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Abstract

We consider a scenario wherein two parties Alice and Bob are provided Xn
1 and Xn

2 – samples that

are IID from a PMF PX1X2
. Alice and Bob can communicate to Charles over (noiseless) communication

links of rate R1 and R2 respectively. Their goal is to enable Charles generate samples Y n such that

the triple (Xn
1 , X

n
2 , Y

n) has a PMF that is close, in total variation, to
∏
PX1X2Y . In addition, the three

parties may posses pairwise shared common randomness at rates C1 and C2. We address the problem of

characterizing the set of rate quadruples (R1, R2, C1, C2) for which the above goal can be accomplished.

We provide a set of sufficient conditions, i.e. an inner bound to the achievable rate region, and necessary

conditions, i.e. an outer bound to the rate region for this three party setup. We provide a joint-typicality

based random coding argument involving encoding and decoding operations to perform soft covering

and a pertinent relaxation of the PMF requirement for the encoders.
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I. INTRODUCTION

The task of generating correlated randomness at different terminals in a network has applications in

several communication [1], [2] and computing [3]–[5] scenarios. The presence of distributed correlated

randomness also serves as a primitive in several cryptographic protocols [6]. In this article, we study

the problem of characterizing fundamental information-theoretic limits of generating such correlated

randomness in network scenarios.

We consider the scenario depicted in Fig 1. Three distributed parties - Alice, Bob and Charles -

have to generate samples that are independent and identically distributed (IID) with a target probability

mass function (PMF) PX1X2Y . Alice and Bob are provided with samples that are IID PX1X2
- the

corresponding marginal of the target PMF PX1X2Y . They have access to unlimited private randomness

and share noiseless communication links of rates R1, R2 with Charles. In addition, the three parties share

common randomness at rate C. For what rate triples (R1, R2, C) can Alice and Bob enable Charles to

generate the required samples? In this article, we undertake a Shannon-theoretic study and characterize

inner [7] and outer bounds on the aforementioned set of rate triples.

Charles

Alice

Bob

X11,X12, ... R1

ΠpX1X2

~
~

R2
X21,X22, ...

Y1,Y2, ...

μ1 ∈ [2nC1]

μ1,μ2 = Shared common random bits

μ1 ∈ [2nC1]μ1 ∈ [2nC1]

μ2 ∈ [2nC2]

μ2 ∈ [2nC2]

Fig. 1. Illustration of distributed agents performing source coding for synthesizing correlated randomness.

The roots of this line of study - distributed terminals generating IID copies of correlated random

variables - can be traced back to the work of Wyner [8]. Wyner [8] considered the scenario of distributed

parties generating IID samples distributed with PMF PXY , when fed with a common information stream.

In characterizing this rate, Wyner discovered a measure, commonly referred to as Wyner’s common

information, that quantifies the amount of common information between two correlated random variables.

A renewed interest in this study led Cuff [9] to study the scenario depicted in Fig. 1 with just two terminals

corresponding to Alice, Charles, and Bob being absent. Cuff [9] characterized the entire set of rate pairs

(R,C) and showed that Wyner’s common information forms one vertex of this region. Cuff’s work

also shares an interesting connection with an analogous problem in quantum information theory. Prior

to [9], Winter [10] considered the problem of simulating quantum measurements with limited common

randomness. This work was generalized in [11] where the authors characterized a complete trade-off
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between communication and common randomness rates. Building on this, [12] studied a distributed

scenario consisting of three distributed parties and derived inner bounds.

Motivated by applications in security [13], cryptography [14], need for co-ordinated control among

distributed terminals [15], among others, this line of study has received considerable attention lately

[16], [17]. The works of Wyner [8], Cuff [9] and others [18] naturally lead us to consider the scenario

depicted in Fig. 1. In contrast to these works, our scenario requires two distributed terminals, observing

correlated information, to co-ordinate their communication to a central decoder. This poses certain

technical challenges in the design and analysis of the encoders and the decoders, thereby leaving the

information-theoretic study of our scenario unresolved. As we describe in the sequel, our work overcomes

these challenge via (i) a novel design of the encoders and decoder, and (ii) identification of appropriate

mathematical tools for performance analysis and rate region characterization.

The key challenge here is to ensure that Bob’s simulated samples Y n are correlated simultaneously with

Xn
1 and Xn

2 in a single-letter fashion. In particular, it maybe noted that the conventional side-information

approach of treating one of the sources, say Xn
2 , as side-information and adopting the proof of channel

synthesis with side-information [18] does not work. The reason for this is the need for simultaneous

correlation as mentioned above. Indeed, it maybe noted that, while the channel synthesis with side-

information problem [18] has been addressed and solved several years ago, the problem of distributed

channel synthesis has remained open.

We propose a novel approach to addressing this problem. We first prove an inner bound that appears

smaller at first sight. Specifically, we prove achievability of one corner point of the achievable rate region

wherein the lower bound on one of the rates is higher. This larger lower bound enables us simulate the

generated samples to be correlated with a larger sub-collection of auxiliary random variables. We then

leverage this for lowering the lower bound on the other rate components. By then using convexification,

we prove that by swapping the order and performing time-sharing, we can enlarge the inner bound to

what one might conjecture to be a natural inner bound via binning. The reader will find Figs. 4, 5, and

6 illustrate the new steps in our proof technique.

We also emphasize that while the stated inner bound might appear natural for a reader familiar with

the problem of distributed source coding [19], the problem of distributed channel synthesis is different

and involves more constraints. Indeed, in this problem, it is required that the generated random variables

appear to have a single-letter distribution as specified, not just that they meet certain distortion criterion.

This difference is clearly emphasized in the rate region obtained for the conventional channel synthesis

problem studied by Cuff [9] for which we are aware of optimality. Observe that, as against to a single

lower bound on the rate that we obtain in the Shannon’s source coding problem, Cuff’s problem yields

two lower bounds, proving that the distributed channel synthesis problem is more involved, and perhaps

hinting at the need for a new proof technique that we have developed in this article. We also note that we

have the opportunity to employ a more sophisticated Chernoff-Hoeffding concentration inequality due to

Ahlswede Winter [20] - a tool not regularly employed in proof of coding theorems.

Lastly, we highlight another novelty of our findings. In addressing the scenario in Fig. 1, it is natural
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CharlesAliceX1,X2, ...
R

ΠpXYZ Z1,Z2, ...

μ ∈ [2nC]

μ = Shared common random bits

μ ∈ [2nC]

Y1,Y2, ...

Fig. 2. Synthesizing correlated randomness with side information available at the decoder.

to try and build on Cuff’s [9] findings - relying on the use of a likelihood encoder that maps the observed

sequence and common random bits into a codebook of sufficient rate. Essentially, the encoder performs a

MAP decoding of the observed sequence into the chosen codebook. While this choice greatly simplifies the

analysis, it permits little room for generalization. Our experience in network information theory suggests

that encoding and decoding via joint-typicality can be naturally generalized to diverse multi-terminal

scenarios. Motivated by this, we propose joint-typicality based encoding and decoding to perform soft

covering [7]. As a reader will note, the transition from a likelihood encoder to a joint-typicality based

encoder results in challenges in analysis due to the hard constraints that the encoders are valid PMFs.

Toward this, we develop a novel construction of random encoders, by relaxing the PMF requirement.

This relaxation plays a central role in generalizing the results to the distributed case. The mathematical

tools we have adopted to overcome these challenges maybe viewed as part of our technical contribution.

In view of the general applicability of typicality-based coding schemes, we regard the typicality-based

soft covering we propose as an important step. Furthermore, we leverage ideas from the outer bounds for

the distributed source coding problem [21] to characterize an outer bound for this problem. This article

therefore contains a complete suite of results for the distributed channel synthesis problem, thereby 1)

filling our knowledge gaps in regards to our scenario and 2) deriving bounds for this problem that is on

par with our knowledge for the distributed source coding problem. Elaborating on the last point, we note

that with infinite common randomness, our rate regions reduce to those that are currently the best known

for the distributed source coding problem.

A preliminary version of this work appeared in [7]. Subsequently, building on this work, the authors

in [22] considered a side information and three-way common information generalization of the problem

considered in [7], and derived inner and outer bounds.

The paper is organized as follows. After setting up notation and stating the problem (Sec. II), we provide

our main results, the inner and outer bounds to the achievable rate-region of a distributed problem, in

Sec. III. Before providing a complete proof of the above inner bound, we consider the two-terminal

side-information scenario (Fig. 2) in Sec. IV, wherein the decoder is provided with side-information.

This provides us with an ideal pedagogical step to present our typicality based encoder, decoder and

indicate the mathematical challenges in its information-theoretic analysis. Unlike [18], we propose a

joint-typicality based encoder and decoder and provide a complete proof of achievability of the full rate

region. Building on the tools developed therein, we present the proof of our main results in Sec. V.
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II. PRELIMINARIES AND PROBLEM STATEMENT

We supplement standard information theory notation with the following. For a PMF PX , we let PnX =∏n
i=1 PX . Given a sequence xn ∈ X n, let Pxn denote its empirical distribution. For any distribution PX

on X , define the δ-typical set Tδ(X) as

Tδ(X) =∆
{
xn ∈ X n : ‖Pxn − PX‖∞ ≤

δ

|X |
, Pxn � PX

}
.

For any distribution PXY on X × Y , define the δ-jointly typical set Tδ(X,Y ) as

Tδ(X,Y ) = Tδ(PXY ) =∆
{

(xn, yn) ∈ X n × Yn : ‖Pxn,yn − PXY ‖∞ ≤
ε

|X ||Y|
, Pxn,yn � PXY

}
,

where Pxn,yn is the empirical joint distribution of two sequences (xn, yn). Note that if (xn, yn) ∈
Tδ(PXY ), then xn ∈ Tδ(PX), and yn ∈ Tδ(PY ). For any conditional distribution PY |X : X → Y , and

any xn ∈ X n, define the δ-conditional typical set Tδ(Y |xn) as

Tδ(Y |xn) =∆
{
yn ∈ Yn :

∥∥Pxn,yn − PY |XPxn∥∥∞ ≤ δ

|Y|
, Pxn,yn � PxnPY |X

}
.

For an integer n ≥ 1, [n] =∆ {1, · · · , n}. The total variation between PMFs PX and QX defined over X
is denoted ‖PX −QX‖1 = 1

2

∑
x∈X |PX(x)−QX(x)| = supA⊂X |PX(A)−QX(A)|.

Definition 1. Given a PMF PXY Z on X ×Y ×Z , a rate pair (R,C) is said to be achievable, if ∀ε > 0

and all sufficiently large n, there exists a collection of 2nC randomized encoders E(µ) : X n → [Θ]

for µ ∈ [2nC ] and a corresponding collection of 2nC randomized decoders D(µ) : Zn × [Θ] → Yn for

µ ∈ [2nC ] such that ‖PnXY Z−PXnY nZn‖1 ≤ ε, 1
n log2 Θ ≤ R+ε, where for all xn, yn, zn ∈ X n×Yn×Zn

PXnY nZn(xn, yn, zn) =∆
∑

µ∈[2nC ]

2−nC
∑
m∈[Θ]

PnXZ(xn, zn)P
(µ)
M |Xn(m|xn)P

(µ)
Y n|Zn,M (yn|zn,m),

P
(µ)
M |Xn , P

(µ)
Y n|ZnM are the PMFs induced by encoder and decoder respectively, corresponding to shared

random message µ, with M being the random variable corresponding to the message transmitted. We

let Rs(PXY Z) denote the set of achievable rate pairs.

Cuff [9, Thm. II.1] provides a single-letter characterization for Rs(PXY ) when Z = φ is empty. A

single-letter characterization of Rs(PXY ) in the general case was provided in [18]. Building on this, we

address the network scenario (Fig. 1) for which we state the problem below. In the following, we let

X = (X1, X2), xn = (xn1 , x
n
2 ).

Definition 2. Given a PMF PX1X2Y on X1 × X2 × Y , a rate quadruple (R1, R2, C1, C2) is said to

be achievable, if ∀ε>0 and all sufficiently large n, there exists 2nC1 × 2nC2 randomized encoder pairs

(E
(µ1)
1 , E

(µ2)
2 ), where E(µj)

j : X nj → [Θj ] : µj ∈ [2nCj ], j ∈ [2], and a corresponding collection of 2nC

randomized decoders D(µ) : [Θ1] × [Θ2] → Yn for µ ∈ [2nC ], where C =∆ C1 + C2 and µ =∆ (µ1, µ2),
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such that ‖PnXY − PXnY n‖1 ≤ ε, 1
n log2 Θj ≤ Rj + ε : j ∈ [2], where for all xn, yn ∈ X n × Yn

PXnY n(xn, yn) =∆
∑

µ∈[2nC ]

2−nC
∑

(m1,m2)∈
[Θ1]×[Θ2]

PnX(xn)P
(µ1)
M1|Xn

1
(m1|xn1 )P

(µ2)
M2|Xn

2
(m2|xn2 )P

(µ)
Y n|M1,M2

(yn|m1,m2),

P
(µj)
Mj |Xn

j
: j ∈ [2], P

(µ)
Y n|M1,M2

are the PMFs induced by the two randomized encoders and decoder,

respectively, corresponding to common random index (µ1, µ2). We let Rd(PXY ) denote the set of

achievable rate triples.

Our main results are the characterization of an inner bound and an outer bound to Rd(PXY ) which

are provided in Theorem 1 and Theorem 2, respectively.

III. DISTRIBUTED SOFT COVERING - MAIN RESULTS

In this section, we provide an inner bound and an outer bound to the achievable rate-region for the

distributed setting (Fig. 1). Our first result in this regard is the following inner bound to Rd(PXY ). In

the following, we let X = (X1, X2),W = (W1,W2), x = (x1, x2) and w = (w1, w2).

Theorem 1. Given a PMF PX1X2Y , let P(PX1X2Y ) denote the collection of all PMFs PQW1W2XY defined

on Q ×W1 ×W2 × X × Y such that (i) PXY (x, y) =
∑

(q,w)∈Q×W PQWXY (q, w, x, y) for all (x, y),

(ii)
∑

w∈W PQWXY (q, w, x, y) = PQ(q)PXY (x, y) for all (q, x, y) (iii) W1 − QX1 − QX2 −W2 and

X −QW − Y are Markov chains, (iv) |W1| ≤ |X1|, |W2| ≤ |X2|, and |Q| ≤ 7. Further, let β(PQWXY )

denote the set of rates and common randomness quadruple (R1, R2, C1, C2) ∈ [0,∞)4 that satisfy

R1 ≥ I(X1;W1|Q)− I(W1;W2|Q)

R2 ≥ I(X2;W2|Q)− I(W1;W2|Q)

R1 +R2 ≥ I(X1;W1|Q) + I(X2;W2|Q)− I(W1;W2|Q)

R1 + C1 ≥ I(X1X2Y ;W1|Q)− I(W1;W2|Q),

R2 + C2 ≥ I(X1X2Y ;W2|Q)− I(W1;W2|Q),

R1 +R2 + C1 ≥ I(X1X2Y ;W1|Q) + I(X2;W2|Q)− I(W1;W2|Q)

R1 +R2 + C2 ≥ I(X1X2Y ;W2|Q) + I(X1;W1|Q)− I(W1;W2|Q)

R1 +R2 + C1 + C2 ≥ I(X1X2Y ;W1W2|Q) (1)

where the mutual information terms are evaluated with the PMF PQW1W2XY . We have

RI(PXY ) =∆ Closure

 ⋃
PQWXY ∈P(PX1X2Y

)

β(PQWXY )

 ⊆ Rd(PXY ). (2)

In other words, (R1, R2, C1, C2) is achievable if (R1, R2, C1, C2) ∈ RI(PXY ).
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Remark 1. Before providing a proof to the above theorem, we briefly discuss two corner points of the

rate region with respect to the common randomness available. Firstly, consider the regime when both C1

and C2 are unlimited. This implies that only the first three constraints are active and hence the inner

bound to the achievable rate-region reduces to the Berger-Tung inner bound [23]. Secondly, consider

the case when only one of the C1, and C2, say C2, is unlimited. In the first glance, one may think that

the rate R1 is only constraint by the first and the sum rate (R1 + R2) constraint. However, a careful

observation yields an additional constraint R1 + R2 + C1 limiting the rate of R1. The insight to this

is the joint distributed simulation task that the problem addresses. It suggests that if R2 and C2 are

at their minimum then R1 has to provide for any additional rate that is needed in simulating the joint

distribution.

Proof. The proof of this theorem is provided in Section V.

We consider an example to illustrate the significance of the inner bound.

Example 1. Consider a distributed setup as shown in Fig. 1. Let the input alphabets of the two encoders,

X1 and X2, and the output alphabet Y be given by the binary set {0, 1}. Let the joint distribution

PX1X2Y = PX1X2
PY |X1X2

be defined as

PX1X2
(0, 0) = PX1X2

(1, 1) =
(1− p)

2
and PX1X2

(0, 1) = PX1X2
(1, 0) =

p

2
,

and

PY |X1X2
(0|0, 0) = PY |X1X2

(0|1, 1) = 1− δ and PY |X1X2
(0|0, 1) = PY |X1X2

(0|1, 0) = δ,

for p = δ = 0.2. The trade-off between the achievable sum communication rate and sum common

randomness rate is numerically computed and is depicted in Fig. 3. The figure demonstrates the usefulness

of common randomness in decreasing the sum communication rates. However, below a certain threshold,

no amount of common randomness can be used toward decreasing the communication rates further.

Our next main result for the distributed setting is the outer bound to the achievable rate region.

Theorem 2. For all ε > 0, let PF (ε) denote the collection of conditional PMFs P̃JQUV Y |X1X2
defined

on J × Q × U × V × Y such that the following conditions are satisfied: (a) (Q, J) is independent of

(X1, X2), (b) U− (X1, Q, J)− (X2, Q, J)−V , and (c) (X1, X2, Q)− (J, U, V )−Y , and (d) ‖PX1X2Y −
PX1X2

P̃Y |X1X2
‖1 ≤ ε, where J ,Q,U and V are finite sets. Let PR denote the collection of conditional

PMFs PW |X1X2
defined on W×X1×X2 such that the condition (e) X1−W −X2 is satisfied where W

is a finite set. For a P̃JQUV Y |X1X2
∈ PF and a PW |X1X2

∈ PR, let λε(P̃JQUV Y |X1X2
, PW |X1X2

) denote
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Fig. 3. Figure depicting the trade-off between the sum rate and the sum common randomness.

the set of rates and common randomness quadruple (R1, R2, C1, C2) ∈ [0,∞)4 that satisfy

R1 ≥ I(W ;U |V, J) + I(X1, U |W,Q, J)− ε

R2 ≥ I(W ;V |U, J) + I(X2, V |W,Q, J)− ε

R1 +R2 ≥ I(W ;U, V |J) + I(X1;U |W,Q, J) + I(X2;V |W,Q, J)− 2ε

R1 +R2 + C1 + C2 ≥ I(W ;U, V |J) + I(X1, X2, Y ;U, V |Q,W, J)− gc(ε), (3)

under the Markov coupling between P̃JQUV Y |X1X2
and PW |X1X2

, i.e., condition (f) W − (X1, X2) −
(J,Q,U, V, Y ) is satisfied, where gc(ε) =∆ 4ε (log(|X1||X2||Y|)− log(ε)). In other words, the joint distri-

bution of the concerned random variables is given by PWPX1|WPX2|W P̃QP̃J P̃U |X1QJ P̃V |X2QJ P̃Y |UV J ,

and with which the mutual information terms are evaluated. We have Rd(PXY ) ⊆
⋂
ε>0RO(PXY , ε),

where

RO(PXY , ε) =∆
⋂

PW |X1X2
∈PR

⋃
PJQUV Y |X1X2∈PF (ε)

λε(PJQUV Y |X1X2
, PW |X1X2

). (4)

In other words, if (R1, R2, C) ∈
⋂
ε>0RO(PXY , ε), then (R1, R2, C) is achievable.

Proof. The proof of the above theorem is provided in Appendix B.

Remark 2. Note that for every PW |X1X2
∈ PR, we have an outer bound, obtained by taking the intersection

over ε and the union over PJQUV Y |X1X2
∈ PF (ε), on Rd(PXY ). Hence we have a family of outer bounds.
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Remark 3. One may question the computability of the outer bound provided in Theorem (2). The

computability of this bound depends on the cardinality of the auxiliary random variables defined in

the theorem. Currently, we are unable to bound the cardinality of the auxiliary random variables, but

aim to provide one in our future work. As a matter of fact, the current outer bounds for the equivalent

distributed rate distortion problem still suffers from the computability issue. The first outer bound to this

problem was provided in [23] and a recent substantial improvement was made by authors in [21], [24].

All these bounds suffer from the absence of cardinality bounds on at least one of the variables used and

hence cannot be claimed to be computable using finite resources. This problem still remains open.

Remark 4. Due to the lack of cardinality bounds, the space of probability distributions is not compact,

and hence the mutual information may not be a continuous function of ε. Therefore, the continuity of

RO(PXY , ε) at ε = 0 still remains an open question. When the cardinality bounds become available, we

will have continuity at ε = 0, and thus RO(PXY , 0) =
⋂
ε>0RO(PXY , ε).

IV. SOFT COVERING WITH SIDE INFORMATION

Although our paper is mainly geared toward the distributed case (addressed in Section III), we

provide a proof of the side information scenario for pedagogical reasons. We provide a new proof of

achievability of Rs(PXY Z). The proof develops a new construction of random encoders by relaxing the

PMF requirement, and using refined Chernoff-Hoeffding bound, which could find applications in other

problems of information theory. This relaxation and the refined bound play a central role in generalizing

the results to the distributed case 1. As mentioned earlier, the side-information problem was addressed

in [18] using a different proof methodology.

Theorem 3. (R,C) ∈ Rs(PXY Z) if and only if there exists a PMF PWXY Z such that (i) PXY Z(x, y, z) =∑
w∈W PWXY Z(w, x, y, z) for all (x, y, z) where W is the alphabet of W , (ii) Z −X −W and X −

(Z,W )− Y are Markov chains, (iii) |W| ≤ (|X ||Y||Z|)2, and

R ≥ I(X;W )− I(W ;Z), R+ C ≥ I(XY Z;W )− I(W ;Z). (5)

Proof. We begin the proof by describing the encoder.

A. Encoder Description

Fix a PMF PWXY Z satisfying the constraints stated in the theorem. Throughout, µ ∈ [2nC ] denotes

the C bits of common randomness shared between the encoder and decoder. For each µ ∈ [2nC ], we

shall design a randomized encoder E(µ) : X n → [Θ] and a randomized decoder D(µ) : Zn × [Θ]→ Yn
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that induce PMFs P (µ)
M |Xn and P (µ)

Y n|ZnM respectively, for which

Q =∆
1

2

∑
xn,yn,zn

∣∣∣∣∣PnXY Z(xn, yn, zn)−
∑

µ∈[2nC ]

∑
m∈[Θ]

PnXZ(xn, zn)

2nC
P

(µ)
M |Xn(m|xn)P

(µ)
Y n|Zn,M (yn|zn,m)

∣∣∣∣∣ ≤ ε.
(6)

From now on we denote Θ = 2nR. The design of these randomized encoders and decoders involves

building a collection of codebooks C =∆ (C(µ) : µ ∈ [2nC ]) where C(µ) =∆ (wn(l, µ) ∈ Wn : l ∈ [2nR̃]) for

µ ∈ [2nC ], where W is the alphabet of W in the theorem statement, and R̃ will be specified shortly. On

observing xn and µ, the randomized encoder chooses an index L in [2nR̃] according to a PMF E(µ)
L|Xn(·|·).

The chosen index is then mapped to an index in [2nR] which is communicated to the decoder. Before

we specify the PMF E
(µ)
L|Xn(·|·), let us describe how the chosen index is mapped to an index in [2nR].

We define a binning map b(µ) : [2nR̃] → [2nR]. On observing xn, the encoder chooses L ∈ [2nR̃] with

respect to PMF E
(µ)
L|Xn(·|xn), and communicates b(µ)(L) to the decoder.

Let us relate to the above three elements that make up the encoder. The PMF E
(µ)
L|Xn is analogous

to the likelihood encoder ΓJ |Xn,K of Cuff [9] but with important changes to incorporate typicality-

based encoding that permits the use of side-information at the decoder. The map b(µ) performs standard

information-theoretic binning [25] to utilize side-information. We now specify E(µ)
L|Xn(·|·). Fix ε > 0, δ >

0, η > 0, and for xn ∈ Tδ(X) and l ∈ [2nR̃], let

E
(µ)
L|Xn(l|xn) =∆

1

2nR̃
1− ε
1 + η

∑
wn∈Tδ(W |xn)

1{wn(l,µ)=wn}
PnX|W (xn|wn)

PnX(xn)
.

In specifying E
(µ)
L|Xn , we have relaxed the requirement that E(µ)

L|Xn(·|xn) be a PMF. This relaxation - a

novelty of our work - yields analytical tractability of a random coding ensemble to be described in the

sequel. However, note that these maps depend on the choice of the codebook C. We prove in Appendix

A-A that with high probability, E(µ)
L|Xn(·|xn) : [2nC ] → R is a PMF for every xn ∈/∈ Tδ(X). This

will form a part of our random codebook analysis and in fact, as we see in Lemma 1, one of the rate

constraints is a consequence of the conditions necessary for the above definition of E(µ)
L|Xn(·|·) to be a

PMF. We also note that E(µ)
L|Xn being a PMF guarantees PM |Xn is a PMF.

Having specified E(µ)
L|Xn(·|·), we now characterize PM |Xn for m ∈ [2nR]

⋃
{0} as

P
(µ)
M |Xn(m|xn) =∆


1{m=0} if s(µ)(xn) > 1,

1− s(µ)(xn) if m = 0 and s(µ)(xn) ∈ [0, 1],∑2nR̃

l=1 E
(µ)
L|Xn(l|xn)1{b(µ)(l)=m} if m 6= 0 and s(µ)(xn) ∈ [0, 1]

(7)

for all xn ∈ Tδ(X), and s(µ)(xn) defined as s(µ)(xn) =∆
∑2nR̃

l=1 E
(µ)
L|Xn(l|xn). For xn /∈ Tδ(X), we let

P
(µ)
M |Xn(m|xn) = 1{m=0}. It can be verified that PM |Xn is a valid PMF. We have thus described the
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encoder and PM |Xn .

B. Decoder Description

We now describe the decoder. On observing zn ∈ Zn, µ and the index m ∈ [2nR]
⋃
{0} communicated

by the encoder, for m 6= 0, the decoder populates

D(µ)(zn,m) =∆ {l ∈ [2nR̃] : b(µ)(l) = m, (wn(l, µ), zn) ∈ Tδ(W,Z)}

Let

f (µ)(m, zn) =∆

wn(l, µ) if D(µ)(zn,m) = {l}

w0 otherwise, i.e., |D(µ)(zn,m)| 6= 1 or m = 0.

The decoder chooses yn according to PMF PnY |WZ(yn|f (µ)(m, zn), zn). This implies the PMF

P
(µ)
Y n|ZnM (·|·) is given by

P
(µ)
Y n|ZnM (·|zn,m) = PnY |WZ(·|f (µ)(m,z

n), zn). (8)

C. Distribution of Codebook

To prove of existence of a codebook for which the above terms are arbitrarily small, we employ random

coding. Specifically, we let the codewords of C to be IID with distribution

P̃Wn(wn) =


PnW (wn)

1−ε if wn ∈ Tδ̄(W )

0 otherwise,
(9)

where δ̄ =∆ δ|X +W|, and ε(δ, n) =∆
∑

wn /∈Tδ̄(W ) P
n
W (wn). Note that ε(δ, n) ↘ 0 as n → ∞ for every

δ > 0 sufficiently small. The binning of the codewords is performed independently, where each b(µ)(·)
is chosen randomly, uniformly and independently from [2nR].

D. Analysis of Total Variation

We begin by splitting Q into two terms using an indicator function 1{PMF(C)} as

Q = Q · 1{PMF(C)} + Q · 1c{PMF(C)} (10)

where 1{PMF(C)} is defined as

1{PMF(C)} =

1 if s(µ)(xn) ∈ [0, 1] for all xn ∈ Tδ(X), µ ∈ [2nC ],

0 otherwise,
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and recalling s(µ)(xn) =
∑2nR̃

l=1 E
(µ)
L|Xn(l|xn). Taking expectation over the codebooks and bounding Q in

the right hand side of (10) by 11 gives

E[Q] ≤ E[Q1{PMF(C)}] + P
{
1{PMF(C)} = 0

}
. (11)

We now show using the lemma below, that by appropriately constraining R̃, P
{
1{PMF(C)} = 0

}
can

be made arbitrarily small. In other words, with high probability, we will have E
(µ)
L|Xn such that 0 ≤

2nR̃∑
l1

E
(µ)
L|Xn ≤ 1 for all µ ∈ [2nC ] and xn ∈ Tδ(X).

Lemma 1. For any δ, η ∈ (0, 1/2), if R̃ > I(X : W ) + 4δ1 then

P

2nC⋂
µ=1

⋂
xn∈Tδ(X)

2nR̃∑
l=1

E
(µ)
L|Xn(l|xn) ≤ 1

→ 1 as n→∞, (12)

where δ1(δ), δ2(δ)↘ 0 as δ ↘ 0,

Proof. The proof is provided in Appendix A-A.

Since, we have

P
{
1PMF(C) = 0

}
= 1− P

(
2nC1⋂
µ1=1

⋂
xn∈
Tδ(X1)

(
E

(µ1)
L1|Xn

1
(l1|xn1 ) ≤ 1

))
,

from Lemma 1, for any δ ∈ (0, 1), we have P
{
1PMF(C) = 0

}
≤ εp for all sufficiently large n, where

εp(δ)↘ 0 as δ ↘ 0.

We now look at the first term in (10), i.e., Q · 1{PMF(C)}. This can be expanded as

Q · 1{PMF(C)} =

 ∑
xn∈Tδ(X))

PnX(xn)Qxn +
∑

xn /∈Tδ(X)

PnX(xn)Qxn

 · 1{PMF(C)},

where Qxn is defined as

Qxn =∆
1

2

∑
yn,zn

∣∣∣∣∣PnY Z|X(yn, zn|xn)−
∑

µ∈[2nC ]

∑
m∈[2nR]

⋃
{0}

PnZ|X(zn|xn)

2nC
P

(µ)
M |Xn(m|xn)P

(µ)
Y n|Zn,M (yn|zn,m)

∣∣∣∣∣.
Using the standard typicality arguments2, we obtain, for all sufficiently large n,

Q · 1{PMF(C)} =
∑

xn∈Tδ(X)

PnX(xn)Qxn1{PMF(C)} + εt(δ), (13)

1Total Variation is bounded from above by 1
2Note that Qxn is a total variational distance between two conditional PMFs, conditioned on X , for each xn, and hence it

is bounded from above by one.
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where εt(δ)↘ 0 as δ ↘ 0. Now, what remains is the first term in (13). A major portion of our analysis

from here on deals with arguing that this term can be made arbitrarily small. Further, since this term

contains the indicator 1{PMF(C)}, we can restrict our analysis to only the set of random collection of

codebook C that satisfy 0 ≤
∑2nR̃

l=1 E
(µ)
L|Xn(l|xn) ≤ 1 for all xn ∈ Tδ(X) and µ ∈ [2nC ].

Step 1: Isolating the error induced by not covering
We begin our analysis by isolating the error induced by not covering the product distribution PnXY Z .

Note that under the condition that 1{PMF(C)} = 1, we have P (µ)
M |Xn(m|xn) =

∑2nR̃

l=1 E
(µ)
L|Xn(l|xn) when

m 6= 0, and P (µ)
M |Xn(0|xn) = 1−

∑2nR̃

l=1 E
(µ)
L|Xn(l|xn). Using this, we substitute the definition of randomized

encoder (7) and the decoder (8) in the second term within the modulus of Qxn . This gives

1

2nC

∑
µ∈[2nC ]

∑
m∈[2nR]∪{0}

PnZ|X(zn|xn)P
(µ)
M |Xn(m|xn)P

(µ)
Y n|ZnM (yn|zn,m) =T1+T2,

where3,

T1 =∆
∑

µ∈[2nC ]

∑
m∈[2nR]

2nR̃∑
l=1

∑
wn∈Tδ(W |xn)

(1− ε)
(1 + η)

1

2n(R̃+C)

PnZ|X(zn|xn)PnX|W (xn|wn)

PnX(xn)

1{wn=wn(l,µ),b(µ)(l)=m}P
n
Y |WZ(yn|f (µ)(b(µ)(l), zn), zn)

=
∑

µ∈[2nC ]

2nR̃∑
l=1

∑
wn∈Tδ(W |xn)

(1− ε)
(1 + η)

1

2n(R̃+C)

PnZ|X(zn|xn)PnX|W (xn|wn)

PnX(xn)
1{wn=wn(l,µ)}

PnY |WZ(yn|f (µ)(b(µ)(l), zn), zn),

T2 =∆
1

2nC

∑
µ∈[2nC ]

PnZ|X(zn|xn)

1−
2nR̃∑
l=1

E
(µ)
L|Xn(l|xn)

PnY |WZ(yn|w0, z
n).

Substituting T1, T2 for the second term within the modulus of Qxn , and applying triangle inequality,

we obtain Qxn1PMF(C) ≤
[

1
2

∑
yn,zn(S + S̃)

]
1PMF(C) ≤ 1

2

∑
yn,zn(S + S̃1PMF(C)), where

S =∆

∣∣∣∣∣PnY Z|X(yn, zn|xn)−

(1− ε)
(1 + η)

1

2n(R̃+C)

∑
µ,l

∑
wn∈Tδ(W |xn)

PnZ|X(zn|xn)PnX|W (xn|wn)

PnX(xn)
PnY |WZ(yn|f (µ)(b(µ)(l), zn), zn)1{wn=wn(l,µ)}

∣∣∣∣∣ ,
S̃ =∆

∣∣∣∣∣∣ 1

2nC

∑
µ∈[2nC ]

PnZ|X(zn|xn)

1−
2nR̃∑
l=1

E
(µ)
L|Xn(l|xn)

PnY |WZ(yn|w0, z
n)

∣∣∣∣∣∣ .
Note that the term corresponding to S̃ captures the error induced by not covering the product distribution

PnXY Z(·) and we bound this term employing the following proposition.

3For the ease of notation, we do not show the dependency of T1, and T2 on xn, yn and zn.
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Proposition 1. There exist functions εS̃(δ), and δS̃(δ), such that for all sufficiently small δ and sufficiently

large n, we have E[
∑

xn∈Tδ(X) P
n
X(xn)

∑
yn,zn S̃1PMF(C)] ≤ εS̃(δ), if R̃ > I(X;W )+δS̃ , where εS̃ , δS̃ ↘

0 as δ ↘ 0.

Proof. The proof is provided in Appendix C-A

Now we move on to isolating the error component of S caused by binning the randomized encoders.

Step 2: Error caused by binning
We now consider the term corresponding to S. By adding and subtracting an appropriate term within the

modulus of S and using triangle inequality, S can be bounded as S ≤ S1 + S2, where

S1 =∆

∣∣∣∣∣PnY Z|X(yn, zn|xn)−
∑
µ,l

∑
wn∈

Tδ(W |xn)

(1− ε)PnX|W (xn|wn)PnZ|X(zn|xn)PnY |WZ(yn|wn, zn)

2n(R̃+C)(1 + η)PnX(xn)
1{wn=wn(l,µ)}

∣∣∣∣∣ ,
S2 =∆

∣∣∣∣∣ (1− ε)(1 + η)

1

2n(R̃+C)

∑
µ,l

∑
wn∈

Tδ(W |xn)

PnZ|X(zn|xn)PnX|W (xn|wn)

PnX(xn)
1{wn=wn(l,µ)}

(
PnY |WZ(yn|wn, zn)− PnY |WZ(yn|f (µ)(b(µ)(l), zn), zn)

)∣∣∣∣∣.
Note that the term S2 captures the error introduced due to the binning operation. To bound this term,

we provide the following proposition.

Proposition 2 (Mutual Packing). There exist εS2
(δ), such that for all sufficiently small δ and sufficiently

large n, we have E
[∑

xn∈Tδ(X) P
n
X(xn)

∑
yn,zn S2

]
≤ εS2

(δ), if (R̃1 − R1) ≤ I(W ;Z) + δS2
, where

εS2
, δS2

(δ)↘ 0 as δ ↘ 0.

Proof. The proof is provided in Appendix C-B.

Now we are left with the analysis of the term S1.

Step 3: Bounding the approximation/covering error
In this last step, we analyze the term S1 which captures the action of the encoder in approximating the

product distribution PnXY Z(·). For that, we split S1 as S1 ≤ S11 + S12, where

S11 =

∣∣∣∣∣PnY Z|X(yn, zn|xn)− 2−n(R̃+C)
∑
µ,l

PnZ|X(zn|xn)
∑

wn∈Tδ̄(W )

PnX|W (xn|wn)

PnX(xn)
1{

wn=
wn(l,µ)

}PnY |WZ(yn|wn, zn)

∣∣∣∣∣

S12 = 2−n(R̃+C)

∣∣∣∣∣∑
µ,l

PnZ|X(zn|xn)
∑

wn∈Tδ̄(W )

PnX|W (xn|wn)

PnX(xn)
1{

wn=
wn(l,µ)

}PnY |WZ(yn|wn, zn)−

(
1− ε
1 + η

)∑
µ,l

PnZ|X(zn|xn)
∑

wn∈Tδ(W |xn)

PnX|W (xn|wn)

PnX(xn)
1{

wn=
wn(l,µ)

}PnY |WZ(yn|wn, zn)

∣∣∣∣∣.
(14)
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Using the Markov chains Z −X −W and X − (Z,W )− Y which PWXY Z satisfies, and the fact that∑
wn∈Tδ̄(W ) 1{wn=wn(l,µ)} = 1, we can simplify the second term in S11 as

2−n(R̃+C)
∑
µ,l

PnZ|X(zn|xn)
∑

wn∈Tδ̄(W )

PnX|W (xn|wn)

PnX(xn)
1{wn=wn(l,µ)}P

n
Y |WZ(yn|wn, zn)

=
1

2n(R̃+C)

∑
µ,l

∑
wn∈Tδ̄(W )

PnX|W (xn|wn(l, µ))

PnX(xn)
PnZ|XW (zn|xn, wn(l, µ))PnY |WXZ(yn|wn(l, µ), xn, zn)1{

wn=
wn(l,µ)

}

=
1

2n(R̃+C)

∑
µ,l

PnXY Z|W (xn, yn, zn|wn(l, µ))

PnX(xn)
.

Substituting the above simplification into the expression for S11 gives

S11 =

∣∣∣∣∣PnY Z|X(yn, zn|xn)− 1

2n(R̃+C)

∑
µ,l

PnXY Z|W (xn, yn, zn|wn(l, µ))

PnX(xn)

∣∣∣∣∣. (15)

Substituting this simplification in E[
∑

xn∈Tδ(X) P
n
X(xn)(

∑
yn,zn S11)], we obtain

E[
∑

xn∈Tδ(X)

PnX(xn)(
∑
yn,zn

S11)]

= E

 ∑
xn∈Tδ(X)

∑
yn,zn

∣∣∣∣∣PnXY Z(xn, yn, zn)− 1

2n(R̃+C)

∑
µ,l

PnXY Z|W (xn, yn, zn|wn(l, µ))

∣∣∣∣∣


≤ E

 ∑
xn,yn,zn

∣∣∣∣∣P̃nXY Z(xn, yn, zn)− 1

2n(R̃+C)

∑
µ,l

PnXY Z|W (xn, yn, zn|wn(l, µ))

∣∣∣∣∣
+ 2ε, (16)

where the last inequality follows by defining P̃nXY Z(·) as P̃nXY Z(xn, yn, zn) =∆∑
wn∈Tδ̄(W ) P

n
XY Z|W (xn, yn, zn|wn)P̃Wn(wn).

Lemma 2 (One-shot Soft Covering). Let PAB be a joint PMF defined on A × B with A and B being

finite sets. Further, suppose we are given a subset T ⊂ A and a collection of subsets Tb ⊂ A for all

b ∈ B which satisfy the following hypotheses for all b ∈ B:

PA(T ) ≥ 1− ε, (17a)

PA|B(Tb|b) ≥ 1− ε, (17b)(∑
a∈T

√
PA(a)

)2

≤ D, and (17c)

PA|B(a|b) ≤ 1

d
, ∀a ∈ Tb, (17d)

for some ε ∈ (0, 1) and d < D. Let M be a finite non-negative integer and let a random covering code

C =∆ {Cm}m∈[1,M ] be defined as a collection of codewords Cm that are chosen pairwise independently
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according to the distribution PB from B. Then we have

EC

[∑
a∈A

∣∣∣PA(a)− 1

M

M∑
m=1

PA|B(a|Cm)
∣∣∣] ≤√ D

Md
+ 4δ(ε). (18)

Proof. The proof is provided in Appendix A-B

Now we prove the above term is small by using the following identification. Identify A by (X n ×
Yn × Zn), B by Tδ̄(W ), T by Tδ(XY Z), Tb by Tδ(XY Z|wn) for all wn ∈ Tδ̄(W ), and PAB by

PnXY Z|W P̃Wn (with P̃Wn(·) as defined in (9)). Using this identification we first compute D and d that

satisfy the hypothesis of the lemma. This gives D = 2n(H(X,Y,Z)+δXYZ) and d = 2n(H(XY Z|W )−δ′XYZ).

To satisfy (17a), we use the fact that if ‖PA −QA‖ ≤ εA, for PA and QA defined as two distributions

on A then for any subset Ā ⊂ A, we have PA(Ā) ≥ QA(Ā)− εA. Since ‖PnXY Z − P̃XnY nZn‖ ≤ 2ε, we

have P̃XnY nZn(Tδ(XY Z)) ≥ 1− 3ε(δ) which can be made arbitrarily close to 1 for a sufficiently large n.

The hypotheses (17b) and (17d) can be shown to be true using the basic typicality arguments. For the

hypothesis (17c) we use the bound P̃XnY nZn(·) ≤ 1
(1−ε)P

n
XY Z(·), which gives the D mentioned above.

Using this identification and applying Lemma (2) on (16) we obtain

E[
∑

xn∈Tδ(X) P
n
X(xn)(

∑
yn,zn S11)] ≤ εS11

, if R̃ + C ≥ I(XY Z;W ) + δS11
for sufficiently n,

where δS11
(δ), εS11

(δ)↘ 0 as δ ↘ 0.

Now consider S12. This term can be split into the S′12 and S′′12 such that S12 = S′12 + S′′12, where

S′12 =∆ 2−n(R̃+C)

∣∣∣∣∣
(

1− 1− ε
1 + η

)∑
µ,l

PnZ|X(zn|xn)
∑
wn∈

Tδ(W |xn)∩Tδ̄(W )

PnX|W (xn|wn)

PnX(xn)
1{

wn=
wn(l,µ)

}PnY |WZ(yn|wn, zn)

∣∣∣∣∣,
S′′12 =∆ 2−n(R̃+C)

∣∣∣∣∣∑
µ,l

PnZ|X(zn|xn)
∑

wn /∈Tδ(W |xn)
wn∈Tδ̄(W )

PnX|W (xn|wn)

PnX(xn)
1{

wn=
wn(l,µ)

}PnY |WZ(yn|wn, zn)

∣∣∣∣∣.
Now, we apply expectation over each of the following to obtain,

E

[∑
yn,zn

S′12

]
=2−n(R̃+C) η + ε

1 + η

∑
yn,zn

∑
µ,l

PnZ|X(zn|xn)
∑
wn∈

Tδ(W |xn)∩Tδ̄(W )

PnX|W (xn|wn)

PnX(xn)

PnW (wn)

1− ε
PnY |WZ(yn|wn, zn)

≤
(
η + ε

1 + η

)
1

(1− ε)
∑
yn,zn

∑
wn∈Tδ(W |xn)

PnWY Z|X(wn, yn, zn|xn) ≤ (η + ε)

(1 + η)(1− ε)
. (19)

And similarly, we have

E

[∑
yn,zn

S′′12

]
=

1

(1− ε)
∑
yn,zn

∑
wn /∈Tδ(W |xn)
wn∈Tδ̄(W )

PnWY Z|X(wn, yn, zn|xn)

≤ 1

(1− ε)
∑

wn /∈Tδ(W |xn)

PnW |X(wn|xn) ≤ ε′′

1− ε
, (20)
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Fig. 4. Figure demonstrating the generation of random variables X1, X2,W1,W2, Y from the joint PMF PXWY while
incorporating the Markov chains specified in the theorem statement.

where ε′′(δ) ↘ 0 as δ ↘ 0. We have argued that terms S1, S2 and S̃ are small in expectation for

sufficiently large n, which implies E[Qxn1{PMF(C)}] ≤ εQ for sufficiently large n, where εQ(δ) ↘ 0 as

δ ↘ 0. Using this in (13), and subsequently in (11), and eventually in (10) gives E[Q] ≤ ε, for sufficiently

large n if

R̃ ≥ R ≥ 0, C ≥ 0, R̃ ≥ I(X;W ), R̃−R ≤ I(W ;Z) and R̃+ C ≥ I(XY Z;W ). (21)

Lastly, the proof is completed using the Fourier-Motzkin Elimination [26].

V. PROOF OF THEOREM 1

Having designed a randomized encoding scheme based on typicality for the side-information case, we

are in a position to employ the same encoder for the distributed scenario. In contrast to the side-information

scenario, both randomized encoders choose codewords resulting in the need to prove that the the individual

codewords chosen by the distributed randomized encoders are with high probability jointly typical with

the observed source sequences. This involves new elements in the context of soft covering. Fix a PMF

PQW1W2X1X2Y satisfying the constraints stated in the theorem. Since Q, the time sharing random variable,

is employed in the standard way, for ease of exposition, we provide the proof of the special case of Q = 0.

Its generalization can be obtained in a straightforward way. Let µ ∈ [2nC ] denote the common randomness

shared amidst all terminals. The first encoder uses a part of the entire common randomness available to

it, say C1 bits out of the C bits, which is denoted by µ1 ∈ [2nC1 ]. Similarly, let µ2 ∈ [2nC2 ] denote the

common randomness used by the second encoder. Note that C = C1 × C2 and µ =∆ (µ1, µ2). Our goal

is to prove the existence of PMFs P (µ1)
M1|Xn

1
(m1|xn1 ) : xn1 ∈ X n1 ,m1 ∈ [Θ1], µ1 ∈ [2nC1 ], Pµ2

M2|Xn
2
(m2|xn2 ) :

xn2 ∈ X n2 ,m2 ∈ [Θ2], µ2 ∈ [2nC2 ], P (µ)
Y n|M1,M2

(yn|m1,m2) : yn ∈ Yn, (m1,m2) ∈ [Θ1]× [Θ2] such that

Q =∆
1

2

∑
xn1 ,x

n
2 ,y

n

∣∣∣∣∣PnX1X2Y (xn1 , x
n
2 , y

n)−
∑

µ∈[2nC ]

∑
m1∈[Θ1]

∑
m2∈[Θ2]

PnX1X2
(xn1 , x

n
2 )

2nC
P

(µ1)
M1|Xn

1
(m1|xn1 )

P
(µ2)
M2|Xn

2
(m2|xn2 )P

(µ)
Y n|M1,M2

(yn|m1,m2)

∣∣∣∣∣ ≤ ε, (22)
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for log Θj

n = Rj : j ∈ [2] and for all sufficiently large n. Consider the collections C1 =∆ (C(µ1)
1 : 1 ≤

µ1 ≤ 2nC1) where C(µ1)
1 =∆ (w1(l1, µ1) : 1 ≤ l1 ≤ 2nR̃1) and C2 =∆ (C(µ1)

2 : 1 ≤ µ2 ≤ 2nC2) where

C(µ2)
2 =∆ (w2(l2, µ2) : 1 ≤ l2 ≤ 2nR̃2). For this collection, we let

E
(µ1)
L1|Xn

1
(l1|xn1 ) =∆

1

2nR̃1

1− ε1
1 + η

∑
wn1 ∈Tδ(W1|xn1 )

1{wn(l1,µ1)=wn1 }
PnX1|W1

(xn1 |wn1 )

PnX1
(xn1 )

E
(µ2)
L2|Xn

2
(l2|xn2 ) =∆

1

2nR̃2

1− ε2
1 + η

∑
wn2 ∈Tδ(W2|xn2 )

1{wn(l2,µ2)=wn2 }
PnX2|W2

(xn2 |wn2 )

PnX2
(xn2 )

where δ̄i =∆ δ|Xi +Wi| and εi = 1 − PnW (Tδ̄i(Wi)); i = 1, 2. The definition of E(µ1)
L1|Xn

1
and E

(µ2)
L2|Xn

2

can be thought of as encoding rules that do not exploit the additional rebate obtained by using binning

techniques.

A. Binning of Random Encoders

Further, we define maps b(µ1)
1 : [2nR̃1 ] → [2nR1 ] and b

(µ2)
2 : [2nR̃2 ] → [2nR2 ] performing standard

information-theoretic binning, with 0 < R2 ≤ R̃2 and 0 < R2 ≤ R̃2. Using these maps, we induce the

PMF P
(µ1)
M1|Xn

1
on the message to be transmitted by the first encoder as

P
(µ1)
M1|Xn

1
(m1|xn1 ) =


1{m1=0} if s(µ1)

1 (xn1 ) > 1,

1− s(µ1)
1 (xn1 ) if m1 = 0 and s(µ1)

1 (xn1 ) ∈ [0, 1],∑2nR̃1

l1=1 E
(µ1)
L1|Xn

1
(l1|xn1 )1{b(µ1)

1 (l1)=m1} if m1 6= 0 and s(µ1)
1 (xn1 ) ∈ [0, 1]

(23)

for all xn1 ∈ Tδ(X1) and s(µ1)
1 (xn1 ) defined as s(µ1)

1 (xn1 ) =
∑2nR̃1

l1=1 E
(µ1)
L1|Xn

1
(l1|xn1 ). For xn1 /∈ Tδ(X1), we

let P (µ1)
M1|Xn

1
(m1|xn1 ) = 1{m1=0}.

We similarly define the PMF P
(µ2)
M2|Xn

2
for the second encoder as

P
(µ2)
M2|Xn

2
(m2|xn2 ) =


1{m2=0} if s(µ2)

2 (xn2 ) > 1,

1− s(µ2)
2 (xn2 ) if m2 = 0 and s(µ2)

2 (xn2 ) ∈ [0, 1],∑2nR̃2

l2=1 E
(µ2)
L2|Xn

2
(l2|xn2 )1{b2(l2)=m2} if m2 6= 0 and s(µ2)

2 (xn2 ) ∈ [0, 1]

(24)

for all xn2 ∈ Tδ(X2) and s(µ2)
2 (xn2 ) defined as s(µ2)

2 (xn2 ) =
∑2nR̃2

l2=1 E
(µ1)
L2|Xn

2
(l2|xn2 ). For xn2 /∈ Tδ(X2), we

let P (µ2)
M2|Xn

2
(m2|xn2 ) = 1{m2=0}.

With this definition note that,
2nR1∑
m1=0

P
(µ1)
M1|Xn

1
(m1|xn1 ) = 1 for all µ1 ∈ [2nC1 ] and xn1 ∈ X n1 and similarly,

2nR2∑
m2=0

P
(µ2)
M2|Xn

2
(m2|xn2 ) = 1 for all µ2 ∈ [2nC2 ] and xn2 ∈ X n2 .
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B. Decoder Mapping

We now describe the decoder. On observing µ and the indices m1,m2 ∈ [2nR1 ]× [2nR2 ] communicated

by the encoders, the decoder first deduces (µ1, µ2) from µ and then populates

D(µ1,µ2)(m1,m2) =

 (l1, l2) ∈ [2nR̃1 ]× [2nR̃2 ] : b
(µ1)
1 (l1) = m1, b

(µ2)
2 (l2) = m2,

(wn1 (l1, µ1), wn2 (l2, µ2)) ∈ Tδ(W1,W2)

 . (25)

Let

f (µ)(m1,m2) =

(wn1 (l1, µ1), wn2 (l2, µ2)) if D(µ1,µ2)(m1,m2) = {(l1, l2)}

(w̃n1 , w̃
n
2 ) otherwise, i.e., |D(µ1,µ2)(m1,m2)| 6= 1

.

The decoder chooses yn according to PMF PnY |W1W2
(yn|f (µ)(m1,m2)). This implies the PMF

P
(µ1)
Y n|M1M2

(·|·) is given by

P
(µ)
Y n|M1M2

(·|m1,m2) = PnY |W1W2
(yn|f (µ)(m1,m2)). (26)

C. Distribution of Codebooks

The PMF defined on the ensemble of codebooks is as specified below. The codewords of the random

codebook C(µ1)
1 = (W1(l1, µ1) : 1 ≤ l1 ≤ 2nR̃1) for each µ1 ∈ 2nC1 are mutually independent and

distributed with PMF

P(W1(l1, µ1) = wn1 ) =
PnW1

(wn1 )

(1− ε1)
1{wn1 ∈Tnδ (W1)}

Similarly, C(µ2)
2 = (W2(l2, µ2) : 1 ≤ l2 ≤ 2nR̃2) for each µ2 ∈ [2nC2 ] are mutually independent and

distributed with PMF

P(W2(l2, µ2) = wn2 ) =
PnW2

(wn2 )

(1− ε2)
1{wn2 ∈Tnδ (W2)}

where, recall εi = 1 − PnW (Tδ(Wi)); i = 1, 2. Finally, the binning functions b(µ1)
1 (·) and b

(µ2)
2 (·) are

chosen random, uniformly and independently from the sets [2nR1 ] and [2nR2 ], respectively.

We now begin our analysis of (22). Our goal is to prove the existence of a collections C1, C2 for which

(22) holds. We do this via random coding. Specifically, we prove that EQ ≤ ε where the expectation is

over the ensemble of codebooks.

D. Analysis of Total Variation

We begin by splitting Q into two terms using an indicator function 1{PMF(C1,C2)} as

EQ = E
[
Q · 1{PMF(C1,C2)}

]
+ E

[
Q · 1c{PMF(C1,C2)}

]
≤ E

[
Q1{PMF(C1,C2)}

]
+ P

{
1{PMF(C1,C2)} = 0

}
(27)
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where 1{PMF(C1,C2)} is defined as

1{PMF(C1,C2)} =


1 if s(µ1)

1 (xn1 ) ∈ [0, 1] and s(µ2)
2 (xn2 ) ∈ [0, 1]

for all xn1 ∈ Tδ(X1), xn2 ∈ Tδ(X2), µ1 ∈ [2nC1 ], µ2 ∈ [2nC2 ]

0 otherwise,

and (27) follows from the upper bound of 1 over the total variation. We now show using the lemma

below, that by appropriately constraining R̃1 and R̃2, P
{
1{PMF(C1,C2)} = 0

}
can be made arbitrarily small.

In other words, with high probability, we will have E(µ1)
L1|Xn

1
and Eµ2

L2|Xn
2

such that 0 ≤
2nR̃1∑
l1=1

E
(µ1)
L1|Xn

1
≤ 1

for all µ1 ∈ [2nC1 ] and xn1 ∈ Tδ(X1) , and 0 ≤
2nR̃2∑
l2=1

E
(µ2)
L2|Xn

2
≤ 1 for all µ2 ∈ [2nC2 ] and xn2 ∈ Tδ(X2).

Proposition 3. For any δ, η ∈ (0, 1/2), if R̃1 > I(X1 : W1) + 4δ1 and R̃2 > I(X2 : W2) + 4δ2, where

δ1(δ), δ2(δ)↘ 0 as δ ↘ 0, then

P

2nC1⋂
µ=1

⋂
xn∈Tδ(X1)

2nR̃1∑
l1=1

E
(µ1)
L1|Xn

1
(l1|xn1 ) ≤ 1

⋂2nC2⋂
µ2=1

⋂
xn2∈Tδ(X2)

2nR̃2∑
l2=1

E
(µ2)
L2|Xn

2
(l2|xn2 ) ≤ 1


→ 1 as n→∞. (28)

Proof. The proof follows from Lemma 1.

We now look at the first term in (27), i.e., Q · 1{PMF(C1,C2)}. This can be expanded as

Q · 1{PMF(C1,C2)} =

 ∑
xn∈Tδ(X)

PnX(xn)Qxn +
∑

xn /∈Tδ(X)

PnX(xn)Qxn

 · 1{PMF(C1,C2)}, (29)

where Tδ(X) is defined as Tδ(X) =∆ {xn : (xn1 , x
n
2 ) ∈ Tδ(X1, X2)} and Qxn is defined as

Qxn =∆
1

2

∑
yn

∣∣∣∣∣∣∣∣∣P
n
Y |X(yn|xn)−

∑
µ1,µ2

1

2n(C1+C2)

∑
m1∈[2nR1 ]∪{0}
m2∈[2nR2 ]∪{0}

P
(µ1)
M1|Xn

1
(m1|xn1 )P

(µ2)
M2|Xn

2
(m2|xn2 )P

(µ)
Y n|M1,M2

(yn|m1,m2)

∣∣∣∣∣∣∣∣∣ .
Since, using the standard typicality arguments one can argue

∑
xn /∈Tδ(X) P

n
X(xn) ≤ εt, where εt(δ)↘ 0

as δ ↘ 0. We bound Qxn within the second summation in the right hand side of the above equation4 to

4Note that Qxn1 ,x
n
2

is a total variational distance between two conditional PMFs, conditioned on (X1, X2), for each (xn1 , x
n
2 )

and hence it is bounded from above by one.
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obtain,

Q · 1{PMF(C1,C2)} =
∑

xn∈Tδ(X)

PnX(xn)Qxn1{PMF(C1,C2)} + εt(δ). (30)

Now, what remains is the first term in (30). A major portion of our analysis from here on deals with

arguing that this term can be made arbitrarily small. Further, since this term contains the indicator

1{PMF(C1,C2)}, we can restrict our analysis to only the set of random codebooks (C1, C2) that satisfy

0 ≤
∑2nR̃1

l1=1 E
(µ1)
L1|Xn

1
(l1|xn1 ) ≤ 1 and 0 ≤

∑2nR̃2

l2=1 E
(µ2)
L2|Xn

2
(l2|xn2 ) ≤ 1 for all xn ∈ Tδ(X) and µ1 ∈

[2nC1 ], µ2 ∈ [2nC2 ].

Step 1: Isolating the error induced by not covering
As a first step, we separate the error induced by not covering the product distribution PnX1X2Y

(·)
through the randomized encoders and provide a bound to it. Note that under the condition that

1{PMF(C1,C2)} = 1, we have P (µi)
Mi|Xn

i
(mi|xni ) =

∑2nR̃i
li=1 E

(µi)
Li|Xn

i
(li|xni ) when mi 6= 0, and P (µi)

Mi|Xn
i
(0|xni ) =

1 −
∑2nR̃i

li=1 E
(µi)
Li|Xn

i
(li|xni ), for i ∈ {1, 2}. Using this, we substitute the definition of the randomized

encoders (23), (24) and the decoder (26) in the second term within the modulus of Qxn for xn ∈ Tδ(X),

which gives,

∑
µ1∈[2nC1 ],µ2∈[2nC2 ]
m1∈[2nR1 ]∪{0}
m2∈[2nR2 ]∪{0}

P
(µ1)
M1|Xn

1
(m1|xn1 )P

(µ2)
M2|Xn

2
(m2|xn2 )P

(µ)
Y n|M1M2

(yn|m1,m2)

2n(C1+C2)
=T1+T2 + T3 + T4,

where5,

T1 =∆
∑
µ1,µ2

m1∈[2nR1 ]
m2∈[2nR2 ]

∑
l1,l2

∑
wn1 ∈

Tδ(W1|xn1 )

∑
wn2 ∈

Tδ(W2|xn2 )

(1− ε1)(1− ε2)PnX1|W1
(xn1 |wn1 )PnX2|W2

(xn2 |wn2 )

2n(R̃1+R̃2+C)(1 + η)2PnX1
(xn1 )PnX2

(xn2 )

1{wn1 =wn1 (l1,µ1),b
(µ1)
1 (l1)=m1}1{wn2 =wn2 (l2,µ2),b2(l2)=m2}P

n
Y |W1W2

(yn|f (µ)(b
(µ1)
1 (l1), b

(µ2)
2 (l2)))

=
∑
µ1,µ2

∑
l1,l2

∑
wn1 ∈

Tδ(W1|xn1 )

∑
wn2 ∈

Tδ(W2|xn2 )

(1− ε1)(1− ε2)PnX1|W1
(xn1 |wn1 )PnX2|W2

(xn2 |wn2 )

2n(R̃1+R̃2+C1+C2)(1 + η)2PnX1
(xn1 )PnX2

(xn2 )

1{wn1 =wn1 (l1,µ1)}1{wn2 =wn2 (l2,µ2)}P
n
Y |W1W2

(yn|f (µ)(b
(µ1)
1 (l1), b

(µ2)
2 (l2))),

T2 =∆
∑

µ1,µ2,l2

∑
wn2 ∈

Tδ(W2|xn2 )

[
1−

∑2nR̃1

l1=1 E
(µ1)
L1|Xn

1
(l1|xn1 )

]
2n(C1+C2)

(1− ε1)PnX2|W2
(xn2 |wn2 )

2nR̃2(1 + η)PnX2
(xn2 )

1{wn2 =wn2 (l2,µ2)}P
n
Y |W1W2

(yn|w̃n1 , w̃n2 ),

5For the ease of notation, we do not show the dependency of T1, T2, T3 and T4 on xn, however, in principle they depend on
xn and in fact, are only defined for xn ∈ Tδ(X)
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T3 =∆
∑

µ1,µ2,l1

∑
wn1 ∈

Tδ(W1|xn1 )

[
1−

∑2nR̃2

l2=1 E
(µ2)
L2|Xn

2
(l2|xn2 )

]
2n(C1+C2)

(1− ε2)PnX1|W1
(xn1 |wn1 )

2nR̃1(1 + η)PnX1
(xn1 )

1{wn1 =wn1 (l1,µ1)}P
n
Y |W1W2

(yn|w̃n1 , w̃n2 ),

T4 =∆
∑
µ1,µ2

[
1−

∑2nR̃1

l1=1 E
(µ1)
L1|Xn

1
(l1|xn1 )

] [
1−

∑2nR̃2

l2=1 E
(µ2)
L2|Xn

2
(l2|xn2 )

]
2n(C1+C2)

PnY |W1W2
(yn|w̃n1 , w̃n2 )

The above simplification in the expression for T1 is obtained by using
∑

m1∈[2nR1 ] 1{wn1 =wn1 (l1,µ1)} = 1

and
∑

m2∈[2nR2 ] 1{wn2 =wn2 (l2,µ2)} = 1, which follows from the definition of the maps b(µ1)
1 and b

(µ2)
2 . A

similar simplification for the expressions T2 and T3 is used while substituting P
(µ1)
M1|Xn

1
(0|xn1 ) = 1 −∑2nR̃1

l1=1 E
(µ1)
L1|Xn

1
(l1|xn1 ) and P (µ2)

M2|Xn
2
(0|xn2 ) = 1 −

∑2nR̃2

l2=1 E
(µ2)
L2|Xn

2
(l2|xn2 ), respectively. Finally, T4 uses the

substitution for both P (µ1)
M1|Xn

1
(0|xn1 ) and P (µ2)

M2|Xn
2
(0|xn2 ). Substituting T1, T2, T3 and T4 for the second term

within the modulus of (22), we obtain Qxn1{PMF(C1,C2)} ≤ 1
2

∑
yn
(
S + S̃

)
1{PMF(C1,C2)} ≤ 1

2

∑
yn
(
S +

S̃1{PMF(C1,C2)}
)
, where

S =∆

∣∣∣∣∣PnY |X1X2
(yn|xn1 , xn2 )−

∑
µ1,µ2

∑
l1,l2

∑
wn1 ∈

Tδ(W1|xn1 )

∑
wn2 ∈

Tδ(W2|xn2 )

(1− ε1)(1− ε2)PnX1|W1
(xn1 |wn1 )PnX2|W2

(xn2 |wn2 )

2n(R̃1+R̃2+C1+C2)(1 + η)2PnX1
(xn1 )PnX2

(xn2 )

1{wn1 =wn1 (l1,µ1)}1{wn2 =wn2 (l2,µ2)}P
n
Y |W1W2

(yn|f (µ)(b
(µ1)
1 (l1), b

(µ2)
2 (l2)))

∣∣∣∣∣,
and S̃ =∆ |T2| + |T3| + |T4|. Note that the term corresponding to S̃ captures the error induced by not

covering the product distribution PnX1X2Y
(·) and we bound this term employing the following proposition.

Proposition 4. There exist functions εS̃(δ), and δS̃(δ), such that for all sufficiently small δ and sufficiently

large n, we have E
[

1
2

∑
xn∈Tδ(X)

∑
yn P

n
X(xn)S̃1{PMF(C1,C2)}

]
≤ εS̃(δ), if R̃1 > I(X1;W1) + δS̃ and

R̃2 > I(X2;W2) + δS̃ , where εS̃ , δS̃ ↘ 0 as δ ↘ 0.

Proof. The proof is provided in Appendix C-C.

Now we move on to isolating the error component of S caused by binning the randomized encoders.

Step 2: Error caused by binning
By adding and subtracting an appropriate term within the modulus of S and using triangle inequality, S

can be bounded as S ≤ S1 + S2, where

S1 =∆

∣∣∣∣∣PnY |X1X2
(yn|xn1 , xn2 )−

∑
µ1,µ2

∑
l1,l2

∑
wn1 ∈

Tδ(W1|xn1 )

∑
wn2 ∈

Tδ(W2|xn2 )

(1− ε1)(1− ε2)PnX1|W1
(xn1 |wn1 )PnX2|W2

(xn2 |wn2 )

2n(R̃1+R̃2+C1+C2)(1 + η)2PnX1
(xn1 )PnX2

(xn2 )

1{wn1 =wn1 (l1,µ1)}1{wn2 =wn2 (l2,µ2)}P
n
Y |W1W2

(yn|wn1 , wn2 )))

∣∣∣∣∣
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Fig. 5. Depiction of the approximation performed by Alice (encoder 1) while assuming a product distribution on Bob’s (encoder
2) end.

S2 =∆
∑
µ1,µ2

∑
l1,l2

∑
wn1 ∈

Tδ(W1|xn1 )

∑
wn2 ∈

Tδ(W2|xn2 )

(1− ε1)(1− ε2)PnX1|W1
(xn1 |wn1 )PnX2|W2

(xn2 |wn2 )

2n(R̃1+R̃2+C1+C2)(1 + η)2PnX1
(xn1 )PnX2

(xn2 )

1{wn1 =wn1 (l1,µ1)}1{wn2 =wn2 (l2,µ2)}

∣∣∣∣∣PnY |W1W2
(yn|wn1 , wn2 )− PnY |W1W2

(yn|f (µ)(b
(µ1)
1 (l1), b

(µ2)
2 (l2)))

∣∣∣∣∣.
Note that the term S2 captures the error introduced due to the binning operation. To bound this term, we

provide the following proposition.

Proposition 5 (Mutual Packing). There exist εS2
(δ), such that for all sufficiently small δ and sufficiently

large n, we have E
[∑

xn∈Tδ(X) P
n
X(xn)S2

]
≤ εS2

(δ), if (R̃1 − R1) + (R̃2 − R2) ≤ I(W1;W2) + δS2
,

where εS2
, δS2

(δ)↘ 0 as δ ↘ 0.

Proof. The proof is provided in Appendix C-D.

Now, we are left with the analysis of the term S1. For this, we segregate the effect of two encoders

within the term S1, and separately analyze each of them, starting with the Alice’s encoder.

Step 3: Term concerning Alice’s encoding
For notational convenience, we first define E(µ1)

Wn
1 |Xn

1
and E(µ2)

Wn
2 |Xn

2
, as

E
(µ1)
Wn

1 |Xn
1
(wn1 |xn1 ) =∆

1

2nR̃1

(1− ε1)

(1 + η)

2nR̃1∑
l1=1

PnX1|W1
(xn1 |wn1 )

PnXn
1
(xn1 )

1{wn1 =wn1 (l1,µ1),wn1 ∈Tδ(W1|xn1 )},

E
(µ2)
Wn

2 |Xn
2
(wn2 |xn2 ) =∆

1

2nR̃2

(1− ε2)

(1 + η)

2nR̃2∑
l2=1

PnX2|W2
(xn2 |wn2 )

PnXn
2
(xn2 )

1{wn2 =wn2 (l2,µ2),wn2 ∈Tδ(W2|xn2 )}.

Note that when 1{PMF(C1,C2)} = 1, we also have 0 ≤
∑

wn1 ∈Wn
1
E

(µ1)
Wn

1 |Xn
1
(wn1 |xn1 ) ≤ 1 and 0 ≤
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∑
wn2 ∈Wn

2
E

(µ2)
Wn

2 |Xn
2
(wn2 |xn2 ) ≤ 1. This simplifies S1 as

S1 =

∣∣∣∣∣PnY |X1X2
(yn|xn1 , xn2 )− 1

2n(C1+C2)

∑
µ1,µ2

∑
wn1 ,w

n
2

E
(µ1)
Wn

1 |Xn
1
(wn1 |xn1 )E

(µ1)
Wn

2 |Xn
2
(wn2 |xn2 )PnY |W1W2

(yn|wn1 , wn2 )))

∣∣∣∣∣.
Now we add and subtract a term that separates the action of first encoder from that of second encoder

allowing us to separately bound the error introduced by each of these encoders. This term essentially

assumes that the second encoder is simply a conditional product PMF PnW2|X2
as opposed to the n-letter

PMF, while keeping the first encoder the same. Figure 5 illustrates the dynamics of this term. The term

is given as

1

2nC1

∑
µ1∈[2nC1 ]

∑
wn1 ,w

n
2

E
(µ1)
Wn

1 |Xn
1
(wn1 |xn1 )PnW2|X2

(wn2 |xn2 )PnY |W1W2
(yn|wn1 , wn2 ).

By adding and subtracting this term and using triangle inequality we obtain S1 ≤ Q1 +Q2, where

Q1 =∆

∣∣∣∣∣PnY |X1X2
(yn|xn1 , xn2 )− 1

2nC1

∑
µ1

∑
wn1 ,w

n
2

E
(µ1)
Wn

1 |Xn
1
(wn1 |xn1 )PnW2|X2

(wn2 |xn2 )PnY |W1W2
(yn|wn1 , wn2 )

∣∣∣∣∣,
Q2 =∆

∣∣∣∣∣ 1

2nC1

∑
µ1]

∑
wn1 ,w

n
2

E
(µ1)
Wn

1 |Xn
1
(wn1 |xn1 )PnW2|X2

(wn2 |xn2 )PnY |W1W2
(yn|wn1 , wn2 )

− 1

2n(C1+C2)

∑
µ1,µ2

∑
wn1 ,w

n
2

E
(µ1)
Wn

1 |Xn
1
(wn1 |xn1 )E

(µ2)
Wn

2 |Xn
2
(wn2 |xn2 )PnY |W1W2

(yn|wn1 , wn2 )

∣∣∣∣∣.
Our objective here is to show 1/2

∑
xn∈Tδ(X),yn

PXn(xn)S1 · 1{PMF(C1,C2)} ≤ 1/2
∑

xn∈Tδ(X),yn

PXn(xn)[Q1 + Q2] ·

1{PMF(C1,C2)} is small, which eventually leads to (while also showing other terms corresponding to S2

and S̃, are small), establishing
∑

xn∈Tδ(X) P
n
X(xn)Qxn · 1{PMF(C1,C2)} vanishes in expectation. With this

partition, the terms within the modulus of Q1 differ only in the action of Alice’s encoding/approximation,

and similarly, the terms within Q2 differ only in the action of Bob’s encoding/approximation. Showing

that these two terms are small forms a major portion of the achievability proof. To begin with, let us

consider Q1.

Analysis of Q1: To prove
[

1
2

∑
xn∈Tδ(X),yn PXn(xn)Q1 · 1{PMF(C1,C2)}

]
is small, we characterize the rate

constraints which ensure that an upper bound to Q1 can be made to vanish in an expected sense. In

addition, this upper bound becomes useful in obtaining a single-letter characterization for the rate needed

to make the term corresponding to Q2 vanish. For this, we define J for each xn ∈ Tδ(X) as,

J =

∣∣∣∣∣PnYW2|X(yn, wn2 |xn)− 1

2nC1

∑
µ1∈[2nC1 ]

∑
wn1

E
(µ1)
Wn

1 |Xn
1
(wn1 |xn1 )PnW2|X2

(wn2 |xn2 )PnY |W1W2
(yn|wn1 , wn2 ),

∣∣∣∣∣
(31)

where E(µ1)
Wn

1 |Xn
1
(wn1 |xn1 ) ∈ [0, 1] for all xn1 ∈ Tδ(X1). By defining J we have added the random variable
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Fig. 6. Depiction of the approximation performed by Bob (encoder 2).

W2 into the collecion of random variables which first encoder is trying to approximate. Hence, this

encoder now approximates the joint product PMF PXW2Y . To make J small, we expect the sum of the

encoding rate of first encoder and common randomness i.e., R̃1+C1 to be larger then I(W1;X1X2W2Y ).

We prove this by bounding
∑

xn∈Tδ(X)

∑
yn,wn2

PnX(xn)J using the following proposition.

Proposition 6. There exist εJ(δ), δJ(δ) such that for all sufficiently small δ and sufficiently large n, we

have E
[∑

xn∈Tδ(X)

∑
yn,wn2

PnX(xn)J ·
]
≤ εJ if S1 + C1 ≥ I(W1;X1X2YW2) + δJ , where εJ , δJ ↘ 0

as δ ↘ 0.

Proof. The proof is provided in Appendix C-E.

Now in regards to Q1, applying triangle inequality on the summation over w2 gives∑
xn∈Tδ(X),yn

PnX(xn)Q1 ≤
∑

xn∈Tδ(X)

∑
yn,wn2

PnX(xn)J (32)

Using the above proposition concludes the proof for the term corresponding to Q1. Now, we move on

to bounding the term Q2.

Step 4: Analysis of Bob’s encoding Using the term J in Step 3, we ensured that the random variables

X1X2YW2 are close to a product PMF in total variation. In this step, we approximate the PMF of

random variables X1X2Y using the Bob’s encoding rule and bound the term corresponding to Q2 (as

illustrated in Figure 6). We proceed with the following proposition.

Proposition 7. There exist functions εQ2
(δ) and δQ2

(δ), such that for all sufficiently small δ and

sufficiently large n, we have E[Q2] ≤ εQ2
, if S1 + C1 ≥ I(W1;X1X2YW2) + δQ2

and S2 + C2 ≥
I(W2;X1X2Y ) + δQ2

, where εQ2
, δQ2

↘ 0 as δ ↘ 0.

Proof. The proof is provided in Appendix C-F.
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Hence, in bounding the terms corresponding to Q1 and Q2, we have obtained the following constraints:

R̃1 + C1 ≥ I(W1;X1X2YW2), R̃2 + C2 ≥ I(W2;X1X2Y ). (33)

E. Rate Constraints

To sum-up, we showed that (22) holds for sufficiently large n and with probability sufficiently close

to 1, if the following bounds holds while incorporating the time sharing random variable Q taking values

over the finite set Q:

R̃1 ≥ I(X1;W1|Q), R̃2 ≥ I(X2;W2|Q),

R̃1 + C1 ≥ I(X1X2YW2;W1|Q), R̃2 + C2 ≥ I(X1X2Y ;W2|Q),

R̃1 + R̃2 − (R1 +R2) ≤ I(W1;W2|Q), 0 ≤ R1 ≤ R̃1, 0 ≤ R2 ≤ R̃2, C1 ≥ 0, C2 ≥ 0. (34)

Let us denote the above achievable rate-region by R1. By doing an exact symmetric analysis, but by

replacing the first encoder by a product distribution instead of the second encoder in S1, all the constraints

remain the same, except that the constraints on R̃1 + C1 and R̃2 + C2 change as follows

R̃1 + C1 ≥ I(W1;X1X2Y |Q), R̃2 + C2 ≥ I(W2;X1X2YW1|Q). (35)

Let us denote the above region by R2. By time sharing between the any two points of R1 and R2

one can achieve any point in the convex hull of (R1
⋃
R2). The following lemma gives a symmetric

characterization of the convex hull of the union of the above achievable rate-regions.

Lemma 3. For the above defined rate regions R1 and R2, we have R3 = Convex Hull(R1
⋃
R2), where

R3 is given by the set of all the sextuples (R̃1, R̃2, R1, R2, C1, C2) satisfying the following constraints:

R̃1 ≥ I(X1;W1|Q), R̃2 ≥ I(X2;W2|Q),

R̃1 + C1 ≥ I(X1X2Y ;W1|Q), R̃2 + C2 ≥ I(X1X2Y ;W2|Q),

R̃1 + R̃2 + C1 + C2 ≥ I(X1X2Y ;W1W2|Q) + I(W1;W2|Q),

R̃1 + R̃2 − (R1 +R2) ≤ I(W1;W2|Q) 0 ≤ R1 ≤ R̃1 0 ≤ R2 ≤ R̃2 C1 ≥ 0, C2 ≥ 0 (36)

Proof. The proof follows from elementary set-theoretic analysis, and hence is omitted.

Lemma 4. Let R̄3 denote the set of all quadruples (R1, R2, C1, C2) for which there exists (R̃1, R̃2) such

that the sextuple (R1, R2, C1, C2, R̃1, R̃1) satisfies the inequalities in (36). Let RF denote the set of all

quadruples (R1, R2, C1, C2) that satisfy the inequalities in (1) given in the statement of the theorem.

Then, R̄3 = RF .

Proof. This follows by Fourier-Motzkin elimination [26].
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The cardinality bounds on the auxilliary random variables follows from an argument using supporting

hyperplanes of convex sets [27], and Caratheodary theorem [28].

APPENDIX A

PROOF OF LEMMAS

A. Proof of Lemma 1: E(µ)
L|Xn(·|·)s a PMF with high probability

From the definition of E(µ)
L|Xn(l|xn), we have for xn ∈ Tδ(X),

2nR̃∑
l=1

E
(µ)
L|Xn(l|xn) =

1

2nR̃

(
1− ε
1 + η

) ∑
wn∈

Tδ(W |xn)

2nR̃∑
l=1

1{wn(l,µ)=wn}
PnX|W (xn|wn)

PnX(xn)
.

Let us define Z(µ)
l (xn), for xn ∈ Tδ(X) as

Z
(µ)
l (xn) =

∑
wn∈Tδ(W |xn)

1{wn(l,µ)=wn}P
n
X|W (xn|wn)(1− ε) (37)

and let D = 2n(H(X|W )−δ1), where δ1(δ) ↘ 0 as δ ↘ 0. This gives us the following bound on the

expectation of the empirical average of {Z(µ)
l (xn)}l∈[2nR̃] as

E
[

1

N

N∑
l=1

DZ
(µ)
l (xn)

]
= 2n(H(X|W )−δ1)

∑
wn∈Tδ(W |xn)∩Tδ̄(W )

PnW (wn)PnX|W (xn|wn)

= 2n(H(X|W )−δ1)
∑

wn∈Tδ(W |xn)

PnW (wn)PnX|W (xn|wn)

≥ 2n(H(X|W )−δ1)2−n(H(X,W )+2δ1)2n(H(W |X)−δ1) ≥ 2−n(I(X;W )+4δ1), (38)

for all sufficiently large n, where in the above equations we use the fact that E[1{Wn(l,µ)=wn}] = PnW (wn)
1−ε

for wn ∈ Tδ̄(W ), and the fact that if xn ∈ Tδ(X) and wn ∈ Tδ(W |xn), then (xn, wn) ∈ Tδ̄(X,W ), and

consequently wn ∈ Tδ̄(W ). Furthermore, for sufficiently large n, we also have

DZ
(µ)
l (xn) ≤ 2n(H(X|W )−δ1)2−n(H(X|W )−δ1)(1− ε)

∑
wn∈Tδ(W |xn)

1{Wn(l,µ)=wn} ≤ 1 (39)

where we have bounded
∑

wn∈Tδ(W |xn)

1{Wn(l,µ)=wn} by 1.

Since {Z(µ)
l (xn)}l is a sequence of IID Random variables, we can approximate its empirical average,

for xn ∈ Tδ(X), using a refined Chernoff-Hoeffding bound given by

Lemma 5. Let {Zn}Nn=1 be a sequence of N IID random variables bounded between zero and one, i.e.,

Zn ∈ [0, 1] ∀n ∈ [N ], and suppose E
[

1
N

∑N
n=1 Zn

]
= µ be bounded below by a positive constant θ
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as µ ≥ θ where θ ∈ (0, 1), then for every η ∈ (0, 1/2) and (1 + η)θ < 1, we can bound the probability

that the ensemble average of the sequence {Zn}Nn=1 lies in (1± η)µ as

P
(

1

N

N∑
n=1

Zn ∈[(1− η)µ, (1 + η)µ]

)
≥ 1− 2 exp

(
− Nη2θ

4 ln 2

)
(40)

Proof. Follows from Operator Chernoff Bound [20].

Note that {DZ(µ)
l (xn)}l satisfies the constraints of the above lemma from Eqns. (38) and (39). Thus

applying Lemma (5) to {DZ(µ)
l (xn)}l for every xn ∈ Tδ(X) gives

P

 1

2nR̃

2nR̃∑
l=1

Z
(µ)
l (xn) ∈ [(1− η)E[Z(µ)(xn)], (1 + η)E[Z(µ)(xn)]]

 ≥ 1− 2 exp

(
− η22n(R̃−I(X;W )−4δ1)

4 ln 2

)
,

(41)

where Z(µ)(xn) =∆ 1
2nR̃

∑2nR̃

l=1 Z
(µ)
l (xn), the ensemble mean of the IID sequence {Z(µ)

l (xn)}l. Substituting

the following simplification

1

2nR̃

2nR̃∑
l=1

Z
(µ)
l (xn) = (1 + η)PnX(xn)

2nR̃∑
l=1

E
(µ)
L|Xn(l|xn), (42)

which follows from the definition of Znl (xn) in (41) gives

P

(1 + η)PnX(xn)

2nR̃∑
l=1

E
(µ)
L|Xn(l|xn) ≤ (1 + η)E[Z(µ)(xn)]

 ≥ 1− 2 exp

(
− η22n(R̃−I(X,W )−4δ1)

4 ln 2

)
.

(43)

Further we can bound E[Z(xn)] as

E[Z(µ)(xn)]

PnX(xn)
≤ (1− ε)
PnX(xn)

∑
wn∈Tδ(W |xn)

P̃nW (wn)PnX|W (xn|wn) ≤ 1

PnX(xn)

∑
wn

PnX,W (xn, wn) = 1.

This simplifies the above probability term as

P

2nR̃∑
l=1

E
(µ)
L|Xn(l|xn) ≤ 1

 ≥ 1− 2 exp

(
− η22n(R̃−I(X,W )−4δ1)

4 ln 2

)
.

Using the union bound, we extend the above probability to the intersection of all µ ∈ [2nC ] and xn ∈
Tδ(X) as

P

2nC⋂
µ=1

⋂
xn∈Tδ(X)

2nR̃∑
l=1

E
(µ)
L|Xn(l|xn)

 ≤ 1

 ≥ 1−
2nC∑
µ=1

∑
xn∈Tδ(X)

P

2nR̃∑
l=1

E
(µ)
L|Xn(l|xn) ≤ 1


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≥ 1− 2nC |Tδ(X)|2 exp

(
− η22n(R̃−I(X,W )−4δ1)

4 ln 2

)
. (44)

Therefore, if R̃ > I(X;W ) + 4δ1, the second term in the right hand side of (44) decays exponentially

to zero and as a result the probability of the above intersections goes to 1. This completes the proof of

the lemma.

B. Proof of Lemma 2

Be begin by defining K as

K =∆
∑
a∈A

∣∣∣PA(a)− 1

M

M∑
m=1

PA|B(a|Cm)
∣∣∣

=
∑
a∈A

∣∣∣∑
b∈B

PAB(a, b)− 1

M

M∑
m=1

∑
b∈B

PA|B(a|b)1{Cm=b}

∣∣∣,
where in the above equality we have used

∑
b∈B 1{Cm=b} = 1. Using triangle inequality, we obtain

K ≤ K1 +K2 +K3 +K4, where

K1 =∆
∑
a∈T

∣∣∣∑
b∈B

PAB(a, b)1{a∈Tb} −
1

M

M∑
m=1

∑
b∈B

PA|B(a|b)1{Cm=b}1{a∈Tb}

∣∣∣,
K2 =∆

∑
a∈T

∑
b∈B

PAB(a, b)1{a/∈Tb}, K3 =∆
∑
a∈T

1

M

M∑
m=1

∑
b∈B

PA|B(a|b)1{Cm=b}1{a/∈Tb}, and

K4 =∆
∑

a∈A\T

∣∣∣PA(a)− 1

M

M∑
m=1

PA|B(a|Cm)
∣∣∣.

We begin by first bounding the terms corresponding to K2,K3 and K4, finally and delve into bounding

the main term corresponding to K1. Note that K2 can be written as

K2 ≤
∑
b∈B

PB(b)
∑
a/∈Tb

PA|B(a|b) =
∑
b∈B

PB(b)(1− PA|B(Tb|b)) ≤ ε,

where the last inequality uses the hypothesis (17b) from the statement of the lemma. Considering the

term K3, applying expectation yields

E[K3] ≤
∑
b∈B

PB(b)
∑
a/∈Tb

PA|B(a|b) =
∑
b∈B

PB(b)(1− PA|B(Tb|b)) ≤ ε,

where the last inequality again uses the hypothesis (17b) from the statement of the lemma. Considering

the term K4, we use the fact that E[ 1
M

∑M
m=1 PA|B(a|Cm)] = PA(a), and bound K4 as

E[K4] ≤ 2
∑

a∈A\T

E

[
1

M

M∑
m=1

PA|B(a|Cm)

]
= 2

∑
a∈A\T

PA(a) = 2(1− PA(T )) ≤ 2ε.
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Finally, we consider the term K1. Using the concavity of the square-root function, we have

E[K1] ≤
∑
a∈T

√√√√V ar

(
1

M

M∑
m=1

∑
b∈B

PA|B(a|b)1{Cm=b}1{a∈Tb}

)
. (45)

Further, the term within the variance can be simplified as

Var

(
1

M

M∑
m=1

∑
b∈B

PA|B(a|b)1{Cm=b}1{a∈Tb}

)
≤ 1

M
E

[∑
b∈B

P 2
A|B(a|b)1{a∈Tb}1{b=C1}

]

=
1

M

∑
b∈B

P 2
A|B(a|b)PB(b)1{a∈Tb}

≤ 1

M

1

d

∑
b∈B

PA|B(a|b)PB(b) =
PA(a)

Md
,

where in the first inequality we use (i) the fact that codewords are generated pairwise independently from

PB , and (ii) V ar(·) ≤ E[(·)2], in the first equality we have used E[1{Cm=b}] = PB(b), and in the second

inequality we have used the hypothesis (17d) from the statement of the lemma Finally, substituting the

above bounds in (45), and using the hypothesis (17c), we obtain

E[K1] ≤
√

D

Md
.

Combining all the bounds on K1,K2,K3 and K4 completes the proof.

APPENDIX B

PROOF OF THEOREM 2

Let (R1, R2, C1, C2) be an achievable quadruple. Fix an arbitrary ε > 0 and a sufficiently large n. From

Definition 2 it follows that there exists 2nC1 × 2nC2 randomized encoder pairs (E
(µ1)
1 , E

(µ2)
2 ), j ∈ [2],

and a corresponding collection of 2nC randomized decoders D(µ) that satisfy the following constraints:
1
n log Θj ≤ Rj + ε, and ‖PnXY − PXnY n‖1 ≤ ε. Let M1 and M2 be the messages communicated

by the first and second encoders, respectively, and let K1 ∈ [2nC1 ] and K2 ∈ [2nC2 ] denote the

common randomness shared among the first encoder and the decoder, and the second encoder and the

decoder, respectively. The source sequence pair (Xn
1 , X

n
2 ) and K1 and K2 are mutually independent. Let

PMj |Xn
j Kj

: j ∈ {0, 1} denote the two distributed stochastic encoders, respectively. Y n ∼ PY n|M1M2,K1,K2

be the samples generated by the decoder using the messages received and the common randomness

available. Lastly, let R1 and C1 denote communication rate and the common randomness rate of the

first encoder, respectively, and similarly, let R2 and C2 denote communication rate and the common

randomness rate of the second encoder, respectively. Additionally, let PW |X1X2
be an arbitrary distribution

in PR. Recall that PX1X2
PW |X1X2

satisfies the Markov chain X1−W −X2. We generate n copies of the

auxilliary random variable W denoted as Wn, from (Xn
1 , X

n
2 ) in a memoryless fashion using PW |X1,X2

to yield (i) Xn
1 −Wn −Xn

2 . Enforce a Markov coupling of this with the n-letter encoders and decoder
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to result in the following n-letter Markov chains: (ii) M1 − (Xn
1 ,K1) − (Wn, Xn

2 ,K2,M2), and (iii)

M2 − (Xn
2 ,K2)− (Wn, Xn

1 ,K1,M1). This simplifies the joint distribution as

PK1K2Xn
1 X

n
2 W

nM1M2Y n(k1, k2, x
n
1 , x

n
2 , w

n,m1,m2, y
n)

= PK1
(k1)PK2

(k2)PnW (wn)PnX1|W (xn1 |wn)PnX2|W (xn2 |wn)

PM1|Xn
1 K1

(m1|xn1 , k1)PM2|Xn
2 K2

(m2|xn2 , k2)PY n|M1K1M2K2
(yn|m1, k1,m2, k2). (46)

Further, define for i ∈ [n], Ui and Vi as Ui =∆ (M1,K1,W
i−1) and Vi =∆ (M2,K2,W

i−1).

Step 1: Rate Constraints: Using this, we have

n(R1 + ε) ≥ H(M1)

≥ H(M1|M2,K1,K2)

≥ I(Xn
1 ;M1|M2,K1,K2)

(a)
= I(Xn

1 ;M1|M2,K1,K2) + I(Wn;M1|M2,K1,K2, X
n
1 )

(b)
= I(Xn

1 ,W
n;M1|M2,K1,K2) + I(Xn

1 ,W
n;K1|M2,K2)

= I(Xn
1 ,W

n;M1,K1|M2,K2)

= I(Wn;M1,K1|M2,K2) + I(Xn
1 ;M1,K1|M2,K2,W

n)

(c)
= I(Wn;M1,K1|M2,K2) + I(Xn

1 ;M1,K1|Wn)

=

n∑
i=1

[
I(Wi;M1,K1|M2,K2,W

i−1) + I(X1i;M1,K1|Wn, Xi−1
1 )

]
(d)
=

n∑
i=1

[
I(Wi;Ui|Vi) +H(X1i|Wn)−H(X1i|M1,K1,W

n, Xi−1
1 )

]
(e)
≥

n∑
i=1

[
I(Wi;Ui|Vi) +H(X1i|Wi, Qi)−H(X1i|M1,K1,Wi, Qi)

]

=

n∑
i=1

[
I(Wi;Ui|Vi) + I(X1i, Ui|Wi, Qi)

]
(f)
= n

(
I(W ;U |V, J) + I(X1, U |W,Q, J)

)
, (47)

where (a) follows from the fact that

I(Wn;M1|M2,K1,K2, X
n
1 ) = I(M2K2W

n;M1|Xn
1 ,K1)− I(M2K2;M1|Xn

1 ,K1)

= −I(M2K2;M1|Xn
1 ,K1) ≤ 0,
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which is only true if I(Wn;M1|M2,K1,K2, X
n
1 ) = 0, (b) follows from I(Xn

1 ,W
n;K1|M2,K2) = 0

which is true given the decomposition in (46), (c) uses the fact that for a Markov Chain (A,B)−C−D, we

have I(A;B|C,D) = I(A;B|C), (d) is obtained using the definitions of Ui and Vi, and the memoryless

nature of the source Xn
1 , (e) follows from defining for all i ∈ [n], Qi =∆ Wn\i and using the result

- conditioning reduces entropy, and finally (f) follows by (i) defining a time-sharing random variable

J which is uniformly distributed in [1, n] and independent of (Wn, Un, V n, Qn, Xn
1 , X

n
2 , Y

n), and (ii)

defining W,U, V,Q,X1 and X2 as WJ , UJ , VJ , QJ , X1J and X2J , respectively. Using identical steps for

the bound R2, we get the following bound for R2

n(R2 + ε) ≥ n
(
I(W ;V |U) + I(X2, V |W,Q)

)
.

We now provide a bound on the sum rate R1 +R2 as

n(R1 +R2 + ε) ≥ H(M1,M2)

≥ I(Xn
1 , X

n
2 ,K1,K2;M1,M2)

(a)
= I(Wn, Xn

1 , X
n
2 ,K1,K2;M1,M2)

= I(Wn;M1,M2) + I(K1,K2;M1,M2|Wn) + I(Xn
1 , X

n
2 ;M1,M2|Wn,K1,K2)

(b)
≥ I(Wn;M1,M2) + I(K1,K2;Wn|M1,M2) + I(Xn

1 , X
n
2 ;M1,M2,K1,K2|Wn)

(c)
= I(Wn;M1,M2,K1,K2) + I(Xn

1 ;M1,K1|Wn) + I(Xn
2 ;M2,K2|Wn)

=

n∑
i

[
I(Wi;M1,M2,K1,K2|W i−1) + I(X1i;M1,K1|Wn, Xi−1

1 )

+ I(X2i;M2,K2|Wn, Xi−1
2 )

]
=

n∑
i

[
I(Wi;M1,M2,K1,K2|W i−1) + I(X1i;Ui|Wi, Qi) + I(X2i;Vi|Wi, Qi)

]

=

n∑
i

[
I(Wi;M1,M2,K1,K2|W i−1) + I(Wi;W

i−1)

+ I(X1i;Ui|Wi, Qi) + I(X2i;Vi|Wi, Qi)

]
(d)
=

n∑
i

[
I(Wi;Ui, Vi) + I(X1i;Ui|Wi, Qi) + I(X2i;Vi|Wi, Qi)

]
= n

(
I(W ;U, V |J) + I(X1;U |W,Q, J) + I(X2;V |W,Q, J)

)
, (48)

where (a) follows from the Markov Chain Wn − (Xn
1 , X

n
2 ,K1,K2) − (M1,M2) which makes
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I(Wn;M1,M2|Xn
1 , X

n
2 ,K1,K2) = 0, (b) follows from

(i) I(K1,K2;M1,M2|Wn) = H(K1,K2|Wn)−H(K1,K2|Wn,M1,M2)

= H(K1,K2)−H(K1,K2|Wn,M1,M2)

≥ I(K1,K2;Wn|M1,M2),

and (ii) I(K1,K2;Xn
1 , X

n
2 |Wn) = 0.

(c) follows from the Markov Chain M1−(Xn
1 ,K1)−Wn−(Xn

2 ,K2)−M2, and (d) follows from similar

arguments as in (47-d).

We now provide the bound for R1 +R2 + C1 + C2 as follows.

n(R1 +R2 + C1 + C2 + ε) ≥ H(M1,M2,K1,K2)

≥ I(M1,M2,K1,K2;Xn
1 , X

n
2 , Y

n)

(a)
= I(Xn

1 , X
n
2 , Y

n,Wn;M1,M2,K1,K2)

= I(Wn;M1,M2,K1,K2) + I(Xn
1 , X

n
2 , Y

n;M1,M2,K1,K2|Wn), (49)

where (a) follows from using the Markov chain Wn − (Xn
1 , X

n
2 ) − (M1,M2,K1,K2) − Y n which

implies I(Wn;M1,M2,K1,K2|Xn
1 , X

n
2 , Y

n) = 0. Again the first term in the right hand side of (49)

can simplified following the approach in (48) as I(Wn;M1,M2,K1,K2) =
∑n

i=1 I(Wi;Ui, Vi). For the

second term, we have

I(Xn
1 , X

n
2 , Y

n;M1,M2,K1,K2|Wn)

=

n∑
i=1

[
I(X1i, X2i, Yi;Ui, ViX

i−1
1 , Xi−1

2 , Y i−1|Qi,Wi)− I(X1i, X2i, Yi;X
i−1
1 , Xi−1

2 , Y i−1|Qi,Wi)

]

≥
n∑
i=1

I(X1i, X2i, Yi;Ui, Vi|Qi,Wi)− ngc(ε),

where in the last inequality above we use ‖PnX1X2Y
− PXn

1 X
n
2 Y

n‖1 ≤ ε, implies

I(X1i, X
n
2i, Yi;X

i−1
1 , Xi−1

2 , Y i−1|Qi,Wi) ≤ ngc(ε), and define gc(ε) as in the statement of the

theorem using Lemma VI.3 from [9] obtaining gc(ε)↘ 0 as ε↘ 0 which follows from the memoryless

nature of PWn|Xn
1 X

n
2

. Substituting the above simplification in (49), we obtain

n(R1 +R2 + C1 + C2 + ε) ≥
n∑
i=1

[
I(Wi;Ui, Vi) + I(X1i, X2i, Yi;Ui, Vi|Qi,Wi)− gc(ε)

]
= n

(
I(W ;U, V |J) + I(X1, X2, Y ;U, V |Q,W, J)− gc(ε)

)
, (50)

where the equality above follows by defining J as an averaging random variable which is uniformly
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distributed in [1, n] and Y as YJ .

Step 2: Single-letter l1 constraint (d): Since the encoders and decoder satisfy the l1 distance constraint

‖PnX1X2Y
− PXn

1 X
n
2 Y

n‖1 ≤ ε (as in Definition 2), using the Lemma VI.2 from [9] we have

‖PX1X2Y − PX1JX2JYJ‖1 ≤ ‖PnX1X2Y − PXn
1 X

n
2 Y

n‖1 ≤ ε. (51)

Step 3: Markov Chains: We now argue that the Markov Chains (a), (b), (c), (e) and (f) stated in the

theorem statement hold. The Markov Chain (a) follows from the standard information-theoretic arguments

with time-sharing random variables [29] and using the fact that (i) J is independent of (Xn
1 , X

n
2 , Q

n)

and (ii) the stationary and memoryless nature of the sources (Xn
1 , X

n
2 ,W

n) which makes (X1, X2)

independent of Q. Moving on to the next, the Markov chain (b) U − (X1, Q, J) − (X2, Q, J) − V

holds true from the following arguments. Since J is uniform and is independent of the sources Xn
1 and

Xn
2 , this is equivalent to showing Ui − (X1i, Qi) − (X2i, Qi) − Vi for i ∈ [n]. This is equivalent to

(M1,K1,W
i−1)− (X1i,W

i−1,Wn
i+1)− (X2i,W

i−1,Wn
i+1)− (M2,K2,W

i−1). Hence we need to show

(M1,K1)− (X1i,W
i−1,Wn

i+1)− (X2i,W
i−1,Wn

i+1)− (M2,K2). We show this in the following. For an

arbitrary i ∈ [n] and for mj ∈ [2nRj ], kj ∈ [2nCj ] : j = 1, 2, x1i ∈ X1, x2i ∈ X2, w[i] =∆ wn\i ∈ Wn−1,

we have

P [M1 =m1,K1 = k1|X1i = x1i, X2i = x2i,W
[i] = w[i],M2 = m2,K2 = k2]

=
P [M1 = m1,K1 = k1, X1i = x1i, X2i = x2i,W

[i] = w[i],M2 = m2,K2 = k2]

P [X1i = x1i, X2i = x2i,W [i] = w[i],M2 = m2,K2 = k2]

=
P (K1 = k1)P (K2 = k2)P (W [i] = w[i], X1i = x1i, X2i = x2i)

P (K2 = k2)P (W [i] = w[i], X1i = x1i, X2i = x2i)

×
∑

x
[i]
1
P (X

[i]
1 = x

[i]
1 |W [i] = w[i])P (M1 = m1|Xn

1 = xn1 ,K1 = k1)∑
x

[i]
2
P (X

[i]
2 = x

[i]
2 |W [i] = w[i])P (M2 = m2|Xn

2 = xn2 ,K2 = k2)

×
∑
x

[i]
2

P (X
[i]
2 = x

[i]
2 |W

[i] = w[i])P (M2 = m2|Xn
2 = xn2 ,K2 = k2)

= P (K1 = k1)

∑
x

[i]
1

P (X
[i]
1 = x

[i]
1 |W

[i] = w[i])P (M1 = m1|Xn
1 = xn1 ,K1 = k1)

 .

Note that the right hand side in the above simplification does not depend on (x2i,m2, k2). Hence we have

shown (M1,K1,W
i−1)−(X1i,W

n\i)−(X2i,W
n\i,M2,K2). Similarly, using identical arguments, we can

show (M2,K2,W
i−1)−(X2i,W

n\i)−(X1i,W
n\i,M1,K1). These imply that Ui−(X1iQi)−(X2iQi)−Vi

for all i = 1, 2, . . . , n.

To prove the next Markov Chain (c) given by (X1, X2, Q) − (J, U, V ) − Y , consider the following

arguments: Since J is uniform and independent of the sources, the Markov chain (c) is equivalent to

(X1i, X2i,W
n\i) − (W i−1,M1,K1,M2,K2) − Yi for all i ∈ [n]. We prove this using the following.

For an arbitrary i ∈ [n] and for mj ∈ [2nRj ], kj ∈ [2nCj ] : j = 1, 2, x1i ∈ X1, x2i ∈ X2, yi ∈ Y,
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w[i] =∆ wn\i ∈ Wn−1, we have

P (X1i = x1i, X2i = x2i,W
[i] = w[i]|M1 = m1,M2 = m2,K1 = k1,K2 = k2,W

i−1 = wi−1,Yi = yi)

=
P (M1 = m1,M2 = m2,K1 = k1,K2 = k2,W

[i] = w[i], X1i = x1i, X2i = x2i, Yi = yi)

P (M1 = m1,M2 = m2,K1 = k1,K2 = k2,W i−1 = wi−1, Yi = yi)

=

[∑
x

[i]
1 ,x

[i]
2 ,wi

P (Wn = wn, Xn
1 = xn, Xn

2 = xn2 )[∑
xn1 ,x

n
2 ,w

n
i
P (Wn = wn, Xn

1 = xn, Xn
2 = xn2 )

×
P (M1 = m1|Xn

1 = xn,K1 = k1)P (M2 = m2|Xn
2 = xn2 ,K2 = k2)

]
P (M1 = m1|Xn

1 = xn,K1 = k1)P (M2 = m2|Xn
2 = xn2 ,K2 = k2)

]
×
∑

y[i] P (Y n = yn|M1 = m1,M2 = m2,K1 = k1,K2 = k2)∑
y[i] P (Y n = yn|M1 = m1,M2 = m2,K1 = k1,K2 = k2)

=
P (X1i = x1i, X2i = x2i,W

[i] = w[i],M1 = m1,M2 = m2|K1 = k1,K2 = k2)

P (W i−1 = wi−1,M1 = m1,M2 = m2|K1 = k1,K2 = k2)
.

Since the right hand side of the above simplification is independent of yi, we therefore have the Markov

chain (c) to be satisfied. Progressing ahead, we have the Markov chain (e) given by X1J −WJ −X2J

which is satisfied from the choice of PW |X1,X2
similar to the arguments made in showing the Markov

chain (a). Finally, toward showing the Markov chain (f) given by W−(X1, X2)−(J,Q,U, V, Y ) consider

the following set of arguments: For an arbitrary i ∈ [n] and for mj ∈ [2nRj ], kj ∈ [2nCj ] : j = 1, 2,

x1i ∈ X1, x2i ∈ X2, yi ∈ Y, w[i] =∆ wn\i ∈ Wn−1, we have

P (Wi = wi|M1 = m1,M2 = m2,K1 = k1,K2 = k2,W
[i] = w[i], Yi = yi, X1i = x1i, X2i = x2i, J = i)

=
P (M1 = m1,M2 = m2,K1 = k1,K2 = k2,W

n = wn, X1i = x1i, X2i = x2i, Yi = yi, J = i)

P (M1 = m1,M2 = m2,K1 = k1,K2 = k2,W [i] = w[i], Yi = yi, X1i = x1i, X2i = x2i, J = i)

=

[∑
x

[i]
1 ,x

[i]
2
P (Wn = wn, Xn

1 = xn, Xn
2 = xn2 , J = i)[∑

x
[i]
1 ,x

[i]
2
P (W [i] = w[i], Xn

1 = xn, Xn
2 = xn2 , J = i)

×
P (M1 = m1|Xn

1 = xn,K1 = k1)P (M2 = m2|Xn
2 = xn2 ,K2 = k2)

]
P (M1 = m1|Xn

1 = xn,K1 = k1)P (M2 = m2|Xn
2 = xn2 ,K2 = k2)

]
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=

P (Wi = wi, X1i = x1i, X2i = x2i, J = i)

[∑
x

[i]
1 ,x

[i]
2
P (X

[i]
1 = x[i], X

[i]
2 = x

[i]
2 |W [i] = w[i])

P (X1i = x1i, X2i = x2i, J = i)

[∑
x

[i]
1 ,x

[i]
2
P (X

[i]
1 = x[i], X

[i]
2 = x

[i]
2 |W [i] = w[i])

×
P (M1 = m1|Xn

1 = xn,K1 = k1)P (M2 = m2|Xn
2 = xn2 ,K2 = k2)

]
P (M1 = m1|Xn

1 = xn,K1 = k1)P (M2 = m2|Xn
2 = xn2 ,K2 = k2)

]
=
P (Wi = wi, X1i = x1i, X2i = x2i, J = i)

P (X1i = x1i, X2i = x2i, J = i)
= PW |X1X2

(wi|x1i, x2i).

We now have the right hand side of the above simplification independent of j, w[i],m1,m2, k1, k2, and

yi, which proves that the Markov Chain (f) is satisfied.

We have shown that (R1, R2, C1, C2) belongs to RO(PXY , ε) for all ε > 0, which is the desired proof

of the outer bound.

APPENDIX C

PROOF OF PROPOSITIONS

A. Proof of Proposition 1

We begin by using the lower bound from (41) given in Appendix A-A. If R̃ > I(X;W ) + 4δ1, we

have

2nR̃∑
l=1

E
(µ1)
L|Xn(l|xn) =

1

2nR̃

(
1− ε
1 + η

) ∑
wn∈Tδ(W |xn)

2nR̃∑
l=1

1{wn(l,µ1)=wn}
PnX|W (xn|wn)

PnX(xn)

=

(
1

1 + η

)
1

PnX(xn)

1

2nR̃

2nR̃∑
l=1

Z
(µ)
l (xn)

w.h.p
≥
(

1

1 + η

)
1

PnX(xn)
(1− η)E[Z(µ)(xn)]

≥
(

1− η
1 + η

)
(1− εc), (52)

where the second equality follows from the definition of Z
(µ)
l (xn) as defined in (37), the first

inequality uses the lower bound from (41) which is true with probability greater than 1 − δτ , where

δτ =∆ 2 exp

(
− η22n(R̃−I(X,W )−4δ1)

4 ln 2

)
, and the second inequality uses the fact that E[Z(µ)(xn)] =

PnX(xn)
∑

wn∈Tδ(W |xn) P
n
W |X(wn|xn) ≥ PnX(xn)(1 − εc), for sufficiently large n and εc(δ) ↘ 0 as
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δ ↘ 0. Using this we get, with high probability,∑
yn,zn

S̃ · 1PMF(C) ≤
2η + εc(1− η)

1 + η

∑
yn,zn

PnZ|X(zn|xn)PnY |WZ(yn|w0, z
n)

≤ 2η + εc(1− η)

1 + η

∑
yn,zn

PnY Z|WX(yn, zn|w0, x
n) =

2η + εc(1− η)

1 + η

where the first equality follows by using the Markov Chains Z −X −W and X − (W,Z)− Y . Finally,

since S̃ · 1PMF(C) ≤ 1, using the above result, we have for sufficiently large n,

E

[∑
yn,zn

S̃ · 1PMF(C)

]
≤ 2η + εc(1− η)

1 + η
(1− δτ ) + δτ . (53)

Therefore E
[∑

xn∈Tδ(X) P
n
X(xn)

∑
yn,zn S̃ · 1PMF(C)

]
can be made arbitrarily small for all sufficiently

large n.

B. Proof of Proposition 2

The term E
[∑

xn∈Tδ(X) P
n
X(xn)

∑
yn,zn S2

]
captures the binning error in terms of total variation. If

we let w̃n = f (µ)(b(µ)(l), zn), we have

∑
yn

∣∣∣∣∣ (PnY |WZ(yn|wn, zn)− PnY |WZ(yn|w̃n, zn)
) ∣∣∣∣∣ ≤ 2 · 1{wn 6=w̃n}. (54)

Substituting (54) in E[
∑

xn∈Tδ(X) P
n
X(xn)

∑
yn,zn S2], and using union bound, we obtain

E[
∑

xn∈Tδ(X) P
n
X(xn)

∑
yn,zn S2] ≤ J1 + J2, where

J1 =∆ 2 · E

[ ∑
xn∈Tδ(X)

∑
zn

∑
µ,l

∑
wn∈

Tδ(W |xn)

(1− ε)PnZ|X(zn|xn)PnX|W (xn|wn)

2n(R̃+C)(1 + η)
1{wn=wn(l,µ)}1(wn,zn)/∈Tδ(W,Z)

]

J2 =∆ 2 · E

[ ∑
xn∈Tδ(X)

∑
zn

∑
µ,l

∑
wn∈

Tδ(W |xn)

(1− ε)PnZ|X(zn|xn)PnX|W (xn|wn)

2n(R̃+C)(1 + η)
1{wn=wn(l,µ)}

∑
m,l′

∑
w̃n:

wn 6=w̃n

1{(w̃n,zn)∈Tδ(W,Z)}1{b(µ)(l)=m)}1{b(µ)(l′)=m)}1{w(l′,µ)=w̃n}

]

We begin by showing J1 can be made arbitrarily small for sufficiently large n. Using the fact that

E[1{wn=wn(l,µ)}] = PnW (wn)
(1−ε) , for wn ∈ Tδ̄(W ), we have

J1 = 2
∑

xn∈Tδ(X)

∑
zn

∑
wn:wn∈

Tδ(W |xn)∩Tδ̄(W ),
(wn,zn)/∈Tδ(W,Z)

PnZ|X(zn|xn)PnXW (xn, wn)

(1 + η)



38

≤ 2

(1 + η)

∑
xn∈Tδ(X)

∑
zn

∑
wn:wn∈

Tδ(W |xn)∩Tδ̄(W ),
(wn,zn)/∈Tδ(W,Z)

PnXWZ(xn, wn, zn)

≤ 2

(1 + η)

∑
(wn,zn)/∈Tδ(W,Z)

PnWZ(wn, zn) ≤ 2εJ1

(1 + η)
,

where εJ1
(δ)↘ 0 as δ ↘ 0. Proceeding with J2, we have

J2 ≤ 2 · E

[ ∑
xn∈Tδ(X)

∑
zn

∑
µ,l

∑
wn∈

Tδ(W |xn)

(1− ε)PnXZ(xn, zn)PnX|W (xn|wn)

2n(R̃+C)(1 + η)
1{wn=wn(l,µ)}

∑
m,l′

∑
w̃n:

wn 6=w̃n

1{(w̃n,zn)∈Tδ(W,Z)}1{b(µ)(l)=m)}1{b(µ)(l′)=m)}1{w(l′,µ)=w̃n}

]

= 2
∑

xn∈Tδ(X)

∑
zn∈Tδ(Z)

2nR∑
m=1

∑
wn∈

Tδ(W |xn)

(1− ε)PnXZ(xn, zn)PnX|W (xn|wn)

2n(R̃+C)(1 + η)

∑
w̃n:(w̃n,zn)
∈Tδ(W,Z),
wn 6=w̃n

∑
µ,l,l′

E

[
1{wn(l,µ)=wn}1{w(l′,µ)=w̃n}1{b(µ)(l)=m)}1{b(µ)(l′)=m)}

]

= 2
∑

xn∈Tδ(X)

∑
zn∈Tδ(Z)

2nR∑
m=1

∑
wn∈

Tδ(W |xn)

(1− ε)PnXZ(xn, zn)PnX|W (xn|wn)

2n(R̃+C)(1 + η)

∑
w̃n:(w̃n,zn)∈Tδ(W,Z),

wn 6=w̃n

∑
µ,l,l′

[
PnW (wn)

(1− ε)
PnW (w̃n)

(1− ε)
2−2nR

]

= 2 · 2n(R̃−R)
∑

xn∈Tδ(X)

∑
zn∈Tδ(Z)

∑
wn∈Tδ(W |xn)

PnXWZ(xn, wn, zn)

(1 + η)

∑
w̃n:(w̃n,zn)
∈Tδ(W,Z),
wn 6=w̃n

PnW (w̃n)

(1− ε)

≤ 2 · 2n(R̃−R)
∑

xn∈Tδ(X)

∑
zn∈Tδ(Z)

∑
wn∈Tδ(W |xn)

PnWZ|X(wn, zn|xn)

(1 + η)(1− ε)
2−n(I(W ;Z)−δI)

≤ 2n(R̃−R−I(W ;Z)+δI+δ′)

where the second equality follows by using E[1{b(µ)(l)=m}] = 2−nR , the third equality follows from the

Markov Chain Z − X −W, the second inequality follows from the properties of δ-typical sets where

δI(δ)↘ 0 as δ ↘ 0. Therefore, from above E[
∑

yn,zn S2] can be made arbitrarily small, for sufficiently

large n, if R̃−R ≤ I(W ;Z) + ε1, where ε1 = δI + δ′.
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C. Proof of Proposition 4

We begin by defining S̃i =∆ |Ti| for i ∈ {2, 3, 4}. Firstly, consider the following simplification of S̃2.∑
xn1 ,x

n
2∈Tδ(X)

∑
yn

PnX1X2
(xn1 , x

n
2 )S̃2

=
∑

xn1 ,x
n
2∈Tδ(X)

∑
yn

∣∣∣∣∣ ∑
µ1,µ2,l2

∑
wn2 ∈

Tδ(W2|xn2 )

PnX1X2
(xn1 , x

n
2 )
[
1−

∑2nR̃1

m1=1E
(µ1)
L1|Xn

1
(l1|xn1 )

]
2n(C1+C2)

(1− ε2)PnX2|W2
(xn2 |wn2 )

2nR̃2(1 + η)PnX2
(xn2 )

1{wn2 =wn2 (l2,µ2)}P
n
Y |W1W2

(yn|w̃n1 , w̃n2 )

∣∣∣∣∣
=

∑
xn1 ,x

n
2∈Tδ(X)

∑
yn

∑
µ1,µ2,l2

∑
wn2 ∈

Tδ(W2|xn2 )

PnX1X2
(xn1 , x

n
2 )
∣∣∣1−∑2nR̃1

m1=1E
(µ1)
L1|Xn

1
(l1|xn1 )

∣∣∣
2n(C1+C2)

(1− ε2)PnX2|W2
(xn2 |wn2 )

2nR̃2(1 + η)PnX2
(xn2 )

1{wn2 =wn2 (l2,µ2)}P
n
Y |W1W2

(yn|w̃n1 , w̃n2 )

Taking expectation over the second encoder’s codebook, we obtain

EC2

 ∑
xn1 ,x

n
2∈Tδ(X)

∑
yn

PnX1X2
(xn1 , x

n
2 )S̃2


≤

∑
xn1 ,x

n
2∈Tδ(X)

∑
yn

∑
µ1,µ2

∑
wn2 ∈

Tδ(W2|xn2 )

∣∣∣1−∑2nR̃1

l1=1 E
(µ1)
L1|Xn

1
(l1|xn1 )

∣∣∣
2n(C1+C2)(1 + η)

PnX1,X2,W2
(xn1 , x

n
2 , w

n
2 )PnY |W1W2

(yn|w̃n1 , w̃n2 )

≤
∑

xn1 ,x
n
2∈Tδ(X)

∑
wn2

∑
µ1,µ2

∣∣∣1−∑2nR̃1

l1=1 E
(µ1)
L1|Xn

1
(l1|xn1 )

∣∣∣
2n(C1+C2)(1 + η)

PnX1,X2,W2
(xn1 , x

n
2 , w

n
2 )

≤ 1

2n(C1+C2)

∑
µ1,µ2

∑
xn1∈Tδ(X1)

PnX1
(xn1 )

∣∣∣1−∑2nR̃1

l1=1 E
(µ1)
L1|Xn

1
(l1|xn1 )

∣∣∣
(1 + η)

. (55)

Further, taking expectation over the first encoder’s codebook and introducing the indicator 1PMF(C1,C2),

we get

E

 ∑
xn1 ,x

n
2∈Tδ(X)

∑
yn

PnX1X2
(xn1 , x

n
2 )S̃2 · 1PMF(C1,C2)

 ≤ EC1

EC2
 ∑
xn1 ,x

n
2∈Tδ(X)

∑
yn

PnX1X2
(xn1 , x

n
2 )S̃2

1PMF(C1)


≤ 2η + εc(1− η)

1 + η
(1− δτ ) + δτ .

where the last inequality follows using the result from (53) provided in Appendix C-A, and δτ (δ) ↘ 0

as δ ↘ 0 if R̃1 ≥ I(X1;W1) + 4δ1, for all sufficiently large n, where δ1 ↘ 0, εc(δ)↘ 0 as δ ↘ 0.

Using very similar arguments as above, it can also be shown that if R̃2 ≥ I(X2;W2) + 4δ1, then



40

E
[∑

xn1 ,x
n
2∈Tδ(X)

∑
yn P

n
X1X2

(xn1 , x
n
2 )S̃3 · 1PMF(C1,C2)

]
can be made arbitrarily small for all sufficiently

large n.

Similarly consider the final term corresponding to S̃4. For R̃1 and R̃2 satisfying the above constraints,

i.e., R̃1 ≥ I(X1;W1) + 4δ and R̃2 ≥ I(X2;W2) + 4δ, we will have

E

 ∑
xn1 ,x

n
2∈Tδ(X)

∑
yn

PnX1X2
(xn1 , x

n
2 )S̃4 · 1PMF(C1,C2)


≤ E

 ∑
xn1 ,x

n
2∈Tδ(X)

∑
µ1,µ2

PnX1X2
(xn1 , x

n
2 )
∣∣∣1−∑2nR̃1

l1=1 E
(µ1)
L1|Xn

1
(l1|xn1 )

∣∣∣ ∣∣∣1−∑2nR̃2

l2=2 E
(µ2)
L2|Xn

2
(l2|xn2 )

∣∣∣
2nC

1PMF(C1,C2)


≤

[(
2η + εc(1− η)

1 + η

)2

(1− 2δτ ) + 2δτ

]
,

where the second inequality again uses the result from Appendix C-A. This completes the proof.

D. Proof of Proposition 5

Define (ŵn1 , ŵ
n
2 ) = f (µ)(b(µ1)(l1), b(µ2)(l2)). Consider,∣∣∣∣∣PnY |W1W2
(yn|wn1 , wn2 )− PnY |W1W2

(yn|f (µ)(b
(µ1)
1 (l1), b

(µ2)
2 (l2)))

∣∣∣∣∣ ≤ 2 · 1{(wn1 ,wn2 ) 6=(ŵn1 ,ŵ
n
2 )}.

Substituting the above bound in the S12 term and using the union bound, we obtain

E
[∑

xn∈Tδ(X) P
n
X(xn)

∑
yn
S2

]
≤ J1 + J2, where

J1 =∆ 2
∑

xn∈Tδ(X)

∑
µ1,µ2

∑
wn1 ∈

Tδ(W1|xn1 )

∑
wn2 ∈

Tδ(W2|xn2 )

(1− ε1)(1− ε2)PnX1X2
(xn1 , x

n
2 )PnX1|W1

(xn1 |wn1 )PnX2|W2
(xn2 |wn2 )

2n(R̃1+R̃2+C1+C2)(1 + η)2PnX1
(xn1 )PnX2

(xn2 )

∑
l1,l2

∑
m1,m2

E

[
1{wn2 =wn2 (l2,µ2)}1{wn1 =wn1 (l1,µ1)}1{(wn1 ,wn2 )/∈Tδ(W1,W2)}1{b(µ1)

1 (l1)=m1)}1{b(µ1)
2 (l2)=m2)}

]
,

J2 =∆ 2
∑

xn∈Tδ(X)

∑
µ1,µ2

∑
wn1 ∈

Tδ(W1|xn1 )

∑
wn2 ∈

Tδ(W2|xn2 )

(1− ε1)(1− ε2)PnX1X2
(xn1 , x

n
2 )PnX1|W1

(xn1 |wn1 )PnX2|W2
(xn2 |wn2 )

2n(R̃1+R̃2+C1+C2)(1 + η)2PnX1
(xn1 )PnX2

(xn2 )

∑
l1,l2

∑
ŵn1 ,ŵ

n
2 :

(ŵn1 ,ŵ
n
2 )6=(wn1 ,w

n
2 )

∑
m1,m2

∑
l′1,l
′
2

E

[
1{wn2 =wn2 (l2,µ2)}1{wn1 =wn1 (l1,µ1)}1{(ŵn1 ,ŵn2 )∈Tδ(W1,W2)}

1{b(µ1)
1 (l1)=m1)}1{b(µ1)

1 (l′1)=m1)}1{b(µ1)
2 (l2)=m2)}1{b(µ1)

2 (l′2)=m2)}1{w1(l′1,µ1)=w′1}1{w2(l′2)=w′2}

]
.
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Consider the term J1. This can be bounded as

J1 ≤ 2
∑

xn∈Tδ(X)

∑
(wn1 ,w

n
2 )/∈Tδ(W1,W2)

PnX1X2W1W2
(xn1 , x

n
2 , w

n
1 , w

n
2 )

(1 + η)2
≤ 2

∑
(wn1 ,w

n
2 )/∈

Tδ(W1,W2)

PnW1W2
(wn1 , w

n
2 )

(1 + η)2
≤ εJ1

,

where εJ1
(δ)↘ 0 as δ ↘ 0. Now, consider the term corresponding to J2.

J2 ≤ 2 · 2n(R̃1+R̃2−R1−R2)
∑
xn1 ,x

n
2

∑
wn1 ∈

Tδ(W1|xn1 )

∑
wn2 ∈

Tδ(W2|xn2 )

(1− ε1)(1− ε2)PnX1X2
(xn1 , x

n
2 )

(1 + η)2PnX1
(xn1 )PnX2

(xn2 )

PnX1|W1
(xn1 |wn1 )PnX2|W2

(xn2 |wn2 )
∑

ŵn1 ,ŵ
n
2 :(ŵn1 ,ŵ

n
2 )6=(wn1 ,w

n
2 )

(ŵn1 ,ŵ
n
2 )∈Tδ(W1,W2)

PnW1
(wn1 )

(1− ε)
PnW2

(wn2 )

(1− ε)
PnW1

(ŵ1)

(1− ε)
PnW2

(ŵ2)

(1− ε)

≤ 2 · 2n(R̃1+R̃2−R1−R2)

(1− ε1)(1− ε2)(1 + η)2

∑
xn1 ,x

n
2

∑
wn1 ∈

Tδ(W1|xn1 )

∑
wn2 ∈

Tδ(W2|xn2 )

PnX1X2
(xn1 , x

n
2 )PnW1|X1

(wn1 |xn1 )PnW2|X2
(wn2 |xn2 )

∑
ŵn1 ,ŵ

n
2 :(ŵn1 ,ŵ

n
2 )6=(wn1 ,w

n
2 )

(ŵn1 ,ŵ
n
2 )∈Tδ(W1,W2)

PnW1
(ŵ1)PnW2

(ŵ2)

≤ 2 · 2n(R̃1+R̃2−R1−R2)

(1− ε1)(1− ε2)(1 + η)2

∑
wn1 ,w

n
2

PnW1W2
(wn1 , w

n
2 )

∑
ŵn1 ,ŵ

n
2 :(ŵn1 ,ŵ

n
2 )6=(wn1 ,w

n
2 )

(ŵn1 ,ŵ
n
2 )∈Tδ(W1,W2)

PnW1
(ŵ1)PnW2

(ŵ2)

≤ 2 · 2n(R̃1+R̃2−R1−R2)

(1− ε1)(1− ε2)(1 + η)2
2−n(I(W1;W2)+δ′J). (56)

Hence, from above if R̃1+R̃2−R1−R2 ≤ I(W1;W2)+δ′′J , then the term E
[∑

xn∈Tδ(X) P
n
X(xn)

∑
yn
S2

]
goes to zero exponentially, where δ′J(δ), δ′′J(δ)↘ 0 as δ ↘ 0.

E. Proof of Proposition 6

We begin by considering the second term within the modulus of PnX(xn)J , for xn ∈ Tδ(X), i.e.,

1

2nC

∑
µ1∈[2nC1 ]

∑
wn1

PnX1X2
(xn1 , x

n
2 )E

(µ1)
Wn

1 |Xn
1
(wn1 |xn1 )PnW2|X2

(wn2 |xn2 )PnY |W1W2
(yn|wn1 , wn2 ))),

=
1

2nC1

∑
µ1∈[2nC1 ]

∑
wn1

PnX1
(xn1 )E

(µ1)
Wn

1 |Xn
1
(wn1 |xn1 )

(
PnX2|X1W1

(xn2 |xn1 , wn1 )PnW2|X1X2W1
(wn2 |xn1 , xn2 , wn1 )PnY |X1X2W1W2

(yn|xn1 , xn2 , wn1 , wn2 )
)

=
1

2n(R̃1+C1)

(1− ε1)

(1 + η)

∑
µ1,l1

∑
w1∈

Tδ(W1|xn1 )

PnX1|W1
(xn1 |wn1 )PnX2W2Y |X1W1

(xn2 , w
n
2 , y

n|xn1 , wn1 )1{wn1 (l1,µ1)=wn1 }

(57)
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=
1

2n(R̃1+C1)

(1− ε1)

(1 + η)

∑
µ1,l1

∑
w1∈

Tδ(W1|xn1 )

PnX1X2W2Y |W1
(xn1 , x

n
2 , w

n
2 , y

n|wn1 )1{wn1 (l1,µ1)=wn1 }. (58)

We use the simplification from above and again using triangle inequality bound
∑

xn∈Tδ(X)

∑
yn,wn2

PnX(xn)J

by the following:∑
xn∈Tδ(X)

∑
yn,wn2

PnX(xn)J

≤
∑

xn∈Tδ(X)

∑
yn,wn2

∣∣∣∣∣PnX1X2W2Y (xn1 , x
n
2 , w

n
2 , y

n)

− 1

2n(R̃1+C1)

∑
µ1,l

∑
w1

PnX1X2W2Y |W1
(xn1 , x

n
2 , w

n
2 , y

n|wn1 )1{wn1 (l1,µ1)=wn1 }

∣∣∣∣∣
+

∑
xn∈Tδ(X)

∑
yn,wn2

∣∣∣∣∣ 1

2n(R̃1+C1)

∑
µ1,l

∑
w1

PnX1X2W2Y |W1
(xn1 , x

n
2 , w

n
2 , y

n|wn1 )1{wn1 (l1,µ1)=wn1 }

− 1

2n(R̃1+C1)

(1− ε1)

(1 + η)

∑
µ1,l

∑
w1∈

Tδ(W1|xn1 )

PnX1X2W2Y |W1
(xn1 , x

n
2 , w

n
2 , y

n|wn1 )1{wn1 (l1,µ1)=wn1 }

∣∣∣∣∣ (59)

The first term in (59) can be shown to be small in the expected sense using the Lemma 2 given the

constraint R̃1 + C1 ≥ I(X1, X2,W2, Y ;W1). Further, the second term in (59) can be bounded by first

taking the expectation over the codebook of W1 and then using a technique similar to that of bounding

(14). We therefore have E
[∑

xn∈Tδ(X)

∑
yn,wn2

PnX(xn)J
]
≤ εJ for R̃1 +C ≥ I(X1, X2,W2, Y ;W1) and

sufficiently large n.

F. Proof of Proposition 7

Analysis of
∑

xn∈Tδ(X),yn P
n
X(xn)Q2: We recall Q2, E

(µ1)
Wn

1 |Xn
1
(·|·), E(µ2)

Wn
2 |Xn

2
(·|·).

Q2 =

∣∣∣∣∣ 1

2nC1

∑
µ1∈[2nC1 ]

∑
wn1 ,w

n
2

E
(µ1)
Wn

1 |Xn
1
(wn1 |xn1 )PnW2|X2

(wn2 |xn2 )PnY |W1W2
(yn|wn1 , wn2 )

− 1

2nC1

∑
µ1∈[2nC1 ]

∑
wn1 ,w

n
2

E
(µ1)
Wn

1 |Xn
1
(wn1 |xn1 )E

(µ2)
Wn

2 |Xn
2
(wn2 |xn2 )PnY |W1W2

(yn|wn1 , wn2 )

∣∣∣∣∣ (60)

E
(µ1)
Wn

1 |Xn
1
(wn1 |xn1 ) =

1

2nR̃1

1− ε1
1 + η

2nR̃1∑
l1=1

PnX1|W1
(xn1 |wn1 )

PnX1
(xn1 )

1{wn1 (l1,µ1)=wn1 }1{wn1 ∈Tδ(W1|xn1 )}

E
(µ2)
Wn

2 |Xn
2
(wn2 |xn2 ) =

1

2nR̃2

1− ε2
1 + η

2nR̃2∑
l2=1

PnX2|W2
(xn2 |wn2 )

PnX2
(xn2 )

1{wn2 (l2,µ2)=wn2 }1{wn2 ∈Tδ(W2|xn2 )}.
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Let us define the P̃XnWnY n(xn, wn, yn) on X n1 ×X n2 ×Wn
1 ×Wn

2 × Yn as

P̃XnWnY n(xn, wn, yn)=∆
1

2nC1

∑
µ1∈[2nC1 ]

PnX(xn)E
(µ1)
Wn

1 |Xn
1
(wn1 |xn1 )PnW2|X2

(wn2 |xn2 )PnY |W1W2
(yn|wn1 , wn2 ). (61)

We remind the reader that 0 ≤
∑

wn1 ∈Wn
1
E

(µ1)
Wn

1 |Xn
1
≤ 1, since we only need to consider the case

1{PMF(C1,C2)} = 1. Refer to Lemma 3 for an upper bound on P(1{PMF(C1,C2)} = 0).

From the definition (61), the first term in PnX(xn)Q2 is simply
∑

wn P̃XnWnY n(xn, wn, yn). Let us

denote this expression by P̃XnY n(xn, yn). Further, its second term can be simplified as

1

2n(C1+C2)

∑
µ1,µ2

∑
wn1 ,w

n
2

PnX1X2
(xn1 , x

n
2 )E

(µ1)
Wn

1 |Xn
1
(wn1 |xn1 )E

(µ2)
Wn

2 |Xn
2
(wn2 |xn2 )PnY |W1W2

(yn|wn1 , wn2 )

=
1

2n(R̃2+C1+C2)

(1− ε1)

(1− η)

∑
µ1,µ2,l2

∑
wn1 ,

wn2 ∈Tδ(W2|xn2 )

PnX1X2
(xn1 , x

n
2 )E

(µ1)
Wn

1 |Xn
1
(wn1 |xn1 )

PnWn
2 |Xn

2
(wn2 |xn2 )

PnW2
(wn2 )

PnY |W1W2
(yn|wn1 , wn2 )1{wn2 (l2,µ2)=wn2 }

=
1

2n(R̃2+C2)

(1− ε1)

(1 + η)

∑
µ2,l2

∑
wn1 ,

wn2 ∈Tδ(W2|xn2 )

P̃XnWnY (xn, wn, yn)1{wn2 (l2,µ2)=wn2 }

PWn
2

(wn2 )

where the last equality follows by the definition from (61). We therefore have∑
xn∈Tδ(X),yn

PnX(xn)Q2 =

∑
xn∈Tδ(X),yn

∣∣∣∣∣P̃XnY n(xn, yn)− (1− ε1)

(1 + η)2n(R̃2+C2)

∑
l2,µ2

∑
wn2 ∈

Tδ(W2|xn2 )

P̃XnY nWn
2

(xn, yn, wn2 )

PnW2
(wn2 )

1{wn2 (l2,µ2)=wn2 }

∣∣∣∣∣.
To bound the above term, we add and subtract the following three terms within the modulus

(i) PnXY (xn, yn)

(ii)
1

2n(R̃2+C2)

∑
µ2,l2

∑
wn2 ∈Tδ(W2)

PnXY |W2
(xn, yn|wn2 )1{wn2 (l2,µ2)=wn2 }

(iii)
1

2n(R̃2+C2)

∑
µ2l2

∑
wn2 ∈Tδ(W2)

P̃XnY nWn
2

(xn, yn, wn2 )

PnW2
(wn2 )

1{wn2 (l2,µ2)=wn2 }

Using triangle inequality on each pair of terms within the modulus, we obtain∑
xn∈Tδ(X),yn

PnX(xn)Q2 ≤
∑

xn∈Tδ(X),yn

PnX(xn)[Q21 +Q22 +Q23 +Q24] (62)
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where, for all xn ∈ Tδ(X), we define

PnX(xn)Q21 =

∣∣∣∣∣P̃XnY n(xn, yn)− PnXY (xn, yn)

∣∣∣∣∣,
PnX(xn)Q22 =

∣∣∣∣∣PnXY (xn, yn)− 1

2n(R̃2+C2)

∑
µ2,l2

∑
wn2 ∈Tδ(W2)

PnXY |W2
(xn, yn|wn2 )1{wn2 (l2,µ2)=w2}

∣∣∣∣∣
PnX(xn)Q23 =

1

2n(R̃2+C2)

∑
µ2,l2

1{wn2 (l2,µ2)=w2}

∣∣∣∣∣ ∑
wn2 ∈
Tδ(W2)

PnXY |W2
(xn, yn|wn2 )−

∑
wn2 ∈
Tδ(W2)

P̃XnY nWn
2

(xn, yn, wn2 )

PnW2
(wn2 )

∣∣∣∣∣
PnX(xn)Q24 =

∣∣∣∣∣ 1

2n(R̃2+C2)

∑
µ2,l2

∑
wn2 ∈
Tδ(W2)

P̃XnY nWn
2

(xn, yn, wn2 )

PnW2
(wn2 )

1{wn2 (l2,µ2)=wn2 }

− (1− ε1)

(1 + η)2n(R̃2+C2)

∑
µ2,l2

∑
wn2 ∈

Tδ(W2|xn2 )

P̃XnY nWn
2

(xn, yn, wn2 )

PnW2
(wn2 )

1{wn2 (l2,µ2)=wn2 }

∣∣∣∣∣ (63)

Now we look at bounding each of these four terms, starting with the term corresponding to Q21.

Since
∑

xn∈Tδ(X),yn P
n
X(xn)Q21 ≤

∑
xn∈Tδ(X),yn,wn2

PnX(xn)J , the result from Proposition 6 implies if

R̃1 + C1 ≥ I(X1, X2,W2, Y ;W1) then, for sufficiently large n, the term corresponding to Q21 can be

made arbitrarily small in expected sense.

Secondly, we look at
∑

xn∈Tδ(X),yn P
n
X(xn)Q22. Using Lemma 2, we get, if R̃2+C2 ≥ I(X1X2Y ;W2)+

δQ22
, then for sufficiently large n, E

[∑
xn∈Tδ(X),yn P

n
X(xn)Q22

]
≤ εQ22

, where εQ22
, δQ22 ↘ 0 as δ ↘ 0.

Thirdly, consider
∑

xn∈Tδ(X),yn P
n
X(xn)Q23. Applying expectation over the second codebook followed

by the first gives

E

 ∑
xn∈Tδ(X),yn

PnX(xn)Q23


= EC1

 ∑
xn∈Tδ(X),yn

PnW2
(wn2 )

(1− ε2)

∣∣∣∣∣ ∑
wn2 ∈Tδ(W2)

PnXY |W2
(xn, yn|wn2 )−

∑
wn2 ∈Tδ(W2)

P̃XnY nWn
2

(xn, yn, wn2 )

PnW2
(wn2 )

∣∣∣∣∣


≤ EC1

 1

(1− ε2)

∑
xn∈Tδ(X),yn

∑
wn2

PnX(xn)J

 (64)

where the first equality follows by expectation of the indicator function over the second codebook, and

the subsequent inequality follows from using the triangle inequality and using the definition of J (31).

Again using Proposition 6 proves E
[∑

xn∈Tδ(X),yn P
n
X(xn)Q23

]
can be made arbitrarily small.

Finally, we remain with
∑

xn∈Tδ(X),yn P
n
X(xn)Q24. This term can be split into two terms such that
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Q24 = Q′24 +Q′′24 where

PnX(xn)Q′24 = 2−n(R̃2+C2)

∣∣∣∣∣
(

1− 1− ε1
1 + η

)∑
µ2,l2

∑
wn2 ∈Tδ(W2|xn2 )

P̃XnY nWn
2

(xn, yn, wn2 )

PnW2
(wn2 )

1{wn2 (l2,µ2)=wn2 }

∣∣∣∣∣
PnX(xn)Q′′24 = 2−n(R̃2+C2)

(
1− ε1
1 + η

) ∣∣∣∣∣∑
µ2,l2

∑
wn2 /∈Tδ(W2|xn2 )
wn2 ∈Tδ(W2)

P̃XnY nWn
2

(xn, yn, wn2 )

PnW2
(wn2 )

1{wn2 (l2,µ2)=wn2 }

∣∣∣∣∣
Consider E

[∑
xn∈Tδ(X),yn P

n
X(xn)Q′24

]
,

= E

[
(η − ε1)(1− ε1)

(1 + η)2

1

2n(R̃1+R̃2+C1+C2)

∑
xn∈Tδ(X),yn

∑
µ1,µ2,l1,l2

∑
wn1 ∈Tδ(W1|xn1 )
wn2 ∈Tδ(W2|xn2 )

PnXWY (xn, wn, yn)

PnW1
(wn1 )PnW2

(wn2 )
1{wn1 (l1,µ1)=wn1 }1{wn2 (l2,µ2)=wn2 }

]

=
(η − ε1)

(1 + η)2(1− ε1)

∑
xn∈Tδ(X),yn

∑
wn1 ∈Tδ(W1|xn1 )
wn2 ∈Tδ(W2|xn2 )

PnXWY (xn, wn, yn)

≤ (η − ε1)

(1 + η)2(1− ε1)

∑
xn∈Tδ(X),yn

∑
wn1 ,w

n
2

PnXWY (xn, wn, yn) =
(η − ε)

(1 + η)2(1− ε)

where the first equality above is obtained by substituting the definition of P̃XnY nWn(xn, yn, wn) followed

by using the simplification from (58), and the second equality is followed by using the fact that

E
[
1{wn1 (l1,µ1)=wn1 }1{wn2 (l2,µ2)=wn2 }

]
=
PnW1

(wn1 )PnW2
(wn2 )

(1− ε1)(1− ε2)
(65)

Similarly, consider E
[∑

xn∈Tδ(X),yn P
n
X(xn)Q′′24

]
,

= E


1− ε1
1 + η

1

2n(R̃1+R̃2+C1+C2)

∣∣∣∣∣ ∑
µ1,µ2,
l1,l2

∑
xn∈Tδ(X),

yn

∑
{wn1 ∈Tδ(W1|xn1 )}
{wn2 /∈Tδ(W2|xn2 )
wn2 ∈Tδ(W2)}

PnXWY (xn, wn, yn)

PnW1
(wn1 )PnW2

(wn2 )

1{wn1 (l1,µ1)=wn1 }1{wn2 (l2,µ2)=wn2 }

∣∣∣∣∣
]

≤ 1

(1 + η)(1− ε2)

∑
x2∈Tδ(X2)

w2 /∈Tδ(W2|xn2 )

PnX2W2
(xn2 , w

n
2 )
∑
x1,w1

PnX1W1|X2
(xn1 , w

n
1 |xn2 )

∑
yn

PnY |W1W2
(yn|wn1 , wn2 )

≤ ε′

(1 + η)(1− ε2)
(66)
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This completes the analysis of all the terms corresponding to Q2.

REFERENCES

[1] C. L. Canonne, V. Guruswami, R. Meka, and M. Sudan, “Communication with imperfectly shared randomness,” IEEE

Transactions on Information Theory, vol. 63, no. 10, pp. 6799–6818, 2017.

[2] B. Ghazi and M. Sudan, “The power of shared randomness in uncertain communication,” in 44th International

Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, ser. LIPIcs,

I. Chatzigiannakis, P. Indyk, F. Kuhn, and A. Muscholl, Eds., vol. 80. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2017, pp. 49:1–49:14.

[3] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-Cherniavsky, “On the power of correlated randomness

in secure computation,” in Theory of Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan,

March 3-6, 2013. Proceedings, ser. Lecture Notes in Computer Science, A. Sahai, Ed., vol. 7785. Springer, 2013, pp.

600–620.

[4] D. Gupta, Y. Ishai, H. K. Maji, and A. Sahai, “Secure computation from leaky correlated randomness,” in Advances in

Cryptology – CRYPTO 2015, R. Gennaro and M. Robshaw, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,

pp. 701–720.

[5] Y. Ishai, M. Prabhakaran, and A. Sahai, “Founding cryptography on oblivious transfer – efficiently,” in Advances in

Cryptology – CRYPTO 2008, D. Wagner, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 572–591.

[6] I. Csiszar and P. Narayan, “Secrecy capacities for multiple terminals,” IEEE Transactions on Information Theory, vol. 50,

no. 12, pp. 3047–3061, 2004.

[7] T. A. Atif, A. Padakandla, and S. S. Pradhan, “Source coding for synthesizing correlated randomness,” in

2020 IEEE International Symposium on Information Theory (ISIT). IEEE, 2020, pp. 1570–1575, (see

https://arxiv.org/abs/2004.03 651).

[8] A. Wyner, “The common information of two dependent random variables,” IEEE Transactions on Information Theory,

vol. 21, no. 2, pp. 163–179, March 1975.

[9] P. Cuff, “Distributed channel synthesis,” IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 7071–7096, Nov

2013.

[10] A. Winter, “Extrinsic and intrinsic data in quantum measurements: Asymptotic convex decomposition of positive operator

valued measures,” Communications in mathematical physics, vol. 244, no. 1, pp. 157–185, 2004.

[11] M. M. Wilde, P. Hayden, F. Buscemi, and M.-H. Hsieh, “The information-theoretic costs of simulating quantum

measurements,” Journal of Physics A: Mathematical and Theoretical, vol. 45, no. 45, p. 453001, 2012.

[12] M. Heidari, T. A. Atif, and S. Sandeep Pradhan, “Faithful simulation of distributed quantum measurements with applications

in distributed rate-distortion theory,” in 2019 IEEE International Symposium on Information Theory (ISIT), July 2019, pp.

1162–1166.

[13] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl, “Efficient pseudorandom correlation generators from ring-

lpn,” in Advances in Cryptology – CRYPTO 2020, D. Micciancio and T. Ristenpart, Eds. Cham: Springer International

Publishing, 2020, pp. 387–416.

[14] J. Kilian, “Founding crytpography on oblivious transfer,” in Proceedings of the Twentieth Annual ACM Symposium on

Theory of Computing, ser. STOC ’88. New York, NY, USA: Association for Computing Machinery, 1988, p. 20–31.

[15] M. Le Treust, “Joint empirical coordination of source and channel,” IEEE Transactions on Information Theory, vol. 63,

no. 8, pp. 5087–5114, 2017.



47

[16] E. C. Song, P. Cuff, and H. V. Poor, “The likelihood encoder for lossy compression,” IEEE Transactions on Information

Theory, vol. 62, no. 4, pp. 1836–1849, 2016.

[17] P. Cuff, “Soft covering with high probability,” in 2016 IEEE International Symposium on Information Theory (ISIT).

IEEE, 2016, pp. 2963–2967.

[18] M. H. Yassaee, A. Gohari, and M. R. Aref, “Channel simulation via interactive communications,” IEEE Transactions on

Information Theory, vol. 61, no. 6, pp. 2964–2982, 2015.

[19] S.-Y. Tung, “Multiterminal source coding,” Ph.D. dissertation, School of electrical engineering, Cornell University, Ithaca,

NY, May 1978.

[20] R. Ahlswede and A. Winter, “Strong converse for identification via quantum channels,” IEEE Transactions on Information

Theory, vol. 48, no. 3, pp. 569–579, 2002.

[21] A. B. Wagner and V. Anantharam, “An improved outer bound for multiterminal source coding,” IEEE Transactions on

Information Theory, vol. 54, no. 5, pp. 1919–1937, 2008.

[22] G. R. Kurri, V. Ramachandran, S. R. B. Pillai, and V. M. Prabhakaran, “Multiple access channel simulation,” arXiv preprint

arXiv:2102.12035, 2021.

[23] T. Berger, “Multiterminal source coding,” The Inform. Theory Approach to Communications, G. Longo, Ed., New York:

Springer-Verlag, 1977.

[24] W. Kang and S. Ulukus, “A new data processing inequality and its applications in distributed source and channel coding,”

IEEE Transactions on Information Theory, vol. 57, no. 1, pp. 56–69, 2010.

[25] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” vol. 22,

no. 1, pp. 1–10, January 1976.

[26] G. M. Ziegler, Lectures on polytopes. Springer Science & Business Media, 2012, vol. 152.

[27] S. Jana, “Alphabet sizes of auxiliary random variables in canonical inner bounds,” in 2009 43rd Annual Conference on

Information Sciences and Systems, 2009, pp. 67–71.

[28] C. T. Li and A. E. Gamal, “Distributed simulation of continuous random variables,” IEEE Transactions on Information

Theory, vol. 63, no. 10, pp. 6329–6343, Oct 2017.

[29] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. New York: John Wiley & Sons, 2006.


	I Introduction
	II Preliminaries and Problem Statement
	III Distributed Soft Covering - Main Results
	IV Soft Covering with Side Information
	V Proof of Theorem 1
	Appendix A: Proof of Lemmas
	Appendix B: Proof of Theorem 2
	Appendix C: Proof of Propositions
	References

