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Abstract

The (classical) crosscorrelation is an important measure of pseudorandom-
ness of two binary sequences for applications in communications. The arith-
metic crosscorrelation is another figure of merit introduced by Goresky and
Klapper generalizing Mandelbaum’s arithmetic autocorrelation.

First we observe that the arithmetic crosscorrelation is constant for two
binary sequences of coprime periods which complements the analogous result
for the classical crosscorrelation.

Then we prove upper bounds for the constant arithmetic crosscorrelation of
two Legendre sequences of different periods and of two binary m-sequences of
coprime periods, respectively.
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1 Introduction

Sequences with good correlation properties are essential ingredients in a wide
range of applications including cryptography, CDMA systems and radar ranging [3].
A great deal of research has gone into the design and generation of sequences and
families of sequences with good correlation properties. For example, for CDMA we
need large families of sequences with small pairwise correlations.

Let N be the common (minimal) period of two (periodic) binary sequences

S = (si)i≥0 and T = (ti)i≥0

over the binary field F2 = {0, 1}. The (classical) periodic crosscorrelation of S and T
at lag τ , denoted by CS,T (τ), is defined by

CS,T (τ) =
∑

0≤i<N

(−1)si+ti+τ , 0 ≤ τ < N.

For S = T , it is called the (classical) periodic autocorrelation of S at τ , which is
denoted by

AS(τ) = CS,S(τ), 0 ≤ τ < N.

A different notion of autocorrelation is the arithmetic autocorrelation introduced
by Mandelbaum [12] and later generalized to the arithmetic crosscorrelation by Goresky
and Klapper [4]. (Note that Mandelbaum did not use the term arithmetic autocorre-
lation.) In the arithmetic crosscorrelation, a sequence is added to a shift of another
one with carry, rather than bit by bit modulo 2. According to [4, Proposition 2]
or the discussions in [9, 10], we can demonstrate the computation (of the arithmetic
crosscorrelation of S and T ) as follows:

Write
S(2) =

∑

0≤i<N

si2
i, T (τ)(2) =

∑

0≤i<N

ti+τ2
i.

We compute S(2)−T (τ)(2) in Z. If S(2)−T (τ)(2) ≥ 0, we consider the unique binary
expansion of S(2)− T (τ)(2):

S(2)− T (τ)(2) =
∑

0≤i<N

wi2
i, wi ∈ {0, 1}.

If S(2)−T (τ)(2) < 0, we consider the binary expansion of 2N −1+S(2)−T (τ)(2) ≥ 0:

2N − 1 + S(2)− T (τ)(2) =
∑

0≤i<N

wi2
i, wi ∈ {0, 1}.

Then we compute the arithmetic crosscorrelation of S and T at τ , denoted by CA
S,T (τ):

CA
S,T (τ) = N0 −N1 = 2N0 −N = N − 2N1, (1)
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where for j ∈ {0, 1}, Nj is the number of i = 0, 1, . . . , N − 1 with wi = j. For S = T ,
this is the arithmetic autocorrelation of S at τ , denoted by

AA
S (τ) = CA

S,S(τ).

The reader is referred to the research papers by Goresky and Klapper [4–6] or their
monograph [7] for more background and results on arithmetic auto-/crosscorrelation.

It is desirable that the absolute values of both the classical and the arithmetic
cross-/autocorrelations are as small as possible for 1 ≤ τ < N . However, sequences
with small max

1≤τ<N
|AS(τ)| may have large max

1≤τ<N
|AA

S (τ)| and vice versa.

For example, any m-sequence S produced by an n-order linear feedback shift
register (LFSR), that is of period 2n − 1 satisfies

AS(τ) = −1 and |AA
S (τ)| ≤ 2n−1 − 1, 1 ≤ τ < 2n − 1,

see [8, p.764] and [1]. Numerical examples in [1] support the conjecture

max
1≤τ<2n−1

|AA
S (τ)| = 2n−1 − 1.

In Section 3.3 below, we will give a bound on the absolute value of the arithmetic
autocorrelation function ofm-sequences for small lags τ , which is not considered in [1].

Any ℓ-sequence S produced by a feedback with carry shift register (FCSR) with
the prime connection number p, that is of period p− 1, can be defined by

si = (a2−i mod p) mod 2,

for some a 6≡ 0 (mod p) and satisfies

AS((p− 1)/2) = p− 1,

max
1≤τ<p−1

τ 6=(p−1)/2

|AS(τ)| = EL3(p),

AA
S (τ) = 0, 1 ≤ τ < p− 1,

where EL3(p) is the greatest even number less than p/3, see [13, Theorem 5] and [7,
Theorem 13.3.1].

It is easy to see that the classical crosscorrelation CS,T (τ) is constant if the periods
of S and T are coprime. Indeed, if p is the period of S and q is the period of T with
gcd(p, q) = 1, then we have by the Chinese Remainder Theorem

CS,T (τ) =

pq−1
∑

i=0

(−1)si+ti+τ =

p−1
∑

i1=0

(−1)si1
q−1
∑

i2=0

(−1)ti2+τ ,

which is constant since the sum over i2 is independent of τ . In particular, if both S
and T are balanced with odd pq (which is true for example for Legendre sequences
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of period p ≡ 3 (mod 4) and m-sequences), we get |CS,T (τ)| = 1 for 0 ≤ τ < pq. If
one of the sequences S and T is balanced with even period, we get CS,T (τ) = 0 for
0 ≤ τ < pq.

In this work, first we will prove that the arithmetic crosscorrelation CA
S,T (τ) is also

constant under the same assumption that the periods of S and T are coprime, see
Section 2. Then we consider two Legendre sequences of different periods and two
binary m-sequences of coprime periods and derive upper bounds on their constant
arithmetic crosscorrelation in Sections 3.1 and 3.2, respectively. Finally we provide
some numerical data in Section 4.

Occassionally, we will use negative indices for N -periodic sequences S = (si)i≥0

defined in the obvious way,

s−i = sN−i, i = 0, 1, . . . .

We use the notation f(n) = O(g(n)) or f(n) ≪ g(n) if there is an absolute constant
c > 0 such that |f(n)| ≤ cg(n).

2 Arithmetic crosscorrelation

In this section we prove the following result on the constant arithmetic crosscorrela-
tion.

Theorem 1. Let S = (si)i≥0 and T = (ti)i≥0 be two sequences over F2 of periods p > 1
and q > 1, respectively. If p and q are coprime, then the arithmetic crosscorrelation
CA
S,T (τ) has the same value for any 0 ≤ τ < pq.

Proof. We consider the unique binary expansion of a non-negative integer W <
2r − 1:

W = w0 + w12 + · · ·+ wr−12
r−1, wi ∈ {0, 1}, 0 ≤ i < r,

and define the weight of W , denoted by wt(W ), as

wt(W ) =

r−1
∑

i=0

wi.

It is clear that
wt(2kW ) = wt(W ) for any integer k ≥ 0.

Furthermore, for k ≥ 0 let Wk be defined by

Wk ≡ 2kW (mod 2r − 1), 0 ≤Wk < 2r − 1.

Then we have

Wk ≡ w02
k + w12

k+1 + · · ·+ wr−1−k2
r−1

+wr−k + wr−k+12
1 + · · ·+ wr−12

k−1 (mod 2r − 1).
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and thus
wt(Wk) = wt(W ), k ≥ 0. (2)

Since otherwise the result is trivial, we may assume that T is not constant. The
common minimal period of S and T is N = pq. According to the definition of the
arithmetic crosscorrelation, we need to determine the weight of S(2) − T (τ)(2) or
2pq − 1 + S(2)− T (τ)(2) for 0 ≤ τ < pq. We remark that

−(2pq − 1) < S(2)− T (τ)(2) < 2pq − 1,

since 0 ≤ S(2) ≤ 2pq − 1 and 0 < T (τ)(2) < 2pq − 1.
Put

λk =

p−1
∑

m=0

(sm − tm+kp)2
m, k ≥ 0.

It is easy to see that
λk+q = λk, k ≥ 0.

Case 1. We assume S(2)− T (τ)(2) ≥ 0.
Take x ∈ {0, 1, . . . , q − 1} with x ≡ τp−1 (mod q). We substitute

n = n1 + n2p and n3 = x+ n2

to get

2xp(S(2)− T (τ)(2)) ≡ 2xp
pq−1
∑

n=0

(sn − tn+τ )2
n,

≡ 2xp
q−1
∑

n2=0

(

p−1
∑

n1=0

(sn1
− tn1+(x+n2)p)2

n1

)

2n2p.

≡

q−1+x
∑

n3=x

(

p−1
∑

n1=0

(sn1
− tn1+n3p)2

n1

)

2n3p

≡

q−1+x
∑

n3=x

λn3
2n3p

≡

q−1
∑

n3=0

λn3
2n3p (mod 2pq − 1),

since λk+q = λk. We note that
∑q−1

n3=0 λn3
2n3p is independent of τ and we have a fixed

number Ω with 0 ≤ Ω < 2pq − 1 such that

Ω ≡

q−1
∑

n3=0

λn3
2n3p (mod 2pq − 1).
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Then by (2), we derive for any τ with S(2)− T (τ)(2) ≥ 0,

wt(S(2)− T (τ)(2)) = wt(2xp(S(2)− T (τ)(2))) = wt(Ω).

Case 2. We assume S(2)− T (τ)(2) < 0.
We need to determine the weight of 2pq − 1 + S(2)− T (τ)(2), which is a non-negative
number smaller than 2pq − 1. Since for x ∈ {0, 1, . . . , q − 1} with x ≡ τp−1 (mod q),

2xp(2pq − 1 + S(2)− T (τ)(2)) ≡ 2xp(S(2)− T (τ)(2)) (mod 2pq − 1),

we follow the proof in Case 1 to get

2xp(2pq − 1 + S(2)− T (τ)(2)) ≡

q−1
∑

n3=0

λn3
2n3p ≡ Ω (mod 2pq − 1),

from which we derive

wt(2pq − 1 + S(2)− T (τ)(2)) = wt(2xp(2pq − 1 + S(2)− T (τ)(2))) = wt(Ω)

for any τ with S(2)− T (τ)(2) < 0.

Putting both cases together, we obtain by (1)

CA
S,T (τ) = pq −

{

2wt(S(2)− T (τ)(2)), if S(2)− T (τ)(2) ≥ 0,
2wt(2pq − 1 + S(2)− T (τ)(2)), otherwise,

= pq − 2wt(Ω).

So CA
S,T (τ) is constant which completes the proof.

3 Upper bounds for special pairs of binary sequences

In this section, we will prove upper bounds on the arithmetic crosscorrelation for
two binary Legendre sequences of different periods and two binary m-sequences of
coprime periods, respectively. For results on their arithmetic autocorrelation, we
refer the reader to [1, 10].

3.1 Arithmetic crosscorrelation of two binary Legendre se-

quences of different periods

For a prime p > 2 let (ℓn) be the Legendre sequence defined by

ℓn =

{

1, if
(

n
p

)

= 1;

0, otherwise,
n ≥ 0,

where
(

.

.

)

is the Legendre symbol. Obviously, (ℓn) is p-periodic.
We need a preliminary result on the pattern distribution of two Legendre se-

quences.
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Lemma 1. Let p and q be primes with 2 < p < q and denote by S = (si)i≥0 and T =
(ti)i≥0 the Legendre sequences of periods p and q, respectively.

For an integer k ≥ 0 and any pattern e ∈ {0, 1}2k+2, the number Σk of i =
0, 1, . . . , pq − 1 with

(si−k, si−k+1, . . . , si, ti−k, ti−k+1, . . . , ti) = e

satisfies

Σk =
pq

22k+2
+O

(

2−kkp1/2q
)

for k ≤ (0.5 log p− log log p)/ log 2.

Proof. Write e = (e0, . . . , e2k+1) and put

δi,j,p = 1− (−1)ek−j

(

i− j

p

)

and δi,j,q = 1− (−1)e2k+1−j

(

i− j

q

)

.

Note that for i and j ≤ k with gcd(i− j, pq) = 1 we have

δi,j,pδi,j,q =

{

4, if (si−j , ti−j) = (ek−j, e2k+1−j),
0, otherwise,

and thus

Σk =
1

22k+2

pq−1
∑

i=0

k
∏

j=0

δi,j,pδi,j,q +O(kq),

where the O-term comes from those i with gcd(i− j, pq) > 1 for some j = 0, 1, . . . , k.
Expanding the product we get

Σk =
1

22k+2

∑

U,V⊆{0,1,...,k}

pq−1
∑

i=0

∏

j∈U

(−1)ek−j

(

i− j

p

)

∏

j∈V

(−1)e2k+1−j

(

i− j

q

)

+O(kq).

The contribution to Σk of U = V = ∅ is trivially

pq

22k+2
.

The contribution for U = ∅ and the (2k+1 − 1) sets V 6= ∅ is bounded by

1

22k+2
· (2k+1 − 1) · pmax

V 6=∅

∣

∣

∣

∣

∣

∣

q−1
∑

i=0





∏

j∈V

(i− j)

q





∣

∣

∣

∣

∣

∣

= O
(

2−kkpq1/2
)

by the Weil bound, see for example [11, Theorem 5.41]. Analogously, the contribution
to Σk for V = ∅ and the (2k+1 − 1) sets U 6= ∅ is

O
(

2−kkp1/2q
)

.
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The contribution of the 22k+2 − 2k+2 + 1 remaining (U, V ) with U 6= ∅ and V 6= ∅ is
bounded by

1

22k+2
· (22k+2 − 2k+2 + 1) · max

U,V 6=∅

∣

∣

∣

∣

∣

pq−1
∑

i=0

∏

j∈U

(

i− j

p

)

∏

j∈V

(

i− j

q

)

∣

∣

∣

∣

∣

≤ max
U,V 6=∅

∣

∣

∣

∣

∣

∣

p−1
∑

i1=0





∏

j∈U

(i1 − j)

p





q−1
∑

i2=0





∏

j∈V

(i2 − j)

q





∣

∣

∣

∣

∣

∣

= O(k2(pq)1/2)

by the Chinese Remainder Theorem and the Weil bound. Collecting everything and
verifying that

max{kq, 2−kkp1/2q, k2(pq)1/2} = 2−kkp1/2q for k ≤ (0.5 log p− log log p)/ log 2

we get the result.

Theorem 2. Let S = (si)i≥0 and T = (ti)i≥0 be two Legendre sequences over F2 of
prime periods p > 2 and q > 2, respectively. If p < q, then the arithmetic crosscorre-
lation CA

S,T (τ) satisfies

CA
S,T (τ) ≪ p1/2q(log p)2, 0 ≤ τ < pq.

Proof. By Theorem 1 we may assume τ = 0. Without loss of generality we may
assume S(2) ≥ T (0)(2). We write

S(2)− T (0)(2) =

pq−1
∑

i=0

(si − ti)2
i =

pq−1
∑

i=0

wi2
i with wi ∈ {0, 1}.

Note that the wi are unique and we have to estimate the number of i = 0, 1, . . . , pq−1
with wi = 1.

Assume that for some n ≥ k ≥ 1 and a ∈ {0, 1}

(sn−k, tn−k) = (a, 1− a),

sn−k+j = tn−k+j, j = 1, . . . , k − 1,

(sn, tn) ∈ {0, 1}2.

For a = 1 we have

2n−k+1 >

n−k
∑

i=0

(si − ti)2
i ≥ 2n−k −

n−k−1
∑

i=0

2i > 0

and thus wn−k+1 depends only on (sn−k+1, tn−k+1). Obviously, we have

wn−k+j = sn−k+j − tn−k+j = 0 for j = 1, . . . , k − 1

8



and wn = 1 if and only if sn 6= tn.
For a = 0 we have

0 < 2n−k+1 +

n−k
∑

i=0

(si − ti)2
i < 2n−k+1

and thus
wn−k+j = 1 + sn−k+j − tn−k+j = 1 for j = 1, . . . , k − 1

and wn = 1 if and only if sn = tn.
Altogether there are 2k+1 different patterns e ∈ {0, 1}2k+2 such that

(sn−k, sn−k+1, . . . , sn, tn−k, tn−k+1, . . . , tn) = e (3)

implies wn = 1. For each of these 2k+1 patterns e there are

pq

22k+2
+O

(

2−kkp1/2q
)

different n = k, k + 1, . . . , k + pq − 1 satisfying (3) by Lemma 1. Hence, for each
k = 1, 2, . . . there are at least

2k+1 pq

22k+2
+O

(

2k+1

2k
kp1/2q

)

=
pq

2k+1
+O

(

kp1/2q
)

different n in each fixed interval of length pq with wn = 1. Choose

M =

⌊

log p

2 log 2
−

2 log log p

log 2

⌋

≤ log p.

Summing up, the number N1 of n = 0, 1, . . . , pq − 1 with wn = 1 is at least

N1 ≥
M
∑

k=1

pq

2k+1
+O

(

M
∑

k=1

kp1/2q

)

=
pq

4

M−1
∑

k=0

2−k +O
(

M2p1/2q
)

=
pq

2

(

1−

(

1

2

)M
)

+O(p1/2q(log p)2)

=
pq

2
+O(p1/2q(log p)2),

where in the last step we used

p−1/2(log p)2 ≤ 2−M ≤ 2p−1/2(log p)2
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by the choice of M .
Similar, we can show that the number N0 of n with wn = 0 is at least

N0 ≥
pq

2
+O(p1/2q(log p)2).

Since
N0 = pq −N1 ≤

pq

2
+O(p1/2q(log p)2)

we get the result by (1).

Put N = pq. In the important case that p and q are of the same order of magnitude
the bound is of order of magnitude N3/4(logN)2.

3.2 Arithmetic crosscorrelation of two binary m-sequences of

coprime periods

First note that

d = gcd(n1, n2) = 1 if and only if t = gcd(2n1 − 1, 2n2 − 1) = 1.

This can be easily verified. On the one hand if d > 1, then

2ni − 1 =
(

2d − 1
) (

1 + 2d + · · ·+ 2(ni/d−1)d
)

, i = 1, 2,

and 2d − 1 is a nontrivial divisor of t. On the other hand if t > 1, then there is a
prime divisor p > 2 of t and the order of 2 modulo p divides d.

Let gn be a primitive element of the finite field F2n . Then the sequence of the
form1

si = Trn(g
i
n), i = 0, 1, . . .

is an m-sequence of period 2n − 1, where

Trn(c) = c + c2 + · · ·+ c2
n−1

, c ∈ F2n ,

denotes the (absolute) trace of F2n .
We need a result on the pattern distribution of two m-sequences.

Lemma 2. Let n1 < n2 be two coprime positive integers and denote by S = (si)i≥0

and T = (ti)i≥0 two m-sequences of periods 2n1 − 1 and 2n2 − 1, respectively.
For an integer k ≥ 0 and any pattern e ∈ {0, 1}2k+2, the number Σk of i =

0, 1, . . . , (2n1 − 1)(2n2 − 1)− 1 with

(si−k, si−k+1, . . . , si, ti−k, ti−k+1, . . . , ti) = e

1In fact, any m-sequence can be defined as si = Trn(ag
i

n
), i = 0, 1, . . ., for some 0 6= a ∈ F2n ,

which is a shift of si = Trn(g
i

n
).
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satisfies

∣

∣

∣

∣

Σk −
(2n1 − 1)(2n2 − 1)

22k+2

∣

∣

∣

∣

≤ 2n1−k−1 + 2n2−k−1 + 1 for k < n1.

Proof. Let
si = Trn1

(gin1
), i = 0, 1, . . .

for a primitive element gn1
of F2n1 and

ti = Trn2
(gin2

), i = 0, 1, . . .

for a primitive element gn2
of F2n2 , respectively.

Put
N = (2n1 − 1)(2n2 − 1)

and

δi,j,n1
= 1 + (−1)ek−jψn1

(gi−j
n1

) and δi,j,n2
= 1 + (−1)e2k+1−jψn2

(gi−j
n2

),

where
ψn(c) = (−1)Trn(c), c ∈ F2n,

is the additive canonical character of F2n . Note that

δi,j,n1
δi,j,n2

=

{

4, if (si−j, ti−j) = (ek−j, e2k+1−j),
0, otherwise,

and thus we have

Σk =
1

22k+2

N−1
∑

i=0

k
∏

j=0

δi,j,n1
δi,j,n2

.

Expanding the product we get

Σk =
1

22k+2

∑

U,V⊆{0,1,...,k}

N−1
∑

i=0

∏

j∈U

(−1)ek−jψn1
(gi−j

n1
)
∏

j∈V

(−1)e2k+1−jψn2
(gi−j

n2
).

The contribution of U = V = ∅ is
N

22k+2
.

The contribution of U = ∅ and the (2k+1 − 1) sets V 6= ∅ is bounded by

2n1−k−1max
V 6=∅

∣

∣

∣

∣

∣

2n2−2
∑

i=0

ψn2

(

∑

j∈V

g−j
n2
gin2

)∣

∣

∣

∣

∣

.
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Since k < n1 < n2 and the minimal polynomial of g−1
n2

is of degree n2, we have

∑

j∈V

g−j
n2

6= 0

and the sum over i equals −1. So the contribution of U = ∅ and V 6= ∅ is at most

2n1−k−1.

Similarly we see that the contribution of V = ∅ and U 6= ∅ is

2n2−k−1.

In the remaining case the contribution of the 22k+2−2k+2+1 pairs of sets (U, V ) with
U 6= ∅ and V 6= ∅ is at most 1.

Putting everything together, we complete the proof.

Theorem 3. Let S = (si)i≥0 and T = (ti)i≥0 be two binary m-sequences over F2 of
periods 2n1 − 1 and 2n2 − 1, respectively. If n1 < n2 and gcd(n1, n2) = 1, then the
arithmetic crosscorrelation CA

S,T (τ) satisfies

CA
S,T (τ) ≪ n12

n2, 0 ≤ τ < (2n1 − 1)(2n2 − 1).

Proof. As in the proof of Theorem 2 and using Lemma 2 we get

Ni ≥
(2n1 − 1)(2n2 − 1)

2

n1−1
∑

k=1

2−k − (n1 − 1)(2n1 + 2n2 + 1)

=
(2n1 − 1)(2n2 − 1)

2
+O(n12

n2)

for i = 0, 1. Hence,
|N0 −N1| ≪ n12

n2

and the result follows.

The theorem above indicates that the arithmetic crosscorrelation of twom-sequences
is quite small. In particular, if n1 and n2 are close and N = (2n1−1)(2n2−1), then the
bound is of order of magnitude N1/2 logN which is in good correspondence with the
expected value of the absolute value of the arithmetic crosscorrelation of two random
sequences of period N , see [7, Theorem 8.3.6].

However, the arithmetic autocorrelation of m-sequences is quite large. Numerical
data indicates that its maximum value is the greatest number less than half of the
period [1]. To improve the results in [1], in the following subsection, we will estimate
the arithmetic autocorrelation function of m-sequences for small lags τ .
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3.3 Arithmetic autocorrelation function of m-sequences for

small lags τ

By [10, Proposition 2.1] we have for any N -periodic sequence

AA
S (τ) = −AA

S (N − τ), τ = 1, 2, . . . , N − 1. (4)

Now we state a result on the pattern distribution of anm-sequence of period 2n−1.

Lemma 3. Let S = (si)i≥0 be an m-sequence of period 2n − 1. Choose τ with
1 ≤ τ < n.

(1) For k ≥ 0 and any non-zero pattern e ∈ {0, 1}2k+2\{(0, 0, . . . , 0)}, the number
Σk of i = 0, 1, . . . , 2n − 2 with

(si−k, si−k+1, . . . , si, si−k+τ , si−k+τ , . . . , si+τ ) = e

is
Σk = 2n−2k−2, k ≤ min{τ, n− τ} − 1.

(2) For k ≥ τ and non-zero pattern e ∈ {0, 1}k+τ+1\{(0, 0, . . . , 0)}, the number σk
of i = 0, 1, . . . , 2n − 2 with

(si−k, si−k+1, . . . , si+τ ) = e

is
σk = 2n−k−τ−1, τ ≤ k ≤ n− τ − 1.

Proof. For ℓ = 1, 2, . . . , n, we see that each non-zero pattern of length ℓ occurs as
(si, si+1, . . . , si+ℓ−1) for exactly 2n−ℓ different i with 0 ≤ i < 2n−1, see for example [3,
Proposition 5.2]. We choose ℓ = k + τ + 1 ≤ n and (2) follows.

For (1) note that the choice of (si+1, si+2, . . . , si−k+τ−1) is free. Hence, we derive
2n−ℓ+τ−k−1 = 2n−2k−2 different i with the desired pattern property.

Theorem 4. Let S = (si)i≥0 be an m-sequence of period 2n − 1. We have
∣

∣AA
S (τ)

∣

∣ ≤ 2min{n−1,τ+1,2n−τ} − 1, 1 ≤ τ < 2n − 1.

Proof. The bound
∣

∣AA
S (τ)

∣

∣ ≤ 2n−1 − 1

follows from [1]. By (4) it remains to show
∣

∣AA
S (τ)

∣

∣ ≤ 2τ+1 − 1 for τ ≤ n− 3.

As before, let Nj be the number of digits equal to j ∈ {0, 1} in the binary expansion
of the integer S(2)− S(τ)(2). As in the above proofs, we get by Lemma 3

N1 ≥

min{τ,n−τ}−1
∑

k=1

2k+1Σk +
n−τ−1
∑

k=min{τ,n−τ}

2τσk =
n−τ−1
∑

k=1

2n−k−1 = 2n−1 − 2τ
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as well as N0 ≥ 2n−1 − 2τ and thus

Nj ≤ 2n−1 + 2τ − 1, j = 0, 1.

Hence, |N0 −N1| ≤ 2τ+1 − 1 and (1) finishes the proof.

4 Final remarks

Below we list some numerical data for the arithmetic crosscorrelations of two Legendre
sequences of coprime periods in Table 1 and two binary m-sequences of coprime
periods in Table 2.

p q CA
S,T (τ)

7 11 −1
7 13 5
7 17 −13
7 23 1
11 13 −3
11 19 −5
13 17 −7
17 29 9

Table 1: Arithmetic crosscorrelation of two Legendre sequences S and T of periods
p and q

Let us denote by MS(X) ∈ F2[X ] the minimal polynomial of S, see [2] for details.

MS(X) MT (X) CA
S,T (τ)

X3 +X2 + 1 X4 +X3 + 1 −1
X3 +X2 + 1 X5 +X3 + 1 1
X3 +X2 + 1 X7 +X6 + 1 −3
X3 +X2 + 1 X8 +X6 +X5 +X4 + 1 7
X5 +X3 + 1 X8 +X6 +X5 +X4 + 1 −1
X6 +X5 + 1 X7 +X6 + 1 −1
X7 +X6 + 1 X8 +X6 +X5 +X4 + 1 −3

Table 2: Arithmetic crosscorrelation of two binarym-sequences S and T with minimal
polynomials MS(X) and MT (X)

These tables indicate that the size of CA
S,T (τ) can be quite different for different

periods of similar size.
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For two binary sequences S of period p and T of period q with gcd(p, q) > 1, their
classical and arithmetic crosscorrelations are both not constant. For example, if S is
an m-sequence with minimal polynomial X4 +X3 + 1 and T is an m-sequence with
minimal polynomial X4 +X + 1, we compute that

CS,T (τ) ∈ {−1,−5, 3, 7}, CA
S,T (τ) ∈ {−3,−7,−9, 1, 3, 5}.

So it would be interesting to find an upper bound on CA
S,T (τ) when the period of S

is not coprime to that of T . For m-sequences the method of this paper still provides
non-trivial results for very small and very large lags τ but fails for most τ .
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