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A Unified Framework for Correlation Mining
in Ultra-High Dimension

Yun Wei, Bala Rajaratnam, and Alfred O. Hero , Life Fellow, IEEE

Abstract— Many applications benefit from theory relevant to
the identification of variables having large correlations or partial
correlations in high dimension. Recently there has been progress
in the ultra-high dimensional setting when the sample size n
is fixed and the dimension p tends to infinity. Despite these
advances, the correlation screening framework suffers from prac-
tical, methodological and theoretical deficiencies. For instance,
previous correlation screening theory requires that the population
covariance matrix be sparse and block diagonal. This block
sparsity assumption is however restrictive in practical applica-
tions. As a second example, correlation and partial correlation
screening requires the estimation of dependence measures, which
can be computationally prohibitive. In this paper, we propose a
unifying approach to correlation and partial correlation mining
that is not restricted to block diagonal correlation structure, thus
yielding a methodology that is suitable for modern applications.
By making connections to random geometric graphs, the number
of highly correlated or partial correlated variables are shown to
have compound Poisson finite-sample characterizations, which
hold for both the finite p case and when p tends to infinity.
The unifying framework also demonstrates a duality between
correlation and partial correlation screening with theoretical and
practical consequences.

Index Terms— Correlation analysis, compound poisson, fixed
n large p asymptotics, random geometric graph, Stein’s method.

I. INTRODUCTION

THIS paper considers the problem of identifying high
correlations and partial correlations in modern ultra high

dimensional setting. In particular we study the problem of
screening n identically distributed p-variate samples for vari-
ables that have high correlation or high partial correlation with
at least one other variable when the sample size n ≤ C0 ln p
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for some constant C0. In the screening framework one applies
a threshold to the sample correlation matrix or the sample
partial correlation matrix to detect variables with at least
one significant correlation. The threshold serves to separate
signal from noise. Correlation and partial correlation screening
in ultra-high dimensions with few samples arises frequently
in applications where the per-sample cost of collecting high
dimensional data is much more costly than the per-variable
cost. For example, in genomic correlation screening the cost
of high throughput RNAseq assays is decreasing faster than
the cost of biological samples [1]. In such situations p is much
larger than n.

The ultra-high dimensional regime when n ≤ C0 ln p is
challenging since the number of samples is insufficient to
guarantee reliability of commonly applied statistical methods.
For example, one way to undertake partial correlation screen-
ing is to first estimate the population covariance matrix, then
obtain the inverse, from which a partial correlation matrix
can be estimated. However, to get a reliable estimate of a
general covariance matrix, the number of samples n must
be at least Ω(p) as shown in [2, Section 5.4.3]. Even if
the covariance matrix has a special structure like sparsity,
covariance estimation requires the number of samples be of
order Ω(ln p) The reader is referred to [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16] and the
references therein for related work in modern high dimensional
covariance selection and estimation.

While estimating the correlation matrix or partial correlation
matrix is challenging in ultra-high dimensions, recent work
[17] and [18] has shown that it is possible to accurately test
the number of highly (partial) correlated variables under a false
positive probability constraint; in particular the probability
that a variable is spuriously (partially) correlated with at least
one other variable. While correlation screening finds variables
that have a high marginal correlation with at least another
variable, partial correlation screening identifies variables that
have high conditional correlations with one other variable
conditioned on the rest. In [17], the ultra-high dimensional
correlation screening problem is studied under a row-sparsity
assumption on the population covariance matrix. A phase
transition in the number of false positive correlations was
characterized as a function of the correlation threshold and
the true covariance. In the case of block sparse covariance,
the critical phase transition threshold becomes independent
of the true covariance. In [18] the partial correlation screening
problem was studied, and similar phase transition results as
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in correlation screening [17] were obtained under the block-
sparse assumption on the population covariance matrix. The
survey [19] reviews the correlation and partial correlation
screening problems. A follow on work [20] of [17] applies
a similar framework to the spurious correlations problem and
the low-rank detection problem. The reader is referred to [5],
[6], [7], [11], [12], [21], [22] and the references therein for
additional work related to high dimensional sample correlation
matrices.

Despite these advances in correlation and partial correlation
screening, the screening framework proposed in [17] and
[18] has some serious methodological, theoretical and prac-
tical shortcomings. For instance, results for partial correlation
screening impose a restrictive block sparsity assumption on
the true underlying correlation matrix. The block sparsity
condition in [18] requires that only a small group of the
variables have correlation within the blocks and have no cor-
relations with variables outside the block. This assumption is
severely restrictive for cases where variables have correlations
within a group and also correlations with variables outside
their respective groups. Furthermore, expressions for false
discovery probabilities in [17] and [18] require estimating
dependence functionals. Estimating such functionals lead to
computationally prohibitive non-parametric estimation, render-
ing the screening methodology disconnected from the very
setting it was designed for.

In this paper we propose a unifying framework for correla-
tion and partial correlation screening that delivers a practical
and scalable variable selection in the ultra-high dimensional
regime. By making novel connections to random geometric
graphs [23], we demonstrate that the distribution of the number
of discoveries beyond a certain threshold is approximated by
a compound Poisson distribution, with different parameters
in the regimes when p is finite and when p approaches
∞. To the best of our knowledge, such characterization has
not previously appeared in the literature. Furthermore, our
results are proved in greater generality by relaxing the block-
sparse assumption to a new sparsity condition, defined as
(τ, κ) sparsity in Section II-C, on the population covariance
matrix. The block-sparse assumption is a special case of the
(τ, κ) sparsity assumption. The characterizations established
in this paper depend on the covariance matrix only through
the (τ, κ) sparsity condition. Moreover, the assumptions of
(τ, κ) sparsity allows us to formulate unified theorems, which
covers both the cases of correlation and of partial correlation
screening.

The theory in this paper is directly relevant to hypoth-
esis testing concerning the empirical degree distribution of
a correlation graph. This topic arises in a wide spectrum
of areas including graph mining, network science, social
science, and natural sciences [24], [25], [26]. Variables having
strong sample correlations will appear in the correlation graph
as vertices having positive vertex degree. As one sweeps
over vertex degree values, the histogram of vertex degrees
specifies the empirical degree distribution of the graph. From
this perspective, this paper provides compound Poisson char-
acterizations of the empirical degree distribution for large
correlation graphs under more realistic sparsity conditions on

the population covariance. The expressions that are derived
from our theorems also provide approximations to family-
wise error rates associated with false discoveries of vertices
of degree exceeding a specified fixed degree.

Finite sample results for controlling the probability of
discovering a (false) partial correlation in high-dimensional
thresholded covariance settings have been elusive for the
better part of the last decade and a half. Indeed, evaluating
expressions for such probabilities in the fixed n setting are
known to be a notoriously difficult problem. This difficulty
is in part attributed to the dependence of such false positive
probabilities on the unknown covariance parameter. Previous
work has instead provided expressions for the probability that
two distinct connectivity components of the partial correlation
graph are falsely joined (see [27] and the references therein for
more detail). Controlling such probabilities implicitly assumes
that the covariance parameter is block diagonal. Such an
assumption is tantamount to requiring that the true partial
correlation graph is not fully connected, a restrictive assump-
tion in many application areas. In contrast, the (τ, κ) sparsity
condition introduced in this paper allows the underlying graph
to be fully connected. Moreover, we provide finite sample
results for controlling the probability that a (partial) correlation
is falsely discovered under the above-mentioned (τ, κ) notion
of sparsity.

A. Contribution

We summarize the principal contributions of the paper.
As above p denotes the number of variables and n denotes
the number of samples.

1) The paper presents a unified and complete asymptotic
analysis of the star subgraph counts, the counts of vertices
of a given degree and the counts of vertices above a given
degree in the random graphs obtained by thresholding the
sample correlation and sample partial correlation. This
unification of different types of random counts represents
an improvement over previous work [17], [18] where only
the counts of vertices above a given degree are studied.

2) We approximate the full distributions of the random
counts for finite p and as p → ∞. In addition, we char-
acterize the first and second moments of these random
counts. This is a generalization of previous results [17],
[18] that only established approximations for the mean
number of random counts and for the probabilities that
these counts were positive.

3) We obtain a compound Poisson characterization of the
distributions of the random counts. The compound Pois-
son limit and approximation are well approximated by
the standard Poisson limit when n is moderately large
(Section V). This result corrects and refines the claim
in [18] that erroneously asserted a Poisson limit.

4) The theory in this paper is developed under a novel
sparsity condition on the population dispersion matrix.
This sparsity condition, called (τ, κ) sparsity in Sec. II-C,
is weaker than previously assumed conditions, which
makes our theory more broadly applicable. Specifically,
while the block sparsity condition in previous work [9],
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[18], [28] imposes that correlation can only occur locally
in small blocks of variables, the (τ, κ) sparsity condition
relaxes this condition to more general global correlation
patterning.

Some of the broader implications of the technical contribu-
tions of this paper are described below.

Previous conditions on population partial correlation net-
works assume they are of lower dimension. In particular,
conditions such as block sparsity do not allow for completely
connected partial correlation graphs which involve all p vari-
ables. Such restrictive assumptions are difficult to validate
and rule out many realistic population (partial) correlation
structures. Overcoming this hurdle has been an open prob-
lem for several years. The newly introduced (τ, κ) sparsity
condition on the population covariance matrix settles this
longstanding problem by successfully allowing for completely
connected partial correlation graphs over the entire set of
features.

Historically, the literature on correlation estimation and
graphical models has separated the treatments of covariance
graph models and undirected graphical models (or inverse
covariance graph models) [29]. Unifying the two classes of
statistical models has been an open problem for the better
part of almost 3 decades. While this separate treatment may
be appropriate in low dimensional settings when there are
few variables, it is not immediately obvious which of the two
frameworks is appropriate for a given data set in modern ultra-
high dimensional regimes. To our knowledge, the framework
in this paper is the first in the graphical model or correlation
graph estimation literature to propose methodology which
brings both approaches under one umbrella.

The results in the paper also have relevance to applications.
Recall that our Poisson and compound Poisson expressions
effectively describe the number of false discoveries and hence
allow us to obtain results for the familywise error rate (FWER)
or k-FWER, that is the probability of obtaining k or more
false discoveries. Note that we can also obtain the marginal
distributions of correlation estimates, which in turn allow
us to obtain expressions for p-values for testing correlation
estimates. These marginal p-values allow us to establish FDR
control too using either the Benjamini-Hochberg [30] or
Benjamini-Yakutelli procedures [31]. In summary, the corre-
lations screening framework is sufficiently rich that it allows
us to undertake statistical error control in terms of FWER,
k-FWER and FDR. This is one of the main strengths of
our results: a rigorous inferential framework in the ultra-high
dimensional setting.

The remainder of this paper is organized as follows.
Section II outlines the framework and presents our main the-
orem which characterizes the compound Poisson approxima-
tions when p approaches ∞. In Section III an approximating
theorem when p is finite is presented, based on which the main
theorem follows. Section IV covers convergence of moments.
Section V provides explicit expressions for the parameters of
the compound Poisson characterizations. Notation and sym-
bols used in this paper are collected in the Section A of the
Appendix. Most of the technical proofs and auxiliary results
are given in the Appendix.

II. MAIN RESULTS

A. Framework

Available is a data matrix consisting of multivariate samples

X = [x(1),x(2), · · · ,x(n)]� = [x1,x2, · · · ,xp] ∈ R
n×p,

(1)
where {x(i)}n

i=1 ⊂ R
p are samples from a p-dimensional

distribution. We assume that the n× p data matrix X follows
a vector elliptically contoured distribution [32], [33], [34].
A random matrix X ∈ R

n×p is vector-elliptical with positive
definite covariance or dispersion parameter Σ ∈ R

p×p and
location parameter μ if its density satisfies

fX(X) = det(Σ)−n/2g(tr((X − 1μ�)Σ−1(X� − 1μ�))),
(2)

for a shape function g : R → [0,∞) such that
∫
fX(X) = 1.

In (2), 1 is a column vector with all elements equal to 1.
We use the shorthand X ∼ VE(μ,Σ, g) to denote that X
follows a vector elliptically contoured distribution with density
(2). Note that the rows {x(i)}n

i=1 of X are uncorrelated but
not necessarily independent [34]. An example of a vector-
elliptical distributed is the matrix normal distribution, for
which the rows {x(i)}n

i=1 ⊂ R
p are i.i.d. samples from

N (μ,Σ). Specifically, the matrix normal density is obtained
when, in (2), g(w) = g0(w) = (2π)−

np
2 exp(− 1

2w) and in
this case X ∼ VE(μ,Σ, g0).

Given a data matrix X ∼ VE(μ,Σ, g)1, the sample mean
x̄ is given as a row vector

x̄ =
1
n

n∑
i=1

x(i) =
1
n

X�1.

The sample covariance matrix S is

S =
1

n − 1

n�
i=1

(x(i)−x̄)(x(i)−x̄)� =
1

n − 1
X�

�
In− 1

n
11�

�
X .

(3)

The sample correlation matrix R is defined as:

R = diag(S)−
1
2 S diag(S)−

1
2 , (4)

where diag(A) for a matrix A ∈ R
n×n is the diagonal part

of A and B−1/2 for a diagonal matrix B is a diagonal matrix
formed by raising every diagonal element of B to the power
−1/2. Since R is not invertible, we define the sample partial
correlation matrix P by

P = diag(R†)−
1
2 R† diag(R†)−

1
2 . (5)

where R† is the Moore-Penrose pseudo-inverse of R.
Let Ψ = (Ψij)i,j∈[p] be generic notation for a correlation-

type matrix like R or P . Given a threshold ρ ∈ [0, 1) define
the undirected graph induced by thresholding Ψ, denoted by
Gρ(Ψ), as follows. The vertex set of graph Gρ(Ψ) is V(Ψ) =
[p] := {1, 2, · · · , p} and the edge set is E(Ψ) ⊂ V(Ψ) ×V(Ψ),
with (i, j) ∈ E(Ψ) if |Ψij | ≥ ρ, where (i, j) denotes an
edge between i and j (i 	= j). We call Gρ(Ψ) the empirical

1In previous work [17], [18] it was assumed that the samples x(i) are i.i.d.
elliptical contoured distributed. This condition is in fact insufficient and the
stronger vector elliptical contoured distribution condition (2) is required.



WEI et al.: UNIFIED FRAMEWORK FOR CORRELATION MINING IN ULTRA-HIGH DIMENSION 337

Fig. 1. A graph with 5 vertices and 5 edges.

correlation graph and the empirical partial correlation graph,
respectively, when Ψ = R and Ψ = P . Let Φ(Ψ)(ρ) be
the adjacency matrices associated with the graph Gρ(Ψ), with
elements Φ(Ψ)

ij (ρ) := 1(|Ψij | ≥ ρ) for i 	= j, where 1(·) is the

indicator function. The dependence of Φ(Ψ)(ρ) and Φ(Ψ)
ij (ρ)

on ρ will be suppressed when it is clear from the context.
The focus of this paper is correlation and partial screening,

which counts the number of vertices of prescribed degree, the
number of star subgraphs, or the number of edges in Gρ(Ψ).
The objective is to characterize the distributions of these
counting statistics. More specifically, for the graph Gρ(Ψ)
with Ψ = R or Ψ = P , the degree of vertex i is defined
as

∑p
j=1,j �=i Φ(Ψ)

ij (ρ). For 1 ≤ δ ≤ p− 1, the total number of

vertices with degree exactly δ (at least δ), denoted by N
(Ψ)

V̆δ

(N (Ψ)
Vδ

), is of particular interest. Note that if a vertex has
degree exactly δ, then there exists a star subgraph with δ
edges centered at that vertex. Consequently the number of
star subgraphs are important in the analysis of N (Ψ)

V̆δ
and

N
(Ψ)
Vδ

, hence our interest in the number of star subgraphs.
For 2 ≤ δ ≤ p − 1, the number of subgraphs in Gρ(Ψ) that
are isomorphic to Γδ is denoted by N (Ψ)

Eδ
, where Γδ denotes

a star shaped graph with δ edges. In the case when δ = 1,
we define N (Ψ)

E1
to be twice the number of edges in Gρ(Ψ).

N
(Ψ)
Eδ

is referred as the star subgraph counts.

Example II.1: Figure 1 represents an empirical partial
correlation graph. For this graph the number of vertices of

degree 2 is N (P )

V̆2
= 1 and the number of vertices of degree

at least 2 is N
(P )
V2

= 3. The number of subgraphs

isomorphic to Γ3 is N (P )
E3

= 2. The number of connected

vertices is N (P )
V1

= 5, and N (P )
E1

= 10 as there are 5 edges.

Consider now the case where the sample size n is fixed
and there exists a sequence of data matrices X ∈ R

n×p with
increasing dimension p. Following the procedure described in
the paragraph after (5), we obtain a sequence of random graphs
Gρ(Ψ) with increasing number of vertices. This paper derives
finite sample compound Poisson characterizations of the distri-
butions of the 6 random quantities {N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

: Ψ ∈
{R,P }}, for p finite and as p → ∞, for suitably chosen ρ,
under a sparsity assumption on the dispersion parameter Σ.
Such characterizations can be used to test the sparsity structure
of the dispersion parameter Σ or to guide the choice of the
threshold ρ [17], [18]. Throughout the rest of the paper we use
N̄δ to denote a generic random variable equal to one of the
6 quantities {N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

: Ψ ∈ {R,P }}. By abuse

of terminology, we refer to N̄δ generically as vertex counts.
We reiterate that in this paper the number n of samples is

fixed and the number p of variables could either be finite or
tend to infinity.

B. A Unified Theorem

In this subsection we present a unified theorem that estab-
lishes that N̄δ converges in distribution to a compound Poisson
distribution when p → ∞. We begin by defining necessary
quantities and then we state our main theorem.

For any positive number ε and a probability distribution
ζ supported on positive integers, let CP(ε, ζ) denote the
corresponding compound Poisson distribution. Specifically,
CP(ε, ζ) is the distribution of Z =

∑N
i=1 Zi, where N

is distributed as a Poisson random variable with mean ε,
Zi

i.i.d.∼ ζ and N is independent of each Zi. Here the random
variable N is the number of occurrences of increments and
ζ is the distribution of each increment. The parameter ε and
ζ are often referred to as the arrival rate and the increment
distribution, respectively.

As the parameters of the compound Poisson distribution in
the next theorem involve a random geometric graph, we define
relevant notation. Given a set of points {vi}δ

i=1 in R
n−2,

denote by Ge
({vi}δ

i=1, r
)

the geometric graph with radius
r, defined as follows. The vertex set of the graph is {vi}δ

i=1,
and there is an edge between vi and vj if 
vi−vj
2 ≤ r. The
graph is called a random geometric graph when the vertices
of the geometric graph are random. A universal vertex is a
vertex of an undirected graph that is adjacent to all other
vertices of the graph [35]. Denote by NUV

({vi}δ
i=1, r

)
the

number of universal vertices in Ge
({vi}δ

i=1, r
)
. Denote Bn−2

the unit sphere in R
n−2 and denote unif(Bn−2) the uniform

distribution on Bn−2. Let {ũi}δ
i=1 be i.i.d. from unif(Bn−2).

For the random geometric graph Ge
({ũi}δ

i=1, 1
)
, we denote

the probability that there are exactly � − 1 universal vertices
by

α� := P
(
NUV

({ũi}δ
i=1, 1

)
= �− 1

)
, ∀� ∈ [δ + 1], (6)

and define a probability distribution ζn,δ on [δ + 1]:

ζn,δ(�) := (α�/�)/

(
δ+1∑
s=1

(αs/s)

)
, ∀� ∈ [δ + 1]. (7)

As will be shown in the next theorem, ζn,δ is the increment
distribution of a compound Poisson approximation to N̄δ when
p→ ∞.

We also introduce the following sparsity conditions: a
matrix is said to be row-κ sparse if every row has at most
κ nonzero elements. This is a weaker sparsity condition than
the block sparsity condition of [18] (see also Subsection II-C).
The next definition is a stronger sparsity condition than row-κ
sparsity but remains weaker than block sparsity.

Definition II.2 ((τ, κ) Sparsity): A p by p dimensional
symmetric matrix is said to be (τ, κ) sparse if it is row-κ
sparse and its lower p− τ by p− τ block is diagonal.

Another relevant quantity is the normalized determinant
defined as follows:

Definition II.3 (Normalized Determinant): For any sym-
metric, positive definite matrix A ∈ R

p×p, its normalized



338 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023

determinant μ(A) is defined by

μ(A) :=
p∏

i=1

εi(A)
εp(A)

=
det(A)

(εp(A))p ,

where ε1(A) ≤ ε2(A) ≤ · · · ≤ εp(A) are the eigenvalues of
A.

For I ⊂ [p] denote by AI the set of all |I| × |I|
submatrices of A ∈ R

p×p obtained by extracting the cor-
responding rows and columns indexed by I. The set AI
contains |I|! matrices that are all equivalent up to a per-
mutation applied simultaneously to both rows and columns.
Define the local normalized determinant of degree m of a
matrix A ∈ R

p×p to be μm(A) = min{μ(AI) : I ⊂
[p], |I| = m}. Note that μ(AI) is well defined since μ(·)
is invariant to simultaneous application of a permutation
to both rows and columns. For symmetric positive definite
A ∈ R

p×p further define the inverse local normalized
determinant

μn,m(A) :=

{
[μm(A)]−

n−1
2 , A not diagonal,

1, A diagonal.
(8)

By definition μ(A) ∈ (0, 1] and μn,m(A) ∈ [1,∞).
Denote Γ(x) the gamma function and let an :=

Γ((n−1)/2)
(n−2)

√
πΓ((n−2)/2)

. With the above definitions in place,
we now state our main theorem: when p→ ∞, if the threshold
ρ approaches 1 at a particular rate, then the sequence of vertex
counts N̄δ converges in distribution to a compound Poisson
distribution.

Theorem II.4 (Compound Poisson limit): Let n ≥ 4 and δ
be fixed positive integers. Let X ∼ VE(μ,Σ, g). Assume that
the threshold ρ is a function of p that satisfies an2

n
2 p1+ 1

δ (1−
ρ)

n−2
2 → en,δ as p → ∞, where en,δ is some positive

finite constant that possibly depends on n and δ. Denote
εn,δ(en,δ) = 1

δ! (en,δ)
δ ∑δ+1

�=1
α�

� . Suppose Σ, after some
row-column permutation, is (τp, κp) sparse with lim

p→∞
τp

p +

μn,2δ+2 (Σ) κp

p → 0. Then N̄δ , a generic random variable in

the set {N (Ψ)
Eδ

, N
(Ψ)

V̆δ
, N

(Ψ)
Vδ

: Ψ ∈ {R,P }}, satisfies:

N̄δ
D→ CP(εn,δ(en,δ), ζn,δ) as p→ ∞. (9)

If only the vertex counts in the empirical correlation graph is
of interest, then the (τ, κ) sparsity assumption can be relaxed
to row-κ sparsity.

Lemma II.5 (Compound Poisson Limit in Empirical Corre-
lation Graph): Let n ≥ 4 and δ be fixed positive integers. Let
X ∼ VE(μ,Σ, g). Assume that the threshold ρ is a function of
p that satisfies an2

n
2 p1+ 1

δ (1−ρ)n−2
2 → en,δ as p→ ∞, where

en,δ is some positive finite constant that possibly depends on
n and δ. Denote εn,δ(en,δ) = 1

δ! (en,δ)
δ ∑δ+1

�=1
α�

� . Suppose Σ
is row-κp sparse with lim

p→∞μn,2δ+2 (Σ) κp

p → 0. Then Ñδ,

a generic random variable in the set {N (R)
Eδ

, N
(R)

V̆δ
, N

(R)
Vδ

},
satisfies:

Ñδ
D→ CP(εn,δ(en,δ), ζn,δ) as p→ ∞. (10)

Remark II.6: The condition an2
n
2 p1+ 1

δ (1 − ρ)
n−2

2 →
en,δ > 0 is equivalent to

p
2

n−2 (1+ 1
δ )(1 − ρ) →

(
en,δ

an2
n
2

) 2
n−2

=
1
2

(
en,δ

2an

) 2
n−2

,

which indicates that ρ → 1 at rate p−
2

n−2(1+ 1
δ ). As will be

discussed in more detail in Remark IV.2, this rate is in fact
both necessary and sufficient for the expected counts EÑδ to
converge to a non-trivial limit. If ρ does not converge to 1,
or converges to 1 at a slower rate, then EÑδ diverges to ∞,
while if ρ converges to 1 at a faster rate then EÑδ converges to
0. This particular rate on ρ is consistent with the rate of the
existing Poisson approximation results in random geometric
graphs [23] as will be discussed in Section III-B. A sequence
of correlation thresholds ρ = ρp that satisfies this condition is

ρp = 1 − 1
2

(
en,δ

2anp1+ 1
δ

) 2
n−2

. (11)

Observe that Theorem II.4 and Lemma II.5 hold for any
mean μ and any shaping function g when X ∼ VE(μ,Σ, g).
We will provide intuition for this invariance property in
Remark III.3.

The proofs of Theorem II.4 and Lemma II.5 will be pre-
sented in Subsection III-E. We will call CP(εn,δ(en,δ), ζn,δ)
the limiting compound Poisson distribution, approximation
or characterization. Since N̄δ and CP(εn,δ(en,δ), ζn,δ) are
discrete, (9) is equivalent to:

dTV

(
L

(
N̄δ

)
,CP(εn,δ(en,δ), ζn,δ)

) → 0 as p→ ∞,

where L (·) represents the probability distribution of the
argument, and dTV (·, ·) is the total variation distance between
two probability distributions. A variant of Theorem II.4 for
finite p (Theorem III.11), which establishes an upper bound on
the total variation distance between L

(
N̄δ

)
and a compound

Poisson distribution, will be presented in Subsection III-E.
Theorem II.4 and Theorem III.11 specify asymptotic com-
pound Poisson limits and non-asymptotic bounds on the full
distribution of vertex counts. These limits correct and extend
the Poisson limits that were falsely claimed to hold for all
finite n, δ, although we note that the compound Poisson limit
can be well approximated by the Poisson limit in the case of
moderately large n or large δ (see Sec. V).

In Theorem II.4 the (τ, κ) sparsity condition and the condi-
tion μn,m(Σ) < ∞ are assumed. We elaborate on these two
conditions in the next two subsections.

C. (τ, κ) Sparsity

The matrix (12) below is an example of a (τ, κ) sparse
matrix with τ = 2, κ = 3. This 5×5 symmetric matrix is (2, 3)
sparse since each of the first 2 rows has at most 3 nonzero
elements and the lower 3 × 3 block is diagonal.⎛

⎜⎜⎜⎜⎝
5 0 2 0 1
0 8 3 0 0
2 3 6 0 0
0 0 0 7 0
1 0 0 0 8

⎞
⎟⎟⎟⎟⎠ (12)
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Fig. 2. Diagram of the correlation graph G0(Σ̃) for a p = 7 dimensional distribution with two different 7 × 7 correlation matrices. The left panel is
associated with a block-3 sparse assumption on Σ̃. Only the τ = 3 variables in the group inside the left circle are correlated: there are no correlations (edges)
between the remaining 4 variables in the right circle and there are no correlations across the two sets of variables in the different circles. The right panel is
associated with (τ, κ) = (3, 3) sparsity on Σ̃, where two additional edges, representing correlations between variables, exist across the two groups.

If the adjacency matrix of a graph (V , E) is (τ, κ) sparse,
then the vertices V can be partitioned into two disjoint subsets
V1 and V2 with the following properties: 1) |V1| ≤ τ ; 2) there
is no edge between any two vertices in V2; 3) the degree of
any vertex in V1 is no more than κ− 1; 4) edges connecting
vertex in V1 and V2 may exist.

When the dispersion parameter Σ is row-κ sparse, the
authors of [17] studied the mean of the quantities N

(R)
E1

and N
(R)
V1

and they obtained limits of P(N (R)
E1

> 0) or

P(N (R)
V1

> 0) when p → ∞ while fixing n. In [18] these
results were extended to empirical partial correlation graphs
when the dispersion parameter Σ is assumed to be block-τ
sparse up to a row-column permutation, i.e., there exists a
permutation matrix T such that

TΣT� =
(
Σ11 Σ12

Σ21 Dp−τ

)
(13)

where Σ12 = Σ�
21 = 0 ∈ R

τ×(p−τ) and Dp−τ ∈
R

(p−τ)×(p−τ) is some diagonal matrix. In Theorem II.4 of
this paper Σ is assumed to be (τ, κ) sparse after row-column
permutation, i.e. there exists a permutation matrix T such that
(13) holds with Dp−τ ∈ R

(p−τ)×(p−τ) some diagonal matrix
and with the first τ rows (Σ11 Σ12) being row-κ sparse.

It is clear that the (τ, κ) sparsity condition is more general
than the block sparsity condition as that there is no restriction
on Σ12 = 0. Indeed, every block-τ sparse matrix is (τ, κ)
sparse with κ = τ . Nevertheless, the (τ, κ) sparsity with κ = τ
allows non-zeros in the top-right submatrix, which permits
more possible correlations between the variables relative to
the block-τ sparsity in correlation graphical models. To see
this, consider the associated graphical model G0(Σ̃) for a
correlation matrix Σ̃. Recall in Section II-A we define Gρ(·)
as the graph with adjacency matrix obtained by thresholding
a matrix with ρ. In Figure 2, nodes represent the variables
and edges represent the correlation between variables. The
left panel is a graphical model associated with the block-
3 sparse assumption, while the right panel satisfies (τ, κ)
sparsity with (τ, κ) = (3, 3). The later has more correlations
(the red edges) across the two sets of variables in the 2 circles.
The (τ, κ) sparsity condition with κ > τ allows additional

correlations between variables. Notably, (τ, κ) sparsity allows
the underlying graphical model to be connected as shown in
the following example.

Example II.7 (A Connected Correlation Graph That is
(τ, κ) Sparse): Start with a set of p vertices [p] with no
edges. Denote the neighborhood of vertex i to be NB(i).
We construct a connected (τ, κ) sparse graph on [p] by creating
neighborhoods of the first τ vertices according to the following
rule: for i ∈ [τ − 1],

NB(i) ={i+ 1}
⋃ ⋃

j∈[κ−2]

{τ + (i− 1)(κ− 2) + j},

NB(τ) =
⋃

j∈[κ−1]

{τ + (τ − 1)(κ− 2) + j}.

With this construction, each vertex among the first τ vertices
is connected to κ− 1 other vertices and the remaining p− τ
vertices [p] \ [τ ] do not connect to each other. As a result the
associated adjacency matrix is (τ, κ) sparse. Moreover, as long
as

τ + τ(κ − 2) + 1 = τ(κ− 1) + 1 ≥ p, (14)

the graph is connected. Now, let Σ be a matrix with diagonal
1 and the locations of the off-diagonal nonzero elements
specified by the graph constructed. For simplicity, choose all
the off-diagonal nonzero elements to be ξ. If ξ is small enough,
then Σ is close to the identity matrix, hence positive definite
and is therefore a bone fide correlation matrix. We have thus
constructed a (τ, κ) sparse correlation matrix whose associated
graphical model is connected provided (14) is true. Now
observe that by specifying τ = pα and κ = pβ with α+β > 1,
(14) is indeed satisfied for large p. Moreover, if α, β ∈ (0, 1)
then τ, κ = o(p). By choosing ξ as a decreasing function of
p, the condition number of Σ will not increase too fast w.r.t.
p so that the condition that lim

p→∞
τ
p + μn,2δ+2 (Σ) κ

p → 0 in

Theorem II.4 is satisfied.

On the other hand, (τ, κ) sparsity is a stronger assumption
than row-κ sparsity , since every (τ, κ) sparse matrix is row-κ
sparse. (τ, κ) sparsity is thus an intermediate level of sparsity
lying between block sparsity and row sparsity.
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Remark II.8: In Theorem II.4 we supposed that the dis-
persion parameter Σ, after some row-column permutation,
is (τ, κ) sparse. In this paper we are interested in N̄δ, which is
invariant under permutation of the p variables. Since permuta-
tion of the variables is equivalent to row-column permutation
of the dispersion parameter Σ, without loss of generality,
we can assume that the variables have been permuted such
that Σ is (τ, κ) sparse.

D. Local Normalized Determinant

In this subsection, we elaborate on the normalized determi-
nant μ(·) and the inverse local normalized determinant defined
in Subsection II-B. The normalized determinant measures
the closeness between the identity matrix and the disper-
sion parameter Σ. This quantity plays an important role in
Theorem II.4.

Observe that μ(A) ∈ (0, 1] and that, μ(A) = 1 if and only if
A is a multiple of Ip. Moreover μ(A) is close to 1, and hence
bounded away from 0, as long as all eigenvalues concentrate
around a positive number. Below is an example of a sequence
of symmetric positive definite matrices with well-concentrated
eigenvalues such that their normalized determinants are uni-
formly bounded away from 0.

Example II.9: Let {αi}p
i=1 be a positive real sequence. Let

{βi}∞i=1 be a positive, decreasing sequence such that
∞∑

i=1

βi <

∞. Consider A ∈ R
p×p a symmetric positive definite matrix

with eigenvalues εi = αp exp(−βi) for 1 ≤ i ≤ p − 1 and
εp = αp. Then

μ(A) = exp

(
−

p−1∑
i=1

βi

)
.

Consider now the case that p is increasing and con-
sider a sequence of matrices A of increasing dimension
with the above properties. For this sequence μ(A) ≥
exp

(
−

∞∑
i=1

βi

)
> 0, i.e. μ(A) is bounded uniformly away

from 0.

It follows by the interlacing property (see Theorem
8.1.7 in [36]) that μm(A) is decreasing with respect to m ∈ [p]
for any symmetric positive definite matrix A ∈ R

p×p. Thus the
inverse local normalized determinant μn,m(A) is increasing
with respect to m ∈ [p].

It turns out that the inverse local normalized determinant
of the dispersion matrix Σ will play an important role in
our study of the distribution of N̄δ . Indeed, when δ ≥ 2,
N

(R)
Eδ

can be represented as a sum of indicator functions of
the event that a subgraph of δ + 1 vertices is isomorphic
to Γδ (see (48) for the precise formula). Each term in the
summation involves only δ + 1 variables, and thus each pair
of two such terms involves at most 2(δ+ 1) variables. Hence
μ2δ+2(Σ) or μn,2δ+2(Σ) controls the correlation between two
indicator terms in the summation of N (R)

Eδ
, which determines

the convergence of N (R)
Eδ

to a compound Poisson distribution.
In Theorem II.4 we assume that μn,2δ+2 (Σ) κp

p → 0, which
holds when μn,2δ+2 (Σ) is either bounded or increasing with

rate o( p
κp

). In the Section B of the Appendix, Lemma A.1
provides a bound on μn,2δ+2 (Σ) in terms of the condition
number and the eigenvalues of Σ.

III. COMPOUND POISSON CHARACTERIZATIONS FOR

FINITE p

In this section we establish a compound Poisson approxi-
mation for L (N̄δ) for finite p, which is then used to prove
the asymptotic Theorem II.4. In Subsection III-A Z-score
type representations are introduced, which are used in the
subsequent development in Subsection III-B. Subsection III-B
provides an equivalent formulation of the empirical correlation
and partial correlation graphs in terms of random geometric
graphs. Against the backdrop of the first two subsections,
Subsection III-C presents the compound Poisson approxima-
tion for star subgraph counts N (R)

Eδ
. Subsection III-D demon-

strates that all 6 quantities in {N (Ψ)
Eδ

, N
(Ψ)

V̆δ
, N

(Ψ)
Vδ

: k ∈
{R,P }} are close in L1 distance. Combining results in
Subsection III-C and Subsection III-D, a compound Poisson
characterization for N̄δ for finite p is obtained in Subsec-
tion III-E, which is then used to deduce Theorem II.4 in
Subsection III-F.

A. Z-Score Type Representations of Sample Correlation and
Partial Correlation

In this subsection, we define the U-scores and the Y-scores
for the sample correlation and the sample partial correlation,
respectively. These Z-type scores will serve as the vertex
set on which random geometric graphs are constructed in
Subsection III-B.

The matrix of Z-scores Z = [z1, . . . , zp] ∈ R
n×p associ-

ated with the data matrix X is defined by

zi :=
xi − 1x̄i√
Sii(n− 1)

,

where x̄i is the i-th coordinate of the sample mean x̄. The
Z-scores specify the sample correlation matrix by the relation
R = Z�Z. Since 1�zi = 0 for every i ∈ [p], we consider
an equivalent but lower-dimensional type of Z-scores called
the U-scores [17], [18], obtained by projecting each zi on
the subspace {w ∈ R

n : 1�w = 0}. Specifically, consider
an orthogonal n × n matrix H = [n− 1

2 1,H2:n]�. The
matrix H2:n ∈ R

n×(n−1) can be obtained by Gramm-Schmidt
orthogonalization and satisfies the properties

1�H2:n := 0, H�
2:nH2:n = In−1.

Define the matrix of U-scores as U = [u1, . . . ,up] with ui =
H�

2:nzi ∈ R
n−1. It is clear that

R = U�U . (15)

The normalized outer product of U , defined by

B :=
n− 1
p

UU� ∈ R
(n−1)×(n−1) (16)

will play an important role in the analysis of the empirical
partial correlation graph.
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Lemma III.1: Let X ∼ VE(μ,Σ, g) and p ≥ n. Then B is
invertible a.s.

Proofs of all the lemmas and propositions in this paper can
be found in the Appendix. By Lemma 1 in [18], provided B
is invertible, the Moore-Penrose pseudo-inverse of R can be
expressed as follows:

R† = U�[UU�]−2U =
(

p

n− 1

)2

U�B−2U . (17)

It follows from Lemma III.1 that equation (17) holds a.s.
Define Ȳ = B−1U and observe that

R† =
(

p

n− 1

)2

Ȳ �Ȳ a.s. (18)

Further define yi := ȳi/
ȳi
2 for i ∈ [p] and Y :=
[y1,y2, . . . ,yp] ∈ R

(n−1)×p. Then

P = Y �Y a.s. (19)

by equation (5) and (18). Y in (19) is referred to as
the Y-scores representation of the sample partial correlation
matrix, as in [18].

By (15) and (19), the set of U-scores and Y-scores sum-
marize all the information about the sample correlations and
partial correlations, and hence they capture all the information
about the vertex counts N̄δ. We will further elaborate on this
point in Subsection III-B. Observing that Y is a function of
U , the distribution of N̄δ is uniquely determined by U . The
remainder of this subsection focuses on the distribution of the
U-scores.

Denote Sn−2 the unit sphere in R
n−1 and denote

unif(Sn−2) the uniform distribution on Sn−2. Let
{x̃(i)}n−1

i=1
i.i.d.∼ N (0,Σ) and

X̃ = [x̃(1), . . . , x̃(n−1)]� = [x̃1, . . . , x̃p] ∈ R
(n−1)×p.

In the next lemma we characterize the distribution of U in
terms of the distribution of X̃ .

Lemma III.2: Assume X ∼ VE(μ,Σ, g).
(a) The matrix U of U-scores has the same distribution as[

x̃1
‖x̃1‖2

, . . . ,
x̃p

‖x̃p‖2

]
.

(b) For each i ∈ [p], ui is distributed as unif(Sn−2).
Moreover, if Σij = 0, then ui and uj are independent.

Remark III.3: When Σij = 0, the i-th and the j-th columns
of the data matrix are uncorrelated but are not necessarily
independent. However Lemma III.2 (b) establishes that in fact
the corresponding U-scores ui and uj are independent. This is
a consequence of the fact that the entire data matrix follows the
vector elliptically contoured distribution X ∼ VE(μ,Σ, g).
Another important implication of Lemma III.2 is that the
distribution of U , hence the distribution of N̄δ, is invariant
to the mean μ and the shaping function g.

Let σn−2 be the spherical measure on Sn−2, that is
σn−2 is the uniform probability measure corresponding to
unif(Sn−2). Denote by fuj1 ,uj2 ,··· ,ujm

the joint density of
the j1-th, j2-th, . . ., jm-th column of U with respect to the
product measure ⊗mσn−2 := σn−2 ⊗ σn−2 ⊗ · · · ⊗ σn−2︸ ︷︷ ︸

m

.

The next lemma establishes that fuj1 ,uj2 ,··· ,ujm
is bounded

by the inverse local normalized determinant μn,m(Σ).
Lemma III.4: Assume X ∼ VE(μ,Σ, g). Consider a set of

distinct indexes J = {ji : 1 ≤ i ≤ m} ⊂ [p].
(a) The inverse local normalized determinant satisfies

μn,m(ΣJ ) ≤ μn,m(Σ).

(b) The joint density of any subset of m columns of U-scores
w.r.t. ⊗mσn−1 is upper bounded by μn,m(Σ): ∀ vi ∈
Sn−2, ∀ i ∈ [m],

fuj1 ,uj2 ,··· ,ujm
(v1,v2, · · · ,vm)≤μn,m(ΣJ )≤μn,m(Σ).

(c) Let h :
(
Sn−2

)m → R be a nonnegative Borel measur-
able function. Then

Eh(uj1 ,uj2 , · · · ,ujm)
≤μn,m(ΣJ )Eh(u′

j1 ,u
′
j2 , · · · ,u′

jm
)

≤μn,m(Σ)Eh(u′
j1 ,u

′
j2 , · · · ,u′

jm
),

where {u′
j�
}m

�=1 are i.i.d. uniformly distributed on Sn−2.

According to Lemma III.4 (c), when calculating the expec-
tation of nonnegative function of any m columns of U , one
may always assume that the associated columns {uj} are i.i.d.
unif(Sn−1) up to an additional multiplicative factor μn,m(Σ).

B. Random Pseudo Geometric Graphs

In this subsection we define random pseudo geometric
graphs and provide an equivalent formulation of the empirical
correlation and partial correlation graphs in terms of these
graphs, for which the vertex sets are, respectively, the U and
Y scores. We also define the increment distribution of the
compound Poisson that approximates N̄δ when p is finite.

By the fact that R = U�U and the fact that columns of
U have Euclidean norm 1,

Rij = u�
i uj = 1 − 
ui − uj
2

2

2
=


ui + uj
2
2

2
− 1. (20)

For a threshold ρ ∈ [0, 1), define rρ :=
√

2(1 − ρ) ∈ (0,
√

2].
As shown in [17] and [18], by (20),

{|Rij | ≥ ρ} = {
ui+uj
2 ≤ rρ}∪{
ui−uj
2 ≤ rρ}. (21)

An analogous argument yields the following for the empirical
partial correlation graph,

{|Pij | ≥ ρ} = {
yi +yj
2 ≤ rρ}∪{
yi−yj
2 ≤ rρ}. (22)

Based on (21), we now introduce novel geometric connections
between empirical correlation graphs and random geometric
graphs. Recall {|Rij | ≥ ρ} is the event that the magnitude
of the sample correlation between the i-th and j-th variables
exceeds the threshold ρ, or equivalently, the event that there
exists a edge connecting the i-th and j-th vertices in the
empirical correlation graph Gρ(R). Equation (21) indicates
that {|Rij | ≥ ρ} is the same as the event that the associated
U-scores for the i-th and j-th variables, ui and uj , lie in
some geometric set on Sn−2×Sn−2. This insight provides an
equivalent way to construct Gρ(R) through the U-scores. The
empirical partial correlation graph Gρ(P ) may similarly be
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constructed through the Y-scores based on (22). These remarks
are formalized in the next few paragraphs.

Definition III.5 (Pseudo Geometric Graph): Given m ≥
2 and a set of points {vi}m

i=1 in R
N , denote by

PGe ({vi}m
i=1, r; N ) the pseudo geometric graph with radius

r, defined as follows. The vertex set of the graph is {vi}m
i=1,

and there is an edge between vi and vj if dist(vi,vj) :=
min {
vi − vj
2, 
vi + vj
2} ≤ r. The graph is called a
random pseudo geometric graph when the vertices are random.

It is easy to verify that dist(·, ·) has the following properties:
for ∀v1,v2,v3 ∈ R

m,

1) dist(v1,v2) ≥ 0;
2) dist(v1,v2) = 0 if only if v1 = v2 or v1 = −v2;
3) dist(v1,v2) = dist(v2,v1) and dist(v1,v2) =

dist(v1,−v2)
4) dist(v1,v2) ≤ dist(v1,v3) + dist(v3,v2).

That is, dist(·, ·) is a pseudo metric on R
N , hence the name

pseudo geometric graph in Definition III.5.
With the above definitions, and by the discussions pre-

ceding Definition III.5, the empirical correlation graph
Gρ(R) is isomorphic to PGe ({ui}p

i=1, rρ), the random
pseudo geometric graph generated by U-scores. Consequently
{N (R)

Vδ
, N

(R)

V̆δ
, N

(R)
Eδ

} are the numbers of vertices or subgraphs
in PGe ({ui}p

i=1, rρ). An analogous analysis applies to the
empirical partial correlation graph and PGe ({yi}p

i=1, rρ). This
equivalent construction indicates that the distribution of each
of the 3 quantities {N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

} with Ψ = R (Ψ =
P ) only depends on the pairwise pseudo distances dist(·, ·)
between columns of U (Y ).

The random pseudo geometric graph in Definition III.5 is
similar to the random geometric graph introduced in [23].
In particular, studied in the monograph [23] is the number of
induced subgraphs isomorphic to a given graph, typical vertex
degrees, and other graphical quantities of random geometric
graphs. As a specific example, the rate an2n/2p1+ 1

δ (1 −
ρ)

n−2
2 → e(n, δ) as p → ∞ in Theorem II.4 is equiva-

lent to 2anp
1+ 1

δ rn−2
ρ → e(n, δ), which is consistent with

existing Poisson approximation for random geometric graph
[23, Theorem 3.4]. The differences between our random
pseudo geometric graph in Definition III.5 and the random
geometric graphs defined in [23] are: 1) our graph has vertices
ui lying on the unit sphere instead of on the entire Euclidean
space; 2) our graph is induced by distance dist(·, ·) instead
of the Euclidean distance. Another key difference is that
vertices ui are not necessarily independent in Definition III.5.
Indeed in our model, the correlations between vertices ui are
encoded by a sparse matrix Σ (cf. Lemma III.2 (a)), whereas
in [23] the vertices associated with the random geometric
graph are assumed to be i.i.d. In [23] it was stated (Example
after [23, Corollary 3.6]) without proof that the number of
vertices with degree at least 3 was approximately compound
Poisson. A similar compound Poisson limit is established in
Theorem II.4. There is recent work on testing whether a given
graph is a realization of an Erdős–Rényi random graph or a
realization of a random geometric graph with vertices i.i.d.
uniformly distributed on the sphere [37]. Therein, the authors

study the asymptotics of a count statistic, the (signed) trian-
gles, on a random geometric graph induced by thresholding
the distances between p i.i.d. uniformly distributed points
on the n dimensional sphere as n goes to ∞. In contrast,
this paper studies the large p asymptotics of vertex degree
counts for dependent non-uniform points on a sphere of fixed
dimension n.

Recall that NUV ({vi}m
i=1, r; N ) denotes the number of

universal vertices (vertices adjacent to all vertices except itself)
in the geometric graph Ge ({vi}m

i=1, r; N ). Analogously,
denote by PNUV ({vi}m

i=1, r; N ) the number of universal
vertices in the pseudo geometric graph PGe ({vi}m

i=1, r; N ).
Denote by deg(·) the degree of a given vertex in the

graph. Consider {u′
i}δ+1

i=1
i.i.d.∼ unif(Sn−2). Denote the

conditional probability that there are � universal vertices in
PGe

({u′
i}δ+1

i=1 , rρ
)

by

αn,δ(�, rρ) := P
(
PNUV

({u′
i}δ+1

i=1 , rρ
)

= �| deg(u′
1) = δ

)
,

(23)

where � ∈ [δ + 1]. The conditional probability αn,δ(�, rρ)
depends on n, δ and the threshold ρ and is abbreviated
as α(�, rρ) when there is no risk of confusion. Define a
probability distribution ζn,δ,ρ supported on [δ + 1] with

ζn,δ,ρ(�) :=
α(�, rρ)/�∑δ+1

�=1 (α(�, rρ)/�)
. (24)

It will be shown in the next three subsections that the prob-
ability distribution ζn,δ,ρ is the increment distribution of the
compound Poisson approximation to N̄δ for finite p.

C. Closeness of the Star Subgraph Counts to a Compound
Poisson

In this subsection we present a proposition that establishes
an upper bound on the total variation between L

(
N

(R)
Eδ

)
and

the compound Poisson distribution.
We first introduce some notation. Let SC(r,w) be the

spherical cap with radius r at the center w ∈ Sn−2. Formally,

SC(r,w) = {x ∈ Sn−2 : 
x − w
2 ≤ r}. (25)

Define Pn(r) := Area(SC(r,w))
Area(Sn−2) , where Area(·) is the area of a

subset of Sn−2. Pn(r) is the normalized area of the spherical
cap with radius r. As is shown in (2.6) in [17],

Pn(r) =
bn
2

∫ 1

1− r2
2

(1 − u2)
n−4

2 du, when r ∈ [0,
√

2], (26)

where bn = 2Γ((n−1)/2)√
πΓ((n−2)/2)

. It follows by simple calculation

that when
√

2 < r ≤ 2

Pn(r) = 1 − Area(SC(
√

4 − r2,w))
Area(Sn−2)

= 1 − Pn(
√

4 − r2),

and Pn(r) = 1 when r > 2. Further properties of Pn(r) are
summarized in Lemma A.22 in Section J of the Appendix.
Define the rate parameter

εp,n,δ,ρ :=
(
p

1

)(
p− 1
δ

)
(2Pn(rρ))δ

δ+1∑
�=1

α(�, rρ)
�

. (27)
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The next proposition establishes that the distribution of
N

(R)
Eδ

is approximated by a compound Poisson distribution
CP(εp,n,δ,ρ, ζn,δ,ρ) with rate parameter εp,n,δ,ρ and dispersion
parameter ζn,δ,ρ. Here C and c, and their subscripted versions,
denote generic positive constants that only depend on their
subscripts.

Proposition III.6 (Compound Poisson Approximation for
Subgraph Counts): Let p ≥ n ≥ 4, δ ∈ [p− 1] and γ > 0 be
given. Suppose X ∼ VE(μ,Σ, g). Suppose 2p1+ 1

δPn(rρ) ≤
γ, and Σ is row-κ sparse. Then

dTV

(
L

(
N

(R)
Eδ

)
,CP(εp,n,δ,ρ, ζn,δ,ρ)

)
≤Cn,δ,γ

(
C′

δ,γ

)μn,δ+1(Σ) κ−1
p(

μn,2δ+2 (Σ)
κ

p

(
1 + μn,2δ+2 (Σ)

(
κ

p

)2
)

+ p−
1
δ

)
.

where Cn,δ,γ and C′
δ,γ are two constants.

Remark III.7: The condition 2p1+ 1
δPn(rρ) ≤ γ

specifies an implicit lower bound on the threshold ρ.
To obtain an explicit lower bound, observe that the con-

dition 2anp
1+ 1

δ

(√
2(1 − ρ)

)n−2

≤ γ is sufficient for

2p1+ 1
δPn(rρ) ≤ γ, by Lemma A.22 (a) in Section J of the

Appendix. Solving for ρ, we then obtain

ρ ≥ 1 − 1
2

(
γ

2anp1+ 1
δ

) 2
n−2

. (28)

The condition (28) is a non-asymptotic version of (11). But
the requirement on ρ from 2p1+ 1

δPn(rρ) ≤ γ is weaker than
(28) since the bound in Lemma A.22 (a) is not tight when p is
finite. For the upper bound in Proposition III.6 to be small, p
should be relatively large and, Σ should have relatively small
μn,2δ+2 (Σ), and Σ should be row-κ sparse with relative small
sparsity level κ/p. In Lemma A.1 in Section B of the Appen-
dix, we bound μn,2δ+2 (Σ) in terms of the condition number
and eigenvalues of Σ. In the special case when Σ is diagonal,
μn,2δ+2 (Σ) κ/p = 1/p. In the case that μn,2δ+2 (Σ)κ/p is
small, say μn,2δ+2 (Σ)κ/p < 1, in the upper bound the term
μn,2δ+2 (Σ) (κ/p)2 can be dropped, resulting in an additional
constant factor, since μn,2δ+2 (Σ) (κ/p)2 < 1. In other words
the effective upper bound is μn,2δ+2 (Σ)κ/p+p−

1
δ , neglecting

the coefficients depending on n, δ and γ. Respective expres-
sions for C′

δ,γ and Cn,δ,ρ in Proposition III.6 are presented in
equations (91) and (92) in the Appendix.

Proposition III.6 states that for given n, p, δ and γ, if the
threshold ρ is properly chosen, and Σ is row-κ sparse and has
small μn,2δ+2(Σ), then the distribution of N (R)

Eδ
can be well

approximated by the compound Poisson CP(εp,n,δ,ρ, ζn,δ,ρ).
We will call CP(εp,n,δ,ρ, ζn,δ,ρ) the non-asymptotic compound
Poisson distribution. In the Appendix we provide an informal
argument (Section D) to motivate Proposition III.6 in addition
to a complete proof (Section E).

D. A Portmanteau Result and Bounds on Pairwise Total
Variations

In this subsection upper bounds for pairwise total variation
distances and L1 distances among {N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

: k ∈
{R,P }} are obtained. Some intuition is presented before
stating the portmanteau result Proposition III.9.

Lemma III.8: Consider δ ∈ [p− 2].

N
(R)
Eδ

− (δ + 1)N (R)
Eδ+1

≤ N
(R)

V̆δ
≤ N

(R)
Vδ

≤ N
(R)
Eδ

,

N
(P )
Eδ

− (δ + 1)N (P )
Eδ+1

≤ N
(P )

V̆δ
≤ N

(P )
Vδ

≤ N
(P )
Eδ

.

It follows directly from Lemma III.8 that for Ñδ ∈{
N

(R)

V̆δ
, N

(R)
Vδ

}
,

E

∣∣∣Ñδ −N
(R)
Eδ

∣∣∣ ≤ (δ + 1)EN (R)
Eδ+1

. (29)

As a result, if EN
(R)
Eδ+1

is small, then N (R)

V̆δ
and N (R)

Vδ
are close

to N (R)
Eδ

in L1 norm.
To intuitively see why the vertex counts in the empirical

partial correlation graph are close to those in the empirical
correlation graph, consider large p and suppose that Σ is diag-
onal. Then by Lemma III.2 (b), {ui}p

i=1 are i.i.d. unif(Sn−2).
According to the law of large numbers, for large p,

B =
n− 1
p

p∑
i=1

uiu
�
i ≈ (n− 1)Euiu

�
i = In−1, (30)

which implies that Ȳ = B−1U ≈ U , so that 
ȳi
2 ≈

ui
2 = 1, and thus

Y =
[

ȳ1


ȳ1
2
, . . . ,

ȳp


ȳp
2

]
≈ Ȳ ≈ U . (31)

Recall in Subsection III-B that N (R)
Eδ

and N (P )
Eδ

are the num-
bers of subgraphs isomorphic to Γδ associated with the random
pseudo geometric graphs induced respectively by U and Y .
Hence by (31), N (R)

Eδ
≈ N

(P )
Eδ

. Following the same reasoning,

N
(R)
Vδ

≈ N
(P )
Vδ

and N (R)

V̆δ
≈ N

(P )

V̆δ
. These informal arguments

are formalized by Proposition III.9, which establishes that
all 6 quantities {N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

: k ∈ {R,P }} are

mutually close in L1 norm and their distributions are mutually
close in total variation. Proposition III.9 is therefore called a
“Portmanteau result”.

Proposition III.9 (Portmanteau Result): Let p ≥ n ≥ 4 and
X ∼ VE(μ,Σ, g). Let δ ∈ [p− 1]. Suppose 2p1+ 1

δPn(rρ) ≤
γ.

(a) Suppose Σ is row-κ sparse. Then for Ñδ ∈{
N

(R)

V̆δ
, N

(R)
Vδ

}
,

dTV

(
L (Ñδ),L

(
N

(R)
Eδ

))
≤E

∣∣∣Ñδ −N
(R)
Eδ

∣∣∣
≤ (δ + 1)2

δ!
γδ+1

(
1 + μn,δ+2(Σ)

κ− 1
p

)
p−

1
δ .

(b) Suppose Σ, after some row-column permutation,
is (τ, κ) sparse with τ ≤ p

2 . Suppose the condition
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Fig. 3. Illustration of the pairwise total variation distances between the vertex counts associated with the empirical correlation and partial correlation graph
established by the portmanteau result Proposition III.9. The 4 solid edges correspond to existence of direct upper bounds on the total variation distances
between two types of vertex counts, where the weights correspond respectively to the 4 upper bounds (neglecting constant coefficients) in Proposition III.9.
Dashed edges correspond to indirect upper bounds of the associated total variation distances obtained by applying the triangular inequalities, with weights
computed from the solid path connecting the two vertices.

(√
n−1

p +
√

δ ln p
p

)
≤ c is satisfied for some positive

and sufficiently small constant c. Then

dTV

(
L

(
N

(P )
Eδ

)
,L

(
N

(R)
Eδ

))
≤E

∣∣∣N (P )
Eδ

−N
(R)
Eδ

∣∣∣
≤C(P )

Eδ

(
1 +

κ− 1
p

μn,δ+1(Σ)
) (√

ln p
p

+
τ

p

)
, (32)

where C(P )
Eδ

is a constant depending on only n, δ and γ.
(c) Suppose the same conditions as in part (b) hold. Then

dTV

(
L

(
N

(P )

V̆δ

)
,L

(
N

(R)

V̆δ

))
≤E

∣∣∣N (P )

V̆δ
−N

(R)

V̆δ

∣∣∣
≤C(P )

V̆δ

(
1 +

κ− 1
p

μn,δ+2(Σ)
) (√

ln p
p

+
τ

p
+ p−

1
δ

)
,

(33)

where C(P )

V̆δ
is a constant depending on only n, δ and γ.

Remark III.10: In Proposition III.9 (b) and (c), the condition(√
n− 1
p

+

√
δ ln p
p

)
≤ c (34)

explicitly specifies a lower bound on p. Specifically, observe
that the left side of (34) is a decreasing function of p, and its
limit is 0 when p → ∞. Thus the smallest positive integer
value of p satisfying (34) exists, denoted by p0, which is
a function of n, δ and c. Therefore (34) is equivalent to
requiring p ≥ p0. The inequalities (32) and (33) are valid
as long as c is less than finite constant, given respectively

in (110) and (115) in the Appendix. The row-κ sparsity
condition on Σ guarantees that the vertex counts associated
with the empirical correlation graph are close in L1 norm to
N

(R)
Eδ

by Proposition III.9 (a). In Proposition III.9 (b) and (c)
the stronger condition of (τ, κ) sparsity suffices to establish
that the vertex counts of Gρ(P ) are close in L1 norm to
those of Gρ(R). All 3 upper bounds in the proposition are

bounded by
(
1 + κ−1

p μn,δ+2(Σ)
) (√

ln p
p + τ

p + p−
1
δ

)
, up to

a multiplicative constant depending on only n, δ and γ. The
interpretation of this upper bound is similar to the second
paragraph in Remark III.7. Respective expressions for C(P )

Eδ

and C
(P )

V̆δ
are presented in equations (112) and (118) in the

Appendix.

Figure 3 illustrates the relations established by the port-
manteau result Proposition III.9. Dashed edges correspond to
indirect upper bounds of the total variation distances between
vertices, with weights computed from solid path connecting
the two vertices. For instance the weight of dash edge between
N

(R)
Eδ

and N (P )
Vδ

is computed from

dTV

(
L

(
N

(P )
Vδ

)
,L

(
N

(R)
Eδ

))
≤E

∣∣∣N (R)
Eδ

−N
(P )
Vδ

∣∣∣
≤E

∣∣∣N (R)
Eδ

−N
(P )

V̆δ

∣∣∣ + E

∣∣∣N (R)
Eδ

−N
(P )
Eδ

∣∣∣
≤E

∣∣∣N (R)
Eδ

−N
(R)

V̆δ

∣∣∣ + E

∣∣∣N (R)

V̆δ
−N

(P )

V̆δ

∣∣∣ + E

∣∣∣N (R)
Eδ

−N
(P )
Eδ

∣∣∣
≤Cn,δ,γ

(
1 +

κ− 1
p

μn,δ+2(Σ)
) (√

ln p
p

+
τ

p
+ p−

1
δ

)
,

where the first step follows from Lemma A.24 in Section J in
the Appendix, the second step follows from Lemma III.8, and
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the last step follows from Proposition III.9, with

Cn,δ,γ =
(
C

(P )
Eδ

+ C
(P )

V̆δ
+

(δ + 1)2

δ!
γδ+1

)
.

Figure 3 graphically illustrates the implication of
Proposition III.9 that all 6 quantities {N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

:
k ∈ {R,P }} are mutually close in total variation. As a
result, the closeness of one quantity among the 6 to some
distribution in total variation implies the closeness of all
6 quantities to that same distribution. By Proposition III.6,
L

(
N

(R)
Eδ

)
is close to the non-asymptotic compound Poisson

distribution CP(εp,n,δ,ρ, ζn,δ,ρ) in total variation, which
implies all 6 quantities {N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

: k ∈ {R,P }}
are close in total variation to CP(εp,n,δ,ρ, ζn,δ,ρ). We state
this formally as Theorem III.11 in the next subsection.

E. A Unified Theorem for Finite p

The following theorem is a variant of Theorem II.4 for
finite p. It states that if the threshold ρ is properly chosen,
and Σ satisfies the (τ, κ) sparsity condition, then L (N̄δ) can
be approximated by a compound Poisson distribution.

Theorem III.11 (Compound Poisson Approximation for
Finite p): Let n ≥ 4, δ ∈ [p−1], and γ > 0 be given. Consider
X ∼ VE(μ,Σ, g). Suppose 2p1+ 1

δPn(rρ) ≤ γ. Suppose
Σ, after some row-column permutation, is (τ, κ) sparse with
τ ≤ p

2 and μn,2δ+2(Σ)κ
p < 1. Suppose the condition(√

n−1
p +

√
δ ln p

p

)
≤ c is satisfied for some positive and

sufficiently small constant c. Then N̄δ, a generic random
variable in the set {N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

: k ∈ {R,P }},
satisfies:

dTV

(
L

(
N̄δ

)
,CP(εp,n,δ,ρ, ζn,δ,ρ)

)
≤Cn,δ,γ

(
μn,2δ+2 (Σ)

κ

p
+ p−

1
δ + E(p, τ)

)
, (35)

where

E(p, τ) =

⎧⎨
⎩0 if N̄δ = N

(R)
Eδ

, N
(R)

V̆δ
or N (R)

Vδ
,√

ln p
p + τ

p if N̄δ = N
(P )
Eδ

, N
(P )

V̆δ
or N (P )

Vδ
.

If only the vertex counts in the empirical correlation graph is
of interest, then the (τ, κ) sparsity assumption can be relaxed
to row-κ sparsity.

Lemma III.12 (Compound Poisson Approximation in Empir-
ical Correlation Graph): Let n ≥ 4, δ ∈ [p−1], and γ > 0 be
given. Consider X ∼ VE(μ,Σ, g). Suppose 2p1+ 1

δPn(rρ) ≤
γ. Suppose Σ is row-κ sparse with μn,2δ+2(Σ)κ

p < 1. Then

Ñδ, a generic random variable in the set {N (R)
Eδ

, N
(R)

V̆δ
, N

(R)
Vδ

},
satisfies

dTV

(
L

(
Ñδ

)
,CP(εp,n,δ,ρ, ζn,δ,ρ)

)
≤Cn,δ,γ

(
μn,2δ+2 (Σ)

κ

p
+ p−

1
δ

)
. (36)

Remark III.13: The assumption μn,2δ+2(Σ)κ
p < 1 is only

used to obtain simpler expressions for the upper bounds in
(35) and (36). Without this assumption, similar inequalities

hold with the upper bounds that are the sum the upper
bounds in Proposition III.6 and Proposition III.9. See the third
paragraph in Remark III.7 for additional discussions. Observe
that Theorem III.11 and Lemma III.12 hold for any mean μ
and any shaping function g when X ∼ VE(μ,Σ, g). This
is a consequence of the invariance property of the U-scores
distribution (see Remark III.3). In particular, none of the
constants in Theorem III.11 depend on μ or g.

Theorem III.11 and Lemma III.12 directly follow from
Proposition III.6 and Proposition III.9 and hence their proofs
are omitted. Theorem III.11 and Lemma III.12 provide an
approximation for the family-wise error rate (FWER) [18]

P(N̄δ > 0) ≈ 1 − e−λp,n,δ,ρ .

We end this subsection by making a comparison between
Theorem III.11 and Theorem II.4. Theorem III.11 and
Theorem II.4 provide compound Poisson approximations to
N̄δ respectively when p is finite and when p→ ∞. By taking
the limit as p→ ∞, we obtain simpler formulae for parameters
of the approximation. Specifically the increment distribution
ζn,δ,ρ of the non-asymptotic compound Poisson distribution
in Theorem III.11 depends on conditional probabilities in the
random pseudo geometric graph as in (23). On the other
hand, the increment distribution ζn,δ of the limiting compound
Poisson distribution in Theorem II.4 depends on probabilities
in the random geometric graph as in (6), which is relatively
simpler. For instance, when δ = 2, an analytical formula
for ζn,2 can be obtained (see Example V.10). Obtaining an
analytical formula for ζn,2,ρ does not seem straightforward.

Despite the fact that the limiting compound Poisson distrib-
ution in Theorem II.4 is relatively simpler than Theorem III.11,
it has the disadvantage that the approximation is not accurate
unless p is large. Moreover, Theorem III.11 is stronger than
Theorem II.4 in the sense that Theorem III.11 provides explicit
upper bounds for the approximation errors, while Theorem II.4
simply provides a limit but no convergence rates. For further
discussion see Remark III.17 in the next subsection.

F. Proof of Theorem II.4

In this subsection we present results on the limit of
CP(εp,n,δ,ρ, ζn,δ,ρ) as p→ ∞, ρ→ 1, followed by a proof of
Theorem II.4.

To study the limiting distribution of CP(εp,n,δ,ρ, ζn,δ,ρ),
which requires the limit of the parameter α(�, rρ), the next
two lemmas are useful.

Lemma III.14: Consider r < 2/
√

5 and δ ≥ 1. Suppose
{u′

i}δ+1
i=1

i.i.d.∼ unif(Sn−2). Then for any � ∈ [δ + 1],

P
(
NUV

({u′
i}δ+1

i=1 , r
)

= �| deg(u′
δ+1) = δ

)
=P

(
PNUV

({u′
i}δ+1

i=1 , r
)

= �| deg(u′
δ+1) = δ

)
, (37)

where deg(u′
δ+1) on the left (right) side is the degree of vertex

u′
δ+1 in the corresponding random (pseudo) geometric graph.
Lemma III.14 establishes that the conditional distributions

of the number of universal vertices in the random geometric
graph and the random pseudo geometric graph are identical.
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By Lemma III.14 and (23),

α(�, rρ) = P
(
NUV

({u′
i}δ+1

i=1 , rρ
)

= �| deg(u′
δ+1) = δ

)
(38)

when rρ < 2/
√

5 or equivalently ρ > 3/5. Therefore to study
the limit of α(�, rρ) when rρ → 0 or equivalently ρ→ 1, the
limiting form of the right hand side of (38) is required, given
by the following lemma.

Lemma III.15: Let δ ≥ 1 and n ≥ 3. Suppose {u′
i}δ+1

i=1
i.i.d.∼

unif(Sn−2) and {ũi}δ
i=1

i.i.d.∼ unif(Bn−2). Then for any � ∈
[δ + 1],

lim
r→0

P
(
NUV

({u′
i}δ+1

i=1 , r
)

= �| deg(u′
δ+1) = δ

)
=P

(
NUV

({ũi}δ
i=1, 1

)
= �− 1

)
. (39)

One immediate consequence of Lemma III.15 and (38) is
that limρ→1 α(�, rρ) = α� for any � ∈ [δ + 1]. As p → ∞,
the condition 2p1+ 1

δPn(rρ) ≤ γ in Theorem III.11 entails
ρ → 1. The following lemma states if the rate of ρ → 1 is
coupled with the rate p → ∞, then the non-asymptotic
compound Poisson distribution CP(εp,n,δ,ρ, ζn,δ,ρ) converges
in distribution to the limiting compound Poisson distribution

CP(εn,δ(en,δ), ζn,δ).
Lemma III.16: Suppose as p → ∞, ρ → 1 such that

an2
n
2 p1+ 1

δ (1 − ρ)
n−2

2 → en,δ, where en,δ is some positive
constant that possibly depends on n and δ. Then

CP(εp,n,δ,ρ, ζn,δ,ρ)
D→ CP(εn,δ(en,δ), ζn,δ). (40)

With the above results established we are in a position to
prove Theorem II.4 and Lemma II.5.

Proof of Theorem II.4 and Lemma II.5: Theorem II.4
directly follows from Theorem III.11 and Lemma III.16.
Lemma II.5 directly follows from Lemma III.12 and
Lemma III.16.

Remark III.17: In (135) of the proof of Lemma III.16, it is
shown that part of the upper bound for its error rate is of
the order 1 − ρ. This particular rate, however, decreases as n
increases. More concisely, if one chooses ρ according to (11)
then 1−ρ is of the order p−(1+ 1

δ ) 2
n−2 . Hence the convergence

to CP(εn,δ(en,δ), ζn,δ) in Theorem II.4 is only accurate for
large p. On the other hand, the upper bound in Theorem III.11
only depends on ρ through 2p1+ 1

δPn(rρ) ≤ γ, which holds
for small p, again if ρ is chosen according to (11) (see the
first paragraph of Remark III.7 for related discussion). Hence
Theorem III.11 provides an accurate approximation to N̄δ even
for small p. The accuracy of these approximations for various
values of ρ and n is numerically illustrated in Figure 8 in
Section K of the Appendix.

IV. CONVERGENCE OF MOMENTS

Moment expressions are useful for a number of reasons,
including characterizing the behavior of phase transition
thresholds and the expected number of false discoveries [17].
Theorems II.4 and III.11 only prescribe the distribution of
N̄δ but not the moments. In this subsection, we present
approximations to the first moment and second moment of
N̄δ for finite p.

Let Z ∼ CP(εp,n,δ,ρ, ζn,δ,ρ). Then we can represent Z =∑N
i=1 Zi, where N is distributed as a Poisson with mean

εp,n,δ,ρ, Zi
i.i.d.∼ ζn,δ,ρ and N is independent of each Zi. The

first two moments of Z are:

EZ =ENEZ1 =
(
p

1

)(
p− 1
δ

)
(2Pn(rρ))δ, (41)

EZ2

=ENEZ2
1 + (ENEZ1)2

=
(
p

1

)(
p− 1
δ

)
(2Pn(rρ))δ

δ+1∑
�=1

�α(�, rρ)

+
((

p

1

)(
p− 1
δ

)
(2Pn(rρ))δ

)2

. (42)

The next lemma provides an upper bound for the difference

between the first moment of N (R)
Eδ

and the first moment of the
compound Poisson specified in (41).

Lemma IV.1: Let p ≥ n ≥ 4, δ ∈ [p−1] and γ > 0 be given.
Suppose X ∼ VE(μ,Σ, g). Suppose 2p1+ 1

δPn(rρ) ≤ γ, and
Σ is row-κ sparse. Then∣∣∣EN (R)

Eδ
− EZ

∣∣∣ ≤ (δ + 1)
2((δ − 1)!)

γδμn,δ+1 (Σ)
κ− 1
p

.

Remark IV.2: Lemma IV.1 implies that the condition on ρ
assumed in Theorem II.4 is in fact necessary and sufficient for
the mean to converge to a finite and strictly positive limit. For
simplicity we specialize to the case that Σ is diagonal, which
is row-κ sparse with κ = 1. By Lemma IV.1 and (41),

EN
(R)
Eδ

= EZ =
(
p

1

)(
p− 1
δ

)
(2Pn(rρ))δ,

which via Stirling approximation behaves as
1
δ! (2p

1+ 1
δPn(rρ))δ for large p. By Lemma A.22 (b) we

further have, again for large p,

EN
(R)
Eδ

≈ 1
δ!

(
2p1+ 1

δ an(1 − ρ)
n−2

2

)δ

.

Thus, in order that the mean count have a non-degenerate
limit when p → ∞, 2p1+ 1

δ an(1 − ρ)
n−2

2 must converge to
some strictly positive and finite constant value. If ρ does not
converge to 1, or if it converges to 1 at a slower rate, then EÑδ

diverges to ∞, while if ρ converges to 1 at a faster rate then
EÑδ converges to 0. This is reflected in the phase transition
phenomenon discussed in [17] and [18]. Thus the rate on ρ in
Theorem II.4 is sharp.

By combining the preceding lemma and the portman-
teau result of Proposition III.9 one immediately obtains
approximations for the first moment of all 6 quantities
{N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

: Ψ ∈ {R,P }} for finite p.
We also characterize the second moment approximation

of N (R)
Eδ

in the next lemma under the same conditions as
Lemma IV.1.

Proposition IV.3 (Second Moment Bounds for Subgraph
Counts): Let p ≥ n ≥ 4, δ ∈ [p − 1] and γ > 0 be given.
Suppose X ∼ VE(μ,Σ, g). Suppose 2p1+ 1

δPn(rρ) ≤ γ, and
Σ is row-κ sparse. Then∣∣∣∣E (

N
(R)
Eδ

)2

− EZ2

∣∣∣∣ ≤ Cn,δ,γ

(
μn,2δ+2(Σ)

κ

p
+ p−1/δ

)
.
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We extend the preceding proposition to other quantities
in {N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

: Ψ ∈ {R,P }} by generalizing

Proposition III.9 to L1 distance between the square of the
quantities.

Proposition IV.4 (Portmanteau Result for L2 Distance): Let
p ≥ n ≥ 4 and X ∼ VE(μ,Σ, g). Let δ ∈ [p − 1]. Suppose
2p1+ 1

δPn(rρ) ≤ γ.

(a) Suppose Σ is row-κ sparse. Then for Ñδ ∈{
N

(R)

V̆δ
, N

(R)
Vδ

}
,

E

∣∣∣∣(Ñδ

)2

−
(
N

(R)
Eδ

)2
∣∣∣∣

≤Cn,δ,γ

(
1 + μn,2δ+3(Σ)

κ− 1
p

)
p−1/δ.

(b) Suppose Σ, after some row-column permutation, is (τ, κ)
sparse with τ ≤ p

2 . Moreover,
(√

n−1
p +

√
δ ln p

p

)
≤ c

hold for some positive and sufficiently small constant c.
Then

E

∣∣∣∣(N (P )
Eδ

)2

−
(
N

(R)
Eδ

)2
∣∣∣∣

≤Cn,δ,γ

(
1 + μn,2δ+2(Σ)

κ− 1
p

) (√
ln p√
p

+
τ

p

)
.

(c) Suppose the same conditions as in part (b) hold. Then for
Ñδ ∈

{
N

(P )

V̆δ
, N

(P )
Vδ

}
E

∣∣∣∣(Ñδ

)2

−
(
N

(P )
Eδ

)2
∣∣∣∣

≤Cn,δ,γ

(
1 + μn,2δ+3(Σ)

κ− 1
p

)
p−1/δ.

By applying triangle inequalities to Proposition IV.4 (b)
and (c), one obtain for Ñδ ∈ {N (P )

Vδ
, N

(P )

V̆δ
}

E

∣∣∣∣(Ñδ

)2

−
(
N

(R)
Eδ

)2
∣∣∣∣

≤Cn,δ,γ

(
1 + μn,2δ+3(Σ)

κ− 1
p

) (√
ln p√
p

+
τ

p
+ p−1/δ

)
.

Thus we have established the L1 distance between the
square of each term in {N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

: Ψ ∈
{R,P }} and

(
N

(R)
Eδ

)2

. By combining Proposition IV.3 and
Proposition IV.4 one immediately obtains approximations to
the second moment of N̄δ for finite p.

While this section focuses on the approximation to the first
and second moments of N̄δ for finite p, their limits can also
be obtained when p → ∞ and ρ → 1 at the rate specified in
Theorem II.4.

V. ANALYTICAL EXPRESSIONS FOR THE COMPOUND

POISSON PARAMETERS

Recall that the limiting compound Poisson distribution in
Theorem II.4 is in terms of α�, while the non-asymptotic
compound Poisson distributions in Theorem III.11 is in terms
of α(�, rρ). Moreover the second moment approximation
established in Proposition IV.3 also involves the term α(�, rρ)

due to (42). Since α� and α(�, rρ) are expressed in terms
of random (pseudo) geometric graphs, they are tedious to
compute. In subsection V-A, we obtain simple analytical
approximations to these quantities for moderately large n or
δ. In subsection V-B, exact analytical formulae for these
quantities are established for the special case δ = 1 and δ = 2.

A. Approximations to α� and α(�, rρ) When δ ≥ 2

In this subsection we show that when n or δ is moderately
large, α1 ≈ 1 and α� ≈ 0 for 2 ≤ � ≤ δ + 1 (parallel
results for α(�, rρ) are α(1, rρ) ≈ 1 and α(�, rρ) ≈ 0 for 2 ≤
� ≤ δ + 1). These approximations yield simple formulae for
parameters of the limiting and non-asymptotic compound Pois-
son distributions, and for parameters of the second moment
(42). Importantly, the compound Poisson distributions are well
approximated by Poisson distributions for n, δ moderately
large.

To show that α� is small for
� ≥ 2 and α1 ≈ 1, it suffices to establish a vanishing
upper bound on

∑δ+1
�=2 α�, since

∑δ+1
�=1 α� = 1.

By definition of α�,
∑δ+1

�=2 α� = P
(
NUV

({ũi}δ
i=1, 1

) ≥ 1
)
,

where {ũi}δ
i=1

i.i.d.∼ unif(Bn−2). The next lemma
establishes an upper bound on the geometric quantity
P

(
NUV

({ũi}δ
i=1, 1

) ≥ 1
)
.

Lemma V.1: Let n ≥ 4 and δ ≥ 2.

(a) Consider {ũi}δ
i=1

i.i.d.∼ unif(Bn−2). Then

δ+1∑
�=2

α�

=P
(
NUV

({ũi}δ
i=1, 1;n− 2

) ≥ 1
)

≤δ(n− 2)
∫ 1

0

(
1 − r2

4

) (n−2)(δ−1)
2

rn−3dr

=δ(n− 2)2n−3B

(
1
4
;
n− 2

2
,
(n− 2)(δ − 1)

2
+ 1

)
,

(43)

where B (·; ·, ·) is the incomplete beta function.
(b) ∫ 1

0

(
1 − r2

4

) (n−2)(δ−1)
2

rn−3dr

≤

⎧⎪⎨
⎪⎩

(
4
5

) (n−2)δ−1
2 +

(
1 −

√
4
5

) (
3
4

) (n−2)(δ−1)
2 , δ = 2, 3,

exp
(

1
4

) (
δ−1

δ

) (n−2)(δ−1)
2

(
4
δ

)n−3
2 , δ ≥ 4.

Lemma V.1 (a) establishes an upper bound for the proba-
bility that there is at least one universal vertex in the random
geometric graph generated by the uniform distribution in the
unit ball. Lemma V.1 (b) provides an explicit upper bound
for part (a) and this upper bound provides the following
insight when n or δ is large. In particular, when δ is fixed,
P

(
NUV

({ũi}δ
i=1, 1;n− 2

) ≥ 1
)

decays exponentially as n
increases. While n is fixed, it decays at rate δ−

n−3
2 as δ

increases. Such decay rates also apply to α� for � ≥ 2 and
|α1 − 1|.
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Fig. 4. (a) is a comparison in the log-scale between the upper bound on
�δ+1

�=2 α� by (43) with δ = 2 and the exact value of
�δ+1

�=2 α� by Example V.9.
(b) is the plot of the upper bound on

�δ+1
�=2 α� as a function of n for δ from 2 to 7.

As illustrated in Figure 4 (a), when δ = 2,
∑δ+1

�=2 α� and the
upper bound in (43) both decay to 0 exponentially fast as n
increases. This diagram demonstrates that the upper bound in
(43) captures the decay rate of

∑δ+1
�=2 α�. Figure 4 (b) plots the

upper bounds in (43) as functions of n for fixed δ. As is clear
from the plot, as long as the number of samples n is above
40,

∑δ+1
�=2 α� ≈ 0, which yields α� ≈ 0 for 2 ≤ � ≤ δ+1 and

α1 ≈ 1. Moreover, as δ increases, the number of samples n
required for

∑δ+1
�=2 α� ≈ 0 decreases.

Denote the Dirac Distribution at a by Dirac(a). The next
lemma establishes approximations to the limiting compound
Poisson distribution in Theorem II.4, with the approximation
errors upper bounded in terms of

∑δ+1
�=2 α�.

Lemma V.2 (Approximation to the Limiting Compound Pois-
son Distribution): Consider n ≥ 4 and δ ≥ 2. Let en,δ be the
same as in Theorem II.4.
(a) The increment distribution satisfies

dTV (ζn,δ,Dirac(1)) ≤ ∑δ+1
�=2 α�.

(b) The arrival rate satisfies∣∣∣∣εn,δ(en,δ) − (en,δ)δ

δ!

∣∣∣∣ ≤ 3
2

(en,δ)δ

δ!

δ+1∑
�=2

α�.

(c) The limiting compound Poisson distribution satisfies

dTV

(
CP(εn,δ, ζn,δ),Pois

(
(en,δ)δ

δ!

))
≤ 5

2
(en,δ)δ

δ!

δ+1∑
�=2

α�.

The proof of Lemma V.2 (c) relies on a general upper bound
of the total variation distance between two compound Poisson
distributions (Lemma A.25 in Section J of the Appendix).
Lemma A.25 may be of independent interest in com-
pound Poisson approximation to non-Poissonian distributions
(see [38] and the references therein). From Lemma V.2 (a) and
Lemma V.1, the total variation distance between the increment
distribution and Dirac distribution at 1 decays exponentially
as n increases and decays at rate δ−

n−3
2 as δ increases.

Provided that the threshold ρ is chosen such that (en,δ)δ

δ! is
not large, the upper bounds in Lemma V.2 (b) and (c) have
the same interpretation as part (a). In that case, the limiting
compound Poisson are well approximated by the Poisson

distribution Pois
(

(en,δ)δ

δ!

)
. By combining Lemma V.2 (c) and

Theorem II.4, we immediately obtain the following result on
Poisson approximation to L (N̄δ) as p→ ∞.

Proposition V.3 (Poisson Approximation as p → ∞): Sup-
pose all the conditions in Theorem II.4 hold. Then as p→ ∞,

dTV

(
L (N̄δ),Pois

(
(en,δ)δ

δ!

))
≤ 5

2
(en,δ)δ

δ!

δ+1∑
�=2

α�.

We now turn our attention to the parameter α(�, rρ) of the
non-asymptotic compound Poisson distribution. Our results
on α(�, rρ) are similar to those on α� but the proofs are more
technical. To establish that α(1, rρ) ≈ 1 and α(�, rρ) ≈ 0 for
2 ≤ � ≤ δ + 1, it suffices to obtain a vanishing upper bound

on
∑δ+1

�=2 α(�, rρ). By (38), when ρ > 3/5,
∑δ+1

�=2 α(�, rρ) =

P
(
NUV

({u′
i}δ+1

i=1 , r;n− 2
) ≥ 2| deg(u′

δ+1) = δ
)
, where

{u′
i}δ+1

i=1
i.i.d.∼ unif(Sn−2). The next lemma is an analogous

result to Lemma V.1.
Lemma V.4: Let n ≥ 4 and δ ≥ 2.

(a) Consider {u′}δ+1
i=1

i.i.d.∼ unif(Sn−2). Then for 0 < r <√
2,

P
(
NUV

({u′
i}δ+1

i=1 , r;n− 2
) ≥ 2| deg(u′

δ+1) = δ
)

≤h̄
(

1√
1 − r2/4

, n, δ

)
δ(n− 2)

∫ 1

0

(
1 −

(r1
2

)2
) (n−2)(δ−1)

2

rn−3
1 dr1

=h̄

(
1√

1 − r2/4
, n, δ

)
δ(n− 2)2n−3

B

(
1
4
;
n− 2

2
,
(n− 2)(m− 1)

2
+ 1

)
,

where h̄(x, n, δ) = xn+δ−5x(n−2)(δ−1).
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(b) When r ≤
⎧⎨
⎩2

√
1 − √

1 − 1/5, δ = 2, 3

2
√

1 − √
1 − 1/δ, δ ≥ 4

, the upper

bound in part (a) is upper bounded by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(n− 2){
(√

5
2

) δ−2
2

(
2√
5

) (n−2)δ−1
2

+ (1 − 2√
5
)
(√

5
2

)n+δ−5
2

(
3
√

5
8

) (n−2)(δ−1)
2 }, δ = 2, 3,

δ(n− 2) exp
(

1
4

) (√
δ

δ−1

) δ−2
2

(√
δ−1

δ

) (n−2)(δ−1)
2

(
4√

δ(δ−1)

)n−3
2

, δ ≥ 4.

(c) When ρ > 3/5,
∑δ+1

�=2 α(�, rρ) is upper bounded by
the upper bound in part (a) with r replaced by rρ.

When ρ ≥
{

4/
√

5 − 1, δ = 2, 3
2
√

1 − 1/δ − 1, δ ≥ 4
,

∑δ+1
�=2 α(�, rρ)

is upper bounded by the upper bound in part (b) with r
replaced by rρ.

Lemma V.4 (a) establishes an upper bound for the con-
ditional probability that there are at least two universal ver-
tices, conditioned on the existence of one universal vertex,
in the random geometric graph over points generated by the
uniform distribution on the sphere. The interpretations of
Lemma V.4 (b), (c) are similar to those of Lemma V.1 (b)
and

∑δ+1
�=2 α�, and are therefore omitted.

The next lemma establishes approximations to the non-
asymptotic compound Poisson distribution in Theorem III.11
and to its second moment, with the approximation errors
upper bounded in terms of

∑δ+1
�=2 α(�, rρ). Denote ε̄p,n,δ,ρ :=(

p
1

)(
p−1

δ

)
(2Pn(rρ))δ .

Lemma V.5 (Approximation to the Non-Asymptotic Com-
pound Poisson Distribution): Consider n ≥ 4 and δ ≥ 2.

(a) The increment distribution satisfies
dTV(ζn,δ,ρ,Dirac(1)) ≤ ∑δ+1

�=2 α(�, rρ).
(b) The arrival rate satisfies

∣∣εp,n,δ,ρ − ε̄p,n,δ,ρ

∣∣ ≤
3
2 ε̄p,n,δ,ρ

∑δ+1
�=2 α(�, rρ).

(c) The non-asymptotic compound Poisson distribution sat-
isfies

dTV

(
CP(εp,n,δ,ρ, ζn,δ,ρ),Pois

(
ε̄p,n,δ,ρ

))
≤5

2
ε̄p,n,δ,ρ

δ+1∑
�=2

α(�, rρ).

(d) Let Z ∼ CP(εp,n,δ,ρ, ζn,δ,ρ). Then the second moment
of the non-asymptotic compound Poisson EZ2 in (42)
satisfies

∣∣EZ2 − (ε̄p,n,δ,ρ + (ε̄p,n,δ,ρ)2)
∣∣ ≤ 3

2
ε̄p,n,δ,ρ

δ+1∑
�=2

α(�, rρ).

The proof of Lemma V.5 and its interpretation are anal-
ogous to those of Lemma V.2, and are therefore omitted.
By combining Lemma V.5 (c) and Theorem III.11, we imme-
diately obtain the following result on Poisson approximation to
L (N̄δ) for finite p. One can derive an equivalent proof of the
following proposition by first applying Poisson approximation

from Chen-Stein’s method (e.g. [39, Theorem 1]) to obtain an
upper bound dTV(L (N (R)

Eδ
),Pois

(
ε̄p,n,δ,ρ

)
), which is then

combined with the portmanteau result Proposition III.9.
Proposition V.6 (Poisson Approximation for Finite p): Sup-

pose all the conditions in Theorem III.11 hold. Then ε̄p,n,δ,ρ ≤
γδ

δ! and

dTV

(
L (N̄δ),Pois

(
ε̄p,n,δ,ρ

)) ≤

Cn,δ,γ

(
μn,2δ+2 (Σ)

κ

p
+ p−

1
δ + E(p, τ)

)
+

5
2
γδ

δ!

δ+1∑
�=2

α(�, rρ),

where E(p, τ) is defined in Theorem III.11.
We have thus established that the limiting compound

Poisson distribution CP(εn,δ(en,δ), ζn,δ) in Theorem II.4

can be approximated by Pois
(

(en,δ)δ

δ!

)
, and that

the non-asymptotic compound Poisson distribution
CP(εp,n,δ,ρ, ζn,δ,ρ) in Theorem III.11 can be approximated
by Pois(

(
p
1

)(
p−1

δ

)
(2Pn(rρ))δ) for sufficiently large n or

δ. By combining these results with Theorem III.11 and
Theorem II.4 we then obtain Poisson approximations to
L (N̄δ). In Section K of the Appendix, Figure 9 provides
numerical simulations to demonstrate the accuracy of the
Poisson approximation to L (Nδ). See Figure 9 and the
ensuing discussions for more details.

B. Exact Formulae for α� and α(�, ρ) When δ = 1 and δ = 2

In this subsection we provide analytical expressions for α�

and α(�, rρ) when δ = 1 and expressions for α� when δ = 2.

Example V.7 (α� and α(�, rρ) When δ = 1): When
δ = 1, α2 = 1 since in the random geometric graph
Ge({ũi}1

i=1; 1, n − 2) the number of universal vertices (ver-
tices of degree 0) is 1. In this case α1 = 1 − α2 = 0.
Similarly, α(2, rρ) = 1 when δ = 1 since in the random
pseudo geometric graph PGe({u′

i}2
i=1; rρ, n− 1) the number

of universal vertices is 2 as long as there exists one universal
vertex. In this case α(1, rρ) = 1 − α(2, rρ) = 0.

Remark V.8 (Compound Poisson Approximations When
δ = 1): Using the results for α� in Example V.7, we obtained
ζn,1 = Dirac(2) and εn,1(en,1) = 1

2en,1. Then the
limiting compound Poisson distribution in Theorem II.4 is
CP(1

2en,1,Dirac(2)). On the other hand, by the results
for α(�, rρ) in Example V.7, ζn,1,ρ = Dirac(2) and
εp,n,1,ρ = p(p − 1)Pn(rρ). Therefore the non-asymptotic
compound Poisson distribution in Theorem III.11 is CP(p(p−
1)Pn(rρ),Dirac(2)). The intuition for the result that the incre-
ment distributions ζn,1 and ζn,1,ρ are Dirac(2) is as follows.
Recall that N (Ψ)

E1
is twice of the number of edges. Thus N (Ψ)

E1

always increases by 2 whenever there is a new edge and N (Ψ)

V̆1
always increases by 2 since the increment is always a new
pair of vertices of degree 1. Note that N (Ψ)

V1
has increment

close to 2 since N
(Ψ)
V1

≈ N
(Ψ)

V̆1
by Lemma III.8. Given

that the increment distributions ζn,1 and ζn,1,ρ are Dirac(2),
we have the following equivalent Poisson approximations to
N̄1/2: L (N̄1/2) ≈ Pois(p(p − 1)Pn(rρ)) and N̄1/2

D→
Pois(1

2en,1) as p → ∞ and an2
n
2 p2(1 − ρ)

n−2
2 → en,1.
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As a comparison, Proposition 1 and its proof in [17] under
row-κ sparsity condition established that N (R)

E1
/2 converges

to a Poisson distribution and obtained the limits of EN
(R)
V1

and P(N (R)
V1

> 0). Proposition 1 and Proposition 3 in [18]
under block sparsity condition extended the results in [17] to
the corresponding versions in the empirical partial correlation
graph, i.e. the same conclusions hold with R replaced by P .
Our results in Theorems III.11, II.4 (and Lemmas III.12, II.5)
with δ = 1 characterize the full distributions of the 6 quantities
{N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

: Ψ ∈ {R,P }}, and our results in
Section IV characterize their first and second moments, which
together contain and extend the aforementioned previous
results. Moreover, our results are established with weaker
sparsity assumptions and provide concise formulae for the
parameters.

We next explicitly characterize α� when δ = 2.
Lemma V.9 (α� When δ = 2): When δ = 2, α2 = 0,

α3 = 3
2I 3

4
(n−1

2 , 1
2 ) and α1 = 1 − α3, where Ix(a, b) is the

regularized incomplete Beta function.

Remark V.10 (Limiting Compound Poisson Approximation
When δ = 2): When δ = 2, by Lemma V.9, α2 = 0,
α3 = 3

2I 3
4
(n−1

2 , 1
2 ) and α1 = 1 − α3. Then

∑3
�=1 α�/� =

1−I 3
4
(n−1

2 , 1
2 ). Thus, the parameters for CP(εn,2(en,2), ζn,2)

in Theorem II.4 are

ζn,2(1) =
1 − 3

2I 3
4
(n−1

2 , 1
2 )

1 − I 3
4
(n−1

2 , 1
2 )

, ζn,2(2) = 0,

ζn,2(3) =
1
2I 3

4
(n−1

2 , 1
2 )

1 − I 3
4
(n−1

2 , 1
2 )

(44)

and

εn,2(en,2) =
1
2
(en,2)2

(
1 − I 3

4

(
n− 1

2
,
1
2

))
.

Note that Proposition 1 in [18] states that for any fixed n and
δ, P(N (R)

Vδ
> 0) converges to P(N∗

δ > 0) when p→ ∞, where
N∗

δ is the Poisson random variable specified in the proposition.
Since the increment distribution ζn,2 	= Dirac(1) by (44), the
limit of P(N (R)

Vδ
> 0) is P(CP(εn,2(en,2), ζn,2) > 0) and

hence [18, Proposition 1] is incorrect. However, as shown in
Subsection V-A the result [18, Proposition 1] is still useful
when n or δ is large. Specifically, the distribution of each of
the count variables {N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

: i ∈ {R,P },Ψ ∈
{R,P }} can be accurately approximated by a Poisson dis-
tribution but with an additional error term depending on n
and δ. This error term is small for large n or large δ (see
Proposition V.3 and Proposition V.6).

VI. CONCLUSION AND DISCUSSIONS

In this paper, we studied the number of highly connected
vertices in both the empirical correlation graph and the empir-
ical partial correlation graph by adopting unified framework.
More specifically, we showed that the distributions of the
number of hubs N (Ψ)

Vδ
or N (Ψ)

V̆δ
and the star subgraph counts

N
(Ψ)
Eδ

are close to common compound Poisson, when p is finite
and when p approaches infinity. We also establish that their

first and second moments are close to that of the compound
Poisson distribution. The parameters in the compound Poisson
distributions are characterized in terms of random geometric
graphs and random pseudo geometric graphs. The parameters
are also approximated by simple formulae, which implies
that the approximating compound Poisson distributions can be
further approximated by Poisson distributions for reasonably
large sample size n or a reasonably hub degree δ.

There are multiple avenues for future research. Numerical
experiments suggest that the results in this paper hold beyond
the (τ, κ) sparsity condition. A future line of work is to
characterize the compound Poisson approximations for weaker
sparsity conditions. Generalization of the moment convergence
results to beyond the second moments are also of interest.

APPENDIX

A. List of Symbols in the Main Text

• 
 · 
2 : Euclidean norm.
• | · | : the cardinality of a set.
• C and c : denote generic positive universal constants that

often differ from line to line. C and c with subscripts are
positive constants depending on the parameter in their
subscripts and may differ from line to line.

• X: n× p matrix of observations. It has density fX(X)
given in (2).

• R : p×p sample correlation matrix. Also denoted Ψ(R).
• P : p×p sample partial correlation matrix. Also denoted

Ψ(P).
• ρ ∈ [0, 1] : screening threshold applied to elements of

matrices R or P .
• Φ(Ψ) : the binary indicator matrix of the non-zero entries

of the thresholded sample correlation or sample partial
correlation matrix Ψ with entries Φ(Ψ)

ij = Φ(Ψ)
ij (ρ) =

1(|Ψij | ≥ ρ), where Ψ ∈ {R,P }.
• Gρ(Ψ) : the graph associated with adjacency matrix

Φ(Ψ). Specifically, it is the empirical correlation graph
when Ψ = R or, equivalently, Ψ = R and it is the
empirical partial correlation graph when Ψ = P or,
equivalently, Ψ = P (see Subsection II-A).

• N
(Ψ)
Vδ

: number of vertices of degree at least δ in Gρ(Ψ).
• N

(Ψ)

V̆δ
: number of vertices of degree exactly δ in Gρ(Ψ).

The quantity {N (Ψ)

V̆δ
}n−1
Ψ=0 is the empirical vertex degree

distribution associated with the sample correlation graph
(Ψ = R) or partial correlation graph (Ψ = P ).

• Γδ : a star graph with δ edges.
• N

(Ψ)
Eδ

: the number of subgraphs isomorphic to Γδ in

Gρ(Ψ) when δ ≥ 2. N (Ψ)
Eδ

is defined as twice the number
of edges in Gρ(Ψ) when δ = 1.

• N̄δ : a generic random variable denoting any of the
quantities {N (Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

: Ψ ∈ {R,P }}.
• U = [u1, . . . ,up] : (n − 1) × p matrix of correlation

U-scores such that U�U = R.
• Y = [y1, . . . ,yp] : (n−1)×pmatrix of partial correlation

Y-scores such that Y �Y = P .
• rρ =

√
2(1 − ρ) : spherical cap radius parameter in terms

of ρ.
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• Sn−2 : unit sphere in R
n−1, i.e. Sn−2 = {w ∈ R

n−1 :

w
2 = 1}. Its area is denoted by Area(Sn−2) or |Sn−2|.

• Bn−2 : unit ball in R
n−2, i.e. Bn−2 = {w ∈ R

n−2 :

w
2 ≤ 1}. Its volume is denoted by |Bn−2|.

• unif(Sn−2) : uniform distribution on Sn−2.
• unif(Bn−2) : uniform distribution in Bn−2.
• Pn(r) : normalised area of a spherical cap on Sn−2 with

radius r (see (26)).
• Ge

({vi}δ
i=1, r

)
: the geometric graph generated by a set

of points {vi}δ
i=1 ⊂ R

n−2 with ball radius parameter r
(see Subsection II-A).

• Universal vertex : a vertex of an undirected graph that is
adjacent to all other vertices

• NUV
({vi}δ

i=1, r
)

: the number of universal vertices in
Ge

({vi}δ
i=1, r

)
.

• PGe ({vi}m
i=1, r; N ) : the pseudo geometric graph gen-

erated by {vi}m
i=1 ⊂ R

N with radius paraneter r (see
Definition III.5).

• PNUV ({vi}m
i=1, r; N ) : the number of universal ver-

tices in PGe ({vi}m
i=1, r; N ).

• {u′
i}i : a sequence of i.i.d. random vectors drawn from

unif(Sn−2), the uniform distribution on Sn−2.
• α(�, rρ) = αn,δ(�, rρ): the conditional probability that

there are � universal vertices in PGe
({u′

i}δ+1
i=1 , rρ

)
(see (23)).

• ζn,δ,ρ : the discrete distribution supported on [δ+1] with
ζn,δ,ρ(�) ∝ α(�, rρ)/� (see (24)).

• CP(ε, ζ) : the compound Poisson distribution, where
the arrival rate ε is the rate for the underlying Poisson
random variable and the increment distribution ζ is the
distribution of each increment.

• CP(εp,n,δ,ρ, ζn,δ,ρ) : the non-asymptotic compound Pois-
son distribution in Theorem III.11.

• D→ : denotes convergence in distribution.
• εp,n,δ,ρ : a quantity defined as(

p
1

)(
p−1

δ

)
(2Pn(rρ))δ

∑δ+1
�=1

α(�,rρ)
� . It is the arrival

rate of CP(εp,n,δ,ρ, ζn,δ,ρ).
• {ũi}i : a sequence of i.i.d. random vectors drawn from

unif(Bn−2), the uniform distribution in Bn−2.
• α� : the probability that there are exactly � − 1 uni-

versal vertices in Ge
({ũi}δ

i=1, 1
)

(see (6)). α� =
limρ→1 α(�, rρ) (see Lemma III.15 and the paragraph
beneath it).

• ζn,δ : the discrete distribution supported on [δ + 1] with
ζn,δ(�) ∝ α�/� (see (7)). ζn,δ(�) = limρ→1 ζn,δ,ρ(�) (see
Lemma III.16).

• εn,δ(en,δ) : a quantity defined as 1
δ! (en,δ)

δ ∑δ+1
�=1

α�

� .
εn,δ(en,δ) = limp→∞ εp,n,δ,ρ when ρ satisfies
an2

n
2 p1+ 1

δ (1 − ρ)
n−2

2 → en,δ, where an =
Γ((n−1)/2)

(n−2)
√

πΓ((n−2)/2)
and en,δ is some positive constant (see

Lemma III.16).
• CP(εn,δ, ζn,δ) : the limiting compound Poisson distrib-

ution in Theorem II.4. Moreover, CP(εp,n,δ,ρ, ζn,δ,ρ)
D→

CP(εn,δ(en,δ), ζn,δ), when p → ∞ and ρ satisfies
an2

n
2 p1+ 1

δ (1 − ρ)
n−2

2 → en,δ. (see Lemma III.16)
• μ(A) : normalized determinant of square matrix A (see

Definition II.3).

• μm(A) : local normalized determinant of degree m (see
the paragraph after Definition II.3).

• μn,m(A) : inverse local normalized determinant. It is
powers of μm(A) (see (8)).

• C<
δ : the index set defined as {�i = (i0, i1, · · · , iδ) ∈

[p]δ+1 : i1 < i2 < · · · < iδ, and i� 	= i0, ∀ � ∈ [δ]}.
Each�i ∈ C<

δ corresponds to a group of δ vertices indexed
by {ij}δ

j=1 and a center indexed by i0.

• Φ(R)
�i

: defined as
∏δ

j=1 Φ(R)
i0ij

. It is the indicator random
variable that vertex i0 is adjacent to each vertex ij for
j ∈ [δ] in Gρ(R). Equivalently, it is the indicator function
of the event that there exist a star subgraph in Gρ(R) with
center at i0 and leaves {ij}δ

j=1.

• S�i : defined as
{
�j ∈ C<

δ \{�i} :
⋃δ

�=0{j�} =
⋃δ

�=0{i�}
}

for �i ∈ C<
δ . It is the set of indices in C<

δ that share the
same vertices with �i but with center different from i0.

• U�i : defined as
∑

�j∈S�i
Φ(R)

�j
. It is the sum of highly

dependent terms of Φ(R)
�i

. (see the discussions preceding
and following (50)).

B. Controlling Local Normalized Determinant by Extreme
Eigenvalues

Lemma A.1: Let A be a symmetric positive definite matrix.
Consider a sequence of symmetric positive definite matrices
Σ ∈ R

p×p with increasing dimension p.

(a) μn,m(A) is bounded by powers of the largest local
condition number:

μn,m(A) ≤

⎧⎪⎨
⎪⎩max

I⊂[p]

(
λmax(AI)
λmin(AI)

) m(n−1)
2

, A not diagonal,

1, A diagonal.

(b) μn,m(A) is bounded by powers of the condition number:

μn,m(A) ≤
⎧⎨
⎩

(
λmax(A)
λmin(A)

) m(n−1)
2

, A not diagonal,

1, A diagonal.

(c) If εmin (Σ) ≥ ε and εmax (Σ) ≤ ε for all p, then

μn,m(Σ) ≤
⎧⎨
⎩

(
λ
λ

) m(n−1)
2

, Σ not diagonal,

1, Σ diagonal.

(d) Let M > 0 be a constant. Suppose for all p,
sup1≤i≤p Σii ≤M . Moreover suppose εmin (Σ) ≥ ε for
all p. Then

μn,m(Σ) ≤
⎧⎨
⎩

(
Mm

λ

)m(n−1)
2

, Σ not diagonal,

1, Σ diagonal.

Proof: (a) It follows directly by definition of μn,m(A)
and μ(AI) ≥

(
λmin(AI)
λmax(AI)

)m

.

(b) Since μn,m(A) is increasing in m as discussed after
Example II.9, μn,m(A) ≤ μn,p(A). The proof is then complete
by applying (a) to μn,p(A).

(c) It follows directly from (b).
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(d) Let I ⊂ [p] with |I| = m. Since ΣI is symmetric
positive definite, |(ΣI)ij | ≤

√
(ΣI)ii(ΣI)jj ≤ M and thus

εmax(ΣI) = 
ΣI
2 ≤ 
ΣI
F ≤ Mm. By the interlacing
property (see Theorem 8.1.7 in [36]), εmin(ΣI)) ≥ εmin(Σ).
The proof is then completed by applying part (b).

C. Proofs in Subsection III-A

1) Proofs of Lemma III.1 and Lemma III.2:
Proof of Lemma III.1: It suffices to prove that U has rank

n − 1 a.s. By Lemma III.2 (a), it suffices to prove that[
x̃1

‖x̃1‖2
, . . . ,

x̃p

‖x̃p‖2

]
has rank n−1 a.s. Note that X̃ is of rank

n − 1 a.s., since it has a density with respect to Lebesgue
measure on R

(n−1)p and p ≥ n. Then
[

x̃1
‖x̃1‖2

, . . . ,
x̃p

‖x̃p‖2

]
have rank n−1 a.s. as well since it is obtained by normalizing
the columns of X̃ .

Proof of Lemma III.2: (a) Consider x̂(i) i.i.d.∼ N (0,Σ).
Then X̂ := [x̂(1), . . . , x̂(n)]� = [x̂1, . . . , x̂p] ∈
R

n×p has the distribution VE(0,Σ, g0) where g0(w) =
(2π)−

np
2 exp(− 1

2w). The sample mean ¯̂x of X̂ is given as
a row vector

¯̂x =
1
n

n∑
i=1

x̂(i) =
1
n

X̂�1 = (¯̂x1, . . . , ¯̂xp),

where ¯̂xi := n−1
∑p

j=1 X̂ij . The sample covariance matrix Ŝ

of X̂ is

Ŝ =
1

n− 1

n∑
i=1

(x̂(i) − ¯̂x)(x̂(i) − ¯̂x)�

=
1

n− 1
X̂�

(
I − 1

n
11�

)
X̂.

The Z-scores of X̂ is

ẑi :=
x̂i − 1¯̂xi√
Ŝii(n− 1)

=

(
I − 1

n11�)
x̂i√

Ŝii(n− 1)
.

Recall H2:n ∈ R
n×(n−1) is a matrix such that n × (n −

1) matrix H = [n− 1
2 1,H2:n]� is orthogonal, which satisfies

H2:nH�
2:n = I − 1

n11T . The U-scores of X̂ is denoted Û =
[û1, . . . , ûp] with ûi = H�

2:nzi for i ∈ [p].
By the theorem in Section 6 of [34], the distribution of U is

invariant to g and μ. In particular, U has the same distribution
as Û . It suffices to study the distribution of Û .

The proof of Theorem 3.3.2 in [40] establishes that

X̌ = H�
2:nX̂ ∈ R

(n−1)×p

has i.i.d. rows {x̌(i)}n−1
i=1 distributed as N (0,Σ), and

Ŝ =
1

n− 1
X̂�

(
I − 1

n
11�

)
X̂

=
1

n− 1

(
H�

2:nX̂
)�

H�
2:nX̂

=
1

n− 1
X̌�X̌.

Then Ŝii = 
x̌i
2/(n−1) where x̌i is the i-th column of X̌ .
Thus

ûi = H�
2:n

(
I − 1

n11�)
x̂i√

Ŝii(n− 1)
=

H�
2:nH2:nH�

2:nx̂i√
x̌i
2
=

x̌i


x̌i
2
.

The proof is then complete by observing that X̌ and X̃ has
the same distribution.

(b) Part (b) directly follows from part (a).
2) Proof of Lemma III.4: Part (a) of Lemma III.4 follows

from μm(ΣJ ) = μ(ΣJ ) ≥ μm(Σ). Part (c) immediately
follows from part (b) and in the remainder of this subsection
we give the proof of part (b).

It suffices to prove the following statement: ∀ vi ∈
Sn−2, ∀ i ∈ [m],

fuj1 ,uj2 ,··· ,ujm
(v1,v2, · · · ,vm) ≤ μn,m(ΣJ ).

For notation convenience, we only present the proof for m = p
and J = [p] since the proof of the general m and J follows
the same proof procedure. When m = p and J = [p], the
statement of Lemma III.4 (b) becomes:

The joint density of columns of U-scores w.r.t. ⊗pσn−1 is
upper bounded by μn,p(Σ):

fu1,u2,··· ,up(v1,v2, · · · ,vp) ≤ μn,p(Σ), ∀ vi ∈ Sn−2,

∀ i ∈ [p]. (45)

Proof of (45): Recall {x̃(i)}n−1
i=1 ⊂ R

p, the rows of X̃ ,
are i.i.d. copy of N (0,Σ); {x̃i}p

i=1 are the columns of X̃;
ui := x̃i

‖x̃i‖2
∈ R

n−1 has distribution unif(Sn−2) for i ∈ [p].
When Σ is symmetric positive definite and diagonal,

{x̃i}p
i=1 are independent, which implies that {ui}p

i=1 are
independent. Thus in this case, the joint density of columns
of U-scores w.r.t. ⊗pσn−1 is 1.

Consider general symmetric positive definite Σ. The prob-
ability density of X̃ w.r.t. the Lebesgue measure on R

(n−1)p

is

fX̃(X̃) = A exp

⎛
⎝−1

2

n−1∑
j=1

(
x̃(j)

)�
Σ−1x̃(j)

⎞
⎠ ,

where the constant A = det(Σ)−
n−1

2 (2π)−
(n−1)p

2 .
Use the spherical transform for each column x̃i =(
X̃ji : 1 ≤ j ≤ n− 1

)�
: for 1 ≤ i ≤ p,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X̃1i =Ri cos(θ1i),
X̃2i =Ri sin(θ1i) cos(θ2i),
...

X̃(n−2)i =Ri sin(θ1i) sin(θ2i) · · · sin(θ(n−3)i) cos(θ(n−2)i),
X̃(n−1)i =Ri sin(θ1i) sin(θ2i) · · · sin(θ(n−3)i) sin(θ(n−2)i),

where for each i ∈ [p]: Ri ≥ 0, θji ∈ [0, π] for 1 ≤ j ≤
n− 3 and θ(n−2)i ∈ [0, 2π).
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Denote R = (Ri : 1 ≤ i ≤ p) and Θ = (θji : 1 ≤ i ≤
p, 1 ≤ j ≤ (n− 2)). Then the joint density of (R,Θ) is:

fR,Θ(R,Θ)

=Ae−
1
2

�n−1
j=1 (h(j))�Σ−1h(j)

p∏
i=1

⎛
⎝Rn−2

i

n−2∏
j=1

sinn−2−j(θji)

⎞
⎠ ,

where for 1 ≤ j ≤ n− 2,

h(j) =

(
Ri cos(θji)

j−1∏
q=1

sin(θqi) : 1 ≤ i ≤ p

)�

∈ R
p

and

h(n−1) =

(
Ri

n−2∏
q=1

sin(θqi) : 1 ≤ i ≤ p

)�

∈ R
p.

Then the density of Θ is:

fΘ(Θ)

=A

⎛
⎝ p∏

i=1

n−2∏
j=1

sinn−2−j(θji)

⎞
⎠ ∫

[0,∞)p

e−
1
2
�n−1

j=1 (h(j))�Σ−1h(j)
p∏

i=1

Rn−2
i dRi

≤A
⎛
⎝ p∏

i=1

n−2∏
j=1

sinn−2−j(θji)

⎞
⎠ ∫

[0,∞)p

exp

⎛
⎝−1

2
εmin(Σ−1)

n−1∑
j=1


h(j)
2
2

⎞
⎠ p∏

i=1

Rn−2
i dRi

=A

⎛
⎝ p∏

i=1

n−2∏
j=1

sinn−2−j(θji)

⎞
⎠ ∫

[0,∞)p

exp

(
−1

2
[εmax(Σ)]−1

p∑
i=1

R2
i

)
p∏

i=1

Rn−2
i dRi

=A

⎛
⎝ p∏

i=1

n−2∏
j=1

sinn−2−j(θji)

⎞
⎠

(∫
[0,∞)

exp
(
−1

2
[εmax(Σ)]−1R2

1

)
Rn−2

1 dR1

)p

(m)
= A

⎛
⎝ p∏

i=1

n−2∏
j=1

sinn−2−j(θji)

⎞
⎠

(
[εmax(Σ)]

n−1
2 Γ

(
n− 1

2

)
2

n−3
2

)p

(mm)
=

[
(εmax(Σ))p

det(Σ)

]n−1
2 1

(Area(Sn−2))p

p∏
i=1

n−2∏
j=1

sinn−2−j(θji),

where equality (m) follows from the integration of Chi
distribution with degree n − 1, and equality (mm) fol-
lows from |S(n−2)| = 2π

n−1
2 /Γ((n − 1)/2). The proof

is complete by noticing fΘ(Θ) is joint density of
columns of U-scores expressed in spherical coordinate and

1
(Area(Sn−2))p

∏p
i=1

∏n−2
j=1 sinn−2−j(θji) is the joint distribu-

tion of p independent unif(Sn−2) expressed as spherical
coordinates.

D. An Informal Derivation of Proposition III.6

In this subsection we provide motivations to the following
two questions: 1) why is the distribution of the star subgraph
counts N (R)

Eδ
approximately compound Poisson? 2) what are

the associated parameters of the compound Poisson approxi-
mation to N (R)

Eδ
?

We first introduce some notation to answer the first question.
Denote

C<
δ :={�i = (i0, i1, · · · , iδ) ∈ [p]δ+1 : i1 < i2 < · · · < iδ, and

i� 	= i0, ∀ � ∈ [δ]}. (46)

Each �i ∈ C<
δ corresponds to a group of δ vertices indexed by

{ij}δ
j=1 and a center indexed by i0. For �i ∈ C<

δ , denote by

Φ(R)
�i

=
δ∏

j=1

Φ(R)
i0ij

= 1

⎛
⎝ δ⋂

j=1

{dist(ui0 ,uij ) ≤ rρ}
⎞
⎠ (47)

the indicator function of the event that vertex i0 is connected
to each vertex ij for j ∈ [δ] in the empirical correlation graph.
Equivalently, when δ ≥ 2, Φ(R)

�i
is the indicator function of the

event that there exists a star subgraph in Gρ(R) with center
at i0 and with leaves {ij}δ

j=1. Then by definition

N
(R)
Eδ

=
∑

�i∈C<
δ

Φ(R)
�i

. (48)

If Φ(R)
�i

for different �i ∈ C<
δ are independent or weakly

dependent, then the distribution of N (R)
Eδ

, as a sum of indepen-
dent or weakly dependent indicator random variables, might be
expected to be approximately Poisson. This, however, is not
the case due to high dependency among many terms in the
summation. Specifically, for any �i ∈ C<

δ , Φ(R)
�i

is highly

dependent on Φ(R)
�j

for any �j ∈ S�i where

S�i :=

{
�j ∈ C<

δ \{�i} :
δ⋃

�=0

{j�} =
δ⋃

�=0

{i�}
}
. (49)

S�i is the set of indexes sharing the same vertices with �i
but with center different from i0 and thus |S�i| = δ. Indeed,
provided Φ(R)

�i
= 1, which is equivalent to dist(ui0 ,uij ) ≤ rρ

for ∀j ∈ [δ], we have: for ∀2 ≤ j ≤ δ,

dist(ui1 ,uij ) ≤ dist(ui1 ,ui0) + dist(ui0 ,uij ) ≤ 2rρ.

That is, {uij}δ+1
j=2 are all close to ui1 and hence it is likely

there are edges connecting them. In other words it is likely
for �i′ = (i1, i0, · · · , iδ), Φ(R)

�i′
= 1, where we without loss of

generality assume i0 < ij for 2 ≤ j ≤ δ. Let

U�i =
∑
�j∈S�i

Φ(R)
�j

(50)

be the sum of highly dependent terms of Φ(R)
�i

. In summary,

if there is an increment for N (R)
Eδ

, say Φ(R)
�i

= 1, there is a
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certain probability that U�i is greater than 0 due to the high
dependence, causing each increment of N (R)

Eδ
to be greater

than 1 with a certain probability. This is typical behavior for
a compound Poisson random variable.

To answer the second question, we next informally derive
the parameters of the compound Poisson approximation to
N

(R)
Eδ

in the special case when Σ is diagonal. We require

some additional definitions. Let
[
�i
]

= {i0, i1, · · · , iδ} be the
unordered set of indexes, which is referred as index group,
of any �i ∈ C<

δ and define [C<
δ ] :=

{[
�i
]

:�i ∈ C<
δ

}
. It follows

that |[C<
δ ]| =

(
p

δ+1

)
, where | · | is the cardinality of a

set. For a given group of δ + 1 indexes
[
�i
]
, Φ(R)

�i
+ U�i is

the increment associated to this group and its value is between
0 and δ + 1. In the following informal argument we assume
that the event that two different index groups both have non-
zero increments has probability zero. This assumption will be
verified in the proof of Proposition III.6. Consequently the
probability of increment size � for � ≥ 1 is proportional to
the expectation of the fraction of the number of groups with
increment �:

E
1

|[C<
δ ]|

∑
�
�i

�
∈[C<

δ ]

1
(
Φ(R)

�i
+ U�i = �

)

=
1

|[C<
δ ]|

1
�
E

∑
�
�i

�
∈[C<

δ ]

(
Φ(R)

�i
+ U�i

)
1

(
Φ(R)

�i
+ U�i = �

)

=
1

|[C<
δ ]|

1
�
E

∑
�i∈C<

δ

Φ(R)
�i

1
(
Φ(R)

�i
+ U�i = �

)

=
1

|[C<
δ ]|

1
�

∑
�i∈C<

δ

P

(
Φ(R)

�i
= 1

)
P

(
Φ(R)

�i
+ U�i = �|Φ(R)

�i
= 1

)
.

(51)

Since Σ is assumed to be diagonal, {ui}p
i=1 are i.i.d.

unif(Sn−2) by Lemma III.2 (b) and hence (51) becomes

E
1

|[C<
δ ]|

∑
[�i]∈[C<

δ ]
1

(
Φ(R)

�i
+ U�i = �

)

=
1

|[C<
δ ]|

1
�

∣∣C<
δ

∣∣ (2Pn(rρ))δα(�, rρ)

=
δ + 1
�

(2Pn(rρ))δα(�, rρ),

where α(�, rρ) is defined in (23) and P

(
Φ(R)

�i
= 1

)
=

(2Pn(rρ))δ by conditioning on ui0 . As a consequence, the
probability of increment size � for � ≥ 1 is:

δ + 1
�

(2Pn(rρ))δα(�, rρ)/
δ+1∑
�=1

(
δ + 1
�

(2Pn(rρ))δα(�, rρ)
)

= ζn,δ,ρ(�),

where the equation follows from (24). This argument implies
that ζn,δ,ρ is the increment distribution of the compound
Poisson approximation.

Since the mean of a compound Poisson distribution is the
product of the arrival rate and the mean of the increment

distribution, the arrival rate ε of the compound Poisson
approximation satisfies the following mean constraint:

εEζn,δ,ρ = EN
(R)
Eδ

,

where Eζn,δ,ρ is the mean of ζn,δ,ρ. One can easily
verify Eζn,δ,ρ = 1/

∑δ+1
�=1 (α(�, rρ)/�) and EN

(R)
Eδ

=(
p
1

)(
p−1

δ

)
EΦ(R)

�i
=

(
p
1

)(
p−1

δ

)
(2Pn(rρ))δ since Σ is diagonal.

Hence the arrival rate for the compound Poisson is

ε =
(
p

1

)(
p− 1
δ

)
(2Pn(rρ))δ

δ+1∑
�=1

α(�, rρ)
�

= εp,n,δ,ρ. (52)

This informal argument motivates the compound Poisson
approximation CP(εp,n,δ,ρ, ζn,δ,ρ) to N

(R)
Eδ

when Σ is
diagonal.

E. Proof of Proposition III.6

1) Auxiliary Lemmas for Proposition III.6: Recall for any
δ ≥ 1, C<

δ is defined in (46). For �i ∈ C<
� , define a

symmetric positive definite matrix Σ�i ∈ R
(�+1)×(�+1) to

be the submatrix of Σ, consisting of rows and columns Σ
indexed by the ordered components (i0, i1, . . . , i�) of �i. Let[
�i
]

= {i0, i1, · · · , i�} be the unordered set of indices of any

�i ∈ C<
� . Then Σ�i ∈ Σ[�i] and μn,�+1

(
Σ�i

)
= μn,�+1

(
Σ[�i]

)
,

where Σ[�i] and μn,�+1

(
Σ[�i]

)
are defined in the paragraph

after Definition II.3.
Lemma A.2: Suppose X ∼ VE(μ,Σ, g). Let � ∈ [p − 1].

Consider �i = (i0, i1, · · · , i�) ∈ C<
� .

E

�∏
q=1

Φ(R)
i0iq

≤ μn,�+1

(
Σ�i

)
(2Pn(rρ))

�
.

Moreover, when Σ�i is diagonal, in the last expression the
equality holds and μn,�+1

(
Σ�i

)
= 1.

Proof:
�∏

q=1
Φ(R)

i0iq
is a nonnegative Borel Measurable func-

tion of uj for j ∈
[
�i
]
. By Lemma III.4 (c), it suffices to

show

E

�∏
q=1

Φ(R)
i0iq

≤ (2Pn(r))�

for the case uj for j ∈
[
�i
]

are �+1 independent unif(Sn−2).
The last inequality holds with equality, which follows from
that the terms in the product on the left hand side are
independent conditioned on ui.

Lemma A.2 suggests differentiating whether Σ�i is diagonal
or not since μn,�+1

(
Σ�i

)
= 1 when Σ�i is diagonal. The next

lemma establishes an upper bound on the number of �i ∈ C<
δ

such that Σ�i is not diagonal.
Lemma A.3: Let Σ be row-κ sparse. Let δ ∈ [p− 1]. Then∑
�i∈C<

δ
Σ�i not diagonal

1 ≤ δ(δ + 1)
2

(κ−1)
(
p

δ

)
≤ (δ + 1)

2((δ − 1)!)
pδ(κ−1).
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Proof: Note that∑
�i∈C<

δ
Σ�i diagonal

1 ≥ 1
δ!
p(p− κ) . . . (p− δκ),

where the 1
δ! is due to in our definition �i the index i1 < . . . <

iδ are sorted. Then

∑
�i∈C<

δ
Σ�i not diagonal

1 ≤
(
p

1

)(
p− 1
δ

)
− 1
δ!
p

δ∏
�=1

(p− �κ)

≤δ(δ + 1)
2

(κ− 1)
(
p

δ

)
,

where the last inequality follows from Lemma A.26 (b).
Note κ = 1, the Lemma A.3 shows

∑
�i∈C<

δ
Σ�i not diagonal

1 = 0,

which means Σ is diagonal matrix. Next we present a lemma
to bound

∑
�i∈C<

�
μn,�+1

(
Σ�i

)
.

Lemma A.4:∑
�i∈C<

�

μn,�+1

(
Σ�i

) ≤ p�+1

�!

(
1 + �2μn,�+1(Σ)

κ− 1
p

)
.

Proof:∑
�i∈C<

�

μn,�+1(Σ�i) =
∑

�i∈C<
�

Σ�i diagonal

1 +
∑

�i∈C<
�

Σ�i not diagonal

μn,�+1(Σ�i)

≤
(
p

1

)(
p− 1
�

)
+ μn,�+1(Σ)

∑
�i∈C<

�
Σ�i not diagonal

1

≤p
�+1

�!

(
1 + �2μn,�+1(Σ)

κ− 1
p

)
,

where the first inequality follows from the Lemma III.4 (a),
and the second inequality follows from Lemma A.3.

Lemma A.5: Let X ∼ VE(μ,Σ, g). Let
{iq}α

q=0, {jq}β
q=0 ⊂ [p] be respectively a sequence of α+1 and

β + 1 distinct integers. Let m ∈ [min{α, β}]. Suppose
iq = jq for q ∈ [m] and iq 	= jq′ for q, q′ 	∈ [m]. Denote

I =
⋃α

q=0{iq}
⋃(⋃β

q′=0{j′q}
)

and then |I| = α+β−m+2.

(a) Then

E

(
α∏

q=1

Φ(R)
i0iq

)⎛
⎝ β∏

q′=1

Φ(R)
j0jq′

⎞
⎠

≤μn,|I| (ΣI) (2Pn(rρ))α+β−m (2Pn(2rρ)) . (53)

(b) Then

EΦ(R)
i0j0

(
α∏

q=1

Φ(R)
i0iq

) ⎛
⎝ β∏

q′=1

Φ(R)
j0jq′

⎞
⎠

≤μn,|I| (ΣI) (2Pn(rρ))
α+β−m+1

m+2∑
�=2

αn,m+1(�, rρ)

≤μn,|I| (ΣI) (2Pn(rρ))α+β−m+1. (54)

The inequality (54) also holds with m = 0.

Proof: (a) By Lemma III.4 (c), it suffices to prove (53)
without μn,|I| (ΣI) for the case that {uj} for j ∈ I
are independent unif(Sn−2). Conditioned on ui0 and uj0 ,
{Φ(R)

i0iq
Φ(R)

j0iq
}m

q=1 are i.i.d., {Φ(R)
i0iq

}α
q=m+1

⋃{Φ(R)
j0jq′

}β
q′=m+1

are i.i.d. and moreover, every term in {Φ(R)
i0iq

Φ(R)
j0iq

}m
q=1 is inde-

pendent of every term in {Φ(R)
i0iq

}α
q=m+1

⋃{Φ(R)
j0jq′

}β
q′=m+1.

Thus

E

⎡
⎣(

α∏
q=1

Φ(R)
i0iq

) ⎛
⎝ β∏

q′=1

Φ(R)
j0jq′

⎞
⎠

∣∣∣∣∣∣ui0 ,uj0

⎤
⎦

=E

[
m∏

q=1

Φ(R)
i0iq

Φ(R)
j0iq

∣∣∣∣∣ui0 ,uj0

] (
E

[
Φ(R)

i0iα
1(α > m)+

Φ(R)
j0jβ

1(α = m,β > m)
∣∣∣ui0 ,uj0

])α+β−2m

=E

[
m∏

q=1

Φ(R)
i0iq

Φ(R)
j0iq

∣∣∣∣∣ui0 ,uj0

]
(2Pn(rρ))

α+β−2m (55)

=
(
E

[
Φ(R)

i0iq
Φ(R)

j0iq

∣∣∣ui0 ,uj0

])m

(2Pn(rρ))α+β−2m (56)

where for the first equality the convention 00 = 1 is used if
α = β = m. Notice (56) also holds for m = 0.

Denote SC(r,w) = SC(r,w) ∪ SC(r,−w). Then condi-
tioned on ui0 and uj0 ,

Φ(R)
i0i1

Φ(R)
j0i1

=1
(
ui1 ∈ SC(r,ui0) ∩ SC(r,uj0)

)
=η1

(
ui1 ∈ SC(r,ui0) ∩ SC(r,uj0)

)
,

where η = 1(
ui0 − uj0
2 ≤ 2rρ or 
ui0 + uj0
2 ≤ 2rρ),
and the last equality follows by noticing that SC(rρ,ui0) ∩
SC(rρ,uj0) is non-empty only when 
ui0 − uj0
2 ≤ 2rρ or

ui0 + uj0
2 ≤ 2rρ. Plugging the above inequality into (56),
we obtain

E

⎡
⎣(

α∏
q=1

Φ(R)
i0iq

)⎛
⎝ β∏

q′=1

Φ(R)
j0jq′

⎞
⎠

∣∣∣∣∣∣ ui0 ,uj0

⎤
⎦

=η
(
E

[
Φ(R)

i0i1
Φ(R)

j0i1

∣∣∣ ui0 ,uj0

])m

(2Pn(rρ))
α+β−2m

≤η (2Pn(rρ))
m (2Pn(rρ))

α+β−2m
.

The result then follows by taking expectation w.r.t. ui0 and
uj0 .

(b) Similar to the proof of (a), it suffices to prove (54)
without μn,|I| (ΣI) for the case uj for j ∈ I are independent
unif(Sn−2). Conditioned on ui0 and uj0 ,

E

⎡
⎣Φ(R)

i0j0

(
α∏

q=1

Φ(R)
i0iq

) ⎛
⎝ β∏

q′=1

Φ(R)
j0jq′

⎞
⎠

∣∣∣∣∣∣ui0 ,uj0

⎤
⎦

=Φ(R)
i0j0

E

[
m∏

q=1

Φ(R)
i0iq

Φ(R)
j0iq

∣∣∣ ui0 ,uj0

]
(2Pn(rρ))α+β−2m .
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where the equality follows from (55). Then

E

⎡
⎣Φ(R)

i0j0

(
α∏

q=1

Φ(R)
i0iq

) ⎛
⎝ β∏

q′=1

Φ(R)
j0jq′

⎞
⎠

⎤
⎦

=E

⎡
⎣ m∏

q=0

Φ(R)
i0iq

m∏
q′=0

Φ(R)
j0iq′

⎤
⎦ (2Pn(rρ))

α+β−2m

=P

(
m∏

q=0

Φ(R)
i0iq

= 1

)
P

⎛
⎝ m∏

q′=0

Φ(R)
j0iq′

= 1

∣∣∣∣∣∣
m∏

q=0

Φ(R)
i0iq

= 1

⎞
⎠

(2Pn(rρ))α+β−2m

(∗)
≤ (2Pn(rρ))α+β−m+1

m+2∑
�=2

αn,m+1(�, rρ)

≤ (2Pn(rρ))α+β−m+1
,

where step (∗) follows from the definition of αn,δ(�, rρ) in
(23). Notice (56) also holds for m = 0.

2) Lemmas on Double Summations: Denote �i ∪ �j =[
�i
]⋃ [

�j
]

for any �i ∈ C<
q and any �j ∈ C<

δ . Consider any

θ�i,�j that is a non-negative function of u� for � ∈�i∪�j defined

for �i ∈ C<
q and �j ∈ C<

δ with 1 ≤ δ ≤ q ≤ p − 1. In this
section an upper bound on E

∑
�i∈C<

q

∑
�j∈C<

δ
θ�i,�j is presented.

The results in this subsection will be used in the proofs of
Proposition III.6 and Proposition IV.4.

For i ∈ [p], let

NZ(i) := {m ∈ [p] : Σim 	= 0} (57)

denote the index of the variables that has non zero correlation
with the i-th variable. For �i ∈ C<

q , define NZ
(
�i
)

:=
q⋃

�=0

NZ(i�). Since Σ is row-κ sparse, for any �i ∈ C<
q ,∣∣∣NZ

(
�i
)∣∣∣ ≤ (q + 1)κ, and

p�i :=
∣∣∣[p]\NZ

(
�i
)∣∣∣ ≥ p− (q + 1)κ. (58)

Note that p�i denotes the number of variables that are indepen-
dent of variables with index in [�i].

For �i ∈ C<
q , define

J�i :=

{
�j ∈ C<

δ :
δ⋃

�=0

{j�} ⊂
q⋃

�=0

{i�}
}
, (59)

T�i :=

{
�j ∈ C<

δ :

(
δ⋃

�=0

{j�}
)⋂(

NZ
(
�i
))

= ∅
}
, (60)

N�i := C<
q \J�i\T�i. (61)

Here J�i is the set of indices in C<
δ consisting of coordinates

as subsets of
[
�i
]
; T�i is the set of indices in C<

δ consisting

of coordinates outside the neighborhood of �i; N�i is the set
of “correlated but not highly correlated” indices in C<

δ , i.e.
the set of indices of which at least one coordinate is in the
neighborhood of�i, but excluding those sets of indices of which
the set of coordinates are subsets as that of �i.

The strategy is to decompose

E

∑
�i∈C<

q

∑
�j∈C<

δ

θ�i,�j

=E

∑
�i∈C<

q

∑
�j∈J�i

θ�i,�j + E

∑
�i∈C<

q

∑
�j∈T�i

θ�i,�j + E

∑
�i∈C<

q

∑
�j∈N�i

θ�i,�j

and bound each of the three terms.
The next result is an upper bound on the first two terms.
Lemma A.6: Let p ≥ n ≥ 4 and X ∼ VE(μ,Σ, g).

Suppose Σ is row-κ sparse. Consider any θ�i,�j that is a non-

negative function of u� for � ∈�i ∪�j defined for �i ∈ C<
q and

�j ∈ C<
δ with 1 ≤ δ ≤ q ≤ p− 1.

(a) Suppose there exist positive constants a, z such that
Eθ�i,�j ≤ μn,q+1(Σ�i)az

q for any �j ∈ J�i. Then∑
�i∈C<

q

∑
�j∈J�i

Eθ�i,�j

≤ap(pz)q q + 1
δ!(q − δ)!

(
1 + q2μn,q+1(Σ)

κ− 1
p

)
(b) Suppose there exist positive constants a, z such that

Eθ�i,�j ≤ μn,q+δ+2(Σ�i∪�j)az
q+δ for any �j ∈ T�i. Then∑

�i∈C<
q

∑
�j∈T�i

Eθ�i,�j

≤ap2(pz)q+δ 3
δ!(q − 1)!

(
1 + μn,q+δ+2(Σ)

κ− 1
p

)
.

Proof: (a) Since |J�i| =
(
q+1
1

)(
q
δ

)
∑

�i∈C<
q

∑
�j∈J�i

Eθ�i,�j

≤azq

(
q + 1

1

)(
q

δ

) ∑
�i∈C<

q

μn,q+1(Σ�i)

≤ap(pz)q q + 1
δ!(q − δ)!

(
1 + q2μn,q+1(Σ)

κ− 1
p

)
,

where the last step follows from Lemma A.4.
(b)∑

�i∈C<
q

∑
�j∈T�i

Eθ�i,�j

≤azq+δ
∑

�i∈C<
q

∑
�j∈T�i

μn,q+δ+2(Σ�i∪�j)

≤azq+δ

⎛
⎜⎜⎜⎝ ∑

�i∈C<
q

Σ�i diagonal

∑
�j∈T�i

Σ�j diagonal

1 + μn,q+δ+2(Σ)
∑

�i∈C<
q

Σ�i diagonal

∑
�j∈T�i

Σ�j not diagonal

1 + μn,q+δ+2(Σ)
∑

�i∈C<
q

Σ�i not diagonal

∑
�j∈T�i

1

⎞
⎟⎟⎟⎠
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≤azq+δ

⎛
⎜⎜⎜⎝

(
p

1

)(
p− 1
q

)(
p

1

)(
p− 1
δ

)
+

μn,q+δ+2(Σ)
(
p

1

)(
p− 1
q

) ∑
�j∈C<

δ
Σ�j not diagonal

1+

μn,q+δ+2(Σ)
∑

�i∈C<
q

Σ�i not diagonal

(
p

1

)(
p− 1
δ

)⎞
⎟⎟⎟⎠

≤ap2(pz)q+δ 3
δ!(q − 1)!

(
1 + μn,q+δ+2(Σ)

κ− 1
p

)
,

where the second inequality follows from that for �j ∈ T�i, Σ�i∪�j

is diagonal if and only if Σ�i and Σ�j are both diagonal; and
the last step follows from Lemma A.3.

To control E
∑

�i∈C<
q

∑
�j∈N�i

θ�i,�j , we further partition N�i

into 6 subsets as follows. For �i ∈ C<
q with q ≥ δ, define

K1

(
�i
)

:=
{
�j ∈ N�i : j0 = i0

}
,

K2

(
�i
)

:=

{
�j ∈ N�i : j0 	= i0, j0 ∈

q⋃
�=1

{i�}, i0 ∈
δ⋃

�=1

{j�}
}
,

K3

(
�i
)

:=

{
�j ∈ N�i : j0 	= i0, j0 	∈

q⋃
�=1

{i�}, i0 ∈
δ⋃

�=1

{j�}
}
,

K4

(
�i
)

:=

{
�j ∈ N�i : j0 	= i0, j0 ∈

q⋃
�=1

{i�}, i0 	∈
δ⋃

�=1

{j�}
}
,

K5

(
�i
)

:=

{
�j ∈ N�i : j0 	= i0, j0 	∈

q⋃
�=1

{i�}, i0 	∈
δ⋃

�=1

{j�},∣∣∣∣∣
(

q⋃
�=1

{i�}
)⋂(

δ⋃
�=1

{j�}
)∣∣∣∣∣ ≥ 1

}
,

K6

(
�i
)

:=

{
�j ∈ N�i : j0 	= i0, j0 	∈

q⋃
�=1

{i�}, i0 	∈
δ⋃

�=1

{j�},(
q⋃

�=1

{i�}
) ⋂(

δ⋃
�=1

{j�}
)

= ∅
}
.

Then N�i = ∪6
w=1Kw

(
�i
)

. Let Dm
�i

= {�j ∈ N�i :∣∣(∪q
�=1{i�})

⋂ (∪δ
�=1{j�}

)∣∣ = m}. We are now in a good
position to present a lemma on E

∑
�i∈C<

q

∑
�j∈N�i

θ�i,�j .

Lemma A.7: Let p ≥ n ≥ 4 and X ∼ VE(μ,Σ, g).
Suppose Σ is row-κ sparse. Consider any θ�i,�j that is a non-

negative function of u� for � ∈ �i ∪ �j defined for �i ∈ C<
q

and �j ∈ C<
δ with 1 ≤ δ ≤ q ≤ p − 1. Suppose there exist

positive constants a, b, z such that θ�i,�j satisfies: ∀ 0 ≤ m ≤
δ − 1, ∀w ∈ {1, 3, 4},

Eθ�i,�j ≤ μn,|�i∪�j|(Σ�i∪�j)az
q+δ−m, ∀ �j ∈ Kw

(
�i
)
∩Dm

�i
;

∀ 0 ≤ m ≤ δ − 2,

Eθ�i,�j ≤ μn,|�i∪�j|(Σ�i∪�j)az
q+δ−m−1, ∀ �j ∈ K2

(
�i
)
∩Dm

�i
;

∀ 1 ≤ m ≤ δ,

Eθ�i,�j ≤ μn,|�i∪�j|(Σ�i∪�j)abz
q+δ−m, ∀ �j ∈ K5

(
�i
)
∩Dm

�i
;

and

Eθ�i,�j ≤ μn,|�i∪�j|(Σ�i∪�j)az
q+δ, ∀ �j ∈ K6

(
�i
)
.

Then ∑
�i∈C<

q

∑
�j∈N�i

Eθ�i,�j

≤ap(pz)q+1η1
(1 + pz)δ−1

δ(4 + b/z)
(δ − 1)!

+

ap2(pz)q+δ (δ + 1)(q + 1)
δ!q!

μn,q+δ+2 (Σ)
κ− 1
p

,

where η1 =
(
1 + μn,q+δ+1(Σ)3q2(κ−1)

p

)
.

Proof: Since

N�i =
6⋃

w=1

Kw

(
�i
)
,

∑
�i∈C<

q

∑
�j∈N�i

Eθ�i,�j =
6∑

w=1

∑
�i∈C<

q

Iw

(
�i
)
, (62)

with

Iw

(
�i
)

:=
∑

�j∈Kw(�i)
Eθ�i,�j .

Case 1: p ≥ q + δ + 2
Obviously K1

(
�i
)

=
⋃δ−1

m=0

(
K1

(
�i
)
∩Dm

�i

)
. Then for any

�i ∈ C<
q satisfying Σ�i diagonal,

∣∣∣�j ∈ K1

(
�i
)⋂

Dm
�i

: Σ�i
�

�j diagonal
∣∣∣

=
(
q

m

)
1

(δ −m)!

∑
j1∈[p]\NZ(�i)

∑
j2∈[p]\NZ(�i)

j2 �∈NZ(j1)∑
j3∈[p]\NZ(�i)

j3 �∈∪2
�=1NZ(j�)

· · ·
∑

jδ−m∈[p]\NZ(�i)
jδ−m �∈∪δ−m−1

�=1 NZ(j�)

1

≥
(
q

m

)
1

(δ −m)!

δ−m−1∏
�=0

(
p�i − �κ

)
, (63)

where in the first inequality we assume without loss of
generality that the components of �j distinct from �i are
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j1, j2, · · · , jδ−m. Then,∣∣∣�j ∈ K1

(
�i
)⋂

Dm
�i

: Σ�i
�

�j not diagonal
∣∣∣

≤
(
q

m

)(
p− 1 − q

δ −m

)
−

(
q

m

)
1

(δ −m)!

δ−m−1∏
�=0

(
p�i − �κ

)

=

(
q
m

)
(δ −m)!

(
δ−m−1∏

�=0

(p− 1 − q − �) −
δ−m−1∏

�=0

(
p�i − �

)
+

δ−m−1∏
�=0

(
p�i − �

) − δ−m−1∏
�=0

(
p�i − �κ

))

≤
(
q

m

)
1

(δ −m)!
(δ −m)pδ−m−1(q + δ)(κ− 1), (64)

where the first inequality follows from (63), and the second
inequality follows from Lemma A.26 (a), (b) and (81).

Then∑
�i∈C<

q

I1

(
�i
)

=
δ−1∑
m=0

⎛
⎜⎜⎜⎜⎝

∑
�i∈C<

q

Σ�i diagonal

∑
�j∈K1(�i)

�
Dm

�i
Σ�i∪�j diagonal

+
∑

�i∈C<
q

Σ�i diagonal

∑
�j∈K1(�i)

�
Dm

�i
Σ�i∪�j not diagonal

+
∑

�i∈C<
q

Σ�i not diagonal

∑
�j∈K1(�i)

�
Dm

�i

⎞
⎟⎟⎟⎠ Eθ�i,�j

≤
δ−1∑
m=0

⎛
⎜⎜⎜⎜⎝

∑
�i∈C<

q

Σ�i diagonal

∑
�j∈K1(�i)

�
Dm

�i
Σ�i∪�j diagonal

+

μn,q+δ+1 (Σ)

⎛
⎜⎜⎜⎜⎝

∑
�i∈C<

q

Σ�i diagonal

∑
�j∈K1(�i)

�
Dm

�i
Σ�i∪�j not diagonal

+

∑
�i∈C<

q

Σ�i not diagonal

∑
�j∈K1(�i)

�
Dm

�i

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ azq+δ−m

≤
δ−1∑
m=0

azq+δ−m

((
p

1

)(
p− 1
q

)(
q

m

)(
p− 1 − q

δ −m

)
+

μn,q+δ+1 (Σ) p
(
p−1
q

)(
q

m

)
δ−m

(δ−m)!
pδ−m−1(q+δ)(κ−1)

+μn,q+δ+1 (Σ)
(q + 1)

2((q − 1)!)
pq(κ− 1)

(
q

m

)(
p− 1 − q

δ −m

))

≤ap (pz)q+1 η1
1

(δ − 1)!

δ−1∑
m=0

(δ − 1)!
m!(δ − 1 −m)!

(pz)δ−1−m

=ap (pz)q+1
η1

1
(δ − 1)!

(1 + pz)δ−1
, (65)

where the first inequality follows from μn,q+δ−m+1 (Σ) ≤
μn,q+δ+1 (Σ), and the second inequality follows from
Lemma A.3 and (64).

Obviously,

K2

(
�i
)

=
δ−2⋃
m=0

(
K2

(
�i
)⋂

Dm
�i

)
,

K3

(
�i
)

=
δ−1⋃
m=0

(
K3

(
�i
)⋂

Dm
�i

)
,

K4

(
�i
)

=
δ−1⋃
m=0

(
K4

(
�i
)⋂

Dm
�i

)
,

K5

(
�i
)

=
δ⋃

m=1

(
K5

(
�i
)⋂

Dm
�i

)
.

Then, following a similar analysis to K1(�i), additionally with
Lemma A.5, we obtain, (66)–(69), shown at the bottom of the
next page.

The detailed derivation of the above inequalities are omitted
for the sake of brevity.

Observe that

K6

(
�i
)

=

{
�j ∈ C<

q :

(
q⋃

�=0

{i�}
)⋂(

δ⋃
�=0

{j�}
)

= ∅,

∃� ∈ [δ] ∪ {0} such that j� ∈ NZ
(
�i
)}

.

Then,∣∣∣K6

(
�i
)∣∣∣ =

(
p− 1 − q

1

)(
p− 2 − q

δ

)
−

(
p�i
1

)(
p�i − 1
δ

)
≤ 1
δ!

(δ + 1)pδ(q + 1)(κ− 1), (70)

where the last inequality follows from Lemma A.26 (a) and
(81). Thus,∑

�i∈C<
q

I6

(
�i
)

≤
(
p

1

)(
p− 1
q

)
1
δ!

(δ+1)pδ(q+1)(κ−1)μn,q+δ+2 (Σ) azq+δ,

≤ap2(pz)q+δ (δ + 1)(q + 1)
δ!q!

μn,q+δ+2 (Σ)
κ− 1
p

, (71)

where the first inequality follows from (70) and
Lemma III.4 (a).
Case 2: p < q + δ + 2
We have imposed the condition p ≥ 2δ+2 to derive (65), (66),
(67), (68), (69) and (71). However, one can verify directly that
these inequalities also hold when p < q+δ+2. We omit these
tedious verifications here and take it for granted (65), (66),
(67), (68), (69) and (71) holds for all 1 ≤ δ ≤ q ≤ p− 1.

Thus combining (62), (65), (66), (67), (68), (69) and (71),
yield∑

�i∈C<
q

∑
�j∈N�i

Eθ�i,�j

≤ap(pz)q+1

�
1+μn,q+δ+1 (Σ) (3q2)

κ−1

p

�
(1+pz)δ−1 δ

4 + b/z

(δ − 1)!

+ ap2(pz)q+δ (δ + 1)(q + 1)
δ!q!

μn,q+δ+2 (Σ)
κ− 1
p

.
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Combining Lemma A.6 and Lemma A.7 immediately yields
the following lemma.

Lemma A.8: Let p ≥ n ≥ 4 and X ∼ VE(μ,Σ, g).
Suppose Σ is row-κ sparse. Consider any θ�i,�j that is a non-

negative function of u� for � ∈�i ∪�j defined for �i ∈ C<
q and

�j ∈ C<
δ with 1 ≤ δ ≤ q ≤ p − 1. Suppose there exist a, z, b

such that all conditions in Lemma A.6 and in Lemma A.7 hold.
Moreover suppose b/z ≤ cn,δ,q for some positive constant
cn,δ,q that only depends on n, q and δ. Then∑

�i∈C<
q

∑
�j∈C<

δ

Eθ�i,�j

≤Cn,q,δ

(
p1+ 1

δ z
)q (

1 + (p1+ 1
δ z)δ

)
(1 + pz)δ−1 (1+

μn,q+δ+2(Σ)
κ− 1
p

)
ap1− q

δ .

3) Proof of Proposition III.6: In what follows in this sub-
section, for the sake of brevity, we write C< for C<

δ , and
write Φ�i for Φ(R)

�i
, for any �i ∈ C<.

Proof of Proposition III.6: Recall

N
(R)
Eδ

=
∑

�i∈C<
δ

δ∏
j=1

Φ(R)
i0ij

=
∑

�i∈C<
δ

Φ�i.

To apply a Compound Poisson Approximation result, some
additional notation need to be introduced. For �i ∈ C<, let
S�i be defined in (49), and let T�i, N�i be defined respectively
as in (60), (61) with q = δ. Here T�i is the set of indices
consisting of coordinates outside the neighborhood of �i; N�i is
the set of “correlated but not highly correlated” indices, i.e.
the set of indices of which at least one component but not
every component is in the neighborhood of �i. Denote

W�i =
∑
�j∈T�i

Φ�j , Z�i =
∑

�j∈N�i

Φ�j , (72)

and recall U�i =
∑

�j∈S�i
Φ(R)

�j
is defined in (50). Then W�i is

independent of U�i and Φ�i. Further denote

ε0 =
∑

�i∈C<

E

(
Φ�i

Φ�i + U�i

1
(
Φ�i + U�i ≥ 1

))
,

ζ0� =
1
ε0�

∑
�i∈C<

E
(
Φ�i1

(
Φ�i + U�i = �

))
, ∀� ≥ 1 (73)

and a probability distribution ζ0 on positive integers with
ζ0(�) = ζ0�. The mean of ζ0 is Eζ0 =

∑
�≥1 �ζ0�. Moreover,

let b1 =
∑

�i∈C< EΦ�iE(Φ�i + U�i + Z�i) and

b2 =
∑

�i∈C<

E
(
Φ�iZ�i

)
. (74)

In this proof we write ε and ζ for εp,n,δ,ρ and ζn,δ,ρ (�)
respectively when there is no confusion. By the compound
Poisson Stein’s approximation, i.e. (5.19) and (5.16) in [38],

dTV

(
L

(
N

(R)
Eδ

)
,CP(ε, ζ)

)
≤eλ0 (b1 + b2 + ε0dW (ζ′

0, ζ
′)Eζ0 + |ε0Eζ0 − εEζ|) , (75)

where ζ′
0(�) = �ζ0�/Eζ0 and ζ′(�) = �ζ(�)/Eζ for � ∈ Z+,

the set of all positive integers. In (75), the distance dW is the
Wasserstein L1 metric on probability measures over the set of
positive integers Z+:

dW (P,Q) = sup
f∈Lip1

∣∣∣∣
∫
fdP −

∫
fdQ

∣∣∣∣
where Lip1 = {f : |f(r) − f(s)| ≤ |r − s|, r, s ∈ Z+}.

By Lemma A.23,

ε0dW (ζ′
0, ζ

′)Eζ0

≤ε0Eζ0
δ

2

δ+1∑
�=1

�

∣∣∣∣ ε0ζ0�

ε0Eζ0
− εζ(�)

εEζ

∣∣∣∣
=
δ

2

δ+1∑
�=1

�

∣∣∣∣(ε0ζ0� − εζ(�)) + (εEζ − ε0Eζ0)
εζ(�)
εEζ

∣∣∣∣
≤δ

2

δ+1∑
�=1

� |ε0ζ0� − εζ(�)| + δ

2
|εEζ − ε0Eζ0|

δ+1∑
�=1

�
εζ(�)
εEζ

≤δ
δ+1∑
�=1

� |ε0ζ0� − εζ(�)| .

Plugging the above inequalities into (75),

dTV

(
L

(
N

(R)
Eδ

)
,CP(ε, ζ)

)
≤eλ0

(
b1 + b2 + (δ + 1)

δ+1∑
�=1

� |ε0ζ0� − εζ(�)|
)
. (76)

It remains to estimate the quantities in the right hand side
of (76).

∑
�i∈C<

q

I2

(
�i
)
≤ap (pz)q+1

(
1 + μn,q+δ (Σ) (3q2)

κ− 1
p

)
1

(δ − 2)!
(1 + pz)δ−2 1(δ ≥ 2), (66)

∑
�i∈C<

q

I3

(
�i
)
≤ap(pz)q+1

(
1 + μn,q+δ+1 (Σ) (3q2)

κ− 1
p

)
1

(δ − 1)!
(1 + pz)δ−1

, (67)

∑
�i∈C<

q

I4

(
�i
)
≤ap (pz)q+1

(
1 + μn,2δ+1 (Σ) (3q2)

κ− 1
p

)
1

(δ − 1)!
(1 + pz)δ−1

, (68)

∑
�i∈C<

q

I5

(
�i
)
≤a

(
b

z

)
p (pz)q+1

(
1 + μn,q+δ+1 (Σ) (3δ2)

κ− 1
p

)
1

(δ − 1)!
(1 + pz)δ−1

. (69)
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Part I. Upper bound for ε0 and
∑δ+1

�=1 � |ε0ζ0� − εζ(�)|
For � ∈ [δ + 1],

|ε0ζ0� − εζ (�)|
=

∣∣∣∣ε0ζ0� − 1
�

(
p

1

)(
p− 1
δ

)
(2Pn(rρ))δα(�, rρ)

∣∣∣∣
≤1
�

∑
�i∈C<

∣∣E (
Φ�i1

(
Φ�i + U�i = �

)) − (2Pn(rρ))δα(�, rρ)
∣∣

=
1
�

∑
�i∈C<

Σ�i not diagonal

∣∣E (
Φ�i1

(
Φ�i+U�i = �

))−(2Pn(rρ))δα(�, rρ)
∣∣

≤1
�
(μn,δ+1 (Σ) + 1)(2Pn(rρ))δα(�, rρ)

∑
�i∈C<

Σ�i not diagonal

1

≤α(�, rρ)
�

μn,δ+1 (Σ) γδ (δ + 1)
(δ − 1)!

κ− 1
p

, (77)

where the first inequality follows from the definition of ζ0�

in (73), the second inequality follows from Lemma A.2
and Lemma III.4 (a), and the last inequality follows from
Lemma A.3 and μn,δ+1 (Σ) ≥ 1.

Then,

|ε0Eζ0 − εEζ|

≤
δ+1∑
�=1

� |ε0ζ0� − εζ(�)| ≤ μn,δ+1 (Σ) γδ (δ + 1)
(δ − 1)!

κ− 1
p

,

(78)

where the last inequality follows from (77). As an immediate
consequences,

ε0 ≤ ε0Eζ0

≤ |ε0Eζ0 − εEζ| + εEζ

≤ μn,δ+1 (Σ) γδ (δ + 1)
(δ − 1)!

κ− 1
p

+
(
p

1

)(
p−1
δ

)
(2Pn(rρ))δ

≤ γδ (δ + 1)
(δ − 1)!

(
μn,δ+1 (Σ)

κ− 1
p

+ 1
)
, (79)

where the third inequality follows from (78).

Part II. Upper bound for b1
Since N�i ∪ S�i ∪ {�i} = C<\T�i,

b1 =
∑

�i∈C<

∑
�j∈C<\T�i

EΦ�iEΦ�j . (80)

Given �i ∈ C<, by (58) with q = δ,

p�i :=
∣∣∣[p]\NZ

(
�i
)∣∣∣ ≥ p− (δ + 1)κ. (81)

Since
∣∣T�i

∣∣ = p�i
(p�i−1

δ

)
,∣∣C<\T�i

∣∣
=p

(
p− 1
δ

)
− p�i

(
p�i − 1
δ

)

≤ 1
δ!

(δ + 1)

(
δ−1∏
α=0

(p− α)

)
(p− p�i) ≤

(δ + 1)2

δ!
pδκ, (82)

where the first inequality follows from Lemma A.26 (a).

One straightforward upper bound is

b1 =
∑

�i∈C<

∑
�j∈C<\T�i

E

(
δ∏

l=1

Φ(R)
i0il

)
E

(
δ∏

l′=1

Φ(R)
j0jl′

)

≤ p

(
p− 1
δ

)
(δ + 1)2

δ!
pδκ (μn,δ+1 (Σ))2 (2Pn(rρ))2δ

≤ (μn,δ+1 (Σ))2
(δ + 1)2

(δ!)2
(
2p1+ 1

δPn(rρ)
)2δ κ

p
,

where the first inequality follows from Lemma A.2,
Lemma III.4 (a) and (82). The (μn,δ+1 (Σ))2 in the above
upper bound is not very satisfactory, and can be improved by
a more involved analysis.

Observe for given �i ∈ C<,∣∣∣{�j ∈ C<\T�i : Σ�j not diagonal}
∣∣∣

=|C<\T�i| −
(∣∣∣{�j ∈ C< : Σ�j diagonal}

∣∣∣−∣∣∣{�j ∈ T�i : Σ�j diagonal}
∣∣∣)

≤ 1
δ!

(δ + 1)

(
δ−1∏
α=0

(p− α)

)
(p− p�i)−(∣∣∣{�j ∈ C< : Σ�j diagonal}

∣∣∣ − ∣∣∣{�j ∈ T�i : Σ�j diagonal}
∣∣∣),

(83)

where the inequality follows from (82). Then, (84) and (85),
shown at the bottom of the next page, where the second
equality follows by writing (84) as a telescoping sum with
the convention that the summation over j−1 for m = 0 and
the summation over jδ+1 for m = δ vanish, and the third
equality follows from changing the order of the summation
for m ≥ 1. Plugging (85) into (83),∣∣∣{�j ∈ C<\T�i : Σ�j not diagonal}

∣∣∣
≤ 1
δ!

(δ + 1)(p− p�i)

(
δ−1∏
α=0

(p− α) −
δ−1∏
α=0

(p�i − 1 − α)+

δ∏
α=1

(p�i − α) −
δ∏

α=1

(p�i − ακ)

)

≤ 1
δ!

(δ + 1)(p− p�i)
(
δpδ−1(p− p�i + 1)+

δ(δ + 1)
2

pδ−1(κ− 1)
)

≤3δ(δ + 1)3

δ!
pδ−1κ2, (86)

where the second inequality follows from Lemma A.26 (a) and
Lemma A.26 (b), and the last inequality follows from (81).

Then for any �i ∈ C<,∑
�j∈C<\T�i

μn,δ+1

(
Σ�j

)

≤
∑

�j∈C<\T�i
Σ�j diagonal

1 + μn,δ+1 (Σ)
∑

�j∈C<\T�i
Σ�j not diagonal

1

≤ (δ + 1)2

δ!
pδκ+ μn,δ+1 (Σ)

3δ(δ + 1)3

δ!
pδ−1κ2,
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≤3δ(δ + 1)3

δ!
pδκ

(
1 + μn,δ+1 (Σ)

κ

p

)
, (87)

where the first inequality follows from Lemma III.4 (a), and
the second inequality follows from (82), (86).

Then following (80),

b1

≤
∑

�i∈C<

∑
�j∈C<\T�i

μn,δ+1

(
Σ�i

)
μn,δ+1

(
Σ�j

)
(2Pn(rρ))2δ

≤p
δ+1

δ!

(
1 + δ2μn,δ+1(Σ)

κ− 1
p

)
3δ(δ + 1)3

δ!
pδκ (1+

μn,δ+1 (Σ)
κ

p

)
(2Pn(rρ))2δ

≤
(

3
δ3(δ + 1)3

(δ!)2
(2p1+ 1

δPn(rρ))2δ

)
κ

p

(
1 + μn,δ+1(Σ)

κ

p

)2

,

(88)

where the first inequality follows from Lemma A.2, the second
inequality follows from Lemma A.4 and (87).

Part III. Upper bound for b2
Let Kw(�i) and Dm

�i
be the same as in Subsection E.2 with

q = δ. By Lemma III.4 (c), Lemma A.2 and Lemma A.5,
it follows that the conditions in Lemma A.7 with q = δ and
θ�i,�j = Φ�iΦ�j are satisfied with a = 1, b = 2Pn(2rρ)1(δ ≥
2) + 2Pn(rρ)1(δ = 1) and z = 2Pn(rρ). Moreover, b/z ≤
2n−21(δ ≥ 2) + 1 by Lemma A.22 (d). Thus by Lemma A.7
with q = δ and θ�i,�j = Φ�iΦ�j ,

b2

≤p(2pPn(rρ))δ+1η1 (1 + 2pPn(rρ))
δ−1 δ

5 + 2n−11(δ ≥ 2)
(δ − 1)!

+

(δ + 1)2

(δ!)2
p2(2pPn(rρ))2δμn,2δ+2 (Σ)

κ− 1
p

. (89)

≤γδ+1p−
1
δ η1

(
1 + γp−

1
δ

)δ−1

δ
5 + 2n−11(δ ≥ 2)

(δ − 1)!
+

(δ + 1)2

(δ!)2
γ2δμn,2δ+2 (Σ)

κ− 1
p

, (90)

∣∣∣{�j ∈ C< : Σ�j diagonal}
∣∣∣ − ∣∣∣{�j ∈ T�i : Σ�j diagonal}

∣∣∣
=

1
δ!

p∑
j0=1

∑
j1∈[p]\NZ(j0)

· · ·
∑

jδ∈[p]\
δ−1�
l=0

NZ(jl)

1 − 1
δ!

∑
j0∈[p]

j0 �∈NZ(�i)

∑
j1∈[p]\NZ(j0)

j1 �∈NZ(�i)

· · ·
∑

jδ∈[p]\
δ−1�
l=0

NZ(jl)

jδ �∈NZ(�i)

1 (84)

=
1
δ!

δ∑
m=0

⎛
⎜⎜⎜⎝ ∑

j0∈[p]

j0 �∈NZ(�i)

∑
j1∈[p]\NZ(j0)

j1 �∈NZ(�i)

· · ·

∑
jm−1∈[p]\

m−2�
l=0

NZ(jl)

jm−1 �∈NZ(�i)

∑
jm∈[p]\

m−1�
l=0

NZ(jl)

jm∈NZ(�i)

∑
jm+1∈[p]\

m�
l=0

NZ(jl)

· · ·
∑

jδ∈[p]\
δ−1�
l=0

NZ(jl)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
1
δ!

∑
j0∈[p]

j0∈NZ(�i)

∑
j1∈[p]\NZ(j0)

· · ·
∑

jδ∈[p]\
δ−1�
l=0

NZ(jl)

1 +
1
δ!

δ∑
m=1

(

∑
jm∈NZ(�i)

∑
j0∈[p]

j0 �∈NZ(�i)
j0 �∈NZ(jm)

∑
j1∈[p]\NZ(j0)

j1 �∈NZ(�i)
j1 �∈NZ(jm)

· · ·
∑

jm−1∈[p]\
m−2�
l=0

NZ(jl)

jm−1 �∈NZ(�i)
jm−1 �∈NZ(jm)

∑
jm+1∈[p]\

m�
l=0

NZ(jl)

· · ·
∑

jδ∈[p]\
δ−1�
l=0

NZ(jl)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥ 1
δ!

(p− p�i)
δ∏

β=1

(p− βκ) +
1
δ!

δ∑
m=1

(p− p�i)

(
m∏

α=1

(p�i − ακ)

) ⎛
⎝ δ∏

β=m+1

(p− βκ)

⎞
⎠

≥(δ + 1)
δ!

(p− p�i)
δ∏

α=1

(p�i − ακ), (85)
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where η1 =
(
1 + μn,2δ+2 (Σ) (3δ2)κ−1

p

)
, and the last step

follows from 2p1+ 1
δPn(rρ) ≤ γ.

By combining (76), (78), (79), (88), (90), together with the
assumption 2p1+ 1

δPn(rρ) ≤ γ,

dTV

(
L

(
N

(R)
Eδ

)
,CP(ε, ζ)

)
≤Cn,δ,γ

(
C′

δ,γ

)μn,δ+1(Σ)(κ−1)/p
(
p−

1
δ +

μn,2δ+2 (Σ)κ/p
(
1 + μn,2δ+2 (Σ) (κ/p)2

))
,

where

C′
δ,γ = exp

(
γδ δ + 1

(δ − 1)!

)
, (91)

and

Cn,δ,γ = C
δ6 + δ22n−11(δ ≥ 2)

δ!
γδ+1(1 + γ)δC′

δ,γ . (92)

F. Proofs in Subsection III-D

1) Proof of Lemma III.8:
Proof of Lemma III.8: N (R)

V̆δ
≤ N

(R)
Vδ

≤ N
(R)
Eδ

follows
trivially from their definitions. It remains to show

N
(R)
Eδ

≤ (δ + 1)N (R)
Eδ+1

+N
(R)

V̆δ
. (93)

To see this, consider δ ≥ 2 and any vertex i and denote its
degree by m. If m < δ, then it contributes zero to both sides
of (93). If m = δ, then it contributes 1 to both sides of (93).
If m > δ, it contributes

(
m
δ

)
to left hand side of (93), while

contributes (δ+1)
(

m
δ+1

)
= (m−δ)(m

δ

)
. The above observation

proves (93). The case δ = 1 is similar and is omitted.
The above proof indeed applies to any graph and, in par-

ticular, the empirical partial correlation graph. So the second
equation in the statement of the lemma holds.

2) Proof of Proposition III.9 (a): By (29), it suffices to
establish an upper bound on EN

(R)
Eδ+1

.
Lemma A.9: Let X ∼ VE(μ,Σ, g). Suppose Σ is row-κ

sparse. Let � ∈ [p− 1]. Then

EN
(R)
E�

≤ 1
�!

(
1 + �2μn,�+1(Σ)

κ− 1
p

)
p (2pPn(rρ))

�
.

Proof:

EN
(R)
E�

=
∑

�i∈C<
�

E

�∏
j=1

Φ(R)
i0ij

≤
∑

�i∈C<
�

μn,�+1

(
Σ�i

)
(2Pn(rρ))�

≤ 1
�!

(
1 + �2μn,�+1(Σ)

κ− 1
p

)
p (2pPn(rρ))�

,

where the first inequality follows from Lemma A.2, and the
second inequality follows from Lemma A.4.

Proof of Proposition III.9 (a): It follows from (29),
Lemma A.9 and Lemma A.24.

3) Proof of Proposition III.9 (b): Similar to (47) and (48),
denote

Φ(R)
�i

=
δ∏

j=1

Φ(R)
i0ij

= 1

⎛
⎝ δ⋂

j=1

{dist(ui0 ,uij ) ≤ rρ}
⎞
⎠ .

Then by definition

N
(P )
Eδ

=
∑

�i∈C<
δ

Φ(P )
�i

. (94)

By (48) and (94),∣∣∣N (P )
Eδ

−N
(R)
Eδ

∣∣∣ ≤ ∑
�i∈C<

δ

|Φ(P )
�i

− Φ(R)
�i

|.

The next three lemmas establish upper bound on
|Φ(P )

�i
− Φ(R)

�i
|.

We may suppose Σ is (τ, κ) sparse throughout this proof
and the proof of Proposition III.9 (c) since the conclusion is
invariant to permutation of the variables by Remark II.8. As a
result, the U-scores may be partitioned into Û ∈ R

(n−1)×τ

consisting of the first τ columns and Ǔ ∈ R
(n−1)×(p−τ)

consisting the remaining p− τ columns.
Denote [τ ] = {1, 2, · · · , τ}. Define a matrix B̌ by

B̌ =
n− 1
p− τ

Ǔ [Ǔ ]� =
n− 1
p− τ

p∑
i∈[p]\[τ ]

uiu
�
i . (95)

Denote Q̌ =
√
n− 1Ǔ . Observe that Q̌ has exactly p −

τ independent columns and each column
√
n− 1ui ∼

unif(
√
n− 1Sn−2). These observations immediately give us

part (a) of the following.
Lemma A.10: Let {uα}p

α=1 be columns of U defined in
Section III-A. Let B̌ be defined as in equation (95).

(a) Suppose Σ is (τ, κ) sparse. B̌ = 1
p−τ QQ�, where

Q ∈ R(n−1)×(p−τ) has independent columns with each
column distributed as unif(

√
n− 1Sn−2).

(b) |εmax

(
p

p−τ B
)

− εmax(B̌)| ≤ n−1
p−τ τ , and

εmin

(
p

p−τ B
)
≥ εmin(B̌).

Proof: (b) Recall B = n−1
p

∑p
i=1 uiu

�
i . Then,

p

p− τ
B − B̌ =

n− 1
p− τ

∑
i∈[τ ]

uiu
�
i .

By Lemma A.27 (a), we have:

|εmax

(
p

p− τ
B

)
− εmax

(
B̌

) | ≤
∥∥∥∥∥∥n− 1
p− τ

∑
i∈[τ ]

uiu
�
i

∥∥∥∥∥∥
2

≤ n− 1
p− τ

∑
i∈[τ ]


uiu
�
i 
2

≤ n− 1
p− τ

τ,

where for the last inequality, we use the fact that ui ∈ Sn−2.
Moreover, by Lemma A.27 (c), we get εmin

(
p

p−τ B
)

≥
εmin(B̌).
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Denote h0

(
B̌

)
=

λmax(B̌)+ n−1
p−τ τ

λmin(B̌) =
Smax(B̌)+ n−1

p−τ τ

Smin(B̌) to be

the perturbational condition number of B̌, where εmax

(
B̌

)
,

εmin

(
B̌

)
, Smax

(
B̌

)
, and Smin

(
B̌

)
are respectively the largest

eigenvalue, smallest eigenvalue, largest singular value and
smallest singular value of B̌.

Lemma A.11: Suppose p ≥ n. Let {uα}p
α=1 and {yα}p

α=1

be defined as in Section III-A. Consider distinct i, j satisfying
1 ≤ i, j ≤ p. Then with probability 1,

1
h0

(
B̌

)
ui − uj
2 ≤ 
yi − yj
2 ≤ h0

(
B̌

) 
ui − uj
2,

and

1
h0

(
B̌

)
ui + uj
2 ≤ 
yi + yj
2 ≤ h0

(
B̌

) 
ui + uj
2.

Proof: Recall yα = ȳα/
ȳα
2 and ȳα = B−1uα a.s.,
for α = i, j. Apply the upper bound in Lemma A.28,


yi − yj
2 ≤ εmax(B−1)
εmin(B−1)


ui − uj
2 a.s.

=
εmax

(
p

p−τ B
)

εmin

(
p

p−τ B
) 
ui − uj
2

≤ εmax

(
B̌

)
+ n−1

p−τ τ

εmin

(
B̌

) 
ui − uj
2,

where the last inequality follows from Lemma A.10 (b). The
lower bound of the first desired display follows similarly,
by the lower bound in Lemma A.28.

The second desired expression follows analogously.
For {i, j} ∈ [p] with i 	= j, q ∈ {−1,+1}, define

S
(q)
ij (rρ) = {
yi − qyj
2 ≤ rρ},

F
(q)
ij (rρ) = {
ui − quj
2 ≤ rρ},

G
(q)
ij (rρ) =

{

ui − quj
2 ≤ 1

h0

(
B̌

)rρ
}
,

H
(q)
ij (rρ) =

{
ui − quj
2 ≤ h0

(
B̌

)
rρ

}
. (96)

Define Fij(rρ) = F
(−1)
ij (rρ) ∪ F

(+1)
ij (rρ). Gij(rρ), Hij(rρ),

Sij(rρ) are defined similarly. Using these notation, then
Φ(P )

ij (ρ) = 1 (Sij(rρ)), and Φ(R)
ij (ρ) = 1 (Fij(rρ)). For

�i ∈ C<
δ , denote

H�i(rρ) =
δ⋂

�=1

Hi0i�
(rρ), H�i,−m(rρ) =

δ⋂
�=1
� �=m

Hi0i�
(rρ).

When it is clear from the context, the dependence of rρ for
the above quantities will be suppressed. By Lemma A.11, with
probability 1,

G
(q)
ij ⊂ S

(q)
ij ⊂ H

(q)
ij , G

(q)
ij ⊂ F

(q)
ij ⊂ H

(q)
ij . (97)

Lemma A.12: Suppose p ≥ n. Consider δ ∈ [p − 1]. For
any �i ∈ C<

δ , with probability 1,∣∣∣Φ(P )
�i

− Φ(R)
�i

∣∣∣ ≤ ξ�i,

where

ξ�i := 1

(
δ⋃

m=1

((
Hi0im

∖
Gi0im

)⋂
H�i,−m

))
.

Proof: Notice Φ(R)
�i

= 1
(

δ⋂
m=1

Fi0im

)
and Φ(P )

�i
=

1
(

δ⋂
m=1

Si0im

)
. Let � denote the symmetrization difference

of two sets. Then∣∣∣Φ(P )
�i

− Φ(R)
�i

∣∣∣ = 1

((
δ⋂

m=1

Fi0im

)
�

(
δ⋂

m=1

Si0im

))
≤ ξ�i,

where the inequality follows from (97) and
Lemma A.29 (a).

To obtain an upper bound on the expectation of ξ�i, we first
bound the expectation on a high-probability set. Define the set
E(t), with t being a parameter to be determined, by

E(t) =

{[
1 − C1

(√
n− 1
p− τ

+
t√
p− τ

)]2

≤ εmin(B̌)

} ⋂
⋂{

εmax(B̌) ≤
[
1 + C1

(√
n− 1
p− τ

+
t√
p− τ

)]2
}
,

(98)

to be the set such that (184) in Lemma A.30 holds, i.e. the
constant C1 in E(t) is the same constant as C in (184).
By Lemma A.10 (a) and Lemma A.30,

P(Ec(t)) ≤ 2 exp(−c1t2). (99)

Since τ ≤ p
2 ,

n− 1
p− τ

τ ≤ 2(n− 1)
τ

p
, (100)

and

C1

(√
n− 1
p− τ

+
t√
p− τ

)
≤

√
2C1

(√
n− 1
p

+
t√
p

)
.

(101)

Moreover, on E(t), and assuming

√
2C1

(√
n− 1
p

+
t√
p

)
≤ 1

2
, (102)

one has

h0(B) ≤
(
1 + C1

(√
n−1
p−τ + t√

p−τ

))2

+ n−1
p−τ τ(

1 − C1

(√
n−1
p−τ + t√

p−τ

))2

≤1 + 16
√

2C1

(√
n− 1
p

+
t√
p

)
+ 8(n− 1)

τ

p
:= θ1(t),

(103)

where the second inequality follows from (100), (101) and
Lemma A.26 (c).

For �i ∈ C<
δ , denote

F�i(rρ) =
δ⋂

�=1

Fi0i�
(rρ), F�i,−m(rρ) =

δ⋂
�=1
� �=m

Fi0i�
(rρ).
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Lemma A.13: Let p ≥ n ≥ 4, δ ∈ [p − 1] and X ∼
VE(μ,Σ, g). Suppose Σ, after some row-column permutation,
is (τ, κ) sparse with τ ≤ p

2 . Let t be any positive number, and
suppose (102) holds. Then for any �i ∈ C<

δ , with probability
1,

ξ�i1 (E(t)) ≤ η�i(t),

where

η�i(t) :=1

(
δ⋃

m=1

(
F�i,−m(θ1(t)rρ)

⋂
(
Fi0im(θ1(t)rρ)

∖
Fi0im

(
rρ
θ1(t)

))))
. (104)

Moreover,

E1
((
Fi0im(θ1(t)rρ)

∖
Fi0im

(
rρ
θ1(t)

)) ⋂
F�i,−m(θ1(t)rρ)

)
≤μn,δ+1(Σ�i)2θ2(t) (2Pn (θ1(t)rρ))δ−1

, (105)

where θ2(t) := Pn(rρθ1(t)) − Pn

(
rρ

θ1(t)

)
. Then

Eη�i(t)

≤δμn,δ+1(Σ�i)2θ2(t) (2Pn (θ1(t)rρ))
δ−1

≤μn,δ+1(Σ�i)δn(θ1(t))nδθ3(t) (2Pn (rρ))δ
,

where θ3(t) :=
(
θ1(t) − 1

θ1(t)

)
.

Proof: By (103), Hij(rρ) ∩ E(t) ⊂ Fij(θ1(t)rρ) and

Gij(rρ) ∩ E(t) ⊃ Fij

(
rρ

θ1(t)

)
. Then

ξ�i1 (E(t)) ≤ η�i(t). (106)

E1
((
Fi0im(θ1(t)rρ)

∖
Fi0im

(
rρ
θ1(t)

)) ⋂
F�i,−m(θ1(t)rρ)

)
≤μn,δ+1(Σ�i)P (⎛

⎝ ⋃
q∈{−1,+1}

{
rρ
θ1(t)

< 
u′
i0 − qu′

im

2 ≤ θ1(t)rρ

}⎞
⎠ ⋂

⎛
⎜⎝ δ⋂

α=1
α�=m

⎛
⎝ ⋃

q∈{−1,+1}
{
u′

i0 − qu′
iα

2 ≤ θ1(t)rρ}

⎞
⎠

⎞
⎟⎠

⎞
⎟⎠ ,

(107)

where the last inequality follows from Lemma III.4 (c) with

u′
i0 ,u

′
i1 , · · · ,u′

iδ

i.i.d.∼ unif(Sn−2).

For any w ∈ Sn−2, define Ω(q)
w := {v ∈ Sn−2 : 1

θ1(t)
rρ <


v − qw
2 ≤ rρθ1(t)}. Then

P

⎛
⎝u′

im ∈
⋃

q∈{−1,+1}
Ω(q)

w

⎞
⎠

=2
(
Pn(rρθ1(t)) − Pn

(
1

θ1(t)
rρ

))
.

By conditioning on u′
i0

, the term in right hand side of (107)
equals to

μn,δ+1(Σ�i)2θ2(t) (2Pn (θ1(t)rρ))δ−1 ,

which then proves (105).

By the union bound,

Eη�i(t)

≤
δ�

m=1

E1

��
Fi0im(θ1(t)rρ)

�
Fi0im

�
rρ

θ1(t)

���
F�i,−m

(θ1(t)rρ)

�

(∗)
≤ δμn,δ+1(Σ�i

)2θ2(t) (2Pn (θ1(t)rρ))δ−1

(∗∗)
≤ δμn,δ+1(Σ�i

)2(n − 2)Pn(rρ) (θ1(t))n−3 θ3(t) (2Pn(rρθ1(t)))δ−1

(∗∗∗)
≤ δμn,δ+1(Σ�i

)2nPn(rρ)(θ1(t))n−3θ3(t)
�
(θ1(t))n−2 2Pn (rρ)

�(δ−1)
,

where (∗) follows from (105), (∗∗) follows from
Lemma A.22 (c), and (∗ ∗ ∗) follows from
Lemma A.22 (d).

Lemma A.14: Let p ≥ n ≥ 4, δ ∈ [p − 1] and X ∼
VE(μ,Σ, g). Let t be any positive number, and suppose
(102) holds. Suppose Σ, after some row-column permutation,
is (τ, κ) sparse with τ ≤ p

2 . Then∣∣∣N (P )
Eδ

−N
(R)
Eδ

∣∣∣ 1 (E(t)) ≤
∑

�i∈C<
δ

η�i(t)

and

E

∑
�i∈C<

δ

η�i(t)

≤ Cn2

(δ − 1)!
η3(θ1(t))nδ

(√
1
p

+
t√
p

+
τ

p

)
p (2pPn (rρ))

δ ,

where C is an universal constant, and η3 := 1 +
δ2 κ−1

p μn,δ+1(Σ).
Proof:∣∣∣N (P )
Eδ

−N
(R)
Eδ

∣∣∣ 1 (E(t)) ≤
∑

�i∈C<
δ

E

∣∣∣Φ(P )
�i

− Φ(R)
�i

∣∣∣ 1 (E(t))

≤
∑

�i∈C<
δ

η�i(t),

where the last inequality follows from Lemma A.12 and
Lemma A.13.

By Lemma A.13,∑
�i∈C<

δ

Eη�i

≤
∑

�i∈C<
δ

μn,δ+1(Σ�i)δn(θ1(t))nδθ3(t) (2Pn (rρ))
δ

≤p
δ+1

δ!

(
1+δ2

κ−1
p

μn,δ+1(Σ)
)
δn(θ1(t))nδθ3(t) (2Pn (rρ))

δ

≤ Cn

(δ − 1)!
η3(θ1(t))nδ

(√
n

p
+

t√
p

+ n
τ

p

)(
2p1+1

δPn (rρ)
)δ

,

(108)

where the third inequality follows from Lemma A.4 and the
last inequality follows from Lemma A.26 (d) and (103).

Lemma A.15: Let p ≥ n ≥ 4, δ ∈ [p − 1] and X ∼
VE(μ,Σ, g). Suppose Σ, after some row-column permutation,
is (τ, κ) sparse with τ ≤ p

2 . Suppose 2p1+ 1
δPn(rρ) ≤ γ
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and
(√

n−1
p +

√
δ ln p

p

)
≤ c hold for some positive and

sufficiently small universal constant c. Then

E

∣∣∣N (P )
Eδ

−N
(R)
Eδ

∣∣∣
≤C(P )

Eδ

(
1 +

κ− 1
p

μn,δ+1(Σ)
) (√

ln p
p

+
τ

p

)
,

where C(P )
Eδ

is defined in (112).
Proof:

E

∣∣∣N (P )
Eδ

−N
(R)
Eδ

∣∣∣
≤ E

∣∣∣N (P )
Eδ

−N
(R)
Eδ

∣∣∣ 1 (E(t)) +
(
p

1

)(
p− 1
δ

)
P(Ec(t)),

≤ E

∣∣∣N (P )
Eδ

−N
(R)
Eδ

∣∣∣ 1 (E(t)) +
pδ+1

δ!
2 exp(−c1t2), (109)

where the first inequality follows from 0 ≤ N
(Ψ)
Eδ

≤ (
p
1

)(
p−1

δ

)
for both Ψ = R and Ψ = P , and the second inequality
follows from (99).

Choose t = cδ
√

ln p with cδ =
√

5δ
2c1

≥
√(

3
2 + δ

)
/c1

such that

2 exp(−c1t2) ≤ 2 exp
(
−

(
3
2

+ δ

)
ln p

)
=

2
p

3
2 +δ

.

Moreover, for any

c <
1

2 max
{√

5
2c1
, 1

}√
2C1

, (110)

the inequality (√
n− 1
p

+

√
δ ln p
p

)
≤ c

implies
√

2C1

(√
n− 1
p

+ cδ

√
ln p
p

)
≤ 1

2
, (111)

which is (102) with t = cδ
√

ln p. Then apply Lemma A.14
with t = cδ

√
ln p to (109),

E

∣∣∣N (P )
Eδ

−N
(R)
Eδ

∣∣∣
≤ Cn2

(δ − 1)!
η3

(
θ1

(
cδ

√
ln p

))nδ
(√

1
p

+
√
δ ln p√
p

+
τ

p

)
γδ

+
2

δ!
√
p

≤Cn2
√
δ

(δ − 1)!
η3(θ1(cδ

√
ln p))nδ

(√
ln p√
p

+
τ

p

)
γδ +

2
δ!
√
p

≤C(P )
Eδ

(
1 +

κ− 1
p

μn,δ+1(Σ)
) (√

ln p
p

+
τ

p

)
,

where

C
(P )
Eδ

=
Cn2δ

5
2

(δ − 1)!

(
θ1

(
cδ

√
ln p

))nδ

γδ +
2

δ!
√

ln p

≤ Cn2δ
5
2

(δ − 1)!
(4n+ 5)nδ

γδ +
2
δ!
, (112)

where the last step follows from θ1
(
cδ
√

ln p
) ≤ 9+4(n−1) =

4n+ 5 by (111) and τ ≤ p/2.
Proof of Proposition III.9 (b): It follows directly from

Lemma A.15 and Lemma A.24.
4) Proof of Proposition III.9 (c) : By Lemma III.8,

N
(P )
Eδ

− (δ + 1)N (P )
Eδ+1

−N
(R)
Eδ

≤N (P )

V̆δ
−N

(R)

V̆δ

≤N (P )
Eδ

−N
(R)
Eδ

+ (δ + 1)N (R)
Eδ+1

,

which implies∣∣∣N (P )

V̆δ
−N

(R)

V̆δ

∣∣∣
≤

∣∣∣N (P )
Eδ

−N (R)
Eδ

∣∣∣+(δ+1)
∣∣∣N (P )

Eδ+1
−N (R)

Eδ+1

∣∣∣ + (δ + 1)N (R)
Eδ+1

.

(113)

Lemma A.16: Let p ≥ n ≥ 4, δ ∈ [p − 1] and X ∼
VE(μ,Σ, g). Suppose Σ, after some row-column permutation,
is (τ, κ) sparse with τ ≤ p

2 . Suppose 2p1+ 1
δPn(rρ) ≤ γ and(√

n−1
p +

√
ln p
p

)
≤ c hold for some positive and sufficiently

small constant c. Then

E

∣∣∣N (P )

V̆δ
−N

(R)

V̆δ

∣∣∣
≤C(P )

V̆δ

(
1 +

κ− 1
p

μn,δ+2(Σ)
) (√

ln p
p

+
τ

p
+ p−

1
δ

)

where C(P )

V̆δ
is defined in (118).

Proof: Let E(t) be the same as in (98) with t to be
determined. Consider δ ∈ [p− 2].

E

∣∣∣N (P )

V̆δ
−N

(R)

V̆δ

∣∣∣
≤E

∣∣∣N (P )

V̆δ
−N

(R)

V̆δ

∣∣∣ 1 (E(t)) + pP(Ec(t))

≤E|N (P )
Eδ

−N (R)
Eδ

|1 (E(t))+(δ + 1)E|N (P )
Eδ+1

−N (R)
Eδ+1

|1 (E(t))

+ (δ + 1)EN (R)
Eδ+1

+ 2pe−c1t2 , (114)

where the first inequality follows from 0 ≤ N
(Ψ)

V̆δ
≤ p for

Ψ = R and P , the second inequality follows from (113) and
(99). If δ = p− 1, then

E

∣∣∣N (P )

V̆p−1
−N

(R)

V̆p−1

∣∣∣
≤E

∣∣∣N (P )

V̆p−1
−N

(R)

V̆p−1

∣∣∣ 1 (E(t)) + pP(Ec(t))

≤E

∣∣∣N (P )
Ep−1

−N
(R)
Ep−1

∣∣∣ 1 (E(t)) + 2p exp(−c1t2),
which shows that (114) also holds for δ = p − 1 with the
convention N (P )

Ep
= N

(R)
Ep

= 0.

Choose t =
√

3
c1

ln p := c2
√

ln p, such that p exp(−c1t2) =
1
p2 . Moreover, for any

c <
1

2 max{c2, 1}
√

2C1

, (115)

the inequality (√
n− 1
p

+

√
ln p
p

)
≤ c
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implies
√

2C1

(√
n− 1
p

+ c2

√
ln p
p

)
≤ 1

2
, (116)

which is (102) with t = c2
√

ln p. With t = c2
√

ln p
Lemma A.14 becomes:

E

∣∣∣N (P )
Vδ

−N
(R)
Vδ

∣∣∣ 1 (E(t))

≤ Cn2

(δ − 1)!
η3(θ1(c2

√
ln p))nδ

(√
ln p√
p

+
τ

p

)
p (2pPn (rρ))

δ
,

(117)

Then for δ ∈ [p − 1] applying (117) with δ, δ + 1 and
Lemma A.9 to (114), together with μn,δ+1(Σ) ≤ μn,δ+2(Σ),
shown in the equation at the bottom of the next page.

where in the last inequality

C
(P )

V̆δ

=
Cn2(δ + 1)2

(δ − 1)!

(
θ1

(
c2

√
ln p

))n(δ+1)

γδ(1 + γ) (1+

δ + 1
δ

γp−
1
δ

)
+

2
p2− 1

δ

≤Cn
2(δ + 1)2

(δ − 1)!
(4n+ 5)n(δ+1)

γδ(1 + γ) (1+

δ + 1
δ

γp−
1
δ

)
+ 2. (118)

where the last step follows from θ1
(
c2
√

ln p
) ≤ 9+4(n−1) =

4n+ 5 by (116) and τ ≤ p/2.
Proof of Proposition III.9 (c): Lemmas A.16 and A.24

complete the proof of Proposition III.9 (c).

G. Proofs in Subsection III-E

1) Proof of Lemma III.14: To utilize the notation we have
defined in this paper, we make the following adjustments
to the notation throughout this subsection. In this proof it
suffices to prove the conclusion for any δ + 1 i.i.d. random
points from unif(Sn−2). Without loss of generality assume
in this subsection that the first δ + 1 U-scores {ui}δ+1

i=1 are
independent. Another adjustment is to replace r by rρ. With
these adjustments Lemma III.14 is equivalent to the following:
when rρ < 2/

√
5, δ ≥ 1, for any � ∈ [δ + 1],

P
(
NUV

({ui}δ+1
i=1 , rρ

)
= �| deg(uδ+1) = δ

)
=P

(
PNUV

({ui}δ+1
i=1 , rρ

)
= �| deg(uδ+1) = δ

)
. (119)

Take �i = (δ + 1, 1, · · · , δ). Recall the notation
�i,Φ�i = Φ(R)

�i
, U�i are defined in Subsection III-C, where

the dependence of R in Φ(R)
�i

is suppressed throughout
this subsection for the sake of clearer exposition. Then
PNUV

({ui}δ+1
i=1 , rρ

)
= U�i + Φ�i. Moreover, the event

{deg(uδ+1) = δ} in PGe
({ui}δ+1

i=1 , rρ
)

is the same as

{Φ�i = 1}. Define F
(q)
ij = {
ui − quj
2 ≤ rρ}. Then

1

(
δ⋂

j=1

F
(+1)
j(δ+1)

)
is the indicator function of the event that

the degree of vertex uδ+1 in Ge
({ui}δ+1

i=1 , rρ
)

is δ. Hence

Lemma III.14 is also equivalent to the following: when rρ <
2/

√
5, δ ≥ 1, for any � ∈ [δ + 1],

P
(
U�i + Φ�i = �|Φ�i = 1

)
=P

⎛
⎝NUV

({ui}δ+1
i=1 , rρ

)
= �

∣∣∣∣∣∣1
⎛
⎝ δ⋂

j=1

F
(+1)
j(δ+1)

⎞
⎠ = 1

⎞
⎠ .

(120)

Proof of (120): For �q = (q1, q2, · · · , qδ) ∈ {−1,+1}δ,
denote F (�q)

δ+1 =
⋂δ

j=1 F
(qj)

j(δ+1). Observe that

{Φ�i = 1} =
δ⋂

j=1

⋃
qj∈{+1,−1}

F
(qj)

j(δ+1) ==
⋃

�q∈{−1,+1}δ

F
(�q)
δ+1.

Since rρ < 2/
√

5 <
√

2, F (−1)
j(δ+1) and F (+1)

j(δ+1) are disjoint for

every j ∈ [δ], which implies F (�q)
δ+1 for different �q ∈ {−1,+1}δ

are disjoint. Hence,

P(Φ�i = 1, U�i = �− 1) =
∑

�q∈{−1,+1}δ

P(F (�q)
δ+1, U�i = �− 1).

(121)
Next observe that 1(F (�q)

δ+1) is a function of u1, · · · ,uδ+1, and
hence it has the same distribution when replacing ui by −ui

for any i ∈ [δ]. Moreover, replacing ui by −ui for any i ∈ [δ]
wouldn’t change U�i. As a result, (121) implies

P(Φ�i = 1, U�i = �− 1) = 2δ
P

(
F

(�q0)
δ+1 , U�i = �− 1

)
, (122)

where �q0 = (+1,+1, · · · ,+1) is the vector in R
δ with all its

components +1.
Consider ω ∈ F

(�q0)
δ+1 . Then Φ�i(ω) = 1 or equivalently,

Φ(R)
i(δ+1)(ω) = 1 for any i ∈ [δ]. Then

U�i(ω) =
∑
�j∈S�i

Φ�j(ω) =
δ∑

i=1

δ+1∏
j=1
j �=i

Φ(R)
ij (ω) =

δ∑
i=1

δ∏
j=1
j �=i

Φ(R)
ij (ω).

(123)

Since for any distinct i, j ∈ [δ], 
ui(ω) − uj(ω)
2 ≤ 
ui −
uδ+1(ω)
2 + 
ui(ω)−uδ+1(ω)
2 ≤ 2rρ < 4/

√
5, 
ui(ω) +

uj(ω)
2 =
√

4 − 
ui(ω) − uj(ω)
2
2 > 2/

√
5 > rρ. Thus

Φ(R)
ij (ω) = 1

F
(+1)
ij

(ω). That is, in the set F (�q0)
δ+1 , (123) becomes

U�i =
δ∑

i=1

δ∏
j=1
j �=i

1(F (+1)
ij ) = NUV

({ui}δ
i=1, rρ

)
, (124)

which implies

(
Φ�i + U�i

)
1

(
F

(�q0)
δ+1

)
=

(
1 + NUV

({ui}δ
i=1, rρ

))
1

(
F

(�q0)
δ+1

)
=NUV

({ui}δ+1
i=1 , rρ

)
1

(
F

(�q0)
δ+1

)
.

(125)



WEI et al.: UNIFIED FRAMEWORK FOR CORRELATION MINING IN ULTRA-HIGH DIMENSION 367

Thus,

P
(
U�i + Φ�i = �|Φ�i = 1

)
=

2δ
P

(
F

(�q0)
δ+1 , U�i = �− 1

)
P

(
Φ�i = 1

)
=

2δ
P

(
F

(�q0)
δ+1 , U�i = �− 1

)
(2Pn(rρ))δ

=
P

(
F

(�q0)
δ+1 ,NUV

({ui}δ+1
i=1 , rρ

)
= �

)
(Pn(rρ))

δ

=P

⎛
⎝NUV

({ui}δ+1
i=1 , rρ

)
= �

∣∣∣∣∣∣1
⎛
⎝ δ⋂

j=1

F
(+1)
j(δ+1)

⎞
⎠ = 1

⎞
⎠ ,

where the first equality follows from (122), the second equality
follows from Lemma A.2, and the third equality follows from
(125).

2) Proofs of Lemma III.15 and Lemma III.16:
Proof of Lemma III.15: In the set {deg(u′

δ+1) = δ},
it follows that

NUV
({u′

i}δ+1
i=1 , r

)
= NUV

({u′
i}δ

i=1, r
)

+ 1.

Thus, (126), shown at the bottom of the next page, where
the last equality follows from that T (u′

δ+1) as a function
of the random variable u′

δ+1, due to the rotation invariance
property of the distribution unif(Sn−2), equals to T (v0) a.s.
with v0 = (1, 0, 0, · · · , 0) ∈ Sn−2.

Under the condition u′
δ+1 = v0, 1

({deg(u′
δ+1) = δ}) =∏δ

i=1 1 (u′
i ∈ SC(r,v0)), where SC(r,v0) is defined

in (25). Consider the coordinate system for u′
i =(

u′ji : 1 ≤ j ≤ n− 1
)�

in the region SC(r,v0):

for 1 ≤ i ≤ δ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′1i = 1 − r2r2
i

2 ,

u′2i = rri

√
1 − r2r2

i

4 cos(θ2i),
...,

u′ji = rri

√
1 − r2r2

i

4 cos(θji)
j−1∏
m=2

sin(θmi),

...

u′(n−2)i = rri

√
1 − r2r2

i

4 cos(θ(n−2)i)
n−3∏
m=2

sin(θmi),

u′(n−1)i = rri

√
1 − r2r2

i

4

n−2∏
m=2

sin(θmi),

where for each i ∈ [δ]:

ri ∈ [0, 1], θji ∈ [0, π] for 2≤j≤n− 3 and θ(n−2)i ∈ [0, 2π).
(127)

Then,

r−(n−2)δT (v0)

=
E

∏δ
i=1 1 (u′

i ∈ SC(r,v0)) 1
(
NUV

({u′
i}δ

i=1, r
)
=�−1

)
r(n−2)δ

(∗)
=

r−(n−2)δ

|Sn−2|δ
∫

· · ·
∫

Ω0

1
(
NUV

({u′
i}δ

i=1, r
)

= �− 1
) δ∏

i=1⎛
⎝rn−2rn−3

i

(
1 − r2r2i

4

)n−4
2

dri

n−2∏
j=2

(
sinn−2−j(θji)dθji

)⎞⎠
=

1
|Sn−2|δ

∫
· · ·

∫
Ω0

1
(
NUV

({u′
i}δ

i=1, r
)

= �− 1
)

δ∏
i=1

⎛
⎝rn−3

i

(
1− r2r2i

4

)n−4
2

dri

n−2∏
j=2

(
sinn−2−j(θji)dθji

)⎞⎠,
(128)

where Ω0 in equality (∗) is the region described in (127).
Denote by f(r) the integrand in (128). f(r) is a function of

E

∣∣∣N (P )

V̆δ
−N

(R)

V̆δ

∣∣∣
≤ Cn2

(δ − 1)!

(
1 + δ2

κ− 1
p

μn,δ+2(Σ)
) (

θ1

(
c2

√
ln p

))nδ
(√

ln p√
p

+
τ

p

)
p (2pPn (rρ))

δ +

(δ + 1)
Cn2

δ!

(
1 + (δ + 1)2

κ− 1
p

μn,δ+2(Σ)
) (

θ1

(
c2

√
ln p

))n(δ+1)
(√

ln p√
p

+
τ

p

)
p (2pPn (rρ))

δ+1

+ (δ + 1)
1

(δ + 1)!

(
1 + (δ + 1)2μn,δ+2(Σ)

κ− 1
p

)
p (2pPn(rρ))δ+1 +

2
p2

≤ Cn2

(δ − 1)!

(
1 + (δ + 1)2

κ− 1
p

μn,δ+2(Σ)
) (

θ1

(
c2

√
ln p

))n(δ+1)
(√

ln p√
p

+
τ

p

)
γδ

(
1 +

δ + 1
δ

γp−
1
δ

)

+
1
δ!

(
1 + (δ + 1)2μn,δ+2(Σ)

κ− 1
p

)
γδ+1p−

1
δ +

2
p2

≤C(P )

V̆δ

(
1 +

κ− 1
p

μn,δ+2(Σ)
) (√

ln p
p

+
τ

p
+ p−

1
δ

)
,
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ri, θji for 2 ≤ j ≤ n − 2 and 1 ≤ i ≤ δ, of which the
dependences are suppressed.

Note NUV
({vi}δ

i=1, r
)

is a function of
(1 (
vi − vj
2 ≤ r) : 1 ≤ i < j ≤ δ) and it does
not depend on the specific location of each vertex.
Thus in (128) NUV

({u′
i}δ

i=1, r
)

is a function of
(1

(
u′
i − u′

j
2 < r
)

: 1 ≤ i < j ≤ δ) since 
u′
i − u′

j
2 = r,
as a set of Lebesgue measure 0, contributes nothing to the
integral. We then write

NUV
({u′

i}δ
i=1, r

)
=χ(1

(
u′
i − u′

j
2 < r
)

: 1 ≤ i < j ≤ δ)

=χ
(

1
(

1
r

u′

i − u′
j
2 < 1

)
: 1 ≤ i < j ≤ δ

)
.

Intrinsically, 1
(
u′

i − u′
j
2 < r

)
is the indicator random vari-

able about whether there is an edge between vertex i and j, and
the function χ is the function that takes all edge information
among δ vertices as input and outputs the number of universal
vertices.

Then as r → 0+,

lim
r→0+

f(r)

=
δ∏

i=1

⎛
⎝rn−3

i

n−2∏
j=2

(
sinn−2−j(θji)

)⎞⎠
× lim

r→0+
1

�
χ

�
1

�
1

r
‖u′

i−u′
j‖2 <1

�
: 1≤ i < j≤δ

�
=�−1

�
.

(129)

Observe

lim
r→0+

(
1
r

u′

i − u′
j
2

)2

= (ri cos(θ2i) − rj cos(θ2j))
2 +

n−2∑
q=3

(
ri

q−1∏
m=2

sin(θmi) cos(θqi)−rj
q−1∏
m=2

sin(θmj) cos(θqj)

)2

+

(
ri

n−2∏
m=2

sin(θmi) − rj

n−2∏
m=2

sin(θmj)

)2

. (130)

On Ω0, for 1 ≤ i ≤ δ, define⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ũ′1i = ri cos(θ2i),

ũ′ji = ri cos(θ(j+1)i)
j∏

m=2
sin(θmi), for 2 ≤ j ≤ n− 3

ũ′(n−2)i = ri
n−2∏
m=2

sin(θmi),

(131)

and ũ′
i = (ũ′ji : 1 ≤ j ≤ n− 2) ∈ Bn−2. Then by (130)

lim
r→0+

1
r

u′

i − u′
j
2 = 
ũ′

i − ũ′
j
2,

which, together with (129), imply

lim
r→0+

f(r)

=
δ∏

i=1

⎛
⎝rn−3

i

n−2∏
j=2

(
sinn−2−j(θji)

)⎞⎠
1

(
χ

(
1

(
ũ′
i − ũ′

j
2 < 1
)

: 1 ≤ i < j ≤ δ
)

= �− 1
)

=
δ∏

i=1

⎛
⎝rn−3

i

n−2∏
j=2

(
sinn−2−j(θji)

)⎞⎠
1

(
χ

(
1

(
ũ′
i − ũ′

j
2 ≤ 1
)

: 1 ≤ i < j ≤ δ
)

= �− 1
)

=
δ∏

i=1

⎛
⎝rn−3

i

n−2∏
j=2

(
sinn−2−j(θji)

)⎞⎠
1

(
NUV

({ũ′
i}δ

i=1, 1
)

= �− 1
)
,

where the second equality holds a.s. with respect to the
Lebesgue measure on Ω0,

Moreover, |f(r)| ≤ 1, which is integrable over the bounded
set Ω0. Applying Dominated Convergence Theorem to (128),

lim
r→0+

r−(n−2)δT (v0)

=
1

|Sn−2|δ
∫

· · ·
∫

Ω0

1
(
NUV

({ũ′
i}δ

i=1, 1
)

= �− 1
)

δ∏
i=1

rn−3
i dri

n−2∏
j=2

sinn−2−j(θji)dθji

=
|Bn−2|δ
|Sn−2|δ P

(
NUV

({ũi}δ
i=1, 1

)
= �− 1

)
, (132)

where the parametrization (131) and the region Ω0 coincide
with the spherical coordinates for Bn−2.

Thus

lim
r→0+

P
(
NUV

({u′
i}δ+1

i=1 , r
)

= �
∣∣deg(u′

δ+1) = δ
)

= lim
r→0+

P
(
deg(u′

δ+1)=δ,NUV
({u′

i}δ+1
i=1 , r

)
= �

)
r(n−2)δ

r(n−2)δ

(Pn(r))δ

=
|Bn−2|δ
|Sn−2|δ P

(
NUV

({ũi}δ
i=1, 1

)
= �− 1

) 1
(an)δ

=
1

(an)δ

|Bn−2|δ
|Sn−2|δ P

(
NUV

({ũi}δ
i=1, 1

)
= �− 1

)
=P

(
NUV

({ũi}δ
i=1, 1

)
= �− 1

)
,

P
(
deg(u′

δ+1) = δ,NUV
({u′

i}δ+1
i=1 , r

)
= �

)
=E1

(
{deg(u′

δ+1) = δ}
⋂

{NUV
({u′

i}δ
i=1, r

)
= �− 1}

)
=E

(
E

(
1

(
{deg(u′

δ+1) = δ}
⋂

{NUV
({u′

i}δ
i=1, r

)
= �− 1}

) ∣∣u′
δ+1

))
:=ET (u′

δ+1)
=ET (v0) , (126)
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where the second equality follows from (126), (132) and
Lemma A.22 (b).

Proof of Lemma III.16: By (38), Lemma III.15 and (6),

lim
ρ→1−

α(�, rρ) = lim
rρ→0+

α(�, rρ) = α�, ∀� ∈ [δ + 1], (133)

and thus,

lim
ρ→1−

ζn,δ,ρ(�) = ζn,δ(�), ∀� ∈ [δ + 1]. (134)

Note that∣∣∣2p1+ 1
δPn(rρ) − en,δ

∣∣∣
≤

∣∣∣2p1+ 1
δPn(rρ) − 2anp

1+ 1
δ rn−2

ρ

∣∣∣ +
∣∣∣2anp

1+ 1
δ rn−2

ρ − en,δ

∣∣∣
≤2anp

1+ 1
δ rn−2

ρ

(
n− 4

8
r2ρ

)
+

∣∣∣2anp
1+ 1

δ rn−2
ρ − en,δ

∣∣∣
=2anp

1+ 1
δ rn−2

ρ

(
n− 4

4
(1 − ρ)

)
+

∣∣∣2anp
1+ 1

δ rn−2
ρ − en,δ

∣∣∣ .
(135)

where the second inequality follows from Lemma A.22 (a).
Then the preceding expression and (133) yield

lim
p→∞εp,n,δ,ρ = lim

p→∞
1
δ!
pδ+1(2Pn(rρ))δ

δ+1∑
�=1

α(�, rρ)
�

= lim
p→∞

1
δ!

(en,δ)
δ

δ+1∑
�=1

α�

�

=εn,δ(en,δ).
(136)

(134) and (136) immediately yield the conclusion.

H. Proofs in Section IV

1) Proofs of Lemma IV.1 and Proposition IV.3:
Proof of Lemma IV.1:

EN
(R)
Eδ

−
(
p

1

)(
p− 1
δ

)
(2Pn(rρ))δ

=
∑

�i∈C<
δ

Σ�i not diagonal

⎛
⎝E

δ∏
j=1

Φ(R)
i0ij

− (2Pn(rρ))δ

⎞
⎠

≤ (μn,δ+1 (Σ) − 1) (2Pn(rρ))
δ

∑
�i∈C<

δ
Σ�i not diagonal

1, (137)

where the first inequality follows from Lemma III.4 (c) and
Lemma A.2. By (137),

EN
(R)
Eδ

−
(
p

1

)(
p−1
δ

)
(2Pn(rρ))δ ≥−(2Pn(rρ))δ

∑
�i∈C<

δ
Σ�i not diagonal

1.

Combining the preceding two expressions,∣∣∣∣EN (R)
Eδ

−
(
p

1

)(
p− 1
δ

)
(2Pn(rρ))δ

∣∣∣∣
≤max{1, μn,δ+1 (Σ) − 1)} (2Pn(rρ))

δ
∑

�i∈C<
δ

Σ�i not diagonal

1

≤μn,δ+1 (Σ) (2Pn(rρ))δ (δ + 1)
2((δ − 1)!)

pδ(κ− 1)

≤ (δ + 1)
2((δ − 1)!)

γδμn,δ+1 (Σ)
κ− 1
p

,

where the second inequality follows from Lemma A.3.
Proof of Proposition IV.3: Recall for �i ∈ C<

δ , Φ(R)
�i

is
defined in (47), U�i is defined in (50), and Z�i and W�i are
defined in (72). Then,

N
(R)
Eδ

=
∑

�i∈C<
δ

Φ(R)
�i

= Φ(R)
�i

+ U�i + Z�i +W�i.

Then,(
N

(R)
Eδ

)2

=
∑

�i∈C<
δ

Φ(R)
�i

(
Φ(R)

�i
+ U�i + Z�i +W�i

)
. (138)

Step 1:
Since Φ(R)

�i
+ U�i takes value in [δ + 1]

⋃{0},

EΦ(R)
�i

(
Φ(R)

�i
+ U�i

)
=

δ+1∑
�=1

� EΦ(R)
�i

1
(
Φ(R)

�i
+ U�i = �

)

=
δ+1∑
�=1

� P

(
Φ(R)

�i
= 1

)
P

(
Φ(R)

�i
+ U�i = �|Φ(R)

�i
= 1

)
.

For �i ∈ C<
δ such that Σ�i diagonal, we have

P

(
Φ(R)

�i
= 1

)
= (2Pn(rρ))δ by Lemma A.2 and

moreover P

(
Φ(R)

�i
+ U�i = �|Φ(R)

�i
= 1

)
= α(�, rρ) by

(38). Thus in this case,

EΦ(R)
�i

(
Φ(R)

�i
+ U�i

)
= (2Pn(rρ))δ

δ+1∑
�=1

�α(�, rρ).

Moreover, when �i ∈ C<
δ such that Σ�i is not diagonal,

by Lemma III.4 (c)

EΦ(R)
�i

(
Φ(R)

�i
+ U�i

)
≤ μn,δ+1(Σ)(2Pn(rρ))δ

δ+1∑
�=1

�α(�, rρ).

For the ease of notation, denote η5 =
(
p
1

)(
p−1

δ

)
(2Pn(rρ))δ .

Then by the preceding two expressions,

∑
�i∈C<

δ

EΦ(R)
�i

(
Φ(R)

�i
+ U�i

)
− η5

δ+1∑
�=1

�α(�, rρ)

=
∑

�i∈C<
δ

Σ�i not diagonal

(
EΦ(R)

�i

(
Φ(R)

�i
+ U�i

)
−
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(2Pn(rρ))δ
δ+1∑
�=1

�α(�, rρ)

)
(139)

≤ (μn,δ+1(Σ) − 1) (2Pn(rρ))δ
δ+1∑
�=1

�α(�, rρ)
∑

�i∈C<
δ

Σ�i not diagonal

1.

By (139),

∑
�i∈C<

δ

EΦ(R)
�i

(
Φ(R)

�i
+ U�i

)
− η5

δ+1∑
�=1

�α(�, rρ)

≥− (2Pn(rρ))δ
δ+1∑
�=1

�α(�, rρ)
∑

�i∈C<
δ

Σ�i not diagonal

1.

By combining the preceding two expressions,

∣∣∣∣∣∣
∑

�i∈C<
δ

EΦ(R)
�i

(
Φ(R)

�i
+ U�i

)
− η5

δ+1∑
�=1

�α(�, rρ)

∣∣∣∣∣∣
≤μn,δ+1(Σ)(2Pn(rρ))δ

δ+1∑
�=1

�α(�, rρ)
∑

�i∈C<
δ

Σ�i not diagonal

1

≤μn,δ+1(Σ)(2Pn(rρ))δ
δ+1∑
�=1

�α(�, rρ)
(δ + 1)

2((δ − 1)!)
pδ(κ− 1)

≤μn,δ+1(Σ)(2p1+1/δPn(rρ))δ (δ + 1)2

2((δ − 1)!)
κ− 1
p

(140)

where the second inequality follows from Lemma A.3.
Step 2:

∑
�i∈C<

δ

EΦ(R)
�i

W�i −
((

p

1

)(
p− 1
δ

)
(2Pn(rρ))δ

)2

=
∑

�i∈C<
δ

∑
�j∈T�i

EΦ(R)
�i

Φ(R)
�j

−
∑

�i∈C<
δ

∑
�j∈C<

δ

(2Pn(rρ))2δ

=
∑

�i∈C<
δ

∑
�j∈T�i

EΦ(R)
�i

EΦ(R)
�j

−
∑

�i∈C<
δ

∑
�j∈T�i

(2Pn(rρ))2δ

−
∑

�i∈C<
δ

∑
�j∈C<

δ \T�i

(2Pn(rρ))2δ

= −
∑

�i∈C<
δ

∑
�j∈C<

δ \T�i

(2Pn(rρ))2δ
∑

�i∈C<
δ

Σ�i not diagonal

∑
�j∈T�i

(
EΦ(R)

�i
Φ(R)

�j

− (2Pn(rρ))2δ
)

+
∑

�i∈C<
δ

Σ�i diagonal

∑
�j∈T�i

Σ�j not diagonal

(
EΦ(R)

�i
Φ(R)

�j
− (2Pn(rρ))2δ

)
,

(141)

where the last equality follows from EΦ(R)
�i

= (2Pn(rρ))δ for

�i ∈
{
�j ∈ C<

δ : Σ�j diagonal
}

by Lemma A.2. Then by (141),∑
�i∈C<

δ

EΦ(R)
�i

W�i − η2
5

≤ (μn,2δ+2(Σ) − 1) (2Pn(rρ))2δ

⎛
⎜⎜⎜⎝ ∑

�i∈C<
δ

Σ�i not diagonal

∑
�j∈T�i

1+

∑
�i∈C<

δ
Σ�i diagonal

∑
�j∈T�i

Σ�j not diagonal

1

⎞
⎟⎟⎟⎠ ,

where the inequality follows from Lemma III.4 (c). On the
other hand, by (141),

∑
�i∈C<

δ

EΦ(R)
�i

W�i −
((

p

1

)(
p− 1
δ

)
(2Pn(rρ))δ

)2

≥− (2Pn(rρ))2δ

⎛
⎜⎜⎜⎝ ∑

�i∈C<
δ

Σ�i not diagonal

∑
�j∈T�i

1+
∑

�i∈C<
δ

Σ�i diagonal

∑
�j∈T�i

Σ�j not diagonal

1

⎞
⎟⎟⎟⎠

−
∑

�i∈C<
δ

∑
�j∈C<

δ \T�i

(2Pn(rρ))2δ.

Combining the preceding two displays,∣∣∣∣∣∣
∑

�i∈C<
δ

EΦ(R)
�i

W�i −
((

p

1

)(
p− 1
δ

)
(2Pn(rρ))δ

)2
∣∣∣∣∣∣

≤μn,2δ+2(Σ)(2Pn(rρ))2δ

⎛
⎜⎜⎜⎝ ∑

�i∈C<
δ

Σ�i not diagonal

∑
�j∈T�i

1+

∑
�i∈C<

δ
Σ�i diagonal

∑
�j∈T�i

Σ�j not diagonal

1

⎞
⎟⎟⎟⎠

+
∑

�i∈C<
δ

∑
�j∈C<

δ \T�i

(2Pn(rρ))2δ

≤μn,2δ+2(Σ)(2Pn(rρ))2δ

⎛
⎜⎜⎜⎝2

∑
�i∈C<

δ
Σ�i not diagonal

∑
�j∈C<

δ

1

⎞
⎟⎟⎟⎠+

∑
�i∈C<

δ

∑
�j∈C<

δ \T�i

(2Pn(rρ))2δ

(∗)
≤μn,2δ+2(Σ)(2Pn(rρ))2δ2

(
p

1

)(
p− 1
δ

)
(δ+1)

2((δ−1)!)
pδ(κ−1)

+
(
p

1

)(
p− 1
δ

)
(δ + 1)2

δ!
pδκ(2Pn(rρ))2δ
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≤2(δ + 1)2

(δ!)2
(2p1+1/δPn(rρ))2δμn,2δ+2(Σ)

κ

p
, (142)

where step (∗) follows from Lemma A.3 and (82).
Step 3:
Notice

∑
�i∈C<

δ
EΦ(R)

�i
Z�i = b2 as in (74) and thus satisfies the

bound (89). Then by (138),∣∣∣∣∣E
(
N

(R)
Eδ

)2

− η5

δ+1∑
�=1

�α(�, rρ) − η2
5

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

�i∈C<
δ

EΦ(R)
�i

(
Φ(R)

�i
+ U�i

)
− η5

δ+1∑
�=1

�α(�, rρ)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

�i∈C<
δ

EΦ(R)
�i

W�i − η2
5

∣∣∣∣∣∣ + b2

≤Cn,δ

�
(2p1+1/δPn(rρ))

δ
�
1 + 2p1+1/δPn(rρ)

�δ

μn,2δ+2(Σ)
κ

p

+p(2pPn(rρ))δ+1 (1 + 2pPn(rρ))δ
)
, (143)

where the last inequality follows from (140), (142) and
(89). The proof is then completed by using the inequality
2p1+1/δPn(rρ) ≤ γ.

2) Proof of Proposition IV.4:
Proof of Proposition IV.4 (a):

By taking the square of each of the terms in Lemma III.8,(
N

(R)
Eδ

)2

− 2(δ + 1)N (R)
Eδ

N
(R)
Eδ+1

≤
(
N

(R)

V̆δ

)2

≤
(
N

(R)
Vδ

)2

≤
(
N

(R)
Eδ

)2

,

which then implies for N̄δ ∈
{
N

(R)

V̆δ
, N

(R)
Vδ

}
∣∣∣∣(N̄δ

)2 −
(
N

(R)
Eδ

)2
∣∣∣∣ ≤2(δ + 1)N (R)

Eδ
N

(R)
Eδ+1

=2(δ + 1)
∑

�i∈C<
δ+1

∑
�j∈C<

δ

Φ(R)
�i

Φ(R)
�j

.

(144)

It suffices to establish an upper bound on EN
(R)
Eδ+1

N
(R)
Eδ

=

E
∑

�i∈C<
δ+1

∑
�j∈C<

δ
Φ(R)

�i
Φ(R)

�j
.

Observe for �j ∈ J�i,

EΦ(R)
�i

Φ(R)
�j

≤ EΦ(R)
�i

≤ μn,δ+2(Σ�i)(2Pn(rρ))δ+1.

For �j ∈ T�i,
[
�j
]
∩

[
�i
]

= ∅. Thus, if Σ�i∪�j is diag-

onal, EΦ(R)
�i

Φ(R)
�j

= EΦ(R)
�i

EΦ(R)
�j

= (2Pn(rρ))2δ+1 by
Lemma A.2. Then, for the general case when Σ�i∪�j is not
necessarily diagonal, by Lemma III.4 (c),

EΦ(R)
�i

Φ(R)
�j

≤ μn,2δ+3(Σ�i∪�j)(2Pn(rρ))2δ+1

By Lemma III.4 (c), Lemma A.2 and Lemma A.5, it is
straightforward that the conditions in Lemma A.7 with q =
δ + 1 and θ�i,�j = Φ(R)

�i
Φ(R)

�j
are satisfied with a = 1, b =

2Pn(2rρ)1(δ ≥ 2) + 2Pn(rρ)1(δ = 1) and z = 2Pn(rρ).
Moreover, b/z ≤ 2n−21(δ ≥ 2) + 1 by Lemma A.22 (d).

Thus, Lemma A.8 with q = δ + 1 and θ�i,�j = Φ(R)
�i

Φ(R)
�j

,
a = 1, b = 2Pn(2rρ)1(δ ≥ 2) + 2Pn(rρ)1(δ = 1) and
z = 2Pn(rρ), together with the fact that pz ≤ p1+ 1

δ z =
2p1+ 1

δPn(rρ) ≤ γ, yield

EN
(R)
Eδ+1

N
(R)
Eδ

=E

∑
�i∈C<

δ+1

∑
�j∈C<

δ

Φ(R)
�i

Φ(R)
�j

≤Cn,δ,γ

(
1 + μn,2δ+3(Σ)

κ− 1
p

)
p−1/δ.

(145)

The proof is then complete by the preceding expression
and (144).

We now present a few lemmas that are used in
the proof of Proposition IV.4 (b) and (c). Recall that
Fij(rρ), Hij(rρ), Gij(rρ), F�i(rρ) are defined in Section F.3.

Lemma A.17: Suppose p ≥ n. 1 ≤ δ ≤ q ≤ p − 1. Then
for any �i ∈ C<

q , �j ∈ C<
δ , with probability 1,∣∣∣Φ(P )

�i
Φ(P )

�j
− Φ(R)

�i
Φ(R)

�j

∣∣∣ ≤ ξ�i,�j ,

where

ξ�i,�j :=1

(
q⋃

m=1

((
Hi0im

∖
Gi0im

) ⋂
H�i,−m

⋂
H�j

)⋃
δ⋃

�=1

((
Hj0j�

∖
Gj0j�

) ⋂
H�j,−�

⋂
H�i

))
.

Proof:∣∣∣Φ(P )
�i

Φ(P )
�j

− Φ(R)
�i

Φ(R)
�j

∣∣∣
=1

((
q⋂

m=1

Fi0im

⋂ δ⋂
�=1

Fj0j�

)
�

(
q⋂

m=1

Si0im

⋂ δ⋂
�=1

Sj0j�

))

≤ξ�i,�j
where the inequality follows from (97) and
Lemma A.29 (a).

Lemma A.18: Let p ≥ n ≥ 4, 1 ≤ δ ≤ q ≤ p− 1 and X ∼
VE(μ,Σ, g). Suppose Σ, after some row-column permutation,
is (τ, κ) sparse with τ ≤ p

2 . Let t be any positive number, and
suppose (102) holds. Then for any �i ∈ C<

q , �j ∈ C<
δ , with

probability 1,

ξ�i,�j1 (E(t)) ≤ η�i,�j(t),

where

η�i,�j(t) :=1

(
q⋃

m=1

((
Fi0im(θ1(t)rρ)

∖
Fi0im

(
rρ
θ1(t)

)) ⋂

F�i,−m(θ1(t)rρ)
⋂
F�j(θ1(t)rρ)

)⋃
δ⋃

�=1

((
Fj0j�

(θ1(t)rρ)
∖
Fj0j�

(
rρ
θ1(t)

)) ⋂

F�j,−�(θ1(t)rρ)
⋂
F�i(θ1(t)rρ)

) )
.
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Proof: By (103), Hij(rρ) ∩ E(t) ⊂ Fij(θ1(t)rρ) and

Gij(rρ) ∩ E(t) ⊃ Fij

(
rρ

θ1(t)

)
. Then

ξ�i,�j1 (E(t)) ≤ η�i,�j(t).

Lemma A.19: Let p ≥ n ≥ 4, 1 ≤ δ ≤ q ≤ p− 1 and X ∼
VE(μ,Σ, g). Suppose Σ, after some row-column permutation,
is (τ, κ) sparse with τ ≤ p

2 . Let t be any positive number, and
suppose (102) holds. Suppose additionally 2p1+ 1

δPn(rρ) ≤ γ.
Then

E

∑
�i∈C<

q

∑
�j∈C<

δ

η�i,�j(t)

≤Cn,q,δ,γ (θ1(t))
n(2δ+q)

η6

(√
1
p

+
t√
p

+
τ

p

)
p1− q

δ ,

where η6 := 1 + μn,q+δ+2(Σ)κ−1
p .

Proof: Note∑
�i∈C<

q

∑
�j∈C<

δ

η�i,�j(t)

=

⎛
⎝ ∑

�i∈C<
q

∑
�j∈J�i

+
∑

�i∈C<
q

∑
�j∈T�i

+
∑

�i∈C<
q

∑
�j∈N�i

⎞
⎠ η�i,�j(t).

Step 1: �j ∈ T�i

By the union bound for indicator functions,

η�i,�j(t) ≤ η�i(t)1
(
F�j(θ1(t)rρ)

)
+ η�j(t)1

(
F�i(θ1(t)rρ)

)
,

(146)

where η�i(t) is defined in (104) with δ replaced by q. Then for
�j ∈ T�i

Eη�i,�j(t) ≤ Eη�i(t)P
(
F�j(θ1(t)rρ)

)
+ Eη�j(t)P

(
F�i(θ1(t)rρ)

)
.

(147)

Moreover, for �j ∈ T�i, Σ�i∪�j is diagonal if and only if Σ�i and
Σ�j are both diagonal.

Now suppose Σ�i∪�j is diagonal. By conditioning on uj0

P

(
F�j(θ1(t)rρ)

)
= (2Pn(θ1(t)rρ))

δ
,

P
(
F�i(θ1(t)rρ)

)
= (2Pn(θ1(t)rρ))

q
.

The preceding expression, (147), Lemma A.13 applied to
Eη�j(t), and Lemma A.13 with δ = q applied to Eη�i(t) yield

Eη�i,�j(t)

≤(δ + q)2θ2(t) (2Pn (θ1(t)rρ))q+δ−1 ,

where θ2(t) := Pn(rρθ1(t)) − Pn

(
rρ

θ1(t)

)
.

For the general case that Σ�i∪�j is not necessarily diagonal,

by Lemma III.4 (c), for any �j ∈ T�i

Eη�i,�j(t)

≤μn,q+δ+2(Σ�i∪�j)(δ + q)2θ2(t) (2Pn (θ1(t)rρ))q+δ−1
.

Then the condition in Lemma A.6 (b) is satisfied with θ�i,�j =

η�i,�j , z = 2Pn(rρθ1(t)) and a = (δ + q)
Pn(rρθ1(t))−Pn

�
rρ

θ1(t)

�
Pn(rρθ1(t))

.

Step 2: �j ∈ J�i
(146) implies

η�i,�j(t)

≤η�i(t)+
δ∑

�=1

1
(
Fj0j�

(θ1(t)rρ)
∖
Fj0j�

(
rρ
θ1(t)

))
1(F�i(θ1(t)rρ)).

(148)

For �j ∈ J�i, j0, j� ∈
[
�i
]
. If i0 ∈ {j0, j�}, without loss of

generality, say i0 = j� and j0 = iα for some 1 ≤ α ≤ q. Then

E1
(
Fj0j�

(θ1(t)rρ)
∖
Fj0j�

(
rρ
θ1(t)

))
1(F�i(θ1(t)rρ))

=P

((
Fi0iα(θ1(t)rρ)

∖
Fi0iα

(
rρ
θ1(t)

)) ⋂
F�i,−α(θ1(t)rρ)

)
≤μn,q+1(Σ�i)2θ2(t) (2Pn (θ1(t)rρ))q−1

, (149)

where the last step follows from Lemma A.13 with δ replace
by q.

If i0 	∈ {j0, j�}, without loss of generality, let j0 = iα,
j� = iβ for some 1 ≤ α 	= β ≤ q. Suppose for now that Σ�i

is diagonal, and then

E1
(
Fj0j�

(θ1(t)rρ)
∖
Fj0j�

(
rρ
θ1(t)

))
1(F�i(θ1(t)rρ))

=E1
(
Fiαiβ

(θ1(t)rρ)
∖
Fiαiβ

(
rρ
θ1(t)

))
1(F�i(θ1(t)rρ))

(∗)
=(2Pn(θ1(t)rρ))q−2

E1
(
Fiαiβ

(θ1(t)rρ) \ Fiαiβ

(
rρ
θ1(t)

))
1(Fi0iα(θ1(t)rρ))1(Fi0iβ

(θ1(t)rρ))
(∗∗)
≤ 2

(
Pn(θ1(t)rρ) − Pn

(
rρ
θ1(t)

))
(2Pn(θ1(t)rρ))q−1,

where the step (∗) follows from conditioning on ui0 ,uiα ,uiβ
,

and the step (∗∗) follows from dropping the term
1(Fi0iβ

(θ1(t)rρ)) and then conditioning on uiα . For
the general case that Σ�i is not necessarily diagonal,
by Lemma III.4 (c),

E1
(
Fj0j�

(θ1(t)rρ)
∖
Fj0j�

(
rρ
θ1(t)

))
1(F�i(θ1(t)rρ))

≤μn,q+1(Σ�i)2θ2(t)(2Pn(θ1(t)rρ))q−1. (150)

By combining (148), (149), (150) and Lemma A.13 with δ
replace by q,

Eη�i,�j(t) ≤ (q + δ)μn,q+1(Σ�i)2θ2(t)(2Pn(θ1(t)rρ))q−1.

Then the conditions in Lemma A.6 (a) with θ�i,�j = η�i,�j , z =

2Pn(rρθ1(t)) and a = (q+δ)
Pn(θ1(t)rρ)−Pn

�
rρ

θ1(t)

�
Pn(θ1(t)rρ) is satisfied.

Step 3: �j ∈ N�i

It is straightforward by Lemma III.4 (c), Lemma A.2 and
Lemma A.5 that the conditions in Lemma A.7 with θ�i,�j = η�i,�j
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are satisfied with a = a1 = (q + δ)
Pn(θ1(t)rρ)−Pn

�
rρ

θ1(t)

�
Pn(θ1(t)rρ) ,

b = 2Pn(2rρθ1(t))1(δ ≥ 2) + 2Pn(rρθ1(t))1(δ = 1) and
z = 2Pn(rρθ1(t)). Moreover, b/z ≤ 2n−21(δ ≥ 2) + 1 by
Lemma A.22 (d).

By Lemma A.8 with θ�i,�j = η�i,�j , a = (q +

δ)
Pn(θ1(t)rρ)−Pn

�
rρ

θ1(t)

�
Pn(θ1(t)rρ) , b = 2Pn(2rρθ1(t))1(δ ≥ 2) +

2Pn(rρθ1(t))1(δ = 1) and z = 2Pn(rρθ1(t))∑
�i∈C<

q

∑
�j∈C<

δ

Eη�i,�j

≤Cn,q,δ

(
p1+ 1

δ z
)q (

1 + (p1+ 1
δ z)δ

)
(1 + pz)δ−1

η6ap
1− q

p .

(151)

Step 4
Observe that

pz ≤ p1+ 1
δ z ≤ (θ1(t))

n−2 2p1+ 1
δPn(rρ) ≤ (θ1(t))

n−2
γ

(152)

where the second inequality follows from Lemma A.22 (d).
Moreover, by Lemma A.22 (c) and the fact that θ1(t) ≥ 1,

a ≤(q + δ)
Pn(θ1(t)rρ) − Pn

(
rρ

θ1(t)

)
Pn(rρ)

≤(q + δ)(n− 2) (θ1(t))
n−3

(
θ1(t) − 1

θ1(t)

)
. (153)

Plugging (152) and (153) into (151) and by the fact that
θ1(t) ≥ 1,∑

�i∈C<
q

∑
�j∈C<

δ

η�i,�j

≤Cn,q,δ,γ (θ1(t))
n(2δ+q)

η6

(
θ1(t) − 1

θ1(t)

)
p1− q

p

≤Cn,q,δ,γ (θ1(t))
n(2δ+q)

η6

(√
n

p
+

t√
p

+ n
τ

p

)
p1− q

p ,

where the last inequality follows from
Lemma A.26 (d) and (103).

Lemma A.20: Let p ≥ n ≥ 4 and X ∼ VE(μ,Σ, g). Sup-
pose Σ, after some row-column permutation, is (τ, κ) sparse
with τ ≤ p

2 . Consider 1 ≤ δ ≤ p − 2 and let q ∈ {δ, δ + 1}.

Suppose 2p1+ 1
δPn(rρ) ≤ γ and

(√
n−1

p +
√

δ ln p
p

)
≤ c hold

for some positive and sufficiently small universal constant c.
Then

E

∣∣∣N (P )
Eq

N
(P )
Eδ

−N
(R)
Eq

N
(R)
Eδ

∣∣∣
≤Cn,δ,γ

(
1 + μn,q+δ+2(Σ)

κ− 1
p

) (√
ln p√
p

+
τ

p

)
p1− q

δ .

Proof: For Ψ ∈ {R,P },

N
(Ψ)
Eq

N
(Ψ)
Eδ

=
∑

�i∈C<
q

∑
�j∈C<

δ

Φ(Ψ)
�i

Φ(Ψ)
�j

.

Thus,

E

∣∣∣N (P )
Eq

N
(P )
Eδ

−N
(R)
Eq

N
(R)
Eδ

∣∣∣
≤E

∑
�i∈C<

q

∑
�j∈C<

δ

∣∣∣Φ(P )
�i

Φ(P )
�j

− Φ(R)
�i

Φ(R)
�j

∣∣∣ 1 (E(t)) +

(
p

1

)(
p− 1
q

)(
p

1

)(
p− 1
δ

)
P(Ec(t))

≤E

∑
�i∈C<

q

∑
�j∈C<

δ

η�i,�j +
pq+δ+2

δ!q!
2 exp(−c1t2) (154)

where the first inequality follows from 0 ≤ N
(Ψ)
Eδ

≤ (
p
1

)(
p−1

δ

)
for both Ψ = R and Ψ = P , and the second inequality
follows from Lemma A.17, Lemma A.18 and (99).

Choose t = s0
√

ln p with s0 =
√(

9
2 + 2δ

)
/c1. Notice that

s0 ≥
√(

3
2 + q + δ + q

δ

)
/c1 since q ∈ {δ, δ + 1}. Then

2 exp(−c1t2) ≤2 exp
(
−

(
3
2

+ q + δ +
q

δ

)
ln p

)
=

2
p

3
2+q+δ+ q

δ

.

Moreover, for any c < 1

2 max

�	
( 9

2+2δ)/c1,1


√
2C1

,

(√
n− 1
p

+

√
δ ln p
p

)
≤ c

implies
√

2C1

(√
n− 1
p

+ s0

√
ln p
p

)
≤ 1

2
, (155)

which is (102) with t = s0
√

ln p. Then apply Lemma A.19
with t = s0

√
ln p to (154),

E

∣∣∣N (P )
Eq

N
(P )
Eδ

−N
(R)
Eq

N
(R)
Eδ

∣∣∣
≤Cn,q,δ,γ (θ1(s0 ln p))n(2δ+q)

η6

(√
1
p

+
s0
√

ln p√
p

+
τ

p

)
p1− q

δ

+
2

δ!q!
√
p
p1− q

δ

≤Cn,q,δ,γη6

(
s0

√
ln p√
p

+
τ

p

)
p1− q

δ +
2

δ!q!
√
p
p1− q

δ

≤Cn,q,δ,γη6

(√
ln p√
p

+
τ

p

)
p1− q

δ

≤Cn,δ,γη6

(√
ln p√
p

+
τ

p

)
p1− q

δ ,

where the second inequality follows from θ1
(
s0
√

ln p
) ≤ 9+

4(n − 1) = 4n + 5 by (155) and τ ≤ p/2; and the last step
follows from q ∈ {δ, δ + 1}.

Proof of Proposition IV.4 (b) and (c): (b) It follows
directly from Lemma A.20 with q = δ.

(c) By taking square of each terms in Lemma III.8,(
N

(P )
Eδ

)2

− 2(δ + 1)N (P )
Eδ

N
(P )
Eδ+1

≤
(
N

(P )

V̆δ

)2

≤
(
N

(P )
Vδ

)2

≤
(
N

(P )
Eδ

)2

,
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Fig. 5. The solid circle represents the unit Euclidean ball Bn
2 in R

n while
the dash circle represents the unit ball centered at ũ1. Their intersection is
the green region, which is contained in the ball with center at ũ1/2 and with

radius

	
1 −

� ‖ũ1‖2
2

�2
.

which then implies for N̄δ ∈
{
N

(P )

V̆δ
, N

(P )
Vδ

}
∣∣∣∣N̄δ −

(
N

(P )
Eδ

)2
∣∣∣∣

≤2(δ + 1)
�
N

(P )
Eδ+1

N
(P )
Eδ

− N
(R)
Eδ+1

N
(R)
Eδ

�
+ 2(δ + 1)N

(R)
Eδ+1

N
(R)
Eδ

.

By Lemma A.20 with q = δ + 1,

E

∣∣∣N (P )
Eδ+1

N
(P )
Eδ

−N
(R)
Eδ+1

N
(R)
Eδ

∣∣∣
≤Cn,δ,γ

(
1 + μn,2δ+3(Σ)

κ− 1
p

) (√
ln p√
p

+
τ

p

)
p−

1
δ .

The proof is then completed by combining the preceding two
displays, (145) and the fact that(√

ln p√
p

+
τ

p

)
≤ 1.

I. Proofs in Section V

1) Proof of Lemma V.1 and Lemma V.2:
Proof of Lemma V.1: (a) Denote by deg(·) the degree of

a vertex in Ge ({ũi}m
i=1, 1; N ). Then by union bound,

P
(
NUV

({ũi}δ
i=1, 1;n− 2

) ≥ 1
)

≤δP (deg(ũ1) = δ − 1)
=δE (P(deg(ũ1) = δ − 1|ũ1))
=δE (P (
ũ1 − ũ2
2 ≤ 1, · · · , 
ũ1 − ũδ
2 ≤ 1| ũ1))

=δE
(

P (
ũ1 − ũ2
2 ≤ 1| ũ1)
δ−1

)
, (156)

where the last equality follows by conditional independence.
As illustrated in Figure 5, P (
ũ1 − ũ2
2 ≤ 1|ũ1) is the

ratio between Lebesgue measure of green region and |Bn−2
2 |.

Moreover, the Lebesgue measure of the green region is less
than (

1 −
(
ũ1
2

2

)2
)n−2

2

|Bn−2
2 |.

Then

P (
ũ1 − ũ2
2 ≤ 1|ũ1) ≤
(

1 −
(
ũ1
2

2

)2
)n−2

2

a.s.

(157)

By combining (156) and (157),

P
(
NUV

({ũi}δ
i=1, 1;n− 2

) ≥ 1
)

≤δE
(

1 −
(
ũ1
2

2

)2
) (n−2)(δ−1)

2

=δ(n− 2)
∫ 1

0

(
1 − r2

4

) (n−2)(δ−1)
2

rn−3dr (158)

=δ(n− 2)2n−3B

(
1
4
;
n− 2

2
,
(n− 2)(δ − 1)

2
+ 1

)
,

where the first equality follows from expressing the integral
in polar coordinates, and the last step follows from changing
the variables r = 2

√
y.

(b) Denote f (r;α, β) =
(
1 − r2

4

)α

rβ . Then it is easy to
verify that for any α, β > 0,

max
r∈[0,1]

f (r;α, β)

=

⎧⎨
⎩
f (1;α, β) =

(
3
4

)α
if 3β ≥ 2α,

f
(√

4β
2α+β ;α, β

)
=

(
2α

2α+β

)α (
4β

2α+β

) β
2

if 3β ≤ 2α.

(159)

Moreover, f(r;α, β) is increasing on [0, 1] if 3β ≥ 2α.
Let α = (n−2)(δ−1)

2 and β = n − 3. If δ = 2, then for
any n ≥ 4, 3β ≥ 2α is satisfied. Then since f(r;α, β) is
increasing on [0, 1],∫ 1

0

f (r;α, β) dr

≤
√

4
5
f

(√
4
5
;α, β

)
+

(
1 −

√
4
5

)
f (1;α, β) . (160)

If δ = 3, then for any n ≥ 5, 3β ≥ 2α is satisfied and hence
(160) holds. For n = 4, 3β ≤ 2α is satisfied and by (159),∫ 1

0

f (r;α, β) dr ≤ f

(√
4β

2α+ β
;α, β

)
= f

(√
4
5
;α, β

)
.

(161)

If δ ≥ 4, it is easy to see for any n ≥ 4, 3β ≤ 2α holds.
By (159)∫ 1

0

f (r;α, β) dr

≤f
(√

4β
2α+ β

;α, β

)

=
(
δ − 1
δ

) (n−2)(δ−1)
2

(
4
δ

)n−3
2

(
n− 2

n− 2 − 1
δ

) δ−1
2

×
((

n− 2
n− 2 − 1

δ

)δ−1 (
n− 3

n− 2 − 1
m

))n−3
2

≤ exp
(

1
4

)(
δ − 1
δ

) (n−2)(δ−1)
2

(
4
δ

)n−3
2

, (162)
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where the last step follows from
(

n−2
n−2− 1

δ

)δ−1 (
n−3

n−2− 1
δ

)
≤

1 and
(

n−2
n−2− 1

δ

) δ−1
2 ≤ exp

(
1
4

)
.

Then (160), (161), (162) and the fact that f
(√

4
5 ;α, β

)
=(

4
5

) (n−2)δ−1
2 yield the conclusion.

Proof of Lemma V.2: (a) Notice that

dTV (ζn,δ,Dirac(1)) =
1
2

δ+1∑
�=1

|ζn,δ(�) − Dirac(1) (�) |

=
δ+1∑
�=2

ζn,δ(�) (163)

=
∑δ+1

�=2 (α�/�)

α1 +
∑δ+1

�=2 (α�/�)

≤
∑δ+1

�=2 α�

α1 +
∑δ+1

�=2 α�

=
δ+1∑
�=2

α�. (164)

(b) It follows from that∣∣∣∣εn,δ(en,δ) − 1
δ!

(en,δ)
δ

∣∣∣∣ =
1
δ!

(en,δ)
δ

∣∣∣∣∣
δ+1∑
�=1

(α�/�) − 1

∣∣∣∣∣
≤ 1
δ!

(en,δ)
δ 3

2

δ+1∑
�=2

α�.

(c) It follows directly by part (a), part (b) and Lemma A.25.
2) Proof of Lemma V.4:

Proof of Lemma V.4: (a) Denote

I := P
(
NUV

({u′
i}δ+1

i=1 , r;n− 2
) ≥ 2| deg(u′

δ+1) = δ
)
.

Then by the union bound

I =P

(
δ⋃

i=1

{deg(u′
i) = δ}| deg(u′

δ+1) = δ

)

≤δP (
deg(u′

1) = δ| deg(u′
δ+1) = δ

)
=δP

(
deg(u′

1) = δ, deg(u′
δ+1) = δ

)
/P

(
deg(u′

δ+1) = δ
)
.

(165)

Notice that

P
(
deg(u′

δ+1) = δ
)

=E

δ∏
i=1

P(u′
i ∈ SC(r,u′

δ+1)|u′
δ+1)

=(Pn(r))δ , (166)

where SC(r,u′
δ+1) and Pn(r) are defined in (25) and the

paragraph after (25). Moreover

P
(
deg(u′

1) = δ, deg(u′
δ+1) = δ

)
=EP

(
deg(u′

1) = δ, deg(u′
δ+1) = δ|u′

1,u
′
δ+1

)
=E1(
u′

1 − u′
δ+1
2 ≤ r)×

δ∏
i=2

P
(
u′

i ∈ SC(r,u′
1) ∩ SC(r,u′

δ+1)|u′
1,u

′
δ+1

)

≤E1(
u′
1 − u′

δ+1
2 ≤ r)
(
Pn(h(r, 
u′

1 − u′
δ+1
2))

)δ−1

(167)

where the last inequality follows from Lemma A.21 with

h(r, d) =

√√√√2 − 2 − r2√
1 − (d

2 )2
.

Observing the random quantity in the expectation of (167) only
depends the distance between 
u′

1 − u′
δ+1
2, replace u′

δ+1

with v0 = (1, 0, . . . , 0) will not change its value. Then

P
(
deg(u′

1) = δ, deg(u′
δ+1) = δ

)
≤E1(
u′

1 − v0
2 ≤ r) (Pn(h(r, 
u′
1 − v0
2)))

δ−1
. (168)

Use the following coordinate system for each u′
1 =

(uj1 : 1 ≤ j ≤ n− 1)� in the region SC(r,v0):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u11 = 1 − r2r2
1

2 ,

u21 = r1r

√
1 − r2r2

1
4 cos(θ2),

...

uj1 = r1r

√
1 − r2r2

1
4 cos(θj)

j−1∏
m=2

sin(θm),

...

u(n−2)1 = r1r

√
1 − r2r2

1
4 sin(θ2) · · · sin(θn−3) cos(θn−2),

u(n−1)1 = r1r

√
1 − r2r2

1
4 sin(θ2) · · · sin(θn−3) sin(θn−2),

where

r1 ∈ [0, 1], θj ∈ [0, π] for 2 ≤ j ≤ n− 3 and θn−2 ∈ [0, 2π).
(169)

Then the right hand side of (168) become

E1(‖u′
1 − v0‖2 ≤ r) (Pn(h(r, 
u′

1 − v0
2)))
δ−1

= 1

Area(Sn−2)


 1

0
(Pn(h(r, r1r)))δ−1 rn−2rn−3

1

�
1− r2r2

1

4

�n−4
2

dr1×
n−3�
j=2


 π

0
sinn−2−j(θj)dθj

= 1� π
0

sinn−3(θ)dθ


 1

0
(Pn(h(r, r1r)))δ−1 rn−2rn−3

1

�
1− r2r2

1

4

�n−4
2

dr1

= rn−2

B(n−2
2

, 1
2
)


 1

0
(Pn(h(r, r1r)))δ−1 rn−3

1

�
1 − r2r2

1

4

�n−4
2

dr1

≤ rn−2

B(n−2
2

, 1
2
)


 1

0
(Pn(h(r, r1r)))δ−1 rn−3

1 dr1. (170)

Plug (166), (168) and (170) into (165) and we obtain

I ≤δ rn−2

B(n−2
2 , 1

2 )Pn(r)

∫ 1

0

(
Pn(h(r, r1r))

Pn(r)

)δ−1

rn−3
1 dr1

=δ(n− 2)
anr

n−2

Pn(r)

∫ 1

0

(
Pn(h(r, r1r))

Pn(r)

)δ−1

rn−3
1 dr1

(171)
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where the equality follows from an = 1
(n−2)B( n−2

2 , 12 )
.

By Lemma A.22 (a),

anr
n−2

Pn(r)
≤ 1(

1 − r2

4

)n−4
2

. (172)

Since when 0 < r1 < 1, 0 < h(r, d)/r < 1,
by Lemma A.22 (e),

Pn(h(r, r1r))
Pn(r)

≤
(
h(r, r1r)

r

)n−2
(

1 − h2(r,r1r)
4

1 − r2

4

)n−4
2

≤
(
1−

(r1
2

)2
)n−2

2 1√
1−(

r1r
2

)2

⎛
⎝ 1− h2(r,r1r)

4

(1− r2

4 )
√

1−(
r1r
2

)2

⎞
⎠

n−4
2

(173)

where the second inequality follows from(
h(r, r1r)

r

)2

=
1√

1 − (
r1r
2

)2

(
−2( r1

2 )2

1 +
√

1 − ( r1r
2 )2

+ 1

)

≤ 1√
1 − (

r1r
2

)2

(
−

(r1
2

)2

+ 1
)
.

Since h2(r, r1r) is decreasing function of r1 ∈ [0, 1], (173)
become

Pn(h(r, r1r))
Pn(r)

≤
(

1−
(r1

2

)2
)n−2

2 1√
1−(

r
2

)2

⎛
⎝ 1− h2(r,r)

4

(1− r2

4 )
√

1−(
r
2

)2

⎞
⎠

n−4
2

≤
(

1 −
(r1

2

)2
)n−2

2 1√
1 − (

r
2

)2

(
1

(1 − r2

4 )

)n−4
2

, (174)

where the second inequality follows from

1 − h2(r, r)
4

≤
√

1 − r2

4
.

Plugging (172) and (174) into (171),

I

≤δ(n− 2)
1(

1 − r2

4

)n+δ−5
2

(
1

(1 − r2

4 )

) (n−4)(δ−1)
2

×

∫ 1

0

(
1 −

(r1
2

)2
) (n−2)(δ−1)

2

rn−3
1 dr1

=h̄

(
1√

1 − r2/4
, n, δ

)
δ(n− 2)×

∫ 1

0

(
1 −

(r1
2

)2
) (n−2)(δ−1)

2

rn−3
1 dr1.

Fig. 6. 0 is the origin in R
n−2 and w1, w2, w4, w5 are on Sn−2. w3 is

the midpoint of z1 and z2, while z4 is the midpoint of the shortest arc on
Sn−2 connecting w1 and w2. w5 is one of the two intersection points of
the boundary SC(r, w1) and the boundary of SC(r, w2). The angle between
line segment 0w4 and 0w5 is θ.

(b) Since 1√
1−r2/4

is decreasing and h̄(x, n, δ) as a function

of x is increasing,

h̄

(
1√

1 − r2/4
, n, δ

)

≤

⎧⎪⎨
⎪⎩
h̄

((
5
4

) 1
4 , n, δ

)
, δ = 2, 3

h̄

((
δ

δ−1

) 1
4
, n, δ

)
, δ ≥ 4

=

⎧⎪⎪⎨
⎪⎪⎩

(√
5
4

) n+δ−5
2

(√
5
4

) (n−2)(δ−1)
2

, δ = 2, 3(√
δ

δ−1

) n+δ−5
2

(√
δ

δ−1

) (n−2)(δ−1)
2

, δ ≥ 4.
(175)

Then the proof is complete by combining part (a),
Lemma V.1 (b) and (175).
(c) Similar to (164), we have

dTV(ζn,δ,ρ,Dirac(1))

≤
δ+1∑
�=2

α(�, rρ)

=P
(
NUV

({u′
i}δ+1

i=1 , rρ;n− 2
) ≥ 2| deg(u′

δ+1) = δ
)
.

where the equality follows from (38). Then the conclusion
follows from part (a) and part (b) since rρ satisfies the
condition there.

Lemma A.21: Let n ≥ 3 and 0 < r <
√

2. If w1 and
w2 are two points in Sn−2 with 
w1 − w2
2 = d satisfying
2 − 2

√
1 − (d/2)2 < r2, then

P (u′
1 ∈ SC(r,w1) ∩ SC(r,w2)) ≤ Pn(h(r, d))

where u′
1 has distribution unif(Sn−2) and

h(r, d) =

√√√√2 − 2 − r2√
1 − (d

2 )2
.

Proof: The proof is based on Figure 6 and we use | · |
to represent the length of a line segment in this proof.
In the right triangle 0w3w1, the line segment 0w3 has
length |0w3| =

√
1 − (d/2)2. In the right triangle w1w3w5,
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|w3w5| =
√
r2 − (d/2)2. In the triangle 0w3w5, by the law

of Cosines,

cos(θ) =
2 − r2

2
√

1 − (d
2 )2

.

Then in the isosceles triangle, the line segment w4w5 has
length

|w4w5| = 2 sin(θ/2) =
√

2(1 − cos(θ)) =

√√√√2 − 2 − r2√
1 − (d

2 )2

=h(r, d).

It is easy to deduce that |w1w4| =
√

2 − 2
√

1 − (d/2)2. The

condition 2 − 2
√

1 − (d/2)2 < r2 entails that SC(r,w1) ∩
SC(r,w2) 	= ∅ and that |w1w4| < |w4w5| = h(r, d). In this
case SC(r,w1) ∩ SC(r,w2) ⊂ SC(h(r, d),w4). Thus

P (u′
1 ∈ SC(r,w1) ∩ SC(r,w2)) ≤P (u′

1 ∈ SC(h(r, d),w4))
=Pn(h(r, d)).

3) Proof of Lemma V.9:
Proof of Lemma V.9: When δ = 2, α2 = 0 since either

both vertices have degree 1 or none. Moreover,

α3

=P(
ũ1 − ũ2
2 ≤ 1)
=EP(
ũ1 − ũ2
2 ≤ 1|ũ1)

(∗)
=E

2
Vol(Bn−2)

π(n−3)/2

Γ(n−3
2 + 1)

∫ arccos(
‖ũ1‖2

2 )

0

sinn−2(θ)dθ

(∗∗)
=

2
Vol(Bn−2)

π(n−3)/2

Γ(n−3
2 + 1)

Area(Sn−3)
Vol(Bn−2)

×
∫ 1

0

rn−3

∫ arccos( r
2 )

0

sinn−2(θ)dθdr

=
2(n− 2)
B(n−1

2 , 1
2 )

∫ 1

0

rn−3

∫ arccos( r
2 )

0

sinn−2(θ)dθdr (176)

where step (∗) follows from the Subsection “Volume of a
hyperspherical cap” from [41] and Vol(Bn−2) is the volume
of Bn−2, step (∗∗) follows by observing the random quantity
only depends on ũ1 through its Euclidean norm, and in the
last step B(·, ·) is the Beta function. By Fubini’s Theorem∫ 1

0

rn−3

∫ arccos( r
2 )

0

sinn−2(θ)dθdr

=
∫ π

3

0

∫ 1

0

rn−3 sinn−2(θ)drdθ+∫ π
2

π
3

∫ 2 cos(θ)

0

rn−3 sinn−2(θ)drdθ

=
3

2(n− 2)

∫ π
3

0

sinn−2(θ)dθ

Plugging the preceding formula into (176), α3 =
3
2I 3

4
(n−1

2 , 1
2 ), where Ix(a, b) is the regularized incomplete

Beta function. α1 = 1 − α3 follows from α2 = 0.

J. Auxiliary Lemmas

Lemma A.22: Let Pn(r) be defined as in Section III-C.
Suppose n ≥ 4.

(a) Recall an = bn

2(n−2) = Γ((n−1)/2)

(n−2)
√

πΓ((n−2)/2)
≤ 1. Then

anr
n−2

(
1 − min{r2, 4}

4

)n−4
2

≤ Pn(r) ≤ anr
n−2

and

−n− 4
8

anr
n−2 min{r2, 4} ≤ Pn(r) − anr

n−2 ≤ 0.

(177)

(b) limr→0 Pn(r)/
(
anr

n−2
)

= 1.
(c) Let 0 ≤ β < 1 < α and 0 < r ≤ 2. Then

Pn(αr) − Pn(βr) ≤ (n− 2)Pn(r)αn−3(α− β).

(d) Consider α > 1 and r > 0. Then

Pn(αr) ≤ αn−2Pn(r).

(e) Consider 0 < β < 1 and 0 < r < 2. Then

Pn(βr) ≤ βn−2

(
1 − β2r2

4

1 − r2

4

)n−4
2

Pn(r).

Proof: (a) It is easy to verify

P ′
n(x) =

{
bn

2 x
n−3(1 − x2

4 )
n−4

2 x < 2,
0 x ≥ 2.

(178)

Consider r > 0. Then

Pn(r)
anrn−2

=
P ′

n(ξ)
(n− 2)anξn−3

=
(

1 − ξ2

4

)n−4
2

(179)

where in the first equality ξ ∈ (0,min{r, 2}) due to the
Cauchy Mean Value Theorem and Pn(r) 	= 0, and the second
equality follows from (178). Equation (179) directly implies(

1 − (min{r, 2})2
4

)n−4
2

≤ Pn(r)
anrn−2

≤ 1.

(b) It follows directly by taking limit r → 0+ in (179).
(c) Since 0 ≤ β < 1 < α and 0 < r ≤ 2, Pn(αr) −

Pn(βr) > 0 and Pn(r) > 0. Then

Pn(αr) − Pn(βr)
Pn(r)

=
(Pn(αr) − Pn(βr)) − (Pn(α · 0) − Pn(β · 0))

Pn(r) − Pn(0)

=
d
dr (Pn(αr) − Pn(βr))

∣∣
r=ξ

d
drPn(r)

∣∣
r=ξ

=
αn−2

(
1 − α2ξ2

4

) n−4
2 − βn−2

(
1 − β2ξ2

4

)n−4
2

(
1 − ξ2

4

) n−4
2

≤αn−2 − βn−2 (180)

≤(n− 2)αn−3(α− β),
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where the second equality follows from the Cauchy Mean
Value Theorem with ξ ∈ (0, r), the third equality follows
from (178) together with the fact that the numerator has to
be positive, which imply αξ < 2, the first inequality follows
from 0 ≤ β < 1 < α, and the last inequality follows from
mean value theorem.

(d) When r ≥ 2, Pn(αr) = Pn(r) = 1 and the conclusion
holds trivially. The case 0 < r < 2 follows from (180) with
β = 0.

(e) Consider 0 < β < 1 and 0 < r < 2. Then

Pn(βr)
Pn(r)

=
βn−2

(
1 − β2ξ2

4

) n−4
2

(
1 − ξ2

4

)n−4
2

≤
βn−2

(
1 − β2r2

4

)n−4
2

(
1 − r2

4

)n−4
2

,

where the equality follows from Cauchy Mean Value Theorem
with ξ ∈ (0, r).

Lemma A.23: Consider Z1 and Z2 be two discrete random
variable support on [δ]. Then

dW (L (Z1),L (Z2)) ≤ δ − 1
2

δ∑
�=1

|P(Z1 = �) − P(Z2 = �)| .

Proof: By Remark 2.19 (iii) of Section 2.2 in [42],

dW (L (Z1),L (Z2)) =
δ−1∑
i=1

|P(Z1 ≤ i) − P(Z2 ≤ i)|

≤
δ−1∑
i=1

i∑
j=1

|P(Z1 = j) − P(Z2 = j)|.

On the other hand, from the above equality,

dW (L (Z1),L (Z2)) =
δ−1∑
i=1

|P(Z1 ≥ i+ 1) − P(Z2 ≥ i+ 1)|

≤
δ−1∑
i=1

δ∑
j=i+1

|P(Z1 = j) − P(Z2 = j)|.

Averaging the above two inequalities yields the desired con-
clusion.

Lemma A.24: For any integer-valued random variable
Z1 and Z2,

dTV (L (Z1),L (Z2)) ≤ P(Z1 	= Z2) ≤ E |Z1 − Z2| .

Proof:

dTV (L (Z1),L (Z2))
= max

A Borel measurable
|P(Z1 ∈ A) − P(Z2 ∈ A)|

= max
A Borel measurable

|P(Z1∈A,Z1 	= Z2)−P(Z2∈A,Z1 	= Z2)|
≤P(Z1 	= Z2)
=P(|Z1 − Z2| ≥ 1)
≤E |Z1 − Z2| .

Lemma A.25: Consider two compound Poisson distributions
CP(ε1, ζ1) and CP(ε2, ζ2). Then

dTV (CP(ε1, ζ1),CP(ε2, ζ2))
≤min{ε1, ε2}dTV(ζ1, ζ2) + dTV(Pois(ε1),Pois(ε2))
≤min{ε1, ε2}dTV(ζ1, ζ2)+

min

{
|ε1 − ε2|,

√
2
e
|
√
ε1 −

√
ε2|

}
.

Proof: By triangular inequality,

dTV (CP(ε1, ζ1),CP(ε2, ζ2))
≤dTV (CP(ε1, ζ1),CP(ε1, ζ2)) +
dTV (CP(ε1, ζ2),CP(ε2, ζ2)) . (181)

We will bound the two terms in the upper bound separately.
Step 1: dTV (CP(ε1, ζ1),CP(ε1, ζ2))
Consider Z1 =

∑N
i=1 Yi and Z2 =

∑N
i=1 Y

′
i , where N ∼

Pois(ε1), {Yi} i.i.d.∼ ζ1, {Y ′
i } i.i.d.∼ ζ2, and N is independent of

{Yi}, {Y ′
i }. Then

dTV (CP(ε1, ζ1),CP(ε1, ζ2)) = dTV (L (Z1),L (Z2))
≤ 1 − P(Z1 = Z2)
= 1 − EP(Z1 = Z2|N)

≤ 1 − E (P(Y1 = Y ′
1))N

,

where the first inequality follows from Lemma A.24. Since
the above inequality holds for any coupling (Y1, Y

′
1) of ζ1 and

ζ2, by Proposition 4.7 in [43] taking the infimum of all the
coupling then yields

dTV (CP(ε1, ζ1),CP(ε1, ζ2)) ≤1 − E(1 − dTV(ζ1, ζ2))N

≤ε1dTV(ζ1, ζ2).

Step 2: dTV (CP(ε1, ζ2),CP(ε2, ζ2))
Consider Z1 =

∑N1
i=1 Y

′
i and Z2 =

∑N
i=1 Y

′
i , where N1 ∼

Pois(ε1), N2 ∼ Pois(ε2), {Y ′
i } i.i.d.∼ ζ2, and {Y ′

i } is indepen-
dent of N1, N2. Then

dTV (CP(ε1, ζ2),CP(ε2, ζ2)) = dTV (L (Z1),L (Z2))
≤ P(Z1 	= Z2)
= P(N1 	= N2),

where the first inequality follows from Lemma A.24. Since the
above inequality holds for any coupling (N1, N2) of Pois(ε1)
and Pois(ε2), by Proposition 4.7 in [43] taking the infimum of
all the coupling then yields dTV (CP(ε1, ζ2),CP(ε2, ζ2)) ≤
dTV (Pois(ε1),Pois(ε2)).

Plugging step 1 and step 2 into (181),

dTV (CP(ε1, ζ1),CP(ε2, ζ2))
≤ε1dTV(ζ1, ζ2) + dTV (Pois(ε1),Pois(ε2)) .

By symmetry property, the first term in the above upper
bound can be replace by min{ε1, ε2}dTV(ζ1, ζ2). The proof
is then completed by applying equation (2.2) of [44] to bound
dTV (Pois(ε1),Pois(ε2)).
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Lemma A.26: (a) Let p, p′,m be positive integers such
that p ≥ p′. Then

m∏
i=0

(p−i)−
m∏

i=0

(p′−i) ≤ (m+1)

(
m−1∏
i=0

(p− i)

)
(p−p′).

(b) Let p, δ, κ be positive integers such that δ ≤ p− 1. Then

δ∏
�=1

(p− �)−
δ∏

�=1

(p− �κ) ≤ δ(δ + 1)
2

(κ− 1)
δ−1∏
�=1

(p− �).

(c)
(

1+x
1−x

)2

is increasing function on [0, 1
2 ] and

(
1+x
1−x

)2

≤
1 + 16x for 0 ≤ x ≤ 1

2 . Then
(d) 1 + x− 1

1+x ≤ 2x for any x ≥ 0.
Proof: (c) and (d) are simple quadratic inequalities and

hence their proofs are omitted. (a) Let f(x) =
m∏

i=0

(x − i).

When p′ ≥ m, f ′(x) ≤ (m + 1)
∏m−1

i=0 (p − i) and the
conclusion then follows by the mean value theorem. When
p′ ≤ m− 1,

f(p) − f(p′) ≤ f(p) ≤ (p− p′)
m−1∏
i=0

(p− i).

(b) Let f(x) =
δ∏

�=1

(p− �x). When p < δκ,

f(1) − f(κ) ≤ f(1) ≤(δκ− δ)
δ−1∏
�=1

(p− �)

≤δ(δ + 1)
2

(κ− 1)
δ−1∏
�=1

(p− �).

When p ≥ δκ, f ′(x) ≥ − δ(δ+1)
2

∏δ−1
�=1(p − �) for x ∈ [1, κ].

Then the conclusion follows by the mean value theorem.
Lemma A.27 (Perturbation Theory): Consider D ∈ S

n and
E ∈ S

n, where S
n is the set of all real symmetric matrices

of dimension n × n. Let {εi(·)}n
i=1 be the eigenvalues of

corresponding matrix such that ε1(·) ≥ ε2(·) ≥ . . . ≥ εn(·).
(a)

|εi(D + E) − εi(D)| ≤ 
E
2 (i = 1, 2, . . . , n)

(b) Assume E = ωxx�, where x ∈ Sn−1. If ω ≥ 0, then

εi(D + E) ∈ [εi(D), εi−1(D)], (i = 2, 3, . . . , n),

while if ω ≤ 0, then

εi(D + E) ∈ [εi+1(D), εi(D)], (i = 1, 2, . . . , n− 1).

In either case, there exist nonnegative m1,m2, . . . ,mn

such that

εi(D + E) = εi(D) +miω, (i = 1, 2, . . . , n)

with m1 +m2 + · · · +mn = 1.

(c) Assume E =
m∑

i=1

ωixix
�
i , where {xi}m

i=1 ⊂ Sn−1 and

ωi ≥ 0 for all i. Then

εn(D + E) ≥ εn(D).

Fig. 7. w1 and w2 are the normalized vector of w̄1 and w̄2 respectively.

Proof: (a) and (b) is Corollary 8.1.6 and Theorem
8.1.8 in [36]. (c) follows by induction on the smallest eigen-
value using part (b) for ω ≥ 0.

Lemma A.28: Let x1,x2 be two vectors on Sn−1, and
D ∈ R

n×n be an invertible matrix. Let Smax(D) and Smin(D)
be respectively the largest and smallest singular value of D.
Define w̄i = Dxi and wi = w̄i/
w̄i
2, (i = 1, 2). Then,

Smin(D)
Smax(D)


x1 − x2
2 ≤ 
w1 − w2
2 ≤ Smax(D)
Smin(D)


x1 − x2
2

Proof: Part I (Upper Bound)
Denote ∠(·, ·) the angle between two vectors. By the Law

of Cosines,

cos(∠(w1,w2)) =

w1
2

2 + 
w2
2
2 − 
w1 − w2
2

2

2 × 
w1
2 × 
w2
2

=
2 − 
w1 − w2
2

2

2
,

and

cos(∠(w̄1, w̄2)) =

w̄1
2

2 + 
w̄2
2
2 − 
w̄1 − w̄2
2

2

2 × 
z̄1
2 × 
w̄2
2
.

Observing ∠(w1,w2) = ∠(w̄1, w̄2), the right hand sides of
the above two equations are equal. Solving for 
w1 − w2
2,
we get


w1 − w2
2
2 =


w̄1 − w̄2
2
2


w̄1
2
w̄2
2
+

(
2 − 
w̄2
2


w̄1
2
− 
w̄1
2


w̄2
2

)

≤
w̄1 − w̄2
2
2


w̄
2
w̄2
2
.

Therefore,


w1 − w2
2 ≤ 
w̄1 − w̄2
2√
w̄1
2
w̄2
2

≤ Smax(D)
x1 − x2
2√
Smin(D)
x1
2Smin(D)
x2
2

=
Smax(D)
Smin(D)


x1 − x2
2.

Part II(Lower Bound)
Define x̄i = D−1wi, (i = 1, 2). Note for ∀i ∈ {1, 2}, xi and
x̄i are parallel to each other, since xi = D−1w̄i and w̄i is
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Fig. 8. The vertical axis of (a) is dTV(L
�
N

(Ψ)
V1

�
, CP(λ20,1(1), ζ20,1)) and that of (b) is dTV(L

�
N

(Ψ)
V1

�
, CP(λp,20,1,ρ , ζ20,1,ρ)). The theoretical

convergence results have respectively been established in Theorem II.4 and Theorem III.11. For both plots the samples are independently generated according
to N (0,Σ) with Σ being a (τ = p0.6, κ = p0.8) sparse matrix for each p. The parameters are n = 20, δ = 1 and the threshold ρ is chosen according to
(11) with en,δ = 1. The blue curve is for the empirical correlation graph (Ψ = R) and the red curve is for the empirical partial correlation graph (Ψ = P ).
Note since δ = 1, ζ20,1 = Dirac(2) = ζ20,1,ρ , by Example V.7. As demonstrated by the plots, for both the empirical correlation and partial correlation
graphs, the total variations in (a) decrease very slowly while the total variations in (b) converge to 0 very fast, which has also been analytically discussed
in Remark III.17. Our observation that the non-asymptotic compound Poisson distribution provides a better fit to the numerical simulations for small p is a
caveat to practitioners who may be tempted to use the Poisson approximation.

parallel to wi. Thus, we conclude xi = x̄i/
x̄i
2, (i = 1, 2).
Reversing the role of xi and wi in Part I, one has


x1 − x2
2 ≤ Smax(D−1)
Smin(D−1)


w1 − w2
2.

The lower bound follows from the relation Smax(D
−1)

Smin(D−1) =
Smax(D)
Smin(D) .

Lemma A.29: Let {Di}m
i=1, {Fi}m

i=1, {Gi}m
i=1 and {Hi}m

i=1

be sets satisfying

Gi ⊂ Di ⊂ Hi, Gi ⊂ Fi ⊂ Hi, (i = 1, 2, . . . ,m).

Then

(a) (
m⋂

i=1

Di

)
�

(
m⋂

i=1

Fi

)
⊂

m⋃
i=1

(Hi\Gi)
⋂⎛

⎝ m⋂
j=1

Hj

⎞
⎠

=
m⋃

i=1

⎛
⎜⎜⎝(Hi\Gi)

⋂
⎛
⎜⎜⎝ m⋂

j=1
j �=i

Hj

⎞
⎟⎟⎠

⎞
⎟⎟⎠.

(b) (
m⋃

i=1

Di

)
�

(
m⋃

i=1

Fi

)
⊂

m⋃
i=1

(Hi\Gi) .

Proof: (a) Obviously,

m⋂
i=1

Gi ⊂
m⋂

i=1

Di ⊂
m⋂

i=1

Hi,

m⋂
i=1

Gi ⊂
m⋂

i=1

Fi ⊂
m⋂

i=1

Hi. (182)

Thus, (
m⋂

i=1

Di

)
�

(
m⋂

i=1

Fi

)
⊂

(
m⋂

i=1

Hi

)
\

(
m⋂

i=1

Gi

)
.

Take ∀ω ∈ (
⋂m

i=1 Hi) \ (
⋂m

i=1 Gi), we know ω ∈ ⋂m
i=1 Hi

and ω 	∈ ⋂m
i=1 Gi. The later fact shows ∃j (which depends on

ω) such that ω 	∈ Gj . Then,

ω ∈
(

m⋂
i=1

Hi

)
\Gj ⊂ Hj\Gj ⊂

m⋃
i=1

(Hi\Gi) . (183)

The proof is completed by combining (182) and (183).
(b)(

m⋃
i=1

Di

)
�

(
m⋃

i=1

Fi

)
=

(
m⋃

i=1

Di

)c

�
(

m⋃
i=1

Fi

)c

=

(
m⋂

i=1

Dc
i

)
�

(
m⋂

i=1

Fc
i

)

⊂
m⋃

i=1

(Gc
i \Hc

i )

=
m⋃

i=1

(Hi\Gi) ,

where the inclusion step follows from (a).
Lemma A.30: Let Q ∈ R

n×m(n ≤ m), with each column
qi being i.i.d. unif(

√
nSn−1). Let εmin and εmax be respec-

tively the largest and smallest eigenvalue of 1
mQQ�. Then

with probability at least 1 − 2 exp(−ct2),[
1 − C

(√
n

m
+

t√
m

)]2

≤ εmin

≤ εmax ≤
[
1 + C

(√
n

m
+

t√
m

)]2

, (184)

where c, C are absolute constants.
Proof: Let Smax, Smin be respectively the largest and

smallest singular value of Q. Since columns {qi}m
i=1 are

isotropic random vectors with subgaussian norm (or ψ2 norm)
being a constant, by applying Theorem 5.39 in [2] to Q�,
√
m−C(

√
n+ t) ≤ Smin ≤ Smax ≤ √

m+C(
√
n+ t), (185)
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Fig. 9. The vertical axis of (a) is dTV

�
L
�
N

(Ψ)
Vδ

�
, Pois

�
(en,δ)δ

δ!

��
, where we replaced CP(λn,δ(en,δ), ζn,δ) in Theorem II.4 by its approximation

Pois(
(en,δ)δ

δ!
) as in Proposition V.3. The vertical axis of (b) is dTV(N

(Ψ)
Vδ

, Pois(

p
1

�
p−1
δ

�
(2Pn(rρ))δ)), where we replaced CP(λp,n,δ,ρ, ζn,δ,ρ) in

Theorem III.11 by its approximation Pois(

p
1

�
p−1
δ

�
(2Pn(rρ))δ) as in Proposition V.6. For both plots the samples are independently generated according

to N (0,Σ) with Σ being a (τ = p0.6, κ = p0.8) sparse matrix for each p. The parameters are n = 35, δ = 2 and the threshold ρ is chosen according
to (11) with en,δ = 1. As demonstrated by the plots, for both the empirical correlation and partial correlation graphs, the total variations in (a) decrease
very slowly while the total variations in (b) converge to 0 very fast. The fast convergence in Figure 9 (b) verifies the validity of using Poisson distribution
Pois(


p
1

�
p−1
δ

�
(2Pn(rρ))δ) to approximate the distribution of random quantities in {N(Ψ)

Eδ
, N

(Ψ)

V̆δ
, N

(Ψ)
Vδ

: Ψ ∈ {R, P}} for large n. We now discuss

the slow convergence behavior of Figure 9 (a). Note that n = 35 is large enough to guarantee that
�δ+1

�=2 α� is small as indicated by Figure 4 (b), which

implies that CP(λn,δ(en,δ), ζn,δ) is well approximated by Pois(
(en,δ)δ

δ!
) by Lemma V.2 (c). As a result, the extremely slow decrease in Figure 9 (a) is

not because of using the Poisson approximation, but is due to the slow convergence of Theorem II.4, which has been extensively discussed in Remark III.17.
This specific example additionally indicates that the slow convergence of Theorem II.4 is due to slow convergence of λp,n,δ,ρ → λn,δ since the increment
distribution in this large n case are both close to Dirac(1).

holds with probability at least 1−2 exp(−ct2), where c, C are
absolute constants. The proof is completed by

εmax =
1
m

S2
max, εmin =

1
m

S2
min.

K. Numerical Simulations and Experiments

Figures 8a-9b show comparisons between theory and sim-
ulation for the zero mean multivariate Gaussian case with
n < p. In particular, they show empirically the speed of
convergence to the compound Poisson limit as p increases.
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