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Abstract

We consider the problem of resolving r point sources from n samples at the low end of the spectrum
when point spread functions (PSFs) are not known. Assuming that the spectrum samples of the PSFs lie
in low dimensional subspace (let s denote the dimension), this problem can be reformulated as a matrix
recovery problem, followed by location estimation. By exploiting the low rank structure of the vectorized
Hankel matrix associated with the target matrix, a convex approach called Vectorized Hankel Lift is pro-
posed for the matrix recovery. It is shown that n & rs log4 n samples are sufficient for Vectorized Hankel
Lift to achieve the exact recovery. For the location retrieval from the matrix, applying the single snap-
shot MUSIC method within the vectorized Hankel lift framework corresponds to the spatial smoothing
technique proposed to improve the performance of the MMV MUSIC for the direction-of-arrival (DOA)
estimation.

Keywords. blind super-resolution, vectorized Hankel lift, low rank, MUSIC

1 Introduction

1.1 Problem formulation

In this paper, we study the super-resolution of point sources when point spread functions (PSFs) are not
known. More specifically, consider a point source signal x(t) of the form

x(t) =

r∑

k=1

dkδ(t− τk), (1.1)

where δ(·) is the Dirac function, {τk} and {dk} are the locations and amplitudes of the point source signal,
respectively. Let y(t) be its convolution with unknown point spread functions,

y(t) =

r∑

k=1

dkδ(t− τk) ∗ gk(t) =
r∑

k=1

dk · gk(t− τk), (1.2)

where {gk}rk=1 are the point spread functions depending on the locations of the point sources.
Taking the Fourier transform on both sides of (1.2) yields

ŷ(f) =

∫ +∞

−∞
y(t)e−2πiftdt =

r∑

k=1

dke
−2πifτk ĝk(f). (1.3)

Authors are listed alphabetically.
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The goal in blind super-resolution is to recover {dk, τk}rk=1 from the low end of the spectrum

y[j] =

r∑

k=1

dke
−2πiτk·jgk[j] for j = 0, · · · , n− 1 (1.4)

when gk = [ĝk(0), · · · , ĝk(n−1)]T, k = 1, · · · , r, are not known. Here we assume the index j ∈ {0, 1, · · · , n−1}
rather than j ∈ {−⌊n/2⌋, · · · , ⌊n/2⌋} only for convenience of notation. In addition to blind super-resolution,
the observation model (1.4) also arises from many other important applications, such as 3D single-molecule
microscopy [47], multi-user communication system [43] and nuclear magnetic resonance spectroscopy [46].

It is evident that the blind super-resolution problem is ill-posed without any further assumptions. To
address this issue, we assume that the set of vectors {gk}rk=1 corresponding to the unknown point spread
functions belong to a common and known low-dimensional subspace represented by B ∈ Cn×s, i.e.,

gk = Bhk, (1.5)

where hk ∈ Cs is the unknown orientation of gk in this subspace. As is pointed out in [60], the subspace
assumption is reasonable in several application scenarios. Moreover, it has been extensively used in the
literature, see for example [1, 18, 60, 33, 37].

For any τ ∈ [0, 1), define the vector aτ ∈ Cn as

aτ =
[
1 e−2πiτ ·1 · · · e−2πiτ ·(n−1)

]T
. (1.6)

Let bj ∈ Cs be the jth column vector of B∗. If we define the matrix X♮ ∈ Cs×n as

X♮ =

r∑

k=1

dkhka
T

τk
, (1.7)

then under the subspace assumption (1.5) and using the lifting trick [1, 12, 19, 18, 60, 38, 64, 42, 37], the
observation model (1.4) can be reformulated as a linear measurement of X♮:

y[j] =
〈
bje

T

j ,

r∑

k=1

dkhka
T

τk

〉
for j = 0, · · · , n− 1, (1.8)

where the inner product of two matrices is given by 〈A,B〉 = trace (A∗B), ej is (j + 1)th column of the
n × n identity matrix In, and throughout this paper vectors and matrices are indexed starting with zero.
Moreover, we can further rewrite (1.8) in the following compact form,

y = A(X♮), (1.9)

where A : Cs×n → Cn is a linear operator defined by [A(X)]j = 〈bjeTj ,X〉. The adjoint of the operator

A(·), denoted A∗(·), is defined as A∗(y) =
∑n−1

j=0 y[j]bje
T

j .
Based on the above reformulation of blind super-resolution under the subspace assumption, it can be

seen that the key is to recover X♮ from the linear measurement vector y. Once X♮ is reconstructed, the
frequency components can be extracted from X♮ by the subspace methods which will be detailed in Section
2.2. After the frequency components are obtained, {dk,hk} can be recovered by solving a least squares
system. Moreover, due to the multiplicative form of dk and hk in (1.7), we only expect to recover them
separately up to a scaling ambiguity. Thus, we will assume that ‖hk‖2 = 1 without loss of generality.

Note that the formulations in (1.4) and (1.9) are by no means new and they have been utilized in [60].
Moreover, when the point spread function g is shared among all point sources (i.e., the stationary case),
(1.4) reduces to the blind sparse spikes deconvolution model considered in [18]. To recover the target matrix
X♮ from the linear measurements y, following the approach developed in [53] for spectrally sparse signal
recovery, a similar atomic norm minimization method is proposed in [60],

min
X

‖X‖B subject to y = A(X), (1.10)
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where the atomic norm ‖X‖B is defined as

‖X‖B := inf{t > 0 : X ∈ t · conv(B)} = inf
dk,τk,‖hk‖2=1

{ r∑

k=1

dk : X =
r∑

k=1

dkhka
∗
τk
, dk > 0

}
,

The successful recovery guarantee of (1.10) is studied in [60], while the robust analysis is provided separately
in [33]. Note that for spectrally sparse signal recovery, in addition to atomic norm minimization, there are
also methods which exploit the low rank property of the structured matrix formed from the signal [15, 6, 7].
This motivates us to develop a low rank approach for blind super-resolution.

1.2 Exploiting the low rank structure: Vectorized Hankel Lift

We start with a brief view of spectrally sparse signal recovery based on the hidden low rank structure. Let
x(t) be a spectrally sparse signal consisting of r complex sinusoids,

x(t) =

r∑

k=1

dke
−2πitτk .

Let x = [x(0), · · · , x(n − 1)]T be a vector of length n which is obtained by sampling x(t) at n contiguous,
equally-spaced points. In a nutshell, spectrally sparse signal recovery is about reconstructing the signal x
from its partial samples. Recalling the definition of aτ in (1.6), we can represent x as

x =

r∑

k=1

dka
T

τk
. (1.11)

Let H be a linear operator which maps a vector x into an n1 × n2 Hankel matrix,

H(x) =




x0 x1 · · · xn2−1

x1 x2 · · · xn2

...
...

. . .
...

xn1−1 xn1
· · · xn−1


 ∈ C

n1×n2 , (1.12)

where xi is the ith entry of x and n1+n2 = n+1. Without loss of generality, we assume n1 = n2 = (n+1)/2
in this paper. Due to the particular expression of x in (1.11), it is not hard to see that the rank of H(x) is
at most r according to the Vandermonde decomposition of H(x) [15].

Note that the expression for the data matrix X♮ in (1.7) is overall similar to that for the spectrally sparse
vector x in (1.11), except that the weights dkhk in front of aT

τk
in (1.7) are vectors and consequently X♮

is a matrix rather than a vector. Intuitively, if we treat each column of X♮ as a single element and form a
matrix in the same fashion as in (1.12), it can be expected that the resulting matrix is also low rank. This
is indeed true. Specifically, let H be the vectorized Hankel lifting operator which maps a matrix X ∈ Cs×n

with columns {xj} into an sn1 × n2 matrix,

H(X) =




x0 x1 · · · xn2−1

x1 x2 · · · xn2

...
...

. . .
...

xn1−1 xn1
· · · xn−1


 ∈ C

sn1×n2 , (1.13)

where n1 + n2 = n+ 1. To distinguish the matrix H(X) in (1.13) from the one in (1.12), we refer to H(X)
as the vectorized Hankel matrix associated with X. Then a simple algebra yields that the vectorized Hankel
matrix H(X♮) associated with X♮ appearing in the blind super-resolution problem admits the following
decomposition:

H(X♮) = Eh,L diag(d1, · · · , dr)ET

R, (1.14)
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where the matrices Eh,L and ER are given by

Eh,L =




h1 h2 · · · hr
h1e

−2πiτ1·1 h2e
−2πiτ2·1 · · · hre

−2πiτr·1

...
...

. . .
...

h1e
−2πiτ1·(n1−1) h2e

−2πiτ2·(n1−1) · · · hre
−2πiτr·(n1−1)


 ∈ C

sn1×r (1.15)

and

ER =




1 1 · · · 1
e−2πiτ1 e−2πiτ2 · · · e−2πiτr

...
...

. . .
...

e−2πiτ1·(n2−1) e−2πiτ2·(n2−1) · · · e−2πiτr·(n2−1)


 ∈ C

n2×r. (1.16)

It follows immediately that the rank of H(X♮) is at most r and thus it is a low rank matrix when r is smaller
than min(sn1, n2).

In this paper we adopt the popular nuclear norm minimization to exploit the low rank structure of
H(X♮), yielding a convex approach for the reconstruction of X♮ which is also referred to Vectorized Hankel
Lift. Exact recovery guarantee will be established based on certain assumptions on the subspace matrix B

in (1.5).

1.3 Other Related Work

In this section, we give a brief introduction of other related work in addition to [18, 60, 33]. When the point
spread functions are known and do not depend on the locations of the point sources, the measurement model
(1.4) reduces to

y[j] =

r∑

k=1

dke
−2πiτk·j for j = 0, · · · , n− 1. (1.17)

In this case, estimating the locations τk and amplitudes dk from y is typically known as super-resolution
or line spectrum estimation. This problem arises in many areas of science and engineering, such as array
imaging [31, 52], Direction-of-Arrival (DOA) estimation [51], and inverse scattering [26]. The solution to
this problem can date back to Prony [45]. In the Prony’s method, the locations are retrieved from the roots
of a polynomial whose coefficients form an annihilating filter for the observation vector. Nevertheless, the
Prony’s method is numerical unstable despite that in the noiseless setting successful retrieval is guaranteed
in exact arithmetic. As alternatives, several subspace methods have been developed, including MUSIC [50],
ESPRIT [48], and the matrix pencil method [29]. In the absence of noise, the subspace methods are also
able to identify the locations of the point sources. When there is noise, the stability of these methods has
been studied in [41, 40, 35, 44] in the regime when ∆ > C/n, where ∆ is the minimum (wraparound)
separation between any two locations, and C > 1 is a proper numerical constant. The analysis essentially
relies on the lower bound on the smallest singular value of the Vandermonde matrix. The super-resolution
limits of MUSIC and ESPRIT have been discussed in [34, 35], which is about the noise level that can be
tolerated in order for the algorithms to achieve super-resolution when ∆ < 1/n. In this regime, it is difficult
to obtain a general and nontrivial lower bound on the smallest singular value of the Vandermonde matrix.
Thus, the super-resolution limits in [34, 35] are established for point sources whose locations obey certain
configurations.

Inspired by compressed sensing and low rank matrix reconstruction, various optimization based methods
have also been developed for super-resolution and related problems. In [9], the total variation (TV) mini-
mization method is used to resolve the locations of the point sources. It is shown that when ∆ > C/n, exact
recovery of the locations can be guaranteed. Moreover, the solution to the TV minimization problem can be
computed by solving a semidefinite programming (SDP). Note, in the discrete setting, super-resolution can
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be interpreted within the framework of compressed sensing. However, since the measurement model in super-
resolution considers the low end spectrum, and hence is deterministic, the typical successful recovery guaran-
tee for compressed sensing [11] cannot sufficiently explain the success of the TV norm minimization method
for super-resolution. The robustness of TV norm minimization is studied in [8], and the super-resolution
problem of non-negative point sources is considered in [22, 49, 20, 21, 23]. Moreover, super-resolution from
time domain samples has been investigated in [2, 4, 23].

When only partial entries of y are observed in (1.17), filling in the missing entries is indeed the spectrally
sparse signal recovery problem. Motivated by the work in [13], an atomic norm minimization method
(ANM) is proposed for this problem. It is shown that y can be reconstructed from O(r log r logn) random
samples provided the frequencies are well separated. ANM has been extended in [39, 63] to handle the
case when multiple measurement vector (MMV) are available. In the setting of MMV, multiple snapshots of
observations are collected and they share the same frequencies information. As already mentioned previously,
the Hankel matrix corresponding to y is a low rank matrix. Consequently, spectrally sparse signal recovery
can be reformulated as a low rank Hankel matrix completion problem, and replacing the rank objective
with the nuclear norm yields a recovery method known as EMaC. It has been shown that EMaC is able
to reconstruct a spectrally sparse signal with high probability provided the number of observed entries is
O(r log4 n). In [61], a formulation of EMaC for the multi-snapshots scenario is presented. Additionally,
based on the low rank property of the Hankel matrix, provable non-convex algorithms have been developed
in [6, 7] to reconstruct spectrally sparse signals. Later, Zhang et.al. [65] extend one of the non-convex
algorithms to complete an MMV matrix, and in this work the same vectorized Hankel lift technique is
used to exploit the hidden low rank structure. Recently, a matrix completion problem based on the low
dimensional structure in the transform domain is studied in [14]. More precisely, it is assumed that after
applying the Fourier transform to each column of the target matrix, each row of the resulting matrix will
be a spectrally sparse signal. Since it does not require the spectrally signals share the same frequency
information, a block-diagonal low rank structure is adopted to exploit the low dimensional structure. Exact
recovery guarantee is also established provided the sampling complexity is nearly optimal.

Apart from super-resolution and spectrally sparse signal recovery, our work is also related to blind
deconvolution. After the reparametrization of the signal and blurring kernel under the subspace assumption
[1], the goal in blind deconvolution is to recover the vectors x♮ and h♮ simultaneously from the measurement
vector in the form of

y = diag(Bh♮)Ax♮.

Noting that the above measurement model can be reformulated as a linear operation on a rank-1 matrix, a
nuclear norm minimization method is proposed for blind deconvolution. The performance guarantee of the
method has been established in the case when B is a partial Fourier matrix and A is a Gaussian matrix.
A non-convex gradient descent approach for blind deconvolution is developed and analyzed in [37], and the
identifiability problem is studied in [38, 19].

1.4 Notation and Organization

Throughout this work, vectors, matrices and operators are denoted by bold lowercase letters, bold uppercase
letters and calligraphic letters, respectively. Note that vectors and matrices are indexed starting with zero.
The letter I denotes the identity operator. We use Gi to denote the matrix defined by

Gi =
1√
wi

∑

j+k=i
0≤j≤n1−1
0≤k≤n2−1

eje
T

k , (1.18)

where wi is a constant defined as

wi = #{(j, k)|j + k = i, 0 ≤ j ≤ n1 − 1, 0 ≤ k ≤ n2 − 1}. (1.19)

In fact, {Gi}n−1
i=0 forms an orthonormal basis of the space of n1 × n2 Hankel matrices.
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We use x[i] to denote the ith entry of x andXj,k orX[j, k] to denote the (j, k)th entry ofX. Additionally,
the ith row and jth column of X are denoted by Xi,· and X·,j , respectively. Furthermore, we use the
MATLAB notation X(i : j, k) to denote a vector of size j − i+ 1, with entries Xi,k, · · · ,Xj,k, i.e.,

X(i : j, k) =
[
Xi,k, · · · ,Xj,k

]T
.

For any matrix X, trace(X),X∗,XT and vec(X) are used to denote the trace, conjugate transpose, trans-
pose and column vectorization of X, respectively. Also, ‖X‖, ‖X‖

F
and ‖X‖∗ denote its spectral norm,

Frobenius norm and nuclear norm, respectively.
We use diag(a) to denote the diagonal matrix specified by the vector a. For a natural number n, we use

[n] to denote the set {0, · · · , n−1}. For any two matricesA,B of the same size, their inner product is defined
as 〈A,B〉 = trace(A∗B). Moreover, we will refer to A ◦ B,A ⊗ B,A ⊙ B as the Hadamard, Kronecker
product and Khatri-Rao product respectively. More precisely, the Hadamard product is the element-wise
product of two matrices and the Kronecker product between A and B is given by

A⊗B =




A11B A12B · · · A1rB

A21B A22B · · · A2rB
...

...
. . .

...
As1B As2B · · · AsrB


 ∈ C

sn1×rn2 ,

and the Khatri-Rao product is given by

A⊙B =
[
a1 ⊗ b1 · · · ar ⊗ br

]
∈ C

sn1×r,

where ai, bi denote the ith column of A and B, respectively. By the application of the Khatri-Rao product,
we can rewrite Eh,L in (1.15) as Eh,L = EL ⊙H , where EL and H are matrices given by

EL =




1 1 · · · 1
e−2πiτ1 e−2πiτ2 · · · e−2πiτr

...
...

. . .
...

e−2πiτ1·(n1−1) e−2πiτ2·(n1−1) · · · e−2πiτr·(n1−1)


 ∈ C

n1×r (1.20)

and H =
[
h1 · · · hr

]
∈ Cs×r.

Throughout this paper, c, c1, c2, · · · denote absolute positive numerical constants whose values may vary
from line to line. The notation n & f(m) means that there exists an absolute constant c > 0 such that
n ≥ c · f(m). Similarly, the notation n . f(m) means that there exists an absolute constant c > 0 such that
n ≤ c · f(m).

The rest of this paper is organized as follows. Section 2 begins with the presentation of Vectorized Hankel
Lift and its recovery guarantee, followed by the retrieval of the point source locations. Numerical results to
demonstrate the performance of Vectorized Hankel Lift is presented at the end of Section 2. The proofs of
the main result are provided from Section 3 to Section 6. Finally, we conclude this paper with a few future
directions in Section 7.

2 Vectorized Hankel Lift and Frequency Retrieval

2.1 Vectorized Hankel Lift and recovery guarantee

Under the assumption that H(X♮) is a low rank matrix, it is natural to reconstruct X♮ by solving the affine
rank minimization problem

min rank(H(X)) s.t. y = A(X). (2.1)
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However, the problem (2.1) is computational intractable due to the rank objective. Since the nuclear norm
of a matrix is the tightest convex envelope of the matrix rank, seeking a solution with a small nuclear norm
is also able to enforce the low rank structure. Therefore, instead of solving (2.1) directly, we consider the
following nuclear norm minimization problem for the recovery of X♮:

min
X∈Cs×n

‖H(X)‖∗ s.t. A(X) = y. (2.2)

In this paper, we refer to (2.2) as Vectorized Hankel Lift. There are many existing software packages that
can be used to solve this problem. Thus we restrict our attention on the theoretical recovery guarantee of
Vectorized Hankel Lift and investigate when the solution of (2.2) coincides with X♮.

We need to reformulate (2.2) in order to facilitate the analysis. Let Z be an sn1 × n2 matrix which can
be expressed as

Z =




z0,0 · · · z0,n2−1

...
. . .

...
zn1−1,0 · · · zn1−1,n2−1


 ∈ C

sn1×n2 ,

where zj,k = Z(js : (j + 1)s − 1, k) for j = 0, · · · , n1 − 1 and k = 0, · · · , n2 − 1. Recall that H is the
vectorized Hankel lift operator defined in (1.13). The adjoint of H, denoted H∗, is a linear mapping from
sn1 × n2 matrices to matrices of size s× n. In particular, for any matrix Z ∈ Csn1×n2 , the ith column of
H∗(Z) is given by

H∗(Z)ei =
∑

j+k=i
0≤j≤n1−1
0≤k≤n2−1

zj,k, for i = 0, · · · , n− 1.

Letting D2 = H∗H, we have

D2(X) =
[
w0x0 · · · wn−1xn−1

]
, for any X ∈ C

s×n,

where the scalar wi is defined as

wi = #{(j, k)|j + k = i, 0 ≤ j ≤ n1 − 1, 0 ≤ k ≤ n2 − 1} for i = 0, · · · , n− 1.

Moreover, we define G = HD−1. Then

G(X) =

n−1∑

i=0

G
(
xie

T

i

)
=

n−1∑

i=0

Gi ⊗ xi, (2.3)

where the set of matrices {Gi}n−1
i=0 defined in (1.18) forms an orthonormal basis of the space of n1 × n2

Hankel matrices. The adjoint of G, denoted G∗, is given by G∗ = D−1H∗. Additionally, G and G∗ satisfy

G∗G = I ‖G‖ = 1, and ‖G∗‖ ≤ 1.

Letting Z = H(X) = GD(X), it can be readily verified that

D(X) = G∗(Z) and (I − GG∗)(Z) = 0.

Furthermore, define D = diag(
√
w0, · · · ,√wn−1). We haveAD(X) = DA(X) for any matrix X. Therefore,

the optimization problem (2.2) can be reformulated as

min
Z∈Csn1×n2

‖Z‖∗ s.t. Dy = AG∗(Z) and (I − GG∗)(Z) = 0. (2.4)

Due to the equivalence between (2.2) and (2.4), it suffices to investigate the recovery guarantee of (2.4).
To this end, we make two assumptions.
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Assumption 2.1. The column vectors {bj}n−1
j=0 of the subspace matrix B∗ are independently and identically

sampled from a distribution F which obeys the following properties:

• Isotropy property. A distribution F obeys the isotropy property if for b ∼ F ,

E
[
bb∗
]
= Is. (2.5)

• Incoherence property. A distribution F satisfies the incoherence property with parameter µ0 if for
b ∼ F ,

max
0≤ℓ≤s−1

|b[ℓ]|2 ≤ µ0 (2.6)

holds, where b[ℓ] denotes the ℓth entry of b.

• For b ∼ F , the sampled column vectors {bj}n−1
j=0 satisfy

min
0≤j≤n−1

‖bj‖22 ≥ 1. (2.7)

The first two conditions (2.5) and (2.6) in Assumption 2.1 are first introduced in [10] in the context
of compressed sensing and these two properties are also made in [18, 60, 33] for the blind super-resolution
problem. If F has mean zero, the isotropy condition states that the entries of b have unit variance and
are uncorrelated, which implies µ0 ≥ 1 in the incoherence property. The lower bound µ0 = 1 is achievable
by several examples, for instance, when the components of b are Rademacher random variables taking the
values ±1 with equal probability or b is uniformly sampled from the rows of a Discrete Fourier Transform
(DFT) matrix. In addition to (2.5) and (2.6), we also need (2.7) to establish our main result. However,
we would like to point out that (2.7) is not a stringent condition, but holds (either trivially or with high
probability) by many common random ensembles.

• If the components of b are Rademacher random variables or b is uniformly sampled from the rows of
a DFT matrix, it is trivial that for any fixed j ∈ [n], ‖bj‖22 = s ≥ 1.

• Suppose the components of b are independently and identically sampled from a distribution with mean
zero and unit variance, such as the uniform distribution on the interval [−

√
3,
√
3]. In such case, we can

apply the bounded difference inequality to show that (2.7) holds with high probability, see Lemma 3.1.

Assumption 2.2. There exists a constant µ1 > 0 such that

σmin(E
∗
LEL) ≥

n1

µ1
and σmin(E

∗
RER) ≥

n2

µ1
, (2.8)

where EL and ER are given in (1.20) and (1.16) and σmin(·) denotes the smallest singular value of a matrix.

Assumption 2.2 is the same as the one made in [15, 6, 7] for spectrally sparse signal recovery. Later,
we will show that σmin(E

∗
h,LEh,L) ≥ n1

µ1

also holds when σmin(E
∗
LEL) ≥ n1

µ1

, see Lemma 3.3. Recalling the
definition of EL and ER, this assumption is essentially about the conditioning property of the Vandermonde
matrix. This property is studied in [41] through the discrete Ingham inequality [30] and in [44] through the
discrete large sieve inequality [56]. In particular, it follows from [44] that Assumption 2.2 holds when the
minimum wrap-around distance between the frequencies, denoted ∆, satisfies

∆ ≥ 2µ1/(µ1 − 1)

n
. (2.9)

We are in position to present the main result of this paper.
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Theorem 2.1 (Exact recovery guarantee of Vectorized Hankel Lift). Under Assumptions 2.1 and 2.2,
Z♮ = H(X♮) is the unique optimal solution to (2.4) with probability exceeding 1−c0(sn)−c1 −ns−c2 , provided
that n & µ0µ1 · sr log4(sn), where c0, c1, c2 are absolute constants.

Remark 2.1. The sampling complexity established in [60] for the atomic norm minimization method is
n & µ0 ·sr log3(sn). While this is slightly better than the sampling complexity for Vectorized Hankel Lift, our
analysis is based on less stringent assumptions. In our analysis, the coefficients {hk}rk=1 are not required to
be i.i.d. samples from the uniform distribution on the complex unit sphere, but can be any unit norm vectors.
In addition, noting that the right-hand side of (2.9) is about 2/n for moderately large µ1, which is smaller
than 4/n, the separation required in the main result of [60]. It is worth noting that the robust analysis of the
atomic norm minimization method has been studied in [33] and we will leave the robust analysis of Vectorized
Hankel Lift for future work.

The proof of Theorem 2.1 follows a well established route that has been widely used for compressed
sensing and low rank matrix recovery. In a nutshell, a dual variable needs to be constructed to verify the
optimality of Z♮. That being said, the details of the proof itself are nevertheless quite involved and technical,
and cannot be covered by the results from existing works. In particular, we need to show that there exists a
partition of the measurements satisfying a list of desirable properties in order to construct the dual certificate.

2.2 Variants of MUSIC for frequency retrieval

In this section, we discuss the subspace method, particularly the MUltiple SIgnal Classification (MUSIC)
algorithm [50], for computing the frequency parameters {τk}rk=1 from the matrixX♮. Note that once {τk}rk=1

are obtained, the weights {dk,hk} can be computed by solving an overdetermined linear system. As can be
seen later, applying the idea of the single snapshot MUSIC to H(X♮) yields a variant which is equivalent to
the existing spatial smoothing technique proposed to improve the performance of the Multiple Measurement
Vector (MMV) MUSIC.

The careful reader may notice that every single row of X♮ is a spectrally sparse signal of the form (1.11),
and moreover, all the rows share the same frequency parameters {τk}rk=1. Thus we can apply the single
snapshot MUSIC algorithm to a row of X♮ for frequency retrieval. Let xℓ =

∑r
k=1 dkhk[ℓ]a

T

τk
, 1 ≤ ℓ ≤ s.

Recall that H(xℓ) is the Hankel matrix of rank r and it admits the Vandermonde decomposition

H(xℓ) = EL diag(d1h1[ℓ], · · · , drhr[ℓ])ET

R. (2.10)

Moreover, letting

H(xℓ)
T =

[
U U⊥

] [Σ
0

] [
V ∗

V ∗
⊥

]
(2.11)

be the SVD of H(xℓ)
T, where U ∈ Cn2×r,U⊥ ∈ Cn2×(n2−r),Σ ∈ Rr×r,V ∈ Cn1×r and V⊥ ∈ Cn1×(n1−r),

it is evident that U and ER span the same column space. Note that ER =
[
aτ1, · · · ,aτr

]
, where aτk =

[
1, · · · , e−2πiτk·(n2−1)

]T
. It follows from the property of the Vandermonde matrix that

aτ ∈ Range(ER) if and only if τ ∈ {τ1, · · · , τr}.

Therefore we conclude that τ ∈ {τ1, · · · , τr} if and only if 1/ ‖U∗
⊥aτ‖

2
2 = ∞. The single snapshot MUSIC

algorithm utilizes this idea to identify the frequencies, and it consists of the following two steps:

1. Compute the SVD of H(xℓ)
T as in (2.11);

2. Identify {τk}rk=1 as the r largest local maxima of the pseudospectrum: f(τ) = 1/ ‖U∗
⊥aτ‖

2
2.

9



Here we present the single snapshot MUSIC algorithm directly based on the Hankel matrix H(xℓ). Equiv-
alently, it can be interpreted from the autocorrelation matrix model for signals, see for example [32] and
references therein. In the noiseless setting, it is easy to see that the single snapshot MUSIC algorithm is able
to compute {τk}rk=1 exactly. When noise exists in xℓ, the procedure of the algorithm remains unchanged,
but with the SVD of H(xℓ)

T being replaced by the SVD of the noisy Hankel matrix and with U⊥ being the
left singular vectors corresponding to the n2 − r smallest singular values. The stability analysis of the single
snapshot algorithm is discussed in [41].

To motivate the new variant of the MUSIC algorithm for estimating the frequencies from X♮, we note
that ER appears as a separate component both in the Vandermonde decomposition of H(xℓ) and that of
H(X♮), see (1.14) and (2.10). Therefore, we can replace the SVD of H(xℓ)

T with the SVD of H(X♮)T in
the first step of the single snapshot MUSIC algorithm. This gives the following variant:

1. Compute the SVD of H(X♮)T: H(X♮)T =
[
U U⊥

]
ΣV ∗, where U ∈ Cn2×r and U⊥ ∈ Cn2×(n2−r);

2. Identify {τk}rk=1 as the r largest local maxima of the pseudospectrum: f(τ) = 1/ ‖U∗
⊥aτ‖

2
2.

The following lemma establishes a connection between this variant and the single snapshot MUSIC, showing
that the former one actually utilizes the SVD of the matrix formed by stacking all H(xℓ) (ℓ = 1, · · · , s)
together.

Lemma 2.2. Let H̃(X♮) be a matrix constructed by stacking all H(xℓ) on top of one another:

H̃(X♮) =



H(x1)

...
H(xs)


 ∈ C

sn1×n2 .

There exists a permutation matrix P ∈ Rsn1×sn1 such that H̃(X♮) = PH(X♮).

Proof. Following the Vandermonde decomposition, the ℓth block of H̃(X♮) can be rewritten as

H(eTℓX
♮) = EL



d1 · h1[ℓ]

. . .

dr · hr[ℓ]


ET

R

= (EL ⊙ eTℓH)



d1

. . .

dr


ET

R

where hi is the ith column ofH and hi[ℓ] is the ℓth entry of hi. Thus H̃(X♮) has the following decomposition

H̃(X♮) = (H ⊙EL)DET

R.

According to the commutative law in [66, Section 1.10.3], there exists a permutation matrix P such that
H ⊙EL = P (EL ⊙H).

Based on Lemma 2.2, we will see that the variant obtained by applying the single snapshot MUSIC idea
to H(X♮) corresponds to the spatial smoothing technique (more precisely the forward only spatial smoothing
technique). First, treating the rows of X♮ as i.i.d samples of a random signal whose covariance matrix can
be used to compute the signal space U as in (2.11), MMV MUSIC [52] uses the principal eigenspace of the
empirical covariance matrix (up to a scaling factor 1/s)

R =

s∑

i=1

xix
∗
i

10



to compute U . However, when the signal comes from coherence sources, the performance of MMV MUSIC
will degrade. To deal with this difficulty, the forward only spatial smooth technique proposes to increase the
number of samples by partitioning each xi into n2 overlapped short samples (with each short sample being
of length n1, where n1 + n2 = n+ 1), and then construct the empirical covariance matrix from all the s · n2

short samples. A simple algebra yields that the new empirical covariance matrix is indeed given by (up to a
scaling factor 1/(sn2))

R̂ =
s∑

i=1

H(xi)H(xi)
∗.

It is not hard to see that the principal eigenspace of R̂ is the same as the principal singular vector space of
H̃(X♮). Thus, by Lemma 2.2, we know that the variant obtained by applying the single snapshot MUSIC
idea to H(X♮) is equivalent to the spatial smoothing MUSIC. For more details about spatial smoothing, see
[25, 24, 62].

2.3 Extension to higher dimension

Vectorized Hankel Lift and the analysis are easily extended to higher dimensional array recovery problem.
For ease of exposition, we give a brief discussion of the two-dimensional (2D) case but emphasize that the
situation in higher dimensions is similar. For the 2D blind super-resolution problem, the data matrix can be
expressed as

Yj,ℓ =

r∑

k=1

dke
−2πi(j·τ1k+ℓ·τ2k)Gk[j, ℓ],

where dk is the amplitude, τk := (τ1k, τ2k) is the 2D frequency and Gk corresponds to the Fourier samples

of the unknown 2D point spread function. Letting aτsk =
[
1 e−2πiτsk·1 · · · e−2πiτsk·(n−1)

]T ∈ Cn for
s = 1, 2, the 2D data array can be rewritten in a more compact form:

Y =
r∑

k=1

dk
(
aτ1ka

T

τ2k

)
◦Gk,

Likewise, we assume that there exists a subspace matrix B ∈ Cn
2×s such that vec(Gk) = Bhk for any

k = 1, · · · , r. Then

y := vec(Y ) =

r∑

k=1

dk vec(aτ1ka
T

τ2k
) ◦ vec(Gk) =

r∑

k=1

dk (aτ2k ⊗ aτ1k) ◦ (Bhk) .

For any 0 ≤ j, ℓ ≤ n− 1, the (jn+ ℓ)th entry of y is given by

yjn+ℓ =

r∑

k=1

dk (aτ2k ⊗ aτ1k)
T
ejn+ℓ

(
b∗jn+ℓhk

)

=
r∑

k=1

trace
(
dk (aτ2k ⊗ aτ1k)

T
ejn+ℓ

(
b∗jn+ℓhk

))

=

r∑

k=1

trace
(
ejn+ℓb

∗
jn+ℓdkhk (aτ2k ⊗ aτ1k)

T
)

=
〈
bjn+ℓe

T

jn+ℓ,
r∑

k=1

dkhk
(
aτ2k ⊗ aτ1k

)T〉
,

11



where bjn+ℓ is the (jn + ℓ)th column of B∗. Therefore, we have y = A(X♮), where X♮ =
∑r
k=1 dka

T

τ2k
⊗(

hka
T

τ1k

)
, and A : Cs×n

2 → C
n2

is a linear operator given by

[A(X)]jn+ℓ =
〈
bjn+ℓe

T

jn+ℓ,X
〉
.

As in the 1D case, the blind super-resolution problem is essentially about recovering the target matrix X♮

from the observation vector y.
Note that the target matrix X♮ can be rewritten as the following block form:

X♮ =
[∑r

k=1 dk
(
hka

T

τ1k

) ∑r
k=1 dke

−2πiτ2k
(
hka

T

τ1k

)
· · · ∑r

k=1 dke
−2πiτ2k·(n−1)

(
hka

T

τ1k

)]
.

Letting X
♮
ℓ :=

∑r
k=1 dke

−2πiτ2k·ℓ
(
hka

T

τ1k

)
, we define the two-fold vectorized Hankel lift of X♮ as follows:

H(X♮) =




H(X♮
0) H(X♮

1) · · · H(X♮
n2−1)

H(X♮
1) H(X♮

2) · · · H(X♮
n2
)

...
...

. . .
...

H(X♮
n1−1) H(X♮

n1
) · · · H(X♮

n−1)


 ,

where H(X♮
i ) is the vectorized Hankel matrix defined in (1.13). It can be readily shown that H(X♮) has the

following decomposition

H(X♮) =




(EL ⊙H)Y 0

(EL ⊙H)Y 1

...
(EL ⊙H)Y n1−1


D

[
Y 0ET

R Y 1ET

R · · · Y n2−1ET

R

]
:= LDRT, (2.12)

where EL,ER are two matrices defined in (1.20) and (1.16) but with the frequencies {τ1k}rk=1, H =[
h1 · · · hr

]
∈ Cs×r,D = diag(d1, · · · , dr) and Y = diag(e−2πiτ21 , · · · , e−2πiτ2r).

If all frequencies τ1k, τ2k are distinct and all dk are non-zeros, it is not hard to see that H(X♮) is a low
rank matrix. Therefore, we can recover X♮ by solving the following convex programming

min
X∈Cs×n2

‖H(X)‖∗ s.t. A(X) = y. (2.13)

The recovery guarantee of (2.13) can be similarly established in the following theorem. The proof details
are overall similar to that for Theorem 2.1, and thus are omitted.

Theorem 2.3. Under Assumption II.1 and suppose σmin(L
∗L) ≥ n2

1

µ1

and σmin(R
∗R) ≥ n2

2

µ1

, the data matrix

X♮ ∈ Cs×n
2

is the unique optimal solution to (2.13) with probability at least 1 − c0(sn)
−c1 − n2s−c2 for

absolute constants c0, c1, c2, provided that n2 & µ0µ1 · sr log5(sn).

After the matrix X♮ is recovered, the frequency {τk = (τ1k, τ2k)}rk=1 can be estimated by a 2D-MUSIC
algorithm [3, 40, 67] based on the two-fold vectorized Hankel matrixH(X♮) in (2.12), followed by the recovery
of {dkhk}rk=1 through least-squares.

2.4 Numerical Experiments

In this section, we empirically evaluate the performance of Vectorized Hankel Lift for the recovery of X♮

in the blind super-resolution problem. Vectorized Hankel Lift is solved by SDPT3 [54] based on CVX
[27]. The recovery ability of Vectorized Hankel Lift will be evaluated via the framework of empirical phase
transition and we compare it with the atomic norm minimization method [60]. The locations {τk}rk=1 of
the point source signals are generated randomly from [0, 1), while the amplitudes {dk}rk=1 are generated via

12



dk = (1 + 10ck)e−iψk with ψk being uniformly sampled from [0, 2π) and ck being uniformly sampled from
[0, 1]. The subspace matrix B are sampled from two random ensembles which all satisfy the conditions in
Assumption 2.1. The first one is the random submatrix sampled from the DFT matrix, and the other one is
the random matrix whose entries satisfy the uniform distribution over [−

√
3,
√
3]. The coefficients {hk}rk=1

are i.i.d. standard Gaussian random vectors followed by normalization. In our tests, 20 Monte Carlo trails
are repeated for each problem instance and we report the probability of successful recovery out of those
trials. A trail is declared to be successful if the relative reconstruction error of X♮ in terms of the Frobenius
norm is less than 10−3.

We first fix n = 64 and vary the values of r and s. Figure 1(a) and Figure 1(b) show the phase transitions
of Vectorized Hankel Lift and atomic norm minimization method when the subspace matrix B is randomly
sampled from the DFT matrix and the locations of point sources are randomly generated without imposing
the separation condition, and Figure 1(c) illustrates the phase transition of the atomic minimization method
when the separation condition ∆ := mink 6=j |τk − τj | ≥ 1

n is imposed. Here we omit the phase transition
plot of Vectorized Hankel Lift for the frequency separation case because the plot is similar to Figure 1(a). It
can be observed that the atomic norm minimization method has a higher phase transition curve when the
separation condition is satisfied. However, in contrast to Vectorized Hankel Lift, its performance degrades
severely when there is no frequency separation requirement. That is, Vectorized Hankel Lift is less sensitive
to the separation condition. We also conduct the phase transition tests when the entries of B are i.i.d.
sampled from the uniform distribution over [−

√
3,
√
3]. The phase transition diagrams are presented in

Figure 2, and similar observations can be made. Note that the phase transition plot of Vectorized Hankel
Lift for the frequency separation case is still omitted due to the high similarity with Figure 2(a).
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Figure 1: The phase transitions of Vectorized Hankel Lift and the atomic norm minimization method when
the subspace matrix B is randomly sampled from the DFT matrix. (a) Vectorized Hankel Lift for randomly
generated frequencies, (b) atomic norm minimization for randomly generated frequencies, and (c) atomic
norm minimization for frequencies obeying the separation condition ∆ := mink 6=j |τk − τj | ≥ 1

n . The number
of measurements is fixed to be n = 64. The red curve plots the hyperbola curve rs = 20.

In the above phase transition tests, the coefficients {hk}rk=1 are sampled from random Gaussian with
normalization. In order to test whether the choice of {hk}rk=1 matters, we also test another two cases for
the coefficients. One is the Identical Gaussian, where {hk}rk=1 are the same across r (sampled from random
Gaussian with normalization). The other one is QR where {hk}rk=1 are obtained from the Q matrix in the
QR decomposition of an s× r random Gaussian matrix. Tests are conducted for fixed s = 4 and n = 64, and
the plots of successful recovery probability against the number of spikes r are presented in Figure 3. It can
be clearly seen that no significant differences over different types of {hk}rk=1 are observed from the plots.
Therefore, the numerical results validate that our main result can hold without any conditions of {hk}rk=1.

In order to examine the effect of the separation condition more carefully, we further conduct tests for
fixed s = 3, r = 3, and vary the number of samples n. In the tests, we impose that there are at least
two spikes with separation equal to 1.0/n and 0.5/n, respectively. For each problem instance, we repeat
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Figure 2: The phase transitions of Vectorized Hankel Lift and the atomic norm minimization method when
the entries of B are i.i.d. sampled from the uniform distribution over [−

√
3,
√
3]. (a) Vectorized Hankel Lift

for randomly generated frequencies, (b) atomic norm minimization for randomly generated frequencies, and
(c) atomic norm minimization for frequencies obeying the separation condition ∆ := mink 6=j |τk − τj | ≥ 1

n .
The number of measurements is fixed to be n = 64. The red curve plots the hyperbola curve rs = 20.
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Figure 3: The probability of successful recovery of Vectorized Hankel Lift against r with three different
subspace coefficients {hk}rk=1 (s = 4, n = 64). (a): The subspace matrix B are randomly sampled from the
DFT matrix. (b): The entries of B are i.i.d. sampled from the uniform distribution over [−

√
3,
√
3].

50 Monte Carlo trails and report the probability of successful recovery out of those trials. The numerical
results are presented in Figure 4. It is evident that Vectorized Hankel Lift presents a better performance
when the minimum separation is 0.5/n. When the spikes are well separated (i.e., the minimum separation
is ∆ = 1.0/n), the atomic norm minimization method performs better. In addition, the results confirm that
Vectorized Hankel Lift is overall not affected by the separation condition.

We also plot the locations of the point sources {τk}rk=1 and the unknown point spread function samples
{gk}rk=1 computed from X♮ for a random instance corresponding to n = 64, s = 3 and r = 4. We apply
the MUSIC variant introduced in Section 2.2 (i.e., the spatial smoothing MUSIC) to localize the {τk}rk=1.
Figure 5(a) shows the pseudospectrum f(τ) on a set of points on [0, 1] with equal distance 10−4. As can
be seen from this figure, the function f(τ) peaks at the locations of true frequencies. After the {τk}rk=1

are identified, the coefficients {hk}rk=1 are computed by solving a least squares problem and {gk}rk=1 are
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Figure 4: The probability of successful recovery of Vectorized Hankel Lift and the atomic norm minimization
method under two separation conditions, ∆ = 0.5

n and ∆ = 1.0
n . The dimension of subspace and the number

of spikes are both fixed to be s = 3 and r = 3. The number of samples n is varied. (a): The subspace matrix
B are randomly sampled from the DFT matrix. (b): The entries of B are i.i.d. sampled from the uniform
distribution over [−

√
3,
√
3].

estimated as Bhk. Figure 5(b) includes the plots of the estimates of {|gk|}rk=1 against the true values which
clearly show that {gk}rk=1 can be recovered.
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Figure 5: (a) Plots of pseudospectrum f(τ) when n = 64, s = 3, r = 4 and locations of the true frequencies
when the subspace B is generated randomly from the standard Gaussian distribution. (b) The magnitudes
of Fourier samples of the point spread functions g1, g2, g3, g4 and their estimates from least squares.
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3 Proof Architecture of Main Result

3.1 Preliminaries

We first apply the bounded difference inequality to show that for the column vectors {bj}n−1
j=0 with indepen-

dent entries, the condition (2.7) in Assumption 2.1 holds with high probability given (2.5) and (2.6).

Lemma 3.1. The column vectors {bj}n−1
j=0 of the subspace matrix B∗ are independently and identically

sampled from a distribution F which obeys the conditions (2.5) and (2.6) in Assumption 2.1. Assume the
components of b are independent, the event

min
0≤j≤n−1

‖bj‖22 ≥ 1 (3.1)

occurs with probability at least 1− n exp
(
− s

16µ2

0

)
.

Proof. Since bj satisfies (2.5), we first have

E

[
‖bj‖22

]
= E

[
trace(b∗jbj)

]
= E

[
trace(bjb

∗
j )
]
= s.

Define f(x1, · · · , xs) =
∑s

i=1 |xi|2. It is evident that

|f(x1, · · · , xi−1, xi, xi+1, · · · , xs)− f(x1, · · · , xi−1, x
′
i, xi+1, · · · , xs)| ≤ |xi|2 + |x′i|2 ≤ 2µ0

when |xi|2 ≤ µ0 and |x′i|2 ≤ µ0. Because bj also satisfies (2.6), the application of the bounded difference
inequality yields that

P

[∣∣∣‖bj‖22 − s
∣∣∣ ≥ t

]
≤ 2 exp

(
− t2

4sµ2
0

)
.

Consequently, we can take t = s
2 to obtain

P

[
‖bj‖22 ≥ s

2

]
≥ 1− exp

(
− s

16µ2
0

)
.

Taking the uniform bound yields that for all j ∈ [n], with probability at least 1 − n exp
(
− s

16µ2

0

)
, ‖bj‖22 ≥

s
2 ≥ 1 when s ≥ 2.

Next, we present a lemma about the basic properties of the linear operator A.

Lemma 3.2. Under Assumption 2.1, the following properties hold:

〈y,AA∗(y)〉 ≥ ‖y‖22 for any fixed vector y ∈ Cn, (3.2)

‖AA∗ − I‖ ≤ sµ0 and ‖A‖ ≤ √
sµ0. (3.3)

Proof. Since

AA∗(y) = A
(
n−1∑

i=0

y[i]bie
T

i

)

=




〈
b0e

T
0 ,
∑n−1

i=0 y[i]bie
T

i

〉

...〈
bn−1e

T

n−1,
∑n−1
i=0 y[i]bie

T

i

〉


 =




‖b0‖22 · y[0]
...

‖bn−1‖22 · y[n− 1]


 ∈ C

n,
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(3.2) follows immediately from (3.1).
The properties in (3.3) follows directly from the definition of A. For the left inequality, we have

‖AA∗ − I‖ = sup
y∈Cn:‖y‖

2
=1

‖AA∗(y)− y‖2

= sup
y∈Cn:‖y‖

2
=1

√√√√
n−1∑

i=0

(
‖bi‖22 − 1

)2
· |y[i]|2

≤ max
0≤i≤n−1

∣∣∣‖bi‖22 − 1
∣∣∣

≤ sµ0.

The right one can be proved as follows

‖A‖ = sup
X∈Cs×n:‖X‖

F
=1

‖A(X)‖2

= sup
X∈Cs×n:‖X‖

F
=1

√√√√
n−1∑

i=0

|b∗iXei|2

≤ sup
X∈Cs×n:‖X‖

F
=1

√√√√
n−1∑

i=0

‖bi‖22 · ‖Xei‖22

≤ max
0≤i≤n−1

‖bi‖2 · sup
X∈Cs×n:‖X‖

F
=1

√√√√
n−1∑

i=0

‖Xei‖22

≤ √
sµ0.

The proof is now complete.

The following lemma suggests that the smallest singular value of Eh,L can be lower bounded by the
smallest singular value of EL.

Lemma 3.3. Recall that H =
[
h1 · · · hr

]
∈ C

s×r and suppose all columns of H are of unit norm.
Under the incoherence condition (2.8), we have

σmin(E
∗
h,LEh,L) ≥

n1

µ1
,

where Eh,L is the matrix defined in (1.15).

Proof. Let aτℓ =
[
1 e−2πiτℓ · · · e−2πiτℓ·(n1−1)

]T ∈ Cn1 be the ℓth column of EL. Since Eh,L = EL⊙H ,
it can be easily seen that

E∗
h,LEh,L =



a∗
τ1 ⊗ h∗

1
...

a∗
τr ⊗ h∗

r



[
aτ1 ⊗ h1 · · · aτr ⊗ hr

]

=



(a∗
τ1 ⊗ h∗

1)(aτ1 ⊗ h1) · · · (a∗
τ1 ⊗ h∗

1)(aτr ⊗ hr)
...

. . .
...

(a∗
τr ⊗ h∗

r)(aτ1 ⊗ h1) · · · (a∗
τr ⊗ h∗

r)(aτr ⊗ hr)




=



(a∗
τ1aτ1) · (h∗

1h1) · · · (a∗
τ1aτr) · (h∗

1hr)
...

. . .
...

(a∗
τraτ1) · (h∗

rh1) · · · (a∗
τraτr) · (h∗

rhr)




17



=



a∗
τ1aτ1 · · · a∗

τ1aτr
...

. . .
...

a∗
τraτ1 · · · a∗

τraτr


 ◦



h∗
1h1 · · · h∗

1hr
...

. . .
...

h∗
rh1 · · · h∗

rhr




= (E∗
LEL) ◦ (H∗H),

Recall that a selection matrix P ∈ Rn
2×n is the unique matrix such that

Pz = vec (diag(z)) for all z ∈ C
n,

and it has the remarkable property that P T(A⊗B)P = A ◦B [57, Corollary 2]. Thus we have

σmin(E
∗
h,LEh,L) = inf

‖β‖2=1
|β∗ ((E∗

LEL) ◦ (H∗H))β|

= inf
‖β‖2=1

∣∣β∗P T ((E∗
LEL)⊗ (H∗H))Pβ

∣∣

= inf
‖β‖2=1

∣∣β∗P T(E∗
L ⊗H∗)(EL ⊗H)Pβ

∣∣

= inf
‖β‖2=1

‖(EL ⊗H)Pβ‖22

= inf
‖β‖2=1

‖(EL ⊗H) vec (diag(β)) ‖22

= inf
‖β‖2=1

‖ vec
(
H diag(β)ET

L

)
‖22

= inf
‖β‖2=1

∥∥H diag(β)ET

L

∥∥2
F

≥ σ2
min(EL) · inf

‖β‖2=1
‖H diag(β)‖2

F

= σ2
min(EL) · inf

‖β‖2=1

r∑

k=1

‖β[k] · hk‖22

= σ2
min(EL) · inf

‖β‖2=1

r∑

k=1

|β[k]|2

≥ n1

µ1
,

which completes the proof.

A straightforward application of Lemma 3.3 yields the following result, which can be regarded as a variant
of [7, Lemma 1].

Lemma 3.4. Suppose H(X♮) obeys the incoherence condition (2.8) with parameter µ1. Let H(X♮) = USV ∗

be the singular value decomposition of H(X♮), where U ∈ Csn1×r,S ∈ Rr×r and V ∈ Cn2×r. If we rewrite
U as

U =




U0

...
Un1−1


 ,

where the ℓth block is Uℓ = U(ℓs : (ℓ + 1)s− 1, :) for ℓ = 0, · · · , n1 − 1, then

max
0≤ℓ≤n1−1

‖Uℓ‖2F ≤ µ1r

n
and max

0≤j≤n2−1

∥∥eTj V
∥∥2
2
≤ µ1r

n
, (3.4)

18



Proof. We only need to prove the left inequality in (3.4) as the right one can be similarly established.
Recall that H(X♮) = Eh,L diag(d1, · · · , dr)ET

R. Since U ∈ Csn1×r and Eh,L span the same subspace and
U is orthogonal, there exists an orthonormal matrix Q ∈ Cr×r such that U = Eh,L(E

∗
h,LEh,L)

−1/2Q.
Therefore,

‖Uℓ‖2F =

(ℓ+1)s−1∑

j=ℓs

∥∥∥eTjEh,L(E
∗
h,LEh,L)

−1/2
∥∥∥
2

2

≤
(ℓ+1)s−1∑

j=ℓs

∥∥eTjEh,L

∥∥2
2
·
∥∥∥(E∗

h,LEh,L)
−1/2

∥∥∥
2

≤ µ1

n
·
(ℓ+1)s−1∑

j=ℓs

∥∥eTjEh,L

∥∥2
2

=
µ1

n
·
r∑

k=1

∥∥e−2πiτk·ℓhk
∥∥2
2

=
µ1r

n
,

where the second inequality is due to Lemma 3.3.

The following corollary is a direct consequence of Lemma 3.4 and will be frequently used in the sequel.

Corollary 3.5. Suppose H(X♮) obeys the incoherence condition (2.8) with parameter µ1. Then,

max
0≤i≤n−1

1

wi

∑

ℓ+j=i
0≤ℓ≤n1−1
0≤j≤n2−1

‖Uℓ‖2F ≤ µ1r

n
and max

0≤i≤n−1

1

wi

∑

ℓ+j=i
0≤ℓ≤n1−1
0≤j≤n2−1

∥∥eTj V
∥∥2
2
≤ µ1r

n
. (3.5)

The matrix Bernstein inequality, stated below, will be used frequently in our analysis.

Lemma 3.6 ([55, 15]). Let {Xℓ}nℓ=1 be a set independent random matrices of dimension n1 × n2, which
satisfy E

[
Xℓ

]
= 0 and ‖Xℓ‖ ≤ B. Define

σ2 := max

{∥∥∥∥∥E
[

n∑

ℓ=1

XℓX
∗
ℓ

]∥∥∥∥∥ ,
∥∥∥∥∥E
[

n∑

ℓ=1

X∗
ℓXℓ

]∥∥∥∥∥

}
.

Then the event
∥∥∥∥∥

n∑

ℓ=1

Xℓ

∥∥∥∥∥ ≤ c
(√

σ2 log(n1 + n2) +B log(n1 + n2)
)

(3.6)

holds with probability at least 1− (n1 + n2)
−c1 , where c, c1 > 0 are absolute constants.

3.2 Deterministic optimality condition

As is typical in the analysis of low rank matrix recovery, in order to show that Z♮ is the unique optimal
solution to the convex program (2.4), we need to construct a dual certificate which satisfies a set of sufficient
conditions. These conditions can be viewed as a variant of the KKT condition for the optimality of Z♮.
Recall that the singular value decomposition (SVD) of H(X♮) is H(X♮) = USV ∗. The tangent space T of
the nuclear norm at H(X♮) can be defined as

T =
{
UA∗ +BV ∗ : A ∈ C

n2×r,B ∈ C
sn1×r} .
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The projections PT (Z) onto the tangent space can be defined as

PT (Z) := UU∗Z + ZV V ∗ −UU∗ZV V ∗. (3.7)

and the corresponding projector onto the orthogonal complement of T is given by PT⊥(Z) = Z − PT (Z).

Theorem 3.7. Suppose ‖AA∗‖ ≥ 1 and

‖PTGA∗AG∗PT − PTGG∗PT ‖ ≤ 1

2
. (3.8)

If there exists a dual certificate Λ ∈ Csn1×n2 such that

‖PT (UV ∗ −Λ)‖
F
≤ 1

16sµ0
, (3.9)

‖PT⊥(Λ)‖ ≤ 1

2
, (3.10)

G∗(Λ) ∈ Range(A∗), (3.11)

then Z♮ is the unique solution to (2.4).

Proof. The structure of the proof is overall similar to those in [15, 16, 14]. Consider any feasible solution
Z♮ +M , where the perturbation M ∈ Csn1×n2 satisfies

AG∗(M) = 0, (3.12)

(I − GG∗)(M) = 0. (3.13)

The first condition (3.12) implies that G∗(M) is in the null space of A, while the second condition (3.13)
guarantees that M has the vectorized Hankel structure. Note that for any matrix M , there exists an sn1×n2

matrix S ∈ T⊥ such that

〈M ,S〉 = ‖PT⊥(M)‖∗ and ‖S‖ ≤ 1.

In the meantime, we have UV ∗ + S ∈ ∂
∥∥Z♮

∥∥
∗
. Thus,

∆ : =
∥∥Z♮ +M

∥∥
∗
−
∥∥Z♮

∥∥
∗

≥ 〈UV ∗ + S,M〉
= 〈UV ∗,M〉+ ‖PT⊥(M)‖∗
≥ ‖PT⊥(M)‖∗ − |〈UV ∗ −Λ,M〉| − |〈Λ,M〉| . (3.14)

The condition (3.11) directly implies that there exists a vector p ∈ Cn such that

G∗(Λ) = A∗(p).

Therefore, combining (3.11) and (3.13), we obtain

|〈Λ,M〉| = |〈Λ,GG∗(M)〉| = |〈G∗(Λ),G∗(M)〉| = |〈A∗(p),G∗(M)〉| = 〈p,AG∗(M)〉 = 0.

Moreover, the second term of (3.14) can be upper bounded as follows:

|〈UV ∗ −Λ,M〉| ≤ |〈PT (UV ∗ −Λ),M〉|+ |〈PT⊥(UV ∗ −Λ),M〉|
≤ ‖PT (UV ∗ −Λ)‖

F
· ‖PT (M)‖

F
+ ‖PT⊥(Λ)‖ · ‖PT⊥(M)‖∗

≤ 1

16sµ0
· ‖PT (M)‖

F
+

1

2
· ‖PT⊥(M)‖∗ ,
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where the last step is due to (3.9) and (3.10). Consequently,

∆ ≥ ‖PT⊥(M)‖∗ − |〈UV ∗ −Λ,M〉| − |〈Λ,M〉|

≥ 1

2
· ‖PT⊥(M)‖∗ −

1

16sµ0
· ‖PT (M)‖

F

≥ 1

2
· ‖PT⊥(M)‖

F
− 1

16sµ0
· ‖PT (M)‖

F

≥
(
1

2
− 1

16sµ0
· 4sµ0

)
‖PT⊥(M)‖

F

=
1

4
‖PT⊥(M)‖

F
,

where the fourth line is due to Lemma 6.1 in Section 6. It follows that ∆ > 0 unless ‖PT⊥(M)‖
F
= 0.

Note that ∆ = 0 requires PT⊥(M) = 0, which in turn requires M = PT (M). In this case, we have

‖PT (M)‖2
F
= 〈PT (M),M〉
= 〈PT (M),GG∗(M)〉
= 〈M ,PTGG∗PT (M)− PTGA∗AG∗PT (M)〉+ 〈M ,PTGA∗AG∗PT (M)〉
= 〈M ,PTGG∗PT (M)− PTGA∗AG∗PT (M)〉+ 〈M ,PTGA∗AG∗(M)〉
= 〈M ,PTGG∗PT (M)− PTGA∗AG∗PT (M)〉
≤ ‖PTGA∗AG∗PT − PTGG∗PT ‖ · ‖PT (M)‖2

F

≤ 1

2
‖PT (M)‖2

F
,

which implies that PT (M) = 0. Thus Z♮ is the unique minimizer.

3.3 Constructing the dual certificate

It is intuitively clear that we may construct a dual certificate Λ ∈ Csn1×n2 obeying the conditions (3.9),
(3.10) and (3.11) by solving the following constrained least squares problem:

min
Λ

‖PT (UV ∗ −Λ)‖2
F
s.t. G∗(Λ) ∈ Range(A∗).

Here only the conditions (3.9) and (3.11) are taken into account because once ‖PT (UV ∗ −Λ)‖
F
is small,

the projection of Λ onto T⊥ can be simultaneously small.
Applying the projected gradient method to solve the above optimization problem, we obtain the following

update rule:

Y k = Y k−1 + (GA∗AG∗ + I − GG∗)PT (UV ∗ − Y k−1).

However, due to the statistical dependence among the iterations, the convergence analysis of the vanilla
gradient iteration is difficult. Therefore, the golfing scheme [28] proposes to break the statistical independence
by dividing all the linear measurements into a few disjoint partitions and use a fresh partition in each iteration.

Assume we divide the linear measurements in (1.8) into k0 partitions, denoted {Ωk}k0k=1, and let m = n
k0
.

Define

Ak(X) =
{〈

bie
T

i ,X
〉}

i∈Ωk
∈ C

|Ωk| (3.15)

and

A∗
kAk(X) =

∑

i∈Ωk

〈
bie

T

i ,X
〉
bie

T

i =
∑

i∈Ωk

bib
T

i Xeie
T

i ∈ C
s×n. (3.16)
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Then the golfing scheme for the construction of Λ satisfying the conditions in Theorem 3.7 can be formally
expressed as

Y 0 = 0 ∈ C
sn1×n2 ,

Y k = Y k−1 +
( n
m
GA∗

kAkG∗ + I − GG∗
)
PT (UV ∗ − Y k−1), for k = 1, · · · , k0, (3.17)

Λ := Y k0 .

Evidently the property of Λ relies on the partitions {Ωk}k0k=1. In order to construct the desirable Λ, we

require {Ωk}k0k=1 to satisfy a set of conditions list in the following lemma, in which we have

‖Z‖G,F =

√√√√
n−1∑

i=0

‖G∗(Z)ei‖22
wi

and ‖Z‖G,∞ = max
0≤i≤n−1

‖G∗(Z)ei‖2√
wi

for any Z ∈ C
sn1×n2 . (3.18)

The proof of this lemma will be presented in Section 4.

Lemma 3.8. Let k0 ∈ {1, · · · , n} and set m = n
k0
. If n & k0 ·max{µ1r log(sn), log(k0)}, then there exists a

partition {Ωk}k0k=1 such that the following properties hold :

m

2
≤ |Ωk| ≤

3m

2
, k = 1, · · · , k0, (3.19)

max
1≤k≤k0

∥∥∥PTG
(
I − n

m
E [A∗

kAk]
)
G∗PT

∥∥∥ ≤ 1

4
, (3.20)

max
1≤k≤k0

∥∥∥G
(
I − n

m
E [A∗

kAk]
)
G∗(Z)

∥∥∥ .

(√
n log(sn)

m
‖Z‖G,F +

n log(sn)

m
‖Z‖G,∞

)
, (3.21)

max
1≤k≤k0

∥∥∥PTG
(
I − n

m
E [A∗

kAk]
)
G∗(Z)

∥∥∥
G,F

.

√
µ1r log(sn)

n

(√
n log(sn)

m
‖Z‖G,F +

n log(sn)

m
‖Z‖G,∞

)
,

(3.22)

max
1≤k≤k0

∥∥∥PTG
(
I − n

m
E [A∗

kAk]
)
G∗(Z)

∥∥∥
G,∞

.
µ1r

n

(√
n log(sn)

m
‖Z‖G,F +

n log(sn)

m
‖Z‖G,∞

)
. (3.23)

Here Z ∈ Csn1×n2 is fixed. Recalling the definition of the operator A∗
kAk in (3.16) , the expectation is taken

with respect to {bi}i∈Ωk
.

3.4 Validating the dual certificate and completing the proof

In this section we show that the dual certificateΛ constructed from the iteration (3.17) satisfies the conditions
in Theorem 3.7. The result follows from several lemmas that will be proved in Section 5. In these lemmas,
{Ωk}k0k=1 is a partition of {1, · · · , n} satisfying the conditions in Lemma 3.8, and {Ak}k0k=1 are the associated
linear operators defined in (3.15). Note that we assume (3.4) holds in the remainder of this paper, which
follows from Assumption 2.2 and Lemma 3.4.

Lemma 3.9. Assume n & k0sµ0 · µ1r log(sn). Under the condition (III.18) of Lemma 3.8, the event

max
1≤k≤k0

∥∥∥PTG
(
I − n

m
A∗
kAk

)
G∗PT

∥∥∥ ≤ 1

2
(3.24)

occurs with probability at least 1− (sn)−c1 for a universal constant c1 > 0.

The following corollary is the special case of Lemma 3.9 when k0 = 1 and n = m.
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Corollary 3.10. Assume n & sµ0 · µ1r log(sn). The event

‖PTGA∗AG∗PT − PTGG∗PT ‖ ≤ 1

2
(3.25)

occurs with probability at least 1− (sn)−c1 for a universal constant c1 > 0.

Lemma 3.11. Under the condition (III.19) of Lemma 3.8, for any 1 ≤ k ≤ k0 and fixed Z ∈ Csn1×n2 , the
event

∥∥∥
( n
m
GA∗

kAkG∗ − GG∗
)
(Z)

∥∥∥ .

√
4nk0sµ0 log(sn)

m
‖Z‖G,F +

2nsµ0 log(sn)

m
‖Z‖G,∞ (3.26)

occurs with probability at least 1− (sn)−c1 for a universal constant c1 > 0.

Lemma 3.12. Under the condition (III.20) of Lemma 3.8, for any 1 ≤ k ≤ k0 and fixed Z ∈ Csn1×n2 , the
event

∥∥∥PTG
(
I − n

m
A∗
kAk

)
G∗(Z)

∥∥∥
G,F

.

√
µ1r log(sn)

n

(√
4nk0sµ0 log(sn)

m
‖Z‖G,F +

2nsµ0 log(sn)

m
‖Z‖G,∞

)

(3.27)

occurs with probability at least 1− (sn)−c1 for a universal constant c1 > 0.

Lemma 3.13. Under the condition (III.21) of Lemma 3.8, for any 1 ≤ k ≤ k0 and fixed Z ∈ Csn1×n2 , the
event

∥∥∥PTG
(
I − n

m
A∗
kAk

)
G∗(Z)

∥∥∥
G,∞

.
µ1r

n

(√
4nk0sµ0 log(sn)

m
‖Z‖G,F +

2nsµ0 log(sn)

m
‖Z‖G,∞

)
(3.28)

occurs with probability at least 1− ns−c2 for a numerical constant c2 > 2.

Lemma 3.14. Recalling that U and V satisfy (3.4), we have

‖UV ∗‖2G,F .
µ1r log(sn)

n
and ‖UV ∗‖G,∞ ≤ µ1r

n
. (3.29)

Equipped with these lemmas, we are in position to validate the conditions in Theorem 3.7. Note that
‖AA∗‖ ≥ 1 holds due to (3.2) in Lemma 3.2, and (3.8) is proved in Corollary 3.10. As for (3.11), it follows
immediately from the construction of Λ. Thus, it remains to validate (3.9) and (3.10).

Validating (3.9) A simple calculation yields that

Ek : = PT
(
UV ∗ − Y k

)

= PT
(
UV ∗ − Y k−1 −

( n
m
GA∗

kAkG∗ + I − GG∗
)
PT (Ek−1)

)

= PT (Ek−1)− PT
( n
m
GA∗

kAkG∗ + I − GG∗
)
PT (Ek−1)

= PT
(
GG∗ − n

m
GA∗

kAkG∗
)
PT (Ek−1), (3.30)

where the second line is due to (3.17). By the construction of Λ, we can obtain

‖PT (UV ∗ −Λ)‖
F
=
∥∥Ek0

∥∥
F

=
∥∥∥PT

(
GG∗ − n

m
GA∗

k0Ak0G∗
)
PT (Ek0−1)

∥∥∥
F
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≤
∥∥∥PT

(
GG∗ − n

m
GA∗

k0Ak0G∗
)
PT
∥∥∥ ·
∥∥Ek0−1

∥∥
F

(a)

≤ 1

2

∥∥Ek0−1
∥∥
F
≤ 1

2k0

∥∥E0
∥∥
F

=
1

2k0
‖UV ∗‖

F
≤ r

2k0

≤ 1

16sµ0
,

where step (a) is due to Lemma 3.9 and the last inequality holds when k0 = ⌈log2(16rsµ0)⌉.

Validating (3.10) First recall that Ek := PT
(
UV ∗ − Y k

)
. According to (3.17), we have

Λ =

k0∑

k=1

( n
m
GA∗

kAkG∗ + I − GG∗
)
(Ek−1).

Then it follows that

‖PT⊥(Λ)‖ =

∥∥∥∥∥PT⊥

(
k0∑

k=1

( n
m
GA∗

kAkG∗ + I − GG∗
)
(Ek−1)

)∥∥∥∥∥

=

∥∥∥∥∥PT⊥

(
k0∑

k=1

( n
m
GA∗

kAkG∗ − GG∗
)
(Ek−1)

)∥∥∥∥∥

≤
k0∑

k=1

∥∥∥
( n
m
GA∗

kAkG∗ − GG∗
)
(Ek−1)

∥∥∥ , (3.31)

where the second line follows from the fact that Ek−1 ∈ T .
For any 1 ≤ k ≤ k0, Lemma 3.11 implies that

∥∥∥
( n
m
GA∗

kAkG∗ − GG∗
)
(Ek−1)

∥∥∥ .

√
4nk0sµ0 log(sn)

m

∥∥Ek−1
∥∥
G,F +

2nsµ0 log(sn)

m

∥∥Ek−1
∥∥
G,∞ . (3.32)

Recalling from the equality (3.30), we have

Ek−1 = PT
(
GG∗ − n

m
GA∗

k−1Ak−1G∗
)
PT (Ek−2).

Applying Lemma 3.12 and Lemma 3.13 yields that

∥∥Ek−1
∥∥
G,F

=
∥∥∥PTG

(
I − n

m
A∗
k−1Ak−1

)
G∗PT (Ek−2)

∥∥∥
G,F

=
∥∥∥PTG

(
I − n

m
A∗
k−1Ak−1

)
G∗(Ek−2)

∥∥∥
G,F

.

√
µ1r log(sn)

n

(√
4nk0sµ0 log(sn)

m

∥∥Ek−2
∥∥
G,F +

2nsµ0 log(sn)

m

∥∥Ek−2
∥∥
G,∞

)
(3.33)

and

∥∥Ek−1
∥∥
G,∞ =

∥∥∥PTG
(
I − n

m
A∗
k−1Ak−1

)
G∗PT (Ek−2)

∥∥∥
G,∞

=
∥∥∥PTG

(
I − n

m
A∗
k−1Ak−1

)
G∗(Ek−2)

∥∥∥
G,∞
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.
µ1r

n

(√
4nk0sµ0 log(sn)

m

∥∥Ek−2
∥∥
G,F +

2nsµ0 log(sn)
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)
. (3.34)

After substituting (3.33) and (3.34) into (3.32), we have
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)
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,

where step (a) holds provided m & k0sµ0µ1r log
2(sn).

Finally, noting that E0 = UV ∗, the application of Lemma 3.14 gives

‖PT⊥(Λ)‖≤
k0∑
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∥∥E0
∥∥
G,∞

)

.
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
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2sµ0µ1r log(sn)

m


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≤ 1

2

when m & k0sµ0µ1r log
2(sn), where the first inequality follows from (3.31).

Thus we have shown that the dual certificate Λ constructed from the iteration (3.17) satisfies the condi-
tions in Theorem 3.7 with probability at least 1−c0(sn)−c1−ns−c2 provided that n = mk0 & µ0µ1·sr log4(sn).
Corollary 3.10 implies (3.8) holds with probability at least 1 − (sn)−c3 if n & µ0µ1 · sr log(sn). Taking an
upper bound on the number of measurements completes the proof of Theorem 2.1.

4 Proof of Lemma 3.8

In this section, we will use probabilistic argument to show that the events (3.19) - (3.23) occur with high
probability if we construct {Ωk}k0k=1 in a random manner and thus conclude that there at least exists a
partition satisfying (3.19) - (3.23).
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Let {ǫi}n−1
i=0 be n independent random variables, each of which takes value in {1, · · · , k0} uniformly at

random. For any k ∈ {1, · · · , k0}, we construct {Ωk}k0k=1 as follows:

Ωk = {i ∈ [n] : ǫi = k}.

Clearly, {Ωk}k0k=1 form a partition of [n]. For any fixed k ∈ {1, · · · , k0}, we also have

P {i ∈ Ωk} = P {ǫi = k} =
1

k0
for all i = 0, · · · , n− 1.

Therefore |Ωk| can be viewed as the sum of Bernoulli random variables, i.e.,

|Ωk| =
n−1∑

i=0

1{i ∈ Ωk} =:

n−1∑

i=0

δi, (4.1)

where {δi}n−1
i=0 are i.i.d. Bernoulli random variables with parameter p = 1

k0
= m

n . The application of the

Hoeffding inequality yields that m2 ≤ |Ωk| ≤ 3m
2 holds with probability at least 1−2 exp(−cm) for a universal

constant c > 0. Then we can take the uniform bound to obtain

P

{
m

2
≤ |Ωk| ≤

3m

2
for all k

}
≥ 1− 2k0 exp(−cm) ≥ 1

2
,

where the last inequality is due to m = n
k0

& log(k0).
Our next goal is to show that the events (3.20) - (3.23) occur with high probability. We will first apply

the matrix Bernstein inequality (3.6) to obtain the desired upper bounds for fixed k, and then take the
uniform bound analysis to complete the proof.

4.1 Proof of (3.20)

For any Z ∈ Csn1×n2 , by the definition of A∗
kAk in (3.16), we have

E
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i ,

where the third line follows from the isotropy property (2.5) of {bi}.
As a result, one has the following equality
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where δi is the Bernoulli random variable defined in (4.1) and Xi is the operator defined as

Xi(W ) = PTG
(
G∗PT (W )eie

T

i

)

for any W ∈ Csn1×n2 . It is easy to verify that Xi is self-adjoint and positive semi-definite.

In order to apply the matrix Bernstein inequality (3.6) to bound
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For the upper bound of
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)
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∥∥∥, a simple calculation yields that
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n

=
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where the third line follows from Corollary 6.5.

To bound
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where the second line is due to the positive semi-definite property of Xi, the third line follows from (4.2),
and the last line follows from the fact that ‖G‖ = 1, ‖G∗‖ ≤ 1 and PT is the projection operator.

The application of the matrix Bernstein inequality implies that
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27



≤ 1

4

holds with probability at least 1 − (sn)−c for a universal constant c > 0, where the second and third lines

are due to p & µ1r log(sn)
n . Finally, we take the uniform bound to obtain that

P

{
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1≤k≤k0
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(
I − n

m
E [A∗

kAk]
)
G∗PT

∥∥∥ ≤ 1

4

}
≥ 1− k0(sn)−c ≥ 1− (sn)−(c− 1),

where the last inequality follows from the fact that k0 ≪ sn.

4.2 Proof of (3.21)

Following the definition of A∗
kAk in (3.16) and the isotropy property of {bi} in (2.5), we have
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where δi is defined in (4.1) and Xi :=
(
δi
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)
G
(
G∗(Z)eie

T

i

)
∈ Csn1×n2 are independent random matrices

with zero mean.
Firstly, ‖Xi‖ can be bounded as follows:
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where the second line is due to (2.3), the third line follows from the fact that ‖A⊗B‖ ≤ ‖A‖ · ‖B‖, and
the last line directly follows from the definition of ‖·‖G,∞ in (3.18).

Secondly, we have
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Since
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]∥∥∥ can be bounded by the same quantity, the application of the matrix Bernstein

inequality (3.6) implies that
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)

holds with probability at least 1− (sn)−c for a numerical constant c > 0.
By the uniform bound we conclude that the event (3.21) occurs with probability at least 1− (sn)−(c−1).

4.3 Proof of (3.22)

By the definition of ‖·‖G,F in (3.18) and the isotropy property of {bi} in (2.5), it follows that
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If we construct a new vector zi ∈ Csn×1 as
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then it can be easily seen that
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For the upper bound of ‖zi‖2, a direct calculation yields that
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where the third line follows from Lemma 6.9 and the last line is due to the definition of ‖·‖G,∞ in (3.18).
In addition,
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where the third inequality is due to Lemma 6.9, and the same bound can be obtained for
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Therefore, by the matrix Bernstein inequality (3.6), we can show that
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holds with probability at least 1−(sn)−c for a universal constant c > 0. Taking the uniform bound completes
the proof.

4.4 Proof of (3.23)

The definition of ‖·‖G,∞ in (3.18) allows us to express
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Then one can easily see that
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where the fourth line follows from Lemma 6.6 and the last line is due to the definition of ‖·‖G,∞ in (3.18).
Moreover, we have
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where the third inequality follows from (4.3). The same bound can be obtained for
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well.
The matrix Bernstein inequality (3.6) taken collectively with the uniform bound yields that
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holds with probability at least 1− ns−c2 for a universal constant c2 > 2.
Finally, we take the uniform bound over all k ∈ {1, · · · , k0} again to complete the proof.

5 Proofs of Lemmas 3.9 to 3.14

This section presents the proofs of Lemmas 3.9 to 3.14, which have been used to verify (3.9) and (3.10).
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5.1 Proof of Lemma 3.9

Note that
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∥∥ .

According to (3.20) in Lemma 3.8, the first term is upper bounded by 1
4 . We will bound the second term

via the matrix Bernstein inequality (3.6).
For any Z ∈ Csn1×n2 , by the definition of A∗
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∈ Csn1n2×1, then it follows that
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where it is obvious that ziz
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(
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Then applying (6.6) in Corollary 6.3 implies that
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Secondly,
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Here the last line follows from a direct calculation:
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where in the last inequality we have utilized (3.20) in the following way,
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=
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where the fourth line and the last line hold when m & µ1rsµ0 log(sn).
Finally, combining the two terms together completes the proof.

5.2 Proof of Lemma 3.11

Notice that
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where the second line follows from (3.21). In order to prove (3.26), it suffices to bound the last term.
Recalling the definition of A∗

kAk in (3.16) and using the isotropy property of {bi} in (2.5), we can rewrite
the last term as
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Therefore, by the matrix Bernstein inequality (3.6),
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5.3 Proof of Lemma 3.12
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where the second line follows from (3.22). We will adopt the matrix Bernstein inequality (3.6) to bound the
second term.
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where the second equality is due to the isotropy property of {bi} in (2.5). Furthermore, denoting by
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Clearly, yi are independent random vectors with zero mean.
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5.4 Proof of Lemma 3.13

By the triangle inequality, we have
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where the second line is due to (3.23). In the following proof, we will upper bound the second term by the
matrix Bernstein inequality (3.6) and the uniform bound argument.
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where the first equation follows from (3.16) and the isotropy property of {bi} in (2.5).

For any fixed j ∈ [n],
∥∥∥yji

∥∥∥
2
can be bounded as follows:

∥∥∥yji
∥∥∥
2
=

1
√
wj

∥∥G∗PTG
(
zie

T

i

)
ej
∥∥
2

=
1

√
wj

sup
‖β‖

2
=1

∣∣〈G∗PTG(zieTi )ej ,β
〉∣∣

=
1√
wi

sup
‖β‖

2
=1

√
wi√
wj

∣∣〈PTG(zieTi ),G(βeTj )
〉∣∣

≤ 1√
wi

3µ1r

n
‖zi‖2 (5.8)

=
1√
wi

3µ1r

n
‖(bib∗i − I)G∗(Z)ei‖2
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≤ 1√
wi

3µ1r

n
‖bib∗i − I‖ · ‖G∗(Z)ei‖2

≤ sµ0 ·
3µ1r

n
‖Z‖G,∞ ,

where the fourth line follows from Lemma 6.6 and the last line is due to the incoherence property of {bi} in
(2.6) and the definition of ‖·‖G,∞ in (3.18).

Moreover,

E

[
∑

i∈Ωk

y
j
i (y

j
i )

∗
]
≤ E

[
∑

i∈Ωk

∥∥∥yji
∥∥∥
2

2

]

.
∑

i∈Ωk

1

wi

(µ1r

n

)2
E

[
‖zi‖22

]

.
∑

i∈Ωk

1

wi

(µ1r

n

)2
sµ0 · ‖G∗(Z)ei‖22

.
(µ1r

n

)2
sµ0 · ‖Z‖2G,F ,

where the second line is due to (5.8) and the third line follows from (5.5). It also holds that E
[∑

i∈Ωk
(yji )

∗yji

]
≤

(
µ1r
n

)2
sµ0 · ‖Z‖2G,F.

Applying the matrix Bernstein inequality and taking the uniform bound implies that

n

m
sup

0≤j≤n−1

∥∥∥∥∥
∑

i∈Ωk

y
j
i

∥∥∥∥∥
2

.
n

m

(µ1r

n

√
sµ0 log(sn) ‖Z‖G,F + sµ0 log(sn)

µ1r

n
‖Z‖G,∞

)

=
µ1r

n

(√
nk0sµ0 log(sn)

m
‖Z‖G,F +

nsµ0 log(sn)

m
‖Z‖G,∞

)

holds with probability at least 1 − ns−c2 for a numerical constant c2 > 2. Noting (5.6) and (5.7) we can
conclude that

∥∥∥PTG
(
I − n

m
A∗
kAk

)
G∗(Z)

∥∥∥
G,∞

.
µ1r

n

(√
n log(sn)

m
‖Z‖G,F +

n log(sn)

m
‖Z‖G,∞

)

+
µ1r

n

(√
nk0sµ0 log(sn)

m
‖Z‖G,F +

nsµ0 log(sn)

m
‖Z‖G,∞

)

.
µ1r

n

(√
4nk0sµ0 log(sn)

m
‖Z‖G,F +

2nsµ0 log(sn)

m
‖Z‖G,∞

)

holds with probability exceeding 1− ns−c2 .

5.5 Proof of Lemma 3.14

According to (3.4), a simple algebra yields that

max
0≤i≤n1−1

‖UiV
∗‖2

F
≤ max

0≤i≤n1−1
‖Ui‖2F ≤ µ1r

n
.

Then the application of Corollary 6.8 implies that

‖UV ∗‖2G,F .
µ1r log(sn)

n
.
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The upper bound of ‖UV ∗‖G,∞ can be established as follows. Note that

‖UV ∗‖G,∞ = max
0≤i≤n−1

‖G∗(UV ∗)ei‖2√
wi

.

For any fixed i ∈ [n], we have

‖G∗(UV ∗)ei‖2√
wi

=
1√
wi

sup
‖β‖

2
=1

|〈G∗(UV ∗)ei,β〉|

=
1√
wi
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‖β‖

2
=1

∣∣〈UV ∗,G(βeTi )
〉∣∣

=
1√
wi

sup
‖β‖

2
=1

|〈UV ∗,Gi ⊗ β〉|

=
1

wi
sup

‖β‖
2
=1

∣∣∣∣∣∣∣∣∣∣

〈
UV ∗,




∑

j+k=i
0≤j≤n1−1
0≤k≤n2−1

eje
T

k




⊗ β

〉
∣∣∣∣∣∣∣∣∣∣

=
1

wi
sup

‖β‖
2
=1

∣∣∣∣∣∣∣∣∣∣

〈
UV ∗,

∑

j+k=i
0≤j≤n1−1
0≤k≤n2−1

(ej ⊗ β)eTk

〉
∣∣∣∣∣∣∣∣∣∣

=
1

wi
sup

‖β‖
2
=1

∣∣∣∣∣∣∣∣∣∣

∑

j+k=i
0≤j≤n1−1
0≤k≤n2−1

〈
(ej ⊗ β)∗U , eTkV

〉

∣∣∣∣∣∣∣∣∣∣

≤ 1

wi
sup

‖β‖
2
=1

∑

j+k=i
0≤j≤n1−1
0≤k≤n2−1

‖(ej ⊗ β)∗U‖2
∥∥eTkV

∥∥
2

≤ sup
‖β‖

2
=1

√√√√√√

1

wi

∑

j+k=i
0≤j≤n1−1
0≤k≤n2−1

‖(ej ⊗ β)∗U‖22

√√√√√√

1

wi

∑

j+k=i
0≤j≤n1−1
0≤k≤n2−1

∥∥eTkV
∥∥2
2

= sup
‖β‖

2
=1

√√√√√√

1

wi

∑

j+k=i
0≤j≤n1−1
0≤k≤n2−1

‖β∗Uj‖22

√√√√√√

1

wi

∑

j+k=i
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0≤k≤n2−1

∥∥eTkV
∥∥2
2

≤
√√√√√√

1

wi

∑

j+k=i
0≤j≤n1−1
0≤k≤n2−1

‖Uj‖2F

√√√√√√

1

wi

∑

j+k=i
0≤j≤n1−1
0≤k≤n2−1

∥∥eTkV
∥∥2
2

≤ µ1r

n
,

where the fourth line is due to the definition of Gi in (1.18) and the last line follows from (3.5). Therefore,
‖UV ∗‖G,∞ ≤ µ1r

n .
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6 Auxiliary Results

In this section, we present some necessary results which have been used in the previous proofs. The following
lemma is used in the proof of Theorem 3.7.

Lemma 6.1. Suppose ‖AA∗‖ ≥ 1 and ‖PTGA∗AG∗PT − PTGG∗PT ‖ ≤ 1
2 . For any M ∈ C

sn1×n2 which
obeys

AG∗(M) = 0 and (I − GG∗)(M) = 0,

we have

‖PT (M)‖
F
≤ 4sµ0 ‖PT⊥(M)‖

F
.

Proof. It follows (3.12) and (3.13) that

0 = ‖(GA∗AG∗ + (I − GG∗))(M)‖
F

≥ ‖(GA∗AG∗ + (I − GG∗))PT (M)‖
F
− ‖(GA∗AG∗ + (I − GG∗))PT⊥(M)‖

F
.

For the first term,

‖(GA∗AG∗ + (I − GG∗))PT (M)‖2
F
= ‖GA∗AG∗PT (M)‖2

F
+ ‖(I − GG∗)PT (M)‖2

F

= 〈GA∗AG∗PT (M),GA∗AG∗PT (M)〉 + 〈PT (M), (I − GG∗)PT (M)〉
= 〈AG∗PT (M), (AA∗)AG∗PT (M)〉 + 〈PT (M), (I − GG∗)PT (M)〉
≥ 〈PT (M),GA∗AG∗PT (M)〉 + 〈PT (M), (I − GG∗)PT (M)〉
= ‖PT (M)‖2

F
+ 〈PT (M),PT (GA∗AG∗ − GG∗)PT (M)〉

≥ ‖PT (M)‖2
F
− ‖PT (GA∗AG∗ − GG∗)PT ‖ · ‖PT (M)‖2

F

≥ 1

2
‖PT (M)‖2

F
.

where the fourth step is due to (3.2) in Lemma 3.2.
For the second term,

‖(GA∗AG∗ + (I − GG∗))PT⊥(M)‖
F
≤ ‖(GA∗AG∗)PT⊥(M)‖

F
+ ‖(I − GG∗)PT⊥(M)‖

F

≤ ‖G‖ · ‖A∗A‖ · ‖G∗‖ · ‖PT⊥(M)‖
F
+ ‖I − GG∗‖ · ‖PT⊥(M)‖

F

≤ (1 + sµ0) ‖PT⊥(M)‖
F

≤ 2sµ0 ‖PT⊥(M)‖
F

where the third line is due to ‖G‖ = 1, ‖G∗‖ ≤ 1 and (3.3) in Lemma 3.2.
Combining these two terms together completes the proof.

The following lemmas play an important role in the proofs of Lemmas 3.8 to 3.14.

Lemma 6.2. Recall that U and V obey (III.4). For any fixed z ∈ Cs, there holds

max
0≤i≤n−1

∥∥U∗G(zeTi )
∥∥2
F
≤ ‖z‖22 ·

µ1r

n
, (6.1)

max
0≤i≤n−1

∥∥G(zeTi )V
∥∥2
F
≤ ‖z‖22 ·

µ1r

n
, (6.2)

max
0≤i≤n−1

∥∥PTG(zeTi )
∥∥2
F
≤ 2 ‖z‖22 ·

µ1r

n
. (6.3)
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Proof. To show (6.1), note that for any 0 ≤ i ≤ n− 1,

G(zeTi ) = Gi ⊗ z

=




∑

j+k=i
0≤j≤n1−1
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T

k




⊗ z

=
∑

j+k=i
0≤j≤n1−1
0≤k≤n2−1

1√
wi

(ej ⊗ z) eTk ,

where the second equality is due to the definition of Gi in (1.18). It follows that

∥∥U∗G(zeTi )
∥∥2
F
=
〈
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〉

=
1
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U∗ (ej ⊗ z) eTk ,
∑
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〉

=
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=
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=
1

wi
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2
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∑

j+k=i
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0≤k≤n2−1

‖z‖22 · ‖Uj‖2F

≤ ‖z‖22 ·
µ1r

n
,

where the last step follows from (3.5).
As for (6.2), note that

∥∥G(zeTi )V
∥∥2
F
=
〈
G(zeTi )V ,G(zeTi )V

〉

=
1

wi

〈
∑
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∑

p+q=i
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〉

=
1
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∑
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∑
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〉
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=
1

wi

∑
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0≤k≤n2−1

∑

p+q=i
0≤p≤n1−1
0≤q≤n2−1

〈(
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〉
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T
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wi

∑
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〈
z∗zeTkV , eTkV

〉

=
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∑

j+k=i
0≤j≤n1−1
0≤k≤n2−1

〈
eTkV , e

T

kV
〉

≤ ‖z‖22
µ1r

n
,

where the last step is also due to (3.5).
For the inequality (6.3), by the definition of PT in (3.7), we have

∥∥PTG
(
zeTi

)∥∥2
F
=
〈
PTG

(
zeTi

)
,PTG

(
zeTi

)〉

=
〈
PTG

(
zeTi

)
,G(zeTi )

〉

=
〈
UU∗G

(
zeTi

)
+ G

(
zeTi

)
V V ∗ −UU∗G

(
zeTi

)
V V ∗,G

(
zeTi

)〉

=
∥∥U∗G(zeTi )

∥∥2
F
+
∥∥G
(
zeTi

)
V
∥∥2
F
−
∥∥U∗G

(
zeTi

)
V
∥∥2
F

≤
∥∥U∗G(zeTi )

∥∥2
F
+
∥∥G
(
zeTi

)
V
∥∥2
F

≤ 2 ‖z‖22
µ1r

n
,

which completes the proof.

After replacing z with bi in Lemma 6.2, we obtain the following corollary based on the incoherence
property (2.6) of bi, where bi is the ith column of B∗.

Corollary 6.3. Under the condition (3.4), there holds

max
0≤i≤n−1

∥∥U∗G(bieTi )
∥∥2
F
≤ µ0µ1sr

n
, (6.4)

max
0≤i≤n−1

∥∥G(bieTi )V
∥∥2
F
≤ µ0µ1sr

n
, (6.5)

max
0≤i≤n−1

∥∥PTG(bieTi )
∥∥2
F
≤ 2µ0µ1sr

n
. (6.6)

Lemma 6.4. Under the condition (3.4), for any fixed matrix W ∈ Csn1×n2 ,

‖G∗PT (W )ei‖2 ≤ ‖W ‖
F
·
√

2µ1r

n
. (6.7)

Proof. The result follows from a direct calculation:

‖G∗PT (W )ei‖2 = sup
‖β‖

2
=1

|〈G∗PT (W )ei,β〉|
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= sup
‖β‖

2
=1

∣∣〈G∗PT (W ),βeTi
〉∣∣

= sup
‖β‖

2
=1

∣∣〈W ,PTG(βeTi )
〉∣∣

≤ ‖W ‖
F
· sup
‖β‖

2
=1

∥∥PTG(βeTi )
∥∥
F

≤ ‖W ‖
F
·
√

2µ1r

n
,

where the last line follows from (6.3) in Lemma 6.2.

By combining Lemmas 6.2 and 6.4, the following corollary can be established, which is used in the proof
of (3.20).

Corollary 6.5. For any fixed matrix W ∈ Csn1×n2 , under the condition (3.4), there holds

max
0≤i≤n−1

∥∥PTG
(
G∗PT (W )eie

T

i

)∥∥2
F
≤ ‖W ‖2

F
·
(
2µ1r

n

)2

,

Proof. Applying Lemma 6.2 yields that

max
0≤i≤n−1

∥∥PTG
(
G∗PT (W )eie

T

i

)∥∥2
F
≤ ‖G∗PT (W )ei‖22 ·

2µ1r

n

≤ ‖W ‖2
F
·
(
2µ1r

n

)2

,

where the last line is due to Lemma 6.4.

Lemma 6.6. For any two fixed vectors β,γ ∈ Cs,
√
wi
wj

∣∣〈PTG(βeTi ),G(γeTj )
〉∣∣ ≤ 3µ1r

n
· ‖β‖2 ‖γ‖2

holds for any (i, j) ∈ [n]× [n].

Proof. Recall that

G(βeTi ) = Gi ⊗ β =
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T
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1
√
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T

q


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By the definition of PT in (3.7), we have
√
wi
wj

∣∣〈PTG(βeTi ),G(γeTj )
〉∣∣ ≤

√
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|〈UU∗ (Gi ⊗ β) ,Gj ⊗ γ〉|+
√
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|〈(Gi ⊗ β)V V ∗,Gj ⊗ γ〉|

+

√
wi
wj

|〈UU∗ (Gi ⊗ β)V V ∗,Gj ⊗ γ〉| .

It suffices to bound each of the three terms separately. For the first term, we have
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
,




∑

p+q=j
0≤p≤n1−1
0≤q≤n2−1

1
√
wj

epe
T

q




⊗ γ

〉
∣∣∣∣∣∣∣∣∣∣
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=

√
wi
wj

∣∣∣∣∣∣∣∣∣∣

1
√
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=
1

wj

∣∣∣∣∣∣∣∣∣∣

∑

k+t=i
0≤k≤n1−1
0≤t≤n2−1

∑

p+q=j
0≤p≤n1−1
0≤q≤n2−1

〈
UU∗(ek ⊗ β)eTt , (ep ⊗ γ)eTq
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∣∣∣∣∣∣∣∣∣∣

≤ 1

wj

∑

p+q=j,q≤i
0≤p≤n1−1
0≤q≤n2−1

‖U∗(ei−q ⊗ β)‖2 · ‖U∗(ep ⊗ γ)‖2
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2
·
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∥∥
2
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1
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The second term can be bounded in a similar way. For the last term, we have
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=
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where the last step is due to (3.5).
Combining the three bounds together completes the proof.

The following lemma is established in [15] and the proof will be omitted here.

Lemma 6.7. Suppose a matrix F ∈ C
n1×n2 satisfies
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0≤i≤n1−1

∥∥eTi F
∥∥2
2
≤ B. (6.8)
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We will apply this lemma to upper bound ‖Z‖G,F for Z ∈ Csn1×n2 . Note that Z can be written as
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
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where zi,j ∈ Cs is the (i, j)th block of Z.

Corollary 6.8. For any matrix Z ∈ Csn1×n2 satisfying

max
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where the last line follows from the definition of Gi in (1.18).

Since the condition (6.10) implies that max
0≤i≤n1−1

∥∥∥eTi Z̃
∥∥∥
2

2
≤ B, applying Lemma 6.7 completes the proof.

The following lemma can be established based on Corollary 6.8. It has been used in the proofs of (3.22)
and (3.27).

Lemma 6.9. For any fixed z ∈ Cs,

∥∥PTG(
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Proof. Recalling the definition of PT in (3.7), we have
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It suffices to bound the three terms separately. For the first term, recall that U ∈ Csn1×r can be rewritten
as

U =




U0

...
Un1−1


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where Uℓ ∈ C
s×r is the ℓ-th block. Since
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where the third line follows from (3.4), then the application of Corollary 6.8 yields that
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For the last term, we have
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where the second line is due to (3.4). Applying Corollary 6.8 again yields that
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The proof is completed after combining the three bounds together.
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7 Conclusion

A convex approach called Vectorized Hankel Lift is proposed for blind super-resolution. It is based on
the observation that the corresponding vectorized Hankel matrix is low rank if the Fourier samples of the
unknown PSFs lie in a low dimensional subspace. Theoretical guarantee has been established for Vectorized
Hankel Lift, showing that exact resolution can be achieved provided the number of samples is nearly optimal.
We leave the robust analysis of the method to the future work. In particular, we would like to see whether
the technique that bridges convex and nonconvex programs in [17] may yield an optimal error bound for the
blind supoer-resolution problem.

For low rank matrix recovery and spectrally sparse signal recovery, many simple yet efficient nonconvex
iterative algorithms have been developed and analysed based on inherent low rank structures of the problems
[59, 58, 5, 7, 6]. Thus, it is also interesting to develop nonconvex optimization methods for blind super-
resolution based on the low rank structure of the vectorized Hankel matrix. In fact, preliminary numerical
results suggest that a variant of the gradient method in [6] is also able to reconstruct the target matrix arsing
in the blind super-resolution problem from a few number of the spectrum samples. A detailed discussion
towards this line of research will be reported separately.

For the single snapshot MUSIC and the MMV MUSIC, the super-resolution effect has been studied in
[41, 34, 36]. Since the spatial smoothing MUSIC is designed to improve the performance of the MMVMUSIC,
it is also interesting to investigate the super-resolution effect of this variant. The equivalence between it and
MUSIC through Vectorized Hankle Lift (i.e., Lemma 2.2) may provide a new perspective to approach this
problem.
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