the set V(X,Y ) is a convex subset
of Vcb(X,Y ) containing all the constant channels [WFT19].

Let D be a generalized quantum divergence. For any quantum channel NX→Y , define

Υ(D, k)(N ) := min
M∈V(X⊗k,Y ⊗k)

D(N⊗k‖M).

The following proposition provides upper bounds on the classical capacity of a quantum channel.

Proposition 5.1 ([WFT19]). Let D be a generalized quantum divergence. If D is bounded below by the
Umegaki relative entropy on quantum states and the corresponding channel divergence is subadditive
under tensor product of channels, then, for any k ≥ 1,

C(N ) ≤ 1

k
Υ(D, k)(N ) .

Proof. The proof can be found in [WFT19], but we include a concise proof for the reader’s convenience.
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As shown in [OPW97] the Holevo information can be written as a divergence radius:

χ(N ) = min
σ∈D(Y )

max
ρ∈D(X)

D(N (ρ)‖σ)

= min
M∈Vcb(X,Y )

max
ρ∈D(X)

D(N (ρ)‖M(ρ))

≤ min
M∈V(X,Y )

max
ρ∈D(X)

D(N (ρ)‖M(ρ))

≤ min
M∈V(X,Y )

D(N‖M)

where we used the fact that if σ ≤ σ′ then D(ρ‖σ) ≥ D(ρ‖σ′) and the fact that V(X,Y ) ⊆ Vcb(X,Y ).
So, for n, k ∈ N, we have

χ(N⊗nk) ≤ min
M∈V(X⊗nk,Y ⊗nk)

D(N⊗nk‖M)

≤ min
M∈V(X⊗k,Y ⊗k)

D(N⊗nk‖M⊗n),

where we used the fact that if M ∈ V(X⊗k, Y ⊗k), then M⊗n ∈ V(X⊗nk, Y ⊗nk). Since D is bounded
below by D and subadditive under tensor product of channels, we have

1

nk
χ(N⊗nk) ≤ min

M∈V(X⊗k,Y ⊗k)

1

k
D(N⊗k‖M) =

1

k
Υ(D, k)(N ).

Taking the limit as n→ ∞, we get the desired result.

Note that by Proposition 2.1, for α ∈ (1, 2], we have

Υ(D̃α, k)(N ) ≤ Υ(D#
α , k)(N ) ≤ Υ(D̂α, k)(N ) ≤ Υ(Dmax, k)(N ).

Remark 5.2. If in addition the generalized quantum divergence D satisfies D̃α ≤ D, for some α ∈
(1,∞), then 1

kΥ(D, k)(N ) is a strong converse bound, i.e., above this communication rate, the error
probability goes to 1.

Both Dmax and D̂α have the desired properties and were used in [WFT19] and [FF21a] to obtain

bounds on the classical capacity. On the other hand, D̃α is not always additive [FFRS20] so it cannot

be used in general. The best-known general strong converse bound is given by 1
kΥ(D̂α, k), and it is

SDP computable [FF21a]. For D = D#
α , using the formulation of the channel divergence given in

Eqs. (1) and (2), the converse bound of Proposition 5.1 can be written in terms of a convex program.
For every k ≥ 1, we have

Υ(D#
α , k)(N ) =

1

α− 1
log min ‖tr Y ⊗k(A)‖∞

s.t. JN⊗k ≤ JM#1/αA ,

R± (JM)TY ⊗k ≥ 0 ,

(IX⊗k ⊗ S)±RT
Y ⊗k ≥ 0 ,

tr (S) ≤ 1 ,

A, JM, R ∈ P(X⊗k ⊗ Y ⊗k) , S ∈ P(Y ⊗k) .

(35)

Note that the optimization problem in Eq. (35) does not scale well with k since the sizes of the
constraint matrices grow exponentially fast. This bottleneck will be addressed in the next section.
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5.1 Exploiting symmetries to simplify the problem

Using a similar argument as in Lemma 4.2, one may restrict the feasible region of the convex pro-
gram (35) to the Sk-invariant subspace of operators.

Lemma 5.3. For every α ∈ (1,∞), the convex program (35) has an optimal solution (A,R, JM, S),
with A,R, JM ∈ EndSk

(
X⊗k ⊗ Y ⊗k

)
and S ∈ EndSk(Y ⊗k).

Proof. It is straightforward to check that by Slater’s condition the optimal value is achieved by a
feasible solution. For an arbitrary feasible solution (A, JM, R, S), we will prove that the corresponding

group-average operators (A, JM, R, S) are feasible with an objective value not greater than the original
value.

For brevity of notation, we write Π(π) := PX⊗Y (π). The first constraint, JN⊗k ≤ JM #1/α A,
follows from a similar argument as in Lemma 4.2. For the second constraint note that, for every
π ∈ Sk, Π(π)

∗ = Π(π)T , and we have

(
Π(π)JMΠ(π)∗

)T
Y ⊗k

=
(
Π(π)JMΠ(π)T

)T
Y ⊗k

= Π(π)(JM)TY ⊗kΠ(π)T . (36)

Therefore,

(
JM

)T
Y ⊗k

=

(
1

|Sk|
∑

π∈Sk

Π(π)JMΠ(π)∗

)T
Y ⊗k

=
1

|Sk|
∑

π∈Sk

Π(π)(JM)TY ⊗kΠ(π)∗ , (37)

and the feasibility of JM and R implies −R ≤
(
JM

)T
Y ⊗k

≤ R. Similarly, we get

(
R
)T

Y ⊗k
=

(
1

|Sk|
∑

π∈Sk

Π(π)RΠ(π)∗

)T
Y ⊗k

=
1

|Sk|
∑

π∈Sk

Π(π)(R)TY ⊗kΠ(π)∗ , (38)

and the feasibility of S and R implies −IX⊗k ⊗S ≤
(
R
)T

Y ⊗k ≤ IX⊗k ⊗S. Finally, the forth constraint

holds since tr (S) = tr (S) ≤ 1.
For the objective function, using the same argument as in Lemma 4.2, we get ‖tr Y ⊗k

(
A
)
‖∞ ≤

‖tr Y ⊗k(A)‖∞. This concludes the proof.

Next, we show that the convex program (35) may be reformulated so that it scales only polynomially
with k.

Theorem 5.4. Let NX→Y be a quantum channel. For every k ≥ 1, the strong converse bound
1
kΥ(D#

α , k)(N ) of Proposition 5.1 can be formulated as a convex program with only O
(
kd

2

)
variables

and O
(
kd
)
PSD constraints involving matrices of size at most (k + 1)d(d−1)/2, where d = dXdY .

Proof. Let Q denote the permutation matrix which maps X⊗k ⊗ Y ⊗k to (X ⊗ Y )
⊗k

. Then, by
Lemma 5.3, the optimization problem (35) can be written as

Υ(D#
α , k)(N ) =

1

α− 1
log min y (39)

s.t. tr Y ⊗k(A) ≤ y IX⊗k , (40)
(
JN
)⊗k ≤ JM#1/αA , (41)

R± (JM)TY ⊗k ≥ 0 , (42)

Q(IX⊗k ⊗ S)QT ±RT
Y ⊗k ≥ 0 , (43)

tr (S) ≤ 1 , (44)
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where A, JM, R ∈ EndSk

(
(X ⊗ Y )

⊗k
)
and S ∈ EndSk

(
Y ⊗k

)
are positive semidefinite operators and

y ∈ R.
Following the notation introduced in Theorem 4.6, for H ∈ {X,Y,X⊗Y }, let φH : EndSk(H⊗k) →⊕tH

i=1 C
mH

i ×mH
i be the bijective linear map which block-diagonalizes the corresponding invariant alge-

bra, where to simplify the notation, the blocks are indexed by i ∈ [tH] instead of λ ∈ Par(dH, k). For

Z ∈ EndSk(H⊗k), we write JφH(Z)Ki to denote the i-th block of φH(Z). Since JN⊗k

, JM, A and R,

(JM)TY ⊗k are elements of EndSk

(
(X ⊗ Y )

⊗k
)
, the constraints (41) and (42) can be mapped into the

direct sum form under φX⊗Y . Similarly, since Q (IX⊗k ⊗ S)QT , RT
Y ⊗k ∈ EndSk

(
(X ⊗ Y )

⊗k
)
, by

properties 2 and 5 of the α-geometric mean, the constraint (43) can be decomposed into constraints in-
volving the smaller diagonal blocks by applying φX⊗Y . Finally, since tr Y ⊗k(A), IX⊗k ∈ EndSk(X⊗k),
the constraint (40) can be mapped by φX into the direct sum form. The transformed convex program
is given by

1

α− 1
log min y

s.t.
q(
φX ◦ tr Y ⊗k ◦ φ−1

X⊗Y

)
(⊕lAl)

y
j
≤ y ImX

j
,

r
φX⊗Y

((
JN
)⊗k
)z

i
≤ Ji #1/αAi ,

Ri ±
q(
φX⊗Y ◦ TY ⊗k ◦ φ−1

X⊗Y

)
(⊕lAl)

y
i
≥ 0 ,

q
φX⊗Y

(
Q
(
IX⊗k ⊗ φ−1

Y (⊕rSr)
)
QT
)y

i
±

q(
φX⊗Y ◦ TY ⊗k ◦ φ−1

X⊗Y

)
(⊕lRl)

y
i
≥ 0 ,

∑
r tr (Sr) ≤ 1 ,

Ai, Ri, Ji ∈ P

(
C

mX⊗Y
i

)
, Sr ∈ P

(
C

mY
r

)
,

for all i ∈
[
tX⊗Y

]
, j ∈

[
tX
]
, and r ∈

[
tY
]
. The statement of the theorem follows since for H ∈

{X,Y,X ⊗ Y }, we have tH ≤ (k + 1)dH and mH
i ≤ (k + 1)dH(dH−1)/2, for every i ∈

[
tH
]
.

Finally, we show how to efficiently compute a formulation of 1
kΥ(D#

α , k)(N ) as a convex program
of polynomial size.

Theorem 5.5. Let NX→Y be a quantum channel. There exists an algorithm which given as input JN

and k ∈ N, outputs in poly(k) time (for fixed dim(X ⊗Y )) the description of a convex program of size
described in Theorem 5.4 for computing the strong converse bound 1

kΥ(D#
α , k)(N ).

Proof. As in the proof of Theorem 4.6, for H ∈ {X,Y,X⊗Y }, let
{
OH

r

}
r∈[mH]

denote the set of orbits

of pairs and
{
CH

r

}
r∈[mH]

denote the canonical basis of EndSk
(
H⊗k

)
defined in Eq. (24). For every

r ∈ [mX⊗Y ], we define Dr := tr Y ⊗k

(
CX⊗Y

r

)
. Note that Dr ∈ EndSk

(
X⊗k

)
. Then by Theorem 5.4,

Υ(D#
α , k)(N ) can be formulated as the following convex program:
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1

α− 1
log min y

s.t.

mX⊗Y∑

r=1

zr JφX (Dr)Kj ≤ y ImX
j
,

r
φX⊗Y

((
JN
)⊗k
)z

i
≤

mX⊗Y∑

l=1

xl
q
φX⊗Y

(
CX⊗Y

l

)y
i
#1/α

mX⊗Y∑

r=1

zr
q
φX⊗Y

(
CX⊗Y

r

)y
i
,

mX⊗Y∑

l=1

yl
q
φX⊗Y

(
CX⊗Y

l

)y
i
±

mX⊗Y∑

r=1

zr

r
φX⊗Y

((
CX⊗Y

r

)T
Y ⊗k

)z
i
≥ 0 ,

mY∑

s=1

ws

q
φX⊗Y

(
Q
(
IX⊗k ⊗ CY

s

)
QT
)y

i
±

mX⊗Y∑

l=1

yl

r
φX⊗Y

((
CX⊗Y

l

)T
Y ⊗k

)z
i
≥ 0 ,

mY∑

s=1

ws tr (C
Y
s ) ≤ 1 ,

mX⊗Y∑

r=1

zr
q
φX⊗Y

(
CX⊗Y

r

)y
i
≥ 0 ,

mX⊗Y∑

r=1

yr
q
φX⊗Y

(
CX⊗Y

r

)y
i
≥ 0 ,

mX⊗Y∑

r=1

xr
q
φX⊗Y

(
CX⊗Y

r

)y
i
≥ 0 ,

mY∑

s=1

ws

q
φY
(
CY

s

)y
t
≥ 0 ,

xr, yr, zr, ws, y ∈ R, ∀r ∈ [mX⊗Y ], s ∈ [mY ] ,

where j ∈
[
tX
]
, i ∈

[
tX⊗Y

]
and t ∈

[
tY
]
.

In Theorem 4.6, we showed how to efficiently compute φX(Dr), φX⊗Y (C
X⊗Y
r ), and φX⊗Y (

(
JN
)⊗k

).
Note that φY (C

Y
s ) can be similarly computed in poly(k) time. Therefore, to complete the proof it

suffices to show that φX⊗Y

((
CX⊗Y

r

)T
Y ⊗k

)
, φX⊗Y

(
QT (IX⊗k ⊗ CY

r )Q
)
, and tr (CY

s ) can computed in

poly(k) time.
Recall that, for every r ∈

[
mX⊗Y

]
, we have

CX⊗Y
r =

∑

(i,j)∈OX⊗Y
r

|i〉〈j| ,

where i =
(
iX1 i

Y
1 · · · iXk iYk

)
and j =

(
jX1 j

Y
1 · · · jXk jYk

)
. Therefore, we have

(
CX⊗Y

r

)T
Y ⊗k

=
∑

(i,j)∈OX⊗Y
r

|iX1 jY1 · · · iXk jYk 〉〈jX1 iY1 · · · jXk iYk | = CX⊗Y
T (r) ,

where T (r) denotes the index of the orbit given by

OX⊗Y
T (r) =

{(
iX1 j

Y
1 · · · iXk jYk , jX1 iY1 · · · jXk iYk

)
: (i, j) ∈ OX⊗Y

r

}
.

Therefore, φX⊗Y

((
CX⊗Y

r

)T
Y ⊗k

)
= φX⊗Y

(
CX⊗Y

T (r)

)
can be computed efficiently.
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For r = 1, . . . ,mX⊗Y , let (i, j) be an arbitrary representative element of OX⊗Y
r . Let

αr := (IX⊗k )(iX ,jX ) · (CY
r )(iY ,jY ) ,

where iX =
(
iX1 . . . iXk

)
, iY =

(
iY1 . . . i

Y
k

)
, and jX and jY are defined in a similar way. Then we have

QT (IX⊗k⊗CY
r )Q =

∑mX⊗Y

r=1 αrC
X⊗Y
r , which implies that φX⊗Y

(
QT (IX⊗k ⊗ CY

r )Q
)
can be computed

in poly(k) time by Lemma 4.5.
Finally, for every s ∈ [mY ], we have

CY
s =

∑

(i1...ik,j1...jk)∈OY
s

|i1 . . . ik〉〈j1 . . . jk| .

Therefore, tr (CY
s ) > 0 iff OY

s = {(π(i), π(i)) : π ∈ Sk}, for some i ∈ [dY ]
k. Let s ∈ [mY ] such that

tr (CY
s ) > 0 and let (i1 . . . ik, i1 . . . ik) be an arbitrary representative element of OY

s . For every a ∈ [dY ],
define β(a) := |{v ∈ [k] : iv = a}|, then tr (CY

s ) = k!/
∏

a∈[dY ] β(a)!.

As an example, Υ(D#
2 , 6) is computed for the amplitude damping (AD) channel Ap,0, defined in

Eq. (33), for different values of p. For this channel, the best previously known upper bound on the
classical capacity C(Ap,0) for p ∈ [0, 0.75] is given by quantity Cβ(Ap,0) = log(1+

√
1− p) in [WFD17].

Table 3 shows that 1
6Υ(D#

2 , 6) is a slightly improved upper bound compared to the bounds obtained

using D̂α and Dmax which happen to coincide for the AD channel [FF21a] with the value log(1+
√
1− p).

We remark that the best known upper bound for the AD channel Ap,0 with p ∈ [0.75, 1] is given by
the entanglement-assisted classical capacity [BSST99] of the channel.

p Υ(Dmax, 1), Υ(D̂2, 1) and Cβ
1
6Υ(D#

2 , 6)
0.1 0.9626 0.9615

0.2 0.9218 0.9201

0.3 0.8770 0.8745

0.4 0.8274 0.8239

0.5 0.7716 0.7670

0.6 0.7071 0.7014

0.7 0.6302 0.6234

0.75 0.5850 0.5777

Table 3: Upper bounds on the classical capacity of the amplitude damping channel Ap,0 with different
parameters p.

6 Two-way assisted quantum capacity

In this section, we consider D#
α in the framework of generalized Theta-information which was intro-

duced in [FF21a]. As we will see, the generalized Theta-information induced by #-channel diver-
gence gives efficiently computable strong converse bounds on the two-way-assisted quantum capacity,
Q↔(N ), for any quantum channel N .

The two-way assisted quantum capacity of a quantum channel N is the maximum rate at which
quantum information can be transmitted reliably from a sender to a receiver, when the parties are
allowed to perform arbitrary LOCC (short for local operations and classical communication) between
consecutive channel uses [BDSW96]. While the two-way assisted quantum capacity for some specific
channels such as the quantum erasure channel is known [BDS97], no general characterization of Q↔(N )
is known for an arbitrary quantum channel N .

In [Rai99, Rai01], the authors relaxed the set LOCC to a larger class of operations known as PPT-
preserving operations, which is the set of channels that are positive partial transpose preserving. A
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quantum channel PAB→A′B′ is PPT-preserving if the linear map TB′ ◦ PAB→A′B′ ◦ TB is completely
positive and trace-preserving [Rai01], where TB′ and TB denote the partial transpose map. For any
quantum channel N , we denote by QPPT,↔(N ) the PPT-assisted quantum capacity of N . In this
case, the operations between the channel uses are allowed to be PPT-preserving operations. Because
of the containment LOCC ⊂ PPT [Rai01], we have the following inequality

Q↔(N ) ≤ QPPT,↔(N ) ,

for all quantum channels N .
Inspired by the formulation of the Rains set [Rai01], in [FF21a] the authors introduced the set of

subchannels given by the zero set of the Holevo-Werner bound [HW01] as

Θ(X,Y ) := {M ∈ CP(X : Y ) : ∃RXY s.t. RXY ± (JM
XY )

TY ≥ 0, tr Y (RXY ) ≤ IX} .

Let D be a generalized divergence. For any quantum channel NX→Y , define

RΘ(D, k)(N ) := D(N⊗k‖M⊗k) ,

where M = argminM∈Θ(X,Y ) D(N‖M).
For any quantum channel N , by [FF21a, Theorem 17], [FF21b, Proposition 5.9], [BW18, Corollary

5] and the relation between the divergences in Proposition 2.1, the following holds:

Proposition 6.1. Let N be a quantum channel. For any α ∈ (1, 2] and k ≥ 1,

Q↔(N ) ≤ QPPT,↔(N ) ≤ QPPT,↔,†(N ) ≤ 1

k
RΘ(D

#
α , k)(N ) ≤ RΘ(D̂α, 1)(N ) ≤ RΘ(Dmax, 1)(N ) ,

where QPPT,↔,†(N ) is the strong converse capacity corresponding to QPPT,↔(N ).

The squashed entanglement of the channel N introduced in [TGW14] is known to be a converse
bounds for QPPT,↔(N ). However, it remains open whether it is a strong converse and the quantity
itself is NP-hard to compute [Hua14]. Using a similar method as in Section 5, we can show that
RΘ(D

#
α , k)(N ) can be computed in poly(k) time for any quantum channel N .

As an example, RΘ(D
#
α , 6) is computed for the qubit amplitude damping channel Ap,0, defined

in Eq. (33), for values of p ∈ [0, 1]. The comparison between the two-way/PPT assisted quantum

capacity is given in Figure 2. The bound 1
6RΘ(D

#
2 , 6) demonstrates an improvement compared to the

best previously known strong converse bound given by RΘ(D̂2, 1).
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