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Sparse Affine Sampling: Ambiguity-Free and

Efficient Sparse Phase Retrieval

Ming-Hsun Yang, Y.-W. Peter Hong, and Jwo-Yuh Wu

Abstract

Conventional sparse phase retrieval schemes can recover sparse signals from the magnitude of

linear measurements only up to a global phase ambiguity. This work proposes a novel approach that

instead utilizes the magnitude of affine measurements to achieve ambiguity-free signal reconstruction.

The proposed method relies on two-stage approach that consists of support identification followed by

the exact recovery of nonzero signal entries. In the noise-free case, perfect support identification using

a simple counting rule is guaranteed subject to a mild condition on the signal sparsity, and subsequent

exact recovery of the nonzero signal entries can be obtained in closed-form. The proposed approach

is then extended to two noisy scenarios, namely, sparse noise (or outliers) and non-sparse bounded

noise. For both cases, perfect support identification is still ensured under mild conditions on the noise

model, namely, the support size for sparse outliers and the power of the bounded noise. Under perfect

support identification, exact signal recovery can be achieved using a simple majority rule for the sparse

noise scenario, and reconstruction up to a bounded error can be achieved using linear least-squares (LS)

estimation for the non-sparse bounded noise scenario. The obtained analytic performance guarantee for

the latter case also sheds light on the construction of the sensing matrix and bias vector. In fact, we show

that a near optimal performance can be achieved with high probability by the random generation of the

nonzero entries of the sparse sensing matrix and bias vector according to the uniform distribution over a

circle. Computer simulations using both synthetic and real-world data sets are provided to demonstrate

the effectiveness of the proposed scheme.
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I. INTRODUCTION

A. Overview

Conventional phase retrieval is concerned with the reconstruction of a signal s ∈ C
N from

magnitude-squared linear measurements

ym =
∣∣∣φ

m
s
∣∣∣2 + vm, m = 1, . . . ,M, (1)

where M is the total number of measurements, φ
m

= [φm,1 · · ·φm,N ] ∈ C
1×N is the known

sensing vector, and vm ∈ R is the noise. This problem arises in many engineering and scientific

applications, such as optical imaging, X-ray crystallography [1], [2], astronomy [3], ptychography

[4], etc., mainly because sensing devices in optical systems can only capture the intensity of

light waves. It also arises in wireless communications, e.g., channel estimation for millimeter-

wave systems, for the purpose of removing unreliable phase information caused by large carrier

frequency offset [5], [6]. In the noise-free case, sufficient conditions guaranteeing unique signal

recovery (up to a global phase ambiguity) were investigated in [7]–[9]. The development of signal

reconstruction algorithms alongside the related performance guarantees have been addressed in

[10]–[14]. In the aforementioned works, a complete set of measurements, i.e., M > N , is needed,

which would entail high data gathering and storage costs, especially when the ambient dimension

N is large. However, high-dimensional signals typically lie in low-dimensional subsets, or

subspaces, of the ambient domain, thereby admitting sparse representations with respect to a

certain basis. Motivated by this fact, sparse phase retrieval, which aims to recover sparse signals

from sub-Nyquist amplitude samples (i.e., M < N in (1)), has received considerable attention in

recent years [15]–[18]. When noise is absent, it was shown in [15] that every K-sparse signal is

uniquely determined by 4K−1 random Gaussian intensity measurements of the form (1) with a

high probability. In the presence of noise, [16] has shown that O(K log(N/K)) measurements

are sufficient for stable signal recovery. Many sparsity-promoting algorithms for efficient signal

reconstruction have also been developed in [19]–[24].

It is worth noting that all the aforementioned works ensure signal recovery only up to a

global phase ambiguity, which, if unresolved, can significantly degrade the signal reconstruction

performance. Many existing works either resort to heuristic numerical search, or restrict their at-

tention to certain signal types (e.g., nonnegativity) when resolving the phase ambiguity. However,

additional numerical search incurs higher computational complexity, while extra requirements

on the signal limit the applicability of the algorithms.
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B. Paper Contribution

This paper proposes a novel sparse phase retrieval scheme that is both exact (i.e., free from

the phase ambiguity) and computationally efficient. Instead of adopting magnitude-squared linear

measurements, as done in (1), we consider the use of M < N noisy magnitude-squared affine

measurements, i.e.,

ym =
∣∣∣φ

m
s+ bm

∣∣∣2 + vm, m = 1, . . . ,M, (2)

for the reconstruction of the K-sparse signal s ∈ C
N with unknown support T ⊂ {1, . . . , N},

where |T | = K � N , and bm ∈ C is a known scalar bias that facilitates the proposed ambiguity-

free signal recovery process. Conceptually, the bias bm in (2) acts as a “reference” signal whose

distance to the observation φ
m
s varies with the phase rotation on s. Such variety in the affine

measurements offers a simple and systematic approach to ambiguity-free signal recovery, as will

be shown later. This is in sharp contrast with the conventional linear measurement considered in

(1), where different phase rotation is indistinguishable from the squared distance |φ
m
s|2 measured

with respect to the common reference point, namely, the origin. The affine measurement model

given in (2) naturally arises in holography [29], in which the bias bm models the intensity of

the background referenced light wave. It has also found applications in the probing of crystal

structures via image processing techniques [30], where bm reflects the prior structural information

being encoded into the measurement process.

In addition to the use of affine measurements, we further employ sparse sensing [5], [34], [35]

(i.e., sparse sensing vectors φ
m

, m = 1, . . . ,M ) to reduce the data gathering cost and to facilitate

low-complexity signal recovery. Sparse sensing has often been adopted in modern sensing and

data acquisition systems. For instance, in single-pixel cameras [36], the inbuilt digital micromirror

devices can be mathematically modeled as a set of binary “zero-one” sensing vectors, which are

sparse provided that most mirrors are rotated to off (or zero) states. In millimeter-wave channel

estimation [5], the product of the channel and the hybrid beamforming weight matching the

channel eigen-space is a sparse vector, leading to a sparse sensing measurement model. In our

paper, we specifically consider the so-called (N,M, d,K, α) union-free family (UFF) of sparse

sensing matrices, which has been adopted in [37]–[40] for efficient compressive sensing (CS)

signal reconstruction. Based on the sparse affine measurements, we propose a two-stage sparse

signal reconstruction scheme which first identifies the signal support and subsequently leverages
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the presence of the bias to conduct ambiguity-free signal recovery. The main contributions of

this paper can be summarized as follows.

1) We first examine the ideal noise-free case and propose a simple counting rule that is

shown to achieve perfect support identification subject to a mild condition on the signal

sparsity. Once the signal support is correctly identified, ambiguity-free recovery of the

nonzero signal entries can be done perfectly by exploiting the geometry underpinning

the magnitude of the affine measurements. The analysis on the noise-free case provides

key insights on the advantages of using affine measurements for sparse phase retrieval

compared to the use of linear measurements in most existing works.

2) Then we extend the results in the noise-free case to the following two noisy scenarios:

a) Sparse noise: Under sparse noise (or outlier) corruption, perfect support identification

can also be achieved using a simple counting rule subject to a stronger requirement on

the signal sparsity. In this case, exact entry-wise ambiguity-free signal recovery can

be done by means of a simple majority rule over a finite set of candidate solutions.

b) Non-sparse bounded noise: Under non-sparse bounded noise, we first show that

perfect support identification via a similar counting rule is also attainable under mild

conditions on the sensing matrix, the bias vector, and the noise level. In this case,

ambiguity-free signal recovery can be achieved with low-complexity by utilizing a

standard least-squares (LS) approach. An analytic performance guarantee (character-

ized in terms of the squared error bound) is derived accordingly to justify the stable

reconstruction of the proposed LS estimator. The results also offer interesting insights

into the geometry of the sensing matrices and bias vectors against the bounded noise

corruption.

3) Finally, we provide guidelines for the construction of sensing matrices and bias vectors

under non-sparse bounded noise corruption. We first derive the optimal sensing matrices

and bias vectors that minimize the analytic error bound. The optimal solutions are of

equal-magnitude and depend on the true signal support, which is unknown beforehand. To

facilitate our designs, we instead consider a probabilistic construction using, e.g., random

samples uniformly distributed on the circle. We can show that, with high probability, such

randomly generated solutions are near-optimal in the sense that the resultant squared error

bound is at most a constant multiple of the theoretical minimum.
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C. Connection to Previous Works

In the current literature, the greedy sparse phase retrieval (GESPAR) [25], the sparse truncated

amplitude flow (SPARTA) [26], and the compressive reweighted amplitude flow (CRAF) [27] rely

on a similar protocol as our proposed approach, namely, support identification followed by signal

retrieval over the estimated support. Built on the conventional linear measurement model given

in (1), signal reconstruction using GESPAR, SPARTA and CRAF is subject to a phase ambiguity.

GESPAR iteratively updates the support estimate using the 2-opt algorithm [28], and then

conducts signal reconstruction using the damped Gauss-Newton algorithm. SPARTA performs

iterative support identification using the power method initialized with a properly selected support

estimate; then, signal recovery is done by a series of truncated gradient iterations in conjunction

with hard thresholding. CRAF adopts a sparse spectral procedure for support identification and a

series of reweighted gradient iterations in conjunction with hard thresholding for signal recovery.

In contrast to GESPAR, SPARTA and CRAF, we employ only a simple counting rule for support

identification and either the majority rule (under sparse noise) or linear LS estimation (under

bounded noise) for signal reconstruction. The proposed scheme is not only computationally

efficient, but also resolves the phase ambiguity existing in all prior methods.

It is worthwhile to note that sparse phase retrieval using affine measurements has also been

addressed in [33]. However, the authors focused exclusively on the noise-free case and derived

necessary and sufficient conditions on φ
m

’s and bm’s for exact signal identification, without

addressing the issue of algorithm design. To the best of our knowledge, our work is the first to

develop efficient algorithms, along with their theoretical performance guarantees, for ambiguity-

free sparse phase retrieval under the noisy affine measurement model.

D. Paper Organization and Notation List

The rest of this paper is organized as follows. Section II introduces the problem statement.

Section III presents the proposed signal reconstruction algorithm in the noise-free case. Section

IV then shows the proposed algorithm and its performance guarantee under noise corruption.

Section VI presents the simulation results. Finally, Section VII concludes this paper.

We use bold capital letters for matrices (e.g., Φ,A), bold small case letters for vectors (e.g.,

y, s) and non-bold letters for scalars (e.g., b, α). AT and AH denote the transpose and Hermitian

of the matrix A, respectively. am,n and ym are used to denote the (m,n)th entry of the matrix

A and the mth entry of the vector y, respectively. To conserve notation and without causing
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confusion, |S| denotes the cardinality of the finite set S . For any matrix A = [am,n]M×N ∈
C

M×N , |A|2 ∈ R
M×N is the matrix with |am,n|2 as the (m,n)th entry. For a complex scalar

b ∈ C, the variables b(Re) ∈ R, b(Im) ∈ R, and b∗ ∈ C denote its real part, imaginary part, and

complex conjugate, respectively; clearly, b∗ = b(Re) − ib(Im). For any t1 < t2 ∈ R, θ ∼ U(t1, t2)
implies that θ is a continuous uniform random variable in the interval (t1, t2).

II. PROBLEM STATEMENT AND BASIC ASSUMPTIONS

We consider the problem of recovering a K-sparse signal s = [s1 · · · sN ]T ∈ C
N (i.e., a signal

vector with at most K nonzero entries) from M < N magnitude-squared affine measurements

as described in (2). The measurements can be written in a vector-matrix form given as follows:

y = [y1 · · · yM ]T = |Φs+ b|2 + v, (3)

where Φ = [φT

1
· · ·φT

M
]T ∈ C

M×N is the sensing matrix (with φ
m
∈ C

1×N being its mth row),

b = [b1 · · · bM ]T ∈ C
M is the bias vector, and v = [v1 · · · vM ]T ∈ R

M is the noise vector. We

assume that the sensing matrix Φ is sparse in the sense that the nth column of Φ (denoted by

φn) has support Cn ⊂ {1, . . . ,M} with cardinality |Cn| = d for all n ∈ {1, . . . , N}. In this way,

each nonzero signal element is captured by exactly d measurements in (3). Moreover, we assume

that the overlapping support between any two columns is at most r, i.e., |Cn ∩ Cn′ | ≤ r, for all

n �= n′. Sparse sensing matrices of this kind are formally referred to as the UFF family with

parameter (N,M, d, 1, r+1
d
) [40], [41] that have been widely adopted in the CS [37]–[39] and

group testing [42]–[44] literature, and can be constructed using deterministic approaches such

as DeVore’s recipe [45].

Assumption 1: The sensing matrix Φ belongs to the (N,M, d, 1, r+1
d
)-UFF family, i.e., |Cn| =

d, for all n, and |Cn ∩ Cn′ | ≤ r, for all n �= n′.

An example of the abovementioned sensing matrix is shown in Fig. 1 for the case where

N = 8, M = 5, d = 2 and r = 1. The proposed signal recovery scheme exploits the sparse and

affine nature of the sampling process in (3). Sparse sensing, while economizing the storage cost,

ought to be properly selected so as to ensure efficient data acquisition. In fact, to yield good

data gathering efficiency, the sparse sensing matrix Φ should probe the signal s well enough so

that Φs ends up with sufficiently many nonzero terms. This can be accomplished if the column

supports are more dispersed over the measurement domain index set {1, . . . ,M}. That is, the

support between different columns do not overlap significantly, resulting in a small value of r.
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Fig. 1. Example of a sparse sensing matrix Φ in UFF family with N = 8, M = 5, d = 2, and r = 1. The columns and rows

of Φ are denoted by {φn}Nn=1 and {φ
m
}Mm=1, respectively.

Furthermore, to enable element-wise signal recovery, as will be shown in Section III, the

following assumption on the nonzero entries of Φ and the bias values {bm}Mm=1 are also necessary

throughout the paper.

Assumption 2: For any n ∈ {1, . . . , N} and any distinct indices m1,m2,m3 ∈ Cn, the three

points
bm1

φm1,n
,

bm2

φm2,n
and

bm3

φm3,n
on the complex plane must not be collinear, i.e.,

bm1

φm1,n
− bm2

φm2,n
�=

a
(

bm1

φm1,n
− bm3

φm3,n

)
for any a ∈ R.

Assumption 2 can be easily satisfied when the nonzero entries of Φ and the bias values

{bm}Mm=1 are independently drawn from continuous probability distributions, such as Gaussian

or uniform distributions.

III. NOISE-FREE SPARSE AFFINE PHASE RETRIEVAL

In this section, we first address the issue of signal retrieval from (3) in the noise-free case,

where v = 0. Generalization of the results to the noisy case will be discussed in Section IV.

The proposed signal retrieval method consists of two stages: support identification and recovery

of nonzero signal entries, which will be introduced in Sections III-A and III-B, respectively.

A. Support Identification

In the noise-free case, we write (3) as

y =

∣∣∣∣∣∑
n∈T

snφn + b

∣∣∣∣∣
2

. (4)
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Since s is K-sparse and each column support of Φ satisfies |Cn| = d, at most |⋃n∈T Cn| ≤ Kd

of the entries in y will capture nonzero parts of the sparse signal s. The rest of the entries in

y that do not capture any nonzero signal entry yield only the square of the the corresponding

bias term, that is, ym = |bm|2 whenever m /∈ ⋃
n∈T Cn. In most practical cases, we have ym =

|φ
m
s + bm|2 �= |bm|2, for m ∈ Cn and n ∈ T , since φ

m
is nonzero in its nth entry, and so is

s. Motivated by this observation, we propose the following support identification scheme that is

built on a simple counting rule:

T̂ =

{
n ∈ {1, . . . , N}

∣∣∣∣∣∑
m∈Cn

1
{
ym �= |bm|2

}
> η

}
, (5)

where 1{·} is the indicator function, and 0 < η < d is a decision threshold. We show below

that, under quite mild conditions on the signal sparsity, the proposed support estimate in (5) is

guaranteed to be exact, i.e., T̂ = T .

Theorem 3.1: Let us consider the noise-free model in (4). Then, under Assumptions 1, 2 and

with d+r−2
2r

> K, the support estimate T̂ (defined in (5)) with η ∈ [Kr, d−Kr+ r− 2) exactly

identifies the signal support T .

Proof: See Appendix A.

The above theorem shows that perfect support identification can be achieved by means of a

simple counting rule in (5) if the signal support is small enough and the column support of the

sensing matrix is large enough to successfully capture the nonzero signal entries. In fact, for

K ≥ 2, the sparsity condition is satisfied with an (N,M, d, 1, 1
2K

)-UFF family of matrices since,

by setting r+1
d

= 1
2K

< 1
2K−1

< d+2K−3
(2K−1)d

, it follows that d+r−2
2r

> K. Notably, as shown in [40],

an (N,M, d, 1, 1
2K

)-UFF family of matrices can be generated using error-correcting codes with

M = O(K2 logN) and d = O(K logN).

B. Signal Recovery

With perfect support estimation (i.e., T̂ = T ), we are then ready to address the issue of signal

recovery for all signal entries associated with the support T , i.e., {sn}n∈T . We can see from (4)

that the mth entry of y (i.e., ym) captures the nth nonzero entry sn if and only if m ∈ Cn. Let

C̃n � Cn \
⋃

n′∈T \{n}
Cn′ (6)
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Fig. 2. Depiction of the intersection of three solution sets F (n)
m1 , F (n)

m2 and F (n)
m3 .

be the subset of indices in Cn but not in the supports of all other columns indexed by T . Clearly,

if m ∈ C̃n, the mth measurement captures only the signal component sn and can be written as

ym = |φm,nsn + bm|2 . (7)

Notably, C̃n is nonempty if the signal sparsity level |T | = K is small enough. Indeed, since

∣∣∣C̃n∣∣∣ =
∣∣∣∣∣∣Cn \

⋃
i∈T \{n}

(Ci ∩ Cn)

∣∣∣∣∣∣ ≥ |Cn| −
∑

i∈T \{n}
|Ci ∩ Cn|

(a)

≥ d− (K − 1)r, (8)

where (a) holds by Assumption 1, it follows that |C̃n| > Kr + 2 ≥ 3 provided that d+r−2
2r

> K

and K, r ≥ 1. The measurements in the form of (7) allow the use of a simple method to recover

the nonzero entries of s.

In particular, notice that, for n ∈ T , the signal component sn must satisfy (7) and, thus, must

belong to the set

F (n)
m =

{
s ∈ C

∣∣∣∣s = − bm
φm,n

+

√
ym

|φm,n|
eiθm , for any θm ∈ (0, 2π]

}
, (9)

for all m ∈ C̃n, i.e., sn ∈ ∩m∈C̃nF
(n)
m . The set F (n)

m can be depicted as a circle centered at − bm
φm,n

with radius
√
ym

|φm,n| . Hence, as long as the center points − bm1

φm1,n
, − bm2

φm2,n
, and − bm3

φm3,n
are not

collinear for at least 3 distinct indices m1, m2, and m3 in C̃n (which is satisfied by Assumption

2), sn can be easily obtained by taking the intersection of their respective solution sets F (n)
m1 ,

F (n)
m2 , and F (n)

m3 , as illustrated in Fig. 2. We have the following theorem.
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Algorithm 1 Fast Signal Recovery Algorithm

Input: y,Φ,b, η.

Output: Estimated signal ŝ.

1: Initialize index set T̂ = ∅.

2: for n = 1, . . . , N do � Stage I: Support identification

3: Compute
∑

m∈Cn 1 {ym �= |bm|2}.

4: if
∑

m∈Cn 1 {ym �= |bm|2} > η then

5: T̂ ← T̂ ∪ {n}.

6: else

7: ŝn = 0.

8: end if

9: end for

10: for n ∈ T̂ do � Stage II: Nonzero signal entry retrieval

11: Select three elements m1,m2,m3 ∈ Cn \
⋃

j∈T̂ \{n} Cj , and then compute ŝn via (10).

12: end for

Theorem 3.2: Under Assumption 2, it follows that, for any n ∈ T and distinct indices m1,

m2, and m3 in C̃n, the intersection of sets F (n)
m1 , F (n)

m2 and F (n)
m3 yields a singleton set, i.e., the

solution of sn to the equation in (7), for m = m1, m2, and m3 is unique. The solution is given

by

sn =
−i

2Im
((

bm1

φm1,n
− bm2

φm2,n

)(
bm1

φm1,n
− bm3

φm3,n

)∗) [(
bm1

φm1,n

− bm2

φm2,n

)(
ym1 − |bm1 |2
|φm1,n|2

− ym3 − |bm3 |2
|φm3,n|2

)

−
(

bm1

φm1,n

− bm3

φm3,n

)(
ym1 − |bm1 |2
|φm1,n|2

− ym2 − |bm2 |2
|φm2,n|2

)]
, (10)

where Im (x) presents the imaginary part of x.

Proof: See Appendix B

Hence, as long as T̂ = T , Theorem 3.2 suggests the following simple signal recovery protocol:

(i) for n ∈ T , select three elements m1,m2,m3 ∈ C̃n and find the associated solution sets F (n)
m1 ,

F (n)
m2 and F (n)

m3 using (9); (ii) compute sn according to the formula (10). The proposed signal

recovery scheme is summarized in Algorithm 1.
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IV. SIGNAL RECONSTRUCTION FROM NOISY MEASUREMENTS

In this section, we extend the proposed two-step signal reconstruction scheme in Section III

to the noisy case, where the signal model in (3) can be written as

y =

∣∣∣∣∣∑
n∈T

snφn + b

∣∣∣∣∣
2

+ v. (11)

In particular, we consider two noisy scenarios, namely, the sparse noise (or outlier) case in

Section IV-A and the non-sparse bounded noise case in Section IV-B. We show that perfect

signal recovery is possible under mild conditions in the former case and provide theoretical

performance guarantees on the reconstruction error in the latter case (c.f., Section IV-C).

A. Case I: Sparse Noise (or Outlier)

In the case with sparse noise, we assume that the noise vector v in (11) is Kv-sparse with

unknown support V ⊂ {1, . . . ,M}. Conceptually, for small Kv, few measurements in y are

contaminated by noise. As a result, we can still resort to the counting-based rule in (5) for support

identification, but with a larger threshold η to tolerate outlier corruption. This is formalized in

the following theorem.

Theorem 4.1: Let us consider the signal model in (11) with the noise v being Kv-sparse.

Under Assumptions 1, 2 and with d+r−2
2

> Kr + Kv, the support estimate T̂ in (5) with

η ∈ [Kr +Kv, d−Kr −Kv + r − 2) exactly identifies the signal support T .

Proof: See Appendix C.

Suppose that the conditions in Theorem 4.1 hold so that T̂ = T . To reconstruct the nonzero

entries in s, namely, sn for all n ∈ T , we again utilize the measurements in (7) but with the

noise taken into consideration, i.e.,

ym = |φm,nsn + bm|2 + vm, m ∈ C̃n. (12)

In the presence of noise, sn may no longer belong to the set F (n)
m , defined in (9). As a result,

the recovery of sn may no longer be performed by simply taking the intersection of solution

sets F (n)
m1 , F (n)

m2 and F (n)
m3 , for distinct indices m1, m2, m3 ∈ C̃n, as done in the noise-free case.

Nevertheless, thanks to the sparse nature of v, many vm’s in (12) are zero, meaning that the

nonzero sn may still belong to the majority of sets F (n)
m such that m ∈ C̃n. Motivated by this
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observation, we propose to approximate sn by the value that lies in the most number of the sets

F (n)
m , for m ∈ C̃n, i.e.,

ŝn = arg max
s∈⋃m∈C̃n F(n)

m

∑
m∈C̃n

1
{
s ∈ F (n)

m

}
. (13)

Note that the above solution requires the search over all possible solutions in
⋃

m∈C̃n F
(n)
m , which

is prohibitive in practice. However, by the sparsity of v and the geometry of the sets F (n)
m , for

all m ∈ C̃n \ V , it is possible to reduce the search over a finite set of candidate solutions. In

particular, note that sn ∈ F (n)
m , for all m ∈ C̃n \V . Under the assumption that d+r−2

2
> Kr+Kv

(i.e., for Kv sufficiently small), we have∣∣C̃n \ V∣∣ ≥ ∣∣C̃n∣∣− ∣∣V∣∣ = ∣∣C̃n∣∣−Kv

(a)

≥ d− (K − 1)r −Kv

(b)
> Kr +Kv + 2 = Kr + |V|+ 2 > |V|+ 2, (14)

where (a) follows from (8) and (b) follows from the assumption that d+r−2
2

> Kr + Kv.

Consequently, it follows that the cardinality |C̃n \ V| can be even larger than half of |C̃n| since

∣∣C̃n \ V∣∣ =
∣∣C̃n \ V∣∣+ ∣∣C̃n \ V∣∣

2
>

∣∣C̃n \ V∣∣+ ∣∣V∣∣+ 2

2
=

∣∣C̃n∣∣
2

+ 1. (15)

Let us partition the sets {F (n)
m }m∈C̃n into � |C̃n|

2
� disjoint pair-wise groups, say, {F (n)

m1 ,F (n)
m2 },

{F (n)
m3 ,F (n)

m4 }, . . . , {F (n)
m

2� |C̃n|
2 �−1

,F (n)
m

2� |C̃n|
2 �

} (with the remaining set discarded if |C̃n| is odd). Notice

that, by (15), the value sn must belong to more than half of the sets F (n)
mp , for p = 1, . . . , 2� |C̃n|

2
�

(even after discarding a set when |C̃n| is odd). Hence, there must exist p∗ ∈ {1, 2, . . . , � |C̃n|
2
�}

such that both ym2p∗−1
and ym2p∗ are noiseless. In this case, sn must belong to both sets F (n)

m2p∗−1

and F (n)
m2p∗ (i.e., sn ∈ F (n)

m2p∗−1 ∩ F (n)
m2p∗ ). This implies that the desired value sn must belong to

the set
⋃� |C̃n|

2
�

p=1

{
F (n)

m2p−1 ∩ F (n)
m2p

}
� F̃ (n) and, thus, (13) reduces to the following:

ŝn = arg max
s∈F̃(n)

∑
m∈C̃n

1
{
s ∈ F (n)

m

}
. (16)

Notice that, since any two circles intersect at two points or less, it follows that |F (n)
m2p−1∩F (n)

m2p | ≤
2, for all p, and thus the number of candidate solutions is |F̃ (n)| ≤ |C̃n|, which is finite. This

reduces the complexity of the search significantly. The following theorem provides a sufficient

condition guaranteeing exact signal recovery using (16) under sparse noise corruption.

Theorem 4.2: Under the same setting as in Theorem 4.1, the proposed estimate of sn given

in (16) exactly recovers the K-sparse signal s from the measurement vector given in (11).
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Proof: See Appendix D.

Theorems 4.1 and 4.2 show that, under sparse noise corruption, the true sparse vector s can

be perfectly and efficiently recovered subject to a stricter sparsity condition, compared to the

noiseless case (c.f., Theorem 3.1), and a larger detection threshold η.

B. Case II: Non-sparse Bounded Noise

Here, we assume that the noise vector v is not necessarily sparse, but bounded, i.e., there

exists ε > 0 such that

‖v‖∞ < ε. (17)

In this case, it is possible that ym �= |bm|2, for all m ∈ Cn irrespective of whether n ∈ T or

not, rendering exact support identification using (5) impossible. To overcome this difficulty, we

exploit the difference between ym and |bm|2 as an indication of whether the signal participates

in ym or not. Indeed, if ym misses the signal, i.e., φ
m
s = 0, we have ym = |bm|2 + vm and, thus∣∣ym − |bm|2

∣∣ = |vm| < ε. (18)

On the contrary, if ym captures the signal and |φ
m
s| is reasonably large, it is expected that∣∣ym − |bm|2
∣∣ > ε. (19)

Consequently, if n ∈ T , (19) would imply that the majority of the measurements {ym}m∈Cn are

at least ε away from |bm|2. By assuming that ε is known, the support identification rule in (5)

can be modified as

ˆ̂T =

{
n ∈ {1, . . . , N}

∣∣∣∣ ∑
m∈Cn

1
{
|ym − |bm|2| > ε

}
> η

}
. (20)

It is easy to see that the modified support estimate in (20) is reduced to (5) in the noise-free case

with ε = 0. The following theorem establishes that exact support identification (i.e.,
ˆ̂T = T )

can be achieved under mild conditions.

Theorem 4.3: Let us consider the signal model in (11) under bounded noise corruption, i.e.,

‖v‖∞ < ε, and let φmin = min
n∈{1,...,N}

min
m∈Cn

|φm,n|, δmin = min
n∈T

|sn|, and bmax = max
m∈{1,...,M}

|bm|. For

δmin ≥ bmax/φmin +
√

b2max/φ
2
min + 2ε/φ2

min and d+r
2r

> K,
ˆ̂T in (20) with η ∈ [Kr, d−Kr+ r)

correctly identifies the signal support T .

Proof: See Appendix E.
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Theorem 4.3 shows that perfect support estimation
ˆ̂T = T can be achieved if the sensing

matrices and the bias vectors are chosen so that the ratio bmax/φmin is sufficiently small.

By assuming perfect support estimation
ˆ̂T = T , we go on to address the issue of recovering

sn, for all n ∈ T . Since it is possible that vm �= 0, for all m, in the non-sparse bounded noise

case, the desired value sn may not belong to any of the sets {F (n)
m }m∈C̃n . In this case, exact signal

reconstruction using (13) is no longer possible. However, the affine sampling structure in (12)

enables us to develop an efficient low-complexity signal reconstruction scheme with an analytic

performance guarantee, as elaborated below. When there is no noise, recall from Theorem 3.2,

that the unknown sn can be perfectly recovered by taking the intersection of the solution sets

corresponding to (at least) three measurement equations given in (7). In the presence of noise,

we instead adopt the least-squares (LS) approach to find sn that best fits the |C̃n| measurements

in (12). To do so, let us first consider the pair of measurements

ym′ = |φm′,nsn + bm′ |2 + vm′ (21a)

ym′′ = |φm′′,nsn + bm′′ |2 + vm′′ (21b)

for m′ �= m′′ ∈ C̃n, which can be rearranged as

ym′

|φm′,n|2
−
∣∣∣∣ bm′

φm′,n

∣∣∣∣2︸ ︷︷ ︸
�ỹm′

= |sn|2 + s∗n
bm′

φm′,n︸ ︷︷ ︸
�b̃m′

+sn
b∗m′

φ∗
m′,n

+
vm′

|φm′,n|2︸ ︷︷ ︸
�ṽm′

(22a)

ym′′

|φm′′,n|2
−
∣∣∣∣ bm′′

φm′′,n

∣∣∣∣2︸ ︷︷ ︸
�ỹm′′

= |sn|2 + s∗n
bm′′

φm′′,n︸ ︷︷ ︸
�b̃m′′

+sn
b∗m′′

φ∗
m′′,n

+
vm′′

|φm′′,n|2︸ ︷︷ ︸
�ṽm′′

(22b)

By letting ỹm � ym
|φm,n|2 −

∣∣∣ bm
φm,n

∣∣∣2, b̃m � bm
φm,n

, and ṽm � vm
|φm,n|2 and by subtracting the two

equations, we can do away with the common quadratic term |sn|2, leading to the following

first-order equation

ỹm′ − ỹm′′ = s∗n(b̃m′ − b̃m′′) + sn(b̃
∗
m′ − b̃∗m′′) + ṽm′ − ṽm′′ . (23)

By performing the procedures for all distinct pairs of measurements in C̃n = {m1,m2, . . . ,m|C̃n|},

we can obtain a system of |C̃n|(|C̃n|−1)/2 linear equations which can be written in the following

matrix-vector form:

Gnỹn = s∗nGnb̃n + snGnb̃
∗
n +Gnṽn = Gn

[
b̃n b̃∗

n

]⎡⎣s∗n
sn

⎤
⎦+Gnṽn, (24)
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where ỹn � [ỹm1 · · · ỹmC̃n
]T , b̃n � [b̃m1 · · · b̃mC̃n

]T , ṽn � [ṽm1 · · · ṽmC̃n
]T , and Gn �

[g1,2 g1,3 · · · g1,|C̃n| g2,3 g2,4 · · · g2,|C̃n| g3,4 · · · g|C̃n|−1,|C̃n|]
T with gi,j being a |C̃n|-dimensional

vector of zeros except with 1 and −1 in the ith and jth entries, respectively. The value of sn

that best fits the |C̃n|(|C̃n| − 1)/2 equations can then be found by the LS approach where the

signal estimate is given by

ŝn = argmin
s∈C

∥∥∥∥∥∥Gnỹn −Gn

[
b̃n b̃∗

n

]⎡⎣s∗
s

⎤
⎦
∥∥∥∥∥∥
2

. (25)

The solution ŝn can be evaluated explicitly as shown in the following theorem.

Theorem 4.4: Under Assumption 2, the matrix Gn[b̃n b̃∗
n] is full-rank and, thus, and the

resultant LS estimate of sn can be written as

ŝn =
b̃T
0,nb̃0,nb̃

H
0,nỹ0,n − ‖b̃0,n‖22b̃T

0,nỹ0,n∣∣b̃T
0,nb̃0,n

∣∣2 − ∥∥b̃0,n

∥∥4

2

, n ∈ T , (26)

where b̃0,n =
(
I− 11T

|C̃n|
)
b̃n � b̃n − b̄n1 and ỹ0,n =

(
I− 11T

|C̃n|
)
ỹn � ỹn − ȳn1 are the “centered”

bias and measurement vectors, respectively, b̄n � 1
|C̃n|

∑|C̃n|
l=1 b̃ml

and ȳn � 1
|C̃n|

∑|C̃n|
l=1 ỹml

are the

sample means, and 1 is the |C̃n|-dimensional all-one vector.

Proof: See Appendix F.

It is worthwhile to note that, in the absence of noise (i.e., when ṽn = 0), the LS solution in

(26) reduces to the solution in (10). That is, the approach yields perfect recovery in the noiseless

case. In the presence of non-sparse bounded noise, perfect signal recovery is not possible, but

performance guarantees can be obtained as shown in the following subsection.

C. Performance Guarantee for the Non-sparse Bounded Noise Case

In this subsection, we provide performance guarantees on the recovery error of the LS solution

given in (26). The results are summarized in the following theorem.

Theorem 4.5: Under Assumption 2 and with perfect support estimation (i.e.,
ˆ̂T = T ), the LS

solution given in (26) satisfies

‖ŝ− s‖2 <

√
K|C̃n∗ |∥∥b̃0,n∗

∥∥
2

(
1−

∣∣∣〈 b̃0,n∗
‖b̃0,n∗‖2

,
b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣)φ2
min

ε, (27)

where

n∗ = argmax
n∈T

√
|C̃n|∥∥b̃0,n

∥∥
2

(
1−

∣∣∣〈 b̃0,n

‖b̃0,n‖2
,

b̃∗
0,n

‖b̃∗
0,n‖2

〉∣∣∣) . (28)
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Fig. 3. Depiction of three reference points with small ‖b̃0,n∗‖2 in the noise-free case. Clearly, since the resultant distance

metrics |sn∗ + bml/φml,n
∗ |’s tend to be homogeneous, the circles depicting the solution sets F (n∗)

ml ’s (9) then largely coincide.

Fig. 4. Example of three reference points with small ‖b̃0,n∗‖2 in the bounded noise case. The three annular regions represent

the solution sets of three equations in (12), respectively. Clearly, since these reference points −bml/φml,n
∗ ’s cluster together,

the intersection F (n∗)
m1 ∩ F (n∗)

m2 ∩ F (n∗)
m3 of these three annular regions is fairly large.

Proof: See Appendix G.

Recall that the reference points {−b̃ml
}|C̃n∗ |
l=1 (i.e., {−bml

/φml,n∗}|C̃n∗ |
l=1 ) in the proposed affine

measurements help remove the global phase ambiguity, since the magnitude |sn∗ + bml
/φml,n∗ |

varies with the phase rotation on sn∗ . The results of Theorem 4.5 offer interesting insights into

the geometry of the reference points against the bounded noise, as discussed below.

First, notice that the error bound in (27) decreases with ‖b̃0,n∗‖2 = ‖b̃n∗ − b̄n∗1‖2, which
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is the square root of the sum of the square of the centered reference points. When ‖b̃0,n∗‖2
is small, i.e., the reference points {−bml

/φml,n∗}|C̃n∗ |
l=1 become close to each other, and thus

the circles representing the solution sets F (n∗)
ml , for all l, almost coincide, as illustrated in

Fig. 3. This is not a problem in the noise-free case since the circles intersect at a finite

number of points that include the desired solution sn. However, in the presence of non-sparse

bounded noise, the solution instead lies in the intersection of the annular regions described

by F̃ (n∗)
ml =

{
s ∈ C

∣∣∣∣s = − bml

φml,n
∗ +

√
yml

−vml

|φml,n
∗ | eiθml , for any θml

∈ (0, 2π] and |vml
| < ε

}
. The

annular regions overlap significantly in this case, as illustrated in Fig. 4, causing large uncertainty

in the signal recovery. Hence, a larger ‖b̃0,n∗‖2 would lead to less uncertainty, and thus reduce

the signal recovery error.

Second, the error bound in (27) is also seen to decrease with the absolute inner product∣∣∣〈 b̃0,n∗
‖b̃0,n∗‖2

,
b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣, which, in brief, gauges to what extent the reference points {−bml
/φml,n∗}|C̃n∗ |

l=1

become collinear (as will be shown at the end of this section). A large
∣∣∣〈 b̃0,n∗

‖b̃0,n∗‖2
,

b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣
implies the reference points are nearly aligned with each other. The resultant intersected annular

region is split into disjoint parts (see the blue region in Fig. 5), among which those “aliasing

pieces” do not contain the true sn∗ but incur a higher reconstruction error. Hence, a small∣∣∣〈 b̃0,n∗
‖b̃0,n∗‖2

,
b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣, i.e., the reference points are far from being collinear, is beneficial to

accurate signal recovery. We end this section by providing a mathematical theorem underpinning

how the absolute inner product
∣∣∣〈 b̃0,n∗

‖b̃0,n∗‖2
,

b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣ reflects the collinearity of the reference

points. Recall the following perhaps the most intuitive test of collinearity: consider the LS line

fit [46] of the point set {−bml
/φml,n∗}|C̃n∗ |

l=1 , compute the distance from each −bml
/φml,n∗ to the

line, and use the sum of all such distances, dubbed as the total residual and denoted by r∗, as a

measure. Clearly, the smaller the value of r∗ is, the larger the extent that the reference points are

aligned (see Fig. 6 for an illustration). The following theorem establishes an explicit connection

between
∣∣∣〈 b̃0,n∗

‖b̃0,n∗‖2
,

b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣ and r∗.

Theorem 4.6: Let n∗ be defined as in (28), and let r∗ be the total residual of the LS line fit

on the complex points {−bml
/φml,n∗}|C̃n∗ |

l=1 . Then we have∣∣∣∣∣
〈

b̃0,n∗

‖b̃0,n∗‖2
,

b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣∣∣ = 1− 2r∗

‖b̃0,n∗‖22
. (29)

Proof: See Appendix H.

We can clearly see from (29) that the total residual r∗ decreases to zero (i.e., the reference
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Fig. 5. Depiction of three reference points − bm1
φm1,n∗ , − bm2

φm2,n∗ and − bm3
φm3,n∗ with getting close to alignment. Clearly, the

intersection (the blue regions) of three associated annular regions is disconnected and, therefore, the aliasing piece, which does

not contain sn∗ , exists, leading to signal reconstruction performance degradation.

(a) Weak collinear structure. (b) Strong collinear structure.

Fig. 6. Illustration of collinearlity level of two point sets with different geometric structures, where the orange line is the LS

fitting line. Clearly, compared to the point set in Fig. 6(a), the points in 6(b) exhibit more strong collinear structure since they

are more close to the best fitting line (orange line), yielding smaller value of the total residual r∗.

points become more and more aligned to each other) as
∣∣∣〈 b̃0,n∗

‖b̃0,n∗‖2
,

b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣ increases to one.

Notably, exact alignment, i.e., r∗ = 0, occurs if and only if
∣∣∣〈 b̃0,n∗

‖b̃0,n∗‖2
,

b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣ = 1, which is

precluded thanks to Assumption 2. In fact, without Assumption 2, it can be readily deduced using

Cauchy-Schwarz inequality that the two vectors b̃0,n∗ and b̃∗
0,n∗ are linearly dependent, which

in turn implies that the rank of Gn∗ [b̃n∗ b̃∗
n∗ ] is less than 2, contradicting with the assertion of

Theorem 4.4.
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V. CONSTRUCTION OF Φ AND b

The mathematical performance guarantee shown in Theorem 4.5 offers a guideline on the

construction of the sensing matrix Φ and the bias vector b. To improve signal estimation accuracy,

Φ and b can be chosen to minimize the error bound given in (27), or equivalently, to minimize√
|C̃n∗ |

/∥∥b̃0,n∗
∥∥
2

(
1−

∣∣∣〈 b̃0,n∗
‖b̃0,n∗‖2

,
b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣). Toward this end, we first derive a lower bound on√
|C̃n∗ |

/∥∥b̃0,n∗
∥∥
2

(
1−

∣∣∣〈 b̃0,n∗
‖b̃0,n∗‖2

,
b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣), as presented in the following lemma.

Lemma 5.1: Let φmin and bmax be defined as in Theorem 4.3, and let n∗ be defined as in (28).

Then, it follows that √
|C̃n∗ |∥∥b̃0,n∗

∥∥
2

(
1−

∣∣∣〈 b̃0,n∗
‖b̃0,n∗‖2

,
b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣) ≥ φmin

bmax

, (30)

where the equality holds if (i)
〈
b̃n∗ , b̃∗

n∗
〉
= 0 and

〈
b̃n∗ ,1

〉
= 0 and (ii) φm,n∗ and bm are

respectively equal-amplitude with |φm,n∗ | = φmin and |bm| = bmax, for all m ∈ C̃n∗ .

Proof: See Appendix I.

The theorem shows that, under conditions (i) and (ii), the bound in (30) is tight and, therefore,

the error bound in (27) reduces to

‖ŝ− s‖2 <

√
K|C̃n∗ |∥∥b̃0,n∗

∥∥
2

(
1−

∣∣∣〈 b̃0,n∗
‖b̃0,n∗‖2

,
b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣)φ2
min

ε =

√
K

bmaxφmin

ε. (31)

Since the signal support T is not known in advance, it is by no means possible to determine the

index n∗ in (28) so as to fulfill the optimality conditions, in particular, the pair-wise orthogonality

requirement (i), asserted in Lemma 5.1. Despite this, a near optimal performance can be achieved

with high probability by resorting to probabilistic reconstruction. To see this, let us commence

with the equal-magnitude requirement (ii) in Lemma 5.1 that is easy to realize, and propose the

following random generation scheme:

Random construction of Φ and b:

1) The nonzero entries of Φ are i.i.d. and uniformly drawn from the circle of radius

φc, i.e., φm,n = φce
iϕm,n , where ϕm,n ∼ U(0, 2π), for all 1 ≤ n ≤ N and m ∈ Cn.

2) The entries of b, say, bm for 1 ≤ m ≤ M , are i.i.d. and uniformly drawn from the

circle of radius bc such that bm = bce
iθm , where θm ∼ U(0, 2π).
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We note that the equal-amplitude solution is reasonable since the sampling process consid-

ered here is non-adaptive, and no prior knowledge about signal and noise (other than signal

support size and noise level) is available beforehand. In accordance with the proposed random

construction scheme, we have the following theorem.

Theorem 5.2: Let n′ � argmin
n∈T

|C̃n|. Under the same setting as in Theorem 4.5, if the

cardinality of C̃n′ satisfies |C̃n′ | ≥ Ct−2 log(K), for some positive constant C and for every

0 ≤ t ≤ −1+
√

1+ρ2

2
, where ρ � bc/φc, the estimated signal using (26) obeys

‖ŝ− s‖2 < (1 + δ(t))

√
K

bcφc

ε, (32)

where δ(t) = 4(t+1)/ρ2

1−4(t2+t)/ρ2
t, with probability exceeding 1 − exp(−c1|C̃n′ |t2), for some positive

constant c1.

Proof: See Appendix J.

It is easy to verify that δ(t) < 1 if t <
−1+

√
1+ρ2/2

2
. Hence, Theorem 5.2 shows that when

|C̃n′ | is sufficiently large so that |C̃n′ | ≥ Ct−2 log(K) holds for a fairly small t, then it occurs

with overwhelming probability that the error bound in (32) is at most a small constant multiple

of the minimal error bound in (31). Also recall that, as long as
ˆ̂T = T , the nonzero entry sn

is estimated by solving the |C̃n| equations in (12). Theorem 5.2 asserts that, under the proposed

random construction, |C̃n| = O(logK) equations is required for every n ∈ T to achieve near

optimal performance in terms of (32) with an overwhelming probability. This implies that M =

O(K|C̃n|) = O(K logK) measurements are needed in the second stage (i.e., the signal recovery

stage) of the proposed signal reconstruction scheme. Notably, by following similar statements

as in Theorem 3.1, M = O(K2 logN) is required to guarantee
ˆ̂T = T in the first stage (i.e.,

the support identification stage). Therefore, the number of measurements that is required for the

overall proposed algorithm to succeed must scale as M = O(K2 logN).

VI. EXPERIMENTAL RESULTS

In this section, numerical simulations are used to illustrate the effectiveness of the proposed

scheme. The ambient signal dimension is set as N = 7500, the signal support T is selected

uniformly at random, and the nonzero signal entries sn, for n ∈ T , are generated according

to an i.i.d. circularly-symmetric complex Gaussian distribution with variance σ2
s = 2. The bias

terms bm, for m = 1, . . . ,M , are randomly and uniformly drawn from a circle with radius
√
2

centered at origin. The sparse sensing matrix Φ is constructed following DeVore’s recipe [45],



21

(a) Relative error (b) Ambiguity-removed relative error

Fig. 7. Performance comparisons of SPARTA, CRAF, and the proposed scheme for different values of the signal sparsity K.

where the number of measurements satisfies M = |Cn|2 = d2, with d being some prime number;

as such and with N = 7500, d =
√
M <

√
N ≈ 86.6. Throughout all experiments, the size of

the overlapping support between any two columns of Φ is at most r = 2. The nonzero entries

of Φ are randomly and uniformly drawn from the circle centered at origin with radius
√
2 in

complex plane. We compare the proposed scheme with SPARTA [26] and CRAF [27], which

employ dense sensing matrices with entries that are i.i.d. standard complex Gaussian variables

(i.e., zero mean and unit variance). In order to evaluate the quality of the signal recovery, we

consider the following two metrics: the relative error (RE) [47]

RE � ‖ŝ− s‖2
‖s‖2

, (33)

and the ambiguity-removed relative error (AR-RE) [27]

AR-RE � min
ω∈[0,2π)

(‖ŝeiω − s‖2
‖s‖2

)
. (34)

All results are averaged over 250 trials, and all experiments are conducted using MATLAB

R2019b on a desktop with an Intel Core i9 CPU at 2.9GHz and 16GB RAM.

A. Synthetic Data: Noise-free Case

We first compare the performance of all methods in the noise-free case. The decision threshold

in (5) is set as η = d − 1. For measurement size M = 1875 and 2625,1 Figure 7(a) plots the

1For our method, we first construct a matrix Φ′ of size 432×7500 ( 472×7500) following DeVore’s recipe. Then the sensing

matrix Φ of size 1875 × 7500 ( 2625 × 7500) is generated by appending an (1875 − 432) × 7500 ((2625 − 472) × 7500)

all-zero matrix to the bottom of Φ′.
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(a) Relative error (b) Ambiguity-removed relative error

Fig. 8. Performance comparisons of SPARTA, CRAF, and the proposed scheme for different values of M .
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Fig. 9. Mean running time of all methods for different signal sparsity levels.

RE of all methods with respect to different sparsity levels. The result shows that the proposed

scheme is able to achieve perfect signal recovery whereas SPARTA and CRAF can result in

RE as high as 1.273. This is expected since both SPARTA and CRAF can only recover the

signal up to a global phase ambiguity, i.e., ŝ = seiθ for some θ ∈ [0, 2π). In this case, the

expected value of RE is E{‖ŝ − s‖2/‖s‖2} =
∫ 2π

0
|eiθ − 1|/2πdθ = 4/π ≈ 1.273. Figure 7(b)

depicts AR-RE versus the sparsity level K. We can see that, for both values of M , the AR-

RE of both SPARTA and CRAF increases with the signal sparsity K whereas the proposed

scheme again yields perfect signal recovery in all cases. For two sparsity levels K = 25 and 35,

Figures 8(a) and 8(b) respectively show the RE and AR-RE curves of all methods with respect
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Fig. 10. Phase transition plots for all algorithms with signal length N = 7500.

to different values of M . The result in Figure 8(a) again confirms that the proposed scheme

achieves perfect signal recovery, while SPARTA and CRAF can only recover the signal up to

a global phase ambiguity. Moreover, it can be observed from Figure 8(b) that the AR-RE of

SPARTA and CRAF deviates from 0 significantly when M < 2200. This is because the two

methods recover signal based on the restricted isometry property of the sensing matrix which is

difficult to attain when M is not sufficiently large. For M = 1875 and 3750, Figure 9 further

plots the average running times of all methods as a function of the sparsity level K. The result

shows that our proposed scheme is at least 8 times faster than SPARTA and CRAF. Moreover,

when the number of measurements M doubles (i.e., M = 1875 increases to M = 3750), the

average running time of the proposed scheme increases only slightly, as opposed to the other

algorithms. This is expected since our proposed scheme involves only a simple counting rule

for support identification followed by a linear LS estimation of the nonzero signal elements.

Note that we can also evaluate the performance of different methods in terms of the success

rate, which is defined as the ratio of the number of successful trials (if AR−RE < 10−5) to a

total of 250 independent runs. Figure 10 plots the success rates of all methods with respect to

different sparsity level K and measurement size M . As the figure shows, the proposed scheme

outperforms SPARTA and CRAF in all cases. Besides, it can be observed from Figures 10(b)

and 10(c) that the performance of both CRAF and SPARTA deteriorates when K increases or

M decreases, and CRAF has higher success rate than SPARTA since a more stable initialization

is adopted.
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(a) Relative error (b) Ambiguity-removed relative error

Fig. 11. Performance comparisons of all methods for different values of σ2
v/σ

2
s under sparse noise corruption when Kv = 50

and 100.

(a) Relative error (b) Ambiguity-removed relative error

Fig. 12. Performance comparisons of all methods for different values of Kv under sparse noise corruption (σ2
v/σ

2
s = 15 dB).

B. Synthetic Data: Sparse Noise Case

In the second experiment, we examine the performance of all methods under sparse noise

corruption. The noise support V is selected uniformly at random and the nonzero entries of v

are generated according to i.i.d. zero-mean Gaussian distribution with variance σ2
v . The decision

threshold η in (5) is set to be η = d − 1, as before. For K = 15 and M = 1875, Figure 11(a)

plots the RE curve of all methods for different ratios σ2
v/σ

2
s (equal to σ2

v/2) when Kv = 50

and 100. As the figure shows, with compression ratio M/N = 0.25, the proposed scheme can

achieve perfect signal recovery in all cases under sparse noise corruption, whereas a global
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(a) Relative error (b) Ambiguity-removed relative error

Fig. 13. Performance comparisons of all methods for different values of the signal sparsity K under sparse noise corruption

when M = 1875 and 2625.

phase ambiguity is inevitable for SPARTA and CRAF. The resultant AR-RE of all methods is

then exhibited in Figure 11(b); clearly, it can be seen that the reconstruction error of the two

comparisons increases with the ratio σ2
v/σ

2
s . For σ2

v/σ
2
s = 15 dB and M = 1875, Figures 12(a)

and 12(b) further compare the RE and AR-RE, respectively, of the three methods versus the noise

support size Kv. It can be observed from Figure 12(a) that the proposed scheme can exactly

recover signal against sparse noise (outliers), but SPARTA and CRAF cannot remove global

phase ambiguity. In addition, Figure 12(b) clearly shows that when Kv increases, i.e., more

measurements are corrupted by outliers, the signal reconstruction error of SPARTA and CRAF

increases. This is expected since less reliable measurements can be exploited to reconstruct

signal, leading to worse AR-RE. For Kv = 25 and σ2
v/σ

2
s = 6 dB, Figures 13(a) and 13(b) plot

the RE and AR-RE curves, respectively, versus different signal sparsity K when M = 1875 and

2625. As expected, the proposed scheme is observed to achieve perfect signal recovery, while

the AR-RE of the other two methods increases with K but decreases with M .

C. Synthetic Data: Non-sparse Bounded Noise Case

In the third experiment, we study the performance of all methods under non-sparse bounded

noise corruption. In this case, the nonzero entries of s are randomly and uniformly drawn from a

circle of radus 5 centered at origin. The bounded noise vm’s are i.i.d. uniform random variables

in the interval (−ε, ε), i.e., vm ∼ U(−ε, ε) for all 1 ≤ m ≤ M . For M = 2825 (M/N ≈ 0.377)

and K = 11, Figure 14(a) plots the RE curves of all methods with respect to different signal-to-
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(a) Relative error (b) Ambiguity-removed relative error

Fig. 14. Performance comparisons of SPARTA, CRAF, and the proposed scheme for different values of SNR under bounded

noise corruption.

(a) Relative error (b) Ambiguity-removed relative error

Fig. 15. Performance comparisons of SPARTA, CRAF, and the proposed scheme for different values of the signal sparsity K

under bounded noise corruption (SNR = −10 dB).

noise ratio (SNR), defined to be E{‖s‖22}/E{‖v‖22} (equal to 75K/Mε2 in our setting). As the

figure shows, the value of RE for SPARTA and CRAF is around 1.273, whereas the proposed

scheme is free from the phase ambiguity and yields a much lower RE. Figure 14(b) then plots

the resultant AR-RE curves. While the performances of all methods degrade as SNR decreases,

the proposed scheme exhibits greater robustness to noise as compared to SPARTA. When SNR is

low (< −15 dB), CRAF yields a lower AR-RE; this is because, in this case, support identification

via the proposed simple counting rule (20) is not guaranteed to be perfect, thereby degrading

the signal reconstruction performance. When SNR is above −15 dB, it can be observed from
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                           Original

                            Proposed method

                            CRAF

                             SPARTA

Fig. 16. Six recovered test images (from the MNIST handwritten dataset) using the three methods.

TABLE I

PERFORMANCE COMPARISONS OF ALL METHODS FOR MNIST DATASET.

Dataset Algorithm RE (per pixel) AR-RE (per pixel) Mean running time (sec)

MNIST

Proposed method 5.68× 10−5 5.68× 10−5 6.2× 10−3

CRAF 1.5× 10−3 6.55× 10−4 8.96× 10−2

SPARTA 1.5× 10−3 7.27× 10−4 4.17× 10−2

figure that the AR-RE curves of the proposed scheme and CRAF are close, meaning that, in

the medium-to-high SNR region, our proposed method and CRAF with ambiguity removed

perform comparably. We should note that the proposed method adopts a sparse sensing matrix

whose Frobenius norm is at least one fifth smaller than the dense complex Gaussian random

matrix used in SPARTA and CRAF. This result together Figures 14(a) and 14(b) confirm that the

proposed scheme can achieve good performance with significantly fewer data storage cost and

sensing power consumption. Figures 15(a) and 15(b) further plot the resultant RE and AR-RE

for different values of the signal sparsity K when SNR = −10 dB. The results again confirm

that the proposed scheme can remove the global phase ambiguity and exhibits greater robustness

to noise as compared to SPARTA and CRAF.
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                           Original

                            Proposed method

                            CRAF

                             SPARTA

Fig. 17. Six recovered test images (from the Extended Yale B human face dataset) using the three methods.

D. MNIST and Real Human Face Data

Finally, we examine the performance of the proposed scheme for the image recovery task

using the MNIST [48] and Extended Yale B human face datasets [49]. We first consider the

MNIST dataset consisting of 60000 training images and 10000 testing images (the size of each

image is 28× 28 = 784). Based on the training dataset, the standard PCA technique is used to

obtain a proper basis for the testing data, yielding a sparse approximation with K = 15. Fig. 16

shows the recovery result of six testing images with M = 289 measurements. As can be seen, the

proposed scheme, while being free from the sign ambiguity, achieves the highest reconstruction

quality. The resultant RE, AR-RE and mean running time of all methods over all trials for

MNIST are listed in Table I. As the table shows, our proposed scheme is at least 6 times faster

than SPARTA and CRAF, and results in the lowest reconstruction error. We then consider the

Extended Yale B dataset consisting of 2452 human face images (each of size 48× 42 = 2016).

According to [49], these human face images have a well sparse approximation with K = 10

over the PCA-based basis. Under this setup, with M = 169 measurements, Figure 17 shows

the reconstructed 6 images chosen from the Extended Yale B’s test set. As can be seen, our

proposed scheme still outperforms SPARTA and CRAF and without global phase ambiguity.

Table II lists the RE, AR-RE and mean running time of all the three methods, confirming again

that the proposed scheme is faster and achieves higher image reconstruction accuracy.
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TABLE II

PERFORMANCE COMPARISONS OF ALL METHODS FOR EXTENDED YALE B HUMAN FACE DATASET.

Dataset Algorithm RE (per pixel) AR-RE (per pixel) Mean running time (sec)

EYB-fc

Proposed method 1.02× 10−4 1.02× 10−4 1.3× 10−2

CRAF 5.47× 10−4 2.1× 10−4 2.46× 10−1

SPARTA 5.36× 10−4 2.23× 10−4 5.28× 10−2

VII. CONCLUSION

Sparse phase retrieval problems focus on the signal reconstruction from an incomplete set of

magnitude-squared measurements. In this paper, we proposed the novel concept of sparse affine

sensing, and developed a two-step sparse signal reconstruction scheme which first identifies

the signal support and subsequently conducts ambiguity-free unknown signal retrieval. To the

best of our knowledge, the proposed recovery scheme is the first one in the literature that

can achieve unambiguous signal reconstruction in phase retrieval problems. Our analytic results

first confirmed that under mild conditions, perfect support identification can be achieved via a

simple counting-based rule not only in the noise-free case, but also in the sparse noise and the

non-sparse bounded noise cases. After obtaining the support knowledge, ambiguity-free/robust

recovery of the unknown signal entries was achieved by leveraging the affine sampling structure.

Specifically, with the aid of non-collinear reference points, we first showed that in the noise-

free case, unknown signal entries can be exactly recovered element-wise in closed-form. When

the measurements are corrupted by sparse noise (i.e., outlier), we showed that exact entry-wise

ambiguity-free signal recovery continues to hold through a simple majority rule, provided that the

noise support set is sufficiently small. An extension of our study to the non-sparse bounded noise

case was also investigated. By leveraging the affine sampling structure, we proposed an efficient

element-wise LS estimator, and provided analytic bounds on the signal recovery errors to justify

its stability. We then derived the optimal sensing matrices and bias vectors that minimize the

obtained theoretical error bound. While deterministic construction of the optimal solutions was

hard to accomplish, our analytic results confirmed that near-optimal solutions can be obtained

with an overwhelming probability by resorting to probabilistic construction, say, using random

entries uniformly distributed on the circle. Finally, simulation results using both synthetic and

real-world datasets demonstrated the effectiveness of the proposed scheme.
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APPENDIX A

PROOF OF THEOREM 3.1

Note that, since d+r−2
2r

> K, the set [Kr, d−Kr+ r− 2) must be non-empty. The following

lemma, which we prove later in this appendix, is essential to the proof of Theorem 3.1.

Lemma A.1: In the noise-free case (i.e., (4)) and under Assumptions 1 and 2, we have

1)
∑

m∈Cn 1 {ym �= |bm|2} ≤ Kr, if n /∈ T .

2)
∑

m∈Cn 1 {ym �= |bm|2} ≥ d−Kr + r − 2, if n ∈ T .

Suppose that n ∈ T̂ . Then, by the definition of T̂ in (5) and the fact that η ∈ [Kr, d−Kr+

r − 2), we have
∑

m∈Cn 1 {ym �= |bm|2} > η ≥ Kr, which together with part 1) of Lemma A.1

immediately implies that n ∈ T . Hence, T̂ ⊆ T . Conversely, for n ∈ T , it follows from part 2)

of Lemma A.1 that
∑

m∈Cn 1 {ym �= |bm|2} ≥ d−Kr+ r−2. Since η < d−Kr+ r−2, we can

immediately deduce that n ∈ T̂ . Therefore, T ⊆ T̂ and, thus, T̂ = T , which proves Theorem

3.1. The proof of Lemma A.1 is then given as follows.

[Proof of Lemma A.1]: 1) In the noise-free case, it can be directly seen from (2) that

ym �= |bm|2 only if φ
m
s �= 0, 1 ≤ m ≤ M . (35)

Let Am ⊂ {1, . . . , N} be the support of φ
m

. Then, with some manipulation, we can obtain

∑
m∈Cn

1
{
ym �= |bm|2

} (a)

≤
∑
m∈Cn

1
{
φ

m
s �= 0

} (b)

≤
∑
m∈Cn

1 {T ∩ Am �= ∅} =

∣∣∣∣Cn ∩
( ⋃

j∈T
Cj
)∣∣∣∣

=

∣∣∣∣ ⋃
j∈T

(Cn ∩ Cj)
∣∣∣∣ ≤ ∑

j∈T
|Cn ∩ Cj|

(c)

≤ Kr, (36)

where (a) follows from (35), (b) holds since T ∩ Am �= ∅ is necessary for φ
m
s �= 0, and (c)

holds by Assumption 1. Thus, the proof of part 1) is completed.

2) For n ∈ T , it can be observed from (7) that the measurements {ym}m∈C̃n , where C̃n is

defined in (6), satisfy φm,nsn = φ
m
s �= 0. We claim that at most two measurements among

{ym}m∈C̃n satisfies ym = |φm,nsn + bm|2 = |φ
m
s+ bm|2 = |bm|2, i.e.,∑

m∈C̃n

1
{
ym = |bm|2

}
≤ 2. (37)

Then, with (37), it follows that∑
m∈Cn

1
{
ym �= |bm|2

} (a)

≥
∑
m∈C̃n

1
{
ym �= |bm|2

}
≥ |C̃n| − 2, (38)
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Fig. 18. Depiction of the intersection of three solution sets F (n)
m1 , F (n)

m2 and F (n)
m3 obtained from (40), where the associated

centers − bm1
φm1,n

, − bm2
φm2,n

and − bm3
φm3,n

are collinear.

where (a) holds due to C̃n ⊆ Cn. Hence, the assertion of part 2) directly follows from (8) and

(38).

The claim in (37) can be shown by contradiction. Suppose otherwise that there exist three

distinct indices m1,m2,m3 ∈ C̃n such that

ymj
=
∣∣φmj ,nsn + bmj

∣∣2 = ∣∣bmj

∣∣2 , (39)

for j = 1, 2, 3. Then, with (39), direct manipulation shows that∣∣∣∣sn + bmj

φmj ,n

∣∣∣∣ =
∣∣bmj

∣∣∣∣φmj ,n

∣∣ , 1 ≤ j ≤ 3. (40)

Clearly, the solution set F (n)
mj of the jth equation in (40) can be depicted as a circle centered at

− bmj

φmj,n
with radius

∣∣∣ bmj

φmj,n

∣∣∣ passing through the origin 0. Since, according to (40), sn �= 0 also

belongs to F (n)
mj , thereby lying on the circle, it can be shown that the center − bmj

φmj,n
is on the

perpendicular bisector of the line segment connecting points sn and 0. This statement is true

for all 1 ≤ j ≤ 3 and, consequently, it can be readily deduced that the three centers − bm1

φm1,n
,

− bm2

φm2,n
and − bm3

φm3,n
lie on the same line (i.e., they are collinear, see Fig. 18 for an illustration),

contradicting with Assumption 2. As a result, (37) holds. �
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APPENDIX B

PROOF OF THEOREM 3.2

Recall that F (n)
m1 , F (n)

m2 , and F (n)
m3 are solutions to (7), for m = m1, m2, and m3. By reorganizing

the equations and by subtracting that of m2 from m1 and that of m3 from m1, respectively, we

have

ym1 − |bm1 |2

|φm1,n|2
− ym2 − |bm2 |2

|φm2,n|2
= s∗n

(
bm1

φm1,n

− bm2

φm2,n

)
+ sn

(
bm1

φm1,n

− bm2

φm2,n

)∗
; (41)

ym1 − |bm1 |2

|φm1,n|2
− ym3 − |bm3 |2

|φm3,n|2
= s∗n

(
bm1

φm1,n

− bm3

φm3,n

)
+ sn

(
bm1

φm1,n

− bm3

φm3,n

)∗
. (42)

Using (41) and (42) to eliminate s∗n yields(
bm1

φm1,n

− bm2

φm2,n

)(
ym1 − |bm1 |2
|φm1,n|2

− ym3 − |bm3 |2
|φm3,n|2

)
−
(

bm1

φm1,n

− bm3

φm3,n

)(
ym1 − |bm1 |2
|φm1,n|2

− ym2 − |bm2 |2
|φm2,n|2

)

= i2Im

(( bm1

φm1,n

− bm2

φm2,n

)( bm1

φm1,n

− bm3

φm3,n

)∗
)
sn. (43)

It follows from Assumption 2 that

2Im

(( bm1

φm1,n

− bm2

φm2,n

)( bm1

φm1,n

− bm3

φm3,n

)∗
)

�= 0. (44)

Then, the assertion in (10) immediately follows from (43) and (44).

Notice that, (44), can be shown by contradiction. In fact, suppose that

2Im

(( bm1

φm1,n

− bm2

φm2,n

)( bm1

φm1,n

− bm3

φm3,n

)∗
)

=
( bm1

φm1,n

− bm2

φm2,n

)( bm1

φm1,n

− bm3

φm3,n

)∗
−
( bm1

φm1,n

− bm2

φm2,n

)∗( bm1

φm1,n

− bm3

φm3,n

)
= 0. (45)

Let θ
(n)
m1,m2 , θ

(n)
m1,m3 ∈ (0, 2π] be the polar angles of

bm1

φm1,n
− bm2

φm2,n
and

bm1

φm1,n
− bm3

φm3,n
, respectively.

Then, with some manipulation, we can obtain from (45) that

2
(
θ(n)m1,m2

− θ(n)m1,m3

)
= 2πq, (46)

where q is some integer. Hence, we have

bm1

φm1,n

− bm2

φm2,n

=
∣∣∣ bm1

φm1,n

− bm2

φm2,n

∣∣∣eiθ(n)
m1,m2

(a)
= (−1)q

∣∣∣ bm1

φm1,n

− bm2

φm2,n

∣∣∣eiθ(n)
m1,m3

= (−1)q

∣∣∣ bm1

φm1,n
− bm2

φm2,n

∣∣∣∣∣∣ bm1

φm1,n
− bm3

φm3,n

∣∣∣
(

bm1

φm1,n

− bm3

φm3,n

)
, (47)

where (a) follows from (46). According to (47), it can be deduced that the three points
bm1

φm1,n
,

bm2

φm2,n
and

bm3

φm3,n
are collinear on the complex plane, which contradicts with Assumption 2. The

proof is thus completed. �
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APPENDIX C

PROOF OF THEOREM 4.1

The idea is basically the same as the proof of Theorem 3.1. Notably, since d+r−2
2

> Kr+Kv,

the set [Kr + Kv, d − Kr − Kv + r − 2) must be non-empty. The following lemma (whose

proof is placed at the end of this appendix) generalizes the result in Lemma A.1 to deal with

Kv-sparse noise and is essential to the proof of Theorem 4.1.

Lemma C.1: Suppose that v is Kv-sparse. Under Assumptions 1 and 2, we have

1)
∑

m∈Cn 1 {ym �= |bm|2} ≤ Kr +Kv, if n /∈ T .

2)
∑

m∈Cn 1 {ym �= |bm|2} ≥ d−Kr −Kv + r − 2, if n ∈ T .

Let n ∈ T̂ . Then by definition of T̂ in (5) and the fact that η ∈ [Kr+Kv, d−Kr−Kv+r−2),

we obtain
∑

m∈Cn 1 {ym �= |bm|2} > η ≥ Kr + Kv, which together with part 1) of Lemma

C.1 asserts that n ∈ T . Therefore, T̂ ⊆ T . Next, we will prove T ⊆ T̂ . Let n ∈ T so

that
∑

m∈Cn 1 {ym �= |bm|2} ≥ d − Kr − Kv + r − 2, due to part 2) of Lemma C.1. Since

η < d−Kr−Kv+ r−2 (thus,
∑

m∈Cn 1 {ym �= |bm|2} > η), it immediately follows that n ∈ T̂ .

This establishes T ⊆ T̂ and, thus, T̂ = T . �
[Proof of Lemma C.1]: 1) The proof is similar to that of Lemma A.1. By considering the

subset Cn \ V and by following derivations similar to that in (36), it can be shown that∑
m∈Cn\V

1
{
ym �= |bm|2

}
≤ Kr. (48)

Using (48) together with some manipulation, we obtain∑
m∈Cn

1
{
ym �= |bm|2

}
=

∑
m∈Cn\V

1
{
ym �= |bm|2

}
+

∑
m∈Cn∩V

1
{
ym �= |bm|2

}
≤ Kr +

∑
m∈Cn∩V

1
{
ym �= |bm|2

}
≤ Kr + |Cn ∩ V|

≤ Kr + |V| = Kr +Kv. (49)

The proof of part 1) is thus completed.

2) Again using the similar arguments for deriving (38) (together with some manipulation), it

can be shown that∑
m∈C̃n\V

1
{
ym �= |bm|2

}
≥ |C̃n \ V| − 2 ≥ |C̃n| −Kv − 2

(a)

≥ d− (K − 1)r −Kv − 2, (50)

where (a) holds by (8). Therefore, the assertion of part 2) directly follows from (50) since

C̃n \ V ⊆ Cn. �
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APPENDIX D

PROOF OF THEOREM 4.2

Based on the assumption d+r−2
2

> Kr + Kv, as it has been shown in Section IV-A that

sn ∈ F̃ (n) holds for every n ∈ T . Moreover, it follows from (14) that, since |C̃n\V| > Kr+Kv+2,

there exist at least Kr +Kv + 3 indices, say, m1, . . . ,mKr+Kv+3 ∈ C̃n such that

ymj
=
∣∣φmj ,nsn + bmj

∣∣2 , (51)

for j = 1, . . . , Kr + Kv + 3. Accordingly, the signal component sn belongs to F (n)
mj for all

1 ≤ j ≤ Kr +Kv + 3, leading to

|C̃n|∑
j=1

1{sn ∈ F (n)
mj

} > Kr +Kv + 2. (52)

Let s′n ∈ F̃ (n) and s′n �= sn. We claim that

|C̃n|∑
j=1

1{s′n ∈ F (n)
mj

} ≤ Kv + 2. (53)

It then directly follows from (52) and (53) that

|C̃n|∑
j=1

1{sn ∈ F (n)
mj

} >

|C̃n|∑
j=1

1{s′n ∈ F (n)
mj

}, (54)

for all s′n ∈ F̃ (n) not equal to sn. Hence, we have ŝn = sn. �
[Proof of (53)]: The proof is done by contradiction. Suppose otherwise

∑|C̃n|
j=1 1{s′n ∈ F (n)

mj } >

Kv + 2. Since C̃n can be decomposed into C̃n = (C̃n \ V)⋃(C̃n ∩ V), assume without loss of

generality that mj ∈ C̃n \ V if 1 ≤ j ≤ |C̃n \ V| and mj ∈ C̃n ∩ V when |C̃n \ V|+ 1 ≤ j ≤ |C̃n|.
Then we can obtain

|C̃n\V|∑
j=1

1{s′n ∈ F (n)
mj

} ≥ Kv + 3−
|C̃n|∑

j=|C̃n\V|+1

1{s′n ∈ F (n)
mj

}. (55)

Since |C̃n ∩ V| ≤ |V| = Kv, it follows from (55) that

|C̃n\V|∑
j=1

1{s′n ∈ F (n)
mj

} ≥ Kv + 3− |C̃n ∩ V| ≥ 3, (56)

meaning that at least three elements mj , mk and ml, where 1 ≤ j �= k �= l ≤ |C̃n \V|, belong to

the set C̃n \ V so that s′n ∈ F (n)
mj ∩F (n)

mk ∩F (n)
ml . Notably, sn also belongs to F (n)

mj , F (n)
mk and F (n)

ml ,

and recall from (9) that F (n)
mj , F (n)

mk and F (n)
ml can be depicted as circles. As a result, using similar



35

arguments for deriving (37), it can be shown that − bmj

φmj,n
, − bmk

φmk,n
and − bml

φml,n
(the centers of the

circles F (n)
mj , F (n)

mk and F (n)
ml , respectively) lie on the same line (the perpendicular bisector of the

line segment connecting points sn and s′n, see Fig. 18 for a similar illustration), contradicting

with Assumption 2. The assertion of the claim is thus proved. �

APPENDIX E

PROOF OF THEOREM 4.3

The following lemma (whose proof is placed at the end of this appendix) is needed to prove

Theorem 4.3.

Lemma E.1: Consider the noisy model (11) with ‖v‖∞ < ε. Under Assumptions 1 and 2, we

have

1)
∑

m∈Cn 1 {|ym − |bm|2| > ε} ≤ Kr, if n /∈ T .

2)
∑

m∈Cn 1 {|ym − |bm|2| > ε} ≥ d−Kr + r, if n ∈ T .

With the aid of Lemma E.1, we start to prove Theorem 4.3. Let n ∈ ˆ̂T . By definition of
ˆ̂T in

(20) and the fact that η ∈ [Kr, d−Kr+r), we can obtain
∑

m∈Cn 1 {|ym − |bm|2| > ε} > η ≥ Kr,

which together with part 1) of Lemma E.1 asserts that n ∈ T . Therefore,
ˆ̂T ⊆ T . Now, it remains

to prove T ⊆ ˆ̂T . Let n ∈ T so that
∑

m∈Cn 1 {|ym − |bm|2| > ε} ≥ d−Kr+ r, due to part 2) of

Lemma E.1. Since η ∈ [Kr, d−Kr+r), it immediately follows
∑

m∈Cn 1 {|ym − |bm|2| > ε} > η,

which implies that n ∈ ˆ̂T . This establishes T ⊆ ˆ̂T , and, thereby,
ˆ̂T = T . We end this appendix

by proving Lemma E.1.

[Proof of Lemma E.1]: 1) We first note from (18) that φ
m
s �= 0 is a necessary condition for

guaranteeing |ym − |bm|2| > ε for all m. As a result, we have∑
m∈Cn

1
{
|ym − |bm|2| > ε

}
≤

∑
m∈Cn

1
{
φ

m
s �= 0

}
. (57)

Moreover, since
∑

m∈Cn 1
{
φ

m
s �= 0

}
≤ Kr for all n /∈ T , as shown in (36), the assertion∑

m∈Cn 1 {|ym − |bm|2| > ε} ≤ Kr immediately follows.

2) For n ∈ T , (8) asserts that there exist at least d−Kr+r indices, say, m1, . . . ,md−Kr+r ∈ C̃n
such that

ymj
=
∣∣φmj ,nsn + bmj

∣∣2 + vmj
, 1 ≤ j ≤ d−Kr + r. (58)

Since ∣∣φmj ,nsn
∣∣ ≥ φminδmin ≥ bmax +

√
b2max + 2ε, 1 ≤ j ≤ d−Kr + r, (59)



36

we have

ymj
≥
(∣∣φmj ,nsn

∣∣− |bmj
|
)2

+ vmj

≥ b2max + 2ε+ vmj

> |bmj
|2 + ε, 1 ≤ j ≤ d−Kr + r, (60)

which then implies
∑

m∈Cn 1 {|ym − |bm|2| > ε} ≥ d−Kr+ r. The proof is thus completed. �

APPENDIX F

PROOF OF THEOREM 4.4

Since Gn[b̃n b̃∗
n] is full column rank based on Assumption 2 (the proof is placed at the end

of this appendix), the unknown signal entry sn can be estimated as the LS solutions to (24), i.e.,

ŝn =
b̃T
nG

T
nGnb̃nb̃

H
n G

T
nGnỹn −

∥∥Gnb̃n

∥∥2

2
b̃T
nG

T
nGnỹn∣∣b̃T

nG
T
nGnb̃n

∣∣2 − ∥∥Gnb̃n

∥∥4

2

, (61)

for all n ∈ T . Hence, with some manipulation, the assertion in (26) immediately follows from

(61) and the fact that GT
nGn = |C̃n|(I − 11T/|C̃n|), where (I − 11T/|C̃n|) is an orthogonal

projection matrix satisfying (I−11T/|C̃n|)2 = (I−11T/|C̃n|). We end this appendix by proving

Gn[b̃n b̃∗
n] is a full column rank matrix.

It is equivalent to show that (Gn[b̃n b̃∗
n])

H(Gn[b̃n b̃∗
n]) is nonsingular, or equivalently, its

determinant is not zero, i.e.,

det
(
(Gn[b̃n b̃∗

n])
H(Gn[b̃n b̃∗

n])
)
= det

(
[b̃n b̃∗

n]
H |C̃n|(I− 11T/|C̃n|)[b̃n b̃∗

n]
)

(a)
= |C̃n|2

∣∣∣[b̃0,n b̃∗
0,n]

H [b̃0,n b̃∗
0,n]

∣∣∣
= ‖b̃0,n‖22‖b̃∗

0,n‖22 −
∣∣b̃H

0,nb̃
∗
0,n

∣∣2 �= 0, (62)

where (a) holds since I − 11T/|C̃n| is an orthogonal projection matrix. Towards this end, we

first note that Cauchy-Schwarz inequality implies
∣∣b̃H

0,nb̃
∗
0,n

∣∣ ≤ ‖b̃0,n‖2‖b̃∗
0,n‖2. Moreover, we

claim that, under Assumption 2,
∣∣b̃H

0,nb̃
∗
0,n

∣∣ �= ‖b̃0,n‖2‖b̃∗
0,n‖2 holds; hence, we have

∣∣b̃H
0,nb̃

∗
0,n

∣∣ <
‖b̃0,n‖2‖b̃∗

0,n‖2, which immediately guarantees (62). Now, we prove the claim by contradiction.

Assume otherwise
∣∣b̃H

0,nb̃
∗
0,n

∣∣ = ‖b̃0,n‖2‖b̃∗
0,n‖2. Then, based on Cauchy-Schwarz inequality, it

can be deduced that there exists c ∈ C such that

b̃0,n = cb̃∗
0,n. (63)
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Let b̃
(0,n)
j = |b̃(0,n)j |eiθ

(0,n)
j be the jth entry of b̃0,n, where 1 ≤ j ≤ |C̃n| and θ

(0,n)
j ∈ (0, 2π]. Then

we can obtain from (63) that c = ei2θ
(0,n)
j for all 1 ≤ j ≤ |C̃n|, which in turn implies

ei2θ
(0,n)
j = ei2θ

(0,n)
k for all 1 ≤ j �= k ≤ |C̃n|. (64)

With the aid of (64), it can be directly deduced that the centered reference points {b̃(0,n)j }|C̃n|j=1

are alinged with each other (i.e., they are collinear on the complex plane), which together with

the translational invariance property implies that the reference points {−bmj
/φmj ,n}

|C̃n|
j=1 are also

aligned each other, contradicting with Assumption 2. �

APPENDIX G

PROOF OF THEOREM 4.5

Let ṽ0,n = (I− 11T/|C̃n|)ṽn be the “centered” vector of ṽn. Then we have

|ŝn − sn| =
∣∣∣∣∣ b̃

T
0,nb̃0,nb̃

H
0,nỹ0,n −

∥∥b̃0,n

∥∥2

2
b̃T
0,nỹ0,n∣∣b̃H

0,nb̃
∗
0,n

∣∣2 − ∥∥b̃0,n

∥∥4

2

− sn

∣∣∣∣∣
(a)
=

∣∣∣∣∣ b̃
T
0,nb̃0,nb̃

H
0,nṽ0,n −

∥∥b̃0,n

∥∥2

2
b̃T
0,nṽ0,n∣∣b̃H

0,nb̃
∗
0,n

∣∣2 − ∥∥b̃0,n

∥∥4

2

∣∣∣∣∣
≤

∣∣〈b̃0,n, ṽ0,n

〉∣∣ (∣∣〈b̃0,n, b̃
∗
0,n

〉∣∣+ ∥∥b̃0,n

∥∥2

2

)
(∣∣〈b̃0,n, b̃∗

0,n

〉∣∣+ ∥∥b̃0,n

∥∥2

2

)(∥∥b̃0,n

∥∥2

2
−
∣∣〈b̃0,n, b̃∗

0,n

〉∣∣)

=

∣∣∣〈b̃0,n, ṽ0,n

〉∣∣∣∥∥b̃0,n

∥∥2

2

(
1−

∣∣∣〈 b̃0,n

‖b̃0,n‖2
,

b̃∗
0,n

‖b̃∗
0,n‖2

〉∣∣∣)
(b)

≤ ‖ṽ0,n‖2∥∥b̃0,n

∥∥
2

(
1−

∣∣∣〈 b̃0,n

‖b̃0,n‖2
,

b̃∗
0,n

‖b̃∗
0,n‖2

〉∣∣∣)
(c)

≤ ‖ṽn‖2∥∥b̃0,n

∥∥
2

(
1−

∣∣∣〈 b̃0,n

‖b̃0,n‖2
,

b̃∗
0,n

‖b̃∗
0,n‖2

〉∣∣∣)
(d)
<

√
|C̃n|∥∥b̃0,n

∥∥
2

(
1−

∣∣∣〈 b̃0,n

‖b̃0,n‖2
,

b̃∗
0,n

‖b̃∗
0,n‖2

〉∣∣∣)φ2
min

ε,

where (a) holds since sn =
b̃T
0,nb̃0,nb̃H

0,n(ỹ0,n−ṽ0,n)−‖b̃0,n‖2

2
b̃T
0,n(ỹ0,n−ṽ0,n)

|b̃H
0,nb̃

∗
0,n|2−‖b̃0,n‖4

2

, (b) holds by Cauchy-

Schwarz inequality, (c) holds since ‖ṽ0,n‖2 = ‖(I − 11T/|C̃n|)ṽn‖2 ≤ ‖ṽn‖2 (by property of
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orthogonal projection), and (d) follows from the definition of ṽn. Note that ŝn = sn = 0 holds

for all n /∈ T , since
ˆ̂T = T . Thereby, we have

‖ŝ− s‖∞ = max
n∈T

|ŝn − sn| <

√
|C̃n∗ |∥∥b̃0,n∗

∥∥
2

(
1−

∣∣∣〈 b̃0,n∗
‖b̃0,n∗‖2

,
b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣)φ2
min

ε, (65)

where n∗ is defined in (28). Hence, the assertion (27) immediately follows from (65) and the

inequality ‖ŝ− s‖2 ≤
√
K‖ŝ− s‖∞. �

APPENDIX H

PROOF OF THEOREM 4.6

The following two lemmas are needed to prove Theorem 4.6; to ease reading, their proofs are

relegated to the end of this appendix.

Lemma H.1: Let b̃n = b̃
(Re)
n + ib̃

(Im)
n , b̃0,n = b̃

(Re)
0,n + ib̃

(Im)
0,n and b̄n = b̄

(Re)
n + ib̄

(Im)
n be defined

as in (24) and Theorem 4.4, respectively. Then we have

1)
∥∥b̃0,n

∥∥2

2
=
∥∥b̃n

∥∥2

2
− |C̃n||b̄n|2;

2)
∣∣〈b̃0,n, b̃

∗
0,n

〉∣∣2 = 4
(〈

b̃(Re)
n , b̃(Im)

n

〉
− |C̃n|b̄(Re)

n b̄(Im)
n

)2

+
(∥∥b̃(Re)

n

∥∥2

2
−
∥∥b̃(Im)

n

∥∥2

2
− |C̃n|b̄(Re)2

n + |C̃n|b̄(Im)2

n

)2

.

�
Lemma H.2: With n∗ defined in (28), the total residual of the LS line fit of the point set

{−bml
/φml,n∗}|C̃n∗ |

l=1 can be expressed as

r∗ =

∥∥b̃n∗
∥∥2

2
− |C̃n∗ ||b̄n∗ |2
2

−

1

2

√(∥∥b̃(Re)
n∗

∥∥2

2
−
∥∥b̃(Im)

n∗
∥∥2

2
− |C̃n∗ |b̄(Re)2

n∗ + |C̃n∗ |b̄(Im)2

n∗

)2

+ 4
(〈

b̃
(Re)
n∗ , b̃

(Im)
n∗

〉
− |C̃n∗ |b̄(Re)

n∗ b̄
(Im)
n∗

)2

,

(66)

where b̃n∗ = b̃
(Re)
n∗ + ib̃

(Im)
n∗ and b̄n∗ = b̄

(Re)
n∗ + ib̄

(Im)
n∗ are defined in (24) and Theorem 4.4,

respectively. �
Based on Lemmas H.1 and H.2, we start to prove Theorem 4.6. With the aid of Lemma H.1,

we have∥∥b̃0,n∗
∥∥2

2
−
∣∣〈b̃0,n∗ , b̃∗

0,n∗
〉∣∣ = ∥∥b̃n∗

∥∥2

2
− |C̃n∗ ||b̄n∗ |2

−
√
4
(〈

b̃
(Re)
n∗ , b̃

(Im)
n∗

〉
− |C̃n∗ |b̄(Re)

n∗ b̄
(Im)
n∗

)2

+
(∥∥b̃(Re)

n∗
∥∥2

2
−
∥∥b̃(Im)

n∗
∥∥2

2
− |C̃n∗ |b̄(Re)2

n∗ + |C̃n∗ |b̄(Im)2

n∗

)2

,

(67)
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which along with (66) yields ∥∥b̃0,n∗
∥∥2

2
−
∣∣〈b̃0,n∗ , b̃∗

0,n∗
〉∣∣ = 2r∗. (68)

The assertion (29) follows immediately from (68), and the proof of Theorem 4.6 is thus com-

pleted. �
[Proof of Lemma H.1]: By definition of b̃0,n, we have∥∥b̃0,n

∥∥2

2
=
∥∥b̃n − b̄n1

∥∥2

2
=
∥∥b̃n

∥∥2

2
+ |C̃n||b̄n|2 − 2b̄n1

T b̃∗
n =

∥∥b̃n

∥∥2

2
− |C̃n||b̄n|2, (69)

which proves the assertion of part 1).

Next, we go on to prove part 2). By definition the inner product
〈
b̃0,n, b̃

∗
0,n

〉
reads〈

b̃0,n, b̃
∗
0,n

〉
=
〈
b̃n − b̄n1, b̃

∗
n − b̄∗n1

〉
=
〈
b̃n, b̃

∗
n

〉
− |C̃n|

(
b̄∗n
)2

, (70)

which can be further rearranged into〈
b̃0,n, b̃

∗
0,n

〉
=
∥∥b̃(Re)

n

∥∥2

2
−
∥∥b̃(Im)

n

∥∥2

2
− i2

〈
b̃(Re)
n , b̃(Im)

n

〉
− |C̃n|

(
b̄(Re)
n − ib̄(Im)

n

)2
=
∥∥b̃(Re)

n

∥∥2

2
−
∥∥b̃(Im)

n

∥∥2

2
− |C̃n|b̄(Re)2

n + |C̃n|b̄(Im)2

n − i2
(〈

b̃(Re)
n , b̃(Im)

n

〉
− |C̃n|b̄(Re)

n b̄(Im)
n

)
.

(71)

Hence, the assertion of part 2) then follows directly from (71). The proof of Lemma H.1 is thus

completed. �
[Proof of Lemma H.2]: Let α = c + ta be the parametric equation of a line, where t ∈ R

and α, c, a ∈ R
2. Without loss of generality, we assume that a is unit-norm. As such, for any

1 ≤ j ≤ |C̃n∗ |, the squared distance r2j ≥ 0 between the line and the reference point − bmj

φmj,n
∗ is

expressed as

r2j =
∥∥(I− aaT

)
(pj − c)

∥∥2

2
, 1 ≤ j ≤ |C̃n∗ |, (72)

where

pj =
[
Re

(
− bmj

φmj,n
∗

)
Im

(
− bmj

φmj,n
∗

)]T
∈ R

2 (73)

is the position vector of − bmj

φmj,n
∗ . Hence, with the aid of (72), the line of best fit can be obtained

by solving the following optimization problem

(P1) min
a,c∈R2

|C̃n∗ |∑
j=1

r2j =

|C̃n∗ |∑
j=1

∥∥(I− aaT
)
(pj − c)

∥∥2

2
subject to ‖a‖2 = 1.
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The objective function of (P1) can be rearranged into

|C̃n∗ |∑
j=1

∥∥(I− aaT
)
(pj − c)

∥∥2

2

(a)
=

|C̃n∗ |∑
j=1

(pj − c)T
(
I− aaT

)
(pj − c)

=

|C̃n∗ |∑
j=1

(pj − c)T (pj − c)− (pj − c)T aaT (pj − c) , (74)

where (a) holds since I − aaT is an orthogonal projection matrix. With (74), the associated

Lagrangian then reads

L(a, c, λ̃) =

|C̃n∗ |∑
j=1

(pj − c)T (pj − c)− (pj − c)T aaT (pj − c) + λ̃
(
aTa− 1

)
, (75)

where λ̃ ∈ R is the Lagrange multiplier. Based on (75) and with some manipulation, the first-

order necessary condition ∇cL(a, c, λ̃) = 0 and ∇aL(a, c, λ̃) = 0 are given by, respectively,

(
I− aaT

)( 1

|C̃n∗ |

|C̃n∗ |∑
j=1

pj − c

)
= 0, (76)

and

|C̃n∗ |∑
j=1

(pj − c) (pj − c)T a = λ̃a. (77)

From the condition (76), we can obtain

c =
1

|C̃n∗ |

|C̃n∗ |∑
j=1

pj︸ ︷︷ ︸
�p̄

+t̄a, t̄ ∈ R. (78)

For simplicity yet without lose of generality, we assume t̄ = 0 in (78) (hence, c = p̄). Then

using (78), the condition (77) becomes

|C̃n∗ |∑
j=1

(pj − p̄) (pj − p̄)T a = λ̃a. (79)
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After some manipulation, the matrix
∑|C̃n∗ |

j=1 (pj − p̄) (pj − p̄)T in (79) can be expressed as

|C̃n∗ |∑
j=1

(pj − p̄) (pj − p̄)T =

|C̃n∗ |∑
j=1

pjp
T
j −

|C̃n∗ |∑
j=1

pjp̄
T − p̄

|C̃n∗ |∑
j=1

pT
j + |C̃n∗ |p̄p̄T

=

|C̃n∗ |∑
j=1

pjp
T
j − |C̃n∗ |p̄p̄T − |C̃n∗ |p̄p̄T + |C̃n∗ |p̄p̄T =

|C̃n∗ |∑
j=1

pjp
T
j − |C̃n∗ |p̄p̄T

(a)
=

⎡
⎢⎣

∑|C̃n∗ |
j=1 Re

(
− bmj

φmj,n
∗

)2 ∑|C̃n∗ |
j=1 Re

(
− bmj

φmj,n
∗

)
Im

(
− bmj

φmj,n
∗

)
∑|C̃n∗ |

j=1 Re
(
− bmj

φmj,n
∗

)
Im

(
− bmj

φmj,n
∗

) ∑|C̃n∗ |
j=1 Im

(
− bmj

φmj,n
∗

)2

⎤
⎥⎦−

⎡
⎣ |C̃n∗ |b̄(Re)2

n∗ |C̃n∗ |b̄(Re)
n∗ b̄

(Im)
n∗

|C̃n∗ |b̄(Re)
n∗ b̄

(Im)
n∗ |C̃n∗ |b̄(Im)2

n∗

⎤
⎦

(b)
=

⎡
⎣ ∥∥b̃(Re)

n∗
∥∥2

2
− |C̃n∗ |b̄(Re)2

n∗
〈
b̃
(Re)
n∗ , b̃

(Im)
n∗

〉
− |C̃n∗ |b̄(Re)

n∗ b̄
(Im)
n∗〈

b̃
(Re)
n∗ , b̃

(Im)
n∗

〉
− |C̃n∗ |b̄(Re)

n∗ b̄
(Im)
n∗

∥∥b̃(Im)
n∗

∥∥2

2
− |C̃n∗ |b̄(Im)2

n∗

⎤
⎦

︸ ︷︷ ︸
�Ψ∈R2×2

, (80)

where (a) holds by the definition of pj in (73) and using the fact that p̄ = [b̄
(Re)
n∗ b̄

(Im)
n∗ ]T , and (b)

follows from the definition of b̃n∗ in (24). Therefore, based on (80), (79) admits the following

expression:

Ψa = λ̃a, (81)

which implies that a and λ̃ are the eigenvector and eigenvalue of Ψ, respectively. With (78),

(80) and (81), the objective function of (P1) in (74) then becomes

|C̃n∗ |∑
j=1

(pj − c)T (pj − c)− (pj − c)T aaT (pj − c)

(a)
=

|C̃n∗ |∑
j=1

(pj − p̄)T (pj − p̄)−
|C̃n∗ |∑
j=1

(pj − p̄)T aaT (pj − p̄)

=

|C̃n∗ |∑
j=1

‖pj‖22 − 2p̄T

|C̃n∗ |∑
j=1

pj + |C̃n∗ | ‖p̄‖22 −
|C̃n∗ |∑
j=1

(pj − p̄)T aaT (pj − p̄)

(b)
=

|C̃n∗ |∑
j=1

‖pj‖22 − |C̃n∗ | ‖p̄‖22 −
|C̃n∗ |∑
j=1

(pj − p̄)T aaT (pj − p̄)

(c)
=

|C̃n∗ |∑
j=1

‖pj‖22 − |C̃n∗ | ‖p̄‖22 − aTΨa

(d)
=

|C̃n∗ |∑
j=1

‖pj‖22 − |C̃n∗ | ‖p̄‖22 − λ̃, (82)
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where (a) follows from (78) (with t̄ = 0), (b) holds since
∑|C̃n∗ |

j=1 pj = |C̃n∗ |p̄, (c) holds by (80),

and (d) is due to (81). Since λ̃ in (82) is an eigenvalue of Ψ (see (81)), it can be observed from

(82) that the minimum value of
∑|C̃n∗ |

j=1 r2j , the objective function of (P1), is

|C̃n∗ |∑
j=1

‖pj‖22 − |C̃n∗ | ‖p̄‖22 − λ̃max, (83)

where

λ̃max =

∥∥b̃n∗
∥∥2

2
− |C̃n∗ ||b̄n∗ |2
2

+

1

2

√(∥∥b̃(Re)
n∗

∥∥2

2
−
∥∥b̃(Im)

n∗
∥∥2

2
− |C̃n∗ |b̄(Re)2

n∗ + |C̃n∗ |b̄(Im)2

n∗

)2

+ 4
(〈

b̃
(Re)
n∗ , b̃

(Im)
n∗

〉
− |C̃n∗ |b̄(Re)

n∗ b̄
(Im)
n∗

)2

.

(84)

is the largest eigenvalue of Ψ. Therefore, based on (83) and (84), the expression for r∗ in (66)

is then obtained by using the facts that
∑|C̃n∗ |

j=1 ‖pj‖22 =
∥∥b̃n∗

∥∥2

2
and ‖p̄‖22 = |b̄n∗ |2. �

APPENDIX I

PROOF OF LEMMA 5.1

We first note that according to part 1) of Lemma H.1,
∥∥b̃0,n∗

∥∥2

2
is bounded above by

∥∥b̃0,n∗
∥∥2

2

(a)

≤
∥∥b̃n∗

∥∥2

2
=

|C̃n∗ |∑
j=1

∣∣∣∣ bmj

φmj ,n∗

∣∣∣∣2 (b)

≤
|C̃n∗ |∑
j=1

b2max

φ2
min

= |C̃n∗ |b
2
max

φ2
min

, (85)

where the equality in (a) holds if
〈
b̃n∗ ,1

〉
= 0 (thus, b̄n∗ = 0), and the equality in (b) holds

provided that |φmj ,n∗ | = φmin and |bmj
| = bmax are true for all 1 ≤ j ≤ |C̃n∗ |. Therefore, with

the aid of (85), we can obtain the following inequality√
|C̃n∗ |∥∥b̃0,n∗

∥∥
2

(
1−

∣∣∣〈 b̃0,n∗
‖b̃0,n∗‖2

,
b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣) ≥ φmin

bmax

(
1−

∣∣∣〈 b̃0,n∗
‖b̃0,n∗‖2

,
b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣) . (86)

Since it can be observed from (70) that〈
b̃0,n, b̃

∗
0,n

〉
= 0 if

〈
b̃n∗ , b̃∗

n∗
〉
= 0 and b̄∗n∗ = 0, (87)

which in turn implies∣∣∣〈 b̃0,n∗
‖b̃0,n∗‖2

,
b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣ = 0 if
〈
b̃n∗ , b̃∗

n∗
〉
= 0 and

〈
b̃n∗ ,1

〉
= 0. (88)

The assertion (30) immediately follows from (86) and (88). The proof of Lemma 5.1 is thus

completed. �
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APPENDIX J

PROOF OF THEOREM 5.2

The proof basically consists of two parts. We will first derive a probability lower bound for

the event that

√
|C̃n∗ |

/∥∥b̃0,n∗
∥∥
2

(
1 −

∣∣∣〈 b̃0,n∗
‖b̃0,n∗‖2

,
b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣) is smaller than certain threshold.

Then, the proof is completed with the aid of (27) and some manipulation. The following lemma

(whose proof is placed at the end of this appendix) is needed to prove the first part.

Lemma J.1: Suppose that the nonzero entries of Φ are i.i.d. and uniformly drawn from the

circle of radius φc, and that the entries of b are i.i.d. and uniformly drawn from the circle of

radius bc. Then for every n ∈ T and every 0 ≤ t ≤ −1+
√

1+ρ2

2
, where ρ � bc/φc, the inequality√

|C̃n|∥∥b̃0,n

∥∥
2

(
1−

∣∣∣〈 b̃0,n

‖b̃0,n‖2
,

b̃∗
0,n

‖b̃∗
0,n‖2

〉∣∣∣) ≤ 1

ρ

(
1 +

4(t+ 1)/ρ2

1− (4t2 + 4t)/ρ2
t

)
(89)

holds with probability at least 1− 5e exp(−c2|C̃n|t2), in which c2 > 0 is a constant. �
We first note that the inequality√

|C̃n∗ |∥∥b̃0,n∗
∥∥
2

(
1−

∣∣∣〈 b̃0,n∗
‖b̃0,n∗‖2

,
b̃∗
0,n∗

‖b̃∗
0,n∗‖2

〉∣∣∣) ≤ 1

ρ

(
1 +

4(t+ 1)/ρ2

1− (4t2 + 4t)/ρ2
t

)
(90)

holds if and only if (89) holds for all n ∈ T . Hence, based on Lemma J.1 and by invoking the

union bound, we conclude that the inequality (90) holds at least

1− 5eK exp
(
−c′2|C̃n′ |t2

)
= 1− exp

(
log(5e) + log(K)− c′2|C̃n′ |t2

)
(a)

≥ 1− exp

(
−c′2

2
|C̃n′ |t2

)
, (91)

where (a) follows by the assumption |C̃n′ | ≥ Ct−2 log(K) with sufficiently large constant C. Let

c1 = c′2/2. Then by means of (27), (90) and (91), the assertion (32) immediately follows. �
[Proof of Lemma J.1]: The following lemma (proof is given at the end of the appendix) is

needed to prove Lemma J.1.

Lemma J.2: Let b̃n = b̃
(Re)
n + ib̃

(Im)
n and b̄n = b̄

(Re)
n + ib̄

(Im)
n be defined as in (24) and Theorem

4.4, respectively. Under the same assumptions on Φ and b as in Lemma J.1, for every n ∈ T
and every t ≥ 0, we have the following results.

1) Pr
(∣∣∣ 1

|C̃n|
〈
b̃
(Re)
n , b̃

(Im)
n

〉∣∣∣ ≥ t
)
≤ e exp

(
− c3|C̃n|t2

ρ4

)
;

2) Pr
(∣∣b̄(Re)

n

∣∣ ≥ t
)
≤ e exp

(
− c4|C̃n|t2

ρ2

)
;
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3) Pr
(∣∣b̄(Im)

n

∣∣ ≥ t
)
≤ e exp

(
− c5|C̃n|t2

ρ2

)
;

4) Pr

(∣∣∣∥∥∥ b̃
(Re)
n√
|C̃n|

∥∥∥2

2
− 1

2
ρ2
∣∣∣ ≥ t

)
≤ e exp

(
− c6|C̃n|t2

ρ4

)
;

5) Pr

(∣∣∣∥∥∥ b̃
(Im)
n√
|C̃n|

∥∥∥2

2
− 1

2
ρ2
∣∣∣ ≥ t

)
≤ e exp

(
− c7|C̃n|t2

ρ4

)
,

where ρ � bc/φc and c3, c4, c5, c6 and c7 are positive constants. �

Let us rewrite √
|C̃n|∥∥b̃0,n

∥∥
2

(
1−

∣∣∣〈 b̃0,n

‖b̃0,n‖2
,

b̃∗
0,n

‖b̃∗
0,n‖2

〉∣∣∣) =

√
|C̃n|

∥∥b̃0,n

∥∥
2∥∥b̃0,n

∥∥2

2
−
∣∣〈b̃0,n, b̃∗

0,n

〉∣∣ . (92)

The denominator on the right-hand-side of (92) is bounded below according to∥∥b̃0,n

∥∥2

2
−
∣∣〈b̃0,n, b̃

∗
0,n

〉∣∣
(a)
=

∥∥b̃n

∥∥2

2
− |C̃n||b̄n|2−√

4
(〈

b̃
(Re)
n , b̃

(Im)
n

〉
− |C̃n|b̄(Re)

n b̄
(Im)
n

)2

+
(∥∥b̃(Re)

n

∥∥2

2
−
∥∥b̃(Im)

n

∥∥2

2
− |C̃n|b̄(Re)2

n + |C̃n|b̄(Im)2
n

)2

≥
∥∥b̃n

∥∥2

2
− |C̃n||b̄n|2−√[

2
∣∣∣〈b̃(Re)

n , b̃
(Im)
n

〉
− |C̃n|b̄(Re)

n b̄
(Im)
n

∣∣∣+ ∣∣∣∥∥b̃(Re)
n

∥∥2

2
−
∥∥b̃(Im)

n

∥∥2

2
− |C̃n|b̄(Re)2

n + |C̃n|b̄(Im)2
n

∣∣∣]2
=
∥∥b̃(Re)

n

∥∥2

2
− |C̃n|b̄(Re)2

n +
∥∥b̃(Im)

n

∥∥2

2
− |C̃n|b̄(Im)2

n −
∣∣∣∥∥b̃(Re)

n

∥∥2

2
− |C̃n|b̄(Re)2

n −
∥∥b̃(Im)

n

∥∥2

2
+ |C̃n|b̄(Im)2

n

∣∣∣
− 2

∣∣∣〈b̃(Re)
n , b̃(Im)

n

〉
− |C̃n|b̄(Re)

n b̄(Im)
n

∣∣∣
= 2|C̃n|

[
min

(∥∥∥∥∥ b̃
(Re)
n√
|C̃n|

∥∥∥∥∥
2

2

− b̄(Re)2

n ,

∥∥∥∥∥ b̃
(Im)
n√
|C̃n|

∥∥∥∥∥
2

2

− b̄(Im)2

n

)
−
∣∣∣∣ 1

|C̃n|
〈
b̃(Re)
n , b̃(Im)

n

〉
− b̄(Re)

n b̄(Im)
n

∣∣∣∣
]

≥ 2|C̃n|
[
min

(∥∥∥∥∥ b̃
(Re)
n√
|C̃n|

∥∥∥∥∥
2

2

− b̄(Re)2

n ,

∥∥∥∥∥ b̃
(Im)
n√
|C̃n|

∥∥∥∥∥
2

2

− b̄(Im)2

n

)
− 1

|C̃n|

∣∣∣〈b̃(Re)
n , b̃(Im)

n

〉∣∣∣− ∣∣b̄(Re)
n b̄(Im)

n

∣∣ ],
(93)

where (a) follows from Lemma H.1. In addition, using part 1) of Lemma H.1 we can obtain∥∥b̃0,n

∥∥2

2
≤
∥∥b̃n

∥∥2

2
= |C̃n|ρ2. (94)
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Combining (92), (93) and (94), we have√
|C̃n|∥∥b̃0,n

∥∥
2

(
1−

∣∣∣〈 b̃0,n

‖b̃0,n‖2
,

b̃∗
0,n

‖b̃∗
0,n‖2

〉∣∣∣) =

√
|C̃n|

∥∥b̃0,n

∥∥
2∥∥b̃0,n

∥∥2

2
−
∣∣〈b̃0,n, b̃∗

0,n

〉∣∣ ≤ |C̃n|ρ∥∥b̃0,n

∥∥2

2
−
∣∣〈b̃0,n, b̃∗

0,n

〉∣∣
≤ ρ

2

[
min

(∥∥∥ b̃
(Re)
n√
|C̃n|

∥∥∥2

2
− b̄

(Re)2
n ,

∥∥∥ b̃
(Im)
n√
|C̃n|

∥∥∥2

2
− b̄

(Im)2
n

)
− 1

|C̃n|

∣∣∣〈b̃(Re)
n , b̃

(Im)
n

〉∣∣∣− ∣∣b̄(Re)
n

∣∣∣∣b̄(Im)
n

∣∣] . (95)

Using (95) and Lemma J.2, we conclude that, for every 0 ≤ t ≤ −1+
√

1+ρ2

2
, the inequality√

|C̃n|∥∥b̃0,n

∥∥
2

(
1−

∣∣∣〈 b̃0,n

‖b̃0,n‖2
,

b̃∗
0,n

‖b̃∗
0,n‖2

〉∣∣∣) ≤ ρ

ρ2 − 4t2 − 4t
=

1

ρ

(
1 +

4t(t+ 1)/ρ2

1− (4t2 + 4t)/ρ2

)
(96)

holds with probability exceeding

1− e
(
exp

(
− c3|C̃n|t2

ρ4

)
+ exp

(
− c4|C̃n|t2

ρ2

)
+ exp

(
− c5|C̃n|t2

ρ2

)
+ exp

(
− c6|C̃n|t2

ρ4

)
+ exp

(
− c7|C̃n|t2

ρ4

))
≥ 1− 5e exp

(
−c2|C̃n|t2

)
, (97)

where the inequality follows for c2 > 0 sufficiently small (e.g., may choose c2 = min
(
c3
ρ4
, c4
ρ2
, c5
ρ2
, c6
ρ4
, c7
ρ4

)
).

Hence the proof of Lemma J.1 is completed. We end this appendix by proving Lemma J.2.

[Proof of Lemma J.2]: We first note that, according to the proposed random construction scheme

of Φ and b, the real part and imaginary part of
bmj

φmj,n
, j = 1, . . . , |C̃n|, can be respectively

expressed as

Re

(
bmj

φmj ,n

)
=

bc
φc

cos
(
θmj

− ϕmj ,n

)
, (98)

and

Im

(
bmj

φmj ,n

)
=

bc
φc

sin
(
θmj

− ϕmj ,n

)
. (99)

Let Xj = Re
(

bmj

φmj,n

)
Im

(
bmj

φmj,n

)
, where j = 1, . . . , |C̃n|. Then using (98) and (99), and based

on the proposed random construction scheme, it can be shown that Xj =
ρ2

2
sin(2θmj

− 2ϕmj ,n)

is a bounded random variable with zero mean. Moreover, Hoeffding’s lemma [50] asserts that

bounded random variables are also sub-Gaussian. Hence, X1, . . . , X|C̃n| are independent mean-
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zero sub-Gaussian random variables with the sub-Gaussian norm ‖Xj‖ψ2 ≤ ρ2

2
. Accordingly, we

can obtain

Pr

(∣∣∣∣ 1

|C̃n|
〈
b̃(Re)
n , b̃(Im)

n

〉∣∣∣∣ ≥ t

)
= Pr

(∣∣∣∣∣
|C̃n|∑
j=1

1

|C̃n|
Xj

∣∣∣∣∣ ≥ t

)
(a)

≤ e exp

(
− c′3t

2(
ρ2

2

)2∥∥ 1
|C̃n|

∥∥2

2

)

= e exp

(
− c3|C̃n|t2

ρ4

)
,

where (a) holds by using Hoeffding-type inequality [50] and c′3 > 0 is an absolute constant.

Therefore, the proof of part 1) is completed.

The proof of part 2) is similar. Firstly, according to (98), we can show that Re
(

bmj

φmj,n

)
’s are

independent bounded random variables with zero mean; this in turn implies Re
(

bmj

φmj,n

)
’s are

independent mean-zero sub-Gaussian with
∥∥∥Re

(
bmj

φmj,n

)∥∥∥
ψ2

≤ ρ. Then we have

Pr
(∣∣b̄(Re)

n

∣∣ ≥ t
)
= Pr

(∣∣∣∣ 1

|C̃n|
〈
1, b̃(Re)

n

〉∣∣∣∣ ≥ t

)

= Pr

⎛
⎝∣∣∣∣∣

|C̃n|∑
j=1

1

|C̃n|
Re

(
bmj

φmj ,n

) ∣∣∣∣∣ ≥ t

⎞
⎠

(a)

≤ e exp

(
− c4t

2

ρ2
∥∥ 1
|C̃n|

∥∥2

2

)

= e exp

(
−c4|C̃n|t2

ρ2

)
,

where (a) holds by applying Hoeffding-type inequality [50]. The proof of part 2) is thus com-

pleted. The proof of part 3) can also be done by following essentially the same procedures as

in the proof of part 2).

Next, we go on to prove part 4). Let X̃j =
ρ2

2
cos

(
2θmj

− 2ϕmj ,n

)
, where j = 1, . . . , |C̃n|. Then

based on Hoeffding’s lemma, it can be shown that X̃j’s are independent mean-zero sub-Gaussian
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random variables with ‖X̃j‖ψ2 ≤ ρ2

2
. Hence, we obtain

Pr

⎛
⎝
∣∣∣∣∣∣
∥∥∥∥∥ b̃

(Re)
n√
|C̃n|

∥∥∥∥∥
2

2

− 1

2
ρ2

∣∣∣∣∣∣ ≥ t

⎞
⎠ = Pr

⎛
⎝∣∣∣∣∣

|C̃n|∑
j=1

1

|C̃n|
ρ2 cos2

(
θmj

− ϕmj ,n

)
− 1

2
ρ2

∣∣∣∣∣ ≥ t

⎞
⎠

(a)
= Pr

⎛
⎝∣∣∣∣∣

|C̃n|∑
j=1

1

|C̃n|
X̃j

∣∣∣∣∣ ≥ t

⎞
⎠

(b)

≤ e exp

(
− c′6t

2(
ρ2

2

)2∥∥ 1
|C̃n|

∥∥2

2

)

= e exp

(
−c6|C̃n|t2

ρ4

)
,

where (a) follows from the trigonometric identity cos2
(
θmj

− ϕmj ,n

)
= 1

2

[
1 + cos

(
2θmj

− 2ϕmj ,n

)]
,

(b) holds by using Hoeffding-type inequality and c′6 > 0 is an absolute constant. Hence, the proof

of part 4) is completed. The result given in part 5) can also be proved by following the similar

procedures as in the above proof. Therefore, the proof of Lemma J.2 is completed. �
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