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Abstract

We consider the classical Neymann–Pearson hypothesis testing problem of signal detection,
where under the null hypothesis (H0), the received signal is white Gaussian noise, and under
the alternative hypothesis (H1), the received signal includes also an additional non–Gaussian
random signal, which in turn can be viewed as a deterministic waveform plus zero–mean, non-
Gaussian noise. However, instead of the classical likelihood ratio test detector, which might
be difficult to implement, in general, we impose a (mismatched) correlation detector, which is
relatively easy to implement, and we characterize the optimal correlator weights in the sense
of the best trade-off between the false-alarm error exponent and the missed-detection error ex-
ponent. Those optimal correlator weights depend (non-linearly, in general) on the underlying
deterministic waveform under H1. We then assume that the deterministic waveform may also
be free to be optimized (subject to a power constraint), jointly with the correlator, and show
that both the optimal waveform and the optimal correlator weights may take on values in a
small finite set of typically no more than two to four levels, depending on the distribution of the
non-Gaussian noise component. Finally, we outline an extension of the scope to a wider class of
detectors that are based on linear combinations of the correlation and the energy of the received
signal.

Index terms: hypothesis testing, signal detection, correlation–detection, error exponent.

1 Introduction

The topic of detection of signals corrupted by noise has a very long history of active research efforts,

as it has an extremely wide spectrum of engineering applications in the areas communications

and signal processing. These include radar, sonar, light detection and ranging (LIDAR), object

recognition in images and video streams, diagnosis based on biomedical signals, watermark detection

in images and audio signals, seismological signal detection related to geophysical activity, and
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object detection using multispectral/hyperspectral imaging, just to name a few. One of the most

problematic and frequently encountered issues in signal detection scenarios is mismatch between

the signal model and the detector design, which is based upon certain assumptions on that model.

Accordingly, the topic of mismatched signal detection has received considerable attention in the

literature, see, e.g., [1], [10], [11], [18], [19], [20], [21], [28], and [30], for a non-exhaustive list

of relevant references. The common theme in most of these works is the possible presence of

uncertainties in the desired signal to be detected, in the steering vector, in the transfer function of

the propagation medium, and/or in the distributions of the various kinds of noise, interference and

clutter. Accordingly, adaptive detection mechanisms with tunable parameters have been developed

and proposed in order to combat those types of mismatch.

Another line of earlier relevant research activity is associated with the notion of robust detection

techniques, where the common theme is generally directed towards a worst-case design of the

detector against small non-parametric uncertainties around some nominal noise distribution, most

notably, a Gaussian distribution. See, e.g., [2], [4], [5], [9], [12], [13], [15], [16], [17], [22], [24], and

[25]. See also [14] for a survey on the subject.

Last but not least, when the uncertainty is only in a finite number of parameters of the model,

the problem is normally treated in the framework of composite hypothesis testing, where the popular

approach is the well–known generalized likelihood ratio test (GLRT) [27], which is often (but not

always) asymptotically optimal in the error exponent sense, see, for example, [3], [6], [7], and [29].

The GLRT is applied also in some of the above cited articles on mismatched detection, among many

others. Another approach to composite hypothesis testing is the competitive minimax approach,

proposed in [8].

Our objective in this work is partially related to those studies, but it is different. It is associated

with mismatched detection, except that the origin of this mismatch is not quite due to uncertainty in

the signal-plus-noise model, but it comes from practical considerations: the optimal likelihood ratio

test (LRT) detector might be difficult to implement in many application examples, especially in the

case of sensors that are built on small, mobile devices which are subjected to severe limitations on

power and computational resources. In such situations, it is desirable that the detector would be as

simple as possible, e.g., a correlation detector, or a detector that is based on correlation and energy.
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Within this framework, the number of arithmetic operations (especially the multiplications) should

be made as small as possible. Clearly, a detector from this class cannot be optimal, unless the noise

is Gaussian, hence the mismatch. Nonetheless, we would like to find the best correlator weights in

the sense of optimizing the trade-off between the false-alarm (FA) and the missed–detection (MD)

rates. This would partially compensate for the mismatch in case the noise is not purely Gaussian.

More precisely, consider the following signal detection problem, of distinguishing between two

hypotheses:

H0 : Yt = Nt, t = 1, 2, . . . , n (1)

H1 : Yt = Xt +Nt, t = 1, 2, . . . , n (2)

where {Nt} is an independently identically distributed (IID), zero-mean Gaussian noise process

with variance σ2
N , independent of {Xt}, which is another random process, that we decompose as

Xt = st + Zt, with st = E{Xt} being a deterministic waveform and Zt = Xt − st being an IID,

zero-mean noise process, which is not necessarily Gaussian in general. The non–Gaussian noise

component, {Zt}, can be thought of as signal–induced noise (SIN), which may stem from several

possible mechanisms, such as: echos of the desired signal, multiplicative noise, cross-talks from

parallel channels conveying correlated signals, interference by jammers, and in the case of optical

detection using avalanche photo-diodes (APDs), it corresponds to shot noise plus multiplicative

noise due to the random gain of the device (see, e.g., [23] and references therein, for more details).

In general, {Zt} may also designate randomness that could be attributed to uncertainty associated

with the transmitted signal.

As mentioned above, the optimal LRT detector might be considerably difficult to implement

in practice since the probability density function (PDF) of {Yt} under H1 involves the convolution

between the Gaussian PDF of Nt and the (non-Gaussian) PDF of Zt, which is typically complicated.

As said, a reasonable practical compromise, valid when the underlying signal {st} is not identically

zero, is a correlation detector, which compares the correlation,
∑n

t=1 wtYt, to a threshold, where

w1, . . . , wn are referred to as the correlator weights, and the threshold controls the trade-off between

the FA probability and the MD probability. Our first objective is to characterize the best correlator

weights, w∗
1, . . . , w

∗
n, in the sense of the optimal trade-off between the FA probability and the MD

probability, or more precisely, the optimal trade-off between the asymptotic exponential rates of
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decay of these probabilities as functions of the sample size n, i.e., the FA exponent and the MD

exponent. Clearly, the optimal correlation detector is, in general, not as good as the optimal, LRT

detector, but it is the best compromise between performance and the practical implementability in

the framework of correlation detectors. As very similar study was already carried out in [23], in the

context of optical signal detection using photo-detectors, where the optimal correlator waveform

was characterized in terms of the optical transmitted signal in continuous time, and was found to

be given by a certain non-linear function of the optical signal.

Here, we study the problem in a more general framework, in the sense that the PDF of the SIN,

Zt, is arbitrary. Moreover, we expand the scope in several directions, in addition to the study that

is directly parallel to that of [23].

1. We consider the possibility of limiting the number of levels {wt} to be finite (e.g., binary,

ternary, etc.), with the motivation of significantly reducing the number of multiplications

needed to calculate the correlation,
∑

t wtYt.

2. We jointly optimize both the signal {st} and the correlator, {wt}. Interestingly, here both

the optimal signal and the optimal correlation weights turn out to have a finite number of

levels even if this number is not restricted a-priori. The number of levels depends on the PDF

of Zt, and it is typically very small (e.g., two to four levels). Moreover, the optimal {st} and

{wt} turn out to be proportional to each other, in contrast to the non-linear relation resulting

when only {wt} is optimized while {st} is given.

3. We outline an extension to a wider class of detectors that are based on linear combinations

of the correlation,
∑

t wtYt, and the energy,
∑

t Y
2
t , with the motivation that it is, in fact,

the structure of the optimal detector when Zt is Gaussian noise, and that it is reasonable

regardless, since the under H1 the power (or the variance) of the received signal is larger

than under H0.
1 We also address the possibility of replacing the energy term by the sum

of absolute values,
∑

t |Yt|, which is another measure of signal intensity, with the practical

advantage that its calculation does not require multiplications.

The outline of the remaining part of this work is as follows. In Section 2, we formalize the

1In fact, when st ≡ 0, the correlation term becomes useless altogether and the energy term becomes necessary.

4



problem rigorously and spell out our basic assumptions. In Section 3, we characterize the optimal

correlator, {w∗
t }, for a given signal, {st}, subject to the power constraint. In Section 4, we address

the problem of joint optimization of both {wt} and {st}, both under power constraints, and finally

in Section 5, we outline extensions to wider classes of detectors that are based on correlation and

energy.

2 Assumptions and Preliminaries

Consider the signal detection model described in the fifth paragraph of the Introduction. We

assume that Z1, . . . , Zn are independent copies of a zero–mean random variable (RV), Z, that has

a symmetric2 PDF, fZ(z), around the origin, and that it has a finite cumulant generating function

(CGF),

C(v)
∆
= lnE{evZ}, (3)

at least in a certain interval of the real valued variable v. Note that since fZ(·) is assumed symmet-

ric around the origin, then so is C(·). We also assume that C(·) is twice differentiable within the

range it exists. It is well known to be a convex function, because its second derivative cannot be

negative, as it can be viewed as the variance of Z under the PDF that is proportional to fZ(z)e
vz .

Further assumptions on Z and its CGF will be spelled out in the sequel, at the places they will be

needed. The following simple special cases will accompany our derivations and discussions repeat-

edly in the sequel:

Case 1. Z is zero-mean, Gaussian RV with variance σ2
Z :

C(v) =
σ2
Zv

2

2
. (4)

Case 2. Z is a Laplacian RV with parameter q, i.e., fZ(z) =
q
2e

−q|z|:

C(v) = − ln

(

1− v2

q2

)

. (5)

Case 3. Z in a binary RV, taking values in {−z0,+z0} with equal probabilities:

C(v) = ln cosh(z0v). (6)

2The symmetry assumption is imposed mostly for convenience, but the results can be extended to address also
non-symmetric PDFs.
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Case 4. Z is a uniformly distributed RV across the interval [−z0,+z0]:

C(v) = ln

(

sinh(z0v)

z0v

)

. (7)

The signal vector, s = (s1, . . . , sn), st ∈ IR, t = 1, . . . , n, is assumed known, and we denote its

power by P (s), that is,

P (s)
∆
=

1

n

n
∑

t=1

s2t . (8)

Consider the class of correlation detectors, i.e., detectors that compare the correlation,
∑n

t=1 wtYt,

to a certain threshold T , where w = (w1, . . . , wn) is a vector of real valued correlator coefficients,

henceforth referred to as the correlator, for short. The decision rule is as follows: If
∑n

t=1 wtYt < T ,

accept the null hypothesis, H0, otherwise, accept the alternative, H1. The threshold, T , controls

the trade-off between the FA probability and the MD probability of the detector. To allow expo-

nential decay (as n grows without bound) of both types of error probabilities, we let T vary linearly

with n, and denote T = θn, where θ is a real valued constant, independent of n.

In order to have a well-defined asymptotic FA exponent, we assume that the correlator, w, has

a fixed power,

P (w) =
1

n

n
∑

t=1

w2
t , (9)

which is independent of n, or, more generally, that the right–hand side (RHS) of eq. (9) tends

to a certain fixed positive power level, as n → ∞ (otherwise, the normalized logarithm of the

FA probability would oscillate indefinitely, without a limit). Indeed, the FA probability of the

correlation detector is given by

PFA = Pr

{

n
∑

t=1

wtNt ≥ θn

}

= Q

(

θn

σ‖w‖

)

·
= exp

{

− θ2n

2σ2
NP (w)

}

, (10)

where Q is the well-known Q-function,

Q(u)
∆
=

1√
2π

∫ ∞

u
e−u2/2du, (11)

and
·
= denotes equivalence in the exponential scale, in other words, the notation, an

·
= bn, for two

positive sequences {an} and {bn}, means that limn→∞
1
n log an

bn
= 0. It follows from (10) that the

FA exponent is given by

EFA(θ) =
θ2

2σ2
NP (w)

. (12)
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Thus, the FA exponent depends on w only via P (w). It follows that for a given θ, if we wish to

achieve a given, prescribed FA exponent, EFA(θ) ≥ EFA (where EFA is a given positive number), we

must have

P (w) ≤ Pw
∆
=

θ2

2σ2
NEFA

. (13)

In other words, a constraint on the FA exponent means a corresponding constraint on the asymptotic

power of w to be no larger than Pw.

In order to have a well–defined MD exponent, our assumptions concerning the asymptotic

behavior of w and s will have to be more restrictive: We will assume that as n → ∞, the pairs

{(wt, st)}nt=1 obey a certain joint PDF, fWS(w, s), in the following sense: For every λ ≥ 0,

lim
n→∞

{

λ

(

· 1
n
wtst − θ

)

− 1

n

n
∑

t=1

C(λwt)−
λ2σ2

N

2
· 1
n

n
∑

t=1

w2
t

}

= EWS

{

λ(E{W · S} − θ)−E{C(λW )} − λ2σ2
N

2
·E{W 2}

}

, (14)

where EWS{·} denotes expectation with respect to (w.r.t.) fWS. Whenever there is no room for

confusion, the subscript WS will be omitted and the expectation will be denoted simply by E{·}.
The function fWS(·, ·) will be referred to as the asymptotic empirical joint PDF of w and s.3

The MD probability is now upper bounded, exponentially tightly, by the Chernoff bound, as

follows. Denoting the Gaussian random variable, U
∆
=
∑n

t=1 wtNt, we have

PMD = Pr

{

n
∑

t=1

wtst +
∑

t

wtZt + U ≤ θn

}

≤ inf
λ≥0

E

(

exp

{

λ

[

θn−
n
∑

t=1

wtst −
∑

t

wtZt − U

]})

= inf
λ≥0

exp

{

λ

[

θn−
n
∑

t=1

wtst

]}

·E exp{−λU} ·E exp

{

−λ

n
∑

t=1

wtZt

}

= inf
λ≥0

exp

{

λ

[

θn−
n
∑

t=1

wtst

]}

· exp
{

nλ2σ2
NP (w)

2

}

·
n
∏

t=1

E exp{−λwtZt}

= inf
λ≥0

exp

{

λ

[

θn−
n
∑

t=1

wtst

]}

· exp
{

nλ2σ2
NP (w)

2

}

·
n
∏

t=1

exp{C(−λwtZt)}

= inf
λ≥0

exp

{

λ

[

θn−
n
∑

t=1

wtst

]}

· exp
{

nλ2σ2
NP (w)

2

}

·
n
∏

t=1

exp{C(λwtZt)}, (15)

3In the sequel, we will encounter one scenario where the asymptotic empirical PDF will be irrelevant, but this
scenario will be handled separately, in the original domain of vectors of dimension n.
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where the last step is due to the symmetry of the C(·). The resulting MD exponent is therefore

given by

EMD(θ) = sup
λ≥0

{

λ(E{W · S} − θ)−E{C(λW )} − λ2σ2
N

2
·E{W 2}

}

, (16)

which is a functional of fWS.

The problem of optimal correlator design for a given s, is equivalent to the problem of finding

a conditional density, fW |S, that maximizes the MD exponent subject to the power constraint,

E{W 2} ≤ Pw. The problem of joint design of both w and s is asymptotically equivalent to

the problem of maximizing the MD exponent over {fWS} subject to the power constraints, and

E{W 2} ≤ Pw and E{S2} ≤ Ps, for some given Ps > 0. The first problem is relevant when the

detector designer has no control of the transmitted signal, for example, when the transmitter and

the receiver are hostile parties, which is typically the case in military applications. The second

problem is relevant when the transmitter and the receiver cooperate. In radar applications, for

example, the transmitter and the receiver are the same party. In sections 3 and 4, we address the

first problem and the second problem, respectively.

Comment 1. Instead of maximizing the MD exponent for a fixed threshold, θ, and a fixed power con-

straint, Pw, in order to fit a prescribed FA exponent, in principle, there is an alternative approach:

maximize the MD exponent directly for a given FA exponent, by substituting θ = σ
√
2PwEFA in the

MD exponent expression. Not surprisingly, in this case, the MD exponent would become invariant

to scaling in W (as any scaling of W can be absorbed in λ for all terms of the MD exponent),

and so, there would be no need for the Pw-constraint, but this invariance property holds only after

maximizing over λ, not for a given λ. However, maximizing over λ as a first step of the calculation,

does not seem to lend itself to closed form analysis, in general, and consequently, it would make

the subsequent optimization extremely difficult, if not impossible, to carry out. We therefore opt

to fix both θ and Pw throughout our derivations.

8



3 Optimum Correlator for a Given Signal

In view of the discussion in Section 2, we wish to find the optimal conditional density, fW |S, in the

sense of maximizing

λE{W ·S}−E{C(λW )}−λ2σ2
N

2
E{W 2} =

∫ +∞

∞
fS(s)·E

{

λsW − C(λW )− λ2σ2
N

2
·W 2

∣

∣

∣

∣

S = s

}

ds,

(17)

subject to the power constraint,

E{W 2} ≡
∫ +∞

∞
fS(s)E{W 2|S = s}ds ≤ Pw. (18)

At this stage, we carry out this optimization for a given λ ≥ 0, but with the understanding that

eventually, λ will be subjected to optimization as well. To this end, let us denote the derivative of

C(v) by Ċ(v), and for a given ρ ≥ 0, define the function

g(w|ρ, λ) ∆
= Ċ(λw) +

(ρ

λ
+ σ2

Nλ
)

· w. (19)

Observe that since C is convex, Ċ is monotonically non-decreasing, and so, g(·|ρ, λ) is monotonically

strictly increasing, which in turn implies that it has an inverse. We denote the inverse of g(·|ρ, λ)
by g−1(·|ρ, λ). Also, since Z is assumed zero mean, then Ċ(0) = 0, and hence also g(0|ρ, λ) = 0

and g−1(0|ρ, λ) = 0. Note also that g(·|ρ, λ) (and hence also g−1(·|ρ, λ)) is a linear function if and

only if Z is Gaussian. The following lemma characterizes the optimal fW |S.

Theorem 1 Let the assumptions of Section 2 hold. Assume further that Pw is such that there exists

ρ ≥ 0 (possibly, depending on λ), with E{[g−1(S|ρ, λ)]2} = Pw. Otherwise, if E{[g−1(S|0, λ)]2} <

Pw, set ρ = 0. Then, the optimal conditional density, fW |S, is given by

f∗
W |S(w|s) = δ(w − g−1(s|ρ, λ)), (20)

where δ(·) is the Dirac delta function.

The theorem tells that the best correlator, w∗ = (w∗
1, . . . , w

∗
n), for a given s = (s1, . . . , sn), is

obtained by the relation,

w∗
t = g−1(st|ρ, λ), t = 1, . . . , n, (21)

9



which means that w∗
t is given by a function of st, which is non-linear unless Z is Gaussian. To

gain an initial insight regarding the condition on ρ, consider the Gaussian example (Case 1, eq.

(4)). In this case, g(W |ρ, λ) = [(σ2
N + σ2

Z)λ+ ρ/λ]W , and so, g−1(S|ρ, λ) = λS/[(σ2
N + σ2

Z)λ
2 + ρ],

whose power is Pw for ρ = λ
√

E{S2}/Pw − (σ2
N + σ2

Z)λ
2, which is non-negative as long as Pw ≤

E{S2}/[(σ2
N + σ2

Z)
2λ]. In general, the exact choice of Pw is not crucial, as the prescribed FA

exponent can be achieved by adjusting θ proportionally to
√
Pw. However, once Pw is chosen, we

will keep it fixed throughout (see Comment 1 above).

Proof of Theorem 1. Consider the following chain of inequalities and inequalities.

sup
{fW |S : E{W 2}≤Pw}

∫ +∞

∞
fS(s) ·E

{

λsW − C(λW )− λ2σ2
N

2
·W 2

∣

∣

∣

∣

S = s

}

ds

= sup
fW |S

inf
̺≥0

{
∫ +∞

∞
fS(s) ·E

{

λsW −C(λW )− λ2σ2
N

2
·W 2

∣

∣

∣

∣

S = s

}

ds+

̺

2

[

Pw −
∫ +∞

∞
fS(s)E{W 2|S = s}ds

]}

(a)
= inf

̺≥0
sup
fW |S

{
∫ +∞

∞
fS(s) ·E

{

λsW −C(λW )−
(

λ2σ2
N

2
+

̺

2

)

·W 2

∣

∣

∣

∣

S = s

}

ds+
̺Pw

2

}

(b)
= inf

̺≥0

{
∫ +∞

∞
fS(s) · sup

w

{

λsw − C(λw)−
(

λ2σ2
N

2
+

̺

2

)

· w2

}

ds+
̺Pw

2

}

(c)
= inf

̺≥0

{
∫ +∞

∞
fS(s) ·

{

λsg−1(s|̺, λ)− C(λg−1(s|̺, λ)) −
(

λ2σ2
N

2
+

̺

2

)

· [g−1(s|̺, λ)]2
}

ds+
̺Pw

2

}

= inf
̺≥0

{
∫ +∞

∞
fS(s) ·

{

λsg−1(s|̺, λ)− C(λg−1(s|̺, λ)) − λ2σ2
N

2
· [g−1(s|̺, λ)]2

}

ds+

̺

2

[

Pw −
∫ +∞

∞
fS(s) · [g−1(s|̺, λ)]2ds

]}

(d)

≤
∫ +∞

∞
fS(s) ·

{

λsg−1(s|ρ, λ) − C(λg−1(s|ρ, λ)) − λ2σ2
N

2
· [g−1(s|ρ, λ)]2

}

ds+

ρ

2

[

Pw −
∫ +∞

∞
fS(s) · [g−1(s|ρ, λ)]2ds

]

(e)
=

∫ +∞

∞
fS(s) ·

{

λsg−1(s|ρ, λ) − C(λg−1(s|ρ, λ)) − λ2σ2
N

2
· [g−1(s|ρ, λ)]2

}

ds

= E

{

λSg−1(S|ρ, λ)− C(λg−1(S|ρ, λ)) − λ2σ2
N

2
· [g−1(S|ρ, λ)]2

}

, (22)

where (a) is since the objective is affine in both fW |S and in ρ (and hence is concave in fW |S and

convex in ̺), (b) is since the unconstrained maximum of the conditional expectation of a function

of W given S = s is attained when fW |S puts all its mass on the maximum of this function, (c)
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is because the maximum is over a concave function of w, which is attained at the point of zero-

derivative, w = g−1(s|̺, λ), (d) is by the postulate that ρ ≥ 0, and (e) is because either ρ = 0 or

Pw −E{[g−1(S|ρ, λ)]2} = 0. The upper bound on the constrained maximum in the first line of the

above chain is therefore attained by W = g−1(S|ρ, λ) with probability one, which is equivalent to

(20). This completes the proof of Theorem 1. �

Optimal correlator weights within a finite set. There is a practical motivation to consider

the case wherew = (w1, . . . , wn) is restricted to be a binary vector with bipolar components, taking

the values +
√
Pw and −√

Pw only. The reason is that in such a case, the implementation of the

correlation detector involves no multiplications at all, as it is equivalent to the comparison of the

difference
∑

{t: wt=
√
Pw}

Yt −
∑

{t: wt=−
√
Pw}

Yt

to θn/
√
Pw. Here, the maximization over w (step (b) in the proof of Theorem 1) is carried out just

over its two allowed values, +
√
Pw and −

√
Pw. As C(·) is symmetric, the maximum is readily seen

to be attained by W =
√
Pw · sgn(S), which means w∗

t =
√
Pw · sgn(st).

Suppose, more generally, that {wt} is constrained to take on values in a finite set whose cardinal-

ity k is fixed, independent of n. This can be considered as a compromise between the above two ex-

tremes of performance and computational complexity, since the number of multiplications need not

be larger than k−1. The design of such a signal is very similar to the scalar quantizer design prob-

lem: A finite–alphabet signal wt is defined as follows. Let smin ≡ a0 < a1 < . . . < ak−1 < ak ≡ smax,

where smin = mint st, smax = maxt st, and let Ii ∆
= [ai, ai+1), i = 0, 1, . . . , k − 1, be given. Define

W =

k−1
∑

i=0

ωi · 1{S ∈ Ii}, (23)

for some given ω0, ω1, . . . , ωk−1. We wish to minimize

∆ =

k−1
∑

i=0

∫ ai+1

ai

ds · fS(s)
[

λωis− C(λωi)−
1

2
λ2σ2

Nω2
i +

ρ

2
(Pw − ω2

i )

]

(24)

over {ai}, i = 1, . . . , k − 1, and {ωi}, i = 0, 1, . . . , k − 1. The necessary conditions for optimality

are obtained by equating to zero all partial derivatives w.r.t. {ai}, i = 1, . . . , k − 1, and {ωi},

11



i = 0, 1, . . . , k − 1. This results in the following sets of equations:

λωi−1ai − C(λωi−1)−
(

ρ

2
+

λ2σ2
N

2

)

ω2
i−1 = λωiai − C(λωi)−

(

ρ

2
+

λ2σ2
N

2

)

ω2
i , i = 1, 2, . . . , k − 1

Ċ(λωi) +
(ρ

λ
+ λσ2

N

)

ωi = E{S|S ∈ Ii}, i = 0, 1, . . . , k − 1.

Alternatively, we may represent these equations as:

ai =
C(λωi)− C(λωi−1) + (ρ+ λ2σ2

N )(ω2
i − ω2

i−1)/2

λ(ωi − ωi−1)
, i = 1, 2, . . . , k − 1 (25)

ωi = g−1[E{S|S ∈ Ii}|ρ, λ}], i = 0, 1, . . . , k − 1, (26)

where ρ is tuned such that

k−1
∑

i=0

P (Ii) · (g−1[E{S|S ∈ Ii}|ρ, λ}])2 ≤ Pw (27)

as before. The first set of equations is parallel to the nearest-neighbor condition in optimal quantizer

design, and the second set corresponds to the centroid condition. Optimal signal design can be

conducted iteratively, like in quantizer design, by alternating between the two sets of equations.

Example 1. Consider the case where Z ∼ N (0, σ2
Z) (i.e., Case 1). In this case, C(v) = σ2

Zv
2/2, and

so, Ċ(v) = σ2
Zv, which leads to

g(w|ρ, λ) = σ2
Zλw +

(ρ

λ
+ σ2

Nλ
)

· w =
[

(σ2
N + σ2

Z)λ+
ρ

λ

]

· w, (28)

and so,

g−1(s|ρ, λ) = λs

(σ2
N + σ2

Z)λ
2 + ρ

. (29)

Choosing

ρ = λ

√

E{S2}
Pw

− λ2σ2
Z , (30)

yields

w∗
t =

√

Pw

E{S2} · st, (31)

which results in

EMD(θ) =







(
√

PwE{S2}−θ)2

2(σ2
N
+σ2

Z
)Pw

θ <
√

PwE{S2}
0 θ ≥

√

PwE{S2}
(32)
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If wt is constrained to be binary, then as we already saw, w∗
t =

√
Pw · sgn(st) and then

EMD(θ) =

{

(
√
Pw·E{|S|}−θ)2

2(σ2
N
+σ2

Z
)Pw

θ <
√
Pw ·E{|S|}

0 θ ≥ √
Pw ·E{|S|}

(33)

For the more general quantization, we obtain

ai =
(σ2

Zλ
2/2 + ρ/2)(ω2

i − ω2
i−1)

λ(ωi − ωi−1)
=
(

σ2
Zλ+

ρ

λ

)

· ωi + ωi−1

2
. (34)

For simplicity, let us assume that fS is uniform across the interval [−A,+A]. In this case, E{S|S ∈
Ii} = (ai + ai+1)/2, and so,

ωi =
λ(ai + ai+1)

2[(σ2
N + σ2

Z)λ
2 + ρ)]

. (35)

It follows that {ai} have uniform spacings across the support of S, that is, ai = (2i/k − 1)S,

i = 0, 1, . . . , k. Accordingly,

ωi =
λA[(2i + 1)/k − 1]

(σ2
N + σ2

Z)λ
2 + ρ

, (36)

where ρ is chosen such that

1

k

k−1
∑

i=0

λ2A2[(2i + 1)/k − 1]2

[(σ2
N + σ2

Z)λ
2 + ρ]2

= Pw. (37)

The binary case considered above is the special case of k = 2. This concludes Example 1. �

If {st} is itself a finite–alphabet signal, then the optimal {w∗
t } is also a finite-alphabet signal

with the same alphabet size, even without restricting it to be so in the first place. If this alphabet

is small enough and/or there is a strong degree of symmetry, one might as well optimize the levels

of {wt} directly subject to the power constraint. Consider, for example, the case of a 4-ASK signal,

st ∈ {−3a,−a,+a,+3a}, for some given a > 0. Then, since the PDF of Z is assumed symmetric,

the alphabet of the optimal {wt} must be of the form {−β,−α,+α,+β} for some 0 < α < β.

Assuming that st = ±a along half of the time and st = ±3a along the other half, then wt = ±α

and wt = ±β in the corresponding halves, and so, 1
2α

2 + 1
2β

2 = Pw, or β =
√
2Pw − α2. Thus,

the MD exponent should be maximized over one parameter only (beyond the optimization over λ),

which is α ∈ [0,
√
2Pw]. In particular,

EMD(θ) = sup
λ≥0

max
0≤α≤

√
2Pw

{

1

2
λaα+

3

2
λa
√

2Pw − α2 −

1

2
C(λα)− 1

2
C(λ

√

2Pw − α2)− λθ − λ2σ2
NPw

2

}

. (38)

13



We next examine this expression in several examples.

Example 2. Let Z be a binary symmetric source, taking values ±z0 for some z0 > 0 (Case 3). Then,

owing to eq. (6), eq. (38) becomes

EMD(θ) = sup
λ≥0

max
0≤α≤

√
2Pw

{

1

2
λaα+

3

2
λa
√

2Pw − α2 −

1

2
ln cosh(z0λα)−

1

2
ln cosh(z0λ

√

2Pw − α2)− λθ − λ2σ2
NPw

2

}

(39)

=
1

2
sup
λ≥0

max
0≤α≤

√
2Pw

{

λaα+ 3λa
√

2Pw − α2 −

ln cosh(z0λα) − ln cosh(z0λ
√

2Pw − α2)− 2λθ − λ2σ2
NPw

}

(40)

The ‘classical’ correlator, where wt ∝ st, corresponds to the choice α =
√

Pw/5 instead of maxi-

mizing over α. In Fig. 1, we compare the two curves of the MD exponent as functions of θ. Since

they share the same level of Pw, the FA exponents are the same for a given θ. As can be seen,

the optimal correlator significantly outperforms the classical one, which is optimal in the Gaussian

case only. This concludes Example 2. �
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Figure 1: Graphs for binary interference: MD error exponents as functions of θ pertaining to the
classical correlator (red curve) and the optimal correlator (blue curve) for the following parameter
values: Pw = 1, z0 = 7, a = 4, and σ2

N = 1.
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Example 3. We conduct a similar comparison for the case where Z is distributed uniformly over

[−z0,+z0] (Case 4), which corresponds to eq. (7). The results are displayed in Fig. 2, and as can be

seen, here too, the optimal correlator significantly improves upon the classical one. This concludes

Example 3. �
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Figure 2: Graphs for uniformly distributed interference: MD error exponents as functions of θ
pertaining to the classical correlator (red curve) and the optimal correlator (blue curve) for the
following parameter values: Pw = 1, z0 = 7, a = 4, and σ2

N = 1.

It is interesting to note that in both Examples 2 and 3, for large θ, the two graphs approach

each other faster than they approach zero. A possible intuitive explanation is that for large θ,

what counts is the behavior of the PDF of
∑

t wtZt, fairly close to its peak, where the regime of

the central limit theorem is quite relevant, and so, there is no significant difference from Case 1,

where Z is Gaussian and the classical correlator is good. Mathematically, as θ grows, the optimum

λ decreases, and so, it ‘samples’ the function C(λwt) in the vicinity of the origin, where it is well

approximated by a quadratic function, just like in the Gaussian case (Case 1).

Example 4. Finally, consider the case where Z is Laplacian (Case 2). In this case, the differences

turned out to be rather minor – see Fig. 3. A plausible intuition is that the Laplacian PDF is much

15



‘closer’ to the Gaussian PDF, relative to the binary distribution and the uniform distribution of

Examples 2 and 3. This concludes Example 4. �
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Figure 3: Graphs for Laplace-distributed interference: MD error exponents as functions of θ pertain-
ing to the classical correlator (red curve) and the optimal correlator (blue curve) for the following
parameter values: Pw = 1, q = 0.1, a = 4, and σ2

N = 1.

The loss relative to the optimal LRT detector depends on the relative intensity of the process

{Zt} compared to the Gaussian noise component.

4 Joint Optimization of the Correlator and the Signal

So far, we have concerned ourselves with the optimization of the correlator waveform, {wt} for a

given signal, {st}. But what would be the optimal signal {st} (subject to a power constraint) when

it is jointly optimized with {wt}? Mathematically, we are interested in the problem,

sup
{fS : E{S2}≤Ps}

sup
{fW |S : E{W 2}≤Pw}

EMD(θ)

= sup
{fS : E{S2}≤Ps}

sup
{fW |S : E{W 2}≤Pw}

sup
λ≥0

[

E

{

λ(W · S − θ)− C(λW )− λ2σ2
NW 2

2

}]

= sup
{fW : E{W 2}≤Pw}

sup
λ≥0

sup
{fS|W : E{S2}≤Ps}

[

λE{W · S} −E{C(λW )} − λθ − λ2σ2
NE{W 2}

2

]
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(a)
= sup

{fW : E{W 2}≤Pw}
sup
λ≥0

[

λE

{

W ·
√

Ps

E{W 2} ·W
}

−E{C(λW )} − λθ − λ2σ2
NE{W 2}

2

}

= sup
{fW : E{W 2}≤Pw}

sup
λ≥0

{

λ
√

PsE{W 2} −E{C(λW )} − λθ − λ2σ2
NE{W 2}

2

}

= sup
λ≥0

sup
P≤Pw

{

λ
√

PsP − min
{fW : E{W 2}=P}

E{C(λW )} − λθ − λ2σ2
NP

2

}

, (41)

where in (a) we have used the simple fact that, for a given W and Ps, the correlation, E{W · S}
is maximized by S =

√

Ps/E{W 2} · W . Earlier, we maximized the MD exponent w.r.t. W for a

given S and found that the optimal W is given by a function, g−1(S|ρ, λ), which is, in general,

non–linear (unless Z is Gaussian). Now, on the other hand, the optimal S for a given W turns out

to be given by a linear function. These two findings settle together if and only if W takes values

only in the set of solutions, S(ζ), to the equation

Ċ(λW ) +
ρ

λ
·W = ζ ·W, (42)

for some ζ > 0 (and then S takes the corresponding values according to their relationship). The

two sides of the equation represent the non-linear and the linear relations, respectively. Note that

S(ζ) always includes at least the solution W = 0. Once ζ is chosen, W is allowed to take on

values only within S(ζ). The inner minimization over fW in the last line of (41) is obviously lower

bounded by C̃λ(P ), which is defined as

C̃λ(P )
∆
= inf

ζ>0
inf

{µ(·):
∫
S2(ζ)

p·µ(p)dp=P}

∫

S2(ζ)
µ(p)C(λ

√
p)dp, (43)

where S2(ζ) = {w2 : w ∈ S(ζ)}, and µ(·) is understood to be a weight function over S2(ζ), i.e.,

µ(p) ≥ 0 for all p ∈ S2(ζ) and
∫

S2(ζ) µ(p)dp = 1. While this expression appears complicated, there

are two facts that help to simplify it significantly. The first is that, in most cases, S(ζ) is a finite

set (unless C(·) is linear, or contains linear segments), and the second is that only two members of

S(ζ) suffice, i.e., eq. (43) simplifies to

C̃λ(P )
∆
= inf

ζ>0
min

{p0,p1∈S2(ζ), α∈[0,1]: (1−α)p0+αp1=P}
{(1 − α)C(λ

√
p0) + αC(λ

√
p1)}. (44)

The function C̃λ(P ) has the flavor of a lower convex envelope for the function C(λ
√·), but with

the exception that the support of the convex combinations is limited to S2(ζ). Finally, the optimal
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MD exponent is given by

EMD(θ) = sup
λ≥0

sup
P≤Pw

{

λ(
√

PsP − θ)− C̃λ(P )− λ2σ2
NP

2

}

. (45)

The optimal W is one that achieves C̃λ(P ) for the maximizing λ and P , that is, the components

of {|wt|} take only two values in S(ζ∗), with relative frequencies given by α∗ and 1− α∗, where ζ∗

and α∗ are the achievers of C̃λ(P
∗), P ∗ being the optimal P . In other words, the optimal signal

has at most four levels, ±a and ±b, for some a ≥ 0 and b > 0.

Comment 2. By a simple change of variables, q = λ2p, it is readily seen that C̃λ(P ) depends on λ

and P only via the quantity λ
√
P , and so, it might as well be denoted as C̃(λ

√
P ). �

Observe that while the function C(·) is always convex, nothing general can be asserted regarding

convexity or concavity properties of the function C(λ
√·), as the internal square root function,

which is concave, may or may not destroy the convexity of the composite function, depending

on the function C(·). In other words, C(λ
√·) may either be convex, or concave, or neither. For

example, if Z ∈ {−z0,+z0} with equal probabilities (as in Case 3), then C(λ
√
p) = ln cosh(z0λ

√
p)

which is concave in p. On the other hand, if Z is Laplacian with parameter q (Case 2), then

C(λ
√
p) = − ln(1 − λ2p/q2), which is convex in p. By mixing these two distributions, we can also

make it neither convex, nor concave, as will be shown in the sequel.

Let us examine now several special cases, where the form of C̃λ(P ) can be determined more

explicitly.

1. Consider first the Gaussian case (Case 1), where C(λ
√
p) = 1

2σ
2
Zλ

2p, namely, it is linear in p. In

this case, for ζ = σ2
Zλ+ ρ/λ, S(ζ) = IR+, the choice of µ is immaterial, and C̃λ(P ) = 1

2σ
2
Zλ

2P . In

this case, any signal w with power P is equally good, as expected.

2. Consider next the case where C(λ
√·) is is convex. Then,

E{C(λW )} = E

{

C
(

λ
√
W 2
)}

(46)

≥ C
(

λ
√

E{W 2}
)

(47)

= C(λ
√
P ), (48)

where the inequality is achieved with equality whenever W 2 = const with probability one, and then

this constant must be P . So, here C̃λ(P ) = C(λ
√
P ), S2(ζ) = {0, P} and µ(p) = δ(p − P ), which
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is expected, because in the convex case, there is no need for any non-trivial convex combinations.

The optimal signal vector w is any member of {−
√
P ∗,+

√
P ∗}n, and then s is the corresponding

member of {−√
Ps,+

√
Ps}n. It is interesting to note that they both turn out to be DC or bipolar

signals, which is good news from the practical point of view, as discussed in Section 1.

3. We now move on to the case where C(λ
√·) is concave. In this case, it is instructive to return

temporarily to the original domain of vectors {w} of finite dimension n, find the optimal solution

in that domain, and finally, take the limit of large n (see footnote no. 3). We therefore wish to

minimize 1
n

∑n
t=1 C(λwt) s.t.

∑n
t=1 w

2
t = nP . Since C(λ

√
0) = 0 and each w2

t is limited to the

range [0, nP ], we can lower bound the function C(λ
√

w2
t ) (which is concave as a function of w2

t ),

by a linear function of w2
t , as follows:

C

(

λ
√

w2
t

)

≥ C(λ
√
nP )

nP
· w2

t , (49)

with equality at w2
t = 0 and w2

t = nP . Consequently,

1

n

n
∑

t=1

C(λwt) =
1

n

n
∑

t=1

C

(

λ
√

w2
t

)

(50)

≥ 1

n

n
∑

t=1

C(λ
√
nP )

nP
· w2

t (51)

=
C(λ

√
nP )

nP
· P (52)

=
C(λ

√
nP )

n
, (53)

with equality if one of the components of w is equal to ±
√
nP and all other components vanish,

and then, the same component of s is ±
√
nPs (and, of course, all other vanish), correspondingly.

Here, we have S2(ζ) = {0, nP} and µ(p) =
(

1− 1
n

)

δ(p) + 1
nδ(p − nP ). Asymptotically, as n

grows without bound, C̃λ(P ) = limn→∞C(λ
√
nP )/n, and the limit exists since C(λ

√
nP )/n is

monotonically non-increasing by the assumed concavity of C(λ
√·). If this limit happens to vanish

(like in Case 3, for instance), then the interference {Zt} has no impact whatsoever on the MD

exponent for the optimal s and w. Here too, the optimal signaling is binary.

We now summarize our findings, in this section so far, in the following theorem.

Theorem 2 Let the assumptions of Section 2 hold. Then, w∗
t and s∗t are proportional to each
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other with |w∗
t | and |s∗t | taking values in a finite set of size at most two (t = 1, . . . , n), and the MD

exponent is given by eq. (45).

1. If the function C(λ
√·) is convex, then both w

∗ and s
∗ are either DC or bipolar, and the MD

exponent is given by

EMD(θ) = sup
λ≥0

sup
P≤Pw

{

λ(
√

PsP − θ)− C
(

λ
√
P
)

− λ2σ2
NP

2

}

. (54)

2. If the function C(λ
√·) is concave, then the components of both w

∗ and s
∗ are all zero, except

for one component which exploits their entire energy. The MD exponent is given by

EMD(θ) = sup
λ≥0

sup
P≤Pw







λ(
√

PsP − θ)− lim
n→∞

C
(

λ
√
Pn
)

n
− λ2σ2

NP

2







. (55)

Finally, we should consider the case where C(λ
√·) is neither convex, nor concave. Here, we will

not carry out the full calculations needed, but we will demonstrate that S(ζ) may include more

than one positive solution, in addition to the trivial solution at the origin. Consider, for example a

mixture of the binary PDF and the Laplacian PDF with weights δ and 1−δ, respectively (δ ∈ (0, 1)).

In this case,

C(λw) = C
(

λ
√
w2
)

= ln

[

δ · cosh
(

z0λ
√
w2
)

+
1− δ

1− λ2w2/q2

]

, (56)

If δ is close to 1, the hyperbolic cosine term is dominant for small and moderate values of w, where

C(λ(
√·) is concave. In contrast, when w2 approaches q2/λ2, the second term tends steeply to

infinity and hence must be convex. So in this example, Ĉ is concave in a certain range of relatively

small w2 and at some point it becomes convex. Now, the derivative w.r.t. w is given by

Ċ(λw) =
δz0 sinh(z0λw) + (1− δ) · 2λq2/(q2 − λ2w2)2

δ cosh(z0λw) + (1− δ)q2/(q2 − λ2w2)
. (57)

As discussed above, the first step is to solve the equation

Ċ(λw) =
(

ζ − ρ

λ

)

w. (58)

As there is no apparent analytical closed-form solution to this equation, here we demonstrate the

solutions graphically. In Fig. 4, we plot the functions Ċ(λw) and (ζ − ρ/λ) · w vs. w for the

following parameter values: δ = 0.95, q = 5, z0 = 0.5, λ = 1, and ζ − ρ/λ = 0.13. As can be
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seen, in this example, there are two positive solutions (in addition to the trivial solution, w0 = 0),

which are approximately, w1 = 3.71 and w2 = 4.58. Thus, in this case, S(ζ) = {0, 3.71, 4.58},
which corresponds to the set of power levels, S2(ζ) = {0, 13.7641, 20.9764}. According to the above

discussion, optimal signaling is associated with time-sharing between two out of these three signal

levels. Given this simple fact, the optimal signal levels, say, a ≥ 0 and b > 0, and the optimal

weight parameter, α, can also be found directly by maximizing the MD error exponent expression

with respect to these parameters, subject to the power constraint, (1− α)a2 + αb2 = Pw, similarly

as was done earlier in the example of the 4-ASK signal in Section 3.
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Figure 4: The functions Ċ(λw) (blue curve) and (ζ − ρ/λ) ·w (red straight line) for the example of
eqs. (56) and (57) with parameter values: δ = 0.95, q = 5, z0 = 0.5, λ = 1, and ζ − ρ/λ = 0.13. As
can be seen, these two graphs meet at three points, w0 = 0, w1 ≈ 3.71 and w2 ≈ 4.58.

5 Detectors Based on Linear Combinations of Correlation and

Energy

In this section, we provide a brief outline of a possible extension of the scope to a broader class of

detectors that compare the test statistic

n
∑

t=1

wtYt + α

n
∑

t=1

Y 2
t
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to a threshold, T = θn. The motivation stems from the fact that the two hypotheses, H0 and H1,

differ not only in the presence of the signal, {st}, but also in the presence of the SIN, {Zt}, which
adds to the energy (or the variance) of the received signal. In the extreme case, where st ≡ 0, the

simple correlation detector we examined so far (corresponding to α = 0) would be useless, but still,

one expects to be able to distinguish between the two hypotheses thanks to the different energies

of the received signal. Indeed, if {Zt} is Gaussian white noise (Case 1), the optimal LRT detector

obeys this structure with α = σ2
Z/[2(σ

2
N + σ2

Z)].

For practical reasons, it would also be relevant to consider detectors that are based on

n
∑

t=1

wtYt + α

n
∑

t=1

|Yt|,

where the second term is another measure of the signal intensity, but with the advantage that

its calculation does not require multiplications. We shall consider both classes of detectors, but

provide merely the basic derivations of the MD exponent, without attempt to arrive at full, explicit

solutions. Nevertheless, we will make an attempt to make some observations on the solutions.

We begin with the first class of detectors mentioned above. The FA probability is readily

bounded by

PFA(θ) = Pr

{

n
∑

t=1

wtNt + α

n
∑

t=1

N2
t ≥ θn

}

≤ exp

{

−n sup
λ≥0

[

λθ − λ2σ2
NPw

2(1 − 2αλσ2
N )

+
1

2
ln(1− 2αλσ2

N )

]

}

, (59)

which depends on w only via Pw, as before.

As for the MD probability, we define

A =
1

n

n
∑

t=1

(wtst + αs2t ) (60)

and

ut = wt + 2αst, t = 1, 2, . . . , n. (61)

Then,

PMD(θ) = Pr

{

n
∑

t=1

wt(st + Zt +Nt) + α

n
∑

t=1

(st + Zt +Nt)
2 < θn

}
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= Pr

{

nA+

n
∑

t=1

ut(Zt +Nt) + α

n
∑

t=1

(Zt +Nt)
2 < nθ

}

≤ E

{

exp

[

λn(θ −A)− λ
n
∑

t=1

ut(Zt +Nt)− αλ
n
∑

t=1

(Zt +Nt)
2

]}

= E

{

exp

[

λn(θ −A)− λ

n
∑

t=1

ut(Zt +Nt)

]

×

n
∏

t=1

exp
[

−αλ(Zt +Nt)
2
]

}

(a)
= E

{

exp

[

λn(θ −A)− λ

n
∑

t=1

ut(Zt +Nt)

]

×

n
∏

t=1

[

(4παλ)−1/2

∫ ∞

−∞
exp

{

−jqt(Zt +Nt)−
q2t
4αλ

}

dqt

]}

= eλn(θ−A)
n
∏

t=1

[

(4παλ)−1/2

∫ ∞

−∞
E {exp [−(λut + jqt)(Zt +Nt)]} exp

(

− q2t
4αλ

)

dqt

]

= eλn(θ−A)
n
∏

t=1

[

(4παλ)−1/2

∫ ∞

−∞
E {exp [−(λut + jqt)Zt]} ×

E {exp [−(λut + jqt)Nt]} · exp
(

− q2t
4αλ

)

dqt

]

= eλn(θ−A)
n
∏

t=1

[

(4παλ)−1/2

∫ ∞

−∞
E
{

exp (−λutZt) e
−jqtZt

}

×

exp

(

1

2
σ2
N [λut + jqt]

2

)

· exp
(

− q2t
4αλ

)

dqt

]

= eλn(θ−A)
n
∏

t=1

[

(4παλ)−1/2

∫ ∞

−∞
E
{

exp (−λutZt) e
−jqtZt

}

×

exp

(

1

2
σ2
Nλ2u2t

)

ejσ
2
N
λutqt · exp

{

−
(

σ2
N

2
+

1

4αλ

)

q2t

}

dqt

]

= exp

{

λn(θ −A) +
1

2
σ2
Nλ2

n
∑

t=1

u2t

}

×

n
∏

t=1

[

(4παλ)−1/2

∫ ∞

−∞
E
{

exp (−λutZt) cos((Zt − σ2
Nλut)qt)

}

×

exp

{

−
(

σ2
N

2
+

1

4αλ

)

q2t

}

dqt

]

, (62)

where j =
√
−1 and (a) is due to the identity

e−ax2
= (4πa)−1/2

∫ ∞

−∞
e−jqx exp

{

− q2

4a

}

dq, a > 0, (63)
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which is the characteristic function of a zero-mean Gaussian random variable with variance 2a.4

We now define

Cα(v)
∆
= ln

[

1√
4παλ

∫ ∞

−∞
E
{

exp (−vZ) cos((Z − σ2
Nv)q)

}

· exp
{

−
(

σ2
N

2
+

1

4αλ

)

q2
}

dq

]

,

and we arrive at the following expression of the MD exponent:

EMD(θ) = sup
λ≥0

lim
n→∞

{

λ(A− θ)− 1

2
λ2σ2

N · 1
n

n
∑

t=1

u2t −
1

n

n
∑

t=1

Cα(λut)

}

= sup
λ≥0

{

λ (E{S · U} − αPs − θ)− 1

2
λ2σ2

N ·E{U2} −E{Cα(λU)

}

, (64)

where U = W+2αS. Note that this expression is of the same form of the one we had earlier, except

that W is replaced by U , θ is replaced by θ+αPs, and C is replaced by Cα.
5 This expression should

now be jointly maximized w.r.t. fUS subject to the power constraints, E{S2} ≤ Ps, E{(U−2αS)2 ≤
Pw. Using the same techniques as before, it is not difficult to infer that the optimal S for a given

U is linear in U , whereas the optimal U for a given S is given by a non-linear equation. Whenever

the number of simultaneous solutions to both equations is finite, the signal levels can be optimized

directly, as before. As for the optimization of α, among all pairs {(α,Pw)} that give rise to the

same value of the FA exponent, one chooses the one that maximizes the MD exponent.

Moving on to the second class of detectors, the analysis can be carried out using the same

technique as above, where the this time, we use the Fourier transform identity,

e−a|x| =
a

π

∫ +∞

−∞

e−jqxdq

q2 + a2
, a > 0 (65)

which, as before, enables to exploit the independence between Zt and Nt once the expectation

operator is commuted with the inverse Fourier transform integral over q. Equipped with this

identity, we have

PMD(θ) = Pr

{

n
∑

t=1

wt(st + Zt +Nt) + α
n
∑

t=1

|st + Zt +Nt| < θn

}

≤ E

{

exp

[

λ

(

nθ −
n
∑

t=1

wt(st + Zt +Nt)− α

n
∑

t=1

|st + Zt +Nt|
)]}

4Alternatively, it can be viewed as the Fourier transform relation between two Gaussians, one in the domain of x
and one in the domain of q.

5It is easy to verify that 1
2
λ2σ2

Nu2 + Cα(λu) is convex in u simply because
lnE

{

exp
[

λ(θ + αPs)− su)− λu(Z +N) − αλ(Z +N)2
]}

is such. Therefore, its derivative is monotonically
non-decreasing.
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= eλnθ
n
∏

t=1

(E {exp [−λwt(st + Zt +Nt)] exp [−αλ|st + Zt +Nt|]})

= eλnθ
n
∏

t=1

(E {exp [−λwt(st + Zt +Nt)] · exp [−αλ|st + Zt +Nt|]})

= eλnθ
n
∏

t=1

(

E

{

exp [−λwt(st + Zt +Nt)] ·
αλ

π

∫ ∞

−∞

e−jqt(st+Zt+Nt)dqt
q2t + α2λ2

})

= exp

{

λ

(

nθ −
n
∑

t=1

wtst

)}

n
∏

t=1

(

E

{

αλ

π

∫ ∞

−∞

e−jqtste−(λwt+jqt)(Zt+Nt)dqt
q2t + α2λ2

})

= exp

{

λ

(

nθ −
n
∑

t=1

wtst

)}

n
∏

t=1

(

αλ

π

∫ ∞

−∞

e−jqtstE
{

e−(λwt+jqt)(Zt+Nt)
}

dqt

q2t + α2λ2

)

= exp

{

λ

(

nθ −
n
∑

t=1

wtst

)}

×

n
∏

t=1

(

αλ

π

∫ ∞

−∞

e−jqtstE
{

e−(λwt+jqt)Zt
}

E
{

e−(λwt+jqt)Nt
}

dqt

q2t + α2λ2

)

= exp

{

λ

(

nθ −
n
∑

t=1

wtst

)}

×

n
∏

t=1

(

αλ

π

∫ ∞

−∞

e−jqtstE
{

e−(λwt+jqt)Zt
}

exp
{

1
2(λwt + jqt)

2σ2
N

}

dqt

q2t + α2λ2

)

= exp

{

λ

(

nθ −
n
∑

t=1

wtst

)

+
1

2
λ2σ2

N

n
∑

t=1

w2
t

}

×

n
∏

t=1

(

αλ

π

∫ ∞

−∞

E
{

e−λwtZt exp{jqt(Zt + σ2
Nλwt − st)}

}

e−q2t σ
2
N/2dqt

q2t + α2λ2

)

= exp

{

λ

(

nθ −
n
∑

t=1

wtst

)

+
1

2
λ2σ2

N

n
∑

t=1

w2
t

}

×

n
∏

t=1

(

αλ

π

∫ ∞

−∞

E
{

e−λwtZt cos((Zt + σ2
Nλwt − st)qt)

}

e−q2t σ
2
N
/2dqt

q2t + α2λ2

)

. (66)

Thus, defining

Cα(v, s) = ln

[

αλ

π

∫ ∞

−∞

E
{

e−vZ cos((Z + σ2
Nv − s)q)

}

e−q2σ2
N/2dq

q2 + α2λ2

]

, (67)

the MD exponent is

EMD(θ) = sup
λ≥0

{

λ (E{W · S} − θ)− 1

2
λ2σ2

NE{W 2} −E{Cα(λW,S)}
}

. (68)
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However, in this case, there is an additional complication, which stems from the fact that the FA

exponent depends on w not only via Pw. A standard Chernoff-bound analysis yields

EFA(θ) = sup
λ≥0

(

λθ − 1

2
λ2σ2

N (E{W 2}+ α2)−

E

{

ln

[

eλαW
[

1−Q

(

λ(W + α)

σ

)]

+ e−λαWQ

(

λ(W − α)

σ

)]})

. (69)

Therefore, the maximization of the MD exponent will have to incorporate the full asymptotic PDF

of W and not just its second moment.
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