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Abstract

We consider a scenario wherein two parties Alice and Bob are provided X{* and X3 — samples that
are IID from a PMF Px, x,. Alice and Bob can communicate to Charles over (noiseless) communication
links of rate R; and Rs respectively. Their goal is to enable Charles generate samples Y™ such that
the triple (X7, X%, Y™) has a PMF that is close, in total variation, to [[ Px, x,y . In addition, the three
parties may posses pairwise shared common randomness at rates C; and Cy. We address the problem of
characterizing the set of rate quadruples (R, Ra, Cy, C5) for which the above goal can be accomplished.
We provide a set of sufficient conditions, i.e. an inner bound to the achievable rate region, and necessary
conditions, i.e. an outer bound to the rate region for this three party setup. We provide a joint-typicality
based random coding argument involving encoding and decoding operations to perform soft covering

and a pertinent relaxation of the PMF requirement for the encoders.
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I. INTRODUCTION

The task of generating correlated randomness at different terminals in a network has applications in
several communication [1], [2] and computing [3]-[5] scenarios. The presence of distributed correlated
randomness also serves as a primitive in several cryptographic protocols [6]. In this article, we study
the problem of characterizing fundamental information-theoretic limits of generating such correlated
randomness in network scenarios.

We consider the scenario depicted in Fig 1. Three distributed parties - Alice, Bob and Charles -
have to generate samples that are independent and identically distributed (IID) with a target probability
mass function (PMF) Py, x,y. Alice and Bob are provided with samples that are IID Px,x, - the
corresponding marginal of the target PMF Px, x,y. They have access to unlimited private randomness
and share noiseless communication links of rates R;, Ro with Charles. In addition, the three parties share
common randomness at rate C. For what rate triples (R;, R, C) can Alice and Bob enable Charles to
generate the required samples? In this article, we undertake a Shannon-theoretic study and characterize

inner [7] and outer bounds on the aforementioned set of rate triples.
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Fig. 1. Tllustration of distributed agents performing source coding for synthesizing correlated randomness.

The roots of this line of study - distributed terminals generating IID copies of correlated random
variables - can be traced back to the work of Wyner [8]. Wyner [8] considered the scenario of distributed
parties generating IID samples distributed with PMF Pxy-, when fed with a common information stream.
In characterizing this rate, Wyner discovered a measure, commonly referred to as Wyner’s common
information, that quantifies the amount of common information between two correlated random variables.
A renewed interest in this study led Cuff [9] to study the scenario depicted in Fig. 1 with just two terminals
corresponding to Alice, Charles, and Bob being absent. Cuff [9] characterized the entire set of rate pairs
(R,C) and showed that Wyner’s common information forms one vertex of this region. Cuff’s work
also shares an interesting connection with an analogous problem in quantum information theory. Prior
to [9], Winter [10] considered the problem of simulating quantum measurements with limited common

randomness. This work was generalized in [11] where the authors characterized a complete trade-off



between communication and common randomness rates. Building on this, [12] studied a distributed
scenario consisting of three distributed parties and derived inner bounds.

Motivated by applications in security [13], cryptography [14], need for co-ordinated control among
distributed terminals [15], among others, this line of study has received considerable attention lately
[16], [17]. The works of Wyner [8], Cuff [9] and others [18] naturally lead us to consider the scenario
depicted in Fig. 1. In contrast to these works, our scenario requires two distributed terminals, observing
correlated information, to co-ordinate their communication to a central decoder. This poses certain
technical challenges in the design and analysis of the encoders and the decoders, thereby leaving the
information-theoretic study of our scenario unresolved. As we describe in the sequel, our work overcomes
these challenge via (i) a novel design of the encoders and decoder, and (ii) identification of appropriate
mathematical tools for performance analysis and rate region characterization.

The key challenge here is to ensure that Bob’s simulated samples Y are correlated simultaneously with
X" and X} in a single-letter fashion. In particular, it maybe noted that the conventional side-information
approach of treating one of the sources, say X3, as side-information and adopting the proof of channel
synthesis with side-information [18] does not work. The reason for this is the need for simultaneous
correlation as mentioned above. Indeed, it maybe noted that, while the channel synthesis with side-
information problem [18] has been addressed and solved several years ago, the problem of distributed
channel synthesis has remained open.

We propose a novel approach to addressing this problem. We first prove an inner bound that appears
smaller at first sight. Specifically, we prove achievability of one corner point of the achievable rate region
wherein the lower bound on one of the rates is higher. This larger lower bound enables us simulate the
generated samples to be correlated with a larger sub-collection of auxiliary random variables. We then
leverage this for lowering the lower bound on the other rate components. By then using convexification,
we prove that by swapping the order and performing time-sharing, we can enlarge the inner bound to
what one might conjecture to be a natural inner bound via binning. The reader will find Figs. 4, 5, and
6 illustrate the new steps in our proof technique.

We also emphasize that while the stated inner bound might appear natural for a reader familiar with
the problem of distributed source coding [19], the problem of distributed channel synthesis is different
and involves more constraints. Indeed, in this problem, it is required that the generated random variables
appear to have a single-letter distribution as specified, not just that they meet certain distortion criterion.
This difference is clearly emphasized in the rate region obtained for the conventional channel synthesis
problem studied by Cuff [9] for which we are aware of optimality. Observe that, as against to a single
lower bound on the rate that we obtain in the Shannon’s source coding problem, Cuff’s problem yields
two lower bounds, proving that the distributed channel synthesis problem is more involved, and perhaps
hinting at the need for a new proof technique that we have developed in this article. We also note that we
have the opportunity to employ a more sophisticated Chernoff-Hoeffding concentration inequality due to
Ahlswede Winter [20] - a tool not regularly employed in proof of coding theorems.

Lastly, we highlight another novelty of our findings. In addressing the scenario in Fig. 1, it is natural
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Fig. 2. Synthesizing correlated randomness with side information available at the decoder.

to try and build on Cuff’s [9] findings - relying on the use of a likelihood encoder that maps the observed
sequence and common random bits into a codebook of sufficient rate. Essentially, the encoder performs a
MAP decoding of the observed sequence into the chosen codebook. While this choice greatly simplifies the
analysis, it permits little room for generalization. Our experience in network information theory suggests
that encoding and decoding via joint-typicality can be naturally generalized to diverse multi-terminal
scenarios. Motivated by this, we propose joint-typicality based encoding and decoding to perform soft
covering [7]. As a reader will note, the transition from a likelihood encoder to a joint-typicality based
encoder results in challenges in analysis due to the hard constraints that the encoders are valid PMFs.
Toward this, we develop a novel construction of random encoders, by relaxing the PMF requirement.
This relaxation plays a central role in generalizing the results to the distributed case. The mathematical
tools we have adopted to overcome these challenges maybe viewed as part of our technical contribution.
In view of the general applicability of typicality-based coding schemes, we regard the typicality-based
soft covering we propose as an important step. Furthermore, we leverage ideas from the outer bounds for
the distributed source coding problem [21] to characterize an outer bound for this problem. This article
therefore contains a complete suite of results for the distributed channel synthesis problem, thereby 1)
filling our knowledge gaps in regards to our scenario and 2) deriving bounds for this problem that is on
par with our knowledge for the distributed source coding problem. Elaborating on the last point, we note
that with infinite common randomness, our rate regions reduce to those that are currently the best known
for the distributed source coding problem.

A preliminary version of this work appeared in [7]. Subsequently, building on this work, the authors
in [22] considered a side information and three-way common information generalization of the problem
considered in [7], and derived inner and outer bounds.

The paper is organized as follows. After setting up notation and stating the problem (Sec. II), we provide
our main results, the inner and outer bounds to the achievable rate-region of a distributed problem, in
Sec. III. Before providing a complete proof of the above inner bound, we consider the two-terminal
side-information scenario (Fig. 2) in Sec. IV, wherein the decoder is provided with side-information.
This provides us with an ideal pedagogical step to present our typicality based encoder, decoder and
indicate the mathematical challenges in its information-theoretic analysis. Unlike [18], we propose a
joint-typicality based encoder and decoder and provide a complete proof of achievability of the full rate

region. Building on the tools developed therein, we present the proof of our main results in Sec. V.



II. PRELIMINARIES AND PROBLEM STATEMENT
We supplement standard information theory notation with the following. For a PMF Py, we let Py =
[T~ Px. Given a sequence z" € X", let P~ denote its empirical distribution. For any distribution Px
on X, define the d-typical set T5(X) as

Ty(X) & {xn € X" | Py — Pylloo <

0

For any distribution Pxy on X x ), define the d-jointly typical set T5(X,Y") as

€
Ts5(X,Y) = Ts(Pxy) & {(xnayn) € X" X Y || Ponyr — Pxylloo < [E2RK

Px”,y" < PXY} 5
where Ppn,» is the empirical joint distribution of two sequences (z",y"). Note that if (2",y") €
T5(Pxy), then 2™ € T5(Px), and y" € T5(Py). For any conditional distribution Py|x : X — ), and

any z" € X", define the J-conditional typical set T5(Y |z™) as

o
Tg(Y‘xn) é {yn c y” : HPxnﬂn — PY|XP:B” < 7,Pxn7yn < P:L'”PY‘X } .

Y

For an integer n > 1, [n] £ {1,--- ,n}. The total variation between PMFs Py and Qx defined over X
is denoted |[Px — Qx |1 = 5 X cx [Px(z) — Qx(2)] = sup 4cx [Px(A) — Qx (A)].

Definition 1. Given a PMF Pxyz on X x Y X Z, a rate pair (R, C) is said to be achievable, if Ve > 0
and all sufficiently large n, there exists a collection of 2"C randomized encoders EW . xn (O]
for u € [2"°] and a corresponding collection of 2"C randomized decoders D) : Z" x [@] — V™ for
e [2”0] such that || P¢y ,— Pxrynzn|1 < € %logg O < R+¢, where for all x™,y", 2" € X" xY"x Z"

Pxnynzn (xnv yn7 zn) 2 Z 2" Z P)%Z(xnv Zn)P](\;RXn (m’xn)P)(/!ﬂZ”,M(yn‘zn’ m)7
ue2m] me|[O)]

P]%)Xm P}(f:)‘ gy are the PMFs induced by encoder and decoder respectively, corresponding to shared
random message |, with M being the random variable corresponding to the message transmitted. We

let Rs(Pxyyz) denote the set of achievable rate pairs.

Cuff [9, Thm. II.1] provides a single-letter characterization for Rs(Pxy) when Z = ¢ is empty. A
single-letter characterization of Rs(Pxy ) in the general case was provided in [18]. Building on this, we
address the network scenario (Fig. 1) for which we state the problem below. In the following, we let
X = (X1, X), 2" = (a7, 23).

Definition 2. Given a PMF Px, x,y on X1 X Xo x Y, a rate quadruple (R1, Ry, C1,C3) is said to
be achievable, if Ve >0 and all sufficiently large n, there exists 2" x 2"C> randomized encoder pairs
(Ei’“), 5“2)), where EJ(»“”') P A — (0] 1y € [27C5], j € [2], and a corresponding collection of 2"°
randomized decoders DW) : [©1] x [0©y] — V" for p € [27C], where C £ Cy + Cy and pn £ (p1, p2),



such that | Py — Pxryn[l1 <€ Llog, ©; < Rj+€:j € [2], where for all z",y™ € X™ x Y"

Peyn(2y™) 2 D270 Y7 PRz Pz(wl\)xn maley) ]E4|))(n(m2\x2) )(/”)\Ml a, (Y |, m2),
pE2mC] (ma1,mz)€
CHEICH
P]E/’;;‘)X; cj o€ 2], P;fﬂ M., re the PMFs induced by the two randomized encoders and decoder,

respectively, corresponding to common random index (yu1,p2). We let Rq(Pxy) denote the set of

achievable rate triples.

Our main results are the characterization of an inner bound and an outer bound to R4(Pxy) which

are provided in Theorem 1 and Theorem 2, respectively.

III. DISTRIBUTED SOFT COVERING - MAIN RESULTS
In this section, we provide an inner bound and an outer bound to the achievable rate-region for the

distributed setting (Fig. 1). Our first result in this regard is the following inner bound to R4(Pxy). In
the following, we let X = (X1, Xo), W = (W1, Wa),z = (21,22) and w = (wq, w2).

Theorem 1. Given a PMF Px, x,y, let P(Px, x,y) denote the collection of all PMFs Pow,w,xy defined
on Q@ X Wy x Wa x X x Y such that (i) Pxy(z,y) = Z(q,g)ewa Powxy (q,w,z,y) for all (z,y),
(ii) D wew Pawxy (¢, w, z,y) = Po(q)Pxy (z,y) for all (¢,z,y) (iii)) W1 — QX1 — QX2 — W and
X — ini— Y are Markov chains, (iv) W] < |X1], | <|Xs|, and |Q| < 7. Further, let B(Powxy)

denote the set of rates and common randomness quadruple (Ry, Ra,C1,Cs) € [0,00)* that satisfy

Ry > I(X1; Wh|Q) — I(W1; W2|Q)
Ry > I(Xo; W2|Q) — I(W1; W2|Q)
Ry + Ry > I(X1; Wh|Q) + I(Xo; Wa|Q) — I(W1; W2|Q)
Ry + Cy > I(X1 X2V Wh|Q) — I(Wh; W2|Q),
Ry + O > I(X1 XY Wa|Q) — T(Wh; W2|Q),
Ri+ Ry + C1 > I(X1 XoY; WA|Q) + I(Xo; Wa|Q) — (W1 W2|Q)
R+ Ry + O > I(X1 XoY; Wa|Q) + I(Xy; WA|Q) — (W1 W2|Q)

Ri+ Ra+ C1 + Cy > I(X 1 XoY; WiWh|Q) (D

where the mutual information terms are evaluated with the PMF Pgow,w,xy. We have

Ri(Pxy) A Closure U B(Powxy) | € Ra(Pxy). (2)

Powxy €P(Px,x,v)

In other words, (R1, Ra,C1,C3) is achievable if (R1, R2,C1,C32) € Ri(Pxy).



Remark 1. Before providing a proof to the above theorem, we briefly discuss two corner points of the
rate region with respect to the common randomness available. Firstly, consider the regime when both C
and Cy are unlimited. This implies that only the first three constraints are active and hence the inner
bound to the achievable rate-region reduces to the Berger-Tung inner bound [23]. Secondly, consider
the case when only one of the C1, and Cs, say Co, is unlimited. In the first glance, one may think that
the rate Ry is only constraint by the first and the sum rate (R + Rs) constraint. However, a careful
observation yields an additional constraint Ry + R + C limiting the rate of Ry. The insight to this
is the joint distributed simulation task that the problem addresses. It suggests that if Ry and Cs are
at their minimum then Ry has to provide for any additional rate that is needed in simulating the joint

distribution.

Proof. The proof of this theorem is provided in Section V. O

We consider an example to illustrate the significance of the inner bound.

Example 1. Consider a distributed setup as shown in Fig. 1. Let the input alphabets of the two encoders,
X1 and X, and the output alphabet ) be given by the binary set {0,1}. Let the joint distribution
Px,x,v = Px,x,Py|x,x, be defined as

p

PXle(0,0) :PX1X2(171) = 5’

1—
( 2p) and Py, x,(0,1) = Px,x,(1,0) =

and
Py|X1X2(O|O,O) :PY\X1X2(0|171) :1*5 and Py‘X1X2(O‘O7 1):PY|X1X2(0|170) :5,

for p = 6 = 0.2. The trade-off between the achievable sum communication rate and sum common
randomness rate is numerically computed and is depicted in Fig. 3. The figure demonstrates the usefulness
of common randomness in decreasing the sum communication rates. However, below a certain threshold,

no amount of common randomness can be used toward decreasing the communication rates further.
Our next main result for the distributed setting is the outer bound to the achievable rate region.

Theorem 2. For all € > 0, let Pr(¢) denote the collection of conditional PMFs P JQUVY|X, X, defined
on J x QXU XV x) such that the following conditions are satisfied: (a) (Q,J) is independent of
(X1,X9), (D) U—(X1,Q,J)—(X2,Q,J)=V, and (c) (X1,X2,Q)— (J,U,V)=Y, and (d) | Px, x,v —
Px. x, ]5y| x, X, |11 < € where J,Q,U and V are finite sets. Let Pr denote the collection of conditional
PMFs Py x, x, defined on VW x X1 X Xy such that the condition (e) X1 — W — Xy is satisfied where VW
is a finite set. For a PJQUVY|X1X2 € Pr and a Py \x,x, € Pr, let )\E(PJQUVy|X1X2,PW|X1X2) denote
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Fig. 3. Figure depicting the trade-off between the sum rate and the sum common randomness.

the set of rates and common randomness quadruple (R1, Ry, C1,Cs) € [0,00)? that satisfy
Ry > I(W:UV..J) + I(X1,UW,Q..J) ¢
Ro > I(W; VU, J) + I(Xa, VIW, Q, J) — ¢
Ry + Ry > I(WU,VIJ) + [(X13 U[W, Q, J) + [(Xa: VW, Q, J) — 2

Rl + R2 + Cl + 02 Z I(W7 U,V’J) + I(X17X27Y; U: V|Q7W7 J) - 96(6)7 (3)

under the Markov coupling between PJQUVY' x.x, and Py |x, x,, i.e, condition (f) W — (X1, X9) —
(J,Q,U,V,Y) is satisfied, where g.(c) 2 4e (log(|X1]|X2]|Y|) — log(€)). In other words, the joint distri-
bution of the concerned random variables is given by PWPX1|WPX2|WJBQ]5 JPU| X,Q J]5V| X,Q J15y|UV T
and with which the mutual information terms are evaluated. We have Rq4(Pxy) C (.o Ro(Pxy,€),

where

Ro(Pxy,€) & N U Ae(Pruvy|x, X, Pwix, x,)- “4)

Pw x,x,€Pr PJQUVYIX1X2€PF(€)

In other words, if (R1, R2,C) € [\~ Ro(Pxy,¢€), then (R1, Ra, C) is achievable.
Proof. The proof of the above theorem is provided in Appendix B. O

Remark 2. Note that for every Py x, x, € Pr, we have an outer bound, obtained by taking the intersection

over € and the union over Piouvy|x, x, € Pr(€), on Rq(Pxy). Hence we have a family of outer bounds.



Remark 3. One may question the computability of the outer bound provided in Theorem (2). The
computability of this bound depends on the cardinality of the auxiliary random variables defined in
the theorem. Currently, we are unable to bound the cardinality of the auxiliary random variables, but
aim to provide one in our future work. As a matter of fact, the current outer bounds for the equivalent
distributed rate distortion problem still suffers from the computability issue. The first outer bound to this
problem was provided in [23] and a recent substantial improvement was made by authors in [21], [24].
All these bounds suffer from the absence of cardinality bounds on at least one of the variables used and

hence cannot be claimed to be computable using finite resources. This problem still remains open.

Remark 4. Due to the lack of cardinality bounds, the space of probability distributions is not compact,
and hence the mutual information may not be a continuous function of €. Therefore, the continuity of
Ro(Pxy,€) at e = 0 still remains an open question. When the cardinality bounds become available, we

will have continuity at € = 0, and thus Ro(Pxy,0) = ().~ Ro(Pxy,€).

IV. SOFT COVERING WITH SIDE INFORMATION

Although our paper is mainly geared toward the distributed case (addressed in Section III), we
provide a proof of the side information scenario for pedagogical reasons. We provide a new proof of
achievability of R4(Pxyz). The proof develops a new construction of random encoders by relaxing the
PMF requirement, and using refined Chernoff-Hoeffding bound, which could find applications in other
problems of information theory. This relaxation and the refined bound play a central role in generalizing
the results to the distributed case 1. As mentioned earlier, the side-information problem was addressed

in [18] using a different proof methodology.

Theorem 3. (R, C) € R(Pxyz) if and only if there exists a PMF Py xy 7 such that (i) Pxy z(x,y, z) =
> wew Pwxyz(w, z,y, z) for all (x,y,z) where W is the alphabet of W, (ii) Z — X — W and X —
(Z,W) =Y are Markov chains, (iii) |W| < (|X||V||Z])?, and

R>I(X;W)—-I(W;Z), R+C>I(XYZ;W)—-I(W;Z). (5)

Proof. We begin the proof by describing the encoder.

A. Encoder Description

Fix a PMF Py xyz satisfying the constraints stated in the theorem. Throughout, 1 € [2"0] denotes
the C' bits of common randomness shared between the encoder and decoder. For each p € [2"C], we
shall design a randomized encoder E(*) : X" — [O] and a randomized decoder D) : Z" x [@] — Y™



that induce PMFs P§/1|)Xn and P}(,n)‘ oy Yespectively, for which

1 PY (™, 2"

A

325 Z Pyyz (=" y", 2" Z Z XZQnC P$|)Xn(m|x) ;(fi)wn (y" 2", m)| <e.
FELYTET u€[2 *“Ime(6]

(6)

From now on we denote © = 2", The design of these randomized encoders and decoders involves
building a collection of codebooks C £ (CW) : 1 € [27C]) where CW £ (w(I, ) e W™ : | € [2"R]) for

€ [2"C], where W is the alphabet of W in the theorem statement, and R will be specified shortly. On
observmg 2™ and p, the randomized encoder chooses an index L in [Q"R] according to a PMF Eé‘;(n( ).
The chosen index is then mapped to an index in [2"#] which is communicated to the decoder. Before
we specify the PMF E(L’&n(
We define a binning map b : [27] — [2"%]. On observing z", the encoder chooses L € [2"] with

-), let us describe how the chosen index is mapped to an index in [27%].

respect to PMF Eg& (-|2™), and communicates (") (L) to the decoder.

Let us relate to the above three elements that make up the encoder. The PMF EW

Lixn
to the likelihood encoder I'jjxn g of Cuff [9] but with important changes to incorporate typicality-

is analogous

based encoding that permits the use of side-information at the decoder. The map b(*) performs standard
information-theoretic binning [25] to utilize side-information. We now specify B (-|-). Fix e > 0,0 >

N L|Xn
0,1 > 0, and for 2" € T5(X) and I € [2"F], let

_ P (a2 w™)
(1) A 1 1—e X|W
E n l.’E II. wn —wn n—.
L|X ([l=") = 2nR 7 wneTEJ(W:|xn) {wr(lp) Py (zm)

In specifying Egr ;(n, we have relaxed the requirement that E(L| n(|z") be a PMF. This relaxation - a
novelty of our work - yields analytical tractability of a random coding ensemble to be described in the
sequel. However, note that these maps depend on the choice of the codebook C. We prove in Appendix
A-A that with high probability, E(LIT o (™) [27¢] — R is a PMF for every 2" €¢ T5(X). This
will form a part of our random codebook analysis and in fact, as we see in Lemma 1, one of the rate
constraints is a consequence of the conditions necessary for the above definition of Eg&(\) to be a
PME. We also note that Eg&n
(L|;<ﬂ(-\ ), we now characterize Py x. for m € [2"7][J{0} as

being a PMF guarantees Py x» is a PMF.
Having specified £

1= if s (z") > 1,

Piilya(mla™) & $1 = s (zm) if m = 0 and s (z") € [0,1], 7

2nR

=1 L|X"(l‘$ )L ()=my if m # 0 and s (z™) € [0,1]

onfi

for all 2" € Ty(X), and s (z") defined as s (z7) £ 1 E(L|Xn(l\x ). For 2™ ¢ Ts5(X), we let

P]E/’;‘)X,,L (m|z") = Lyg—oy. It can be verified that Py x» is a valid PMF. We have thus described the



encoder and Py xn.

B. Decoder Description

We now describe the decoder. On observing 2" € Z", ui and the index m € [2"F]|J{0} communicated

by the encoder, for m # 0, the decoder populates
DI (27 m) A {1 € 2] : bW (1) = m, (w" (1, p), 2") € T5(W, Z)}
Let

f(lt)(m zn) A Wn(luﬂ) if D(“)(znjm) — {l}

wo otherwise, i.e., [DW (2™, m)| # 1 or m = 0.

The decoder chooses y™ according to PMF PQ‘WZ(y”\ f# (m, z),2"). This implies the PMF

Pi(/’fl)l Znas(-]-) is given by

Px(fl:)\Z"M('Vn’ m) = P$|WZ('|f(M) (m,2"), 2"). 3)
C. Distribution of Codebook

To prove of existence of a codebook for which the above terms are arbitrarily small, we employ random
coding. Specifically, we let the codewords of C to be IID with distribution
Pilw™) i yn e T5(W)

Pyo(w")y=q ©)

0 otherwise,
where § £ 5|X + W), and ¢(5,n) £ > wrgr;owy Py (w™). Note that €(d,n) \, 0 as n — oo for every
0 > 0 sufficiently small. The binning of the codewords is performed independently, where each b(“)(-)

is chosen randomly, uniformly and independently from [27%].
D. Analysis of Total Variation
We begin by splitting 2 into two terms using an indicator function 1 pyp(c)} as
2 =2 Lpwey + <2 Lipus(cy (10)
where 1 (pyp(c)}y is defined as

1 if s (a") € [0,1] for all " € T5(X), u € [2"],
Lipur(c)y =
0  otherwise,



2nR

and recalling s (z") = Engn

the right hand side of (10) by 1" gives

({|x™). Taking expectation over the codebooks and bounding 2 in

E[2] < E[21purc)y] + P {Lpurc)y = 0} - (a1

We now show using the lemma below, that by appropriately constraining R, IP’{]l{pMF(C)} = 0} can

be made arbitrarily small. In other words, with high probability, we will have E™  such that 0 <

LjXn
onR
ST B, <1 forall e 2] and o™ € Ty(X).
Iy

Lemma 1. For any 6,n € (0,1/2), if R > I(X : W) + 46, then

2710 271R
ﬂ ﬂ ZELIX" — 1 as n — oo, (12)
p=lzgrneTs(X

where 01(9),02(8) N\, 0 as § \, 0,
Proof. The proof is provided in Appendix A-A. O
Since, we have

2nC1
P {Lpypic) = 0} = 1 — < N N (B @l < 1))

pi=1 z"e
Ts (X1

from Lemma 1, for any 6 € (0,1), we have P {Ipyrc) = 0} < ¢, for all sufficiently large n, where

ep(0) (0 as 6 N\, 0.

We now look at the first term in (10), i.e., £ - Lpyp(c)}. This can be expanded as

2 Ay =| >, PR@MZen+ > PR@")2e | - L
zneTs(X)) " ¢Ts(X)

where 2, is defined as
A 1 n n o_n|.n PE‘X(2"|;I;”) " n|n
Zan =3 D Pax e = ) > TP%)X"(W ) &)IZ" ("%, m)].
ym,zn pe[27C] me[2nr] {0}

Using the standard typicality arguments®, we obtain, for all sufficiently large n,

2 1y = Y, PREMZ2e Ly + (D), (13)
2n €T (X)

"Total Variation is bounded from above by 1

>Note that D,» is a total variational distance between two conditional PMFs, conditioned on X, for each 2™, and hence it
is bounded from above by one.



where €;(5) \ 0 as 6 N\, 0. Now, what remains is the first term in (13). A major portion of our analysis
from here on deals with arguing that this term can be made arbitrarily small. Further, since this term
contains the indicator 1 {pMF(C)}, we can restrict our analysis to only the set of random collection of
codebook C' that satisfy 0 < Zz 1 L|X,L(l\a: ) <1 for all 2" € T5(X) and p € [2"7].

Step 1: Isolating the error induced by not covering

We begin our analysis by isolating the error induced by not covering the product distribution Pg%y, .
Note that under the condition that 1 (pyp(cy; = 1, we have P]%)X,L (ml|a™) = 12:1; E](.J| o (1]z™) when
m # 0, and P](V’;l o (0]2") = 1— S o ng ¢ (1]2™). Using this, we substitute the definition of randomized

encoder (7) and the decoder (8) in the second term within the modulus of 2,.. This gives

1
5 O O PhxGa P mle) P (2 m) =T+ T,
ne[2n€] me2nRJu{0}

where?,
T, 2 Z Z = (1—¢) il P§|X( "z™) X|W( z"|lw")
LE27C] me[2nR] I=1 wreTs (Wla™) (1 +n) 2n(f+0) P (an)
L (1) 500 )=y Pw 2 G 1L (00 (1), 27, 27)
(-0 1 Phclla) PR (ae)
- ; n {wr = (L)}
n C n
pee) = wretslany (1) 2200 Py (am)
PPy 2 (" 01 (1), 27), 27,
1 n n n n n n
T, < onC' Z PgIX(’Z ") 1—ZE2/T;@(Z|:L’ ) Y\wz(y lwo, 2").
HE2C] =1

Substituting 77,75 for the second term within the modulus of 2, and applying triangle inequality,
we Obtain o@xn ]]'PMF(C) S |:% Zyn’zn(s + S):| ]]'PMF(C) S %Zy",z" (S + S]]‘PMF(C))’ Where

S2|P YZ|X(y 2"a")—

1—6 ZX n|x ;’W(xn‘wn) n n n n
: () > 2 | | PPy (0" 1L O (1), 27), 2" —an 103

n n
(1 * 77 w,l wreTs(Wlz™) P (SU )
1 2t
S A
5= onC Z Pyx (2"|2") (1= ZEg\LX (™) | Py z(y" [wo, 2")] -
ME[2”C]

Note that the term corresponding to S captures the error induced by not covering the product distribution

P%y ,(-) and we bound this term employing the following proposition.

3For the ease of notation, we do not show the dependency of T}, and T on =", y™ and 2".



Proposition 1. There exist functions eg(9), and 65(0), such that for all sufficiently small § and sufficiently
large n, we have E[Zz"ETa(X) P (") Zymzn g]lPMF(C)] < €5(9), lfR > I(X; W) +6g, where eg,65
0 as o \,0.

Proof. The proof is provided in Appendix C-A O

Now we move on to isolating the error component of S caused by binning the randomized encoders.
Step 2: Error caused by binning
We now consider the term corresponding to S. By adding and subtracting an appropriate term within the

modulus of S and using triangle inequality, S can be bounded as S < 57 + .S, where

(@"[w™) Py (2" [a™) Py, £ (4" (W™, 27)
S & |pn P ) | Ty
' Vax W' 2" Z Z 2UB+O) (1 + n) PR (a™) fur=n i}
T5(W\m )
NI Pyix(z ’17 P (@™ w™)
5 = (1+n (R0 Z Z Py (an) L= @0}
! Té(W\QC”)

(Pg‘wz(y"\w”, 2" — Pg\wz(?/ﬂf(”)(b(“)(l), ), Zn)) .

Note that the term Sy captures the error introduced due to the binning operation. To bound this term,

we provide the following proposition.

Proposition 2 (Mutual Packing). There exist €g,(0), such that for all sufficiently small 6 and sufficiently
large n, we have E aneTé(X) Pg(a™) Y yn 0 S2| < €5,(6), if (R, — Ry) < I(W;Z) + ds,, where
€5, 05,(8) \, 0 as 6\, 0.

Proof. The proof is provided in Appendix C-B. O

Now we are left with the analysis of the term 5.
Step 3: Bounding the approximation/covering error
In this last step, we analyze the term S} which captures the action of the encoder in approximating the
product distribution P¥y ,(-). For that, we split S; as S; < S11 + Si2, where

n n),,n
Su =Py zx(y", 2" z") — 2—n(R+C)Z Py (2"|2") ZW]I{ wr= }P$|Wz(y"|w",z")
ol wreTs(W) ~ X #(bw)

P (2™ w™)
X[W
Y OPpx(E ) Y 13)%(96")]1{#":} Viwz (Y w", ")~

l
i w5 (W) ()

(1_6>ZP” (") Y B @1,y o B s )
L+ JTR] 7 P (zn) {W"(l,u)} Yiwz ’

w€Ts(W]zn)

Sy = 27n(R+C)

(14)



Using the Markov chains Z — X — W and X — (Z, W) — Y which Py xy satisfies, and the fact that

aneTg(W) L{wn=un(1,u)y = 1, we can simplify the second term in Sy; as

—n(R+0) n n|.n P;;‘,IW(g;n‘w”) n ny, n o n
2 D Phx (") Dy = i w2 (0" ", 27)
1yl wreTs(W) ~ X

PR (@™ (L, 1))

N P (zn) Py sow (" 2" w" (1 ) Py x 2 (9" " (1 ), 2™, z")ﬂ{wff’{;i)}
ol wreTs(W)
1 ZPXYZ|W(55 Yy 2 (1L )
on(R+C) o P)Té (xn)

Substituting the above simplification into the expression for Sy; gives

1 Py zw (@™ y", 2" " (1, 1)
S — PTL n n ny _ 15
11 YZ|X(y )y % ’.’17 ) 2n(R+C) %l: P)’ré(xn) ( )
Substituting this simplification in E[3_ . o7, x) P%(2") (2, .» S11)], we obtain
E[ Y PRE™M(D Su)l
fE"LETé(X) yn zn
1
=E| Y > |Phmyn ") - WZP)?YZW(SCnayn,anwn(lau))‘
:E"€T<» X) ym,zn /L,l
~ 1
<E Z Py z(z",y", 2") — on(RrC) ZP)?YZ\W(‘T”a y", anwn(lyﬂ))‘ + 2¢, (16)
_.t”,y",z" w,l
P e

where the last inequality follows by defining ﬁ)’}y 2(-) as  Pgy,(a"y",2")
anETg(W) P)?YZ‘W(QL'”, y", 2" w™) Py (w™).
Lemma 2 (One-shot Soft Covering). Let Pap be a joint PMF defined on A x B with A and B being

finite sets. Further, suppose we are given a subset T C A and a collection of subsets T, C A for all
b € B which satisfy the following hypotheses for all b € B:

PA(T) > 1 —¢, (17a)
Pap(Tob) > 1 — ¢, (17b)
2
(Z \/PA(a)> <D, and (17¢)
acT
Pyp(alb) < ﬁ Ya € Ty, (17d)

for some € € (0,1) and d < D. Let M be a finite non-negative integer and let a random covering code

Ca {Om}me[l, M) be defined as a collection of codewords Cy, that are chosen pairwise independently



according to the distribution Pp from B. Then we have

D
Ee |3 ’PA S Z Pas(alCh) ( <\ 25 +40(e). (18)
acA
Proof. The proof is provided in Appendix A-B O

Now we prove the above term is small by using the following identification. Identify A by (X™ x
Yy x 2", Bby T5(W), T by T5(XYZ), Ty by T5(XY Z|w") for all w™ € T5(W), and Psp by
Pyy ZlWPWn (with PWn(‘) as defined in (9)). Using this identification we first compute D and d that
satisfy the hypothesis of the lemma. This gives D = 2MH(X.Y:2)+0xvz) apd ¢ = on(HXY ZIW) =0y )
To satisfy (17a), we use the fact that if ||[P4 — Qal| < €4, for P4 and Q4 defined as two distributions
on A then for any subset A C A, we have P4(A) > Qa(A) —e4. Since || Py, — Pxnynzn| < 2€, we
have Pxnynzn (T, 5(xvz)) = 1—3€(6) which can be made arbitrarily close to 1 for a sufficiently large n.
The hypotheses (17b) and (17d) can be shown to be true using the basic typicality arguments. For the
hypothesis (17¢) we use the bound Pxnyn zn () < ﬁP)’éyz(-), which gives the D mentioned above.

Using  this  identification = and  applying Lemma (2) on (16) we  obtain
ER nero0) PR (@) (Xm0 S11)] < €syy, iF R+ C > I(XYZ;W) + ds,, for sufficiently n,

where 0g,,(9),€s,,(0) \ 0 as § \, 0.

Now consider Sio. This term can be split into the S}, and S, such that Sio = S}, + S7,, where
. 1— P)%W(xn‘wn)
s’ A 27n(R+C) 1— PR (2" 1 n_ P ny, no.n
’ H” Z 2 ; PR ety Vw2
Ts(W|z™)NT5 (W)
. P (2" w™)
11 A 5—n(R+C) n n|,.n X\w " n ni, non
R P L
wn¢Ts(Wlz™)
wreT5(W)

Now, we apply expectation over each of the following to obtain,

Py (@ [w™) pr(wn
nte X|w (w™)
E|Y 5| =20 1 SN PR S lP” n VlV_ (", 27)
yroan +77yn o wie () €
Ts (W 2™ Ts (W)
+ € e
<(T) o Pl 1o < el 19
7 y 2" wn €Ts(Wan) n
And similarly, we have
Z Si’z] = PI?VYZ|X(wn7yn7zn‘xn)
yr,en y 2" wnETs(Wz™)
w"eTs (W)
1 6//
n n n
0= Y. Pix('e") < — (20)

wngTs(Wlz™)



n n

1 1
n
-: > PW1|X1 =
1
1
v yn
n n
PX2|X1 PY|W1W2 .
i
n
Xzi_ w3
n
=== PW2|X2 I

Fig. 4. Figure demonstrating the generation of random variables X1, Xo, Wi, W5, Y from the joint PMF Pxwy while
incorporating the Markov chains specified in the theorem statement.

where €¢”(6) N\, 0 as 6 N\, 0. We have argued that terms S7,S2 and S are small in expectation for
sufficiently large n, which implies E[2, 1 pur(c)}] < €q for sufficiently large n, where eqg(d) ~\, 0 as
d “\ 0. Using this in (13), and subsequently in (11), and eventually in (10) gives E[2] < e, for sufficiently

large n if
R>R>0, C>0, R>I(X;W), R—R<IW;Z) and R+C>I(XYZW). (21
Lastly, the proof is completed using the Fourier-Motzkin Elimination [26]. O

V. PROOF OF THEOREM |

Having designed a randomized encoding scheme based on typicality for the side-information case, we
are in a position to employ the same encoder for the distributed scenario. In contrast to the side-information
scenario, both randomized encoders choose codewords resulting in the need to prove that the the individual
codewords chosen by the distributed randomized encoders are with high probability jointly typical with
the observed source sequences. This involves new elements in the context of soft covering. Fix a PMF
Pow,w, x, x,v satisfying the constraints stated in the theorem. Since (), the time sharing random variable,
is employed in the standard way, for ease of exposition, we provide the proof of the special case of () = 0.
Its generalization can be obtained in a straightforward way. Let ;1 € [2"C] denote the common randomness
shared amidst all terminals. The first encoder uses a part of the entire common randomness available to
it, say C bits out of the C bits, which is denoted by u; € [2"01]. Similarly, let uo € [2”02] denote the
common randomness used by the second encoder. Note that C' = C] x C3 and p = (1, p2). Our goal

is to prove the existence of PMFs plm) (ma|oh) 2 € X my € [O1], € [27C1], PE2 L, (ma]al)

M| X7 M| X7
T4 € X mo € [Oa], pp € [2°C2], PE) 1 (57 ma,ma) <y € V7, (1, ma) € [61] X [O3] such that
9 A 1 P X1X2 $1’$2)P(M1) n
~9 Z Xy (21 23, y" Z Z Z onC Ml‘X{l(mﬂfl)
7Ty BE[2"C] M1 €[O1] M2 €[O3]
ng‘j)x (m2|x§)P§(jfL)‘MhM2 (" |m1,mo)| <&, (22)



for M = R; € [2] and for all sufficiently large n. Consider the collections C; = (Cg” 1<
1 < 2”01) where C%’“) L (wy(ly,p) : 1<l <20 and Gy £ (Cé’“) 01 < pp < 27C2) where
Cé’“) 4 (wa(l2, p2) : 1 < Iy < 27F2), For this collection, we let

By (o) 2 iz S }w
L) X7 Rl W (I, p1)=wy n n
2" L+n wi€Ts(Wh|z}) PXl (1‘1)
11— P, (@3 wy)
(Mz) n(l | 2) A § €2 Z ]l{w"(l N Xo|[Wa \*21772
Ep, |X3 onRsy 1+ n 2:H2)=1W2 XQ(J/‘S)

w3 €T (Wa|z3)

where 6; £ 0|X; + W,| and & = 1 — Py(T5,(W;));i = 1,2. The definition of E"}}. and B},
can be thought of as encoding rules that do not exploit the additional rebate obtained by using binning

techniques.

A. Binning of Random Encoders

Further, we define maps bg“ D [2"R1] — [27] and bg“ 2) [Q”RQ] — [27F2] performing standard
information-theoretic binning, with 0 < Ry < ﬁg and 0 < Ry < R~2. Using these maps, we induce the
PMF P¥) on the message to be transmitted by the first encoder as

M| X7
L{mi0) if s (27) > 1,
Pyl (malal) = 41 - sgw(x?;) if my =0and s (@) € 0,1, (3)
Sy B ()L ey B # 0 and s (o) € 0.1]

271R1

for all 2} € T5(X;) and sgﬂl)(m’f) defined as 5( () =21, F L |X (lq]x}). For ' ¢ Ts(X1), we
let PH) . (ma|2?) = L, —03-

M| X7
We similarly define the PMF ij/’; 2\))(n for the second encoder as
L {omz=0) if 5§ (23) > 1,
P](\;2|)X (mg‘l’g) =<1 Sgﬂz)(xg) if mo =0 and Sg,uz)(xg) c [0’ 1], (24)

S B (Bl Ly ty=may i o # 0 and s*(28) € [0,1]

for all &} € Th(X,) and sY"*)(23) defined as s (23) = Y2 B, (o)), For 2 ¢ Ty(X»), we
let P2, (mal) = 1, o)

M| X5
onRy
With this definition note that, Z PA; 1| Xn(mlla:?) = 1forall y; € [2"“] and 27 € A7 and similarly,
m1—0

onRy
> P]V’[j sy (malad) =1 for all pp € [27%] and 2% € A3

m20



B. Decoder Mapping

We now describe the decoder. On observing g and the indices m1, my € [27F1] x [272] communicated

by the encoders, the decoder first deduces (p1, p2) from g and then populates

(lhlg) S [2”15”1] X [QHRQ] : bg’ul)(h) = ml,béuz)(lz) = Mo,

(W (ly, pr),wy (lo, po)) € Ts(Wh, Wa)

'D('U“l’/”)(ml, 7712) = (25)

Let

(W (I, ), Wy (la, p2))  if DWoE) (my, ma) = {(I1,12)}

(w0}, wh) otherwise, i.e., [DW#2) (my,my)| # 1

f(u) (m1, mg) =

The decoder chooses y" according to PMF Py, . (4" f%(my,my)). This implies the PMF

PS(//il&wl g, () is given by

P g, Clmasma) = Py, (07 F0) (ma, mo)). (26)

C. Distribution of Codebooks

The PMF defined on the ensemble of codebooks is as specified below. The codewords of the random
codebook C%“ - (Wi(ly, ) : 1 <l < 2"R1) for each p; € 2"¢" are mutually independent and
distributed with PMF

N A
PWy(l1, 1) = wy) = ﬁﬂ{w?eTé’(Wﬁ}

Similarly, Cé“ 2) — (Wo(lo,pe) : 1 < Iy < 2”R2) for each pg € [2”02] are mutually independent and

distributed with PMF

" PnQ(le)
P(Wa(l2, p2) = wy) = ﬁﬂ{weﬂ"(%)}

where, recall ¢; = 1 — Py, (T5(W;));4 = 1,2. Finally, the binning functions bg’“)(‘) and bg“z)(-) are
chosen random, uniformly and independently from the sets [2"%1] and [2"72], respectively.

We now begin our analysis of (22). Our goal is to prove the existence of a collections Cy, Co for which
(22) holds. We do this via random coding. Specifically, we prove that E2 < e where the expectation is

over the ensemble of codebooks.

D. Analysis of Total Variation

We begin by splitting 2 into two terms using an indicator function 1 pyr(c, c,)} s

E2=E[2- ]1{PMF(CI£Z)}} +E[2- nEPMF(Cth)}] < E[Qn{w(chcz)}] +P {ﬂ{pmp(cl,@)} =0} (7
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where 1 pyr(c, c,)} 1s defined as

1 if (“1)( ") €[0,1] and sé“z)(xg) € [0,1]
Lipwr(c, o)} = for all 27 € T5(X1), 2 € T5(Xz), u1 € 2], pa € [27C2]
0  otherwise,

and (27) follows from the upper bound of 1 over the total variation. We now show using the lemma

below, that by appropriately constraining Ry and R, P {]l{pMF(ChCQ)} = 0} can be made arbitrarily small.

gnRy

In other words, with high probability, we will have Egj &n and Ef' Xz such that 0 < Z ol L. | Xn <1
ll_l
2nR2
for all yy € [27“1] and 2} € T5(X1) , and 0 < Z EL |Xn <1 for all pg € [272] and 23 € T5(Xo).
l2—1

Proposition 3. For any 6,1 € (0,1/2), ile > I(Xq : Wh) + 401 and Ry > I(Xo : Wy) + 469, where
51(8),02(8) \y 0 as 6 N\, 0, then

2nC’1 9 Ry 2n02 21LR2
PN N (X Eg@n <t JOLN N | X Bl <1
p=1zneTs(X,) \lhi=1 He=1z3€Ts5(X2) \l2=1
— 1 as n — oo. (28)
Proof. The proof follows from Lemma 1. 0

We now look at the first term in (27), i.e., 2 - Lipyp(c, c,)}- This can be expanded as

2. ]l{PMF(ChCz)} - Z Pi(g")o@g + Z Pg@")% ']l{PMF(Cl,Cz)}a (29)
" €Ts(X) z"¢T5(X)

where Tj5(X) is defined as T5(X) £ {z" : (a7, 2%) € T5(X1, X2)} and 2, is defined as

1

A 1 2

Ly 252 yix ("2 Z on Cl+cg) Z PJ\/l[LI)X" (malz7) J&//ﬁ)xn(m?’%) 3(/")|M1 a, (Y Im1, m2))|
y"

M2 my €[2"F1)u{0}
mo€[2nE2])U{0}

Since, using the standard typicality arguments one can argue ) . ¢T;(X) P%(z") < e, where €:(6) N\ 0

as § \, 0. We bound 2, within the second summation in the right hand side of the above equation® to

*Note that Dy oy s a total variational distance between two conditional PMFs, conditioned on (X1, X2), for each (27, x3)
and hence it is bounded from above by one.
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obtain,

2 - Lipwp(c, o)y = Z Py (") 2o Lipur(c, )y + €t(9). (30)
zneTs(X)

Now, what remains is the first term in (30). A major portion of our analysis from here on deals with
arguing that this term can be made arbitrarily small. Further, since this term contains the indicator
1 {PMF(C,,C2)}» WE can restrict our analysis to only the set of random codebooks (Ci,Cs) that satisfy
0 < Zi"_]?i I, |Xn(l1|a:1) < land 0 < Zifi L |;(n(l2‘l’2) < 1 for all 2" € T5(X) and 1y €
2], 2 € [272).
Step 1: Isolating the error induced by not covering
As a first step, we separate the error induced by not covering the product distribution Py y v (-)

through the randomized encoders and provide a bound to it. Note that under the condition that

Lipus(c, )} = 1, we have Py (mala) = 5700 BV (L) when m; # 0, and Pyl (0]al) =
1 - 127?1 E( LXs (Il;|xl"), for ¢ € {1,2}. Using this, we substitute the definition of the randomized

encoders (23), (24) and the decoder (26) in the second term within the modulus of 2, for 2" € T5(X),
which gives,

plH2) pw

Py (mala) Py (mala) PE) Lo (7 ma, mo)
Z e " |X2n(Cl+(2Jz) R =T1+To + T3 + T},
€271 up €[27C2]
mi €[22 R1]U{0}
ma€[2nF2]U{0}
where,
€2) Py 1y, (27wl Py . (23 |wh)
A X, (W \TTIWL)  x w, (T2 [ W2
Buftz 10, whe n xl) (372)
ma€[2 ] Tg(W1|xl)T5(W2\x2)
m2€[2nR2}
b(#l) l b(,uz) l
o et () 50 @y } 05 3 G =y P, (010 0 (1), 657 (02))
Z Z Z Z (1_61)(1_62) X1|W1(x1|w1) XQ‘W2(332‘U)3)
K2 [yl wi e 2n(R1+R2+Cl+C2)(1 + 77)2P)T(L'1 (‘/E?)P)T(L'Q (xg)
(Wllxl)Ts(Wzlwz)
g map (1 i)y Ly = (1o )} PR, (0L (0™ (12), b5 (12))),
1= S0 B )| (1= )P (o)
T 2 [ = SUE ]l{wéL:wg(lg 2)}P§T}W1W2(yn|a)?7u~]g)7
m%;,l? wz () onfia(1 4 1) Pyt (23) SO

Ts(Wa|z})

SFor the ease of notation, we do not show the dependency of T}, T, T3 and Ty on z™, however, in principle they depend on
z™ and in fact, are only defined for " € T5(X)
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2nf2
1= S5 B (bl (1= e) PRy ()

EED DY ; Lwg—wg @ ¥ iwws (7107, 03),
N on(C1+Cs) onk (1 + n)P)rél (:Lnlz) ‘
Ty (Walep)
onf 1 gnRy
8 =P B e [L- S B el
- Z on(C1+Ca) PY\W1W2(y |0y, Wy )
1,12

The above simplification in the expression for 7} is obtained by using Zml €2n] Lpwp—wn (i) = 1
and 3, onro) Lfuwg—up (1)) = 1, Which follows from the definition of the maps b(“ ) and bg“ 2 A
similar simpliﬁcation for the expressions 75 and T3 is used while substituting P]E; 1‘ Xy L(0fz}) =1 —

Zij I |Xn(ll\x1) and PjgﬁXy (Olzy) =1 — Zifi L ‘Xy (I2]x%), respectively. Finally, T uses the

substitution for both P]E; 1|)X” (0|z}) and P]E; 2|)X" (0]xh). Substituting 77, T5, T3 and Ty for the second term

within the modulus of (22), we obtain 2y Lipyp(c, c,)} < %Zyn (S + S):ﬂ.{pMF(Chc2)} < %Zyn (S +
S]].{PMF(C17C2)}), where

— )Py, (1 [0]) P, (5 08)
$2 Rkt - Y Y Y YO | |

Hisk2 0,0, wiE wy € QTL(R1+R2+C’1+CZ)(1 + n)2pn (xl )P}}z ({I"g)
Ts(Wilzy) Té(W2|1’ )

L uop =g 1)y g = (o)} ¥ 0, (" 90 (6§ (1), 08 (12)))]

and § 2 |T2| + |T3] + |T4|. Note that the term corresponding to S captures the error induced by not

covering the product distribution Py, X2y(') and we bound this term employing the following proposition.

Proposition 4. There exist functions e5(9), and 65(0), such that for all sufficiently small § and sufficiently
large n, we have E [% DwreTy(X) 2oyn PR(Z )SH{PMF(CI o) < eg(o), if Ry > I(X1; W) + 6z and
Ry > I(X2; Wa) + b5, where 65,55 N0 as 6\, 0.

Proof. The proof is provided in Appendix C-C. O

Now we move on to isolating the error component of S caused by binning the randomized encoders.
Step 2: Error caused by binning
By adding and subtracting an appropriate term within the modulus of S and using triangle inequality, S

can be bounded as S < Sy + Sa, where

S y" Z Z Z Z — €2) )Té [Wh (z7w}) )7}2|W2(x§|w3)

1 Y Xle $1,$2

| = 11712 e T 2n(R1+R2+Cl+Cz)(1 + n)an (xl)P)%Q (22)
(W1|$1)T6(W2\962)

Lwp=ap (o)} L fwg =3 (o)} ¥ (i, (" [0 05)))
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------- * Codel f===p==== Py |y, =====r=->

Fig. 5. Depiction of the approximation performed by Alice (encoder 1) while assuming a product distribution on Bob’s (encoder
2) end.

(1= e1)(1 — ) Py, (28 [03) PR, o, (5103
2n(Rt Rt CrbCa) (1 4 )2 Py (a) PR, ()

||l>

(]

Z Z Z
M2 [y, Te wy €
Ta( 1|2) Ts (Walzg)

L g (o)) L g (o)) | PR, (0 103, 08) = Py (0 LF 4 (03 (1), 65 (12))) .

Note that the term S5 captures the error introduced due to the binning operation. To bound this term, we

provide the following proposition.

Proposition 5 (Mutual Packing). There exist €g,(0), such that for all sufficiently small 6 and sufficiently
large n, we have E |3 . cp x) P} (2 )S2:| < €s5,(9), if (R1 — R1) 4 (Ry — Ro) < I(Wy; Wa) + ds,,
where €g,,05,(6) N0 as 0 \, 0.

Proof. The proof is provided in Appendix C-D. O

Now, we are left with the analysis of the term S;. For this, we segregate the effect of two encoders
within the term 57, and separately analyze each of them, starting with the Alice’s encoder.
Step 3: Term concerning Alice’s encoding

For notational convenience, we first define E( ) and E(“ 2) as

W7L|X7 ny |Xn,
2nR1
E(Ml) ( n‘ n) A 1 (1_61) Z P)?1|W1(qul’w?)]l
welx YT onR () P (ap)  wrmwiCom)ul €T (Wilep)}
nR2
) a1 (1—e) = P, @ ep)

W) e (Wo | T = Tgpn—yn n n)Y.
Wi X3 ( 2‘ 2) onRs (1+77) = P}};(l’g) {wg=wy (l2,p2),wy €Ts (Wal|rg )}

Note that when 1ipr(c,c,)y = 1, we also have 0 < waewy E&,‘li)le(wﬂaﬂf) < 1land 0 <
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S upews i)y, (wh]a) < 1. This simplifies S as

S = |PYx, x, 0" [aF, ) - Cﬁcﬂz S B i) EG) ¢ (w3 128) PR, (070, wh))) |

B1H2 wit,wy

Now we add and subtract a term that separates the action of first encoder from that of second encoder
allowing us to separately bound the error introduced by each of these encoders. This term essentially
assumes that the second encoder is simply a conditional product PMF Py, Wal X, 3 opposed to the n-letter
PMEF, while keeping the first encoder the same. Figure 5 illustrates the dynamics of this term. The term

is given as

anl Z ZEWTL\X" wt'|zT) Py Wa| X (w3 |25) Y|W1W2(y lwi', wy).
pE2rC1) wi wy

By adding and subtracting this term and using triangle inequality we obtain S < @1 + @2, where

A
Q1 =|Pyx, x, (Y |27, 72) — 27101 Z Z EI(/gl)lX wi'|zT) Py, x, (w3 |25) Py, w, (Y [wl, wy) |,
M1 wiwy
A
Q22| s S0 7 B wllad) B, (w1) Py, (0 o )
1} wi,wy
ey 3o S B (Rl B () P, (4 )|
K12 wit,wy

Our objective here is to show 1/2 Z Px~(2")S1 - Lipwr(cy o)y < 1/2 Z Pxn(z™)[Q1 + Q2] -
zn€T5(X).y" €T (X).ym
Lipwr(c,,c.)} 18 small, which eventually leads to (while also showing other terms corresponding to So

and S, are small), establishing ZyeT&( X) Pg(2") 2y - Lipwr(c, c,)) vanishes in expectation. With this
partition, the terms within the modulus of ), differ only in the action of Alice’s encoding/approximation,
and similarly, the terms within ()2 differ only in the action of Bob’s encoding/approximation. Showing
that these two terms are small forms a major portion of the achievability proof. To begin with, let us
consider 1.

Analysis of Q1: To prove |i D neTy (X)yn X7 (2")Q1 - Lipup(c, ;)3 | is small, we characterize the rate
constraints which ensure that an upper bound to ); can be made to vanish in an expected sense. In
addition, this upper bound becomes useful in obtaining a single-letter characterization for the rate needed

to make the term corresponding to Q2 vanish. For this, we define J for each 2" € T5(X) as,

J =

Py, x (4" wy |2") anl S DB i) P x, (w5 125) PRy, (07 Tt w3),
ME[Q"CI] wl

(D

where E(W“j)‘ Xy (wizt) € [0,1] for all 2} € T5(X1). By defining J we have added the random variable
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Fig. 6. Depiction of the approximation performed by Bob (encoder 2).

W5 into the collecion of random variables which first encoder is trying to approximate. Hence, this
encoder now approximates the joint product PMF Pxyy,y. To make J small, we expect the sum of the
encoding rate of first encoder and common randomness i.e., Rl +C1 to be larger then I(W7; X1 XoWoY).

We prove this by bounding »_ .., (X) >y wy P (2")J using the following proposition.

Proposition 6. There exist €5(8),05(0) such that for all sufficiently small 6 and sufficiently large n, we
have E [Zyen(& > Pg@")J-] < ey if S1+C > I(Wh: Xa XoYWa) + 85, where e5,0; N\, 0
as § N\ 0.

Proof. The proof is provided in Appendix C-E. O

Now in regards to (1, applying triangle inequality on the summation over ws gives

>, REH&as >, ) FREMI (32)
zreTs(X)y" 2 €T5(X) Y™ ws
Using the above proposition concludes the proof for the term corresponding to (1. Now, we move on

to bounding the term Q)o.

Step 4: Analysis of Bob’s encoding Using the term J in Step 3, we ensured that the random variables
X1XoY Wy are close to a product PMF in total variation. In this step, we approximate the PMF of
random variables X7 XoY using the Bob’s encoding rule and bound the term corresponding to () (as

illustrated in Figure 6). We proceed with the following proposition.

Proposition 7. There exist functions eq,(0) and dq,(9), such that for all sufficiently small 6 and
sufficiently large n, we have E[Q2] < €q,, if S1 + C1 > I(Wy; X1 XoYWs) + 6g, and So + Cy >
I(Wa; X1 X2Y') + dq,, where eg,,00, \ 0 as § 0.

Proof. The proof is provided in Appendix C-F. O
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Hence, in bounding the terms corresponding to ()1 and ()2, we have obtained the following constraints:

Rl +Cy > I(Wl; XlXQYWQ), RQ +Cy > I(WQ; XlXQY). (33)

E. Rate Constraints

To sum-up, we showed that (22) holds for sufficiently large n and with probability sufficiently close
to 1, if the following bounds holds while incorporating the time sharing random variable () taking values

over the finite set Q:

Ry > I(X1;;W1|Q), Ry > I(Xa; Wa|Q),
Ry +C1 > I(X1 XY Wo; W1|Q),  Ra + Oy > I(X1X2Y; Wa|Q),

Ri+ Ry — (R + Ry) <I(Wp;Wa|Q), 0< R <Ry, 0<Ry<Ry, C;>0,C2>0. (34)

Let us denote the above achievable rate-region by R;. By doing an exact symmetric analysis, but by
replacing the first encoder by a product distribution instead of the second encoder in Sy, all the constraints

remain the same, except that the constraints on }?1 + Cy and RQ + C5 change as follows
Ri+Cy > I(Wi; X1 XoY|Q), Ro+ Cy > I(Wo; X1 XoYWA[Q). (35)

Let us denote the above region by Ro. By time sharing between the any two points of R; and Ro
one can achieve any point in the convex hull of (R;|JR2). The following lemma gives a symmetric

characterization of the convex hull of the union of the above achievable rate-regions.

Lemma 3. For the above defined rate regions Ry and Ra, we have R3 = Convex Hull(R1|JRz2), where
Rs is given by the set of all the sextuples (Rl, RQ, R1, Ry, C1,Cy) satisfying the following constraints:

Ry > I(X1;W1|Q), Ry > I(Xa; Wa|Q),
Ri+C1 2 [(X1X0Y;WilQ), Ra+ C2 2 (X1 XY W Q),
Ry + Ry 4 C1 + Cy > [(X1 Xo Vs WiWa Q) + T(Wr; WalQ),
Ri+Ry— (R +R) <IWi3Wo|Q) 0<SRI <R 0<Ry<Ry C120,Co>0  (36)
Proof. The proof follows from elementary set-theoretic analysis, and hence is omitted. O

Lemma 4. Let R3 denote the set of all quadruples (R1, Ro, C1, C3) for which there exists (Rl, Rg) such
that the sextuple (Ry, Ra, Cy,Ca, Rl, Rl) satisfies the inequalities in (36). Let Ry denote the set of all
quadruples (R1, Ro,Cy,C2) that satisfy the inequalities in (1) given in the statement of the theorem.
Then, Rs = Rp.

Proof. This follows by Fourier-Motzkin elimination [26]. L]
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The cardinality bounds on the auxilliary random variables follows from an argument using supporting

hyperplanes of convex sets [27], and Caratheodary theorem [28].

APPENDIX A

PROOF OF LEMMAS

A. Proof of Lemma 1: EE‘;@( |)s a PMF with high probability

From the definition of E%)  (I|2"), we have for z" € T5(X),

L|X"
2n R 2 oo
1—e€ X|W( [w™)
ZEMX” (" 2nR <1+77> wze Z]l{w Lw)=w"} " pnomy Pn(xn) :
Ts(Wlz™)
Let us define Zl(“) ("), for ™ € T5(X) as
ZPE) = Y Ly Pl (2" [w") (1 - €) 37)

w €Ty (Wlzn)

and let D = 20HXIW)=01) " where §,(5) N\, 0 as & \, 0. This gives us the following bound on the

expectation of the empirical average of {Zl(“ ) (") }1efonr) @S

N
1 n n —01 3 n n n n
E[N;Dzl(u)(x )} = n(HEIW)=0) > By (w") Py gy (2" [w™)

wr€Ts (W |z )NT5(W)
= g MBS B () Py (o )
wr€Ts(Wlz™)

2 2”(H(X|W)—§1)2—”(H(X,W)+261)2”(H(W‘X)—51) 2 2—”([(X;W)+451) (38)

)

for all sufficiently large n, where in the above equations we use the fact that E[1 {Wn(l,u):wn}} = P%(_“E’n)

for w™ € T5(W), and the fact that if 2" € T5(X) and w™ € T5(W|z™), then (2", w™) € T5(X, W), and

consequently w™ € T5(W). Furthermore, for sufficiently large n, we also have

DZZ(N) (xn) < 2n(H(X\W)—51)2—n(H(X\W)—51)(1 _ 6) Z H{W"(l,u):w”} <1 (39)
w?€Ts(W]z™)

where we have bounded Z Liwn (1, u)=wny DY 1.
wr€Ts (Wlz™)
Since {Zl(“ ) (™)} is a sequence of IID Random variables, we can approximate its empirical average,

for 2" € T5(X), using a refined Chernoff-Hoeffding bound given by

Lemma 5. Let {Z,}N_, be a sequence of N IID random variables bounded between zero and one, i.e.,

Zn, € 10,1] Vn € [N], and suppose [N anl n] = p be bounded below by a positive constant 6
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as p > 0 where 0 € (0,1), then for every n € (0,1/2) and (14 n)8 < 1, we can bound the probability
that the ensemble average of the sequence {Z,}N_, lies in (14 n)u as

1 N N’I729
Pl — Zn €[(1— , (1 >1-2 — 40
<N; (1 —np, ( +n)u]) exp< 41112) (40)
Proof. Follows from Operator Chernoff Bound [20]. O

Note that {DZl(” )(:U”)}l satisfies the constraints of the above lemma from Eqns. (38) and (39). Thus
applying Lemma (5) to {DZI(“) (x™)}; for every z™ € Ts5(X) gives

A=

onR ( ) ( ) n22n(R7[(X;W)*451)
B) (T H) (T >1 - —
i A - MELZ ], (14 2 @) 2 1= 2exp (- T ),
(4D
where Z (z S o ZTR ( "), the ensemble mean of the IID sequence {Zl(“ ) (™) };. Substituting

the following 31mp11ﬁcat10n

nR

2" @") = (1+ PR ™) > BY X (), (42)
1

N
o
)

T
I
~
I

which follows from the definition of Z*(2") in (41) gives

2nR

P{(1+n)Px(= ZEan la") < (1+mE[Z" (2™)] 212exp<

772 on(R—I(X,W)—44:)
41n2

(43)

Further we can bound E[Z(z")] as

(1) (g . )
e S P X B PR) € s S Pl ) = 1

wr€Ts(Wlz™) wn

This simplifies the above probability term as

ok 2on(R—I(X,W)—46,)
(1) n o o n 2
;_1 ELlX,L(l\x )<1|>1-2exp < 1o )

Using the union bound, we extend the above probability to the intersection of all y € [27C] and 2™ €
Ts5(X) as

2nC QnR 2nC ani

PO N [XE.@m | <1|=1-3 Z S EY (e <1
=1

n= 1$”€T5 X =1 M= 1$”€T5
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20n(R—I(X,W)—46,)
= ) (44)

o1 —2"0|T5<X>r2exp(— e
n

Therefore, if R > I (X; W) + 461, the second term in the right hand side of (44) decays exponentially
to zero and as a result the probability of the above intersections goes to 1. This completes the proof of

the lemma.

B. Proof of Lemma 2

Be begin by defining K as

KA Z‘PA ——ZPA|Ba\C ]

acA
M
— Z ’ ZPAB(CL, b) — % Z ZPA\B(a|b)]l{Cm:b} 7
ac A beB m=1 beB

where in the above equality we have used ) ,c51{¢c, =3 = 1. Using triangle inequality, we obtain
K < Ky + Ky + K3 + K4, where

K 2 Z ‘ ZPAB a,b)Liaery — M Z ZPA\B alb)Lic, =} 1{aeT} |

a€T beB m=1beB
1 M
Ky £ > Papab)liagry, Ks2D 5: > > Paslalb)lic,—nlagr). and
a€T beB a€T m=1beB
K'4é ‘PA _7ZPA\B a]C’ ‘
acA\T

We begin by first bounding the terms corresponding to Ko, K3 and K, finally and delve into bounding

the main term corresponding to K. Note that K, can be written as
K> < ZPB(b) Z Py p(alb) = ZPB(b)(l — Py p(Tolb)) <,
beB adTs beB

where the last inequality uses the hypothesis (17b) from the statement of the lemma. Considering the

term K3, applying expectation yields
E[K3] <Y Pp(b) > Paplalb) =Y Pp(b)(1 - Pyp(Tylb)) <e,
beB adT, beB

where the last inequality again uses the hypothesis (17b) from the statement of the lemma. Considering
the term Ky, we use the fact that E[+; M Py p(a|Cp)] = Pa(a), and bound Ky as

M
1
EKi <2 ) E i > Pyp(alCrm)
aceA\T m=1

=2 Y Pa(a) =2(1- Pa(T)) < 2.
ac A\T
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Finally, we consider the term K. Using the concavity of the square-root function, we have

M
1
E[K1] <), |Var (M > ZPA|B(a|b)]l{Cmb}]l{aeTb}>- (45)

acT m=1 beB

Further, the term within the variance can be simplified as

M
1 1
Var (M > ZPAB@lb)ﬂ{cmb}ﬂ{aem) < E

m=1beB

> PZB(a|b)]l{aen}]l{bcl}]
beB

1
=37 Z Pi|B(a’b)PB(b)ﬂ{a€ﬂ}

beB
11 Pa(a)

< _—Z —

< MdbeZBPmB(a\b)PB(b) V)

where in the first inequality we use (i) the fact that codewords are generated pairwise independently from
Pg, and (i) Var(-) < E[(-)?], in the first equality we have used E[L;c, 3] = Pp(b), and in the second
inequality we have used the hypothesis (17d) from the statement of the lemma Finally, substituting the
above bounds in (45), and using the hypothesis (17c), we obtain

D
E[K;] < 1/ —.
] < Md

Combining all the bounds on K, Ko, K3 and K4 completes the proof.

APPENDIX B
PROOF OF THEOREM 2

Let (R1, Ro,C1, C5) be an achievable quadruple. Fix an arbitrary ¢ > 0 and a sufficiently large n. From
Definition 2 it follows that there exists 2"C" x 272 randomized encoder pairs (E%“ 1),E§“ 2)), j € [2],
and a corresponding collection of 2"C randomized decoders D) that satisfy the following constraints:
%log ©; < Rj + ¢, and ||PYy, — Pxny»|1 < e Let M; and M, be the messages communicated
by the first and second enc&iers, respectively, and let K; € [2"¢1] and Ky € [2"C2] denote the
common randomness shared among the first encoder and the decoder, and the second encoder and the
decoder, respectively. The source sequence pair (X', X7') and K; and Ko are mutually independent. Let
Py, XPK; j € {0,1} denote the two distributed stochastic encoders, respectively. Y ~ Py, K K
be the samples generated by the decoder using the messages received and the common randomness
available. Lastly, let R; and C; denote communication rate and the common randomness rate of the
first encoder, respectively, and similarly, let Ro and C> denote communication rate and the common
randomness rate of the second encoder, respectively. Additionally, let Pyy|x, x, be an arbitrary distribution
in Pg. Recall that Py, x, Py |x, x, satisfies the Markov chain X; — W — X5. We generate n copies of the
auxilliary random variable W denoted as W", from (X7, X3') in a memoryless fashion using Py x, x,

to yield (i) X{* — W™ — X7. Enforce a Markov coupling of this with the n-letter encoders and decoder



31

to result in the following n-letter Markov chains: (ii) M; — (X7, K1) — (W™, X%, Ko, M), and (iii)
My — (X3, Ko) — (W™, X7, K1, M;). This simplifies the joint distribution as

n n n n
Pr e, xp xewo v My (B, ko, o7, o, w™, my, ma, y™)

= P, (k1) P, (k2) By (w™) Py (27 [0") Py, (22 [w")

Pyrxri, (malzys k1) Pagy xe i, (M2 |2y, ke) Pyn v, kv, i, (V" [, k1, ma, k). (46)

Further, define for i € [n], U; and V; as U; £ (M, K1, Wi=1) and V; £ (M, Ko, Wi 1),

Step 1: Rate Constraints: Using this, we have

n(Ry +¢€) > H(M)
H

IV

(M1|M27 K1> KQ)

> I(X7; My | M, K1, K3)

(2)

= I(XIZ7 M1|M27 Kla KQ) + I(Wna Ml’M% K17K27X?)

(®)

= [(X],W" M;|Ma, K1, Ko) + I(X7, W"; K1 | M, K3)

= [(X{, W" My, Ki|Ma, K)

=I(W"™ My, K1|Ma, Ko) + I(X7'; My, Kq|Ma, Ko, W™)

©

= I(Wn;Ml,KlyMQ,KQ) +I(X?,M1,K1|Wn)

I(Wi; My, Ky [ Ma, Ko, W) +I(X1i;M17K1\W",Xi_1)}
I(Wi; Ui|Vi) + H (X1 |W™) — H(X13| My, K, W",Xf_l)]
I(Wis Uil Vi) + H (X3 [Wi, Qi) — H(X1i|M17K1;Wi7Qi):|

I(W;; Uil Vi) + 1( X4, Ui | W3, Qi)]

f)
- n(f(W;Urv, J) + I(X0, UW, Q. J>), (7)

where (a) follows from the fact that

(W™, Mi|Ma, Ky, Ko, XT') = I(MaKoW"™; M| XT, K1) — I(MaKo; Mh| XT, K1)

= —I<M2K2;M1‘X{L,K1) S 0,
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which is only true if I(W™; M;|Ms, K1, K2, X7) = 0, (b) follows from I(X7, W"; Ki|Ms, K3) =0
which is true given the decomposition in (46), (c) uses the fact that for a Markov Chain (A, B)—C—D, we
have I(A; B|C, D) = I(A; B|C), (d) is obtained using the definitions of U; and V;, and the memoryless
nature of the source X7, (e) follows from defining for all i € [n], Q; A Wn\i and using the result
- conditioning reduces entropy, and finally (f) follows by (i) defining a time-sharing random variable
J which is uniformly distributed in [1,n] and independent of (W™, U™, V" Q", X", X3,Y™), and (ii)
defining W, U, V,Q, X1 and Xo as W;,U;,Vy, Q s, X 15 and Xsj, respectively. Using identical steps for
the bound R, we get the following bound for R,

n(Ry +¢) > n(I(W;V|U) + I(X2, VW, Q)).
We now provide a bound on the sum rate R; + Rg as

n(R1 + R2 + 6) > H(Ml,MQ)

> I(X7, X3, Ky, Ko; My, M>)

(@)

= I(W’Vl?Xirl’ X;a K17 K?a Mla MQ)

= I(W"™; My, Ma) + I(Ky, Ko; My, Ma|W™) + I(XT, X35 My, Ma|W™, K1, Ka)

(b)
> I(an My, MQ) + I(K17 Ko; Wn’Mlv M2) + I(X?ngv My, Ma, KlﬁKQ‘Wn)

©
= I(Wn;Ml,MQ,Kl,KQ) —i—I(XIL,Ml,Kl‘Wn) +I(X§,M27K2‘Wn)

— Z |: WlaMlaMQaKlaKQ‘WZ 1) +I(X117MlaK1|Wn XZ 1)

+ I(Xzi;M2,K2!W",X§_1)]

[I(Wz‘; My, Mo, K1, Ko| W) 4+ I( X1 Ui| Wi, Qi) + I(Xay; Vi| Wi, Qi):|

> {I(M;Ml,MZ,Kl,KZW“) + I(Wi W)
+ (X135 Us[Wi, Qi) + 1( X5 V3| W5, Qi)]

@
- Z [ W/Z7U17V +I(X127U |VV17Q1) +I(X227V|WwQ )]

where (a) follows from the Markov Chain W" — (X7, X%, K1, K2) — (M, M) which makes
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I(W";Ml,M2|X?,X§L,K1,K2) =0, (b) follows from
(i) I(Ky, Ko; My, Ma|W™) = H(K1, Ko|W") — H(Ky, K2|W", My, Ms)
= H(K17K2) - H(K17K2‘WH7M17M2)
> I(Ky, Koy W"| My, M),
and (1i) I(Ky, Koy X7, X3 |[W™) =0.

(c) follows from the Markov Chain M; — (X7, K1) —W" — (X%, K2) — M>, and (d) follows from similar
arguments as in (47-d).
We now provide the bound for R; + Ry 4+ C1 + Cs as follows.

n(R1+ Ry + C1 4+ Cy+€) > H(My, Ma, K1, K3)

> I(My, Ma, K1, Ko; X1, X5, Y™)

(a)

= I(X?7X£L7Yn7 Wn; M17 M27K17 KQ)

= I(Wnu M17 M27K17 KQ) + I(X{L7X£L7Yn7 M17 MZ; Kl; K2|Wn)7 (49)

where (a) follows from using the Markov chain W — (X7, X7') — (M;, Ms, K1, K2) — Y™ which
implies I(W"™; My, Ms, K1, Ko| X7, X2,Y™) = 0. Again the first term in the right hand side of (49)
can simplified following the approach in (48) as I(W™; My, My, K1, K2) = i, I(W;; U;, V;). For the

second term, we have

I(X?7 X5L7 Yn> M17 M27 K17 KQ‘WTL)
n
> [I<X1@-, Xoi, Yis Uy, ViXy L X5 LY 7HQu Wa) — I(Xui, Xoi Yy X1 X571 YHQi, W)
1

7

> I(Xq4, Xoi, Yi; U, Vi|Qi, Wi) — nge(e),

I

@
Il
—_

where in the last inequality above we use [Py y.y — Pxpxpvelli < ¢ implies
I(Xy, X5, Ve X7 XEH Y1 Qi, Wi) < nge(e), and define gu(e) as in the statement of the
theorem using Lemma VIL.3 from [9] obtaining g.(€) N\, 0 as € N\, 0 which follows from the memoryless

nature of Py xpyp. Substituting the above simplification in (49), we obtain

n(Ry+ Re+C1+Co+¢€) > Z [I(Wi§ Ui, Vi) + I(X14, Xoi, Y3, Ui, Vi|Qi, Wi) — gc(E)}
=1

_ n<I<W; UVIT) + (X0, X0, YU, VIQ, W, J) — gc<e>), (50)

where the equality above follows by defining J as an averaging random variable which is uniformly
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distributed in [1,n] and Y as Y.
Step 2: Single-letter /; constraint (d): Since the encoders and decoder satisfy the [, distance constraint

HP}}1 .y — Pxpxpye |1 < e (as in Definition 2), using the Lemma VIL.2 from [9] we have

I Px,x,y — Px,,x0,v, 11 < 1P, x,y — Pxpxpyel1 < e (51

Step 3: Markov Chains: We now argue that the Markov Chains (a), (b), (¢), (e) and (f) stated in the
theorem statement hold. The Markov Chain (a) follows from the standard information-theoretic arguments
with time-sharing random variables [29] and using the fact that (i) J is independent of (X', X7, Q")
and (ii) the stationary and memoryless nature of the sources (X7, X35, W"™) which makes (X1, X2)
independent of ). Moving on to the next, the Markov chain (b) U — (X1,Q,J) — (X2,Q,J) =V
holds true from the following arguments. Since J is uniform and is independent of the sources X' and
X%, this is equivalent to showing U; — (X1;, Qi) — (X2, Q) — Vi for i € [n]. This is equivalent to
(My, K1, W) — (X, WL WE ) — (Ko, WL W) — (Ma, Ko, W), Hence we need to show
(M, K1) — (X13, WL W) — (Ko, WL W) — (Mg, K2). We show this in the following. For an
arbitrary i € [n] and for m; € [2"7] k; € [27C3] 1 j = 1,2, x1; € XY, w9; € Xy, wll 2 w™\i ¢ W1,

we have

P[M; =my, K1 = k1| X1 = @14, Xog = 225, W = wld My = my, Ky = ko)
_ PIMy =my, Ky = ki, X1; = 214, Xog = 29, W = 0l My = my, Ky = k]
P[X1; = 15, Xo; = 5, W = wll, My = my, Ky = ko]
P(Ky = k) P(Ky = ko) PWI = 0l Xy; = @15, Xoi = 99)
P(K3 = k) P(Wl = wll, Xy; = z1;, Xo; = 29)
S0 POXYT = 2wl = wll) P(My = | X] = 2, Ky = k)

S P(XS) = Wl = wlil) P(My = ma| XJ = a3, 5 = k)

X ZP(sz = x[zi]|W[i] = wl)P(My = mo| X3 = 23, Ky = ko)
0

= P(K1 = k) [ Y Px{T =2l wll = wlP(My = | XT = 2}, Ky = ko)

o]

Note that the right hand side in the above simplification does not depend on (x;, M2, k2). Hence we have
shown (M, K1, W) —(X 13, W™\ —(Xo;, W™\!, My, Ky). Similarly, using identical arguments, we can
show (Mo, Ko, Wi1)—(Xo;, W™\H)—(X1;, W™\', My, K7). These imply that U; — (X 1,Q;) — (X2:Q:)— Vi
forall:=1,2,...,n.

To prove the next Markov Chain (c) given by (X1, X5,Q) — (J,U,V) — Y, consider the following
arguments: Since J is uniform and independent of the sources, the Markov chain (c¢) is equivalent to
(X 14, Xog, W) — (W1, My, Ky, My, Ko) — Y; for all i € [n]. We prove this using the following.
For an arbitrary ¢ € [n| and for m; € [Q”R-f],kj c 270 j = 1,2, 21, € XY, 295 € A, y; € Y,
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wll 2 i ¢ Wr—1 we have

P(Xy; = 15, Xog = 205, W = wl| My = my, My = mo, K = k1, Ko = ko, Wit = 0™ LY, = )

P(M; = mq, My = ma, K1 = ki, Ko = ko, Wl = wlll Xy; = 21;, Xo; = 293, Vi = )
P(My = mq, My =mg, K1 = ki, Ky = ko, Wi=1 = wi=1)Y; = ;)

) ) n_ ,.n n _ ..n n _ ..n
|:Z$[1’L]7w[21]7wi P(W =w ’Xl =X ,X2 —IL’2)

[Zx%x;&’w? P(Wn =wn, XTI = 2", XI = 2)

P(My =m| X =2", K1 = k1)P(Ma = ma| X3 =25, Ky = kz):|

X
P(Ml = m1|X? = :L‘”,Kl = k‘l)P(MQ = mngS = JJS,KQ = k‘Q):|

X Doy PY" =y My = mq, My = ma, K1 = k1, Ky = ko)

>yt PY™ =y My = mq, My = ma, K1 = k1, Ko = k)

P(X1; = 214, Xoi = w2, W = wlll My = my, My = mo| Ky = Ky, Ko = ky)
P(Wil = wi=t, My = my, My = ma| Ky = k1, Ko = ko) .

Since the right hand side of the above simplification is independent of y;, we therefore have the Markov
chain (c) to be satisfied. Progressing ahead, we have the Markov chain (e) given by X7 — Wy — Xy
which is satisfied from the choice of Py |y, x, similar to the arguments made in showing the Markov
chain (a). Finally, toward showing the Markov chain (f) given by W — (X1, X2)—(J,Q, U, V,Y') consider
the following set of arguments: For an arbitrary i € [n] and for m; € [2"%] k; € [27C5] : j = 1,2,
T1; € X1, T € Ao, yi € Y, wll & wn\i € W1 we have

P(W; = wi| My = mq, My = ma, Ky = ky, Ky = ko, W = wll| Y, =y, Xyi = 215, Xoj = 94, J = i)
P(My = my, My = ma, K1 = ki, Ko = ko, W" = w", X1; = 215, Xo; = 224, Y; = 45, J = 1)

P(My =my, My = mo, K1 = ki, Ko = ko, Wl = wllY; = y;, X1; = 215, Xoy = 294, ] = i)

[me o PW" = w, X7 = " XD = a3, J = i)

1 %2

[Zw[{]’m[g] P(WM = w[i],X{L =a", X3 =ah,J = i)

P(M1 = m1|Xf” = l‘n,Kl = kl)P(MQ = m2|X§l = LEEL,KQ = ]432):|

P(M1 = ml\X{L = .TUn,Kl = kl)P(MQ = m2|X§‘ = iL'g,KQ = kz):|
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P(WZ =w;, X1; = T14, Xoj = To;,J = Z) [Zx[f'],x[;] P(X{Z] — x[l]’ XQ[Z] — wg}’W[l] = w[l])

P(X1; = 214, Xoj = w95, J = 1) [Zx[ﬁ,x[ P(XM = glil, X[’] g]yw[il = wlil)

P(Mlzml‘X =z" Kl—kl) ( mQ‘X2—$2,K2—k2):|

X
P(M1 ml\X"—x" Kl—kl) ( MQ‘XZ —.’E2,K2—]€2):|

P(W; = w;, X1; = x15, Xoi = 24, J = 1)

— =P W; |14, 25 )-
P(X1; = x14, Xoy = w23, J = 1) Wixax, (wilens, 721)

We now have the right hand side of the above simplification independent of j, wm,ml, ma, k1, ko, and
yi» which proves that the Markov Chain (f) is satisfied.
We have shown that (R, Ra, C, C2) belongs to Ro(Pxy,¢€) for all € > 0, which is the desired proof

of the outer bound.

APPENDIX C

PROOF OF PROPOSITIONS

A. Proof of Proposition 1
We begin by using the lower bound from (41) given in Appendix A-A. If R>1 (X; W) + 461, we

have

2'nR

1 1—e X\W( " w™)
ZEL‘X” (") QnR <1_|_ ) Z Z]l{w (Lp)=w"} " pnny pn(xn)

wh€Ts(Wlz™) I=

2nR
_ (1 1 1 () n

P
w.h.p 1 1 B ()wn
=" (1) Fae - M6

> (1‘”) (1-c), (52)

where the second equality follows from the definition of Zl(“ )(x”) as defined in (37), the first

inequality uses the lower bound from (41) which is true with probability greater than 1 — §,, where
22n(R—I(X,W)7451)
41n2

PR (™) YXowrerswiem) Py x(w w'|z™) > PY(z")(1 — €), for sufficiently large n and e.(6) \, 0 as

_n

5. & 2exp , and the second inequality uses the fact that E[Z(®(z")] =
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0 N\ 0. Using this we get, with high probability,

~ 2n +ec(1 —
D5 Loy < 1177 Z Py x (2" 2") Py 5 (4" [wo, 2")

yr,z" ym,z"
2n+e(1—mn) 2n +ec(1 —n)
< E Py owx @, 2wy, 2") = —————>
- l+n Vo (" =" oo, ) L+n

where the first equality follows by using the Markov Chains Z — X — W and X — (W, Z) — Y. Finally,

since S - Ipur(c) < 1, using the above result, we have for sufficiently large n,

1+n

= 2 + €c 1-—
R ﬂpMF(c>] Bl =m0, (53)

yr,z"

Therefore E [Zx”ETg( X) P (x™) Zyn,zn S - HPMF(C)} can be made arbitrarily small for all sufficiently
large n.

B. Proof of Proposition 2

The term E [an ers(x) PR (™) Yoy on 52} captures the binning error in terms of total variation. If
we let " = f(1) (b(“)(l), 2"), we have

2

Yy

< 2 Lyynggny- (54)

(P2 e, ") = Py 2 ("1™, "))

Substituting  (54) in E[} .cq (x) Px(2") > ,. .. S2], and using union bound, we obtain
E[aneTs(X) Pg(a™) Y yn n S2] < J1+ Jo, where

A Z|X n’x) X|W( n’wn)
J122.E ET: Z;Z Z P 1) L= @) L e Ty (w.2)
S el 0 = e )
A Z|X( n|x )P)%W( n’wn)
J2=2-E Z Z Z Z on R+C)(1 +7) Lwr=wm )
LT ET(s Té(W|1‘ )

Yo D Ly emenmzn Lpm o= >}ﬂ{bw(z’>:m>}ﬂ{w<z',u>:m}]
m,l’ u?

w ;éw
We begin by showing J; can be made arbitrarily small for sufficiently large n. Using the fact that
E[ fyrmn(1,3] = Pf‘{(}é;), for w" € T5(W'), we have

P2 (2™a™) Pgyy (2™, w"™)
X XW
J1—2nzT:X; Z )
we€ls(X) T{;(W|x Stz (),
(w",2™)ET5 (W, Z)
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2 n n ., n _n
T Y Y A
N zneTs(X) 2" w™rwn €
Ts(Wlz™)NTs(W),
(wnvzn)gTé(sz)

2 2eg
. S A s 2
A1) o nSgTow.2) (1+n)
where €7, (9) N\, 0 as 0 N\ 0. Proceeding with J, we have
)P (@)
S2=2-E Z Z Z Z on R+C)(1 +1) L= (1,2)}

zneTs(X) 2"
(,(W|x )

> ]1{(wn,zn>en<w,z>}ﬂ{bwmm)}ﬂ{bwmm)}ﬂ{wucu)w"}]

m,l’ W™
wrED™
szx )Py (2 |w™)
Pl 2 Z Z (14 1)
2" €T5(X) 2" €Ts(Z) m= 1T w

> D E - "}ﬂ{wu',u):m}ﬂ{bw<Z>=m>}1{b<w(z’>=m>}]
W (W, z™) ol

GT(;(W,Z),

’w";ﬁ’lf)"

onR

Z Z Z Z Py (", 2") §|W($n’wn)
n n(R+0) (1 4 )
xn 5 2" s m=1 w"e

€Ts(X) 2" €T5(2) e

3 | D) P%(W)T%R]

W T W), (I=¢) (1-€)

pn (7])")
— 9.9n(R-R) Py (@, w", 2") W
R D
2" €Ts(X) 2" €T5(Z) wreTs(W|z™) i (w™,z™)
eTé(Wyz)v

wFED"
n(R—R) WZ\X w", 2"fa") —n(I(W;Z)—61)
< 2.9 >y > FipTo R 2

an€Ts(X) 2" €Ts(Z) weTs(Wlz™)

< 271(R—R—I(W,Z)+51+6,)

where the second equality follows by using E[1 {bw)(l):m}] =271 | the third equality follows from the
Markov Chain Z — X — W, the second inequality follows from the properties of J-typical sets where
67(6) N 0 as § N, 0. Therefore, from above E[3_ . ..
large n, if R — R < I(W;Z) + €1, where ¢, = 07 + ¢'.

S3] can be made arbitrarily small, for sufficiently



39

C. Proof of Proposition 4

We begin by defining S; £ |T;| for i € {2,3,4}. Firstly, consider the following simplification of Ss.

Y. D PR (el ab)S

z7,ate€Ts(X) y"

PR (@t 28) [1= S0 BY ()
- Z Z Z Z |:2n(C1+C2) ]

0,ab€Ts5(X) Y™ | pa,pele wi€E
Ts(Walay)

(1 —e2) P}y, (25]wy)
onfa (1 + )Py (x3)

2"R1 "
PR (a0, 28) |1 = S0 B ()

- Z Z Z Z on(Ci+Cx)

oot €Ts5(X) Y™ pa,pz,le wiyE
Ts(Walay)

7 n|,~n ~Nn
fwy=w (1)} ¥, wr, (87 [ 07 03)

(1 = )Py, (310)
nf (1 4 ) PR (a)

n n|,~n ~Nn
{wp =3 (ta,02)} ¥ |, (0" |07 03)

Taking expectation over the second encoder’s codebook, we obtain

D D PRkl ah)S

z7,xte€Ts(X) y"

Ec

le 1 L|xn(ll|x1)

S Z Z Z Z 2n(01+02)(1 + 7]) P)T}th,Wz (%?, 1’3, wS)P}%WlWZ (y"\u??, ﬁ)g)
z7,xl€Ts(X) Y™ Hi,p2 wy €
Ts(Walxy)
1= 220 B ()

SIS

n n ..n n
T1,Ty,W

: 2n(01+02)(1 77) Xl,XQ,WZ( 19425 2)

x7,xb €T5(X) wy Ha,H2

2n1?
le i L|X"(l1‘x1)

1 T n

Hspe 27 €T5(Xq)

Further, taking expectation over the first encoder’s codebook and introducing the indicator Lpyr(c, c,),

we get

E Z ZP)ZXQ ($?7$3)§2 “Iewr(cyco) | < Ee, | Ee, Z ZPXlXQ xy, y) 52 Lpwr(c,)
et e€Ts(X) Y™ 2t are€ls(X)Y

2n + Ec(l - 77)
< —(1-9 Or.
< T =) 4
where the last inequality follows using the result from (53) provided in Appendix C-A, and 6,(5) N\, 0
as 0 \ 0 if Ry > I(X1; W1) 4 461, for all sufficiently large n, where d1 N\, 0, €.(6) \, 0 as § \, 0.

Using very similar arguments as above, it can also be shown that if Ry > 1 (Xo; Wy) + 401, then
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E [le B ETS (X Z Py x, (%, x3)Ss5 - Lpyr(c,c,)| can be made arbitrarily small for all sufficiently
large n.

Similarly consider the final term corresponding to S4. For Ry and Ry satisfying the above constraints,
ie., Ry > I(X1;W1) 446 and Ry > I(Xo; W) + 45, we will have

E Z X:PX1 x, (@], x5) 54 Lpwr(c,,cs)

x7,xr €Ts(X)y"

2nR1 2nR2

i n n mn

PX1X2($1’$2)‘1_ =1 L|Xn (la]=T) ‘1_212 2 L|Xn(l2|x2)‘

<EL >, D onC Lewr(c, c.)
al,xh €Ts(X) H1o12

<277+€C(1_77)>2(1_25 )+ 20
1+,’7 T T

<

where the second inequality again uses the result from Appendix C-A. This completes the proof.

D. Proof of Proposition 5
Define (w7, %) = £ (¥ (11), b#2)(1y)). Consider,

P (0" w03 w8) — P2y (0L (05 (1), 52 ()| < 2 L(up g )etig 08}

Substituting the above bound in the Si» term and using the union bound, we obtain
£ [ZQ"GTJ(X) P&@”)Zyn 52} < J1 + Ja, where

YEEEDIEDIEDY Z — )Py, x, (@1, 2§) Py, (@0l PRy, (5] wf)
1_
2" €Ts(X) oz wit€ 2"<Rl+Rz+Ol+cg>(1 +1)2 Py («7) Py (25)
(W1|371)T5(W2\:p2)

> > Elﬂ{wz—wz (2i2) Y L fwp = (12} L w7 w3) s (W2, W)} L0600 (1) 2 3 L6400 (1) 2oy |2

l1,lo M1,m2

Jy 22 g Z Z Z €2) Py, x, (a1, 25) Py, W, (@] |wy) Py, [Wa (5 wy)
9 =
zn€Ts(X) 12 wy € 2n(R1+R2+Cl+CQ)(1 + 77)2Pn ($1)Pn (132)
(Wllml)To(Wz\wz)

> > DD B g map (o)} L = () Lo g ey (Wi w2

Il Wy by ma,ma 111}
(D7 3 )#(wi,wy')

L b @y =ma)y Lo (1) =ma)} Lo (1) =ma)y T1ogn) 1) =ma)y Lo () =i} s ()= } |
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Consider the term J;. This can be bounded as

P (27, x5, wi, wh) P v (wh, wh)
VESEDY > X1X2W1Vz21 - )22 Y WI(V?JF 1)2 2 <y,
2 ET3(X) (wf ) ET (Wi W2) 7 (wf 0)¢ 7
Ts(W1,W2)
where €7, (d) \, 0 as § \, 0. Now, consider the term corresponding to .Js.
)P)T(L' X (x?7x3)
J < 9. 2n(R1+R2 Ri— R2 2
’ Z Z Z (1 +n 2Pn (@) PE (a8)
(Wl\xl)Ts(Wzlwz)
Py, (wt) By, (wy) Py, (1) Py, (2)
P 2 1 2
X1 ‘Wl (xl |w1) X2|W2 (':L‘Q |’UJ2) Z (1 — 6) (1 — 6) (1 — 6) (1 — 6)

w?vwg(wl 7w2 )#(wl 7w2 )
(@7, w5 )€Ts (W1, Wa)

2 2n(R1+R2 Rl R2

(1_61)(1_62 )1+ 7)2 Z Z Z P% x, xlva)PW\X (wi'|zy) Py Wa X (wy |25)

z,xh wi e wy €
To (Wi la7) Ts(Walep)

> Py, (1) Py, (2)

DI, W (D], W8 ) # (Wi ,wh)

(Wi wy)E€Ts (W1,W2)
2. Qn(R1+R2—R1—R2)
n n n n N n N
STy & (el ud) 2. Piy, (1) Py, (102)

wi,wy wy,Wy: (w1 W3 )# (Wi wg
(wl Wy )€T5(W1’W2)

2 . 2”(R1+R2—R1 —Rz)

< —n(I(Wi;W2)+6)
SU—a)d—e)( 02 (56)

Hence, from above if Ry +Ry— R — Ry < I(W1; Wa)+ 0’7, then the term E > amersx) Px(@")22, Sg]
goes to zero exponentially, where §;(9),67(8) N\, 0 as 6 N\, 0.

E. Proof of Proposition 6

We begin by considering the second term within the modulus of Py (z")J, for 2" € T5(X), i.e.,

1 1
0 2 2 PR @l e B (o [a]) Pl i, (03|03 Py, (0 [ w3)),
me[?’”cll wy

e O SPGB el
/116[277(;1} wl

(P2 o (812, 00 Pl e, (w8127, 35, w00) P, euwan, (728 23, w0l )
1 (1—¢1)

_ n n n n n n n n n
T on(Bit+Ch) (14 1) Z Zlelwl(xl‘wl)P&WzY\XlWl(”f?’w?’y 275 WT )Ly 1y ) =g}

(57)
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1 (1—¢€)
=) () 2 2 DRoxwyiwn (0823 wd " o) g eymugy 5B)

Hl,ll wi €
Ts(Whlat)

We use the simplification from above and again using triangle inequality bound Z Z Py (x

zne€Ts(X) Y™ wy
by the following:

> D PRI

€T (X) ¥y ws

< 2 )

€T (X) Yy w3

PX1X2W2 xl7x27w27y )

1
_72 (FatCy) ZZ X1X2WZY\W1(371=5527w27 |w1)]l{w1(ll,u1)—w?}

pa,l Wi

> Z
zneTs(X) y™ wy

R1+Cl ZZ X1X2W2Y|W1(x1’x2’w2’y |w1)]1{"’1(l17111) }

p,l Wt
1 (].—61
T on(Bi+0n) (1+7) ; ; Py xawoyiw, (200,25, w5,y [wi) Lan 1y ) =wpy | (59)

Té(Wl |1'1 )

The first term in (59) can be shown to be small in the expected sense using the Lemma 2 given the
constraint ]%1 + C1 > I(X1, Xo, Wy, Y; Wy). Further, the second term in (59) can be bounded by first
taking the expectation over the codebook of W; and then using a technique similar to that of bounding
(14). We therefore have E [zyen( 0 Sy P (g”)J] <, for Ri+C > [(X1, Xa, Wa,Y; W;) and

sufficiently large n.

E. Proof of Proposition 7

Analysis of 3 nery(x)n ¥ (2")Q2: We recall QQ,E(W“;)‘X”(.‘ ), E(W“i)|Xn( ).

e 2 DB ) P, (W) P, (0 )

p1 E[2nC1] Wit wy

W S B ) Bl (w8 |5 P, (0w w) | (60)

p1 €21 wit,wy

onky pn (xn’wn)
(11) 11— X, [, (T Wy
Bywpixp (Wi121) = S0 9 Z P () Msi )= L eri o9 )

oniy P (xn|wn)
(n2) 1 1-e X, W, (2| W2
Byvpixg (w2le2) = o9 > P (ag) )=l wreTswalen)-
l2:1 2
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Let us define the ﬁinﬂnyn (2™, w™, y™) on X" x X x W] x Wy x Y™ as

Pxnwryn (2", w", y") 2n01 Z Py (x Wn|xn( 1120) Py, x, (w3 [23) Py, (" [0, wg). (61)
p€[2nC]
We remind the reader that 0 < anewn E‘(,f,‘f)l X7 < 1, since we only need to consider the case

Lipur(cy,c5)1 = 1. Refer to Lemma 3 for an upper bound on P(1ipyr(c, o)} = =0).
From the definition (61), the first term in Py (2")Q2 is simply >_, . Pxnymyn (2, w",y"). Let us

denote this expression by PX"Yn (z™,y™). Further, its second term can be simplified as

e O O PR (@ aB) By o (i 2T B o (w8 |8) P, (0" 0 wh)

Hisp2 wiwy
1 (1—e) (1)
= - P xy, ) B o (w2t
on(RatCi+Ca) (1 — ) Z Z %, X (215 25) By o (W |27)
Ha,pt2,la wy',
wi €Ts(Walxh)

Py xp (w3 ]23)
wy|xp (W2 T2
Pl ( ) PY|W1W2(y ‘whw?)]l{w F(l2,p2)=w3 }

1 1 — 61 Z Z PX WY IL’ 7wn7 yn)l{wg(lz,m)):wg}
on(RatCa) ( Py (wg)

pa,la wy,
wh €T5 (Walz3)

where the last equality follows by the definition from (61). We therefore have

Z Px(2")Q2 =

€T (X),ym
- (1—¢) PX"Y"W" "yt wy)
n n
Z sz,yn@ Y )_ (1 _’_77 2n (R24C2) Z Z n) l{wgz(l2,#2):w§1} .
zreTs(X),ym la,pa w3'E€
T5 (Wala3)

To bound the above term, we add and subtract the following three terms within the modulus

(4) PXY( y")

) 2n(RQ+cz > 2 Prymn @y ) Lo s
M2, 12 w2 €Ts (WQ)

PX YW, (fnaynvwg)
(i) 2n(32+02 Z Z Pn ( n) ]l{WE"(lz»M):w?}
paly wheTs(W2)

Using triangle inequality on each pair of terms within the modulus, we obtain

Z Py(z")Q2 < Z Py (2")[Q21 + Q22 + Q23 + Q24] (62)

zneTs(X),y" €T (X),ym
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where, for all 2" € T5(X), we define

P (2")Q21 = ﬁgnyn (z",y") — Pxy (", y")|,
Py (2")Q22 =|Pyy (2", y") (Bt Ca) Z Z PXY|W (@, y" [W3) L ug (13, 12)=ws}
pa,lo wy €T (Wa)

1 Pyrynwy (2™, 4", wh)
Pg(gn)Q% :m Z ]1{"’3([2:M2)=w2} Z P§Y|W2 (£n7 yn’wg) _Z n

mn
A wy e wh € PWz (U)2 )
T(;(Wg) T(S(W2)
PX"Y"W" ",y wy)
( ") Q24 = (et Ca) ,; ; (w2) ]l{wg‘(IQ,uz):wg‘}

Ts (W2)

]. - 61 PXnYan X 7y’l’b7 wg)
N (1 + 77 2n(R2+C'2 ZI Z (,ng) ]l{wﬁ"(l%liz):w?}
H2,b2 wy €

T5(Wa|zy)

(63)

Now we look at bounding each of these four terms, starting with the term corresponding to ().
Since D nery (x)yn PX(&")Q21 < 3 pnery(x)ymwp Px (€™)J, the result from Proposition 6 implies if
R1 + C1 > I(Xq, X2, Wo,Y; W7) then, for sufficiently large n, the term corresponding to (21 can be
made arbitrarily small in expected sense.

Secondly, we look at Zznen X) P3%(2")Q22. Using Lemma 2, we get, if Ro+Cs > (X1 XY ; Wy)+
dq,,» then for sufficiently large n, E [aneTé(X) g PR (2") Q22| < €q,,, Where €q,,,0a: N0 as § N\, 0.
Thirdly, consider »_ . €T (X),ym P%(2")Q23. Applying expectation over the second codebook followed
by the first gives

E > PR(z™)Qas

zneTs(X),yn

Py (wg) JBX”Y"W; (", y", wy)
= Ec, Z PR Z ny|w (", y"|wy) — Z P (o :
gy . (1—e) " W, (Wh)
|z €T5(X),y wy €T5(Wa) wi €Ts(Wa)
1
<Ee. |75 > > PR (64)
L 2 ZI?”GT(S X) ym w2

where the first equality follows by expectation of the indicator function over the second codebook, and
the subsequent inequality follows from using the triangle inequality and using the definition of J (31).
Again using Proposition 6 proves E [Zg eTs(x)y P (2™)Q23| can be made arbitrarily small.

Finally, we remain with Zw"’ETa( X) g P%(2™)Q24. This term can be split into two terms such that



Q24 = Qb4 + QF, where

R2+Cz)

Px(z")Q =

(-

Pi@”) /2/4 =

g-n(RatCy) (L= €1
147

1—¢ PX”Y"W“ " y", wy)
SIS e
fi2,l2 wh €T5 (Wa|z) By,
€1 PXn Y”W" yn, ’U)g)
Tz x P
p2,lo w ¢ Ts (Wolay) iy,
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wy €T5(W2)
Consider E [an €T (X) " Py (z )Q24 ,
_g|—e)d—a) 1
- (1 + 77)2 2n(PZ1+R~2+Cl+Cz)

> X )

2 €T5(X),y™ pa,p2,l1,l2 wi €Ts (Wilz})

_ (n—e1)
(T+m)2(1—e)

D
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D
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where the first equality above is obtained by substituting the definition of ]BXLY”M"(

PRy (2™ w",y )]1
Py, (wi) Py, (wg) ~

wy €Ts(Wa|z3)

n n n n
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z"™, y", w™) followed

by using the simplification from (58), and the second equality is followed by using the fact that

E [T gup 1y o) =wr} L (g (o) =wy} ] =

Similarly, consider [Zylen x)ym PxX (™)

1—61

1+ n 2”(R1+R2+Cl+02

1

S -
(1 + 77)(1 B 62) 22€T5(X2)

waETs5(Walzy)

6/

S+ ni-a)

> 2

“llv'u?’lr"eT(;(X) {wyeTs(Wi|z})

1,02

Py, (wi') Py, (wy)

"
24|

(1 —e€1)(1—e€2)

(65)

P)T(L'WY(xnaﬂna yn)

>

v {ws ¢T5 (Walog)
€T§ (Wz)}

ﬂ.{w’{b

T1,Wy

Pit, (Wi Py, ()

() =wp L (g (1 pn) =

|

Z P w, (23, wy) Z PYw, x, (@1, wi|zy) ZPY\Wlwg(y jwi', wy)

y"

(66)



46

This completes the analysis of all the terms corresponding to ()s.
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