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Abstract—This paper is concerned with the problem of fre-
quency estimation from multiple-snapshot data. It is well-known
that ESPRIT (and spatial-smoothing ESPRIT in presence of
coherent sources or given limited snapshots) can locate the true
frequencies if either the number of snapshots or the signal-
to-noise ratio (SNR) approaches infinity. In this paper, we
analyze the nonasymptotic performance of ESPRIT and spatial-
smoothing ESPRIT with finitely many snapshots and finite
SNR. We show that the absolute frequency estimation error of
ESPRIT (or spatial-smoothing ESPRIT) is bounded from above

by C
max{σ,σ2}

√

L
with overwhelming probability, where σ

2 denotes

the Gaussian noise variance, L is the number of snapshots and C

is a coefficient independent of L and σ
2, if and only if the true

frequencies can be localized by ESPRIT (or spatial-smoothing
ESPRIT) without noise or with infinitely many snapshots. Our
results are obtained by deriving new matrix perturbation bounds
and generalizing the classical Schur product theorem, which may
be of independent interest. Extensions to MUSIC and spatial-
smoothing MUSIC are also made. Numerical results are provided
corroborating our analysis.

Index Terms—Nonasymptotic performance analysis, ESPRIT,
MUSIC, spatial smoothing, matrix perturbation theory, Schur
product theorem, Hadamard product.

I. INTRODUCTION

Frequency estimation from a single or multiple snapshots of

the superposition of several sinusoidal waves is a fundamental

problem in statistical signal processing and has broad appli-

cations in array, radar and sonar signal processing, wireless

communications, structural health monitoring, etc [1]. The

Nyquist-Shannon sampling theorem states that a sampling rate

at least twice the highest frequency is required for lossless

information recovery. In the practical scenario of finitely many

noisy samples, algorithms have been constantly developed for

accurate frequency estimation, which range from the classical

periodogram/beamformer to subspace-based methods since

1980s and then to sparse and compressed sensing approaches

in this century [2], [3]. Correspondingly, the computations of

these methods shift from the Fast Fourier Transform (FFT) to

eigenvalue decompositions and then to iterative optimization

algorithms thanks to the continuous improvement of com-

puting power. Extensive studies over the last four decades

have witnessed excellent performance of subspace methods.

This paper is devoted to a nonasymptotic analysis of subspace

methods showing their stability and high resolution when the

samples per snapshot are just sufficient to do so.
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The multiple snapshots of data sequence acquired at a

Nyquist sampling rate can be modeled as [1]:

Y = AS +E, (1)

where Y is an N × L matrix of which every column corre-

sponds to one snapshot, A is an N ×K Vandermonde matrix

whose (n, k) entry is ei2π(n−1)fk with i =
√
−1, S is a K×L

matrix, and E denotes noise. The objective is to estimate the

set of distinct frequencies T = {fk ∈ [0, 1)}Kk=1 given Y and

K . While the above frequency estimation problem arises in

many applications, we will use the language of array signal

processing for convenience in this paper. In array processing,

we need to estimate the directions {θk ∈ [−90◦, 90◦)} of

K narrowband, far-field sources impinging on an N -element

uniform linear array (ULA) from L-snapshot outputs Y of

the array, known as direction-of-arrival (DOA) estimation.

The DOAs {θk} are connected to the frequencies {fk} by

fk = d
λ sin θk mod 1, where d denotes the distance between

adjacent antennas, λ is the wavelength and the modulo oper-

ation is nothing special but keeps fk ∈ [0, 1) (note that the

matrix A is invariant with the modulo operation). A typical

assumption is that the distance d is half a wavelength, i.e.,

d = λ
2 , so that the mapping between θk and fk is one-to-one

and θk is uniquely determined by fk with

θk =

{
arcsin (2fk) , fk ∈

[
0, 12

)
,

arcsin (2fk − 2) , fk ∈
[
1
2 , 1

)
.

The Vandermonde matrix A is referred to as the array

manifold matrix. The K × L matrix S consists of emitting

signals of the K sources at L snapshots. Consider the K

sources as random processes. Then, we use the terminologies

of independent, uncorrelated, correlated and coherent (fully

correlated) sources without ambiguity. Note that coherent

sources can be caused by multipath propagations of emitting

sources that, as detailed later, bring challenges to subspace

methods.

It is seen from (1) that the sampled data Y are highly

nonlinear functions of the frequencies {fk} of interest. To

overcome the nonlinearity and to circumvent nonconvex opti-

mizations, subspace-based methods are proposed by observing

that the frequencies can be uniquely identified from the range

space of A that corresponds to the eigen-subspace, associated

with the greatest K eigenvalues, of the data covariance matrix

R of each snapshot. The aforementioned subspace is usually

referred to as the signal subspace and its orthogonal subspace

is known as the noise subspace. In the practical scenario with

finitely many snapshots, R is replaced by its efficient estimate,

the sample covariance matrix R̂ = 1
LY Y

H . Based on the

http://arxiv.org/abs/2201.03457v2
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above principle, two prominent subspace methods are multiple

signal classification (MUSIC) [4], [5] (by using the noise

subspace) and estimation of signal parameters via rotational

invariant techniques (ESRPIT) [6]–[8] (by using the signal

subspace). A partial list of their variants includes root-MUSIC

[9], unitary-ESPRIT [10], ESPRIT with fourth-order statistics

[11], as well as their extensions to higher dimensions [12]–

[15].

One prerequisite for the use of MUSIC and ESPRIT for

frequency estimation is that the source signal matrix S has full

row rank so that the K-dimensional signal subspace can be

retrieved from the data covariance matrix R, which however

fails to hold in the presence of coherent sources or given a

small number of snapshots. Spatial smoothing (SS), which

was pioneered in [16], [17] and has been extensively studied

since then (see, e.g., [18]–[34]), is an effective preprocessing

technique to restore the performance of subspace methods

in this case by leveraging the effective array aperture and

the rank of smoothed source signal matrix. Two typical SS

techniques are forward-only SS (FOSS) and forward-backward

SS (FBSS). The resulting algorithms when combined with

MUSIC and ESPRIT is called SS-MUSIC and SS-ESPRIT

that encompass the standard MUSIC and ESPRIT as special

cases.

It is well-known that MUSIC, ESPRIT and their SS counter-

parts produce the true frequencies if the number of snapshots

L or the signal-to-noise ratio (SNR) approaches infinity (the

latter case corresponds to the noiseless case) under mild

conditions (see details in the main context). In fact, an FBSS-

based subspace method does so if and only if the frequencies

can be uniquely identified from the data [35]. This paper

is concerned with the practical scenario with finitely many

snapshots and finite SNR. Our main result is stated as follows:

Theorem 1: (Informal) Under Gaussianity assumptions on

the sources and noise, the absolute frequency estimation error

of ESPRIT (or SS-ESPRIT) is upper bounded by C
max{σ,σ2}√

L

with overwhelming probability, where σ2 denotes the noise

variance and C is a problem-dependent coefficient that is

independent of σ2 and L, if and only if ESPRIT (or SS-

ESPRIT) produces the true frequencies in the limiting case

of σ → 0 or L→ ∞.

It is implied by Theorem 1 that both ESPRIT and SS-

ESPRIT can stably estimate the frequencies provided that
max{σ,σ2}√

L
is smaller than a certain threshold. Therefore,

there is no substantial performance gap between the practical

scenario of finite L and finite SNR and the limiting case

of infinite L or infinite SNR. Our results also generalize to

MUSIC and SS-MUSIC.

Our technical analyses are based on a new matrix per-

turbation bound, the Hadamard product technique for SS

in our recent work [34], and the results in [36]–[38]. In

particular, the signal subspace estimation step of ESPRIT and

SS-ESPRIT is interpreted with principal component analysis

[39] and analyzed with matrix perturbation theory [40]. A

new matrix perturbation bound is derived in order to show

that the subspace estimation error is a decreasing function of

the snapshot number L as well as to deal with non-i.i.d. noise

arising due to SS. By applying the new bound and its technical

proof, the subspace estimation errors of ESPRIT and SS-

ESPRIT are quantified. In this process, the Hadamard product

technique in [34] plays an important role. To measure the

frequency estimation error based on the subspace estimation

error, we apply the results on single-snapshot MUSIC and

ESPRIT derived in [36]–[38]. Nontrivial lower bounds on the

minimum eigenvalue of the Hadamard product of singular

positive-semidefinite matrices are provided which generalizes

the classical Schur product theorem [41] and helps to under-

stand the derived error bounds when the per-snapshot sample

size N is small.

A. Relations to Prior Art

Extensive studies on the frequency estimation errors of

MUSIC and ESPRIT have been carried out under the critical

assumption that either L or the SNR is sufficiently large

so that the frequency solutions are close to their ground

truth; however, there is no explicit quantification of how large

they should be and therefore, it is not guaranteed that the

derived results are applicable to any problem with finitely

many snapshots and finite SNR. Such studies are known as

asymptotic analysis; see, e.g., [42]–[51]. In contrast to this, our

results are nonasymptotic in the sense that they are applicable

to any L or SNR provided that the other is greater than a given

threshold.

The nonasymptotic analysis presented in this paper is

closely related to [52] and a line of papers by Fannjiang, Liao

and Li [36]–[38], [53], [54]. The nonasymptotic performance

of MUSIC and ESPRIT in the single-snapshot case, which

are FOSS-MUSIC and FOSS-ESPRIT in the language of this

paper, is studied in [36]–[38], [52], [53] when the sample size

N is greater than twice the number of frequencies K , where

SS is adopted to compensate deficiency of the snapshots.

Differently from the single-snapshot case, we resolve two

important and challenging problems that arise in the multiple-

snapshot case, to be specific, effects of the snapshot number L

and coherent sources. We provide an explicit error bound that

is a decreasing function of L and diminishes as L increases to

infinity. In the presence of coherent sources, we show similar

results for FOSS-ESPRIT and FBSS-ESPRIT where SS is used

to deal with coherent sources. When applied to the single-

snapshot case, our result on FBSS-ESPRIT implies that stable

frequency estimation can be obtained even when the sample

size N is smaller than twice the number of frequencies K . We

note that MUSIC with multiple snapshots is studied in [54]

where, unlike this paper, nonuniform samples are considered

and neither of the aforementioned problems are tackled.

Note that the main difference between the single-snapshot

and multiple-snapshot MUSIC and ESPRIT is the way of

estimating the signal subspace. Given the results on single-

snapshot MUSIC and ESPRIT in [36]–[38], the remaining dif-

ficulty in nonasymptotic analysis of multiple-snapshot MUSIC

and ESPRIT is to quantify the error of signal subspace estima-

tion with respect to the number of snapshots L and possibly

in presence of coherent sources. This has been attempted in

the preprint paper [55] by assuming non-coherent sources; but
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unfortunately, its critical error bound in [55, Theorem III.4] is

severely flawed (see detailed explanations in Appendix A). In

contrast to this, we present a new matrix perturbation result

in this paper to bound the signal subspace estimation error,

which is also generalized to analyze FOSS-ESPRIT and FBSS-

ESPRIT in presence of coherent sources.

Resolution is an important property of a frequency esti-

mation method that measures to what extent closely located

frequencies can be resolved. It is shown in [56]–[60] that a

resolution of 4
N or 2.52

N can be achieved by recent atomic norm

methods within the framework of infinite-dimensional or grid-

less compressed sensing regardless of coherent sources and the

snapshot number L. The paper [61] considers a conventional

compressed sensing setup (by assuming that the point sources

are located on discrete grid points) and uncorrelated sources

(resulting from random illuminations) and shows that the

resolution of ℓ1 minimization can be improved by increasing

the snapshot number (corresponding to the number of random

illuminations). MUSIC and ESPRIT are called high-resolution

methods since when they were proposed because empirically

they have a resolution higher than the Rayleigh length 1
N given

sufficient snapshots. In this paper, we provide rigorous analysis

for ESPRIT and SS-ESPRIT in the nonasymptotic setting and

show that their resolution improves constantly (without a limit)

as the number of snapshots or the SNR increases.

B. Notation

Notations used in this paper are as follows. The set of

real and complex numbers are denoted R and C respectively.

Boldface letters are reserved for vectors and matrices. The

amplitude of scalar a is denoted |a|. The complex conjugate,

transpose, complex transpose and pseudo-inverse of matrix A

are denoted A, AT , AH and A
† respectively. The rank and

spectral norm of matrix A are denoted rank (A) and ‖A‖.

The maximum, jth greatest, and the minimum eigenvalues (or

singular values) of a matrix are denoted λmax (·), λj (·) and

λmin (·) (or σmax (·), σj (·) and σmin (·)). We write A > 0 (or

A ≥ 0) if A is Hermitian and positive (semi)definite. The jth

entry of vector x is xj , and the (j, l) entry of matrix A is Ajl.

For vector x, diag (x) denotes a diagonal matrix with x on the

diagonal; for a square matrix A, diag (A) denotes a column

vector composed of the diagonal entries of A. The Hadamard

(or elementwise) product of matrices A,B is denoted A⊙B.

The expectation of a random variable is denoted E[·].

C. Organization

The rest of the paper is organized as follows. We revisit

ESPRIT and SS-ESPRIT in Section II. We present previous

matrix perturbation bounds and derive a new result in Section

III. The signal subspace estimation errors of ESPRIT and SS-

ESPRIT are measured by applying the new matrix perturbation

bound in Section IV. The error bounds for ESPRIT and SS-

ESPRIT are provided in Section V to analyze their stability

and resolution in frequency estimation. Positive-definiteness

and the minimum eigenvalue of a Hadamard product, which

are important features of the derived error bounds, are studied

in Section VI. Detailed proofs of several theorems and lemmas

and extensions to MUSIC and SS-MUSIC are provided in

Appendices.

II. ESPRIT AND SS-ESPRIT

A. Assumptions

We will make one or more of the following assumptions

throughout this paper:

A1: The entries of E are i.i.d. complex Gaussian with zero

mean and variance σ2;

A2: The columns of S are independently drawn from a com-

plex Gaussian distribution with zero mean and covariance

Σ;

A3: E and S are independent.

The Gaussianity assumptions on the sources and noise are

commonly used in array signal processing. In the limiting case

of L → ∞ or σ → 0, to be concerned in Theorems 2 and 3,

they can be relaxed to any other distributions. They are made

in our nonasymptotic analysis so that all constants involved are

given explicitly, though they can be relaxed to subgaussian to

show the same scaling behaviors with respect to the snapshot

number L and the noise level σ.

B. ESPRIT

In ESPRIT, the frequencies are estimated from the signal

subspace that is computed from the sample covariance matrix

given by

R̂ =
1

L
Y Y

H . (2)

To understand how it works, let us consider the extreme case

in which the number of snapshots L approaches infinity and

the sample covariance matrix equals the data covariance matrix

almost surely that under assumptions A1–A3 is given by

R = AΣA
H + σ2

I. (3)

If the source covariance matrix Σ is positive definite, then

AΣA
H is positive semidefinite and has exactly rank K . Let

R =

N∑

j=1

λjuju
H
j (4)

be the eigen-decomposition of R, where {λj} are the eigen-

values sorted in descending order and thus satisfy

λ1 ≥ · · · ≥ λK > λK+1 = · · · = λN = σ2, (5)

and {uj} are the associated eigenvectors. Then, we divide the

eigenvalues into two groups and write (4) as

R = UΛU
H + σ2

U⊥U
H
⊥ , (6)

where Λ = diag {λ1, . . . , λK}, U is composed of the first K

eigenvectors, and U⊥ is perpendicular to U and consists of the

other N −K eigenvectors. It can easily be shown that U and

A share the same range space that is referred to as the signal

subspace. Its orthogonal subspace, the range space of U⊥, is

called the noise subspace. ESPRIT is an algorithm that identi-

fies the frequencies from the signal subspace. In particular, let

U1 and U2 be the submatrices of U by removing its last and
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first row, respectively. It can be shown that the eigenvalues

of the matrix U
†
1U2 are exactly zk = ei2πfk , k = 1, . . . ,K ,

from which {fk} are obtained.

In practice, we have only finitely many snapshots and

the covariance estimate R̂. To estimate the frequencies, we

compute the eigen-decomposition of R̂:

R̂ =

N∑

j=1

λ̂j ûjû
H
j = ÛΛ̂Û

H
+ Û⊥Λ̂⊥Û

H

⊥ , (7)

where ·̂ denote an estimate of a quantity. The ESPRIT algo-

rithm is implemented by computing the eigenvalues {ẑk} of

Û
†
1Û2. The frequencies are estimated as the angles of

{
ẑk
|ẑk|

}
.

Besides the aforementioned case of L → ∞, note that

if σ → 0 and Σ̂ = 1
LSS

H is positive definite, then R̂

has exactly rank K and ESPRIT can exactly localize the

frequencies from Û .

We summarize the following theorem.

Theorem 2: The following statements hold true:

1) Under Assumptions A1–A3, ESPRIT exactly localizes

the distinct frequencies {fk} in the limiting case of L→
∞ almost surely if and only if N ≥ K + 1 and Σ is

positive definite;

2) Under Assumption A1, ESPRIT exactly localizes the

distinct frequencies {fk} in the limiting case of σ → 0
if and only if N ≥ K + 1 and Σ̂ is positive definite.

If the number of snapshots L is sufficiently large or the

noise variance σ2 is sufficiently small, it is natural to expect

that Û is a good estimate of U so that ESPRIT can stably

estimate the frequencies.

C. SS-ESPRIT

A critical assumption for ESPRIT is that the source

covariance matrix Σ is positive definite so that the K-

dimensional range space of A can be captured with the

eigen-decomposition in (6). SS is a technique to restore the

performance of subspace methods in the case when Σ is rank-

deficient or ill-conditioned. By SS, the N -element physical

sensor array is divided into a number of P = N−M+1 over-

lapping M -element subarrays and an M ×M smoothed data

covariance matrix, denoted by RSS, is obtained by averaging

the covariance matrices of all P subarrays. In particular, the

data corresponding to the pth subarray, p = 1, . . . , P , form

a submatrix of Y by collecting M consecutive rows of Y

starting from the pth row, denoted by

Y (p) = A(p)S +E(p) = AMZ
p−1

S +E(p), (8)

where A(p) and E(p) are defined similarly to Y (p), AM is

an M ×K Vandermonde matrix that is composed of the first

M rows of A, and the identity A(p) = AMZ
p−1 holds due

to the Vandermonde structure, where Z = diag (z1, . . . , zK).
Under assumptions A1–A3, the data covariance matrix of the

pth subarray is thus given by

Rp = E
1

L
Y (p)Y

H
(p) = AMZ

p−1
ΣZ

1−p
A
H
M + σ2

I. (9)

Consequently, the smoothed data covariance matrix is given

by

RSS =
1

P

P∑

p=1

Rp = AMΣSSA
H
M + σ2

I, (10)

where

ΣSS =
1

P

P∑

p=1

Z
p−1

ΣZ
1−p (11)

is the smoothed source covariance matrix. Evidently, RSS has

a structure similar to R and the SS changes Σ to ΣSS and

potentially increases the matrix rank. If ΣSS has full rank and

M ≥ K + 1, then the eigen-decomposition of RSS provides

the exact signal subspace, based on which the frequencies can

be exactly recovered by ESPRIT.

While the aforementioned process is referred to as forward-

only SS (FOSS), the technique of forward-backward SS

(FBSS) further refines RSS to

R
′
SS =

1

2

(
RSS + JRSSJ

)
= AMΣ

′
SSA

H
M + σ2

I, (12)

where J is an M ×M reversal matrix with ones on the anti-

diagonal and zeros elsewhere, and

Σ
′
SS =

1

2

(
ΣSS +Z

1−M
ΣSSZ

M−1
)

(13)

is a new smoothed source covariance matrix, where the identity

JAM = AMZ
1−M is used. In practice, both RSS,R

′
SS are

replaced by their finite-snapshot estimates.

Like Theorem 2, we have the following theorem for SS-

ESPRIT.

Theorem 3: The following statements hold true:

1) Under Assumptions A1–A3, FOSS-ESPRIT (or FBSS-

ESPRIT) exactly localizes the distinct frequencies {fk}
in the limiting case of L→ ∞ almost surely if and only

if M ≥ K + 1 and ΣSS (or Σ′
SS) is positive definite;

2) Under Assumption A1, FOSS-ESPRIT (or FBSS-

ESPRIT) exactly localizes the distinct frequencies {fk}
in the limiting case of σ → 0 if and only if M ≥ K+1

and Σ̂SS (or Σ̂
′
SS) is positive definite.

In the case of L → ∞, the source resolvability of SS-

ESPRIT is studied in [34] from a Hadamard product perspec-

tive by writing ΣSS in (11) as a Hadamard product, to be

specific,

ΣSS =
1

P

P∑

p=1

Σ⊙ diag
(
Z
p−1

)
diagT

(
Z

1−p)

=
1

P
Σ⊙

P∑

p=1

diag
(
Z
p−1

)
diagT

(
Z

1−p)

=
1

P
Σ⊙A

H
PAP

= Σ⊙CP ,

(14)

where CP = 1
PA

H
PAP is a K × K correlation matrix

with a unit diagonal and AP is P ×K Vandermonde (recall

AM ). Consequently, the sources can be resolved with FOSS-

ESPRIT if and only if the Hadamard product in (14) is positive
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definite. A similar result holds in the limiting noiseless case by

replacing Σ to Σ̂, corresponding to the identifiability problem

[34].

We also discuss the case of L = 1. In this case, the matrices

Y and Y (p) in (8) degenerate into vectors. By making use

of (9) and (10), the smoothed data covariance matrix RSS is

estimated in practice by

R̂SS =
1

P

P∑

p=1

R̂p

=
1

LP

P∑

p=1

Y (p)Y
H
(p)

=
1

LP

[
Y (1), . . . ,Y (P )

] [
Y (1), . . . ,Y (P )

]H
,

(15)

where it is interesting to note that
[
Y (1), . . . ,Y (P )

]
is a Han-

kel matrix. Evidently, the estimated signal and noise subspaces

associated with R̂SS can be computed from
[
Y (1), . . . ,Y (P )

]
.

Therefore, SS-ESPRIT can be implemented by forming the

aforementioned Hankel matrix directly from the observed data.

In fact, a similar result holds true in the multisnapshot case

(see details in the main context). This perspective on SS-based

subspace methods is well-known in the literature on array

signal processing (see, e.g., [31], [35]) and has been adopted

in [36], [37], [52], [62].

III. MATRIX PERTURBATION BOUNDS

In this section, we introduce the matrix perturbation theory

and present a new matrix perturbation bound for later use.

Notations used in this section are self-contained and may be

different from other places.

A. Distance and Angles Between Subspaces

Consider two r-dimensional linear subspaces U , Û in Cp

spanned by the columns of p × r isometric matrices U , Û ,

satisfying U
H
U = Û

H
Û = I . It means that the columns of

U (or Û ) form an orthonormal basis of U (or Û). We will

not distinguish a subspace U and its matrix representation U

hereafter whenever it is clear from the context. The canonical

angles between U and Û are defined as

θj

(
Û ,U

)
= arccosσj

(
Û
H
U

)
, j = 1, . . . , r, (16)

where σj denotes the jth greatest singular value. Define

matrices

Θ =



θ1

. . .

θr


 , sinΘ =



sin θ1

. . .

sin θr


 .

(17)

The distance between U and Û is defined as

dist
(
Û ,U

)
=

∥∥∥sinΘ
(
Û ,U

)∥∥∥ . (18)

It is worth noting that the distance between subspaces can

be defined in different but equivalent ways. For example, the

same distance as in (18) can be defined as

dist
(
Û ,U

)
=

∥∥P
Û
− PU

∥∥ , (19)

where PU ,PÛ
denote the orthogonal projections onto U , Û

respectively; see, e.g., [63, Lemma 2.5].

B. Davis-Kahan and Wedin sinΘ Theorems

The Davis-Kahan sinΘ theorem is stated as follows [64],

[63, Corollary 2.8].

Theorem 4: Consider p×p Hermitian matrices M and M̂ =
M +E that admit the eigen-decompositions:

M =

p∑

j=1

λjuju
H
j =

[
U U⊥

] [Λ
Λ⊥

] [
U
H

U
H
⊥

]
, (20)

M̂ =

p∑

j=1

λ̂jûjû
H
j =

[
Û Û⊥

] [
Λ̂

Λ̂⊥

][
Û
H

Û
H

⊥

]
, (21)

where the eigenvalues {λj} and
{
λ̂j

}
are sorted in descending

order, and U , Λ, Û , Λ̂ are composed of the first r < p

eigenvectors or eigenvalues. If ‖E‖ ≤ 0.293 (λr − λr+1),
then it holds that

dist
(
Û ,U

)
≤ 2 ‖E‖
λr − λr+1

. (22)

The above result is extended to general matrices by Wedin

[65], [63, Theorem 2.9] that is stated in the following theorem.

Theorem 5: Consider p×n matrices M and M̂ = M +E

that admit the SVD:

M =

min{p,n}∑

j=1

σjujv
H
j =

[
U U⊥

] [Σ
Σ⊥

] [
V
H

V
H
⊥

]
,(23)

M̂ =

min{p,n}∑

j=1

σ̂j ûj v̂
H
j =

[
Û Û⊥

] [
Σ̂

Σ̂⊥

][
V̂
H

V̂
H

⊥

]
,(24)

where the singular values {σj} and {σ̂j} are sorted in de-

scending order, and U , Σ, V , Û , Σ̂, V̂ are composed of

the first r < min {p, n} singular vectors or singular values. If

‖E‖ ≤ 0.293 (σr − σr+1), then it holds that

max
{

dist
(
Û ,U

)
, dist

(
V̂ ,V

)}
≤ 2 ‖E‖
σr − σr+1

. (25)

C. A New Matrix Perturbation Bound

The Wedin’s theorem provides a uniform perturbation bound

for the left and right singular subspaces. When the dimensions

p and n differ significantly, however, the perturbation bound

will be suboptimal. Moreover, perturbations are usually caused

by random noise in practice. Tighter bounds are expected if

such randomness is utilized. We will use the following result

in random matrix theory; see, e.g., [66, Example 6.2].

Lemma 6: For p×n i.i.d. standard Gaussian random matrix

E and u > 0, we have

‖E‖ ≤ √
p+

√
n+ u (26)

with probability at least 1− e−
u2

2 , and
∥∥∥∥
1

n
EE

H − I

∥∥∥∥ ≤ 2ǫ+ ǫ2, ǫ =

√
p

n
+ u (27)
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with probability at least 1− 2e−
nu2

2 . If p < n, then

σp (E) ≥
√
n−√

p− u (28)

with probability at least 1− e−
u2

2 .

We give a new matrix perturbation bound with i.i.d. Gaus-

sian noise in the following theorem.

Theorem 7: Let M and M̂ be p × n matrices given in

Theorem 5 and assume that E is composed of i.i.d. complex

Gaussian entries with zero mean and variance σ2. If the upper

bound below is less than 0.586, then we have

dist
(
Û ,U

)
≤ 12σσ1

√
p+ 16σ2max

{√
pn, p

}

σ2
r − σ2

r+1

(29)

with probability at least 1− 3e−
p

2 .

Proof. See Appendix B.

Theorem 7 is significant if n ≫ p and the singular values

of M scales with
√
n. In this case, the upper bound in (29)

is proportional to
√

p
n that vanishes as n approaches infinity,

while the Wedin’s perturbation bound does not as a contrast.

Remark 8: When the matrix M has rank r, it is shown in

[67, Theorem 3] that

E dist2
(
Û ,U

)
≤ Cp

(
σ2σ2

r + σ4n
)

σ4
r

, (30)

and this upper bound is rate-optimal, where C is a constant.

In the case of n ≥ p, it follows from Theorem 7 that

dist2
(
Û ,U

)
≤ 512p

(
σ2σ2

1 + σ4n
)

σ4
r

(31)

with overwhelming probability, showing near optimality of our

result. When the matrix M is random and has rank r, we also

note a result in [63, Theorem 3.6] that is similar to ours up to

some logarithmic factors.

IV. ERROR BOUNDS FOR SIGNAL SUBSPACE ESTIMATION

We quantify the error of signal subspace estimation in

ESPRIT and SS-ESPRIT in this section. We consider the

ordinary estimation approach for noncoherent sources (without

SS) and the SS-based approach, while the latter in the case of

FOSS encompasses the former as a special case. Our technique

uses the matrix perturbation bound and its proof presented in

the previous section.

A. Ordinary Signal Subspace Estimation

In this case, we have the data model in (1). The true signal

subspace U and its estimate Û , obtained from R and R̂

respectively, are identical to the left singular subspaces of AS

and Y . The following result is a consequence of Theorem 7.

Theorem 9: Under Assumption A1, if Σ̂ is positive definite

and the upper bound below is less than 0.586, then it holds

for ordinary signal subspace estimation that

dist
(
Û ,U

)
≤

12σ ‖A‖
∥∥∥Σ̂

∥∥∥
1

2

√
N
L + 16σ2 max

{√
N
L ,

N
L

}

σ2
K (A)λK

(
Σ̂

)

(32)

with probability at least 1− 3e−
N
2 .

Proof. See Appendix C.

If we make substitutions ‖A‖ = σ1 (A) and
∥∥∥Σ̂

∥∥∥ =

λ1

(
Σ̂

)
, then the upper bound in (32) can be written as:

12σσ1 (A)λ
1

2

1

(
Σ̂

)√
N
L + 16σ2max

{√
N
L ,

N
L

}

σ2
K (A)λK

(
Σ̂

)

=
12κ (A)κ

1

2

(
Σ̂

)√
N
L√

σ2

K
(A)λK(Σ̂)
σ2

+
16max

{√
N
L ,

N
L

}

σ2

K
(A)λK(Σ̂)
σ2

,

where κ (A) = σ1(A)
σK(A) , κ

(
Σ̂

)
=

λ1(Σ̂)
λK(Σ̂)

denote the condition

numbers and
σ2

K(A)λK(Σ̂)
σ2 can be interpreted as the SNR. It

is seen that the upper bound is an increasing function of the

condition numbers of A and Σ̂ and a decreasing function of

the SNR. Moreover, the upper bound scales with SNR− 1

2 in

the high SNR regime and is proportional to SNR−1 in the

low SNR regime. Similar interpretations can be made for SS

signal subspace estimation to be studied next.

B. FOSS Signal Subspace Estimation

A crucial assumption in Theorem 9 is that Σ̂ is positive

definite. If it is not satisfied, then SS can be used to restore

the rank of Σ̂ and we consider FOSS in this subsection. In

this case, the signal subspace estimate Û is obtained from the

smoothed sample covariance matrix R̂SS. Recall (8)–(10) and

we have

R̂SS =
1

P

P∑

p=1

R̂p

=
1

LP

P∑

p=1

Y (p)Y
H
(p)

=
1

LP

[
Y (1), . . . , Y (P )

] [
Y (1), . . . , Y (P )

]H
.

(33)

Consequently, Û is the left singular subspace of the matrix

Y SS =
[
Y (1), . . . , Y (P )

]

=
[
AMS, . . . , AMZ

P−1
S

]
+
[
E(1), . . . , E(P )

]
.

(34)

Moreover, U is the left singular subspace of

[AS]SS =
[
AMS, . . . , AMZ

P−1
S

]

= AM

[
S, . . . , ZP−1

S

] (35)

if [AS]SS has rank K . Therefore, we have the perturbation

model

Y SS = [AS]SS +ESS, (36)

where ESS is defined similarly as Y SS. The new model (36)

is similar to (1), but ESS is no longer i.i.d. Gaussian and thus

Theorem 7 cannot be applied. Instead, we use proof techniques

similar to those for Theorem 7 to derive the following result.



7

Theorem 10: Under Assumption A1, if Σ̂SS = Σ̂⊙CP is

positive definite and the upper bound below is less than 0.586,

then it holds for FOSS signal subspace estimation that

dist
(
Û ,U

)

≤
12σ ‖AM‖

∥∥∥Σ̂
∥∥∥

1

2

√
M
L + 16σ2max

{√
M
L ,

M
L

}

σ2
K (AM ) λK

(
Σ̂SS

)
(37)

with probability at least 1− 3Pe−
M
2 .

Proof. See Appendix D.

Theorem 10 degenerates into Theorem 9 in the case of P =
1 in which no SS is used and we have M = N and Σ̂SS = Σ̂.

C. FBSS Signal Subspace Estimation

Similarly to FOSS, we have the following result for FBSS.

Theorem 11: Under Assumption A1, if Σ̂
′
SS =

1
2

(
Σ̂SS +Z

1−M
Σ̂SSZ

M−1
)

is positive definite and the upper

bound below is less than 0.586, then it holds for FBSS signal

subspace estimation that

dist
(
Û ,U

)

≤
12σ ‖AM‖

∥∥∥Σ̂
∥∥∥

1

2

√
M
L + 16σ2max

{√
M
L ,

M
L

}

σ2
K (AM ) λK

(
Σ̂

′
SS

)
(38)

with probability at least 1− 3Pe−
M
2 .

Proof. See Appendix E.

The error bound for FBSS in Theorem 11 is stronger

than that for FOSS in Theorem 10. To see this, note that

Z
1−M

Σ̂SSZ
M−1, Σ̂SS and Σ̂SS share the same eigenvalues.

Consequently,

λK

(
Σ̂

′
SS

)
≥ 1

2

(
λK

(
Σ̂SS

)
+ λK

(
Z

1−M
Σ̂SSZ

M−1
))

= λK

(
Σ̂SS

)
.

(39)

If λK

(
Σ̂SS

)
> 0, i.e., Σ̂SS is positive definite, then it follows

from (39) that Σ̂
′
SS is positive definite and the upper bound in

(38) is no greater than that in (37). It is also possible that Σ̂SS

is singular, which means that the assumption in Theorem 10

is not satisfied, but Σ̂
′
SS is positive definite so that Theorem

11 is still applicable.

V. STABILITY AND RESOLUTION OF ESPRIT AND

SS-ESPRIT

A. Stability

For the frequency set T = {fk}Kk=1 and its estimate T̂ ={
f̂k

}K
k=1

, define their matched (wrapped-around) distance as

[38]:

md
(
T̂ , T

)

= min
ψ

max
k

min
{∣∣∣f̂ψ(k) − fk

∣∣∣ , 1−
∣∣∣f̂ψ(k) − fk

∣∣∣
}
,

(40)

where ψ is a permutation on {1, . . . ,K}. By definition, the

matched distance measures the maximum absolute error of

frequency estimation on the unit circle. The following result

is the key to the analysis of single-snapshot ESPRIT in [38],

which is summarized in [55, Lemma A.7] as a combination

of Lemmas 2, 3 and 6 in [38].

Lemma 12: For the ordinary signal subspace estimate Û , if

N ≥ K + 1, then it holds for ESPRIT that

md
(
T̂ , T

)
≤ 22K+4K3/2

√
N

σK (A)
dist

(
Û ,U

)
. (41)

Combining Lemma 12 and Theorems 9, 10 and 11 imme-

diately results in the following theorem.

Theorem 13: Under Assumption A1, the following state-

ments hold true:

1) If N ≥ K + 1 and Σ̂ is positive definite, then it holds

for ESPRIT that

md
(
T̂ , T

)
≤ min




1, 22K+4K3/2

√
N

×
12σ ‖A‖

∥∥∥Σ̂
∥∥∥

1

2

√
N
L + 16σ2 max

{√
N
L ,

N
L

}

σ3
K (A)λK

(
Σ̂

)




(42)

with probability at least 1− 3e−
N
2 ;

2) If M ≥ K+1 and Σ̂SS is positive definite, then it holds

for FOSS-ESPRIT that

md
(
T̂ , T

)
≤ min




1, 22K+4K3/2

√
M

×
12σ ‖AM‖

∥∥∥Σ̂
∥∥∥

1

2

√
M
L + 16σ2max

{√
M
L ,

M
L

}

σ3
K (AM )λK

(
Σ̂SS

)





(43)

with probability at least 1− 3Pe−
M
2 ;

3) If M ≥ K+1 and Σ̂
′
SS is positive definite, then it holds

for FBSS-ESPRIT that

md
(
T̂ , T

)
≤ min




1, 22K+4K3/2

√
M

×
12σ ‖AM‖

∥∥∥Σ̂
∥∥∥

1

2

√
M
L + 16σ2max

{√
M
L ,

M
L

}

σ3
K (AM )λK

(
Σ̂

′
SS

)





(44)

with probability at least 1− 3Pe−
M
2 .

Proof. Inserting (32), (37) and (38), respectively, into (41)

completes the proof. Note that the unit upper bound naturally

holds. The condition that the upper bounds in (32), (37) and
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(38) are less than 0.586 is removed since the upper bound in

(41) makes sense only if

dist
(
Û ,U

)
≤ σK (AN )

22K+4K3/2
√
N

≤

√
1
K ‖A‖2F

22K+4K3/2
√
N

=
1

22K+4K3/2

< 0.586.

(45)

It follows from Theorem 13 that ESPRIT and SS-ESPRIT

can stably estimate the frequencies for any fixed L under mild

conditions provided that σ is sufficiently small. In fact, the

conditions in Theorem 13 are necessary for ESPRIT or SS-

ESPRIT to work even in the limiting noiseless case according

to Theorems 2 and 3. For light noise with σ ≪ ‖AM‖
∥∥∥Σ̂

∥∥∥
1

2

,

the estimation errors of ESPRIT and SS-ESPRIT scale linearly

with the noise level σ.

Remark 14: While this paper is focused on the multiple-

snapshot case, our result on FOSS-ESPRIT in the single-

snapshot case is suboptimal, as compared to [38], due to the

suboptimal estimate of the noise perturbation in this case (see

Theorem 10 and its proof). But still, the aforementioned linear

scaling behavior with respect to the noise level σ is consistent

with that in [38]. We note that a similar scaling behavior is

also shown in [52] for the single-snapshot case with a different

nonasymptotic analysis. A detailed comparison of the error

bounds in [38] and [52] is nontrivial and is beyond the scope

of this paper.

To show how the frequency estimation error scales with L,

we give the following theorem.

Theorem 15: Under Assumptions A1–A3, the following

statements hold true:

1) If N ≥ K + 1, Σ is positive definite and L ≥
max {N, 16K}, then it holds for ESPRIT that

md
(
T̂ , T

)
≤ min



1,

72 · 22K+5K3/2N

σ3
K (A)λK (Σ)

·
max

{
σ ‖A‖ ‖Σ‖

1

2 , σ2
}

√
L




(46)

with probability at least 1− 3e−
N
2 − 2e−

L
32 ;

2) If M ≥ K + 1, ΣSS is positive definite and L ≥
max {M, 16rank (Σ)}, then it holds for FOSS-ESPRIT

that

md
(
T̂ , T

)
≤ min



1,

72 · 22K+5K3/2M

σ3
K (AM )λK (ΣSS)

·
max

{
σ ‖AM‖ ‖Σ‖

1

2 , σ2
}

√
L





(47)

with probability at least 1− 3Pe−
M
2 − 2e−

L
32 ;

3) If M ≥ K + 1, Σ
′
SS is positive definite and L ≥

max {M, 16rank (Σ)}, then it holds for FBSS-ESPRIT

that

md
(
T̂ , T

)
≤ min



1,

72 · 22K+5K3/2M

σ3
K (AM )λK

(
Σ

′
SS

) ·
max

{
σ ‖AM‖ ‖Σ‖

1

2 , σ2
}

√
L





(48)

with probability at least 1− 3Pe−
M
2 − 2e−

L
32 .

Proof. See Appendix F.

It follows from Theorem 15 that ESPRIT and SS-ESPRIT

can stably estimate the frequencies for any fixed noise level σ

under mild conditions provided that L is sufficient large. These

conditions are exactly those in Theorems 2 and 3 which are

necessary to guarantee exact frequency localization of ESPRIT

and SS-ESPRIT with infinitely many snapshots. Combining

Theorems 13 and 15 (and comparing with Theorems 2 and 3),

we conclude that ESPRIT and SS-ESPRIT can stably estimate

the frequencies if

max
{
σ, σ2

}
√
L

(49)

is small, conditioning on that the algorithms succeed to locate

the true frequencies in the limiting case of σ → 0 or L →
∞. Therefore, for both ESPRIT and SS-ESPRIT there is no

substantial gap either between the noiseless and the noisy cases

or between the infinite-snapshot and finite-snapshot cases.

B. Resolution

Definition 16: We say that an algorithm achieves resolution

∆ if it resolves a set of frequencies T , which has minimum

separation ∆ = minp6=qmin {|fp − fq| , 1− |fp − fq|}, with

precision

md
(
T̂ , T

)
<

∆

2
. (50)

The following result is a corollary to Theorem 15 and

shows that ESPRIT and SS-ESPRIT can achieve arbitrarily

high resolution given sufficiently large L.

Corollary 17: Under Assumptions A1–A3, the following

statements hold true:

1) If N ≥ K + 1, Σ is positive definite and

L > max



N, 16K,

722 · 24K+12K3N2 max
{
σ2 ‖A‖2 ‖Σ‖ , σ4

}

σ6
K (A)λ2K (Σ)∆2



 ,

(51)

then ESPRIT is guaranteed to achieve resolution ∆ with

probability at least 1− 3e−
N
2 − 2e−

L
32 ;
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2) If M ≥ K + 1, ΣSS is positive definite and

L > max



M, 16rank (Σ) ,

722 · 24K+12K3M2 max
{
σ2 ‖AM‖2 ‖Σ‖ , σ4

}

σ6
K (AM ) λ2K (ΣSS)∆2



 ,

(52)

then FOSS-ESPRIT is guaranteed to achieve resolution

∆ with probability at least 1− 3Pe−
M
2 − 2e−

L
32 ;

3) If M ≥ K + 1, Σ′
SS is positive definite and

L > max



M, 16rank (Σ) ,

722 · 24K+12K3M2 max
{
σ2 ‖AM‖2 ‖Σ‖ , σ4

}

σ6
K (AM )λ2K

(
Σ

′
SS

)
∆2



 ,

(53)

then FBSS-ESPRIT is guaranteed to achieve resolution

∆ with probability at least 1− 3Pe−
M
2 − 2e−

L
32 .

Proof. Letting the upper bounds in (46), (47) and (48) be less

than ∆
2 proves the corollary.

VI. POSITIVE-DEFINITENESS AND MINIMUM

EIGENVALUE OF HADAMARD PRODUCTS

Positive-definiteness and the minimum (i.e., the K-th)

eigenvalue of the Hadamard product Σ ⊙ CP (or Σ̂ ⊙ CP )

are involved in theorems regarding SS-ESPRIT. To well un-

derstand these theorems, we study how they depends on the

matrix factors Σ and CP = 1
PA

H
PAP in this section. Note

that both Σ,CP are positive semidefinite and have positive

diagonals. The matrix Σ is singular in presence of coherent

sources, and CP is singular if P < K since rank (CP ) =
rank (AP ) = min {P,K}, where P +M = N + 1.

A. Positive-Definiteness of Σ⊙CP

The Hadamard product of positive semidefinite matrices

is concerned by the classical Schur product theorem [41,

Theorem VII], of which an inclusive statement is given below.1

Theorem 18: Every eigenvalue of the Hadamard product of

positive semidefinite matrices B,C satisfies

λmax (B)max
j
Cjj ≥ λl (B ⊙C) ≥ λmin (B)min

j
Cjj , (54)

where the positions of B,C can be swapped since B⊙C =
C ⊙B. Three direct consequences are the following:

1) B ⊙C ≥ 0 if B ≥ 0 and C ≥ 0;

2) B ⊙C > 0 if B > 0 and C > 0;

3) B⊙C > 0 if one of B,C ≥ 0 is positive definite and

the other has a positive diagonal.

1It is interesting to note that the third statement in Theorem 18 was usually
excluded from the Schur product theorem (see, e.g., [68, Theorem 7.5.3], [69,
Fact 8.21.12] and [34]), though it is a direct consequence of (54) that is the
main result of [41, Theorem VII].

We next revisit our previous results in [34] in which the

Hadamard product is used to study exact frequency localiza-

tion of ESPRIT with infinitely many snapshots. According to

Theorem 18, Σ⊙CP is guaranteed to be positive definite if

either Σ or CP is positive definite. The former case means

that all sources are noncoherent, resulting in P ≥ 1 and the

array size N =M +P − 1 ≥ K +1 (note that M ≥ K +1).

In the latter case, we have P ≥ K , leading to an array size

N ≥ 2K , which recovers the result in [18].

When both Σ,CP are singular, sufficient conditions are

provided in [34] to ensure that Σ⊙CP is positive definite by

extending the Schur product theorem to the case when both

matrix factors are singular. Assume that the K sources are

divided into G ≤ K coherent groups and the jth group is

composed of gj coherent sources, where K =
∑G

j=1 gj and

g1 ≥ · · · ≥ gG ≥ 1. Without loss of generality, we assume

that the sources are indexed according to the above coherency

structure so that Σ admits the factorization

Σ = diag (v1, . . . ,vG) Σ̌diagH (v1, . . . ,vG) , (55)

where vj is a gj×1 vector with nonzero entries and ‖vj‖ = 1
for j = 1, . . . , G and Σ̌ is G × G positive semidefinite with

rank
(
Σ̌
)
= rank (Σ). It is shown in [34] that if

P ≥
G−rank(Σ̌)+1∑

j=1

gj, (56)

which yields that

N ≥ K +

G−rank(Σ̌)+1∑

j=1

gj , (57)

then Σ ⊙ CP is guaranteed to be positive definite. This

result remains true when partial or even no knowledge of

the coherence structure is available. For example, when no

coherence structure is known, we can choose G = K and

g1 = · · · = gG = 1, which results in N ≥ 2K − rank (Σ) + 1
and recovers the result in [35]. If rank

(
Σ̌
)

= G, then

N ≥ K + g1, which recovers the result in [19].

B. Minimum Eigenvalue of Σ⊙CP

In the case of noncoherent sources with positive definite Σ,

it follows from (54) that

λmin (Σ⊙CP ) ≥ λmin (Σ) (58)

by recalling that CP is a correlation matrix with a unit

diagonal. If P ≥ K so that CP is positive definite, then we

have

λmin (Σ⊙CP ) = λmin (CP ⊙Σ)

≥ λmin (CP ) ·min
j

Σjj

=
1

P
σ2
K (AP ) ·min

j
Σjj ,

(59)

where minj Σjj represents the smallest source power.

The challenge arises in the case when both Σ,CP are

singular. In this case the lower bound in (54) is trivially zero.
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Sufficient conditions are provided in [34] to ensure positive-

definiteness of Σ ⊙ CP , but its minimum eigenvalue is not

explicitly measured. We show the following result in this

paper.

Proposition 19: Given Σ in (55) and partitioning AP into

a 1 × G block matrix according to the coherence structure

{gj}Gj=1 such that AP =
[
A

(1)
P , . . . ,A

(G)
P

]
, where A

(j)
P is a

P × gj Vandermonde matrix, we have

λmin (Σ⊙CP ) ≥
1

P
λG (Σ)min

j

{
σ2
gj

(
A

(j)
P

)
min
l

|vjl|2
}
,

(60)

where λG (Σ) = λmin

(
Σ̌
)
.

Proof. See Appendix G.

By Proposition 19, the minimum eigenvalue of Σ ⊙ CP

depends on the smallest positive eigenvalue of Σ, diversity of

source powers in coherent groups, and the minimum singular

value of the steering matrix
{
A

(j)
P

}
regarding each coherent

group. The lower bound in (60) is strictly positive if Σ̌ > 0
and P ≥ g1, yielding N ≥ K + g1. It recovers (58) if Σ is

positive definite. For general positive semidefinite and singular

matrices B,C, it remains an open problem to quantify the

minimum eigenvalue of B ⊙ C provided that the Hadamard

product is positive definite.

The minimum singular value of a tall Vandermonde matrix,

say the N × K matrix A, plays an important role in the

lower bounds in (59) and (60). This topic has recently been

extensively studied, see [36], [70]–[72] and references therein.

It is shown that σK (A) mainly depends on the separations

between adjacent frequencies composing A, especially on the

minimum separation. When proper separations are assumed,

σK (A) scales with
√
N .

VII. NUMERICAL RESULTS

We validate our theoretical analysis with numerical results

in this section. In Experiment 1, we consider K = 3 non-

coherent sources with the frequency set T = {0.1, 0.5, 0.8}
that corresponds to the set of DOAs {11.54◦,−90◦,−23.58◦}.

The source signals are i.i.d. and generated from a standard

complex Gaussian distribution. We use N = 10 samples per

snapshot and L snapshots that are corrupted by i.i.d. complex

Gaussian noise with zero mean and variance σ2, where L takes

value in
{
102, 103, 104

}
and σ ranges from 10−2 to 102. The

ESPRIT algorithm is used to estimate the frequencies. For each

combination (L, σ), a number of 1000 Monte Carlo runs are

carried out and the matched distance of frequency estimation

is obtained by averaging the results. The numerical results are

presented in Fig. 1. It is seen that for each L, the matched

distance curve is straight with a unit slope in a broad range of

noise level, implying that the matched distance scales with σ in

this range, as predicted by Theorems 13 and 15. The frequency

estimation error propagates faster as σ increases beyond this

range until the algorithm fails to localize the frequencies.

In Experiment 2, we repeat Experiment 1 by fixing the

noise level σ ∈ {0.01, 0.1, 1} and varying L from 1 to 104.

Our numerical results are presented in Fig. 2. It is seen that

the matched distance curves are approximately straight with a
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Fig. 1. Results of matched distance of frequency estimation using ESPRIT
versus the noise level σ.

slope of about −0.5 as L ≥ 10, implying that the frequency

estimation error of ESPRIT scales with 1√
L

, as predicted by

Theorems 13 and 15. Note that ESPRIT can stably estimate

the frequencies only if L ≥ K = 3.
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Fig. 2. Results of matched distance of frequency estimation using ESPRIT
versus the number of snapshots L.

In Experiment 3, we repeat Experiment 1 and Experiment 2

by varying the minimum frequency separation ∆. The set of

K = 3 frequencies is given by {0.1, 0.8−∆, 0.8} where ∆ ∈
{0.01, 0.03, 0.1, 0.3}. This means that the first and the third

DOAs are fixed at 11.54◦ and −23.58◦, respectively, while

the second DOA varies from −24.83◦, −27.39◦, −36.87◦

to −90◦. Note that the case of ∆ = 0.3 recovers the setup

in previous experiments and the case of ∆ ≤ 1
N = 0.1 is

usually referred to as the super-resolution regime. We first

fix the noise level σ = 1 and vary the number of snapshots

L and our simulation results are presented in Fig. 3(a). It is

seen that a smaller frequency separation ∆ results in a larger

estimation error, especially in the super-resolution regime. The

same scaling behavior is shown for all values of ∆ given



11

sufficiently large L, as predicted by Theorem 15. It is also

seen that ESPRIT has higher resolution as L increases, which

is consistent with Corollary 17. In Fig. 3(b) we fix the number

of snapshots L = 1000 and vary the noise level σ. A similar

behavior of ESPRIT is shown for all values of ∆. It is also

seen that a smaller noise level leads to a higher resolution of

ESPRIT, which is consistent with our analysis.
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Fig. 3. Results of matched distance of frequency estimation using ESPRIT
with (a) fixed noise level σ = 1 and varying number of snapshots L, and (b)
fixed number of snapshots L = 1000 and varying noise level σ.

In Experiment 4, we consider the case of coherent sources,

to be specific, K = 6 sources of unit power are generated with

a standard complex Gaussian distribution and are assigned

to G = 3 coherent groups with g1 = 3, g2 = 2 and

g3 = 1 (in each coherent group, the sources are identical up to

global random phases). Their frequencies are given by the set

T = {0.1, 0.2, 0.5, 0.6, 0.7, 0.9} that corresponds to the set of

DOAs {11, 54◦, 23.58◦,−90◦,−53.13◦,−36.87◦,−11.54◦}.

We consider L = 1000 snapshots and the noise level σ ∈
{0.01, 0.1, 1, 10}. In this case, ESPRIT fails to localize the

frequencies and so we turn to FOSS-ESPRIT and FBSS-

ESPRIT. For both FOSS-ESPRIT and FBSS-ESPRIT, we fix

M = K +1 = 7 and vary the smoothing parameter P from 1
to 9 so that the per-snapshot sample size N =M+P−1 varies

from 7 to 15. Note that FOSS-ESPRIT is exactly ESPRIT as

P = 1. Our numerical results are presented in Fig. 4. It is seen

that, as σ ≤ 1, FOSS-ESPRIT stably estimates the frequencies

as N ≥ 9 (or P ≥ 3 = g1) and FBSS-ESPRIT does so as

N ≥ 8 (or P ≥ 2), which is consistent with our analysis. It

is also seen that, as σ ≤ 1, the matched distance shrinks by

a magnitude as σ does so for both FOSS-ESPRIT and FBSS-

ESPRIT, implying that their frequency estimation errors scale

with σ, as shown in Theorems 13 and 15. Finally, note that

a significant performance gap exists between FOSS-ESPRIT

and FBSS-ESPRIT when N is small.
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Fig. 4. Results of matched distance of frequency estimation using FOSS-
ESPRIT and FBSS-ESPRIT versus the per-snapshot sample size N .

To sum up, it is shown by the numerical results that the

scaling laws of the estimation errors of ESPRIT and SS-

ESPRIT with respect to the snapshot number L and the noise

level σ match well with our theoretical findings. We also

note that the shown error bounds are conservative in their

coefficients, which occurs partly due to the fact that the error

bounds hold with overwhelming probability and partly due to

limitations of current analysis techniques.

VIII. CONCLUSION

In this paper, we performed nonasymptotic analyses for

ESPRIT and SS-ESPRIT. We showed that ESPRIT and SS-

ESPRIT can stably estimate the frequencies with finite snap-

shots and finite SNR with overwhelming probability if and

only if they localize the true frequencies with infinite snapshots

or infinite SNR. For FBSS-ESPRIT, this occurs if and only if

the frequencies can be uniquely identified from the data in the

limiting case. Numerical results were provided that validate

our theoretical findings.

MUSIC and ESPRIT are two prominent subspace methods,

while we only considered ESPRIT and its variant SS-ESPRIT

in the main context of this paper. In fact, similar conclusions

can be drawn for MUSIC and SS-MUSIC by combining

our error bounds on signal subspace estimation and previous
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analysis for single-snapshot MUSIC in [36]. We provided the

details in Appendix H.

APPENDIX

A. Why the Result in [55, Theorem III.4] is Incorrect

In [55], heterogeneous noise is considered and in that case

the data covariance matrix R in (3) becomes

R = AΣA
H + diag

{
σ2
1 , . . . , σ

2
N

}
, (61)

where
{
σ2
j

}
are distinct noise powers. The main results of [55]

are derived based on its Theorem III.4 in which it is shown

that the error of signal subspace estimation is bounded from

above by a constant times
maxσj√

L
. If Theorem III.4 is true, then

it immediately follows that the signal subspace estimation is

consistent and recovers the range space of A if L → ∞. In

other words, the range space of A is exactly obtained from

the eigen-decomposition of R, which evidently is not true in

general for distinct
{
σ2
j

}
. This error comes from [55, Eq. A.4]

that holds if EL and V̂1 are independent, which however is not

satisfied by noting that V̂1 is obtained based on EL. Note also

that the above error remains to exist if i.i.d. noise is assumed

instead.

The above error has been fixed in [55, version 2] after

the author of the present paper found the error and brought

[67] to attention of the authors of [55], as acknowledged

in [55, version 2]. Differently from our results for ESPRIT

that provide upper bounds (with overwhelming probability)

on the frequency estimation error, the results in [55, version

2], derived based on [67], turn to bound the expectation of the

estimation error.

B. Proof of Theorem 7

Let

G = MM
H + σ2nI

=
[
U U⊥

] [Σ2

Σ
2
⊥

] [
U
H

U
H
⊥

]
+ σ2nI, (62)

Ĝ = M̂M̂
H

=
[
Û Û⊥

] [
Σ̂

2

Σ̂
2

⊥

][
Û
H

Û
H

⊥

]
. (63)

Evidently, the eigenvectors of G and Ĝ are given by the left

singular vectors of M and M̂ . The eigenvalues of G satisfy

that

λr (G)− λr+1 (G) = σ2
r − σ2

r+1. (64)

Moreover, the perturbation of M̂ from M is given by

Ẽ = Ĝ−G = ME
H +EM

H +EE
H − σ2nI. (65)

Applying the Davis-Kahan sinΘ theorem (Theorem 4), we

have

dist
(
Û ,U

)
≤

2
∥∥∥Ẽ

∥∥∥
λr (G)− λr+1 (G)

=
2
∥∥∥Ẽ

∥∥∥
σ2
r − σ2

r+1

(66)

if
∥∥∥Ẽ

∥∥∥ < 0.293
(
σ2
r − σ2

r+1

)
.

We next bound
∥∥∥Ẽ

∥∥∥ from above using random matrix

theory. It follows from Lemma 6 that
∥∥∥EE

H − σ2nI
∥∥∥ = σ2n

∥∥∥∥
1

σ2n
EE

H − I

∥∥∥∥

≤ σ2n

[
2 · 2

√
p

n
+

(
2

√
p

n

)2
]

= 4σ2 (
√
pn+ p)

≤ 8σ2 max {√pn, p}

(67)

with probability at least 1 − 2e−
p

2 , where u =
√

p
n is

used. To bound
∥∥∥ME

H
∥∥∥, note that the columns of the

p × p matrix ME
H are i.i.d. Gaussian with zero mean and

covariance σ2MM
H . It follows that ME

H can be written

as σ
(
MM

H
) 1

2

E
′H , where E

′ is p × p and i.i.d. standard

Gaussian. Consequently,
∥∥∥ME

H
∥∥∥ =

∥∥∥∥σ
(
MM

H
) 1

2

E
′H
∥∥∥∥

≤ σ

∥∥∥∥
(
MM

H
) 1

2

∥∥∥∥
∥∥E′∥∥

= σσ1
∥∥E′∥∥

≤ 3σσ1
√
p

(68)

with probability at least 1 − e−
p

2 , where the last inequality

follows from Lemma 6 by setting u =
√
p. Combining (65),

(67) and (68), we have∥∥∥Ẽ
∥∥∥ ≤ 2

∥∥∥ME
H
∥∥∥+

∥∥∥EE
H − σ2nI

∥∥∥
≤ 6σσ1

√
p+ 8σ2 max {√pn, p}

(69)

with probability at least 1− 3e−
p

2 . Substituting (69) into (66),

we obtain (29), completing the proof.

C. Proof of Theorem 9

To apply Theorem 7, we identify that

M = AS, (70)

M̂ = Y = AS +E (71)

with p = N , n = L and r = K . It follows from Theorem

7 that if the upper bound below is less than 0.586, then with

probability at least 1− 3e−
N
2 we have

dist
(
Û ,U

)

≤
12σσ1 (AS)

√
N + 16σ2max

{√
NL,N

}

σ2
K (AS)− σ2

K+1 (AS)

≤
12σ ‖A‖ ‖S‖

√
N + 16σ2 max

{√
NL,N

}

σ2
K (A) σ2

K (S)

=
12σ ‖A‖

∥∥∥LΣ̂
∥∥∥

1

2
√
N + 16σ2max

{√
NL,N

}

σ2
K (A) λK

(
LΣ̂

)

=
12σ ‖A‖

∥∥∥Σ̂
∥∥∥

1

2

√
N
L + 16σ2max

{√
N
L ,

N
L

}

σ2
K (A)λK

(
Σ̂

) ,

(72)



13

completing the proof. Note that in (72) we used the fact that

σ1 (AS) ≤ ‖A‖ ‖S‖, σK (AS) ≥ σK (A)σK (S) and Σ̂ =
1
LSS

H .

D. Proof of Theorem 10

It follows from (33) and (34) that the smoothed sample

covariance matrix is given by

R̂SS =
1

P

P∑

p=1

AMZ
p−1

Σ̂Z
1−p

A
H
M

+
1

PL

P∑

p=1

AMZ
p−1

SE
H
(p)

+
1

PL

P∑

p=1

E(p)S
H
Z

1−p
A
H
M +

1

PL

P∑

p=1

E(p)E
H
(p)

= AM Σ̂SSA
H
M +

1

PL

P∑

p=1

AMZ
p−1

SE
H
(p)

+
1

PL

P∑

p=1

E(p)S
H
Z

1−p
A
H
M +

1

PL

P∑

p=1

E(p)E
H
(p),

(73)

where the last equality follows from derivations similar to

those in (11) and (14). Note that U is the eigen-subspace

of

R̃SS = AMΣ̂SSA
H
M + σ2

I (74)

if Σ̂SS is positive definite. We next carry out perturbation

analysis between R̂SS and R̃SS. The gap between the Kth

and (K + 1)st eigenvalues of R̃SS equals

λK

(
R̃SS

)
− λK+1

(
R̃SS

)
= λK

(
AM Σ̂SSA

H
M

)

≥ σ2
K (AM )λK

(
Σ̂SS

)
.

(75)

Moreover, the perturbation of R̂SS from R̃SS is given by

Ẽ = R̂SS − R̃SS

=
1

PL

P∑

p=1

(
AMZ

p−1
SE

H
(p) +E(p)S

H
Z

1−p
A
H
M

)

+
1

PL

P∑

p=1

E(p)E
H
(p) − σ2

I.

(76)

Applying the Davis-Kahan sinΘ theorem (Theorem 4), we

have

dist
(
Û ,U

)
≤

2
∥∥∥Ẽ

∥∥∥

λK

(
R̃SS

)
− λK+1

(
R̃SS

)

≤
2
∥∥∥Ẽ

∥∥∥

σ2
K (AM )λK

(
Σ̂SS

)

(77)

if the upper bound above is no greater than 0.586.

We next bound
∥∥∥Ẽ

∥∥∥ from above. Clearly, it follows from

(76) that
∥∥∥Ẽ

∥∥∥ ≤ 2

L
max
p

∥∥∥AMZ
p−1

SE
H
(p)

∥∥∥

+max
p

∥∥∥∥
1

L
E(p)E

H
(p) − σ2

I

∥∥∥∥

≤ 2

L
max
p

‖AM‖
∥∥∥SEH

(p)

∥∥∥

+ σ2 max
p

∥∥∥∥
1

Lσ2
E(p)E

H
(p) − I

∥∥∥∥ .

(78)

Note that the columns of the K × M matrix SE
H
(p) are

i.i.d. multivariate Gaussian with zero mean and variance

σ2SS
H = Lσ2

Σ̂. It follows from derivations similar to those

in (68) that for each p,

∥∥∥SEH
(p)

∥∥∥ ≤ 3σ

√
LM

∥∥∥Σ̂
∥∥∥ (79)

with probability at least 1−e−M
2 . Moreover, similarly to (67),

we have that for each p,

∥∥∥∥
1

Lσ2
E(p)E

H
(p) − I

∥∥∥∥ ≤ 8max

{√
M

L
,
M

L

}
(80)

with probability at least 1− 2e−
M
2 . As a result,

∥∥∥Ẽ
∥∥∥ ≤ 6σ ‖AM‖

∥∥∥Σ̂
∥∥∥

1

2

√
M

L
+ 8σ2 max

{√
M

L
,
M

L

}

(81)

with probability at least 1− 3Pe−
M
2 .

Inserting (81) into (77), we obtain (32), completing the

proof.

E. Proof of Theorem 11

Recall (33). Then, we have

R̂
′
SS =

1

2

(
R̂SS + JR̂SSJ

)
=

1

LP
Y

′
SSY

′H
SS , (82)

and thus Û is the left singular subspace of

Y
′
SS =

1√
2

[
Y (1), . . . , Y (P ),JY (1), . . . , JY (P )

]

= [AS]′SS +E
′
SS,

(83)

where [AS]′SS,E
′
SS are defined similarly as Y

′
SS. Note also

that U is the left singular subspace of

[AS]′SS

=
1√
2

[
AMS, . . . , AMZ

P−1
S, JAMS, . . . ,

JAMZ
P−1

S

]

=
1√
2
AM

[
S, . . . , ZP−1

S,Z1−M
S, . . . , Z2−P−M

S

]

(84)

if [AS]′SS has rank K . The proof is completed by repeating

the proof of Theorem 10 based on the perturbation model in

(83). We will omit the details.
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F. Proof of Theorem 15

Let G be a matrix of full column rank and satisfy that

Σ = GG
H . It follows that

S = GŠ, (85)

where Š is rank (Σ) × L and i.i.d. standard Gaussian. Since

L ≥ 16rank (Σ), we take u = 1
4

√
L and it follows from

Lemma 6 that

λ1

(
ŠŠ

H
)
≤

(√
L+

√
rank (Σ) +

1

4

√
L

)2

≤ 9

4
L,(86)

λK

(
ŠŠ

H
)
≥

(√
L−

√
rank (Σ)− 1

4

√
L

)2

≥ 1

4
L,(87)

each with probability at least 1− e−
L
32 . Conditioning on (86)

and (87), consequently, we have

1

4
Σ ≤ Σ̂ = G

(
1

L
ŠŠ

H
)
G
H ≤ 9

4
Σ, (88)

∥∥∥Σ̂
∥∥∥ ≤ 9

4
‖Σ‖ , (89)

λK

(
Σ̂

)
≥ 1

4
λK (Σ) . (90)

Substituting (89) and (90) into (32) and using the assumption

L ≥ max {N, 16K}, we have

dist
(
Û ,U

)
≤

18σ ‖A‖ ‖Σ‖
1

2

√
N
L + 16σ2

√
N
L

1
4σ

2
K (A)λK (Σ)

≤ 72

√
N

L
· σ ‖A‖ ‖Σ‖

1

2 + σ2

σ2
K (A)λK (Σ)

(91)

with probability at least 1−3e−
N
2 −2e−

L
32 . Inserting (91) into

(41) yields (46).

To derive (47) and (48), we make use of (88) and the Schur

product theorem (see Theorem 18) and obtain that

Σ̂SS = Σ̂⊙CP ≥ 1

4
Σ⊙CP =

1

4
ΣSS, (92)

Σ̂
′
SS =

1

2

(
Σ̂SS +Z

1−M
Σ̂SSZ

M−1
)

≥ 1

2

(
1

4
ΣSS +

1

4
Z

1−M
ΣSSZ

M−1

)
(93)

=
1

4
Σ

′
SS,

yielding

λK

(
Σ̂SS

)
≥ 1

4
λK (ΣSS) , (94)

λK

(
Σ̂

′
SS

)
≥ 1

4
λK

(
Σ

′
SS

)
. (95)

Using (94), (95), (37) and (38), instead of (90) and (41), and

repeating our previous arguments conclude the proof. We will

omit the details.

G. Proof of Proposition 19

For simplicity we denote C = CP and partition C into a

G×G block matrix, C = [Cij ]G×G, as Σ in (55). It suffices

to show that

λmin (Σ⊙C) ≥ λmin

(
Σ̌
)
min
j

{
λmin (Cjj)min

l
|vjl|2

}
,

(96)

λmin

(
Σ̌
)
= λG (Σ) . (97)

To show (96), observe that

Σ− λmin

(
Σ̌
)

diag
(
v1v

H
1 , . . . ,vGv

H
G

)

= diag (v1, . . . ,vG)
(
Σ̌− λmin

(
Σ̌
)
I
)

diagH (v1, . . . ,vG)
(98)

is positive semidefinite, and so is
[
Σ− λmin

(
Σ̌
)

diag
(
v1v

H
1 , . . . ,vGv

H
G

)]
⊙C

= Σ⊙C − λmin

(
Σ̌
)

diag
(
v1v

H
1 , . . . ,vGv

H
G

)
⊙C

(99)

by applying the Schur product theorem (Theorem 18), where

diag
(
v1v

H
1 , . . . ,vGv

H
G

)
is a block diagonal matrix. Conse-

quently,

λmin (Σ⊙C)

≥ λmin

(
λmin

(
Σ̌
)

diag
(
v1v

H
1 , . . . ,vGv

H
G

)
⊙C

)

= λmin

(
Σ̌
)
λmin

(
diag

(
v1v

H
1 ⊙C11, . . . ,vGv

H
G ⊙CGG

))

= λmin

(
Σ̌
)
min
j
λmin

(
vjv

H
j ⊙Cjj

)

≥ λmin

(
Σ̌
)
min
j

{
λmin (Cjj) ·min

l
|vjl|2

}
,

(100)

where again the last inequality follows from the Schur product

theorem.

We next show (97) to complete the proof. Suppose that λ,u

form an eigenvalue-eigenvector pair of Σ̌, i.e., Σ̌u = λu. It

immediately follows that

Σ (diag (v1, . . . ,vG)u) = diag (v1, . . . ,vG) Σ̌u

= λdiag (v1, . . . ,vG)u,
(101)

and thus λ, diag (v1, . . . ,vG)u form an eigenvalue-

eigenvector pair of Σ. Therefore, the eigenvalues of Σ

are either those of Σ̌ or zero, resulting in (97).

H. Extensions to MUSIC and SS-MUSIC

We first introduce the MUSIC algorithm. Differently from

ESPRIT, MUSIC uses the noise subspace U⊥, where U is the

signal subspace. Let PU⊥
be the orthogonal projection onto

the noise subspace and define the noise subspace correlation

function

R(f) =
‖PU⊥

a (f)‖
‖a (f)‖ , (102)

where a (f) =
[
1, ei2πf , . . . , ei2π(N−1)f

]T
. Since U and A

share the same range space, we have that R(f) vanishes if

and only if f takes value in the frequency set T . In practice,

U ,U⊥ are replaced by their estimates Û , Û⊥, resulting in



15

the estimated correlation function R̂(f). The frequencies are

estimated from the smallest K local minima of R̂(f) or

equivalently, the highest K peaks of the MUSIC spectral

function given by 1

[R̂(f)]
2 .

We next revisit the analysis of single-snapshot MUSIC in

[36]. It is shown there that the frequency estimation error is

determined by the error

max
f∈[0,1)

∣∣∣R̂(f)−R(f)
∣∣∣ . (103)

If R(f) is stably estimated, then so are the frequencies under

mild conditions. Readers are referred to [36] for details.

Consequently, we only consider the stability of the error in

(103) with respect to noise hereafter. To do so, it is shown in

[36, Theorem 3] that for f ∈ [0, 1),

∣∣∣R̂(f)−R(f)
∣∣∣ =

∣∣∣
∥∥∥P

Û⊥

a (f)
∥∥∥− ‖PU⊥

a (f)‖
∣∣∣

√
N

≤

∥∥∥
(
PU⊥

− P
Û⊥

)
a (f)

∥∥∥
√
N

≤
∥∥∥PU⊥

− P
Û⊥

∥∥∥

(104)

and the distance
∥∥∥PU⊥

− P
Û⊥

∥∥∥ is bounded from above by

a constant times the noise level σ, concluding the stability

of the correlation function R̂ (f) and frequency estimation of

single-snapshot MUSIC.

Now we are ready to provide our analysis of the multiple-

snapshot MUSIC and SS-MUSIC algorithms. Like ESPRIT,

the only difference between the single-snapshot and multiple-

snapshot MUSIC is the way of estimating the signal or noise

subspace. Consequently, the stability of frequency estimation

in our case can also be concluded by the stability of the

correlation function R̂ (f), as in [36]. To this end, we measure

the error of the correlation function in (103) by the error of

signal subspace estimation dist
(
Û ,U

)
with

max
f∈[0,1)

∣∣∣R̂(f)−R(f)
∣∣∣ ≤ dist

(
Û ,U

)
, (105)

by combining (104) and the identity
∥∥∥PU⊥

− P
Û⊥

∥∥∥ =
∥∥PU − P

Û

∥∥ = dist
(
Û ,U

)
, (106)

where the first equality holds since PU⊥
+PU is identity and

the second follows from (19). The stability of R̂(f) is con-

cluded by combining (105) and our Theorem 9. Similar con-

clusions can be drawn for FOSS-MUSIC and FBSS-MUSIC

by combining (105) and Theorems 10 and 11 respectively.
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