
ar
X

iv
:2

10
1.

11
32

8v
3

 [
cs

.I
T

]
 1

9
Ju

l 2
02

2
1

Recursive Decoding of Reed-Muller Codes Starting

With the Higher-Rate Constituent Code
Mikhail Kamenev

Abstract—Recursive list decoding of Reed-Muller (RM) codes,
with moderate list size, is known to approach maximum-
likelihood (ML) performance of short length (≤ 256) RM codes.
Recursive decoding employs the Plotkin construction to split the
original code into two shorter RM codes with different rates.
In contrast to the standard approach which decodes the lower-
rate code first, the method in this paper decodes the higher-rate
code first. This modification enables an efficient permutation-
based decoding technique, with permutations being selected on
the fly from the automorphism group of the code using soft
information from a channel. Simulation results show that the
error-rate performance of the proposed algorithms, enhanced
by a permutation selection technique, is close to that of the
automorphism-based recursive decoding algorithm with similar
complexity for short RM codes, while our decoders perform
better for longer RM codes. In particular, it is demonstrated
that the proposed algorithms achieve near-ML performance for
short RM codes and for RM codes of length 2m and order m−3
with reasonable complexity.

Index Terms—Reed-Muller codes, AWGN channels, near
maximum-likelihood decoding, permutation decoding, Plotkin
construction.

I. INTRODUCTION

B
INARY Reed-Muller (RM) codes are a family of error-

correcting codes of length n = 2m introduced by

Muller [2] in 1954. Shortly after, Reed proposed a hard-

input majority-logic decoder that achieves bounded distance

decoding [3]. If a priori probabilities for the received bits

are available, the performance of hard-input decoders can

be improved using soft-input recursive decoders [4]–[7]. A

list version of recursive decoding with moderate list size

approaches maximum-likelihood (ML) decoding performance

for short length (≤ 256) RM codes [8]. The permutation

group of RM codes can be used to improve the performance

of both recursive and recursive list decoding algorithms [8]–

[13]. However, these decoders need a large list size or a large

number of permutations to perform close to the ML decoder

for codes of length larger than 256 [14].

Several other soft-input decoding algorithms for RM codes

have been proposed recently [15]–[19]. For instance, a recur-

sive projection-aggregation algorithm demonstrates near-ML

decoding performance for second-order RM codes [16], [19],

while a recursive puncturing–aggregation algorithm is suitable

for high-rate RM codes decoding [17]. Although these algo-

rithms allow for parallel implementation, their computational

complexity is high compared to the recursive list decoder. Note

This paper has been presented in part at the 2021 IEEE International
Symposium on Information Theory [1].

M. Kamenev was with the Moscow Research Center, Huawei Technologies
Co., Ltd., Moscow, Russia. Email: mikhailkamenev92@gmail.com

that decoding algorithms aiming to improve the average-case

running time have been considered in [20]–[22].

In [12], an algorithm that selects a good factor-graph

permutation on the fly to enhance the performance of recursive

list decoding has been proposed. As a result, the decoding al-

gorithm proposed in [12] requires a smaller list size compared

to that of recursive list decoding with the same performance.

However, since the complexity of the factor-graph permutation

selection scheme is high, the error-rate performance of the

algorithm introduced in [12] is close to that of recursive list

decoding with a similar running time.

In this paper, we consider decoding algorithms that al-

low for a low-complexity permutation selection technique.

Similar to recursive decoding, our algorithms employ the

Plotkin construction to get two shorter length RM codes,

but decode a higher-rate constituent code first. Although the

error-rate performance of the proposed algorithms without

permutations is limited, we demonstrate that a clever choice

of permutations makes our algorithms competitive with the

automorphism-based [11] recursive decoding [7] that uses

random permutations. Namely, simulation results show that

the proposed decoders outperform the automorphism-based

recursive decoder with similar computational complexity for

RM codes of length larger than 256, while the performance

is nearly the same for shorter length codes. Furthermore, we

demonstrate that our algorithms achieve near-ML performance

for codes of order m− 3 with reasonable complexity.

The rest of the paper is organized as follows. Section II

briefly introduces RM codes and the RM codes’ automorphism

group. In Section III, we introduce a decoding algorithm for

RM codes of order m− 3 and present a permutation selection

technique. This algorithm is generalized to decode arbitrary

order RM codes in Section IV. Numerical results are presented

in Section V. We conclude the paper in Section VI.

II. PRELIMINARIES

In the following, we use bold lower case letters to denote

vectors and bold upper case letters to denote matrices. We

denote the i-th element of a vector x as xi and we assume

that indexing starts with zero. We use ⊕ to denote a sum

modulo 2.

Denote by f (v) = f (v0, . . . , vm−1) a Boolean function of

m variables that is written in the algebraic normal form. Let

f be the vector of length 2m containing values of f at all of

its 2m arguments. The binary RM code R (r,m) of order r
and length n = 2m, 0 ≤ r ≤ m, is the set of all vectors f ,

where f (v) is a Boolean function of degree at most r. The

RM code R (r + 1,m+ 1) can be represented in a recursive

http://arxiv.org/abs/2101.11328v3

2

manner using |u|u⊕v| construction, where u ∈ R (r + 1,m)
and v ∈ R (r,m) [23, Sec. 13.3]. Throughout the paper, we

call R (r + 1,m) the higher-rate constituent code.

RM codes have the automorphism group, which is isomor-

phic to the general affine group GA(m) [23, Sec. 13.9]. Recall

that the automorphism group (or permutation group1) of a code

contains permutations of the code positions that transform any

codeword of the code to another or the same codeword. For

RM codes, these transformations can be expressed in terms of

Boolean functions as follows: replace f (v0, . . . , vm−1) with

f





m−1
⊕

j=0

a0,jvj ⊕ b0, . . . ,

m−1
⊕

j=0

am−1,jvj ⊕ bm−1



 ,

where A = (ai,j) is an invertible m ×m binary matrix and

b is a binary vector [23, Sec. 13.9].

Let i ∈ {0, 1, . . . , 2m − 1} be a code bit position and let

i ∈ {0, 1}
m

be its binary representation. Then, for a given

invertible m×m binary matrix A and a vector b, a permutation

π from the automorphism group of a code can be written as

π (i) =
∑m−1

k=0 2kjk, where j = Ai⊕ b [24].

III. DECODING OF HIGH-RATE RM CODES

In this section, we present a version of the algorithm for

RM codes of length n = 2m and order m− 3. The key idea

of the algorithm is similar to that of recursive decoding, i.e.,

to repeatedly split the code into two shorter codes until an RM

code allowing for efficient ML decoding. However, in contrast

to recursive decoding, we propose to first decode a higher-rate

constituent code. Although the error-rate performance of this

algorithm is much worse than that of recursive decoding, we

demonstrate that this algorithm allows for a low-complexity

permutation selection technique that significantly improves its

performance.

A. Description of the Algorithm

Consider an RM code R (m− 3,m) of length n. Suppose

that c ∈ R (m− 3,m) is transmitted over a binary-input

additive white Gaussian noise (BI-AWGN) channel and let x

be the received vector. The log-likelihood ratio (LLR) vector

y is then defined as

yi , ln
p (xi|ci = 0)

p (xi|ci = 1)
=

2xi

σ2
, (1)

where σ2 is the noise variance of the channel.

Let ym = y. Recall that a codeword c ∈ R (m− 3,m) can

be written as c = |u|u ⊕ v|, where u ∈ R (m− 3,m− 1),
v ∈ R (m− 4,m− 1), and |x|x′| denotes the concatenation

of vectors x and x′. Note that u is a codeword of an extended

Hamming code. Thus, it is possible to use a low-complexity

Chase II decoding algorithm [25] to decode the first half of the

LLR vector ym. Assume that the first half of the vector ym is

decoded correctly, i.e., the Chase decoder returns u as the hard

1The automorphism group and the permutation automorphism group of
the code are the same only for binary codes. Since we consider only binary
Reed-Muller codes, we use the terms "automorphism group" and "permutation
group" interchangeably.

output. Then the LLR vector ym−1 corresponding to v can be

easily obtained as ym−1
i = (1− 2ui)y

m
n/2+i, 0 ≤ i < n/2.

Since v ∈ R (m− 4,m− 1), it can be written as v =
|u′|u′ ⊕ v′|, where u′ ∈ R (m− 4,m− 2) and v′ ∈
R (m− 5,m− 2). Thus, ym−1 can be processed in the

same manner as ym. This process continues until y4, i.e.,

a noisy codeword of R (1, 4), which is decoded using the

fast Hadamard transform (FHT) [26]. Throughout this paper,

we refer to this decoding algorithm as a blockwise successive

algorithm2. Blockwise successive decoding of R (3, 6) is

illustrated in Fig. 1.

Remark 1: There is an efficient bit-wise maximum a pos-

teriori decoder of the extended Hamming codes that has

computational complexity O (n logn) [28]. Unfortunately, the

output of this decoder is not necessarily a codeword of the

extended Hamming code. It is the main reason why blockwise

successive decoding uses the Chase algorithm to decode an

extended Hamming code.

The formal description of the blockwise successive algo-

rithm is given in Algorithm 1. Note that this algorithm uses

the Chase II algorithm with m unreliable bits for decoding of

length 2m extended Hamming code. We consider the following

implementation of the Chase II algorithm in Algorithm 1.

Suppose that yi0 ,yi1 , . . .yim−1
are m LLRs with the smallest

absolute values. The Chase II algorithm enumerates all 2m

possible hard output for codeword bits corresponding to these

unreliable LLRs. The rest of hard values are assigned based

on the sign of the LLR values. Then, 2m hard vectors are

decoded using syndrome decoding of extended Hamming

code. Namely, if the syndrome equals a column in the parity-

check matrix of the code, then a bit corresponding to this

column is flipped. Otherwise, the failure is declared for the

given hard pattern of length m. Consequently, this procedure

can generate at most 2m codewords of the extended Hamming

code. Finally, the algorithm computes a correlation discrep-

ancy [29, Sec. 10.1] for each of these codewords and returns

the codeword with the smallest metric value.

Lemma 1: Algorithm 1 takes O (n logn) time.

Proof: First, we show that the running time of all

ChaseII function calls used in Algorithm 1 is O (n logn).
Consider the ChaseII function and assume that its input is

a vector yl of length n′ = 2l. In the beginning, this function

uses sorting, which has running time O (n′ logn′), to find

unreliable LLRs. Then, the algorithm runs syndrome decoding

n′ times. The computational complexity of this procedure is

optimized as follows. Suppose that the hard decision is made

based on the LLR vector and the syndrome s is calculated.

We assume that, in the case of an extended Hamming code,

the syndrome computation can be done using a summation

of integer numbers modulo 2. Therefore, the running time

of the syndrome’s calculation is O (n′). If s is known, then

the calculation of syndrome for each hard pattern of length

l requires at most l summations modulo 2. Consequently,

the computational complexity of the syndromes’ calculation

2In [1], this algorithm is called sequential decoding. However, in the
literature, the term sequential decoding is usually associated with another
decoding technique (for instance, see [27]). Therefore, we use a different
name for the proposed algorithm in this paper.

3

y

(y0,y1, . . . ,y31) (y32,y33, . . . ,y63)

ChaseII

(

1− 2c′j
)

y32+j

y′

(y′
0,y

′
1, . . . ,y

′
15) (y′

16,y
′
17, . . . ,y

′
31)

ChaseII

(

1− 2c′′j
)

y′
16+j

y4

FHT

ĉ = |c′′|c′′ ⊕ c4|

|c′|c′ ⊕ ĉ|

c′

c′′

c4

Fig. 1. Blockwise successive decoding of R (3, 6).

is O (n′ logn′). Since an integer representation s of the

syndrome s is less than 2n′, one can use an array of length 2n′

to find a position of error bit with the running time O (1). As a

result, the running time of this part of the function ChaseII

is O (n′ logn′).

The correlation discrepancy of a codeword c is calculated

as
∑

i∈I

∣

∣yl
i

∣

∣, where I =
{

i : sign
(

yl
i

)

6= (1− 2ci)
}

[29,

Sec. 10.1]. Observe that the algorithm calculates the cor-

relation discrepancy for codewords such that |I| ≤ l + 1.

Consequently, all metric values are calculated in O (n′ logn′).
Therefore, the running time of ChaseII

(

yl
)

is O (n′ logn′).
Note that the function ChaseII is applied to vectors of

lengths 25, 26, . . . , 2m−1. Hence, the total running time of this

function in Algorithm 1 is O (n logn).

Since the operations in lines 6 – 8 of Algorithm 1 have

linear computational complexity, the running time of the for

loop in lines 2 – 10 of Algorithm 1 is O (n logn). Note that

lines 11 – 15 of Algorithm 1 deal with a vector of length 16.

Therefore, this part of the algorithm takes constant running

time. It follows that the running time of Algorithm 1 is indeed

O (n logn).

Lemma 2: The space complexity of a sequential implemen-

tation of Algorithm 1 is O (n).

Proof: Consider the function ChaseII and assume that

its input is a vector yl of length n′ = 2l. Sorting used in this

function can be implemented in place [30, Part II]. Thus, the

total memory required for sorting is O (n′).

The syndrome decoding used in the function ChaseII

needs to store at most l+1 positions of the received LLRs with

the incorrect sign, the value of the correlation discrepancy,

and an array of size 2n′ that maps the syndrome value to

the position of incorrect bit. Also, the algorithm needs to

Algorithm 1: The BWSDec decoding function

Input: An LLR vector y of length n = 2m

Output: A decoded codeword c

1 Let c be zero vector of length n
2 for l = m− 1,m− 2, . . . , 4 do

3 ŷ← (y2m−2l+1 ,y2m−2l+1+1, . . . ,y2m−2l−1)
4 ĉ← ChaseII (ŷ) // ChaseII function

decodes an input LLR vector of

length 2l using the Chase II

algorithm with l unreliable bits

[25]

5 for i = 0, 1, . . . 2l − 1 do

6 y2m−2l+i ← (1− 2ĉi)y2m−2l+i

7 c2m−2l+1+i ← c2m−2l+1+i ⊕ ĉi
8 c2m−2l+i ← c2m−2l+i ⊕ ĉi
9 end

10 end

11 y4 ← (y2m−16,y2m−15, . . . ,y2m−1)
12 c4 ← FHTDec

(

y4
)

// FHTDec function

performs ML decoding of an input LLR

vector using the FHT-based algorithm

[26]

13 for i = 0, 1, . . . 15 do

14 c2m−16+i ← c2m−16+i ⊕ c4i
15 end

16 return c

store the error positions corresponding to the codeword with

the smallest correlation discrepancy and the metric of this

codeword. Since we consider a sequential implementation of

this algorithm, the space complexity of syndrome decoding is

O (n′). Consequently, the function ChaseII has linear space

complexity.

Since the function FHTDec and the for loop in lines 13–15

deal with a vector of constant length, it follows that lines

11–15 use a constant amount of memory. Thus, the space

complexity of Algorithm 1 is O (n).

Remark 2: Recursive decoding of an arbitrary order RM

code takes O (n logn) time. However, since the complexity of

recursive decoding is upper bounded by 3n ·min {r,m− r}+
n (m− r) + n [7], the running time of recursive decoding

for RM codes of order m − 3 grows linearly with the code

length and, as a consequence, grows slower compared to

blockwise successive decoding. The space requirements of

these algorithms are similar.

Note that the output of Algorithm 1 is a codeword of

R (m− 3,m). We prove it by the induction on m. Consider

the base case of m = 4. In this case, the output of the

algorithm equals the output of the FHT-based decoder of

the first-order RM codes, and the claim holds. Assume that

the claim holds for all R (m− 3,m) and we prove it for

R (m− 2,m+ 1). Consider the for-loop in lines 2 – 10 of

Algorithm 1. In the first iteration, the Chase decoder is used

to get a codeword of R (m− 2,m) and it is assigned to the

first and the second halves of the vector c. Then, the algorithm

processes the second half of the LLR vector y and, by the

4

induction hypothesis, returns a codeword of R (m− 3,m).
This codeword is added to the second half of the vector c (see

lines 7–8 and line 14). Therefore, the output of Algorithm 1

can be written as c = |u|u ⊕ v|, where u ∈ R (m− 2,m),
v ∈ R (m− 3,m). Thus, c ∈ R (m− 2,m+ 1).

B. Permutation-Based Blockwise Successive Decoding

Consider blockwise successive decoding of R (m− 3,m).
Observe that R (m− 3,m− 1) has a higher rate than

R (m− 3,m). As a consequence, R (m− 3,m− 1) has a

higher block error probability under ML decoding than

R (m− 3,m). Since the blockwise successive algorithm uses

the original LLR vector for decoding of R (m− 3,m− 1),
the block error probability of R (m− 3,m) under blockwise

successive decoding is lower bounded by the block error

probability of the extended Hamming code under ML decod-

ing. Therefore, the performance of the blockwise successive

decoder is very poor.

The performance of blockwise successive decoding can

be enhanced by permutations from the automorphism group

of the code. For instance, different permuted LLR vectors

are decoded using the blockwise successive algorithm and

then the output codewords are de-interleaved. The output of

this algorithm is a codeword with the best metric. A similar

approach has been used for recursive decoding [9], [11], [13]

and it allows to improve the performance of the recursive algo-

rithm significantly. However, we found that permutations for

blockwise successive decoding can be selected based on soft

information from a channel. It results in a better performance

in comparison with the case of random permutations.

In this subsection, we present an efficient algorithm for the

selection of permutations from the automorphism group of the

code for blockwise successive decoding. This algorithm aims

to find a permutation that moves reliable LLRs, i.e., LLRs

with large absolute values, to the first half of the vector, while

unreliable LLRs, i.e., LLRs with small absolute values, are

moved as close to the end of the vector as possible. The

intuition behind why such permutations improve the error-

rate performance of blockwise successive decoding is that

the resulting permuted vector contains a small fraction of

unreliable LLRs in the first half of the vector and, as a conse-

quence, it increases the probability of successful decoding of

the R (m− 3,m− 1) constituent code.

Consider a PermTransform function presented in Algo-

rithm 2. This function takes as input a random permutation π
of length n = 2m and transforms it into a permutation π̄ from

the automorphism group of the code. In the next proposition,

we prove the correctness of this function.

Proposition 1: The output of the PermTransform func-

tion is a permutation from the automorphism group of RM

codes.

Proof: We first show that the auxiliary permutation π̂
used in Algorithm 2 is from the automorphism group of

the code. Recall that a permutation from the automorphism

group of the code can be defined using matrix multipli-

cation as π̂ (i) =
∑m−1

k=0 2kjk, where j = Ai ⊕ b, i

is a binary representation of index i, A = (ar,c) is an

Algorithm 2: The PermTransform function for

the permutation-based blockwise successive decoding

algorithm

Input: A random permutation π of length n
Output: A permutation π̄ from the automorphism

group of length n RM codes

1 Let π̂ be a permutation of length n
2 π̂ (0)← π (0)
3 Let x be zero vector of length n
4 xπ̂(0) ← 1
5 i← 1
6 for l = 0, 1, . . . , log2 (n)− 1 do

7 while xπ(i) = 1 do

8 i← i+ 1
9 end

10 π̂
(

2l
)

← π (i)
11 xπ̂(2l) ← 1
12 i← i+ 1
13 for t = 2l + 1, 2l + 2, . . . , 2l+1 − 1 do

14 π̂ (t)← π̂
(

t− 2l
)

⊕ π̂
(

2l
)

⊕ π̂ (0)
15 xπ̂(t) ← 1
16 end

17 end

18 Let π̄ be a permutation of length n such that

π̄ (i) = π̂ (n− i− 1), 0 ≤ i ≤ n− 1
19 return π̄

invertible m × m binary matrix, and b is a binary vector

[24]. Observe that π̂ (0) =
∑m−1

k=0 2kbk. Therefore, the

PermTransform function chooses as b a binary repre-

sentation of π (0) (line 2). If a binary representation of an

index i contains only one non-zero entry, i.e., indices i = 2l,
l ∈ {0, . . . ,m− 1}, then π̂ (i) =

∑m−1
k=0 2k (ak,l ⊕ bk). Con-

sequently, π̂
(

20
)

, π̂
(

21
)

, . . . , π̂
(

2m−1
)

define the columns

of the matrix A plus the vector b (line 10). The while

loop in lines 7 – 9 is used to guarantee that the matrix A

corresponding to the permutation π̂ is invertible.

It remains to show that π̂ (i) calculated in lines 13–16 equals
∑m−1

k=0 2kjk, where j = Ai⊕b. We prove it by induction on l
used in for loop in lines 6 – 17. Observe that the claim holds

for the base case of l = 1 (it is the smallest l, for which the

algorithm enters the loop in lines 13–16). Indeed,

π̂ (3) =

m−1
∑

k=0

2k (ak,0 ⊕ ak,1 ⊕ bk)

=

(

m−1
∑

k=0

2k (ak,0 ⊕ bk)

)

⊕

(

m−1
∑

k=0

2k (ak,1 ⊕ bk)

)

⊕

m−1
∑

k=0

2kbk

= π̂ (1)⊕ π̂ (2)⊕ π̂ (0) .

(2)

Let us assume that the claim holds for l and we prove it for

l+1. Observe that π̂ (i) =
∑m−1

k=0 2kjk, i ≤ 2l, where j = Ai⊕
b. Consider an index t, 2l < t < 2l+1. Denote by l̂ a binary

representation of 2l and denote by l̂t a binary representation

5

of t − 2l. Let ẑ = Âl, let ẑt = Âlt, and let z = At. Since

t ∈
{

2l + 1, . . . , 2l+1 − 1
}

, it follows that t =
(

t− 2l
)

⊕ 2l.
Consequently,

π̂ (t) =

m−1
∑

k=0

2k (zk ⊕ bk) =

m−1
∑

k=0

2k
(

ẑk ⊕ ẑtk ⊕ bk

)

=

(

m−1
∑

k=0

2k (ẑk ⊕ bk)

)

⊕

(

m−1
∑

k=0

2k
(

ẑtk ⊕ bk

)

)

⊕

m−1
∑

k=0

2kbk = π̂
(

2l
)

⊕ π̂
(

t− 2l
)

⊕ π̂ (0) .

(3)

This establishes the inductive step and completes the proof

that π̂ is a permutation from the automorphism group of RM

codes.

Note that the permutation π′ of length n, π′ (i) = n −
1 − i, is in the automorphism group of the code (π′ (i) =
∑m−1

k=0 2k (ik ⊕ 1), where i is a binary representation of

i). Consequently, π̂ ◦ π′ is in the automorphism group of

the code. Since the permutation π̄ returned by the function

PermTransform can be written as π̂ ◦ π′, the function

PermTransform indeed returns a permutation from the

automorphism group of the code.

Consider an LLR vector y = (y0, y1, . . . , yn−1), n =
2m. Let π be a permutation such that the vector of

LLR’s absolute values
(

|yπ(0)|, |yπ(1)|, . . . , |yπ(n−1)|
)

is or-

dered in the ascending order and denote by π̄ the result of

PermTransform (π). Observe that for any j ∈ {0, . . . , 4},
there exists i ∈ {n− 16, n− 15 . . . , n− 1} such that π̄ (i) =
π (j). Therefore, there are at least 5 unreliable LLRs among

the last 16 elements of the vector
(

yπ̄(0), yπ̄(1), . . . , yπ̄(n−1)

)

.

Thus, if the blockwise successive algorithm decodes this

vector, then at least 5 unreliable LLRs will be processed by

FHT in the last step of the decoding algorithm.

Remark 3: The idea of dividing the bit positions into

two disjoint sets based on their reliabilities has been used

in [15] to generate the rows of an overcomplete parity-

check matrix tailored to belief propagation decoding of the

received sequence. Specifically, the algorithm proposed in [15]

generates an (r + 1)×m matrix and then matrix multiplication

is used to find 2r+1 non-zero positions of a minimum-weight

parity check. The matrix is selected in such a way that the

resulting parity check contains at least one unreliable position

and r + 1 reliable ones. In [31], a permutation selection

approach similar to Algorithm 2 has been proposed. Namely,

the binary expansion of indices corresponding to the least

reliable LLRs is used in [31] to generate an invertible matrix.

Then matrix multiplication is used to find the permutation

associated with the matrix. In contrast to the method proposed

in [31], Algorithm 2 does not generate an invertible matrix and

directly returns a permutation from the automorphism group

of the code.

Lemma 3: The running time and the space complexity of

Algorithm 2 are O (n).
Proof: Algorithm 2 uses two summations modulo 2 to

calculate the majority of π̂ (t) and simple assigning for the

others. Consequently, the complexity of the π̂ calculation is

O (n). Note that this function also uses a simple check in lines

7–9. The complexity of this check in the worst case is also

O (n). Since the permutation π̄ is derived from π̂ by reversing

the order, the running time of Algorithm 2 is O (n).

Algorithm 2 allocates memory to store the output permuta-

tion π̄, the auxiliary permutation π̂, and the temporary array x

of size n. Thus, the space complexity of Algorithm 2 is O (n).

We now introduce the permutation-based blockwise

successive decoding algorithm. The formal description of this

algorithm is presented in Algorithm 3. First, we describe an

algorithm for permutation selection, which is illustrated in Fig.

2. In the beginning, sorting is used to find indices of l LLRs

with the smallest absolute values iN =
(

iN0 , iN1 , . . . , iNl−1

)

.

Denote by iR =
(

iR0 , i
R
1 , . . . , i

R
n−l−1

)

a vector with the

remaining n−l indices. Then, iN and iR are permuted using p
pairs of random permutations πN

j and πR
j , 0 ≤ j < p. Let zj =

(

iN
πN
j (0)

, iN
πN
j (1)

, . . . , iN
πN
j (l−1)

, iR
πR
j (0)

, iR
πR
j (1)

, . . . , iR
πR
j (n−l−1)

)

.

We use zj to define a permutation πj as πj (k) = z
j
k,

0 ≤ k ≤ n − 1. These permutations are transformed into

permutations from the automorphism group of the code using

the PermTransform function. Denote the transformed

permutations as π̄j , 0 ≤ j < p.

The second part of the permutation-based algorithm is

illustrated in Fig. 3. At this stage, the permutations π̄j are used

in a manner similar to the permutation decoder proposed in [9].

Namely, the LLR vector is permuted using the π̄j permutations

and each permuted version of the LLR vector is decoded

using the blockwise successive algorithm. Finally, the output

of each blockwise successive decoder is de-interleaved and the

algorithm returns a codeword c with the smallest correlation

discrepancy.

Now we prove that the proposed permutation-based algo-

rithm has computational complexity O (pn logn) for both

sequential and parallel implementations. By the parallel im-

plementation of this algorithm, we mean an implementation

that parallelizes the loop in lines 5 – 18 of Algorithm 3.

Theorem 1: The running time of the permutation-based

blockwise successive decoding algorithm is O (pn logn) for

both sequential and parallel implementations.

Proof: Consider the running time of each part of Algo-

rithm 3. In lines 1 – 2, Algorithm 3 creates an array of length

l that stores indices of unreliable LLRs and an array of length

n− l that stores indices of reliable LLRs. One can use sorting

to create these arrays. Consequently, the complexity of this

operation is O (n logn). Next, the algorithm permutes these

arrays using p pairs of random permutations. The complexity

of this operation is O (pn).

Then, the algorithm uses the PermTransform function

to create p permutations from the automorphism group of the

code. Since the running time of this function is O (n), the total

computational complexity of permutation selection is O (pn).

Next, the algorithm permutes the LLR vector, decodes the

permuted vector using Algorithm 1, and de-interleaves the

blockwise successive decoding output. The total computational

complexity of these operations is O (pn logn). Finally, the

correlation discrepancy is computed for each output codeword

6

Algorithm 3: The PermBWSDec decoding function

Input: An LLR vector y of length n = 2m, a number

of unreliable LLRs l, a number of permutations

p
Output: A decoded codeword c

1 Let iN be an array of length l that contains indices of

l least reliable LLRs in y

2 Let iR be an array of length n− l that contains indices

of n− l most reliable LLRs in y

3 Let c be zero vector of length n
4 M ←∞
5 for k = 0, 1, . . . , p− 1 do

6 Let π
(

iN
)

be a randomly permuted copy of the

vector iN

7 Let π
(

iR
)

be a randomly permuted copy of the

vector iR

8 Let z be a concatenation of π
(

iN
)

and π
(

iR
)

,

z =
∣

∣π
(

iN
)

|π
(

iR
)∣

∣

9 Let π be a permutation of length n such that

π (i) = zi, 0 ≤ i ≤ n− 1
10 π̄ ← PermTransform (π)
11 y′ ←

(

yπ̄(0), yπ̄(1), . . . , yπ̄(n−1)

)

12 c̄′ ← BWSDec (y′)
13 Let c̄ be a vector of size n, c̄π̄(i) = c̄′i,

0 ≤ i ≤ n− 1
14 Let M̄ be the correlation discrepancy of the

codeword c̄

15 if M̄ < M then

16 c← c̄, M ← M̄
17 end

18 end

19 return c

and a codeword with the smallest metric is returned. The cor-

relation discrepancy for all codeword is calculated in O (pn).

We can see that the computational complexity of Algo-

rithm 3 is dominated by the complexity of the blockwise

successive algorithm. Therefore, the running time of the

permutation-based blockwise successive decoding algorithm is

O (pn logn). Observe that the parallel implementation of this

algorithm does not require any additional calculations. This

completes the proof of the theorem.

We now consider the space complexity of permutation-

based blockwise successive decoding. Sorting that is used

for the calculation of arrays iN and iR can be implemented

in place [30, Part II]. Consequently, the calculation of these

arrays requires O (n) space. Observe that, in each iteration

of the for loop in lines 5 – 18, the algorithm allocates

several arrays of length at most n and uses the functions

PermTransform and BWSDec that have a linear space

complexity. Therefore, the space complexity of the sequential

implementation of Algorithm 3 is O (n), while the parallel

implementation takes O (pn) space.

y

iRiN

πR
0 πR

1 · · · πR
p−1πN

0 πN
1 · · · πN

p−1

z0 z1 zp−1

π0 π1 πp−1

Perm

Transform

Perm

Transform

Perm

Transform

π̄0 π̄1 π̄p−1

· · ·

Fig. 2. The permutation selection for the permutation-based blockwise
successive decoding

y

π̄0 π̄1 π̄p−1

BWSDec BWSDec BWSDec

(π̄0)
−1

(π̄1)
−1 (π̄p−1)

−1

c̄0 c̄1 c̄p−1

· · ·

CorrelationDiscrepancy

c

Fig. 3. The permutation-based blockwise successive decoding algorithm with
permutations π̄0, π̄1, . . . π̄p−1.

IV. DECODING OF ARBITRARY ORDER RM CODES

In this section, we propose a generalized blockwise suc-

cessive decoding algorithm that can be applied to arbitrary

order RM codes. We observed that, even though the higher-rate

constituent code is decoded by a sub-optimal algorithm, e.g.,

automorphism-based recursive decoding, it is possible to find

a permutation that leads to correct decoding of this constituent

code. Thus, we propose to use two sub-optimal algorithms to

decode shorter length constituent codes, with a higher-rate one

being decoded first.

Another feature of the generalized algorithm is that it

decodes different higher-rate constituent codes only once.

Observe that different blockwise successive decoders in Al-

gorithm 3 may process the same constituent codes in the first

iteration of for-loop in lines 2–10 of Algorithm 1. Conse-

quently, it is possible to decrease computational complexity by

7

processing these codes only once. A naive implementation of

this approach checks whether there are permutations π̄i, 0 ≤
i < p, that result in the same constituent code in the first

iteration of blockwise successive decoding and processes them

only once. However, this approach does not guarantee that

such permutations exist. Thus, it only allows decreasing the

average computational complexity of the algorithm. To address

this issue, we propose a method that selects p LLR vectors

corresponding to different higher-rate constituent codes using

puncturing.

Consider a codeword of R (r,m). Observe that there are

2n−2, n = 2m, ways to puncture bits in this codeword to get

a vector from R (r,m− 1). Indeed, any codeword of an RM

code R (r,m) comes from a polynomial f (v0, . . . , vm−1) =
g (v0, . . . , vm−2)⊕vm−1h (v0, . . . , vm−2), where deg (g) ≤ r
and deg (h) ≤ r−1 [23, Sec. 13.3]. Note that the vector corre-

sponding to a polynomial vm−1 has Hamming weight of n/2.

Therefore, puncturing of n/2 bits can be done in the following

way: remove the codeword bits corresponding to non-zero

values of vm−1. Consequently, a codeword of the punctured

code comes from the polynomial g. Since deg (g) ≤ r and the

length of the punctured code equals 2m−1, the punctured code

is R (r,m− 1). Moreover, it is possible to use permutations

from the code’s automorphism group to change the punctur-

ing pattern. Namely, one can replace f (v0, . . . , vm−1) with

f (
⊕

a0,jvj ⊕ b0, . . . ,
⊕

am−1,jvj ⊕ bm−1), where A =
(ai,j) is an invertible m×m binary matrix and b is a binary

vector. As a result, the puncturing patterns are defined by the

polynomials
⊕

am−1,jvj ⊕ bm−1. It is easy to verify that

there are 2n−2 such polynomials. Note that all codewords of

the first-order RM code R (1,m) with Hamming weight n/2
come from these polynomials.

Let y be an LLR vector of length n. Let p be a vector of

the same length such that pi, 0 ≤ i < n, is a probability that

yi has the incorrect sign. These probabilities are calculated as

pi =
e−|yi|

1 + e−|yi|
. (4)

Denote by E (i), i ∈ {0, 1, . . . , 2n− 3}, sets of indices

corresponding to different higher-rate constituent codes. For

each E (i), we calculate

E (E (i)) =
∑

j∈E(i)

pj , (5)

i.e., the expected number of errors in the noisy vector cor-

responding to the higher-rate constituent code. The general-

ized version of the blockwise successive decoding algorithm

chooses E (ij), 0 ≤ j ≤ p−1, with the smallest E (E (ij)). The

higher-rate constituent codes defined by E (ij) are decoded

using a sub-optimal decoding algorithm, e.g., automorphism-

based recursive decoding or permutation-based blockwise suc-

cessive decoding. The hard output of this algorithm is used

to change signs of LLRs yk, k ∈ {0, 1, . . . , n− 1} \ E (ij).
The second half of the LLR vector is decoded by another

sub-optimal decoder. Finally, the algorithm returns a code-

word with the smallest correlation discrepancy. The formal

description of this algorithm is presented in Algorithm 4. Note

that decoders of constituent codes are passed as arguments

Algorithm 4: The GBWSDec decoding function

Input: An LLR vector y of length n = 2m, a number

of decompositions into shorter length RM

codes p, constituent decoders uDec and vDec

Output: A decoded codeword c

1 Let c be zero vector of length n, M ←∞
2 Let E (i0) , E (i1) , . . . E (ip−1) be p sets of indices of

higher-rate constituent codes with the smallest

expected number of errors (5)

3 for i = i0, i1, . . . ip−1 do

4 Let h be a vector of length n; hj = 0, if j ∈ E (i),
otherwise hj = 1

5 Denote by j0, j1, . . . jn/2−1 the indices such that

hjt = 0, j0 < j1 < · · · < jn/2−1

6 Denote by l0, l1, . . . ln/2−1 the indices such that

hlt = 1, l0 < l1 < · · · < ln/2−1

7 y′ ←
(

yj0 ,yj1 , . . . ,yjn/2−1

)

8 y′′ ←
(

yl0 ,yl1 , . . . ,yln/2−1

)

9 c′ ← uDec (y′)
10 y′′

t ← (1− 2c′t)y
′′
t , for t = 0, 1, . . . , n/2− 1

11 c′′ ← vDec (y′′)
12 Let c̄ be zero vector of size n
13 c̄jt ← c′t, for t = 0, 1, . . . , n/2− 1
14 c̄lt ← c′t ⊕ c′′t , for t = 0, 1, . . . , n/2− 1
15 Let M̄ be the correlation discrepancy of the

codeword c̄

16 if M̄ < M then c← c̄, M ← M̄
17 end

18 return c

of the GBWSDec decoding function. We denote decoders of

the higher-rate and lower-rate constituent codes as uDec and

vDec, respectively. Decoding for a set E (i) is schematically

depicted in Fig. 4.

In contrast to Algorithm 3, Algorithm 4 computes E (E (i)),
0 ≤ i < 2n−2, and selects E (i0) , E (i1) , . . .E (ip−1) with the

smallest expected number of errors. It is done in O (n logn).
Indeed, consider the LLR vector y of length n = 2m. The

vector y and (4) are used to calculate the vector of probabilities

p. The result of FHT applied to the vector p can be written

as w = pH, where

H =

[

1 1
1 −1

]⊗m

,

X⊗m denotes m-times Kronecker product of the matrix X

with itself. Note that any codeword of the first-order RM code

R (1,m) can be written as (1± h) /2, where 1 is the all-

ones vector of size n and h is a column of the matrix H.

Consequently, (5) can be calculated using the result of the

FHT as (w0 ±wi) /2, 0 < i < n. Since the running time of

FHT and sorting is O (n logn), E (i0) , E (i1) , . . .E (ip−1) are

found in O (n logn).
The running time of the GBWSDec function is roughly p

times the running time of constituent decoders uDec and

vDec plus the running time of FHT and sorting. Since the

result of FHT is used to find indices of sets with the smallest

8

y

y′

y′′

c′

c′′

E (i)

uDec

(

1− 2c′j
)

y′′
j vDec

c̄

Fig. 4. Decoding of an LLR vector y by the generalized blockwise successive
algorithm for a set E (i).

expected number of errors, the algorithm needs to store the

sets themselves. Therefore, line 2 of Algorithm 4 takes O
(

n2
)

space. It follows that the space complexity of Algorithm 4 is

at least O
(

n2
)

. Note that the space complexity of Algorithm

4 also depends on the space requirements of constituent

decoders.

Remark 4: In [12], a permutation selection method has

been proposed for recursive list decoding. The key idea of

the approach proposed in [12] is to select the projected code

maximizing the sum of LLR absolute values. However, since

a brute-force search is used to find the best projected code,

the computational complexity of this approach is quite high.

To reduce the running time, the authors in [12] proposed to

perform the search through a small fraction of permutations

called factor-graph permutations. Note that this idea is used

only for projected codes that do not allow for low-complexity

ML decoding. In contrast to [12], we consider a different

decoding algorithm. Although the performance of our de-

coding algorithm is limited, it allows for the low-complexity

decomposition selection scheme that improves the error-rate

performance significantly. Furthermore, unlike the approach

in [12], our scheme performs the search through all available

decompositions.

V. SIMULATION RESULTS

In this section, we present simulation results for a BI-

AWGN channel and compare the block error rate (BLER)

performance with that of automorphism-based recursive de-

coding with p permutations (referred to as AutRec-p). In

[11], it has been demonstrated that the automorphism-based

successive cancellation (SC) decoder outperforms the recursive

list decoder with permutations [8] both in terms of error-rate

performance and complexity. To further improve the error-rate

performance of automorphism-based decoding for the given

number of permutations, we consider the recursive decoder [7]

instead of the SC decoder. In contrast to SC decoding in which

the recursion is continued until codes of length 1, the recursive

algorithm continues a decomposition procedure until an RM

code allowing for low-complexity ML decoding, leading to

an improvement in error-rate performance [7]. Specifically,

we consider a version of recursive decoding that continues

a decomposition until a first-order RM code or a parity-check

code, i.e., R (h− 1, h) for some h. Furthermore, we use a

"min-sum" approximation to decrease the running time of

recursive decoding [6]. The decoding algorithms considered

in this section are briefly introduced in Table I.

In Fig. 5, we present the performance of R (7, 10) under

different versions of blockwise successive decoders. We denote

the blockwise successive decoder by BWS, the permutation-

based blockwise successive decoder with l unreliable bits and

p permutations as PBWS-l-p, and the generalized blockwise

successive decoder with p different decompositions as GBWS-

p. Note that, unless specified otherwise, the number of unre-

liable bits used in Chase decoding is upper bounded by 7. It

allows decreasing the running time of the proposed decoders

at the cost of a negligible performance loss.

As expected, the blockwise successive decoding algorithm

has very poor performance. If the PermTransform function

is used to find a permutation for the received LLR vector, then

the blockwise successive decoding performance is improved

by more than 0.4 dB. A larger number of permutations further

improves the performance. We can see that usage of random

permutations causes degradation of 0.2 dB at a BLER of

10−3 compared to the decoder that uses soft information

from a channel to generate permutations. We denote the

blockwise successive decoder with p random permutations by

AutBWS-p. The permutation-based and generalized blockwise

successive decoders have similar decoding error probability.

As will be shown later, these decoders also have similar com-

plexity. In Fig. 5, we also plot the error-rate performance of a

low-complexity hard-input ML decoding algorithm proposed

recently [32] and the ML performance lower bound. The ML

lower bound is estimated using an approach in [8]. Namely, we

count the number of cases when the codeword returned by the

generalized blockwise successive algorithm is more probable

than the transmitted one, and plot the fraction of such events.

We observe that considered permutation-based and generalized

decoders perform 0.1 dB from ML lower bound at a BLER

of 10−4, while the hard-input ML decoder is not competitive

with the soft-input algorithms.

In Fig. 6, we present the error-rate performance of the

permutation-based blockwise successive decoder with differ-

ent numbers of unreliable bits. We see that, for a wide

range of the number of unreliable bits, the permutation-based

blockwise successive decoder demonstrates almost the same

performance. Thus, careful optimization of this parameter does

not allow for better error-rate performance.

In Figs. 7 and 8, we compare the error-rate performance of

the proposed decoders to that of automorphism-based recursive

decoding. For decoders considered in Figs. 7 and 8, we esti-

mate the complexity by counting the number of floating-point

operations (comparisons and additions/subtractions) required

to decode one codeword. Since the number of operations

depends on the level of noise in the channel, we report

complexity for an Eb/N0 of −10 dB in Table II and for

the Eb/N0 required to achieve a BLER of 10−4 in Table III.

For automorphism-based recursive decoding, this difference is

primarily caused by the decoder of parity-check constituent

codes, because, if the parity-check is satisfied, then there is

no need to search for the minimum absolute value. Although

the complexity of automorphism-based recursive decoding

is roughly the same for both scenarios, it is significantly

improved for the considered blockwise successive decoders

in the high signal-to-noise ratio (SNR) region in the case of

9

TABLE I
BRIEF DESCRIPTION OF THE DECODING ALGORITHMS BEING COMPARED.

Decoding algorithm Constituent code decoded first Permutation selection

Automorphism-based recursive decoding (AutRec) Lower-rate Random

Blockwise successive decoding (BWS) Higher-rate –

Permutation-based blockwise successive decoding (PBWS) Higher-rate Reliability-based (see Algorithm 2)

Permutation-based blockwise successive decoding

with random permutations (AutBWS)
Higher-rate Random

Generalized blockwise successive decoding (GBWS) Higher-rate Reliability-based using FHT (see Algorithm 4)

Generalized blockwise successive decoding

with random decompositions (RGBWS)
Higher-rate Random

5 5.5 6 6.5
10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

B
lo

ck
er

ro
r

ra
te

BWS PBWS-12-1 AutBWS-256

GBWS-32 PBWS-32-256 hard-input ML

ML lower-bound

Fig. 5. The block error rate performance of R (7, 10) under different versions
of blockwise successive decoding. For generalized blockwise successive
decoding, the Chase decoder with 7 unreliable bits is used as uDec and
PBWS-28-8 is used as vDec.

R (m− 3,m), m ∈ {8, 9, 10}. This improvement is due to

Chase decoding used in the proposed algorithms. The Chase

decoder calculates the syndrome and, if it is the all-zero

vector, then the output codeword is immediately obtained by

taking signs of LLRs. Thus, the average-case complexity of the

Chase algorithm is improved in the high SNR region. In our

simulations, we compare the generalized blockwise successive

decoding to automorphism-based decoding with nearly the

same complexity in the low SNR region.

In Fig. 7, we plot the BLER for R (m− 3,m), m ∈
{8, 9, 10}. For the generalized blockwise successive decoder,

we use the Chase decoding algorithm as uDec and the

permutation-based blockwise successive decoder as vDec.

The proposed decoders perform within 0.15 dB from ML

decoding. In the case ofR (5, 8), the permutation-based block-

wise successive decoder and the automorphism-based decoder

perform similarly, while the proposed decoding algorithms

offer better performance for R (6, 9) and R (7, 10). For in-

stance, in the case of R (7, 10), the generalized blockwise

successive decoder outperforms the automorphism-based re-

cursive decoder by 0.16 dB at a BLER of 10−3. Furthermore,

on average, the permutation-based and generalized blockwise

successive decoders require at least 20% fewer operations to

decode one codeword at a BLER of 10−4. To demonstrate the

improvement due to the proposed constituent codes selection

scheme, we report the error-rate performance of a decoder

that randomly chooses p decompositions into shorter codes

(referred to as RGBWS-p). Observe that the proposed selection

technique gives a gain of at least 0.2 dB over the randomized

one.

In Fig. 8, we present BLER results for RM codes of

various orders and lengths. We also plot the ML performance

lower bound obtained using graph search decoding [20]. For

codes of length 128 and 256, the generalized blockwise

successive decoder provides a performance close to that of

automorphism-based recursive decoding. The proposed decod-

ing algorithm outperforms the automorphism-based recursive

decoder for codes of length 512. Specifically, at a BLER of

10−4, the generalized blockwise successive decoder shows a

performance gain of 0.07 dB, 0.17 dB, and 0.13 dB for codes

of order 3, 4, and 5, respectively. As in Fig. 7, we can see

that the proposed decomposition selection technique improves

upon the randomized one.

Finally, for the generalized blockwise successive decoder,

we investigate the number of decompositions leading to cor-

rect decoding. Consider an RM code R (r,m) and assume

that uDec and vDec algorithms are used for decoding of

R (r,m− 1) and R (r − 1,m− 1) constituent codes, respec-

tively. Recall that there are 2m+1−2 different decompositions

of R (r,m) into R (r,m− 1) and R (r − 1,m− 1). Let the

random variable U denote the number of decompositions, in

which a higher-rate constituent code is decoded correctly, and

let the random variable X denote the number of decomposi-

tions, in which both constituent codes are decoded correctly. In

Fig. 9, we plot the empirical cumulative distribution functions

of the random variables U and X . Note that we consider SNRs,

at which the experimental ML performance lower bound is

approximately 10−3.

For R (3, 8) and R (4, 9), we clearly see that, for the given

pair of constituent decoders, the probability that there are s
"good" decompositions is roughly the same for both U and

X . Thus, if a higher-rate constituent code is decoded correctly,

then vDec returns the correct codeword with high probability.

10

4 4.5 5 5.5
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

c
k

e
rr

o
r

ra
te

l = 12
l = 16

l = 20
l = 28
l = 36

(a) R (5, 8), PBWS-l-32

4 4.2 4.4 4.6 4.8 5 5.2 5.4
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

c
k

e
rr

o
r

ra
te

l = 16
l = 20

l = 24
l = 32
l = 40

(b) R (6, 9), PBWS-l-64

4.6 4.8 5 5.2 5.4 5.6
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

c
k

e
rr

o
r

ra
te

l = 20
l = 24

l = 28
l = 36
l = 44

(c) R (7, 10), PBWS-l-256

Fig. 6. The block error rate performance of R (m− 3, m), m ∈ {8, 9, 10}, under permutation-based blockwise successive decoding with different numbers
of unreliable bits.

3.8 4 4.2 4.4 4.6 4.8 5
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

c
k

e
rr

o
r

ra
te

GBWS-8

RGBWS-8

PBWS-20-32

AutRec-33

ML

(a) R (5, 8)

4.2 4.4 4.6 4.8 5 5.2
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

c
k

e
rr

o
r

ra
te

GBWS-16

RGBWS-16

PBWS-24-64

AutRec-63

ML

(b) R (6, 9)

4.8 5 5.2 5.4 5.6 5.8
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

c
k

e
rr

o
r

ra
te

GBWS-32

RGBWS-32

RGBWS-86

PBWS-28-256

AutRec-170

ML lower bound

(c) R (7, 10)

Fig. 7. The block error rate performance of R (m − 3, m), m ∈ {8, 9, 10}. For generalized blockwise successive decoding, the Chase decoder with 7
unreliable bits is used as uDec, while PBWS-20-4, PBWS-24-4, and PBWS-28-8 are used as vDec for codes of length 256, 512, and 1024, respectively.
RGBWS-p denotes a version of generalized blockwise successive decoding that chooses p decompositions into shorter codes at random. ML simulation results
are taken from [33].

TABLE II
NUMBER OF FLOATING-POINT OPERATIONS REQUIRED TO DECODE ONE CODEWORD AT AN Eb/N0 OF −10 dB.

Code R (3, 7) R (3, 8) R (4, 8) R (5, 8) R (3, 9) R (4, 9) R (5, 9) R (6, 9) R (7, 10)
PBWS – – – 46361 – – – 147004 867311

GBWS 19213 186173 142802 39943 5699679 4775932 3427892 148814 797169

AutRec 19642 187752 144142 40372 5702795 4777835 3429521 150676 801220

TABLE III
NUMBER OF FLOATING-POINT OPERATIONS REQUIRED TO DECODE ONE CODEWORD AT A BLER OF 10−4 .

Code R (3, 7) R (3, 8) R (4, 8) R (5, 8) R (3, 9) R (4, 9) R (5, 9) R (6, 9) R (7, 10)
PBWS – – – 26078 – – – 85475 566786

GBWS 18314 181253 134929 25740 5646313 4687249 3268816 101404 565371

AutRec 18882 183789 137768 36620 5653858 4690475 3289294 135938 722947

Furthermore, if we use a more powerful algorithm for decod-

ing of a higher-rate constituent code, then the probability that

there is at least one "good" decomposition is increased. In the

case of R (7, 10), we use Chase decoding as the decoder of

a higher-rate constituent code and we observe only a slight

improvement upon the decoder with a smaller number of

unreliable bits. The reason for this is that Chase decoding

even with 7 unreliable bits achieves near-ML performance for

the considered case.

Given the empirical cumulative distribution function FX of

the random variable X , one can approximate the error-rate per-

formance of the decoder with random decomposition selection.

Indeed, let us assume that decompositions are independent,

i.e., the success of decoding for a given decomposition is

independent of success for others, and let us assume that the

transmitted codeword is the closest codeword to the received

sequence, i.e., the ML decoder always returns the correct

codeword. Under these assumptions, the probability that p

11

1.5 2 2.5 3 3.5
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

c
k

e
rr

o
r

ra
te

GBWS-16

RGBWS-16

AutRec-22

ML lower-bound

(a) R (3, 7)

0.5 1 1.5 2 2.5
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

c
k

e
rr

o
r

ra
te

GBWS-32

RGBWS-32

RGBWS-77

AutRec-86

ML lower bound

(b) R (3, 8)

1.5 2 2.5 3 3.5
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

c
k

e
rr

o
r

ra
te

GBWS-32

RGBWS-32

AutRec-81

ML lower bound

(c) R (4, 8)

0.5 1 1.5 2
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

c
k

e
rr

o
r

ra
te

GBWS-64

RGBWS-64

AutRec-1127

ML lower bound

(d) R (3, 9)

0.5 1 1.5 2 2.5
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

c
k

e
rr

o
r

ra
te

GBWS-64

RGBWS-64

RGBWS-254

AutRec-1068

ML lower bound

(e) R (4, 9)

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

c
k

e
rr

o
r

ra
te

GBWS-64

RGBWS-64

AutRec-976

ML lower bound

(f) R (5, 9)

Fig. 8. The block error rate performance of RM codes. For generalized blockwise successive decoding, AutRec-2, AutRec-4, and AutRec-32 are used as
uDec, while recursive decoding, AutRec-2, and AutRec-8 are used as vDec for codes of length 128, 256, and 512, respectively. RGBWS-p denotes a version
of generalized blockwise successive decoding that chooses p decompositions into shorter codes at random.

100 101 102
10−5

10−4

10−3

10−2

10−1

100

Decompositions providing correct decoding

F

FU (uDec: AutRec-4, vDec: AutRec-2)

FX (uDec: AutRec-4, vDec: AutRec-2)

FU (uDec: AutRec-256, vDec: AutRec-128)

FX (uDec: AutRec-256, vDec: AutRec-128)

(a) R (3, 8), 1.8 dB

100 101 102
10−4

10−3

10−2

10−1

100

Decompositions providing correct decoding

F

FU (uDec: AutRec-32, vDec: AutRec-8)

FX (uDec: AutRec-32, vDec: AutRec-8)

FU (uDec: AutRec-2048, vDec: AutRec-512)

FX (uDec: AutRec-2048, vDec: AutRec-512)

(b) R (4, 9), 1.6 dB

100 101 102
10−7

10−6

10−5

10−4

10−3

10−2

Decompositions providing correct decoding

F

FU (uDec: Chase (m = 7), vDec: PBWS-28-8)

FX (uDec: Chase (m = 7), vDec: PBWS-28-8)

FU (uDec: Chase (m = 12), vDec: PBWS-28-32)

FX (uDec: Chase (m = 12), vDec: PBWS-28-32)

(c) R (7, 10), 5.2 dB

Fig. 9. Empirical cumulative distribution functions of the number of decompositions resulting in correct decoding.

random decompositions result in incorrect decoding equals

2n−2−p
∑

i=0

P (X = i)

(

2n−2−i
p

)(

i
0

)

(

2n−2
p

) +

2n−2
∑

i=2n−2−p+1

P (X = i)

=

2n−2−p
∑

i=0

P (X = i)

p−1
∏

j=0

2n− 2− i− j

2n− 2− j

+

2n−2
∑

i=2n−2−p+1

P (X = i) ,

(6)

where n is the code length and P (X = i) = FX (i) −
FX (i− 1). In Figs. 7c, 8b, and 8e, we plot the BLER perfor-

mance of the decoder that randomly chooses p decompositions

into shorter codes and performs close to the generalized

blockwise successive decoder. The number of decompositions

p is selected as the smallest value, for which (6) gives a lower

probability of error compared to the generalized blockwise

successive decoder. We can see that the error-rate performance

of considered decoders is nearly the same.

12

VI. CONCLUSION

In this paper, we presented non-iterative soft-input decoding

algorithms that, unlike traditional recursive decoding, start de-

coding with a constituent code of the same order. Although the

error-rate performance of the proposed blockwise successive

decoder is limited, we showed that it can be significantly

improved by means of a clever choice of permutations em-

ploying soft information from a channel. For short length

(≤ 256) RM codes, we demonstrated a performance close

to automorphism-based recursive decoding with the same

computational complexity, while, for longer RM codes, it is

shown that the proposed decoders offer a performance gain.

For RM codes of length 2m and order m− 3, the proposed

algorithms perform within 0.15 dB from ML decoding at a

BLER of 10−4. Furthermore, due to the use of the Chase

II decoding algorithm, our decoders take a shorter average-

case running time to decode one codeword compared to

the automorphism-based decoder. In particular, for R (7, 10),
we showed that the proposed algorithms outperform the

automorphism-based recursive decoder by 0.13 dB at a BLER

of 10−4, while, on average, requiring 21% fewer operations

to decode one codeword.

REFERENCES

[1] M. Kamenev, “Sequential decoding of high-rate Reed-Muller codes,”
in 2021 IEEE International Symposium on Information Theory (ISIT),
2021, pp. 1076–1081.

[2] D. E. Muller, “Application of Boolean algebra to switching circuit design
and to error detection,” Transactions of the I.R.E. Professional Group

on Electronic Computers, vol. EC-3, no. 3, pp. 6–12, Sep. 1954.

[3] I. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” Transactions of the IRE Professional Group on Information

Theory, vol. 4, no. 4, pp. 38–49, Sep. 1954.

[4] S. Litsyn, “On decoding complexity of low-rate Reed-Muller codes,” in
Proc. 9th All-Union Conf. Coding Theory and Information Transmission,
1988, pp. 202–204.

[5] G. Kabatyanskii, “On decoding of Reed-Muller codes in semicontinuous
channels,” in Proc. 2nd Int. Workshop Algebraic and Combinatorial

Coding Theory, 1990, pp. 87–91.

[6] G. Schnabl and M. Bossert, “Soft-decision decoding of Reed-Muller
codes as generalized multiple concatenated codes,” IEEE Transactions

on Information Theory, vol. 41, no. 1, pp. 304–308, 1995.

[7] I. Dumer, “Recursive decoding and its performance for low-rate Reed-
Muller codes,” IEEE Transactions on Information Theory, vol. 50, no. 5,
pp. 811–823, 2004.

[8] I. Dumer and K. Shabunov, “Soft-decision decoding of Reed-Muller
codes: recursive lists,” IEEE Transactions on Information Theory,
vol. 52, no. 3, pp. 1260–1266, March 2006.

[9] N. Stolte, “Recursive codes with the Plotkin construction and their
decoding,” Ph.D. dissertation, Technical University of Darmstadt, Ger-
many, 2002.

[10] S. A. Hashemi, N. Doan, M. Mondelli, and W. J. Gross, “Decoding
Reed-Muller and polar codes by successive factor graph permutations,”
in 2018 IEEE 10th International Symposium on Turbo Codes Iterative

Information Processing (ISTC), 2018, pp. 1–5.

[11] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. t. Brink,
“Automorphism ensemble decoding of Reed–Muller codes,” IEEE

Transactions on Communications, vol. 69, no. 10, pp. 6424–6438, 2021.

[12] N. Doan, S. A. Hashemi, M. Mondelli, and W. J. Gross, “Decoding
Reed-Muller codes with successive factor-graph permutations,” 2021.
[Online]. Available: https://arxiv.org/abs/2109.02122v1

[13] N. Doan, S. A. Hashemi, and W. J. Gross, “Successive-cancellation
decoding of Reed-Muller codes with fast Hadamard transform,” 2021.
[Online]. Available: https://arxiv.org/abs/2108.12550v2

[14] K. Ivanov and R. L. Urbanke, “On the efficiency of polar-like decoding
for symmetric codes,” IEEE Transactions on Communications, vol. 70,
no. 1, pp. 163–170, 2022.

[15] E. Santi, C. Hager, and H. D. Pfister, “Decoding Reed-Muller codes
using minimum-weight parity checks,” in 2018 IEEE International

Symposium on Information Theory (ISIT), 2018, pp. 1296–1300.
[16] M. Ye and E. Abbe, “Recursive projection-aggregation decoding of

Reed-Muller codes,” IEEE Transactions on Information Theory, vol. 66,
no. 8, pp. 4948–4965, 2020.

[17] M. Lian, C. Häger, and H. D. Pfister, “Decoding Reed–Muller codes us-
ing redundant code constraints,” in 2020 IEEE International Symposium

on Information Theory (ISIT), 2020, pp. 42–47.
[18] A. Buchberger, C. Häger, H. D. Pfister, L. Schmalen, and A. Graell i

Amat, “Pruning and quantizing neural belief propagation decoders,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 7,
pp. 1957–1966, 2021.

[19] D. Fathollahi, N. Farsad, S. A. Hashemi, and M. Mondelli, “Sparse
multi-decoder recursive projection aggregation for Reed-Muller codes,”
in 2021 IEEE International Symposium on Information Theory (ISIT),
2021, pp. 1082–1087.

[20] M. Kamenev, “On decoding of Reed-Muller codes using a local graph
search,” IEEE Transactions on Communications, vol. 70, no. 2, pp. 739–
748, 2022.

[21] P. Yuan and M. C. Coşkun, “Complexity-adaptive maximum-likelihood
decoding of modified GN -coset codes,” in 2021 IEEE Information

Theory Workshop (ITW), 2021, pp. 1–6.
[22] S. A. Hashemi, N. Doan, W. J. Gross, J. Cioffi, and A. Goldsmith, “A

tree search approach for maximum-likelihood decoding of Reed-Muller
codes,” in 2021 IEEE Globecom Workshops (GC Wkshps), 2021, pp.
1–6.

[23] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting

codes. Amsterdam, The Netherlands: North-Holland, 1977.
[24] E. Abbe, A. Shpilka, and M. Ye, “Reed–Muller codes: Theory and

algorithms,” IEEE Transactions on Information Theory, vol. 67, no. 6,
pp. 3251–3277, 2021.

[25] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Transactions on Information Theory,
vol. 18, no. 1, pp. 170–182, 1972.

[26] R. Green, “A serial orthogonal decoder,” JPL Space Programs Summary,
vol. 37, pp. 247–253, 1966.

[27] N. Stolte, U. Sorger, and G. Sessler, “Sequential stack decoding of binary
Reed-Muller codes,” ITG FACHBERICHT, pp. 63–70, 2000.

[28] A. Ashikhmin and S. Litsyn, “Simple MAP decoding of first-order Reed-
Muller and Hamming codes,” IEEE Transactions on Information Theory,
vol. 50, no. 8, pp. 1812–1818, 2004.

[29] S. Lin and D. J. Costello, Error control coding, Second ed. Upper
Saddle River, NJ, USA: Pearson Prentice hall, 2004.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.
[31] F. Carpi, C. Häger, M. Martalò, R. Raheli, and H. D. Pfister, “Rein-

forcement learning for channel coding: Learned bit-flipping decoding,”
in 2019 57th Annual Allerton Conference on Communication, Control,

and Computing (Allerton), 2019, pp. 922–929.
[32] A. Thangaraj and H. D. Pfister, “Efficient maximum-likelihood decod-

ing of Reed–Muller RM(m-3,m) codes,” in 2020 IEEE International

Symposium on Information Theory (ISIT), 2020, pp. 263–268.
[33] M. Helmling, S. Scholl, F. Gensheimer, T. Dietz, K. Kraft, S. Ruzika,

and N. Wehn, “Database of Channel Codes and ML Simulation Results,”
www.uni-kl.de/channel-codes, 2019.

https://arxiv.org/abs/2109.02122v1
https://arxiv.org/abs/2108.12550v2
www.uni-kl.de/channel-codes

	I Introduction
	II Preliminaries
	III Decoding of High-Rate RM Codes
	III-A Description of the Algorithm
	III-B Permutation-Based Blockwise Successive Decoding

	IV Decoding of Arbitrary Order RM Codes
	V Simulation Results
	VI Conclusion
	References

