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Measuring Information from Moments

Wael Alghamdi and Flavio P. Calmon∗

Abstract

We investigate the problem of representing information measures in terms of the moments of the
underlying random variables. First, we derive polynomial approximations of the conditional expectation
operator. We then apply these approximations to bound the best mean-square error achieved by a
polynomial estimator—referred to here as the PMMSE. In Gaussian channels, the PMMSE coincides with
the minimum mean-square error (MMSE) if and only if the input is either Gaussian or constant, i.e., if and
only if the conditional expectation of the input of the channel given the output is a polynomial of degree at
most 1. By combining the PMMSE with the I-MMSE relationship, we derive new formulas for information
measures (e.g., differential entropy, mutual information) that are given in terms of the moments of the
underlying random variables. As an application, we introduce estimators for information measures from
data via approximating the moments in our formulas by sample moments. These estimators are shown
to be asymptotically consistent and possess desirable properties, e.g., invariance to affine transformations
when used to estimate mutual information.
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1 Introduction

A fundamental formula in information theory is the I-MMSE relation [3], which shows that in Gaussian
channels the mutual information is the integral of the minimum mean-square error (MMSE):

I(X ;
√
γX +N) =

1

2

∫ γ

0

mmse
(
X |

√
tX +N

)
dt. (1)

Here, X has finite variance and N is standard normal independent of X. In this paper, we build on this
relation to express information measures of two random variables X and Y as functions of their moments.
For example, whenever X and Y are continuous and subexponential there is a sequence of rational functions
{ρn}n∈N—each completely determined by finitely many of the moments of X and Y—such that the mutual
information is

I(X ;Y ) = lim
n→∞

∫

R

ρn(t) dt. (2)

We derive the new expression (2) and a similar formula for differential entropy in three steps. First, we
produce polynomial approximations of conditional expectations. Second, we apply these approximations to
bound the mean-square error of reconstructing a hidden variableX from an observation Y using an estimator
that is a polynomial in Y . We call this approximation the PMMSE, in short for Polynomial MMSE. Finally,
we use the PMMSE in the I-MMSE relation (1) to approximate mutual information (as in (2)) and differential
entropy.

1.1 Overview of Main Results

The crux of our work is the study of polynomial approximations of conditional expectations. We produce
polynomial approximations for E[X | Y ] for general random variables X and Y in Section 3. The polynomial
formulas are instantiated for E[X | X +N ], where N ∼ N (0, 1) is independent of X, and studied further in
Section 5.

A surprising result that motivates the study of polynomial approximations of conditional expectations is
a negative answer to the question: Can E[X | X + N ] be a polynomial of degree at least 2? We prove in
Theorem 3 that among all integrable random variables X (i.e., E[|X |] <∞), the only way that E[X | X+N ]
can be a polynomial is if X is Gaussian or constant. In other words, E[X | X +N ] is linear or constant if it
is a polynomial.1

Nevertheless, we produce a sequence of polynomials that converges to the conditional expectation. For a
finite-variance X and a light-tailed non-finitely-atomic Y (see Theorems 5 and 6), we derive the mean-square
polynomial approximation of conditional expectation

E[X | Y ] = lim
n→∞

E [(X,XY, · · · , XY n)]M−1
Y,n




1
Y
...
Y n


 , (3)

where the n-th order Hankel matrix of moments of Y is denoted by

MY,n :=
(
E
[
Y i+j

])
0≤i,j≤n

. (4)

The light-tail condition on Y is satisfied if Y has a moment-generating function (MGF) or, more generally,
if it satisfies Carleman’s condition [5]

∑

n∈N>0

E
[
Y 2n

]−1/(2n)
= ∞. (5)

1The fact that E[X | X+N ] is a polynomial if and only if X is Gaussian or constant can be proved in view of the inequality
E[X2 | X +N = y] = O(y2), which is derived in [4, Proposition 1.2] when X has finite variance. Here, we extend the negative
conclusion to any integrable X.
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Imposing the light-tail condition on Y ensures that polynomials are dense in L2(PY ); in this case, the random
variable E [X | Y ] ∈ L2(PY ) will be a limit of polynomials, and (3) gives one such limit.

Note that the limit (3) holds even when Y is not a Gaussian perturbation of X. Also, in the special case
that Y = X + N for N ∼ N (0, 1) independent of X, the MGF of Y exists if that of X exists. In general,
when stating our results we do not make an implicit assumption on the relationship between X and Y unless
explicitly stated.

The expressions in the right hand side of (3) are the orthogonal projections of the conditional expectation
E[X | Y ] (or, equivalently, of X) onto finite-dimensional subspaces of polynomials in Y of a certain degree.
In other words, for each n ∈ N, the polynomial in Y defined by

En[X | Y ] := E [(X,XY, · · · , XY n)]M−1
Y,n




1
Y
...
Y n


 , (6)

is the orthogonal projection of E[X | Y ] onto the subspace Pn(Y ) := {p(Y ) | p ∈ Pn}, where Pn is the set
of polynomials in one variable of degree at most n with real coefficients. This projection characterization,
in turn, makes En[X | Y ] the best polynomial approximation (in the L2(PY )-norm sense) of the conditional
expectation E[X | Y ]. Specifically, En[X | Y ] uniquely solves the approximation problem

En[X | Y ] = argmin
q(Y )∈Pn(Y )

‖q(Y )− E[X | Y ]‖L2(PY ). (7)

Equation (7) is taken as the definition of En[X | Y ] for random variables X and Y satisfying E[X2] < ∞
and E[Y 2n] < ∞ (see Definition 2). The approximation error ‖En[X | Y ]− E[X | Y ]‖L2(PY ) in (7) can also
be quantified when the estimation is done in Gaussian channels, which we briefly overview next.

If Y = X + N for standard normal N independent of X, and if X has a probability density function
(PDF) or a probability mass function (PMF) pX that is compactly-supported, even, and decreasing over
[0,∞) ∩ supp(pX), then the approximation error ‖En[X | Y ] − E[X | Y ]‖L2(PY ) decays faster than any
polynomial in the degree n (Theorem 28). More precisely, for all positive integers n and k satisfying n ≥
max(k − 1, 1) we have that

‖En[X | Y ]− E[X | Y ]‖L2(PY ) = OX,k

(
1

nk/2

)
. (8)

The implicit constants in (8) depend only on X and k.
The bound on the rate of decay in (8) is derived by applying recently developed results on polynomial

approximation in weighted Hilbert spaces [6]. The key result (Theorem 26) is a uniform (in X) bound on
the derivatives of the conditional expectation of the form

sup
E[|X|]<∞

∥∥∥∥
dk

dyk
E[X | Y = y]

∥∥∥∥
L2(PY )

≤ ηk (9)

for each k ∈ N, where the ηk are absolute constants. In (9), Y = X +N for N ∼ N (0, 1) independent of X.
From an estimation-theoretic point of view, the operators En are natural generalizations of the linear

minimum mean-square error (LMMSE) estimate. By the orthogonality property of conditional expectation,
the characterization in equation (7) is equivalent to the characterization

En[X | Y ] = argmin
q(Y )∈Pn(Y )

E
[
(q(Y )−X)

2
]
. (10)

Hence, we call the random variable En[X | Y ] the n-th degree polynomial minimum-mean squared error
(PMMSE) estimate (of X given Y ) and denote the estimation error by

pmmsen(X | Y ) := E
[
(En[X | Y ]−X)

2
]
. (11)
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We next overview several moments-based representations for distribution functionals proved in this work.

Recall that the minimummean-square error (MMSE) is given by mmse(X | Y ) = E
[
(E[X | Y ]−X)

2
]
. Using

the limit En[X | Y ] → E[X | Y ], an application of the triangle inequality yields that the PMMSEs converge
to the MMSE

mmse(X | Y ) = lim
n→∞

pmmsen(X | Y ) (12)

when X has finite variance and Y satisfies Carleman’s condition (5) (see Theorem 5).
Utilizing the approximation of the MMSE given by (12) in the I-MMSE relation, we prove new formulas

for differential entropy and mutual information expressing them primarily in terms of moments. For example,
a corollary of the I-MMSE relation states that the differential entropy of a finite-variance continuous random
variable X can be expressed in terms of the MMSE as [3]

h(X) =
1

2

∫ ∞

0

mmse(X |
√
tX +N)− 1

2πe+ t
dt, (13)

where N is standard normal and is independent of X. In view of the approximability of the MMSE by the
PMMSEs (12), we obtain in Proposition 32 an approximation of differential entropy of an X that has a
MGF2 as

h(X) = lim
n→∞

hn(X) (14)

where we have introduced the distribution functionals hn(X) to be

hn(X) :=
1

2

∫ ∞

0

pmmsen(X |
√
tX +N)− 1

2πe+ t
dt. (15)

Figure 1 provides an illustration of how hn(X) approximates h(X), where X has a chi distribution with
two degrees of freedom (commonly denoted by χ2). It is evident from the figure that hn(X) approximates the
differential entropy of X monotonically more accurately as n grows; indeed, this is true in general, because
the monotonicity P1 ⊂ P2 ⊂ · · · implies that the convergence in (14) is monotone

h1(X) ≥ h2(X) ≥ · · · ≥ h(X), (16)

with h1(X) = 1
2 log(2πeσ

2
X) being the differential entropy of a Gaussian with the same variance as that of

X.
Furthermore, closure properties of polynomial subspaces under affine transformations imply that the

PMMSE behaves under affine transformations exactly as the MMSE does:

pmmsen(aX + b | cY + d) = a2 pmmsen(X | Y ) (17)

for constants a, b, c, and d such that c 6= 0 (Proposition 9). Thus, the distribution functionals hn behave
under affine transformations exactly as differential entropy does, namely,

hn(aX + b) = hn(X) + log |a| (18)

for a 6= 0 (Proposition 33).
The most noteworthy implication of (14) is that it is a formula for differential entropy entirely in terms

of moments. This fact follows directly from (3), (11), and (15). A closer analysis of the PMMSE under
Gaussian perturbation yields a characterization that is more amenable to numerical computation. More
precisely, we show in Theorem 14 that the PMMSE when estimating a 2n-times integrable random variable
X given its output under a Gaussian channel

pmmsen(X, t) := pmmsen(X |
√
tX +N) (19)

2Interestingly, the light-tail condition here, which is required for
√
tX + N, might necessitate that X satisfy a condition

stronger than Carleman’s condition in equation (5) (though N satisfies Carleman’s condition, it might be the case that X
satisfies Carleman’s condition but the sum

√
tX + N does not, see [7, Proposition 3.1]); nevertheless, assuming that X has a

MGF is sufficient, as then
√
tX +N would necessarily have a MGF.
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Figure 1: Comparison of the values of hn(X) (green dots) against the true value h(X) (dashed blue line) for
n ∈ {1, · · · , 10} and X ∼ χ2. We have that h(X) < h10(X) < h(X) + 6 · 10−4.

is a rational function in the signal-to-noise ratio (SNR) t

pmmsen(X, t) =
σ2
X

∏n
k=1 k! + · · ·+ (detMX,n)t

dn−1

∏n
k=1 k! + · · ·+ (detMX,n)tdn

(20)

where the degree of the denominator is dn =
(
n+1
2

)
. Here, N is standard normal and is independent of X.

For example, if X is zero-mean and unit-variance, denoting Xk = E[Xk], we have the formula

pmmse2(X, t) =
2 + 4t+ (X4 −X 2

3 − 1)t2

2 + 6t+ (X4 + 3)t2 + (X4 −X 2
3 − 1)t3

. (21)

For a general n ∈ N, the coefficients in both the numerator and denominator of the PMMSE in (20) are
“homogeneous” polynomials in the moments of X (i.e., for a single coefficient c(X) there is a kc ∈ N such
that c(αX) = αkcc(X)); this and further characterizations of the coefficients are given in Theorem 18.

Pointwise convergence of pmmsen(X, t) to the MMSE

mmse(X, t) := mmse(X |
√
tX +N) (22)

follows immediately from the general PMMSE-to-MMSE convergence in (12) if X has a MGF. In fact,
continuity of both the PMMSE and the MMSE in the SNR and the monotonicity of the convergence in (12)
imply that the convergence is uniform (Theorem 17)

lim
n→∞

sup
t≥0

pmmsen(X, t)−mmse(X, t) = 0. (23)

Figure 2 shows an example of how the PMMSE approximates the MMSE for a random variable X that takes
the values 1 and −1 equiprobably. In this case, the MMSE is given by

mmse(X, t) = 1− 1√
2π

∫

R

tanh(z
√
t)2e−(z+

√
t)2/2 dz, (24)

whereas the functions pmmsen(X, t) are rational in t, e.g., for n = 1 we have the LMMSE

pmmse1(X, t) =
1

1 + t
(25)
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Figure 2: Comparison of the graphs of the functions t 7→ pmmsen(X, t) (solid lines) against the function
t 7→ mmse(X, t) (dashed black line) for n ∈ {1, 5, 10} and X ∼ Unif({±1}).

and for n = 5 we have the 5-th degree PMMSE3

pmmse5(X, t) =
45 + 360t+ 675t2 + 300t3

45 + 405t+ 1035t2 + 1005t3 + 450t4 + 96t5 + 8t6
. (26)

The convergence of the distribution functionals hn to differential entropy gives rise to approximations of
mutual information between a discrete random variable and a continuous random variable. Let X and Y be
jointly distributed random variables such that Y is finitely-atomic and, for each y ∈ supp(Y ), the random
variableXy obtained from X conditioned on Y = y is continuous. Then, the sequence {In(X ;Y )}n∈N defined
by

In(X ;Y ) := hn(X)−
∑

y∈supp(Y )

Pr(Y = y)hn(Xy) (27)

converges to I(X ;Y ) when X has a MGF (Theorem 34).
We also obtain a moments-based formula for I(X ;Y ) when both X and Y are continuous. This expression

follows, in part, by extending our results on random variables to random vectors. The multidimensional
generalization, in turn, is straightforward in view of the existence of analogous results for the I-MMSE
relation [3] and on the denseness of polynomials in the multidimensional setting. One notable exception is
that we derive the MMSE dimension of a continuous random vector, namely, that

lim
t→∞

t ·mmse(X |
√
tX +N) =

m∑

i=1

σ2
Ni

(28)

for continuous square-integrable m-dimensional random vectors X and N = (N1, · · · , Nm)T whenever the
density function of N is bounded and decaying sufficiently fast (see Theorem 43).

Approximating the PMMSE in (20) by plugging in sample moments in place of moments, we derive an
estimator of several information measures. If {Xj}mj=1 are i.i.d. samples taken from the distribution of X,
then a uniform random variable over the samples U ∼ Unif({Xj}mj=1) provides an estimate pmmsen(U, t)
for pmmsen(X, t). The moments of U converge to the moments of X by the law of large numbers. Further,
using pmmsen(U, t) to estimate pmmsen(X, t) is a consistent estimator by the continuous mapping theorem,
as the PMMSE is a continuous function of the moments. The same can be said of hn(U) as an estimate

3In general, pmmse5(Z, t) is a ratio of a degree-14 polynomial by a degree-15 polynomial as in equation (20). In the special
case of a Rademacher random variable, significant cancellation occurs and we obtain equation (26).
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of hn(X), or of In(U ;V ) as an estimate of I(X ;Y ) when (U, V ) ∼ Unif({(Xj, Yj)}mj=1) where {(Xj, Yj)}mj=1

are i.i.d. samples drawn according to the distribution of (X,Y ). These estimators also satisfy some desirable
properties. For example, the behavior of the PMMSE under affine transformations (17) implies that the
estimate of the PMMSE from data is robust to (injective) affine transformations

pmmsen(aU + b, t) = a2pmmsen(U, a
2t), (29)

and so are the estimates of differential entropy

hn(aU + b) = hn(U) + log |a| (30)

and mutual information
In(aU + b;V ) = In(U ;V ). (31)

1.2 Related Literature

The mutual information between the input and output of the Gaussian channel is known to have an integral
relation with the MMSE, referred to in the literature as the I-MMSE relation. This connection was made
in the work of Guo, Shamai, and Verdú in [3]. Extensions of the I-MMSE relation were investigated in
[8–16], and applications have been established, e.g., in optimal power allocation [17] and monotonicity of
non-Gaussianness [18]. Our work is inscribed within this literature.

We introduce the PMMSE approximation of the MMSE, derive new representations of distribution func-
tionals in terms of moments, and introduce estimators based on these new representations. We note that
utilizing higher-order polynomials as proxies of the MMSE has appeared, e.g., in approaches to denoising
[19]. Also, studying smoothed distributions, e.g., via convolutions with Gaussians, has generated recent
interest in the context of information theory [20, 21] and learning theory [22, 23].

At the heart of our work is the Bernstein approximation problem, on which a vast literature exists within
approximation theory. The original Bernstein approximation problem extends Weierstrass approximation to
the whole real line by investigating whether polynomials are dense in L∞(µ) for a measure µ that is absolutely
continuous with respect to the Lebesgue measure. Works such as those by Carleson [24] and Freud [25],
and eventually the more comprehensive solution given by Ditzian and Totik [6]—which introduces moduli of
smoothness, a natural extension of the modulus of continuity—show that tools used to solve the Bernstein
approximation problem can be useful for the more general question of denseness of polynomials in Lp(µ) for
all p ≥ 1 (see [5] for a comprehensive survey). In particular, the case p = 2 has a close relationship with the
Hamburger moment problem, described next.

The Hamburger moment problem asks whether a countably-infinite sequence of real numbers corresponds
to a unique positive Borel measure on R. A connection between this problem and the Bernstein approximation
problem is that if the Hamburger moment problem has a positive answer for the sequence of moments of µ
then polynomials are dense in L2(µ), see [26]. In the context of information theory, the application of the
Bernstein approximation problem and the Hamburger moment problem has appeared in [27].

The denominator of the PMMSE in Gaussian channels, detM√
tX+N,n in (20), as well as the leading

coefficient of both the numerator and the denominator, detMX,n, can be seen as generalizations of the
Selberg integral. Denote

In(ϕ) =
∫

Rn+1

∏

0≤i<j≤n

(yi − yj)
2

n∏

i=0

ϕ(yi) dy0 · · · dyn. (32)

If ϕ is the PDF of a Beta distribution or a standard normal distribution, then In(ϕ) is the Selberg integral
or the Mehta integral, respectively (both with parameter γ = 1). For a continuous random variable Y whose
PDF is pY ,

detMY,n =
1

(n+ 1)!
In(pY ). (33)

The Vandermonde-determinant power
∏

i<j(yi − yj)
2 in the integrand in (32) bears a close connection with

the quantum hall effect [28, 29]. The connection arises via expanding powers of the Vandermonde determinant
and investigating which of the ensuing monomials have nonzero coefficients.

7



We quantify the rate of convergence of the PMMSE to the MMSE in Theorem 28, for which the key
ingredient is the bound in Theorem 26 on the derivatives of the conditional expectation. The first-order
derivative of the conditional expectation in Gaussian channels has been treated in [30]. We note that in
parallel to this work the authors were made aware that the higher-order derivative expressions in Proposi-
tion 27 were also derived in [31]. We also extend the proofs for the MMSE dimension in the continuous case
as given in [32] to higher dimensions.

Distribution functionals, such as mutual information, are popular metrics for quantifying associations
between data (e.g., [33–35]), yet reliably estimating distributional functions directly from samples is a non-
trivial task. The naive route of first estimating the underlying distribution is generally impractical and
imprecise. To address this challenge, a growing number of distribution functionals’ estimators have recently
been proposed within the information theory and computer science communities (see, e.g., [36–40]). The
estimators proposed in this paper satisfy desirable properties, such as shift invariance and scale resiliency,
without the need to estimate the underlying distributions.

1.3 Paper Organization

In Section 2, we show that the conditional expectation in a Gaussian channel is linear if it is a polynomial. We
introduce the PMMSE, prove its convergence to the MMSE, and provide explicit formulas for it in Section 3.
Basic properties of the PMMSE are given in Section 4. A more focused treatment of the Gaussian-channel
case occupies Section 5. We derive a bound on the derivatives of the conditional expectation in Section 6.
This bound, in turn, is used to quantify how close the PMMSE approximates the MMSE as the polynomial
degree increases, which is the focus of Section 7. We translate the expressions of the PMMSE into new
formulas for differential entropy in Section 8. We then develop a moments-based formula for the mutual
information in Section 9. Generalizations to multiple dimensions and to pairs of continuous random variables
are given in Section 10. The proposed PMMSE-based estimator is introduced, and its performance illustrated
with simulations, in Section 11.

1.4 Notation

Throughout, we fix a probability space (Ω,F , P ). Let B denote the Borel σ-algebra of R. A random variable
(RV) is a function X : Ω → R that is (F ,B)-measurable. For any sub-σ-algebra Σ ⊂ F , we denote

M(Σ) := {f : Ω → R ; f is (Σ,B)-measurable} . (34)

The σ-algebra generated by a RV X is denoted by σ(X) := {X−1(B) ; B ∈ B} ⊂ F , where X−1(B) denotes
the set-theoretic inverse. A function g : R → R is called a Borel function if it is (B,B)-measurable. The set
of σ(X)-measurable RVs can be characterized by [41, Section II.4.5, Theorem 3]

M(σ(X)) = {g ◦X ; g : R → R is a Borel function }. (35)

For 1 ≤ q <∞, the weighted Lq-space Lq(Σ) is defined by

Lq(Σ) :=

{
f ∈ M(Σ) ;

∫

Ω

|f |q dP <∞
}
. (36)

We denote the norm of the Banach space Lq(F) (for 1 ≤ q <∞) by ‖ · ‖q, i.e., for any f ∈ M(F)

‖f‖q :=
(∫

Ω

|f |q dP
)1/q

. (37)

We say that a RV f is integrable if f ∈ L1(F), and we say that f is n-times integrable if f ∈ Ln(F). A
shorthand for integration against P is the expectation operator, i.e., if f ∈ L1(F) we denote E[f ] :=

∫
Ω f dP.

If f ∈ L2(F), we denote its variance by σ2
f := E

[
f2
]
−E[f ]2, where σf ≥ 0. The inner product in the Hilbert

space L2(F) is denoted by 〈 · , · 〉, i.e., for f, g ∈ L2(F) we set 〈f, g〉 := E[fg]. Note that the notation Lq(F)
suppresses the dependence on the underlying space Ω and measure P. The Banach space Lq(R) consists

8



of all Lebesgue-measurable functions f : R → R such that
∫
R
|f(x)|q dx < ∞, and its norm is denoted by

‖ · ‖Lq(R).
The (Borel) probability measure induced by a RV X is denoted by PX , i.e., for B ∈ B we set

PX(B) := P
(
X−1(B)

)
. (38)

We let supp(X) denote the support of X ; this is the smallest closed subset S ⊂ R such that PX(S) = 1, i.e.,
supp(X) is the complement of the union of all open PX -null sets, or,

supp(X) := {x ∈ R ; PX(U) > 0 for each open U ∋ x}. (39)

These are equivalent characterizations of supp(X) because the standard topology on R has a countable basis.
We denote the cardinality of a set S by |S|, so by |supp(X)| we mean the smallest size of a set containing
X almost surely

|supp(X)| := min{|S| ; PX(S) = 1}. (40)

If there is no finite-cardinality S for which PX(S) = 1, then we write |supp(X)| = ∞ (and we say X has
infinite support), whereas if there is some finite S for which PX(S) = 1 then the well-ordering principle
yields that the minimum in (40) is attained. For example, the uniform random variable over the interval
[0, 1] has infinite support. The Dirac measure is denoted by δa, i.e., for every a ∈ R and B ∈ B

δa(B) :=

{
1 if a ∈ B,
0 otherwise.

(41)

For b ∈ R, we write δa(b) := δa({b}). The indicator function of a set B is denoted by 1B.
We say that Y is a continuous RV if PY is absolutely continuous with respect to the Lebesgue measure

µL on R, and we call Y discrete if there is a countable set {qy}y∈S ⊂ [0, 1] such that for every B ∈ B we
have PY (B) =

∑
y∈S qyδy(B). We let pY denote the probability density function (PDF) of a RV Y if Y is

continuous, or the probability mass function of Y if Y is a discrete RV. We write Y ∼ f to mean that f is a
PDF or PMF of Y if it is clear from context that Y is continuous or discrete. The symbol ∼ is also used to
indicate that a RV follows a named distribution, e.g., N ∼ N (0, 1) means that N is a standard normal RV.4

If Y is a continuous RV, we denote the differential entropy of Y by

h(Y ) := −
∫

R

pY (y) log pY (y) dy (42)

whenever the integral is well-defined. For example, if σ2
Y < ∞, then h(Y ) as given by (42) is well-defined

and −∞ ≤ h(Y ) ≤ (1/2) log(2πσ2
Y ) as can be seen by splitting the integrand pY log pY into positive and

negative parts. The characteristic function of a RV Y is denoted by

ϕY (t) := E[eitY ]. (43)

We say that the RV Y has a moment-generating function (MGF) if its MGF E[etY ] is finite over some
nonempty interval t ∈ (−δ, δ).

For a nonempty B ∈ B that is finite or of nonzero Lebesgue measure, we write Y ∼ Unif(B) to mean
that Y is a uniform RV over B. In other words, if B is finite, then Y is discrete and Y ∼ |B|−1

∑
y∈B δy,

whereas if µL(B) > 0 then Y is continuous and Y ∼ µL(B)−11B. We will also consider RVs that are uniform
over independent and identically distributed (i.i.d.) samples. In other words, if X1, · · · , Xm are i.i.d. RVs,
we write U ∼ Unif({Xj}mj=1) to denote a collection of RVs {U(ω)}ω∈Ω such that for each ω ∈ Ω the RV
U(ω) is uniformly distributed over the multiset {Xj(ω)}mj=1. For such U, we let E[U ] be a shorthand for the
RV ω 7→ E[U(ω)], i.e., E[U ] = (X1 + · · ·+Xm)/m.

If E
[
Y 2n

]
<∞, we denote the Hankel matrix5 of moments MY,n ∈ R(n+1)×(n+1) by

MY,n :=
(
E
[
Y i+j

])
0≤i,j≤n

. (44)

4Additionally, the symbol ∼ will be used to indicate asymptotic behavior, namely, for functions u and v defined on the same
metric space and having values in R, we write u ∼ v as t → a if it holds that limt→a u(t)/v(t) = 1.

5Hankel matrices are square matrices with constant skew diagonals.
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For a RV Y, we consider random vectors

Y (n) := (1, Y, · · · , Y n)
T
. (45)

Note that MY,n is the expectation of the outer product of the random vector Y (n),

MY,n = E

[
Y (n)

(
Y (n)

)T ]
. (46)

Therefore, MY,n is a rank-1 perturbation of the covariance matrix of Y (n),

ΣY (n) := E

[(
Y (n) − E

[
Y (n)

])(
Y (n) − E

[
Y (n)

])T ]
, (47)

namely,

MY,n = ΣY (n) + E
[
Y (n)

]
E
[
Y (n)

]T
. (48)

The matrix MY,n is symmetric. If, in addition, MY,n is positive-definite (which occurs if and only if

|supp(Y )| > n as shown in Lemma 7), then we use the notation M
1/2
Y,n to denote the lower-triangular matrix

in the Cholesky decomposition of MY,n. In other words, M
1/2
Y,n is the unique lower-triangular matrix with

positive diagonal entries that satisfies

M
1/2
Y,n

(
M

1/2
Y,n

)T
= MY,n. (49)

We also use the shorthand

M
−1/2
Y,n :=

(
M

1/2
Y,n

)−1

. (50)

Note that (M
1/2
Y,n )

−1 6= (M−1
Y,n)

1/2, unless MY,n is diagonal; since MY,n is a Hankel matrix, this can only
happen if n = 1 and E[Y ] = 0.

We let Pn denote the collection of all polynomials of degree at most n with real coefficients, and we
define Pn(Y ) ⊂ M(σ(Y )) by

Pn(Y ) := {q(Y ) ; q ∈ Pn}. (51)

If we write q(Y ) ∈ Pn(Y ), then we implicitly mean that q ∈ Pn; this does not necessarily define q uniquely,
e.g., if Y is binary then with q(Y ) = Y 2 we also have q(Y ) = Y, so both t 7→ t and t 7→ t2 are valid candidates
for q. Nevertheless, if |supp(Y )| > n, then each element in Pn(Y ) corresponds to a unique element in Pn.

For n ∈ N, we set
[n] := {0, 1, · · · , n}. (52)

The set of all finite-length tuples of non-negative integers is denoted by N∗. Vectors are denoted by boldface
letters, in which case subscripted regular letters refer to the entries, e.g., when λλλ ∈ Rn we let λj denote the
j-th entry so λλλ = (λ1, · · · , λn)T . Often, we will start indexing at 0 rather than 1, and that will be made
clear when it is done (in Section 6, indexing of tuples starts at 2). The n× n identity matrix is denoted by
In. For a real vector space V, we let dimV denote its dimension. Note that

dimPn(Y ) = min(n+ 1, |supp(Y )|). (53)

The closure of a set S will be denoted by S. In various parts of the paper, we will use Xk as a shorthand for
the k-th moment of a RV X

Xk := E
[
Xk
]
, (54)

and the notation Yk is used analogously.
For every integer r ≥ 2, let Πr be the set of unordered integer partitions r = r1 + · · · + rk of r into

integers rj ≥ 2. We encode Πr via a list of the multiplicities of the parts as

Πr := {(λ2, · · · , λℓ) ∈ N∗ ; 2λ2 + · · ·+ ℓλℓ = r} . (55)
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In (55), ℓ ≥ 2 is free, and trailing zeros are ignored (i.e., λℓ > 0). For a partition (λ2, · · · , λℓ) = λλλ ∈ Πr

having m = λ2 + · · ·+ λℓ parts, we denote6

cλλλ :=
1

m

(
m

λ2, · · · , λℓ

)(
r

2, · · · , 2︸ ︷︷ ︸
λ2

; · · · ; ℓ, · · · , ℓ︸ ︷︷ ︸
λℓ

)
(56)

and
eλλλ := (−1)m−1cλλλ. (57)

We set7 Cr :=
∑

λλλ∈Πr
cλλλ. Let

{
r
m

}
denote the Stirling numbers of the second kind (i.e., the number of

unordered set-partitions of an r-element set into m nonempty subsets). The integer Cr can be expressed as

Cr =

r∑

k=1

(k − 1)!

k∑

j=0

(−1)j
(
r

j

){
r − j

k − j

}
. (58)

The first few values of Cr (for 2 ≤ r ≤ 7) are given by 1, 1, 4, 11, 56, 267, and as r → ∞ we have the
asymptotic Cr ∼ (r − 1)!/αr for some constant α ≈ 1.146 (see [42]). The crude bound Cr < rr can also be
seen by a combinatorial argument. For completeness, equation (58) is derived in Appendix A.

1.5 Assumptions

We assume only that X is integrable and N ∼ N (0, 1) is independent of X to prove that the conditional
expectation E[X | X + N ] cannot be a polynomial of degree exceeding 1 (Theorem 3) and bound the
norms of the derivatives of the conditional expectation y 7→ E[X | X + N = y] (Theorem 26). To prove
that the PMMSE estimate converges to the MMSE estimate E[X | Y ] (Theorem 5), we assume that X is
square-integrable and Y satisfies Carleman’s condition, i.e.,

∑

n≥1

E
[
Y 2n

]−1/(2n)
= ∞. (59)

For a RV to satisfy Carleman’s condition it suffices to have a MGF [43]. To instantiate the PMMSE formula
and its convergence to the MMSE in the Gaussian channel case in Section 5, we either assume that the
channel input is sufficiently integrable or that it has a MGF, respectively. The formula for differential
entropy of a continuous RV in terms of its moments (Theorem 32) and its generalization to random vectors
(Theorem 45) hold whenever the underlying RVs have MGFs. The ensuing formula for mutual information
I(X ;Y ) between a discrete RV X and a continuous RV Y (Theorem 34) holds when X has finite support
and Y has a MGF and satisfies h(Y ) > −∞. The formula for I(X ;Y ) when both X and Y are continuous
(Theorem 44) holds when both X and Y have MGFs and min(h(X), h(Y )) > −∞. Finally, for the Bernstein
approximation theorem we prove for E[X | X+N ] (Theorem 28), we impose the assumption that X is either
continuous or discrete with a PDF or a PMF belonging to the set we define next.

Definition 1. Let D denote the set of compactly-supported even PDFs or PMFs p that are non-increasing
over [0,∞) ∩ supp(p).

2 Polynomial Conditional Expectations in Gaussian Channels are
Constant or Linear

We prove in Theorem 3 that E[X | Y ] is a polynomial, for integrable X and Y = X + N a Gaussian
perturbation, if and only if X is Gaussian or constant. The proof is carried in two steps. First, we show that

6The integer cλλλ counts the number of cyclically-invariant ordered set-partitions of an r-element set into m = λ2 + · · ·+ λℓ

subsets where, for each k ∈ {2, · · · , ℓ}, exactly λk parts have size k.
7The integer Cr counts the total number of cyclically-invariant ordered set-partitions of an r-element set into subsets of sizes

at least 2.
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a degree-m non-constant polynomial E[X | Y ] requires pY = e−h for some polynomial h with deg h = m+1.
The second step is showing that, because pY = e−h is a convolution of the Gaussian kernel, m = 1.

The key result we use to prove Theorem 3 is Marcinkiewicz’s theorem that a cumulant-generating function
has degree at most 2 if it were a polynomial.

Theorem 1 (Marcinkiewicz, [44, Theorem 2.5.3]). If the characteristic function of a nondeterministic RV
R satisfies ϕR = eg on a neighborhood of 0 in R for some polynomial g with complex coefficients, then
deg(g) = 2 and R is Gaussian.

Remark 1. An analogous statement holds for the MGF. If the MGF satisfies MR(t) := E[etR] = ef(t) over
t ∈ (−δ, δ) for some polynomial f, then the two functions E[ezR] and ef(z) are analytic continuations of MR

to the domain |ℑ(z)| < δ (that E[ezR] is analytic there can be seen by Morera’s theorem). By uniqueness
of analytic continuations, we obtain that E[ezR] = ef(z) over |ℑ(z)| < δ. In particular, ϕR(t) = eg(t) over
t ∈ (−δ, δ), where g is the polynomial g(t) := f(it). Therefore, having a polynomial cumulant generating
function κR(t) = f(t) implies by Theorem 1 that deg(κR) ∈ {0, 2}.

The following elementary lemma will be useful for the proof of Theorem 3.

Lemma 2. For a RV X and a polynomial p, if p(X) is integrable then so is Xdeg(p).

Proof. See Appendix B.

This lemma will allow us to conclude the finiteness of all moments of X directly from the hypotheses
that E[X | Y ] is a polynomial of degree exceeding 1 and ‖X‖1 < ∞, because we have the inequalities
‖E[X | Y ]‖k ≤ ‖X‖k for every k ≥ 1.

Theorem 3. For Y = X + N where X is an integrable RV and N ∼ N (0, 1) independent of X, the
conditional expectation E[X | Y ] cannot be a polynomial in Y with degree greater than 1. Therefore, the
MMSE estimator in a Gaussian channel with finite-variance input is a polynomial if and only if the input is
Gaussian or constant.

Remark 2. Note that the fact that the MMSE estimator E[X | Y ] is a polynomial if and only if X is
Gaussian or constant is derivable from the fact that E[X2 | Y = y] = O(y2), shown in [4, Proposition 1.2]
under the assumption that the input RV X has finite variance. Theorem 3 proves this conclusion under the
more general setup when X is assumed to be only integrable.

Proof. Suppose, for the sake of contradiction, that

E[X | Y ] = q(Y ) (60)

for some polynomial with real coefficients q of degree m := deg q > 1. The contradiction we derive will be
that the probability measure defined by

Q(B) :=
1

a

∫

B

e−x2/2 dPX(x) (61)

for every Borel subset B ⊂ R, where a = E
[
e−X2/2

]
is the normalization constant, would necessarily have

a cumulant generating function that is a polynomial of degree m + 1 > 2. Let R be a RV distributed
according to Q. We note that the polynomial q is uniquely determined by (60) because Y is continuous, for
if q(Y ) = g(Y ) for a polynomial g then the support of Y must be a subset of the roots of q − g.

The proof strategy is to compute the PDF pY in two ways. One way is to compute pY as a convolution

pY (y) =
1√
2π

E
[
e−(X−y)2/2

]
. (62)

This equation shows by Lebesgue’s dominated convergence that pY is continuous. The second way to compute
pY is via the inverse Fourier transform of ϕY . We consider the Fourier transform that takes an integrable
function ϕ to ϕ̂(y) :=

∫
R
ϕ(t)e−iyt dt, so the inverse Fourier transform takes an integrable function p to

12



(2π)−1
∫
R
p(y)eity dy. Now, ϕY = ϕXϕN is integrable; indeed, |ϕX | ≤ 1 and ϕN (t) = e−t2/2. Also, being a

characteristic function, ϕY is continuous too. Therefore, by the Fourier inversion theorem, since ϕY /(2π) is
the inverse Fourier transform of pY , we obtain that pY = ϕ̂Y /(2π). Equating this latter equation with (62),

then multiplying both sides by
√
2πey

2/2/a, that R ∼ Q (see (61)) implies

E
[
eRy
]
=

1

a
√
2π
ey

2/2ϕ̂Y (y). (63)

Equation (63) holds for every y ∈ R. The rest of the proof derives a contradiction by showing that ϕ̂Y = eG

for some polynomial G of degree m+ 1 > 2.
Integrability of X implies integrability of E[X | Y ], so for every t ∈ R

E
[
eitY (X − E[X | Y ])

]
= 0. (64)

Substituting X = Y −N and E[X | Y ] = q(Y ) into (64),

E
[
eitY (Y −N − q(Y ))

]
= 0. (65)

Because the RVs eitY (Y − q(Y )) and eitYN are integrable, we may split the expectation to obtain

E
[
eitY (Y − q(Y ))

]
− E

[
eitYN

]
= 0. (66)

We rewrite equation (66) in terms of the characteristic functions of Y and N.
Since q(Y ) is integrable, Lemma 2 implies that Y is m-times integrable. In particular, we have that

E [|(X + z)m|] < ∞ for some z ∈ R. By Lemma 2 again, X is m-times integrable. Hence, for each k ∈ [m]

and Z ∈ {X,N, Y }, that E
[
|Z|k

]
<∞ implies that the k-th derivative ϕ

(k)
Z exists everywhere and

(−i)kϕ(k)
Z (t) = E

[
eitZZk

]
. (67)

For the term E
[
eitYN

]
in (66), plugging in Y = X +N, we infer from (67) that

E
[
eitYN

]
= ϕX(t)E

[
eitNN

]
= −iϕX(t)ϕ′

N (t). (68)

But ϕN (t) = e−t2/2, so ϕ′
N (t) = −tϕN (t), hence (68) yields

E
[
eitYN

]
= itϕX(t)ϕN (t) = itϕY (t). (69)

Let αk for k ∈ [m] be real constants such that q(u) =
∑

k∈[m] αku
k identically over R, so αm 6= 0. For the

first term in (66), utilizing (67) repeatedly we obtain

E
[
eitY (Y − q(Y ))

]
= −i

∑

k∈[m]

ckϕ
(k)
Y (t) (70)

where we define the constants

ck := (−i)k+1αk + δ1,k =

{
(−i)k+1αk if k ∈ [m] \ {1},
1− α1 if k = 1.

(71)

Plugging (69) and (70) in (66), we get the differential equation

tϕY (t) +
∑

k∈[m]

ckϕ
(k)
Y (t) = 0. (72)

We will transform the differential equation (72) into a linear differential equation in the Fourier transform of

ϕY . For this, we need first to show that for each k ∈ [m] the derivative ϕ
(k)
Y is integrable so that its Fourier

transform is well-defined.
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Now, repeated differentiation of ϕY (t) = ϕX(t)e−t2/2 shows that for each k ∈ [m] there is a polynomial
rk in k + 2 variables such that

ϕ
(k)
Y (t) = rk

(
t, ϕX(t), ϕ′

X(t), · · · , ϕ(k)
X (t)

)
e−t2/2. (73)

Indeed, we start with r0(t, u) = u because ϕY (t) = ϕX(t)e−t2/2. Now, suppose (73) holds for some k ∈ [m−1].
The derivative (with respect to t) of the rk term is

d

dt
rk

(
t, ϕX(t), · · · , ϕ(k)

X (t)
)
= sk

(
t, ϕX(t), · · · , ϕ(k+1)

X (t)
)

(74)

for some polynomial sk in k + 3 variables. Therefore, differentiating (73), we get

ϕ
(k+1)
Y (t) = rk+1

(
t, ϕX(t), ϕ′

X(t), · · · , ϕ(k+1)
X (t)

)
e−t2/2 (75)

where

rk+1 (t, u0, · · · , uk+1) := sk (t, u0, · · · , uk+1)− t · rk (t, u0, · · · , uk) (76)

is a polynomial in k+3 variables. Therefore (73) holds for all k ∈ [m]. Now, for each j ∈ [m], we have by (67)

the uniform bound |ϕ(j)
X (t)| ≤ E

[
|X |j

]
. Therefore, for each k ∈ [m], letting vk be the same polynomial as

rk but with the coefficients replaced with their absolute values, the triangle inequality applied to (73) yields

the bound |ϕ(k)
Y (t)| ≤ ηk(t)e

−t2/2 where ηk(t) := vk
(
|t|, 1,E[|X |], · · · ,E

[
|X |k

])
is a (positive) polynomial in

|t|. Since
∫
R
ηk(t)e

−t2/2 dt <∞, we obtain that ϕ
(k)
Y is integrable for each k ∈ [m].

Taking the Fourier transform in the differential equation (72) we infer

iϕ̂Y
′
(y) + ϕ̂Y (y)

∑

k∈[m]

ck(iy)
k = 0. (77)

We rewrite this equation in terms of the αk (see (71)) as

ϕ̂Y
′(y)− ϕ̂Y (y)

∑

k∈[m]

(αk − δ1,k)y
k = 0. (78)

Equation (78) necessarily implies

ϕ̂Y (y) = D exp


 ∑

k∈[m]

αk − δ1,k
k + 1

yk+1


 (79)

for some constant D. Since pY = ϕ̂Y /(2π), we necessarily have D > 0. Therefore, we obtain the desired form
for ϕ̂Y , namely, ϕ̂Y = eG where G ∈ Pm+1 \ Pm is given by8

G(y) :=
∑

k∈[m]

αk − δ1,k
k + 1

yk+1 + log(D). (80)

Plugging in this formula for ϕ̂Y in (63), we obtain that the cumulant-generating function of the RV R
is the degree-(m + 1) polynomial G(y) + y2/2 − log(a

√
2π), contradicting Marcinkiewicz’s theorem that a

cumulant-generating function has degree at most 2 if it were a polynomial (see, e.g., [44, Theorem 2.5.3]).
This concludes the proof by contradiction that E[X | Y ] cannot be a polynomial of degree at least 2.

For the second statement in the theorem, we consider the remaining two cases that E[X | Y ] is a linear
expression in Y or is a constant. If E[X | Y ] is constant, then differentiating and taking the expectation
in [30]

d

dy
E [X | Y = y] = Var [X | Y = y] (81)

8It can also be shown that we necessarily have αm < 0 and m is odd, but these points are moot since we eventually have a
contradiction.
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yields that ‖X − E[X | Y ]‖2 = 0, i.e., X = E[X | Y ] is constant. Finally, under the assumption that X has
finite variance, E[X | Y ] is linear if and only if X is Gaussian (see, e.g., [11]). We note that if one requires
only that X be integrable, then one may deduce directly from the differential equation (72) that a linear
E[X | Y ] implies a Gaussian X in this case too, and, for completeness, we end with a proof of this fact.

Assume that E[X | Y ] = α1Y + α0 is linear (so α1 6= 0). The differential equation (72) becomes

(t− iα0)ϕY (t) + (1− α1)ϕ
′
Y (t) = 0. (82)

From (82), we see that α1 6= 1, because ϕY is nonzero on an open neighborhood around the origin (since
ϕY (0) = 1 and ϕY is continuous). Therefore,

ϕY (t) = Ce
1

α1−1 (
1
2 t

2−iα0t), (83)

for some constant C. Taking t = 0 in (83), we see that C = 1. Therefore, the characteristic function of Y is

equal to the characteristic function of a N
(

α0

1−α1
, 1
1−α1

)
random variable (by taking t→ ∞ in (83), we get

α1 < 1). In fact, since ϕY = ϕX · ϕN , we obtain

ϕX(t) = e−
1
2 ·

α1
1−α1

·t2+it· α0
1−α1 . (84)

Taking t → ∞, we see that α1/(1 − α1) > 0, i.e., α1 ∈ (0, 1) (note that α1 6= 0 by the assumption that
E[X | Y ] is linear). Therefore, uniqueness of characteristic functions implies that X is Gaussian too.

Remark 3. The proof of Theorem 3 is included for completeness, as it is independent of the inequality shown
in [4, Proposition 1.2] that E[X2 | Y = y] = O(y2). Alternatively, we may build on this inequality to obtain
another proof of Theorem 3, as follows. By the Cauchy-Schwarz inequality, we deduce E[X | Y = y] = O(|y|)
as y → ∞. Therefore, E[X | Y ] cannot be a polynomial of degree exceeding 1 if X has finite variance.
Lemma 2 can be used to show that the general case in which X is only integrable can be reduced to the
finite-variance case. So, assume that X is integrable, but not necessarily of finite variance. Suppose that
E[X | Y ] is a polynomial of degree m ≥ 2. Since X is integrable, E[X | Y ] is integrable too. By Lemma 2,
we conclude that Y is m-times integrable. Thus, X + y is m-times integrable for at least one y ∈ R. By
Lemma 2 again, X is m-times integrable. In particular, X has finite variance, and the desired result follows
by the finite-variance case.

3 Polynomial MMSE: Definition, Convergence to the MMSE, and
Explicit Formulas

We begin by defining the PMMSE, which will be an approximation of the MMSE. We show convergence of
the PMMSE to the MMSE, and give an explicit formula for the PMMSE.

3.1 Definition of the PMMSE

There are two equivalent ways to define the PMMSE estimate. First, it is an orthogonal projection onto
subspaces of polynomials of bounded degree. Second, it is a natural generalization of the LMMSE to higher-
degree polynomials. We first expound on both views of PMMSE, and then show equivalence of the two
approaches. Finally, we present a formal definition of the PMMSE in Definition 2.

If Pn(Y ) ⊂ L2(σ(Y )) (i.e., if E
[
Y 2n

]
<∞), then Pn(Y ), being a finite-dimensional subspace, is closed.

It is natural then to consider the orthogonal projection onto Pn(Y ), which we temporarily denote by

EA
n [ · | Y ] : L2(F) → Pn(Y ). (85)

A standard result in functional analysis states that such an orthogonal projection exists and is unique
(see, e.g., [45]). In particular, separability of L2(F) yields the formula

EA
n [ · | Y ] =

∑

i∈[d]

〈 · , pi(Y )〉 pi(Y ) (86)
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where {pi(Y )}i∈[d] is any orthonormal basis of Pn(Y ) (so d = dimPn(Y ) − 1) [45]. Recall that, restrict-
ing attention to only finite-variance RVs, the conditional expectation E[ · | Y ] is an orthogonal projection
operator

E[ · | Y ] : L2(F) → L2(σ(Y )). (87)

One might hope then that denseness of polynomials,

⋃

n∈N

Pn(Y ) = L2(σ(Y )), (88)

would imply convergence of the orthogonal projection operators EA
n [ · | Y ] to the orthogonal projection

operator E[ · | Y ]. This result will be shown to hold in Theorem 5.
Another point of view is to introduce higher-degree generalizations of LMMSE estimation, i.e., estimating

over Pn(Y ) rather than only within P1(Y ). More precisely, note that the mmse(X | Y ) is obtained via
solving the optimization problem

mmse(X | Y ) = min
f∈L2(σ(Y ))

E
[
(X − f)

2
]

(89)

where the optimization variable ranges over the whole space L2(σ(Y )) (and the minimum is uniquely attained
at E[X | Y ]). On the other extreme, the LMMSE is obtained via

lmmse(X | Y ) = min
a,b∈R

E
[
(X − (aY + b))

2
]
, (90)

where the optimization space encompasses only functions that are linear in Y (and the minimum is uniquely
attained provided that Y is nondeterministic). We consider the problems that lie in-between (89) and (90),
namely, the optimization problems where the variable ranges over all polynomials of degree at most n:

EB
n [X | Y ] := argmin

p(Y )∈Pn(Y )

E
[
(X − p(Y ))

2
]
. (91)

This definition implicitly assumes the existence of a unique (in L2(σ(Y ))) minimizer of the right-hand side
of (91). Proposition 4 states that this indeed is the case and, in fact, EA

n [X | Y ] is the unique minimizer.
Indeed, that the two operators EA

n and EB
n coincide is a restatement of a standard result in functional

analysis, which posits that orthogonal projections in Hilbert spaces are the closest elements to the projected
elements [45, Section 4.4]. We state this equivalence here and, for completeness, provide a proof in the
appendices.

Proposition 4. Fix n ∈ N and two RVs X and Y such that E
[
X2
]
,E
[
Y 2n

]
<∞. Equations (86) and (91)

define the same operator, i.e., there exists a unique minimizer EB
n [X | Y ] of the right hand side of (91) and

it satisfies
EA

n [X | Y ] = EB
n [X | Y ]. (92)

Proof. See Appendix C.1.

Remark 4. For this equivalence to hold, we require neither density of polynomials nor that monomials be
linearly independent. Further, the polynomial EA

n [X | Y ] is both the projection of X onto Pn(Y ) and, from
EA

n [X | Y ] = EB
n [X | Y ], this polynomial also is the unique closest element in Pn(Y ) to X. However, once

we write EA
n [X | Y ] =

∑
k∈[n] bkY

k, the constants bk might not be unique. For example, if Y is binary and

n = 2, then Y 2 = Y, so for any b0, b1, b2 ∈ R for which EA
n [X | Y ] = b0 + b1Y + b2Y

2 we also have

EA
n [X | Y ] = b0 + (b1 − 1)Y + (b2 + 1)Y 2. (93)

In particular, there is no unique quadratic p ∈ P2 for which E
A
n [X | Y ] = p(Y ). Nevertheless, in the problems

of interest to us, uniqueness is attained (e.g., if Y is continuous); in fact, the coefficients are unique if and
only if |supp(Y )| > n holds (equivalently, 1, Y, · · · , Y n are linearly independent, i.e., there is no hyperplane
in Rn+1 that almost surely contains Y (n)).
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We choose the estimation-theoretic point of view to define the conditional expectation approximants.

Definition 2 (Polynomial MMSE). Fix n ∈ N and two RVs X and Y such that both E
[
X2
]
and E

[
Y 2n

]

are finite. We define the n-th order polynomial minimum mean-squared error (PMMSE) for estimating X
given Y by

pmmsen(X | Y ) := min
c∈Rn+1

E

[(
X − cTY (n)

)2]
. (94)

We define the n-th order PMMSE estimate of X given Y by

En[X | Y ] := cTY (n) ∈ Pn(Y ) (95)

for any minimizer c ∈ Rn+1 in (94).

Remark 5. The minimum in (94) is always attained, and the polynomials cTY (n) represent the same
element of Pn(Y ) for all minimizers c of (94). These two facts are direct consequences of Proposition 4.

Remark 6. We may define the pointwise estimator En[X | Y = y] for y ∈ supp(Y ) by

En[X | Y = y] :=
∑

j∈[n]

cjy
j (96)

where c = (c0, · · · , cn)T is any minimizer in (94). To see that (96) uniquely defines En[X | Y = y], note
that there are two distinct polynomials p, q ∈ Pn such that En[X | Y ] = p(Y ) = q(Y ) if and only if
|supp(Y )| ≤ n (and then supp(Y ) is a subset of the roots of p − q). Therefore, when |supp(Y )| > n, there
is a unique minimizer c in (94) (and the definition of En[X | Y = y] in (96) is extended to all y ∈ R).
If supp(Y ) = {y1, · · · , ys} for s ≤ n, then two vectors c and d minimize (94) if and only if there is some
polynomial r ∈ Pn−s such that

∑
j∈[n](dj − cj)u

j = (u− y1) · · · (u− ys)r(u). In such case, using either c or

d in (96) yields the same value of En[X | Y = y] for every y ∈ supp(Y ).

Unlike the case of the MMSE, working with the PMMSE is tractable and allows for explicit formulas.
The formula for t 7→ pmmsen(X |

√
tX + N) stated in Theorem 18 reveals that this mapping is a rational

function of t (where N ∼ N (0, 1) is independent of X).
The first question we investigate is whether the convergence

lim
n→∞

En[X | Y ] = E[X | Y ] (97)

holds. Theorem 5 (stated below) proves that this convergence holds when polynomials of Y are dense in
L2(σ(Y )).

3.2 Convergence of the PMMSE to the MMSE

The strong convergence (i.e., in the strong operator topology) of operators En[ · | Y ] → E[ · | Y ] immediately
follows from linear independence of the monomials {Y k}k∈N and density of polynomials in L2(σ(Y )). Indeed,
from the complete linearly-independent set {Y k}k∈N one may construct an orthonormal basis of L2(σ(Y ))
consisting of polynomials {q0(Y ) ≡ 1} ∪ {qk(Y ) ∈ Pk(Y ) \ Pk−1(Y )}k∈N≥1

. Then, for any X ∈ L2(F), we
have the expansion

E[X | Y ] =
∑

k∈N

〈E[X | Y ], qk(Y )〉 qk(Y ). (98)

For each n ∈ N, the term ∑

k∈[n]

〈E[X | Y ], qk(Y )〉 qk(Y ) (99)

is the orthogonal projection of E[X | Y ] onto Pn(Y ), because {qk(Y )}k∈[n] is an orthonormal subset of
Pn(Y ) of maximum size. Since E[X | Y ] is the orthogonal projection of X onto L2(σ(Y )), then the function
in (99) is the orthogonal projection of X onto Pn(Y ), i.e., it is En[X | Y ]. Therefore, (98) implies the
convergence

E[X | Y ] = lim
n→∞

En[X | Y ] (100)
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in L2(σ(Y )). Furthermore, the limit En[X | Y ] → E[X | Y ] yields that pmmsen(X | Y ) → mmse(X | Y ) as
n→ ∞. This follows from the orthogonality principle of E[X | Y ], which gives

pmmsen(X |Y )−mmse(X |Y ) = ‖E[X |Y ]− En[X |Y ]‖22. (101)

A verifiable condition ensuring denseness of polynomials is, for example, Carleman’s condition on Y.
Moreover, linear independence of the monomials {Y k}k∈N is equivalent to having |supp(Y )| = ∞. Therefore,
we have the following PMMSE-to-MMSE convergence result.

Theorem 5. If X and Y are RVs such that E[X2] <∞ and Carleman’s condition is satisfied by Y, then

lim
n→∞

En[X | Y ] = E[X | Y ] (102)

in the L2(σ(Y ))-norm, and
lim
n→∞

pmmsen(X | Y ) = mmse(X | Y ). (103)

Proof. See Appendix C.2.

A corollary of the PMMSE-to-MMSE convergence in Theorem 5 is the pointwise (in the SNR) convergence
of the PMMSE to the MMSE in Gaussian channels (if, e.g., the input’s MGF exists). Then, for each fixed
t ≥ 0 (see (19))

lim
n→∞

pmmsen(X, t) = mmse(X, t) (104)

provided that the MGF of X exists. In fact, this convergence is uniform in the SNR t.We prove this uniform
convergence in Theorem 17.

3.3 PMMSE Formula

We prove next explicit PMMSE formulas that serve as the foundation for expressing information measures
in terms of moments. Even though these explicit formulas follow from standard results on orthogonal
projections, we re-derive them here for the sake of completeness. We build on these formulas in Section 5
to derive rationality of t 7→ pmmsen(X, t) along with characterizations of the coefficients of this rational
function. Those characterizations, in turn, will simplify the proof of consistency of the estimators for
information measures introduced in Section 11.

Theorem 6. For two RVs X and Y and n ∈ N, if E
[
X2
]
and E

[
Y 2n

]
are finite and |supp(Y )| > n, then

the PMMSE estimator is given by

En[X | Y ] = E
[
XY (n)

]T
M−1

Y,n Y
(n), (105)

where MY,n = (E[Y i+j ])(i,j)∈[n]2 is the Hankel matrix of moments defined in (44), and the PMMSE satisfies

pmmsen(X | Y ) = E
[
X2
]
− E

[
XY (n)

]T
M−1

Y,n E
[
XY (n)

]
. (106)

Equations (105) and (106) yield the relation

pmmsen(X | Y ) = E
[
X2
]
− E [XEn[X | Y ]] . (107)

To expound on the expressions in (105) and (106), we derive next explicit formulas for the PMMSE and
PMMSE estimate for n = 1 and n = 2. By definition of the PMMSE, these expressions recover the LMMSE
(and LMMSE estimate) and “quadratic” MMSE (and “quadratic” MMSE estimate).

Example 1. For n = 1, we have from (105) that

E1[X | Y ] = (E[X ],E[XY ])

(
1 E[Y ]

E[Y ] E
[
Y 2
]
)−1(

1
Y

)
. (108)
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Computing the matrix inverse and multiplying out, we obtain

E1[X | Y ] = E[X ] +
cov(X,Y )

σ2
Y

(Y − E[Y ]) , (109)

where cov(X,Y ) := E[XY ]− E[X ]E[Y ] is the covariance between X and Y. Formula (109) indeed gives the
LMMSE estimate. Via the relation in (107), we recover

pmmse1(X | Y ) = σ2
X − cov(X,Y )2

σ2
Y

= σ2
X(1− ρ2X,Y ), (110)

where ρX,Y := cov(X,Y )/(σXσY ) is the Pearson correlation coefficient between X and Y. Formula (110)
verifies that pmmse1(X | Y ) is the LMMSE.

Example 2. We will use the notation
Yk := E

[
Y k
]

(111)

for short. For n = 2, (105) implies that

E2[X | Y ] =
(
E[X ],E[XY ],E[XY 2]

)



1 Y1 Y2

Y1 Y2 Y3

Y2 Y3 Y4



−1


1
Y
Y 2


 . (112)

Multiplying out, we obtain that E2[X | Y ] is the quadratic

E2[X | Y ] =
α0

δ
+
α1

δ
Y +

α2

δ
Y 2 (113)

where the values of α0, α1, α2, and δ are

α0 = (Y2Y4 − Y2
3 )E[X ] + (Y2Y3 − Y1Y4)E[XY ] + (Y1Y3 − Y2

2 )E[XY
2] (114)

α1 = (Y2Y3 − Y1Y4)E[X ] + (Y4 − Y2
2 )E[XY ] + (Y1Y2 − Y3)E[XY

2] (115)

α2 = (Y1Y3 − Y2
2 )E[X ] + (Y1Y2 − Y3)E[XY ] + (Y2 − Y2

1 )E[XY
2] (116)

and
δ = Y2Y4 − Y2

1Y4 − Y3
2 − Y2

3 + 2Y1Y2Y3. (117)

Note that δ = detMY,2. It is not immediately clear that δ 6= 0, but we show in Lemma 7 that invertibility of
MY,n (for any n ∈ N) is equivalent to the condition |supp(Y )| > n. Equation (107) then yields the formula

pmmse2(X | Y ) = E
[
X2
]
− δ−1

2∑

k=0

αkE
[
XY k

]
. (118)

We derive Theorem 6 in two ways according to how the PMMSE estimate is interpreted: as an orthogonal
projection onto polynomial subspaces or as a minimizer of L2-distance. For both of these proofs, and for
other arguments in the sequel, we need the following straightforward result on invertibility of the Hankel
matrix of moments.

Lemma 7. For a RV Y and n ∈ N such that E[Y 2n] <∞, the Hankel matrix of moments MY,n is invertible
if and only if |supp(Y )| > n.

Proof. See Appendix C.3.

The next lemma outlines an orthonormal basis for Pn(Y ). This basis simplifies the proof of Theorem 6
by allowing the use of standard orthogonal projection results in Hilbert spaces.

Lemma 8. For a RV Y and n ∈ N such that E[Y 2n] < ∞ and |supp(Y )| > n, an orthonormal basis for

Pn(Y ) is given by the entries of the random vector M
−1/2
Y,n Y (n) (see (50) for the definition of M

−1/2
Y,n ).
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Proof. See Appendix C.4.

Remark 7. This basis is the output of Gram-Schmidt orthonormalization applied to {Y j}j∈[n].

We are now ready to prove a preliminary formula for the PMMSE in view of the general expansion of
orthogonal projections (86).

Proof (of Theorem 6). By assumption on Y, Lemma 8 yields that the entries of the random vector V :=

M
−1/2
Y,n Y (n) form an orthonormal basis of Pn(Y ). The expansion (86) of orthogonal projections yields the

formula
En[X | Y ] = E

[
XV T

]
V . (119)

Substituting V = M
−1/2
Y,n Y (n) we obtain (105), i.e.,

En[X | Y ] = E
[
XY (n)

]T
M−1

Y,n Y
(n).

Then, expanding pmmsen(X | Y ) = E[(X − En[X | Y ])2], we obtain (106), i.e.,

pmmsen(X | Y ) = E
[
X2
]
− E

[
XY (n)

]T
M−1

Y,nE
[
XY (n)

]
,

and the proof is complete.

Remark 8. The formulas in Theorem 6 were derived via geometric arguments, but we note that an alter-
native, analytic derivation directly utilizing Definition 2 is possible. This proof is via differentiation with
respect to the polynomial coefficients in En[X | Y ] in the same way as the LMMSE is usually derived. We
provide this analytic proof in Appendix C.5.

The PMMSE formula proved in Theorem 6 will aid in proving properties of the PMMSE in Section 4.
Moreover, Theorem 6 will be instantiated for the Gaussian channel in Section 5. This specialization will be
used to develop new representation of information measures in terms of moments.

3.4 Connection to Polynomial Regression

The goal of single-variable polynomial regression is to model a RV X as a polynomial in a RV Y

X = β0 + β1Y + · · ·+ βnY
n + ε, (120)

where ε is a RV capturing the modeling error. Here, the βj are constants to be determined from data. Given
access to samples {(xi, yi)}mi=1, this model can be estimated via the equation

X = Y βββ + εεε, (121)

where X = (x1, · · · , xm)T , Y = (yji )i∈{1,··· ,m},j∈[n], εεε = (ε1, · · · , εm)T where the εj are samples from ε, and
βββ = (β0, · · · , βn)T . It is assumed that the number of distinct yi is strictly larger than n. A value of βββ that
minimizes ‖εεε‖ is

βββ = XTY (Y TY )−1. (122)

Indeed, this formula follows from the PMMSE estimate formula in Theorem 6, namely,

βββ = E
[
UV (n)

]
M−1

V,n (123)

where we introduce RVs U and V such that (U, V ) is uniform over {(xi, yi)}mi=1. It immediately follows that

XTY = mE
[
UV (n)

]T
(124)

and

(Y TY )−1 =
1

m
M−1

V,n. (125)

Multiplying (124) and (125), we obtain (122) in view of (123). Therefore, the polynomial regression approach
solves the restricted problem of finding the PMMSE when both X and Y are discrete with probability mass
functions that evaluate to rational numbers, i.e., when the distribution of (X,Y ) is uniform over a dataset
{(xi, yi)}mi=1.
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4 Basic Properties of the PMMSE

In this section, we investigate the behavior of the PMMSE under affine transformations and exhibit a few
additional properties of the PMMSE that parallel those of the MMSE.

4.1 PMMSE and affine Transformations

We discuss next the effect of affine transformations on the PMMSE. Recall that for RVs X and Y such that
E[X2] <∞, and for constants α, β ∈ R, we have [3]

mmse(X + α | Y + β) = mmse(X | Y ), (126)

i.e., the MMSE is shift-invariant in both entries. Also, if β 6= 0, then

mmse(αX | βY ) = α2mmse(X | Y ). (127)

These two properties of the MMSE hold, in essence, because mmse( · | Y ) measures the distance to the
space of Borel-measurable functions of Y, which is invariant under (injective) affine transformations of Y,
i.e., M(σ(aY + b)) = M(σ(Y )) for a, b ∈ R with a 6= 0. These properties still hold when the search space
is restricted to only the subspace of polynomials in Y of a certain degree, i.e., the pmmsen( · | Y ) measures
the distance to Pn(Y ) and Pn(aY + b) = Pn(Y ) for a, b ∈ R with a 6= 0. Therefore, the two properties in
(126) and (127) also hold for the PMMSE. The following proposition follows directly from Definition 2, and
we note that appealing to formula (106) yields a shorter proof.

Proposition 9. Let X and Y be two RVs and n ∈ N, and assume that both E
[
X2
]
and E

[
Y 2n

]
are finite.

For any (α, β) ∈ R2,
pmmsen(X + α | Y + β) = pmmsen(X | Y ) (128)

and, when β 6= 0,
pmmsen(αX | βY ) = α2 pmmsen(X | Y ). (129)

Proof. See Appendix D.1.

The behavior of the PMMSE under affine transformations shown in Proposition 9 has desirable implica-
tions on the approximations we introduce in Sections 8 and 9 for differential entropy and mutual information.
For example, recall that differential entropy satisfies

h(aY + b) = h(Y ) + log |a| (130)

for any constants a and b with a 6= 0. Because of Proposition 9, the same property in (130) holds for the
approximations hn in (15) (also see Proposition 33) for differential entropy, i.e.,

hn(aY + b) = hn(Y ) + log |a|. (131)

4.2 Operator Properties

The operator En[ · | Y ] satisfies several properties analogously to the conditional expectation E[ · | Y ]. We
note that En[ · | Y ] is not in general a conditional expectation operator itself, i.e., there are some n ∈ N

and Y ∈ L2n(F) such that for every sub-σ-algebra Σ ⊂ F we have En[ · | Y ] 6= E[ · | Σ]. One way to see
this is that En[ · | Y ] might not preserve positivity. For example, if X ∼ Unif(0, 1) and Y = X + N for
N ∼ N (0, 1) independent of X, we have that E1[X | Y ] = (Y +6)/13 (see (109)). Therefore, the probability
that E1[X | Y ] < 0 is PY ((−∞,−6)) > 0. In other words, although X is non-negative, E1[X | Y ] is not; in
contrast, E[X | Σ] is non-negative for every sub-σ-algebra Σ ⊂ F .

Since En[ · | Y ] is an orthogonal projection, it satisfies the following operator properties [45, Section 4.4].

Proposition 10. Let n ∈ N, and fix a RV Y such that E[Y 2n] < ∞ and |supp(Y )| > n. The mapping
En[ · | Y ] : L2(F) → Pn(Y )
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(i) is the unique orthogonal projection onto Pn(Y ),

(ii) is a self-adjoint, idempotent, bounded linear operator, and

(iii) has operator norm 1.

In the following proposition, we show properties of the operator En that are analogous to those of the
conditional expectation operator.

Proposition 11. Fix square-integrable RVs X,Y, and Z, and a natural n ∈ N such that E
[
Z2n

]
< ∞ and

|supp(Z)| > n. The following hold:

(i) Total expectation:
E[En[X | Z]] = E[X ]. (132)

(ii) Orthogonality: For any polynomial p ∈ Pn,

E[(X − En[X | Z])p(Z)] = 0. (133)

(iii) Linearity: For constants a, b ∈ R

En[aX + bY | Z] = aEn[X | Z] + bEn[Y | Z]. (134)

(iv) Contractivity: We have the inequality

‖En[X | Z]‖2 ≤ ‖X‖2. (135)

(v) Idempotence:
En [En [X | Z] | Z] = En[X | Z]. (136)

(vi) Self-Adjointness: En[ · | Z] is self-adjoint

E [En[X | Z]Y ] = E [XEn[Y | Z]] . (137)

(vii) Independence: If X and Z are independent, then

En[X | Z] = E[X ]. (138)

(viii) Markov Chain: If X—Y—Z forms a Markov chain, then

En [E[X | Y ] | Z] = En[X | Z]. (139)

Proof. See Appendix D.2.

Remark 9. In view of the properties (i) and (vii), one may define the unconditional version of En as

En[X ] := E[X ] (140)

for X ∈ L2(F). With this definition, the total expectation property (i) becomes

En[En[X | Z]] = En[X ], (141)

and the independence property (vii) becomes

En[X | Z] = En[X ], (142)

for independent X and Z. This definition of En[X ] is consistent with defining it as En[X | 1], because E[X ]
is the closest constant to X in L2(F)-norm.
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The following proposition shows that the polynomial in X + Z closest to X is always of odd degree,
provided that X and Z are both symmetric RVs.9

Proposition 12. Fix k ∈ N≥1 and RVs X and Z satisfying E
[
Z2
]
,E
[
X4k

]
<∞, and |supp(X+Z)| > 2k.

If X and Z are both symmetric, then we have that

E2k[X | X + Z] = E2k−1[X | X + Z]. (143)

In such case, we also have that

pmmse2k(X | X + Z) = pmmse2k−1(X | X + Z). (144)

Proof. See Appendix D.3.

4.3 Convergence Theorems

Analogous to conditional expectation, dominated convergence, monotone convergence, and Fatou’s lemma
all hold for the PMMSE estimate. The notation En[X | Y = y] is used here similarly to how the notation
E[X | Y = y] is customarily used (see Remark 6).

Proposition 13 (Convergence Theorems). Fix a sequence of square-integrable RVs {Xk}k∈N, and let n ∈ N

and the RV Y be such that E
[
Y 2n

]
<∞ and |supp(Y )| > n. The following hold for every y ∈ R

(i) Monotone Convergence: If {Xk}k∈N is monotone, and either Y ≥ 0 or Y ≤ 0 holds almost surely, then
the pointwise limit X = limk→∞Xk satisfies

En[X | Y = y] = lim
k→∞

En [Xk | Y = y] . (145)

(ii) Dominated Convergence: If there is a square-integrable RV M such that supk∈N |Xk| ≤ M, and if the
pointwise limit X := limk→∞Xk exists, then

En[X | Y = y] = lim
k→∞

En [Xk | Y = y] . (146)

Proof. Note that in (i) the sequences {XkY
j}k∈N, for each fixed j ∈ [n], are monotone almost surely. Also,

X0 is integrable, as we are assuming that X0 ∈ L2(F). Note also that in (ii) each sequence {XkY
j}k∈N,

for j ∈ [n], is dominated by M |Y |j , which is integrable since both M and Y j are square-integrable. Thus,
monotone convergence and dominated convergence both hold in L1(F) for each of the sequences {XkY

j}k∈N,
where j ∈ [n] is fixed. In addition, the formula

En [Xk | Y = y] = E
[
XkY

(n)
]T

M−1
Y,n




1
y
...
yn


 =

n∑

j=0

cjE
[
XkY

j
]

(147)

expresses En [Xk | Y = y] as an R-linear combination of {XkY
j}j∈[n] (where the cj do not depend on k).

Thus, the convergence theorems in (i) and (ii) also hold.

Remark 10. A version of Fatou’s lemma that holds for a subset of values of y is also derivable. Namely,
suppose that there is a RV M ∈ L1(F) such that XkY

j ≥ −M for every (k, j) ∈ N × [n]. Then, the same
argument in the proof of Proposition 13 shows that

lim inf
k→∞

En[Xk | Y = y] ≥ En

[
lim inf
k→∞

Xk

∣∣∣∣ Y = y

]
(148)

for every y ∈ R such that M−1
Y,n(1, y, · · · , yn)T consists of non-negative entries. For example, when n = 1,

Fatou’s lemma holds for y ≥ E[Y ] if E[Y ] ≤ 0, and it holds for y ∈ [E[Y ],E[Y 2]/E[Y ]] if E[Y ] > 0.
9A RV Y is symmetric if PY −a = P

−(Y −a) for some a ∈ R.
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5 PMMSE for Gaussian Channels

We now take a closer look at the special case of Gaussian channels, where

Y =
√
tX +N (149)

for t ≥ 0 and N ∼ N (0, 1) independent of X. We analyze both the PMMSE estimate En[X |
√
tX +N ] and

the PMMSE
pmmsen(X, t) := pmmsen(X |

√
tX +N). (150)

We also use the shorthand

mmse(X, t) := mmse(X |
√
tX +N) (151)

lmmse(X, t) := lmmse(X |
√
tX +N). (152)

The Gaussian channel allows us to extrapolate—via the I-MMSE relation—new formulas for differential
entropy and mutual information primarily in terms of moments (see Sections 8 and 9), which then pave the
way for new estimators for these quantities (see Section 11).

Approximating the MMSE with the PMMSE in Gaussian channels is valid whenever the MGF of the
input exists. In other words, the pointwise (in t) limit

mmse(X, t) = lim
n→∞

pmmsen(X, t) (153)

is a direct consequence of Theorem 5. Furthermore, as will be shown in Theorem 17, the convergence of the
PMMSE to the MMSE is in fact uniform in t. Uniform convergence follows from rationality of the PMMSE
as a function of t. This rationality result, stated in Theorem 18, will be the focus of this section.

The mapping over the positive half-line defined by t 7→ pmmsen(X, t) will be shown to be a rational
function that starts at σ2

X when t = 0 and satisfies pmmsen(X, t) < 1/t for t > 0. If |supp(X)| > n, then we
also have the asymptotic pmmsen(X, t) ∼ 1/t as t→ ∞. A simplified statement of the main theorem of this
section (Theorem 18) is as follows.

Theorem 14. Fix a natural n ≥ 1, and let X be a RV satisfying E
[
X2n

]
< ∞. The mapping t 7→

pmmsen(X, t) over [0,∞) is given by a rational function

pmmsen(X, t) =
σ2
XG(n+ 2) + · · ·+ (detMX,n)t

dn−1

G(n+ 2) + · · ·+ (detMX,n)tdn
(154)

where dn :=
(
n+1
2

)
and G(k) :=

∏k−2
j=1 j! (for integers k ≥ 1) is the Barnes G-function [46].

Remark 11. We note that the dots in (154) are not to imply a specific pattern; rather, the statement of
the theorem emphasizes only the rationality of the function along with the leading and constant coefficients.
These will be enough to conclude the results we present about convergence and asymptotic behavior. The
middle terms can be computed via the formulas presented in Theorem 18. For example, the denominator
in (154) equals detM√

tX+N,n for N ∼ N (0, 1) independent of X. We also note that, for each n ∈ N, the
constant term G(n+ 2) satisfies

G(n+ 2) = detMN,n =

n∏

k=1

k!. (155)

Example 3. The results of Theorem 14, when applied to n = 1, recover the LMMSE formula

pmmse1(X, t) = lmmse(X, t) =
σ2
X

1 + σ2
Xt
, (156)

because d1 = 1, G(3) = 1, and detMX,1 = σ2
X . Note that (156) directly follows from the general formula (110)

upon setting Y =
√
tX +N.
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We discuss three direct corollaries of Theorem 14 next. The remainder of the section is then devoted to
proving Theorem 14. First, upon taking t = 0 or t → ∞ in (154), we immediately obtain that the first-order
asymptotic of the PMMSE (for any n ∈ N) is equivalent to that of the LMMSE, which is also the asymptotic
of the MMSE for continuous RVs [32].

Corollary 15. For n ∈ N and a RV X such that E
[
X2n

]
<∞, we have that

pmmsen(X, 0) = σ2
X , (157)

and, for every t > 0,

pmmsen(X, t) ≤
σ2
X

1 + σ2
Xt

<
1

t
. (158)

If in addition we have |supp(X)| > n, then

pmmsen(X, t) =
1

t
+O(t−2) (159)

as t→ ∞.

Proof. Equation (157) follows from (154) by setting t = 0. Inequality (158) follows since pmmsen(X, t) ≤
pmmse1(X, t). Also, if |supp(X)| > n then detMX,n 6= 0, so (159) follows from (154).

Second, by rationality of the PMMSE, and since the denominator detM√
tX+N,n is a polynomial that is

strictly positive over t ∈ [0,∞), we obtain analyticity of the PMMSE.

Corollary 16. For n ∈ N and a RV X such that E
[
X2n

]
<∞, the map t 7→ pmmsen(X, t) is real analytic

at each t ∈ [0,∞).

Proof. A rational function is analytic at each point in its domain. For each t ≥ 0, |supp(
√
tX + N)| = ∞

where N ∼ N (0, 1) independent of X. Therefore, M√
tX+N is invertible for every t ≥ 0, i.e., the denominator

in (154) is never zero for t ≥ 0.

Our final by-product of Theorem 14 builds upon Corollaries 15 and 16 to obtain the uniform convergence
(in the SNR) of the PMMSE to the MMSE.

Theorem 17. If the MGF of a RV X exists, then we have the uniform convergence

lim
n→∞

sup
t≥0

pmmsen(X, t)−mmse(X, t) = 0. (160)

Proof. See Appendix E.1.

Remark 12. The assumption that the MGF of X exists is imposed so that
√
tX +N satisfies Carleman’s

condition (for N ∼ N (0, 1) independent of X, and t ≥ 0 fixed), which holds because
√
tX+N will then have

a MGF. It is not true in general that Carleman’s condition is satisfied by the sum of two independent RVs
each satisfying Carleman’s condition, see [7, Proposition 3.1].

In the remainder of this section, we prove Theorem 14.

5.1 Setup for the Proof of Theorem 14

We prove a slight strengthening of Theorem 14 by characterizing the coefficients of the rational function
pmmsen(X, t), for an arbitrary fixed 2n-times integrable RV X. For convenience, we start with some addi-
tional notation.

We denote the moments of X by Xk so that for each k ∈ N

Xk := E
[
Xk
]
. (161)

Note that X0 = 1 holds regardless of what the RV X is. It is convenient to look at the following notion of
weighted-degree polynomial expression in the moments {Xk}k∈N.

25



Recall that (see (117))

detMX,2 = X4X2 −X4X 2
1 −X 2

3 + 2X3X2X1 −X 3
2 . (162)

Thus, detMX,2 is a polynomial in the moments of X with integer coefficients. Further, each monomial
appearing in the expression for detMX,2 is of the form XaXbXc for a + b + c = 6. We formalize this
observation next.

Definition 3. For (ℓ,m, k) ∈ N3, let Πℓ,m,k denote the set of unordered partitions of ℓ into at most m parts
each of which is at most k

Πℓ,m,k :=
{
λλλ ∈ Nm ; k ≥ λ1 ≥ · · · ≥ λm, λλλ

T1 = ℓ
}
. (163)

Example 4. The only unordered partition of 5 into at most 2 parts each of which at most 3 is 5 = 3 + 2.
Thus, we have Π5,2,3 = {(3, 2)}. Another example is that the partitions of 6 into at most 3 parts each of
which at most 4 are

Π6,3,4 = {(4, 2, 0), (4, 1, 1), (3, 3, 0), (3, 2, 1), (2, 2, 2)}. (164)

Note the resemblance between the partitions in (164) comprising Π6,3,4 and the terms appearing in the
expression for detMX,2,

detMX,2 = X4X2 −X4X 2
1 −X 2

3 + 2X3X2X1 −X 3
2 . (165)

Namely, a term
∏3

i=1 Xλi
with λ1 ≥ λ2 ≥ λ3 appears in detMX,2 if and only if λλλ = (λ1, λ2, λ3) is in Π6,3,4.

Leibniz’s formula for the determinant can be used to show that, in general, detMX,n is an integer linear

combination of terms
∏n+1

i=1 Xλi
where λλλ ∈ Πn(n+1),n+1,2n, i.e., we may write

detMX,n =
∑

λλλ∈Πn(n+1),n+1,2n

dλλλ

n+1∏

i=1

Xλi
(166)

for some integers dλλλ. Each term
∏n+1

i=1 Xλi
in (166) shares the property that

n+1∑

i=1

λi = n(n+ 1) (167)

is constant. Looking at Xk as an indeterminate of “degree” k, we may view detMX,n as a “homogeneous”
polynomial in the moments of X (of “degree” n(n + 1)). In other words, we may write detMX,n as an

integer linear combination of terms of the form
∏2n

i=1 E
[
X i
]αi

for integers αi such that α1 + · · · + 2nα2n

is constant (and equal to n(n + 1)). Then, for any constant c, detMcX,n = cn(n+1) detMX,n; in fact, this

homogeneity holds for each term in the sum,
∏2n

i=1 E
[
(cX)i

]αi
= cn(n+1)

∏2n
i=1 E

[
X i
]αi

.

Definition 4. For (ℓ,m, k) ∈ N3, we define the set of homogeneous integer-coefficient polynomials of
weighted-degree ℓ of width at most m in the first k moments X1, · · · ,Xk of X as

Hℓ,m,k(X) :=





∑

λλλ∈Πℓ,m,k

dλλλ

m∏

i=1

Xλi
; dλλλ ∈ Z



 . (168)

If Πℓ,m,k = ∅, we set Hℓ,m,k(X) = Z.

Remark 13. An element in Hℓ,m,k(X) will be an integer linear combination of terms
∏m

i=1 Xλi
. Each of

these terms is a product of at most m of the moments of X (hence the terminology width). The highest
moment that can appear is Xk, because λλλ ∈ Πℓ,m,k. Each summand shares the property that

∑m
i=1 λi = ℓ.
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Example 5. Because Π4,2,3 = {(3, 1), (2, 2)}, we have

H4,2,3(X) = {aX3X1 + bX 2
2 ; a, b ∈ Z}. (169)

Also, since Π2,2,2 = {(2, 0), (1, 1)},
σ2
X = X2 −X 2

1 ∈ H2,2,2(X). (170)

In general, Leibniz’s formula yields (see (166))

detMX,n ∈ Hn(n+1),n+1,2n(X). (171)

For brevity, we introduce the following functions. Let N ∼ N (0, 1) be independent of X. For k ∈ [n], if
‖X‖k+1 <∞, we define the function vX,k : [0,∞) → R at each t ≥ 0 by

vX,k(t) := E

[
X
(√

tX +N
)k]

. (172)

For example, vX,0(t) = X1, vX,1(t) =
√
tX2, and vX,2(t) = tX3 + X1 for X ∈ L3(F). We also define vector-

valued functions vX,n : [0,∞) → Rn+1 for n ∈ N and X ∈ Ln+1(F) via

vX,n := (vX,0, · · · , vX,n)
T . (173)

In view of Theorem 6 and this definition of vX,n, we may represent the PMMSE as

pmmsen(X, t) = E
[
X2
]
− vX,n(t)

TM−1√
tX+N,n

vX,n(t). (174)

Therefore, defining FX,n : [0,∞) → [0,∞) by

FX,n(t) := vX,n(t)
TM−1√

tX+N,n
vX,n(t), (175)

we have the equation
pmmsen(X, t) = E

[
X2
]
− FX,n(t). (176)

The functions FX,n are non-negative because the matrices M√
tX+N,n are positive-definite (see Lemma 8). In

view of (176), PMMSE is fully characterized by FX,n, and we focus on this function in the next subsections.

5.1.1 An Exact Characterization of PMMSE in Gaussian Channels

We utilize Cramer’s rule along with the Leibniz formula for determinants to prove the following characteri-
zation of the PMMSE in Gaussian channels. This characterization is a generalization of Theorem 14.

Theorem 18. Fix a natural n ≥ 1 and a RV X satisfying E[X2n] <∞, and set dn :=
(
n+1
2

)
. The mapping

t 7→ pmmsen(X, t) over [0,∞) is a rational function

pmmsen(X, t) =

∑
j∈[dn−1] a

n,j
X tj

∑
j∈[dn]

bn,jX tj
, (177)

with the constants an,jX and bn,jX satisfying

an,jX ∈ H2j+2,min(n,2j)+2, 2min(n,j+1) (X) (178)

and
bn,jX ∈ H2j,min(n+1,2j), 2min(n,j) (X), (179)

where Hℓ,m,k(X) is as given in Definition 4. Also, we have the formulas

bn,0X = G(n+ 2) (180)

bn,1X = G(n+ 2)dnσ
2
X (181)

bn,dn

X = detMX,n (182)

an,0X = G(n+ 2)σ2
X (183)

an,dn−1
X = detMX,n, (184)
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where G(k + 2) =
∏k−2

j=1 j! is the Barnes G-function. Furthermore, all of the constants an,jX and bn,jX are
shift-invariant, i.e., for any s ∈ R we have that

an,jX+s = an,jX and bn,jX+s = bn,jX . (185)

Remark 14. We list next additional details that are omitted from the statement of the theorem but are
evident in its proof. First, if N ∼ N (0, 1) is independent of X, then the denominator and numerator in (177)
are detM√

tX+N,n and (
E
[
X2
]
− FX,n(t)

)
detM√

tX+N,n, (186)

respectively (see (175) for the definition of FX,n). Second, we show a stricter relation than the one in (178),
namely,

an,jX ∈ H2j+2,min(n,2j)+2,τn(j)(X) (187)

where τn(j) ≤ 2min(n, j + 1) is defined by

τn(j) =





2 if j = 0,
2j + 1 if 1 ≤ j ≤ n

2 ,
2j if n+1

2 ≤ j ≤ n,
2n if j > n.

(188)

For example, (187) says that a2,1X ∈ H4,4,3(X), whereas (178) only gives the weaker relation a2,1X ∈ H4,4,4(X).

Note that H4,4,3(X) ( H4,4,4(X), and, in fact, a2,1X = σ4
X = X 2

2 − 2X 2
1X2 + X 4

1 ∈ H4,4,2(X). Third,

we give formulas for all of the coefficients an,jX and bn,jX in expanded polynomial form. Consider tuples
k = (k0, · · · , kn) ∈ [2n]n+1, let S[n] be the symmetric group of permutations on [n], and denote the sign of
a permutation π ∈ S[n] by sgn(π). We show that, for each j ∈ [dn],

bn,jX =
∑

π∈S[n]

kr∈[r+π(r)], ∀r∈[n]
k0+···+kn=2j

βπ,k Xk0 · · · Xkn
, (189)

where the βπ,k are integers given by

βπ,k = sgn(π)
∏

r∈[n]

(
r + π(r)

kr

)
E[N r+π(r)−kr ]. (190)

Also, for each j ∈ [dn − 1], denoting the restricted sums

si(k) =
∑

r∈[n]\{i}
kr, (191)

we derive the formula

an,jX =
∑

π∈S[n]

kr∈[r+π(r)], ∀r∈[n]
k0+···+kn=2j

βπ,kX2Xk0 · · · Xkn
−

∑

(i,π)∈[n]×S[n]

(w,z)∈[i]×[π(i)]
kr∈[r+π(r)], ∀r∈[n]\{i}

w+z+si(k)=2j

γi,π,k,w,zXw+1Xz+1

∏

r∈[n]\{i}
Xkr

. (192)

where the integers γi,π,k,w,z are given by

γi,π,k,w,z = (−1)i+π(i)sgn(π)

(
i

w

)(
π(i)

z

)
E[N i−w]E[Nπ(i)−z ]

∏

r∈[n]\{i}

(
r + π(r)

kr

)
E[N r+π(r)−kr ]. (193)

Finally, the Barnes G-function is also the determinant of the Hankel matrix of Gaussian moments

G(n+ 2) = detMN,n =
n∏

k=1

k!. (194)
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5.1.2 Proof Steps

Note that Theorem 18 subsumes Theorem 14, because Theorem 18 asserts the PMMSE-rationality claim in
Theorem 14 and gives an additional characterization of the coefficients of the numerator and denominator.
We present the proof of Theorem 18 in a series of intermediate results:

(i) We show that both functions t 7→ detM√
tX+N,n and t 7→ FX,n(t) detM√

tX+N,n are polynomials in t

of degree at most dn :=
(
n+1
2

)
(Lemmas 20 and 21). In view of (176), this implies that the PMMSE is

a rational function

pmmsen(X, t) =

∑dn

j=0 a
n,j
X tj

∑dn

j=0 b
n,j
X tj

(195)

for some constants an,jX and bn,jX , where the denominator is

dn∑

j=0

bn,jX tj = detM√
tX+N,n (196)

and the numerator is
dn∑

j=0

an,jX tj = (X2 − FX,n(t)) detM√
tX+N,n. (197)

Shift-invariance (185) and formulas (180)–(183) follow immediately (Lemma 22). Also, an,dn

X = 0
follows because pmmsen(X, t) ≤ lmmse(X, t) and lmmse(X, t) → 0 as t→ ∞.

(ii) We show that an,dn−1
X = detMX,n (equation (184)) holds under the assumption that X is continuous.

This is done by leveraging results on the MMSE dimension of continuous RVs [32].

(iii) We derive the polynomial formulas for the constants an,jX and bn,jX stated in Remark 14.

(iv) We finish the proof for a general RV X by leveraging results on the truncated Hamburger moment
problem [47]. In particular, we prove that if the restriction of a multivariate polynomial to moments
of arbitrary continuous RVs vanishes then the polynomial must be identically zero (Proposition 24).

Proofs of the component lemmas in the following subsection are deferred to Appendices E.2–E.7.

5.2 Proof of Theorem 18

Throughout the proof, N ∼ N (0, 1) is independent ofX. Let S[n] denote the symmetric group of permutations
on the n+1 elements [n]. We utilize the following auxiliary result on the parity of i+π(i) for a permutation
π ∈ S[n].

Lemma 19. For any permutation π ∈ S[n], there is an even number of elements i ∈ [n] such that i + π(i)
is odd, i.e., the integer

δ(π) := |{i ∈ [n] ; i+ π(i) is odd}| (198)

is even.

Proof. See Appendix E.2.

5.2.1 Rationality of the PMMSE

We introduce the following auxiliary polynomials, where R is a RV independent of N ∼ N (0, 1). For ℓ even,
we set

eR,X,ℓ(t) := E

[
R
(√

tX +N
)ℓ]

, (199)
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and for ℓ odd we set (for t > 0)

oR,X,ℓ(t) := t−1/2E

[
R
(√

tX +N
)ℓ]

. (200)

That eR,X,ℓ and oR,X,ℓ are polynomials in t can be seen as follows. Recall that E[N r] = 0 for odd r ∈ N. If
ℓ is even then expanding the right hand side of (199) yields

eR,X,ℓ(t) =
∑

k even

(
ℓ

k

)
tk/2E

[
RXk

]
E
[
N ℓ−k

]
, (201)

whereas if ℓ is odd then expanding the right hand side of (200) yields

oR,X,ℓ =
∑

k odd

(
ℓ

k

)
t(k−1)/2E

[
RXk

]
E
[
N ℓ−k

]
. (202)

Both expressions on the right hand side of (201) and (202) are polynomials of degree at most ⌊ℓ/2⌋. Further,
the coefficient of t⌊ℓ/2⌋ in either polynomial is E

[
RXℓ

]
.

We show first that the function t 7→ detM√
tX+N,n is a polynomial in t, and find the leading coefficient.

For the proof, we utilize the polynomials e1,X,ℓ and o1,X,ℓ (i.e., R = 1) as defined in (199) and (200).

Lemma 20. For a RV X and n ∈ N>0 such that E
[
X2n

]
< ∞, and for N ∼ N (0, 1) independent of X,

the function t 7→ detM√
tX+N,n over t ∈ [0,∞) is a polynomial of degree at most dn =

(
n+1
2

)
. Further, the

coefficient of tdn is detMX,n, which is nonzero if and only if |supp(X)| > n.

Proof. By Leibniz’s formula,

detM√
tX+N,n =

∑

π∈S[n]

sgn(π)
∏

r∈[n]

E

[(√
tX +N

)r+π(r)
]
. (203)

With the auxiliary polynomials e1,X,ℓ and o1,X,ℓ as defined in (199) and (200), and δ as defined in (198), we
may write

detM√
tX+N,n =

∑

π∈S[n]

sgn(π)tδ(π)/2
∏

i : i+π(i) odd

o1,X,i+π(i)(t)
∏

j : j+π(j) even

e1,X,j+π(j)(t), (204)

thereby showing that detM√
tX+N,n is a polynomial in t by evenness of each δ(π) (Lemma 19). Furthermore,

for each permutation π ∈ S[n],

deg


tδ(π)/2

∏

i+π(i) odd

o1,X,i+π(i)(t)
∏

j+π(j) even

e1,X,j+π(j)(t)


 ≤ δ(π)

2
+

∑

i+π(i) odd

i+ π(i)− 1

2
+

∑

j+π(j) even

j + π(j)

2
(205)

=
1

2

n∑

k=0

k + π(k) =
n(n+ 1)

2
= dn. (206)

Therefore, we also have

deg
(
detM√

tX+N,n

)
≤ dn. (207)

Finally, taking the terms of highest degrees (in
√
t) in (203), we obtain that the coefficient of tdn in

detM√
tX+N,n is ∑

π∈S[n]

sgn(π)
∏

r∈[n]

Xr+π(r), (208)

which is equal to detMX,n by the Leibniz determinant formula. This coefficient is non-negative because
MX,n is positive-semidefinite, and it is nonzero if and only if |supp(X)| > n by Lemma 8.
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The same method of proof in Lemma 20 can be used to show that FX,n(t) detM√
tX+N,n is a polynomial

in t and to characterize its leading coefficient. In this case, we utilize eX,X,ℓ and oX,X,ℓ (i.e., R = X).

Lemma 21. For n ∈ N, N ∼ N (0, 1), and a RV X independent of N and satisfying E
[
X2n

]
< ∞, the

function t 7→ FX,n(t) detM√
tX+N,n is a polynomial of degree at most dn =

(
n+1
2

)
and the coefficient of tdn

is ∑

i∈[n]

∑

π∈S[n]

sgn(π)Xi+1Xπ(i)+1

∏

r∈[n]\{i}
Xr+π(r). (209)

Proof. See Appendix E.3.

Remark 15. The coefficient of tdn given by (209) is shown in the remainder of this section to simplify to
X2 detMX,n. See also Appendix L for another proof.

We next combine Lemmas 20 and 21 to build the rational polynomial structure of pmmsen(X, t). Recall
from (176) that

pmmsen(X, t) = X2 − FX,n(t). (210)

Multiplying and dividing by detM√
tX+N,n,

pmmsen(X, t) =
(X2 − FX,n(t)) detM√

tX+N,n

detM√
tX+N,n

. (211)

From Lemmas 20 and 21, we know that both expressions in the numerator and the denominator in (211) are
polynomials in t, each of degree at most dn. Therefore, we deduce that pmmsen(X, t) is a rational function

pmmsen(X, t) =

∑
j∈[dn]

an,jX tj

∑
j∈[dn]

bn,jX tj
(212)

where the constants an,jX and bn,jX are defined by

(X2 − FX,n(t)) detM√
tX+N,n =

∑

j∈[dn]

an,jX tj (213)

detM√
tX+N,n =

∑

j∈[dn]

bn,jX tj . (214)

In (212), the numerator has terms of degree up to dn. However, as stated in Theorem 18 (see equation
(177)), we only need a numerator of degree dn − 1, i.e., we have that

an,dn

X = 0. (215)

To see that (215) holds, note that

pmmsen(X, t) ≤ lmmse(X, t) ≤ 1

t
. (216)

Hence, pmmsen(X, t) → 0 as t→ ∞, thereby yielding (215) in view of (212).
The following lemma derives equations (180)–(183), as stated in Theorem 18.

Lemma 22. Consider a RV X and a positive integer n such that E[X2n] < ∞, and set dn =
(
n+1
2

)
.

Equations (180)–(183) hold, i.e.,

bn,0X = G(n+ 2) (217)

bn,1X = G(n+ 2)dnσ
2
X (218)

bn,dn

X = detMX,n (219)

an,0X = G(n+ 2)σ2
X . (220)

Further, for any j ∈ [dn] and s ∈ R, we have the shift-invariance (185)

an,jX+s = an,jX and bn,jX+s = bn,jX (221)
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Proof. See Appendix E.4.

We have yet to prove the claim in the theorem (see equation (184)) that an,dn−1
X = detMX,n. We prove

this equation next for continuous X, then generalize for every RV X.

5.2.2 Proof of (184) for Continuous RVs

Assume for now that X is continuous. In particular, |supp(X)| = ∞, so detMX,n 6= 0. Now, note that the
PMMSE is bounded by the LMMSE and the MMSE,

mmse(X, t) ≤ pmmsen(X, t) ≤ lmmse(X, t). (222)

We have that lmmse(X, t) ∼ 1/t, and mmse(X, t) ∼ 1/t as X is assumed to be continuous [32]. Thus, by
(222), pmmsen(X, t) ∼ 1/t as t→ ∞. Moreover, in the denominator of pmmsen(X, t) in (212) we have that,
by Lemma 22,

bn,dn

X = detMX,n 6= 0, (223)

i.e., the denominator is of degree exactly dn. Therefore, from (212) and (215), we deduce

an,dn−1
X = bn,dn

X = detMX,n. (224)

We have thus shown the desired equation (184) when X is continuous.
Next, we return to the general case (i.e., not necessarily continuous X). Our approach is first to realize

that the equation an,dn−1
X = detMX,n asserts the vanishing of a multivariate polynomial in the moments

of every continuous 2n-times integrable RV X. Then, we show that such locus is too large for any nonzero
polynomial, i.e., that such a polynomial must vanish identically. This result would imply, in particular, that
an,dn−1
X = detMX,n holds even when X is not continuous.

5.2.3 Coefficient Formulas

We develop next multivariate-polynomial expressions for the coefficients in the PMMSE as given by (212),
which show that those coefficients are homogeneous polynomials in the moments; in particular, we prove
relations (178) and (179). First, we investigate detM√

tX+N,n when seen as a polynomial in t.
We have the expansion (see (203))

detM√
tX+N,n =

∑

π∈S[n]

sgn(π)
∏

r∈[n]

E

[(√
tX +N

)r+π(r)
]

(225)

by the Leibniz formula. In the expressions that follow, we denote the tuple k = (k0, · · · , kn). Expanding the
powers inside the expectation and computing the expectation, we get a formula of the form

detM√
tX+N,n =

∑

π∈S[n]

kr∈[r+π(r)], ∀r∈[n]

t(k0+···+kn)/2Xk0 · · · Xkn
βπ;k, (226)

where the βπ;k are integers given by10

βπ,k := sgn(π)
∏

r∈[n]

(
r + π(r)

kr

)
E[N r+π(r)−kr ]. (227)

The summation may be restricted further but, for the purpose of proving Theorem 18, it suffices to show
that the coefficients are homogeneous polynomials in the moments. By Lemma 20, only the summands for

10From this formula, one may deduce an alternative proof of Lemma 20. The term βπ;k is nonzero if and only if all the
differences r + π(r)− kr are even. Suppose, for the sake of contradiction, that this is true for some fixed permutation π ∈ S[n]

and naturals k0, · · · , kn for which k0 + · · ·+ kn is odd. Then, there is an odd number of odd numbers kr. But, by Lemma 19,
there is an even number of odd numbers r+π(r). Therefore, there is an r ∈ [n] for which r+π(r) and kr have different parities,
contradicting evenness of r + π(r)− kr.
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which the integer k0 + · · ·+ kn is even can be non-trivial because detM√
tX+N,n is a polynomial in t. Thus,

we have
detM√

tX+N,n =
∑

j∈[dn]

tj
∑

π∈S[n]

kr∈[r+π(r)], ∀r∈[n]
k0+···+kn=2j

βπ;kXk0 · · · Xkn
. (228)

Because the coefficients bn,jX were defined by (see (214))

detM√
tX+N,n =

∑

j∈[dn]

bn,jX tj , (229)

then, we obtain that for each j ∈ [dn]

bn,jX =
∑

π∈S[n]

kr∈[r+π(r)], ∀r∈[n]
k0+···+kn=2j

βπ;kXk0 · · · Xkn
. (230)

In particular, the relation in (179) follows, namely,

bn,jX ∈ H2j,min(n+1,2j),2min(n,j)(X). (231)

The coefficients an,jX in the numerator of (212) may be treated similarly, so we defer the details to
Appendix E.5.

5.2.4 Proof of (184) for a General Random Variable

We have shown in Section 5.2.2 that an,dn−1
X = detMX,n when X is continuous. We generalize this fact

here for any RV X. In view of Section 5.2.3, this equation takes the form q(E[X ], · · · ,E[X2n]) = 0 for some

fixed polynomial q. We demonstrate here that an,dn−1
X = detMX,n generalizes to every X by showing that

the polynomial q must vanish identically.
The solution to the truncated Hamburger moment problem implies that for µ0 = 1 and any tuple

(µ1, · · · , µ2h+1) ∈ R2h+1, if the Hankel matrix (µi+j)(i,j)∈[h]2 is positive definite, then there is a finitely-

support discrete RV W such that E
[
W k
]
= µk for each k ∈ [2h+1] (see [47, Theorem 3.1]). A consequence

of this result for continuous RVs, which we use in the sequel, is the following.

Lemma 23. Fix m ∈ N>0, set ℓ = ⌊m/2⌋ and µ0 = 1, and let (µ1, · · · , µm) ∈ Rm be such that the matrix
(µi+j)(i,j)∈[ℓ]2 is positive definite. For every ε > 0, there exists a continuous RV Z such that

∣∣E
[
Zk
]
− µk

∣∣ < ε
for every k ∈ [m].

Proof. See Appendix E.6.

In the other direction, if µ0 = 1 and (µ1, · · · , µ2h) ∈ R2h come from a continuous RV, i.e., E
[
Zk
]
= µk

for each k ∈ [2h], then it must be that the Hankel matrix H = (µi+j)(i,j)∈[h]2 is positive definite; indeed,

since |supp(Z)| = ∞, we have that for every nonzero real vector v = (v0, · · · , vh)T

vTHv =

∥∥∥∥∥∥
∑

k∈[h]

vkZ
k

∥∥∥∥∥∥

2

2

> 0. (232)

For each integer m ≥ 2, let Rm ⊂ Lm(F) be the set of all continuous RVs X such that E[|X |m] < ∞.
Consider the set Cm ⊂ Rm defined by

Cm = {(E[X ], · · · ,E[Xm]) ; X ∈ Rm}. (233)

Proposition 24. Let p be a polynomial in m variables with real coefficients. If

p (E[X ], · · · ,E[Xm]) = 0 (234)

for every continuous RV X satisfying E[|X |m] <∞, then p is the zero polynomial.
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Proof. See Appendix E.7.

Since an,dn−1
X − detMX,n = p

(
E[X ], · · · ,E[X2n]

)
for some polynomial p, and since we have shown that

p vanishes over Cm, we conclude that p vanishes identically.

Corollary 25. For any RV X and n ∈ N such that E[X2n] <∞, we have that an,dn−1
X = detMX,n.

With Corollary 25, the proof of Theorem 18 is complete.

Remark 16. We provide in Appendix L an alternative proof for the formulas an,dn−1
X = detMX,n and

an,dn

X = 0 via a self-contained algebraic argument.

6 Conditional Expectation Derivatives

We develop formulas for the higher-order derivatives of the conditional expectation, and establish upper
bounds. The bounds in Theorem 26 on the norm of the derivatives of the conditional expectation will be
crucial in Section 7 for establishing a Bernstein approximation theorem that shows how well polynomials
can approximate the conditional expectation in the mean-square sense.

Theorem 26. Fix an integrable RV X and an independent N ∼ N (0, 1), and set Y = X +N. Let r ≥ 2 be
an integer, let Cr be as defined in (409), and denote qr := ⌊(

√
8r + 9 − 3)/2⌋ and γr := (2rqr)!

1/(4qr). We
have the bound ∥∥∥∥

dr−1

dyr−1
E[X | Y = y]

∥∥∥∥
2

≤ 2rCr min
(
γr, ‖X‖r2rqr

)
. (235)

For 2 ≤ r ≤ 7, we obtain the first few values of qr as 1, 1, 1, 2, 2, 2, and we have qr ∼
√
2r as r → ∞ (see

Remark 18 for a way to reduce qr). To prove Theorem 26, we first express the derivatives of y 7→ E[X | Y = y]
as polynomials in the moments of the RV Xy − E[Xy], where Xy denotes the RV obtained from X by
conditioning on {Y = y}.

Proposition 27. Fix an integrable RV X and an independent N ∼ N (0, 1), and let Y = X +N. For each
(y, k) ∈ R× N, denote f(y) := E[X | Y = y] and

gk(y) := E
[
(X − E[X | Y ])

k | Y = y
]
. (236)

For (λ2, · · · , λℓ) = λλλ ∈ N∗, denote gλλλ :=
∏ℓ

i=2 g
λi

i , with the understanding that g0i = 1. Then, for every
integer r ≥ 2, we have that

f (r−1) =
∑

λλλ∈Πr

eλλλg
λλλ, (237)

where the integers eλλλ are as defined in (56)–(57).

Proof. See Appendix F.1.

Remark 17. We note that in parallel to this work, Dytso et. al. also derived in [31] the formula in
Proposition 27 via a shorter and more elegant proof. Further, it is shown in [31] that formula (237) is the
expansion of the r-th cumulant of Xy in terms of the moments of Xy via Bell polynomials.

Now we are ready to prove Theorem 26.

Proof of Theorem 26. We use the notation of Proposition 27. Fix (λ2, · · · , λℓ) = λλλ ∈ Πr. By the generaliza-

tion of Hölder’s inequality stating ‖ψ1 · · ·ψk‖1 ≤∏k
i=1 ‖ψi‖k, we have that

∥∥∥gλλλ(Y )
∥∥∥
2

2
=

∥∥∥∥∥∥
∏

λi 6=0

g2λi

i (Y )

∥∥∥∥∥∥
1

≤
∏

λi 6=0

∥∥∥g2λi

i (Y )
∥∥∥
s

(238)
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where s is the number of nonzero entries in λλλ. By Jensen’s inequality for conditional expectation, for each i
such that λi 6= 0 we have that ∥∥∥g2λi

i (Y )
∥∥∥
s
≤ ‖X − E[X | Y ]‖2iλi

2iλis
. (239)

Now, r =
∑ℓ

i=2 iλi ≥
∑s+1

i=2 i =
(s+1)(s+2)

2 − 1, so we have that s2 +3s− 2r ≤ 0, i.e., s ≤ qr. Further, iλi ≤ r
for each i. Hence, monotonicity of norms and inequalities (238) and (239) imply the uniform (in λλλ) bound

∥∥∥gλλλ(Y )
∥∥∥
2
≤ ‖X − E[X | Y ]‖r2rqr . (240)

Observe that ‖X − E[X | Y ]‖k ≤ 2min
(
(k!)1/(2k), ‖X‖k

)
(see [11]), so applying the triangle inequality

in (237) we obtain

∥∥∥f (r−1)(Y )
∥∥∥
2
≤
∑

λλλ∈Πr

cλλλ

∥∥∥gλλλ(Y )
∥∥∥
2
≤ 2rCr min

(
γr, ‖X‖r2rqr

)
, (241)

where γr = (2rqr)!
1/(4qr), as desired.

Remark 18. A closer analysis reveals that iλis in (239) cannot exceed βr := t2r(tr + 1/2) where tr :=
(
√
6r + 7 − 1)/3. For r → ∞, we have rqr/βr ∼ 33/2/2 ≈ 2.6. The reduction when, e.g., r = 7, is from

rqr = 14 to βr = 10.

7 A Bernstein Approximation Theorem for Conditional Expecta-

tion

If p ∈ D (see Definition 1) and X ∼ p, then we show that the error in approximating E[X | Y ] by the best
polynomial En[X | Y ], where Y is a Gaussian perturbation of X, decays faster than any polynomial in n.

Theorem 28. Fix p ∈ D , let X ∼ p, suppose N ∼ N (0, 1) is independent of X, and set Y = X +N. There
exists a sequence {D(p, k)}k∈N of constants such that for all integers n ≥ max(k − 1, 1) we have

‖En[X | Y ]− E[X | Y ]‖2 ≤ D(p, k)

nk/2
. (242)

The proof relies on results on the Bernstein approximation problem in weighted Lp spaces. In particular,
we consider the Freud case [5, Definition 3.3], where the weight is of the form e−Q for Q of polynomial
growth, e.g., a Gaussian weight.

Definition 5 (Freud Weights, [5]). A function W : R → (0,∞) is called a Freud Weight, and we write
W ∈ F , if it is of the form W = e−Q for Q : R → R satisfying:

(1) Q is even,

(2) Q is differentiable, and Q′(y) > 0 for y > 0,

(3) y 7→ yQ′(y) is strictly increasing over (0,∞),

(4) yQ′(y) → 0 as y → 0+, and

(5) there exist λ, a, b, c > 1 such that for every y > c

a ≤ Q′(λy)

Q′(y)
≤ b. (243)

The convolution of a weight in D with the Gaussian weight ϕ(x) := e−x2/2/
√
2π is a Freud weight. This

can be shown by noting that with pY = e−Q we have Q′(y) = E[N | Y = y].
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Theorem 29. If p ∈ D and X ∼ p, then the probability density function of X + N, for N ∼ N (0, 1)
independent of X, is a Freud weight.

Proof. See Appendix F.2.

To be able to state the theorem we borrow from the Bernstein approximation literature, we need first to
define the Mhaskar–Rakhmanov–Saff number.

Definition 6. If Q : R → R satisfies conditions (2)–(4) in Definition 5, and if yQ′(y) → ∞ as y → ∞,
then the n-th Mhaskar–Rakhmanov–Saff number an(Q) of Q is defined as the unique positive root an of the
equation

n =
2

π

∫ 1

0

antQ
′(ant)√

1− t2
dt. (244)

Remark 19. The condition yQ′(y) → ∞ as y → ∞ in Definition 6 is satisfied if e−Q is a Freud weight.
Indeed, in view of properties (2)–(3) in Definition 5, the quantity ℓ := limy→∞ yQ′(y) is well-defined and
it belongs to (0,∞]. If ℓ 6= ∞, then because limy→∞ λyQ′(λy) = ℓ too, property (5) would imply that
a ≤ 1/λ ≤ b contradicting that λ, a > 1. Therefore, ℓ = ∞.

For example, the weight W (y) = e−y2

, for which Q(y) = y2, has an(Q) =
√
n because

∫ 1

0 t
2/
√
1− t2 dt =

π
4 . If X ∼ p ∈ D , say supp(p) ⊂ [−M,M ], and pY = e−Q (where N ∼ N (0, 1) is independent of X, and
Y = X +N), then (see Appendix F.3)

an(Q) ≤
(
2M +

√
2
)√

n. (245)

We apply the following Bernstein approximation theorem [5, Corollary 3.6] to prove Theorem 28.

Theorem 30. Fix W ∈ F , and let u be an r-times continuously differentiable function such that u(r) is
absolutely continuous. Let an = an(Q) where W = e−Q, and fix 1 ≤ s ≤ ∞. Then, for some constant
D(W, r, s) and every n ≥ max(r − 1, 1)

inf
q∈Pn

‖(q − u)W‖Ls(R) ≤ D(W, r, s)
(an
n

)r
‖u(r)W‖Ls(R). (246)

Proof of Theorem 28. Fix k ∈ N and n ≥ max(k−1, 1).We apply Theorem 30 for the function u(y) = E[X |
Y = y], the weight W =

√
pY , and for s = 2. By our choice of weight, ‖hW‖L2(R) = ‖h(Y )‖2 for any Borel

h : R → R. Recall from (7) that En[X | Y ] minimizes ‖q(Y ) − E[X | Y ‖2 over q(Y ) ∈ Pn(Y ). By (245),
we have the bound an = Op(

√
n). Furthermore, by Theorem 26, ‖(dk/dyk)E[X | Y ]‖2 = Ok(1). Note that

W ∈ F , because W 2 = pY ∈ F by Theorem 29. Therefore, by Theorem 30, we obtain a constant D(p, k)
such that

‖En[X | Y ]− E[X | Y ]‖2 ≤ D(p, k)

nk/2
, (247)

as desired.

8 Entropy from Moments

In this section, we leverage the I-MMSE relation to express the differential entropy in terms of moments.
We prove in Theorem 32 that, for any continuous RV Y that has a MGF, there is a sequence of rational
functions ρn : [0,∞) → R, n ∈ N, whose coefficients are multivariate polynomials in the first 2n moments of
Y, such that

h(Y ) = lim
n→∞

∫ ∞

0

ρn(t) dt. (248)

Further, the convergence in (248) is monotone from above. The starting point in deriving this formula is the
I-MMSE relation, which we briefly review next.
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8.1 The I-MMSE Relation

The I-MMSE relationship can be stated as follows.

Theorem 31 (I-MMSE relation, [3]). For any square-integrable RV X, an independent N ∼ N (0, 1), and
γ > 0, we have that

I(X ;
√
γX +N) =

1

2

∫ γ

0

mmse(X, t) dt. (249)

The I-MMSE relation directly yields the following formula for differential entropy: for a square-integrable
continuous RV Y we have that [3]

h(Y ) =
1

2
log
(
2πeσ2

Y

)
− 1

2

∫ ∞

0

σ2
Y

1 + σ2
Y t

−mmse(Y, t) dt. (250)

Noting that for a, b > 0 ∫ ∞

0

a

1 + at
− b

1 + bt
dt = lim

γ→∞
log

1 + aγ

1 + bγ
= log

a

b
, (251)

we obtain

h(Y ) =
1

2

∫ ∞

0

mmse(Y, t)− 1

2πe+ t
dt. (252)

The MMSE term in the above expression can be approximated by the PMMSE, resulting in an expression
for differential entropy as a function of moments of Y . We explore this connection next.

8.2 A New Formula for Differential Entropy

From (250) and (252), and since mmse(Y, t) ≤ lmmse(Y, t), replacing the MMSE with the LMMSE gives the
upper bound on differential entropy h(Y )

h(Y ) ≤ h1(Y ) :=
1

2

∫ ∞

0

lmmse(Y, t)− 1

2πe+ t
dt =

1

2
log
(
2πeσ2

Y

)
= h(N (0, σ2

Y )), (253)

which is the maximum possible differential entropy for a continuous RV with a prescribed variance of σ2
Y .

We take this a step further and introduce for each n ∈ N (assuming E[Y 2n] <∞)

hn(Y ) :=
1

2

∫ ∞

0

pmmsen(Y, t)−
1

2πe+ t
dt. (254)

From the definition of the PMMSE, we have the monotonicity

pmmse1(Y, t) ≥ pmmse2(Y, t) ≥ · · · ≥ mmse(Y, t). (255)

Hence, we obtain the monotonicity

h1(Y ) ≥ h2(Y ) ≥ · · · ≥ h(Y ) (256)

for a RV Y having moments of all orders. In fact, if Y has a MGF, then hn(Y ) → h(Y ) by the monotone
convergence theorem in view of the limit pmmsen(Y, t) → mmse(Y, t) shown in Theorem 17. Hence, we have
the following formula for differential entropy in terms of the moments.

Theorem 32. Let Y be a continuous RV whose MGF exists. Then, we have a decreasing sequence

1

2
log
(
2πeσ2

Y

)
= h1(Y ) ≥ h2(Y ) ≥ · · · ≥ h(Y ) (257)

converging to the differential entropy
lim
n→∞

hn(Y ) = h(Y ). (258)

Proof. The functions gn(t) := lmmse(Y, t) − pmmsen(Y, t) are nonnegative and nondecreasing. By Theo-
rem 17, gn → g pointwise, where g(t) := lmmse(Y, t) −mmse(t). Therefore, by the monotone convergence
theorem,

∫
R
gn(t) dt →

∫
R
g(t) dt. Adding and subtracting 1/(2πe + t) to each integrand, and noting that

t 7→ lmmse(Y, t)− 1/(2πe+ t) is absolutely integrable, we conclude that hn(Y ) → h(Y ).
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8.3 Behavior of hn Under Affine Transformations

Each approximation hn behaves under (injective) affine transformations exactly as differential entropy does.
Specifically, by the behavior of the PMMSE under affine transformations shown in Proposition 9, we have
that

pmmsen(αY + β, t) = α2pmmsen(Y, α
2t). (259)

From (259), and after a change of variables in

hn(Y ) :=
1

2

∫ ∞

0

pmmsen(Y, t)−
1

2πe+ t
dt, (260)

one can show that hn(αY + β) = hn(Y ) + log |α|.

Proposition 33. For Y ∈ L2n(F) and (α, β) ∈ R2 with α 6= 0, we have that

hn(αY + β) = hn(Y ) + log |α|. (261)

Proof. See Appendix G.

9 A New Formula for Mutual Information

From the formula we developed for differential entropy in Proposition 32, we immediately obtain a new
formula for mutual information between a discrete RV X and a continuous RV Y. We use the shorthand
Y (x) for the RV Y conditioned on {X = x} (as opposed to the subscript notation used in Section 6), as we
will later consider i.i.d. samples which we will indicate with subscripts.

First, note that for each x such that PX(x) > 0, the RV Y (x) is continuous. Indeed, if B ∈ B has Lebesgue
measure zero, we have that

0 = PY (B) =
∑

a∈supp(X)

PX,Y ({a} ×B) =
∑

a∈supp(X)

PY (a)(B)PX(a) ≥ PY (x)(B)PX(x). (262)

Since PX(x) > 0, we infer from (262) that PY (x)(B) = 0. Further, the joint measure PX,Y is absolutely
continuous with respect to the product measure PX ⊗ PY . Indeed, if B is a Borel subset of R2, and Bx :=
{y ∈ R ; (x, y) ∈ B}, then (PX ⊗ PY )(B) =

∑
x∈supp(X) PY (Bx)PX(x). Suppose that (PX ⊗ PY )(B) =

0, so for each x ∈ supp(X), either PX(x) = 0 or PY (Bx) = 0. In addition, we have that PX,Y (B) =∑
x∈supp(X) PY (x)(Bx)PX(x). For every x ∈ supp(X) such that PX(x) 6= 0, we have that

0 = PY (Bx) =
∑

a∈supp(X)

PX,Y ({a} ×Bx) =
∑

a∈supp(X)

PY (x)(Bx)PX(a) ≥ PY (x)(Bx)PX(x), (263)

hence PY (x)(Bx) = 0. Therefore, PX,Y (B) = 0, and we conclude that PX,Y is absolutely continuous with
respect to PX ⊗ PY . We have the Radon-Nikodym derivative

dPX,Y

dPX × PY
(x, y) =

pY (x)(y)

pY (y)
. (264)

Now, by the disintegration theorem, we have that

I(X ;Y ) =
∑

x∈supp(X)

PX(x)

∫

R

pY (x)(y) log
pY (x)(y)

pY (y)
dy. (265)

Suppose that σ2
Y < ∞, so we also have that σ2

Y (x) < ∞ for each x ∈ supp(X). If we also have that
h(Y ) > −∞, then we may split the integral in (265) to obtain

I(X ;Y ) = −
∑

x∈supp(X)

PX(x)

∫

R

pY (x)(y) log pY (y) dy +
∑

x∈supp(X)

PX(x)

∫

R

pY (x)(y) log pY (x)(y) dy. (266)
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In other words,

I(X ;Y ) = h(Y )− EX

[
h
(
Y (X)

)]
, (267)

where the subscript in EX is to emphasize that the expectation is taken with respect to X only.
Next, we discuss implications of equation (267) in view of the formula for differential entropy proved in

Proposition 32 and the behavior of the PMMSE under affine transformations proved in Proposition 9. In
particular, we show that the ensuing approximants of mutual information are affine-transformation invariant,
which is in agreement with how mutual information behaves. In Section 10, we obtain another formula for
the mutual information I(X ;Y ) when both RVs X and Y are continuous.

9.1 Mutual Information in Terms of Moments

Under the assumptions used in Theorem 32, and utilizing equation (267), we obtain a formula for mutual
information primarily in terms of moments.

Theorem 34. For a discrete RV X with finite support and a continuous RV Y with a MGF such that
h(Y ) > −∞, the mutual information is given by

I(X ;Y ) =
1

2
lim
n→∞

∫ ∞

0

pmmsen(Y, t)− EX

[
pmmsen(Y

(X), t)
]
dt. (268)

Proof. By assumption on the MGF of Y, we have that E[eY t] < ∞ whenever |t| < δ for some fixed δ > 0.
Then, whenever |t| < δ, we also have that for each x ∈ supp(X)

PX(x)E[eY
(x)t] ≤

∑

a∈supp(X)

PX(a)E[eY
(a)t] = E[eY t] <∞. (269)

Therefore, the MGF of Y (x) for each x ∈ supp(X) is finite over the nonempty neighborhood (−δ, δ) of 0.
Therefore, Theorem 32 and equation (267) yield the desired equation for I(X ;Y ).

Equipped with the relationship between the moments and I(X ;Y ) given in Theorem 34, we will introduce
a moments-based estimator of mutual information in Section 11. Specifically, we approximate the mutual
information by fixing n, then further approximate the ensuing expression by replacing moments with sample
moments. Therefore, the estimator makes use of the approximants

In(X ;Y ) :=
1

2

∫ ∞

0

pmmsen(Y, t)− EX

[
pmmsen(Y

(X), t)
]
dt (270)

for every n ∈ N, where X is a discrete RV with finite support and Y is a continuous RV that is 2n-times
integrable. Under the premises of Theorem 34, we have the limit

I(X ;Y ) = lim
n→∞

In(X ;Y ). (271)

Also, in view of the definition of hn in equation (254),

In(X ;Y ) = hn(Y )− EX

[
hn(Y

(X))
]
. (272)

9.2 Properties of In: Affine Transformations and Independence

We prove properties of the approximants In that resemble those for the mutual information. First, the
behavior of the PMMSE under affine transformations exhibited in Proposition 9 implies that In(X ;Y ) is
invariant under injective affine transformations of Y. Indeed, this can be seen immediately from the behavior
of hn in Proposition 33 in view of equation (272).

Corollary 35. Suppose X and Y are RVs satisfying the premises of Theorem 34. For any constants
(α, β) ∈ R2 with α 6= 0, and for any n ∈ N

In(X ;αY + β) = In(X ;Y ). (273)
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Also, the approximations In(X ;Y ) detect independence exactly.

Proposition 36. Suppose X and Y are RVs satisfying the premises of Theorem 34. If X and Y are
independent, then for any n ∈ N

In(X ;Y ) = 0. (274)

Proof. By independence, each Y (x) is identically distributed to Y. Therefore, hn(Y
(x)) = hn(Y ) for each

x ∈ supp(X). The desired result then follows from equation (272).

We give full expressions for the first two approximants of mutual information that are generated by the
LMMSE and quadratic MMSE.

Example 6. When n = 1, we obtain

I1(X ;Y ) = log σY − EX [log σY (X) ] , (275)

which is the exact formula for I(X ;Y ) when both Y is Gaussian and each Y (x) (for x ∈ supp(X)) is Gaussian;
indeed, in such a case, the MMSE is just the LMMSE.

Example 7. For n = 2, we obtain the formula

I2(X ;Y ) =
1

6
log

b2,3Y

∏
x∈supp(X)

(
b2,3
Y (x)

)PX (x)
+

1

2

∫ ∞

0

a2,1Y t

2 + b2,1Y t+ b2,2Y t2 + b2,3Y t3

− EX

a2,1
Y (X) t

2 + b2,1
Y (X) t+ b2,2

Y (X) t2 + b2,3
Y (X) t3

dt

where we may compute for any R ∈ L4(F)

b2,3R :=

∣∣∣∣∣∣

1 ER ER2

ER ER2 ER3

ER2 ER3 ER4

∣∣∣∣∣∣
= σ2

RER
4 + 2(ER)(ER2)ER3 − (ER2)3 − (ER3)2, (276)

which is strictly positive when |supp(R)| > 2, and

b2,2R = −4(ER)ER3 + 3(ER2)2 + ER4 (277)

b2,1R = 6σ2
R (278)

a2,1R = 4(ER)4 − 8(ER)2ER2 +
8

3
(ER)ER3 + 2(ER2)2 − 2

3
ER4. (279)

10 Generalizations to Arbitrary Bases and Multiple Dimensions

We extend our approximation results for the conditional expectation from the polynomial-basis setting to
arbitrary bases, and from conditioning on random variables to conditioning on arbitrary σ-algebras. An
extension to the multidimensional case is also presented, which straightforwardly yields an approximation
theorem for differential entropy of random vectors. Another byproducts of the multidimensional generaliza-
tion is an expression for mutual information between two continuous random variables completely in terms
of moments, which is presented at the end of this section.

10.1 Arbitrary Bases and σ-Algebras

Up to here, our exposition dealt with the polynomial basis of L2(σ(Y )). However, our results can be extended
to a more general setup. Recall that we have defined

MY,n = E

[
Y (n)

(
Y (n)

)T ]
, (280)
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and derived
E[X | Y ] = lim

n→∞
E
[
XY (n)

]
M−1

Y,nY
(n) (281)

in Theorem 5 under two requirements: Y satisfies Carleman’s condition, and |supp(Y )| = ∞. Along similar
lines, we derive a generalization where the set of polynomials of Y is replaced with any linearly-independent
subset of L2(Σ) having a dense span, where Σ ⊂ F is any σ-algebra. Denseness replaces Carleman’s condition,
while linear independence replaces the infinite-support requirement.

Theorem 37. Fix a σ-algebra Σ ⊂ F and a set {ψk}k∈N = S ⊂ L2(Σ). For each n ∈ N, define the random
vector ψψψ(n) = (ψ0, · · · , ψn)

T and the matrix of inner products

MS,n := E

[
ψψψ(n)

(
ψψψ(n)

)T]
. (282)

If S is linearly independent and span(S) is dense in L2(Σ), then

E[X | Σ] = lim
n→∞

E
[
Xψψψ(n)

]T
M−1

S,n ψψψ
(n) (283)

in L2(Σ) for any RV X ∈ L2(F).

For the proof of Theorem 37, we will need the following formula for the closest element in a finite-
dimensional subspace of L2(F) to a RV X ∈ L2(F), which will also be used for the extension of our results
to random vectors later in this section.

Lemma 38. For any fixed finite-dimensional subspace V ⊂ L2(F) having a basis {V0, V1, · · · , Vn}, we have
that for every X ∈ L2(F)

E [XV ]
T
E
[
V V T

]−1
V = argmin

V ∈V
‖X − V ‖2 , (284)

where V = (V0, V1, · · · , Vn)T .

Proof. See Appendix H.1.

In view of Lemma 38, we introduce the following notation.

Definition 7. Fix a RV X ∈ L2(F), a σ-algebra Σ ⊂ F , and a linearly-independent set {θj}j∈N = Θ ⊂
L2(Σ).Write θθθ(n) = (θ0, · · · , θn)T for each n ∈ N.We define the n-th approximation of E[X | Σ] with respect
to Θ by

En,Θ [X | Σ] := E
[
Xθθθ(n)

]
E

[
θθθ(n)

(
θθθ(n)

)T ]−1

θθθ(n). (285)

Note that En,Θ[X | Σ] belongs to span({θj}j∈[n]). Further, according to Lemma 38, En,Θ[X | Σ] is the
unique closest element in span({θj}j∈[n]) to X

En,Θ[X | Σ] = argmin
V ∈ span({θj}j∈[n])

‖X − V ‖2 . (286)

If Y ∈ L2n(F), Θ = {Y j}j∈N, and Σ = σ(Y ), then

En,Θ[X | Σ] = En[X | Y ]. (287)

The central claim in Theorem 37 is that if span(Θ) is dense in L2(Σ) then

E[X | Σ] = lim
n→∞

En,Θ[X | Σ]. (288)

Proof of Theorem 37. For each n ∈ N, define the subspace

V(n) = span({ψj}j∈[n]). (289)
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As in the proof of Lemma 38, the entries of the vector

ξξξ(n) = M
−1/2
S,n ψψψ(n) (290)

form an orthonormal basis for V(n). Note that ξξξ(n) is the Gram-Schmidt orthonormalization of ψψψ(n). Hence,
ξξξ(n) is a prefix of ξξξ(n+1). Let Θ = {ξj}j∈N be the ensuing orthonormal basis for L2(Σ), i.e., ξξξ(n) =
(ξ0, · · · , ξn)T . Then, span(Θ) is dense in L2(Σ). Therefore,

E[X | Σ] =
∑

j∈N

E[Xξj ]ξj = lim
n→∞

E[Xξξξ(n)]Tξξξ(n) = lim
n→∞

En,Θ[X | Σ], (291)

as desired.

10.2 The Multidimensional Case

We extend our results on the PMMSE of random variables to random vectors. We will modify our notation
for this subsection only.

Denote the Borel σ-algebra of Rm by Bm. We are still working with the probability space (Ω,F , P ). By
an m-dimensional random vector (m-RV) we mean a measurable function from (Ω,F) to (Rm,Bm). For a
sub-σ-algebra Σ ⊂ F , we denote the set of (Σ,Bm)-measurable functions by Mm(Σ); so, the set of m-RVs
is denoted by Mm(F). Additionally, for each q ≥ 1, we define

Lq(Rm,Σ) :=

{
f ∈ Mm (Σ) ;

∫

Ω

‖f(ω)‖qq dP (ω) <∞
}
. (292)

In (292), ‖f(ω)‖q refers to the q-norm of the vector f(ω) ∈ Rm. In other words, if f = (f1, · · · , fm)T , then
‖f(ω)‖qq =

∑m
i=1 |fi(ω)|q. We will also use ‖ · ‖q for the norm of Lq(Rm,Σ), i.e., for f ∈ Lq(Rm,Σ) we have

‖f‖qq =
∫

Ω

‖f(ω)‖qq dP (ω). (293)

The distinction is that we consider the q-norm of Rm when we specify the input of f (i.e., f(ω)), and when
no input is given to f then ‖f‖q refers to the norm of Lq(Rm,Σ). We keep the notation Lq(R,Σ) = Lq(Σ).

A function f : Rm → Rk is called Borel if it is (Bm,Bk)-measurable. For any Y ∈ Mm(F) and integer
k ≥ 1

Mk(σ(Y )) = {f(Y ) ; f : Rm → Rk Borel }. (294)

By a generalization of Hölder’s inequality, for any m-RV Y = (Y1, · · · , Ym)T ∈ Lβ(Rm,F), we also have
that Y α1

1 · · ·Y αm
m ∈ L1(F) for any constants α1, · · · , αm ≥ 0 such that α1 + · · ·+ αm ≤ β.

We extend the notation Y (n) in (45) to random vectors as follows. For an m-RV Y = (Y1, · · · , Ym)T ,
we let Y (n,m) denote the random vector whose entries are monomials in the Yj of total degree at most
n, ordered first by total degree then reverse-lexicographically in the exponents. For example, if m = 3 so
Y = (Y1, Y2, Y3)

T , then for n = 2

Y (2,3) = (1, Y1, Y2, Y3, Y
2
1 , Y1Y2, Y1Y3, Y

2
2 , Y2Y3, Y

2
3 )

T (295)

because the totally ordered set of exponents ( {v ∈ N3 | 1Tv ≤ 2} , < ) has the order11

(0, 0, 0) < (1, 0, 0) < (0, 1, 0) < (0, 0, 1) < (2, 0, 0) < (1, 1, 0) < (1, 0, 1) < (0, 2, 0) < (0, 1, 1) < (0, 0, 2).

A straightforward stars-and-bars counting argument reveals that the length of Y (n,m) is
(
n+m
m

)
.

Let Pn,m denote the set of polynomials in m variables with real coefficients of total degree at most n.
For an m-RV Y , denote

Pn,m(Y ) := {p(Y ) ; p ∈ Pn,m} . (296)

11Note that this ordering is not the same as the degree reverse lexicographical order nor its reverse.
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Note that Pn,1 = Pn. Also, the notation Y (n,1), while avoided, is disambiguated by interpreting it as Y (n),
i.e., Y (n,1) = (1, Y, · · · , Y n)T where the subscript on Y1 is dropped. We denote the product sets of Pn,m(Y )
by Pℓ

n,m(Y ), and consider their elements as vectors rather than tuples. In other words, we denote the set of
length-ℓ vectors whose coordinates are multivariate polynomial expressions of an m-RV Y with total degree
at most n by

P
ℓ
n,m(Y ) =

{
(p1(Y ), · · · , pℓ(Y ))T ; p1, · · · , pℓ ∈ Pn,m

}
. (297)

The multivariate generalization of the PMMSE is defined as follows.

Definition 8 (Multivariate Polynomial MMSE). Fix positive integer ℓ,m, and n. Fix an ℓ-RV X ∈
L2(Rℓ,F) and an m-RV Y ∈ L2n(Rm,F), and set k =

(
n+m
m

)
. We define the n-th order PMMSE for

estimating X given Y by

pmmsen(X | Y ) := min
C∈Rℓ×k

∥∥∥X −CY (n,m)
∥∥∥
2
, (298)

and the n-th order PMMSE estimate of X given Y by

En[X | Y ] := CY (n,m) ∈ P
ℓ
n,m(Y ) (299)

for any minimizing matrix C ∈ Rℓ×k in (298).

Remark 20. For any minimizer C in (298), the ℓ-RV CY (n,m) is the unique orthogonal projection of X
onto Pℓ

n,m(Y ); in particular, En[X | Y ] is well-defined by (299).

Denote, for Y ∈ L2n(Rm,F),

MY ,n := E

[
Y (n,m)

(
Y (n,m)

)T ]
. (300)

For n ∈ N and an ℓ-RV (X1, · · · , Xℓ)
T = X ∈ L2(Rℓ,F), if MY ,n is invertible, Lemma 38 yields that

En[X | Y ] =




En[X1 | Y ]
...

En[Xℓ | Y ]


 =




E
[
X1Y

(n,m)
]T

M−1
Y ,nY

(n,m)

...

E
[
XℓY

(n,m)
]T

M−1
Y ,nY

(n,m)



. (301)

We say that the Yj do not satisfy a polynomial relation if the monomials
∏m

j=1 Y
αj

j , for α1, · · · , αm ∈ N, are
linearly independent, i.e., if the mapping

ϕ :
⋃

n∈N

Pn,m →
⋃

n∈N

Pn,m(Y ), ϕ(p) = p(Y ) (302)

is an isomorphism of vector spaces.
Generalizing our results on RVs to m-RVs can be done in view of the following polynomial denseness

result.

Theorem 39 ([48]). For any m-RV Y = (Y1, · · · , Ym)T and q > 1, if

⋃

n∈N

Pn(Yj) = Lq(σ(Yj)) (303)

for each j ∈ {1, · · · ,m}, then ⋃

n∈N

Pn,m(Y ) = Lr(σ(Y )) (304)

for every r ∈ [1, q).

An immediate corollary that we use in this section is as follows.
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Corollary 40. Fix an integer m ≥ 1 and an m-RV Y = (Y1, · · · , Ym)T . If each of the RVs Y1, · · · , Ym sat-
isfies Carleman’s condition, then the set of vectors of polynomials

⋃
n∈N Pm

n,m(Y ) is dense in Lq(Rm, σ(Y ))
for any q ≥ 1.

Proof. See Appendix H.2.

We deduce the following result on the convergence of the multivariate PMMSE to the MMSE.

Theorem 41. Fix an m-RV Y = (Y1, · · · , Ym)T and an ℓ-RV X ∈ L2(Rℓ,F). If each Yj satisfies Carleman’s
condition, and if the Yj do not satisfy a polynomial relation, then we have the L2(Rℓ, σ(Y ))-limit

E[X | Y ] = lim
n→∞

En[X | Y ]. (305)

Proof. See Appendix H.3.

With the definition of the multivariate PMMSE at hand, we show that the PMMSE estimate satisfies a
tower property similar to the conditional expectation.

Proposition 42 (Tower Property). Fix n ∈ N and three RVs X ∈ L2(F) and Y1, Y2 ∈ L2n(F). Suppose
that |supp(Y1)|, |supp(Y2)| > n. Then

En [En[X | Y1] | Y1, Y2] = En[X | Y1], (306)

and
En [En[X | Y1, Y2] | Y2] = En[X | Y2]. (307)

Proof. See Appendix H.4.

Now, to generalize our results on estimation in Gaussian channels, we first note a straightforward gener-
alization of the MMSE dimension to the multidimensional case.

Theorem 43. Fix two square-integrable continuous m-RVs X and N that are independent. Suppose that
pN is bounded and that12

pN (z) = O
(
‖z‖−(m+2)

)
(308)

as ‖z‖ → ∞. Then, we have that

lim
t→∞

t ·mmse
(
X |

√
tX +N

)
= tr ΣN . (309)

Proof. See Appendix I.

The approach for showing the rationality of t 7→ pmmsen(X, t) for a RV X ∈ L2n(F) in Section 5 may be
generalized to deduce rationality of t 7→ pmmsen(X, t) for an m-RV X ∈ L2n(Rm,F). Here, we are denoting
pmmsen(X, t) := pmmsen(X |

√
tX +N), where N ∼ N (0, Im) is independent of X. For brevity, we give

a blueprint of how this generalization of rationality can be obtained.
First, Lemma 20 may be generalized to yield that detM√

tX+N
is a polynomial in t of degree at most

dn,m which is given by

dn,m :=
∑

k∈[n]

k · |{(λ1, · · · , λm) ∈ Nm ; λ1 + · · ·+ λm = k}| (310)

=
∑

k∈[n]

k

(
k +m− 1

m− 1

)
=
∑

k∈[n]

m

(
k +m− 1

m

)
= m

(
n+m

m+ 1

)
. (311)

Further, the coefficient of tdn,m in detM√
tX+N

is detMX . Note that dn,1 = dn. Then, generalizing
Lemma 21 we obtain an analogous expression to the scalar case given in Theorem 14, namely,

pmmsen(X, t) =
(tr ΣX) detMN ,n + · · ·+ (tr ΣN ) (detMX,n) t

dn,m−1

detMN ,n + · · ·+ (detMX,n) tdn,m
. (312)

12The exponent m+ 2 in (308) may be replaced with m+ 1 + ε for any ε > 0, see [45, Section 3.2]
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To deduce (312), the multidimensional MMSE dimension result in Theorem 43 is used, as follows. Note
that tr ΣN = m for N ∼ N (0, Im). By Theorem 43, we have that mmse(X, t) ∼ m/t. It is also true that
lmmse(X, t) ∼ m/t. Therefore, pmmsen(X, t) ∼ m/t for every integer n ≥ 1. Note that pmmsen(X, 0) =
tr ΣX . Expression (312) follows.

10.3 Mutual Information for Continuous Random Variables

We prove an analogous approximation result to that in Theorem 34 for the mutual information between
continuous RVs.

Theorem 44. For two continuous RVs X and Y whose MGFs exist, if min(h(X), h(Y )) > −∞, then the
mutual information is given by

I(X ;Y ) =
1

2
lim
n→∞

∫ ∞

0

pmmsen(X, t) + pmmsen(Y, t)− pmmsen(W , t) dt, (313)

where W := (X,Y )T .

Remark 21. This formula expresses the mutual information between two continuous RVs entirely in terms
of moments, because pmmsen( · , t) is determined completely by the moments. This is in contrast to the
formula in Theorem 34, which expresses the mutual information between a discrete RV and a continuous RV
in terms of moments along with the expectation operator of the discrete RV.

To prove Theorem 44, we use the following generalization of Theorem 32 to higher dimensions. For an
m-RV V ∈ L2n(Rm,F), we define

hn(V ) :=
1

2

∫ ∞

0

pmmsen(V , t)− m

2πe+ t
dt. (314)

Theorem 45. Let V be a continuous m-RV whose MGF exists. Then, we have a decreasing sequence

1

2
log ((2πe)m detΣV ) = h1(V ) ≥ h2(V ) ≥ · · · ≥ h(V ) (315)

converging to the differential entropy
lim
n→∞

hn(V ) = h(V ). (316)

Proof. In view of monotonicity of pmmsen(V , t) in n, and since h1(V ) is finite, it suffices by the monotone
convergence theorem and the equation

h(V ) =
1

2

∫ ∞

0

mmse(V , t)− m

2πe+ t
dt (317)

to show that pmmsen(V , t) → mmse(V , t) as n → ∞. Let N ∼ N (0, Im) be independent of V . A simple
application of the triangle inequality yields that it suffices to prove the convergence

En

[
V |

√
tV +N

]
→ E

[
V |

√
tV +N

]
. (318)

We deduce (318) from Theorem 41, as follows.

Denote Z(t) :=
√
tV +N , and let Z

(t)
j be the j-th entry of Z(t). Fix t ≥ 0. To apply Theorem 41, we

only need to show that the Z
(t)
j do not satisfy a nontrivial polynomial relation. We show this by induction

on m. The case m = 1 follows since Z
(t)
1 is continuous. Assume that we have shown that Z

(t)
1 , · · · , Z(t)

m−1 do
not satisfy a nontrivial polynomial relation, and that m ≥ 2. Suppose, for the sake of contradiction, that q
is a polynomial in m variables such that q(Z(t)) = 0. Write q(u1, · · · , um) =

∑
k∈[d] qk(u1, · · · , um−1)u

k
m for

some polynomials qk in m − 1 variables such that qd 6= 0. Squaring q(Z(t)) = 0 and taking the conditional
expectation with respect to Nm we obtain

0 = E
[
q
(
Z(t)

)]
=
∑

k∈[2d]

βkN
k
m (319)
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for some constants βk ∈ R with β2d := ‖qd(Z(t)
1 , · · · , Z(t)

m−1)‖22. Since Nm is continuous, equation (319) cannot

be a nontrivial polynomial relation for Nm. Thus, we must have β2d = 0, i.e., qd(Z
(t)
1 , · · · , Z(t)

m−1) = 0. By
the induction hypothesis, qd = 0 identically, a contradiction. Therefore, no nontrivial polynomial relation
q(Z(t)) = 0 can hold, and the inductive proof is complete. Finally, applying Theorem 41, we deduce the
limit in (318), thereby completing the proof of the theorem.

Now, we deduce Theorem 44 from Theorem 45.

Proof of Theorem 44. Since X and Y have finite variance, the mutual information I(X ;Y ) is shown in [10]
to satisfy

I(X ;Y ) =
1

2

∫ ∞

0

E

[(
E
[
X | Z(t)

1

]
− E

[
X | Z(t)

1 , Z
(t)
2

])2]
dt+

1

2

∫ ∞

0

E

[(
E
[
Y | Z(t)

2

]
− E

[
Y | Z(t)

1 , Z
(t)
2

])2]
dt

(320)

where Z
(t)
1 :=

√
tX +N1 and Z

(t)
2 :=

√
tY +N2. We may rewrite (320) as

I(X ;Y ) =
1

2

∫ ∞

0

mmse(X, t) + mmse(Y, t)−mmse(W , t) dt, (321)

where W := (X,Y )T . Adding and subtracting 2/(2πe + t) to the integrand in (321), and noting that the
assumption min(h(X), h(Y )) > −∞ allows us to split the integral, we obtain

I(X ;Y ) =
1

2

∫ ∞

0

mmse(X, t)− 1

2πe+ t
dt+

1

2

∫ ∞

0

mmse(Y, t)− 1

2πe+ t
dt− 1

2

∫ ∞

0

mmse(W , t)− 2

2πe+ t
dt

(322)

= h(X) + h(Y )− h(W ). (323)

Finally, note that the MGF of W exists by the assumption that the MGFs of X and Y exist. Thus, by
Theorem 45, we have that hn(A) → h(A) for A ∈ {X,Y,W }. Hence, we obtain the desired formula

I(X ;Y ) = lim
n→∞

In(X ;Y ) (324)

where we define

In(X ;Y ) := hn(X) + hn(Y )− hn(W ) (325)

=
1

2

∫ ∞

0

pmmsen(X, t)−
1

2πe+ t
dt+

1

2

∫ ∞

0

pmmsen(Y, t)−
1

2πe+ t
dt

− 1

2

∫ ∞

0

pmmsen(W , t)− 2

2πe+ t
dt (326)

=
1

2

∫ ∞

0

pmmsen(X, t) + pmmsen(Y, t)− pmmsen(W , t) dt, (327)

and the proof is complete.

11 Application: Estimation of Information Measures from Data

The approximations introduced in the previous sections naturally motivate estimators for information mea-
sures. These estimators are based on (i) approximating moments with sample moments, then (ii) plugging
the sample moments into the formulas we have developed for information measures. Since the formulas for
information measures depend continuously on the underlying moments, the resulting estimators are asymp-
totically consistent. Moreover, the estimators also behave as the target information measure under affine
transformations, being inherently robust to, for example, rescaling of the samples.

We estimate h(X) from i.i.d. samplesX1, · · · , Xm as hn(U) for U ∼ Unif({X1, · · · , Xm}).More precisely,
we introduce the following estimator of differential entropy.

46



Definition 9. Let X,X1, · · · , Xm be i.i.d. continuous RVs, denote S = {Xj}mj=1, and consider the uniform

RV U ∼ Unif(S). We define the n-th estimate ĥn(S) of the differential entropy h(X) by ĥn(S) := hn(U).

The estimator of mutual information I(X ;Y ) between a discrete X and a continuous Y is defined next.
We utilize Theorem 34. We will need to invert the Hankel matrices of moments (E[V i+j | U = u])i,j∈[n] for
each u ∈ supp(U), where (U, V ) is uniformly distributed over the samples S = {(Xj, Yj)}mj=1. These Hankel
matrices are invertible if and only if for each u ∈ {Xj}mj=1 there are more than n distinct samples (Xj , Yj)
for which Xj = u; equivalently, the size of the support set of the RV V conditioned on U = u exceeds n.
Thus, we remove all values u that appear at most n times in the samples S. In other words, we replace S
with the subset

S(n) := {(X ′, Y ′) ∈ S ; |{1 ≤ i ≤ m ; Xi = X ′}| > n} . (328)

Definition 10. Let (X,Y ), (X1, Y1), · · · , (Xm, Ym) be i.i.d. 2-RVs such that X is discrete with finite support
and Y is continuous, and denote S = {(Xj , Yj)}mj=1. Define S(1) ⊇ S(2) ⊇ · · · by

S(n) := {(X ′, Y ′) ∈ S ; |{1 ≤ i ≤ m ; Xi = X ′}| > n} . (329)

For each n ≥ 1 such that S(n) is nonempty, let (U (n), V (n)) ∼ Unif(S(n)). We define the n-th estimate În(S)
of the mutual information I(X ;Y ) by În(S) := In(U

(n);V (n)).

We show in this section how to implement these estimators numerically, prove that they are consistent,
and discuss their sample complexity. We end the section by empirically comparing their performance with
other estimators from the literature. For convenience, define the function δX,n : (0,∞) → [0,∞) by

δX,n(t) := detM√
tX+N,n (330)

for a 2n-times integrable RV X. Recall that δX,n is the denominator of pmmsen(X, · ).

11.1 Simplification of the Differential Entropy Formula from Moments for Nu-
merical Stability

We develop the expressions of our approximations of differential entropy further to avoid possible issues that
could arise from numerically computing the improper integral over [0,∞). To illustrate this issue, consider
the expression for h2(X). Recall from (21) that a zero-mean unit-variance RV X satisfies

pmmse2(X, t) =
2 + 4t+ (X4 −X 2

3 − 1)t2

2 + 6t+ (X4 + 3)t2 + (X4 −X 2
3 − 1)t3

. (331)

For example, when X ∼ Unif([−
√
3,
√
3]), so

(X1,X2,X3,X4) =

(
0, 1, 0,

9

5

)
, (332)

we obtain

pmmse2(X, t) =
5 + 10t+ 2t2

5 + 15t+ 12t2 + 2t3
. (333)

Now, consider the expression for h2(X) in (254), namely,

h2(X) =
1

2

∫ ∞

0

5 + 10t+ 2t2

5 + 15t+ 12t2 + 2t3
− 1

2πe+ t
dt. (334)

The integral in (334) converges, but a numerical computation might not be able to capture this convergence
as the expression for the integrand is a difference of non-integrable functions that both decay as 1/t. To
avoid this possible issue, we subtract a 1/t term from both of these non-integrable functions. More precisely,
denoting differentiation with respect to t by a prime, we write

pmmse2(X, t) =
5 + 10t+ 2t2 − 1

3δ
′
X,2(t) +

1
3δ

′
X,2(t)

δX,2(t)
(335)

=
2t

5 + 15t+ 12t2 + 2t3
+

1

3

d

dt
log δX,2(t) (336)
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and
1

2πe+ t
=

d

dt
log(2πe+ t). (337)

The integrand pmmse2(X, t)− 1/(2πe+ t) now becomes

2t

5 + 15t+ 12t2 + 2t3
+
d

dt
log

δX,2(t)
1/3

2πe+ t
. (338)

The advantage in having the integrand in this form is that the first term is well-behaved (it decays as 1/t2),
and the second term’s integral can be given in closed form

∫ ∞

0

(
log

δX,2(t)
1/3

2πe+ t

)′

dt = log

(
2πe

(
2

5

)1/3
)
. (339)

Therefore, equation (334) becomes

h2(X) =
1

2
log

2πe

(5/2)1/3
+

∫ ∞

0

t

5 + 15t+ 12t2 + 2t3
dt. (340)

We use equation (340) instead of (334) for numerical computation. Note that this resolves the same numerical
instability issue when estimating from data: if S = {Xj}mj=1 is a multiset of i.i.d. samples distributed

according to PX , and if U ∼ Unif(S), we compute the estimate ĥ2(S) = h2(U) of h2(X) via an expression
analogous to that in (340) where X is replaced with U.

The procedure of obtaining expression (340) from (334) can be carried out for a general X and n such
that E[X2n] < ∞ and |supp(X)| > n, as follows. Let θX,n : [0,∞) → [0,∞) be the polynomial that is the
numerator of pmmsen(X, t), i.e., θX,n(t) := δX,n(t) · pmmsen(X, t). Thus, we have that

pmmsen(X, t) =
θX,n(t)

δX,n(t)
. (341)

We define the function ρX,n : [0,∞) → R by

ρX,n(t) :=
θX,n(t)− d−1

n δ′X,n(t)

2δX,n(t)
, (342)

where dn =
(
n+1
2

)
. By the analysis of the coefficients in pmmsen(X, t) proved in Theorem 18, we have that

ρX,n(0) = 0 and
ρX,n(t) = O

(
t−2
)

(343)

as t→ ∞. In particular, ρX,n is integrable over [0,∞). The following formula for differential entropy directly
follows from the definition of hn in (254).

Lemma 46. For any RV X satisfying E[X2n] <∞ and |supp(X)| > n, we have the formula

hn(X) =
1

2
log

(
2πe

(
detMX,n

detMN,n

)1/dn

)
+

∫ ∞

0

ρX,n(t) dt, (344)

where dn =
(
n+1
2

)
, N ∼ N (0, 1), and ρX,n is as defined in (342).

A similar conclusion holds for mutual information in view of equation (272) that expresses In in terms
of hn.

Lemma 47. Fix a discrete RV X with finite support, and a 2n-times integrable continuous RV Y. We have
that

In(X ;Y ) =
1

n(n+ 1)
log

detMY,n
∏

x∈supp(X)

(
detMY (x),n

)PX (x)
+

∫ ∞

0

ρY,n(t)− EX

[
ρY (X),n(t)

]
dt, (345)

where for each x ∈ supp(X) we denote by Y (x) the RV Y conditioned on {X = x}.
Note that in Lemmas 46 and 47, the determinants detMA,n and the rational functions ρn(A; t), for

A ∈ {X,Y } or A ∈ {Y (x) ; x ∈ supp(X)}, are completely determined by the first 2n moments of A. To

obtain the estimates ĥn and În given samples, the moments of A are replaced with their respective sample
moments in formulas (344) and (345).
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11.2 Consistency

As sample moments converge almost surely to the moments, and as our expressions for differential entropy
and mutual information depend continuously on the moments, the continuous mapping theorem yields that
the estimators of differential entropy and mutual information introduced in the beginning of this section are
consistent.

Theorem 48. Let X be a continuous RV that has a MGF. Let {Xj}∞j=1 be i.i.d. samples drawn according
to PX . Then, for every n ∈ N, we have the almost-sure convergence

lim
m→∞

ĥn
(
{Xj}mj=1

)
= hn(X). (346)

Furthermore, we have that
h(X) = lim

n→∞
lim

m→∞
ĥn
(
{Xj}mj=1

)
(347)

where the convergence in m is almost-sure convergence.

Proof. See Appendix J.1.

Corollary 49. Let X be discrete RV with finite support, and Y be a continuous RV with a MGF. Let
{(Xj , Yj)}∞j=1 be i.i.d. samples drawn according to PX,Y . For every n ∈ N, we have the almost-sure conver-
gence

lim
m→∞

În
(
{(Xj, Yj)}mj=1

)
= In(X ;Y ). (348)

Furthermore,
I(X ;Y ) = lim

n→∞
lim

m→∞
În
(
{(Xj , Yj)}mj=1

)
(349)

where the convergence in m is almost-sure convergence.

Proof. See Appendix J.2.

11.3 Sample Complexity

When X is a continuous RV of bounded support, we may derive the following sample complexity of the
estimator of differential entropy in Definition 9 from Hoeffding’s inequality.

Proposition 50. Fix a bounded-support continuous RV X ∈ L2n(F). There is a constant C = C(X,n) such
that, for all small enough ε, δ > 0, any collection S of i.i.d. samples drawn according to PX of size

|S| > C

ε2
log

1

δ
(350)

must satisfy

Pr
{∣∣∣ĥn(S) − hn(X)

∣∣∣ < ε
}
≥ 1− δ. (351)

Proof. See Appendix K.

From Proposition 50, we may also obtain a sample complexity result for the estimate În in Definition 10.

Proposition 51. Fix a finitely-supported discrete RV X and a bounded-support continuous RV Y ∈ L2n(F).
There is a constant C = C(X,Y, n) such that, for all small enough ε, δ > 0, any collection S of i.i.d. samples
drawn according to PX,Y of size

|S| > C

ε2
log

1

δ
(352)

must satisfy

Pr
{∣∣∣În(S)− In(X ;Y )

∣∣∣ < ε
}
≥ 1− δ. (353)

Proof. See Appendix K.4.
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11.4 Numerical Results

We compare via synthetic experiments the performance of our estimators13 against some of the estimators
in the literature.

Our proposed estimator for differential entropy is ĥ10, i.e., given samples S of X we estimate h(X)

by ĥ10(S) as given by Definition 9. We compare this estimator with two estimation methods: k-Nearest-
Neighbors (k-NN), and Kernel Density Estimation (KDE). The k-NN-based method we compare against is
as provided by the Python package ‘entropy estimators’ [50], which we will refer to in this section as KSG.
The kernel used for the KDE method is Gaussian, and it is obtained by computing from a set of samples
{Xj}mj=1 a kernel Φ via the Python function ‘scipy.stats.gaussian kde’ [51]; then, the estimate for differential

entropy will be −1
m

∑m
j=1 logΦ(Xj). The parameters for the KSG and the KDE estimators are the default

parameters, namely, k = 3 for the KSG estimator, and the bandwidth for the KDE estimator is chosen
according to Scott’s rule (i.e., m−1/(d+4) for a set of m samples of a d-RV).

The mutual information is estimated using Î5, i.e., given samples S of (X,Y ) our estimate for I(X ;Y )

will be Î5(S) as given by Definition 10. This estimator is compared against the partitioning estimator and
the Mixed KSG estimator [40] (which is a k-NN-based estimator); we utilize the implementation in [40] for
both estimators. In particular, the parameters are fixed throughout, namely, we utilize the parameters used
in [40] (k = 5 for the Mixed KSG, and 8 bins per dimension for the partitioning estimator).

We perform 250 independent trials for each experiment and each fixed sample size, then plot the absolute
error as a percentage of the true value (except for the last experiment, where the ground truth is 0, so we
plot the absolute error) against the sample size.

We note that we also performed the mutual information experiments for the Noisy KSG estimator based
on the estimator in [36] (with noise strength σ = 0.01 as in [40]), but its performance was much worse than
the other estimators, so we do not include it in the plots.

Experiment 1. We estimate the differential entropy of a RV X distributed according to Wigner’s semicircle
distribution, i.e.,

pX(x) :=
2

π

√
1− x2 · 1[−1,1](x). (354)

The ground truth is h(X) ≈ 0.64473 nats. We generate a set S of i.i.d. samples distributed according to PX .
The size of S ranges from 800 to 4000 in increments of 800, and for each fixed sample size we independently
generate 250 such sets S (so we generate a total of 1250 sets of samples). The differential entropy h(X) is

estimated by three methods: the moments-based estimator that we propose ĥ10, the k-NN-based estimator
implemented in [50] (which we refer to as the KSG estimator), and the Gaussian KDE estimator. For the

proposed estimator, we use ĥ10(S) as an estimate for h(X). For the KSG estimator, we use the default
setting, for which k = 3. We also use the default setting for the Gaussian KDE estimator; in particular, the
bandwidth is chosen according to Scott’s Rule as m−1/(d+4) where m = |S| and d = 1 is the dimensionality

of X. The percentage relative absolute error in the estimation (e.g., 100 · |ĥ10(S)/h(X)−1|) is plotted against
the sample size for the three estimators in Figure 3. The solid lines in Figure 3 are the means of the errors,
i.e., the mean in the 250 independent trials of the percentage relative absolute error for each fixed sample
size in {800, 1600, 2400, 3200, 4000}. Via bootstrapping, we infer confidence intervals, which are indicated by
the shaded areas around the solid lines in Figure 3. We see that the proposed estimator outperforms the
KSG estimator and the KDE estimator for this experiment.

Experiment 2. We estimate the differential entropy h(X) of a random vector X = (X1, X2)
T where X1

and X2 are i.i.d. distributed according to Wigner’s semicircle distribution, namely, X has the PDF

pX(x, y) =
4

π2

√
(1 − x2)(1 − y2) · 1[−1,1]×[−1,1](x, y). (355)

The ground truth is h(X) ≈ 1.28946 nats. The same numerical setup as in Experiment 1 is performed here.
The results are plotted in Figure 4, where we see a similar behavior to the comparison in the 1-dimensional
case; in particular, the proposed estimator outperforms the KSG estimator and the KDE estimator for this
experiment.
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Figure 3: Estimation of differential entropy for a semicircle distribution as in Experiment 1. The vertical
axis shows the percentage relative absolute error in the estimation, e.g., for the proposed estimator it is
100 · |ĥ10(S)/h(X) − 1| where S is the set of samples and h(X) ≈ 0.64473 nats is the ground truth. The

horizontal axis shows |S|, the sample size. The proposed estimator ĥ10 outperforms the k-NN-based estimator
(denoted KSG) and the Gaussian KDE estimator for this experiment.
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Figure 4: Estimation of differential entropy for a 2-dimensional semicircle distribution as in Experiment 2.
The proposed estimator ĥ10 outperforms both the KSG and the KDE estimators for this experiment.

Experiment 3. We estimate the differential entropy h(X) of a Gaussian mixture X whose PDF is given by

pX(x) =

4∑

i=1

pi√
2πσ2

i

e−(x−µi)
2/(2σ2

i ), (356)

13A Python code can be found at [49].

51



800 1600 2400 3200 4000

Number of Samples

0.40%

0.60%

0.80%

1.00%

1.20%

A
b
s
o
lu

te
 E

rr
o
r

(P
e
rc

e
n
ta

g
e
 o

f 
Tr

u
e
 V

a
lu

e
)

Figure 5: Estimation of differential entropy for a Gaussian mixture as in Experiment 3. The proposed
estimator ĥ10 outperforms both the KSG and KDE estimators for this experiment. The plot of the KDE
estimator’s performance is omitted to avoid cluttering, as it lies just above the line for the proposed estimator
but overlaps significantly with its uncertainty region.

where

p = (0.1, 0.2, 0.3, 0.4) (357)

µµµ = (−2, 0, 1, 5) (358)

σσσ = (1.5, 1, 2, 1). (359)

The ground truth is h(X) ≈ 2.34249 nats. The same numerical setup in Experiments 1 and 2 is used here.
The results are plotted in Figure 5. For this experiment, the proposed estimator outperforms the KSG
estimator, and it is essentially indistinguishable from the KDE estimator. Note that it is expected that
the KDE estimator performs well in this Gaussian mixture experiment, since it is designed specifically to
approximate densities by Gaussian mixtures.

Experiment 4. We estimate the differential entropy h(X) of a random vector X that is a mixture of two
Gaussians, namely, X has the PDF

pX(x) =
1

4π
√
det(A)

e−(x−µµµ)TA
−1(x−µµµ)/2 +

1

4π
√
det(B)

e−(x−ννν)TB
−1(x−ννν)/2, (360)

where we have the means µµµ = (−1,−1)T and ννν = (1, 1)T , and the covariance matrices

A =

(
1 1/2

1/2 1

)
(361)

and B = I2. The ground truth is h(X) ≈ 3.22406 nats. The same numerical setup as in Experiments 1-3
is performed here. The results are plotted in Figure 6. As in the 1-dimensional case in Experiment 3, the
proposed estimator outperforms the KSG estimator for this experiment. Further, the proposed estimator
also outperforms the KDE estimator in this 2-dimensional setting.

Experiment 5. We replicate the mixture-distribution part of the zero-inflated Poissonization experiment
of [40]. In detail, we let Y ∼ Exp(1), and let X = 0 with probability 0.15 and X ∼ Pois(y) given that
Y = y with probability 0.85. The quantity to be estimated is the mutual information I(X ;Y ), and the
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Figure 6: Estimation of differential entropy for a vector Gaussian mixture as in Experiment 4. The proposed
estimator ĥ10 outperforms both the KSG and KDE estimators for this experiment.

ground truth is I(X ;Y ) ≈ 0.25606 nats. We generate a set of i.i.d. samples S according to the distribution

PX,Y , where S has size in {800, 1600, 2400, 3200}.We estimate I(X ;Y ) via the proposed estimator by Î5(S),
and we also consider the estimates given by the Mixed KSG estimator and the partitioning estimator,
both as implemented in [40] (including the parameters used therein). This estimation process is repeated
independently 250 times. The comparison of estimators’ performance is plotted in Figure 7. The solid
lines indicate the mean percentage relative absolute error, and the shaded areas indicate confidence intervals
obtained via bootstrapping. We see in Figure 7 that the proposed estimator outperforms the other considered
estimators for this experiment. We also test the affine-transformation invariance property of the proposed
estimator. In particular, we consider estimating the mutual information from the scaled samples S ′ obtained
from S via scaling the Y samples by 104, i.e.,

S ′ := {(A, 104B) ; (A,B) ∈ S}. (362)

Plotted in Figure 8 is a comparison of the same estimators using the same samples as those used to generate
Figure 7, but where Y is processed through this affine transformation. The ground truth stays unchanged,
and so do our estimator and the partitioning estimator, but the Mixed KSG estimates change. This exper-
iment illustrates the resiliency of the proposed estimator to affine transformations. In fact, the computed
numerical values in the modified setting by the proposed estimator differ by no more than 10−15 nats from
those numerically computed in the original setting for each of the 1000 different sets of samples S; in the-
ory, these pairs of values are identical, and the less than 10−15 discrepancy is an artifact of the computer
implementation. Finally, we note that although the setup is more general than the assumptions we prove
our results under in this paper (as X here is not finitely supported), the proposed estimator outperformed
the other estimators.

Experiment 6. We test for independence under the following settings. We consider independent X ∼
Bernoulli(0.5) and Y ∼ Unif([0, 2]). We estimate I(X ;Y ), whose true value is I(X ;Y ) = 0. We employ the
same estimation procedure as in Experiment 5. The results are plotted in Figure 9, which shows that the
proposed estimator predicted independence more accurately than the other estimators for the same sample
size. Note that in this case the plot shows the absolute error (in nats) rather than the relative absolute error,
as the ground truth is zero.
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Figure 7: Percentage relative absolute error vs. sample size for unscaled zero-inflated poissonization in
Experiment 5. The proposed estimator Î5 outperforms both the k-NN-based estimator (denoted Mixed
KSG) and the partitioning estimator.
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Figure 8: Percentage relative absolute error vs. sample size for the scaled zero-inflated poissonization in
Experiment 5. To generate these plots, we use the same samples that yield the plots in Figure 7, but we
process them through an affine transformation. Specifically, each sample (A,B) is replaced with (A, 104B).

Then the samples are passed to the three estimators. We see that the proposed estimator Î5 is resilient to
scaling, i.e., the same performance line in Figure 7 is observed here too. This is in contrast to the performance
of the Mixed KSG estimator. The partitioning estimator is resilient to scaling, but its performance is not
favorable in this experiment (with above %25 relative absolute error).
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Figure 9: Absolute error (in nats) vs. sample size for the independence testing in Experiment 6. The

proposed estimator Î5 outperforms the Mixed KSG and the partitioning estimators in this experiment.

conditional expectation in Gaussian channels are expressible in terms of the conditional cumulants.
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Appendix A A Derivation of Equation (58)

Using the notation of [52], we have that

Cr =

r∑

k=1

(k − 1)!

{
r

k

}

≥2

(363)

where
{
r
k

}
≥2

denotes the number of partitions of an r-element set into k subsets each of which contains at

least 2 elements (note that there are (k − 1)! cyclically-invariant arrangements of k parts). The exponential
generating function of the sequence r 7→

{
r
k

}
≥2

is (ex − 1− x)k/k!. Now, we may write

(ex − 1− x)k =
∑

a+b≤k

(
k

a, b

)
(−1)k−axb

∑

t∈N

(ax)t

t!
. (364)

Therefore, the coefficient of xr in (ex − 1− x)k/k! is

1

r!

{
r

k

}

≥2

=
∑

a+b≤k

(−1)k−aar−b

a!b!(k − a− b)!(r − b)!
(365)

=
1

r!

k∑

b=0

(
r

b

) k−b∑

a=0

(−1)k−a ar−b

a!(k − a− b)!
(366)

=
1

r!

k∑

b=0

(
r

b

){
r − b

k − b

}
(−1)b, (367)

which when combined with (363) gives (58).

Appendix B Proof of Lemma 2

Assume that E
[
|X |deg(p)

]
= ∞ (so deg(p) ≥ 1), and we will show that E [|p(X)|] = ∞ too. Let k ∈ [deg(p)−1]

be the largest integer for which E
[
|X |k

]
< ∞, and write p(u) = uk+1q(u) + r(u) for a nonzero polynomial

q and a remainder r ∈ Pk. By monotonicity of norms, E
[
|X |j

]
< ∞ for every j ∈ [k]. Hence, r(X) is

integrable. Therefore, it suffices to prove that Xk+1q(X) is non-integrable, which we show next.
Consider the set D = {u ∈ R ; |q(u)| < |a|} where a 6= 0 is the leading coefficient of q. If q is constant,

then D is empty, whereas if deg q ≥ 1 then |q(u)| → ∞ as |u| → ∞ implies that D is bounded; in either case,
there is an M ∈ R such that D ⊂ [−M,M ]. Now, writing 1 = 1D + 1Dc , we obtain

E
[
|X |k+1|q(X)|

]
≥ |a| E

[
|X |k+11Dc(X)

]
. (368)

But we also have that
∞ = E

[
|X |k+1

]
≤Mk+1 + E

[
|X |k+11Dc(X)

]
, (369)

so E
[
|X |k+11Dc(X)

]
= ∞. Therefore, inequality (368) yields that E

[∣∣Xk+1q(X)
∣∣] = ∞, concluding the

proof.

Appendix C Proofs of Section 3: PMMSE Preliminaries

C.1 Proof of Proposition 4: Equivalence of PMMSE Definitions

In this proof, we drop the subscript on the norm, so ‖ · ‖ is the norm of L2(F). Let {pi(Y )}i∈[d] be an
orthonormal basis for Pn(Y ). Then, the orthogonal projection, EA

n [X | Y ], of X onto Pn(Y ) is given by

EA
n [X | Y ] =

∑

i∈[d]

〈X, pi(Y )〉pi(Y ), (370)
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with d = dimPn(Y )− 1.
We next show that EA

n [X | Y ] is the unique closest element in Pn(Y ) to X. Note that L2(F) is separable.
Extend the orthonormal basis {pi(Y )}i∈[d] to an orthonormal basis {pi(Y )}i∈[d] ∪ {fj}j∈N for L2(F).

Fix an arbitrary q(Y ) ∈ Pn(Y ) and let a ∈ Rd+1 be such that q(Y ) =
∑

i∈[d] aipi(Y ). We may expand
X as

X =
∑

i∈[d]

〈X, pi(Y )〉pi(Y ) +
∑

j∈N

〈X, fj〉fj . (371)

Then, the projection EA
n [X | Y ] is at least as close to X as q(Y ) is, because

∥∥X − EA
n [X | Y ]

∥∥2 =

∥∥∥∥∥∥
X −

∑

i∈[d]

〈X, pi(Y )〉pi(Y )

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥
∑

j∈N

〈X, fj〉fj

∥∥∥∥∥∥

2

=
∑

j∈N

|〈X, fj〉|2 (372)

≤
∑

i∈[d]

|〈X, pi(Y )〉 − ai|2 +
∑

j∈N

|〈X, fj〉|2 (373)

=

∥∥∥∥∥∥
∑

i∈[d]

(〈X, pi(Y )〉 − ai)pi(Y ) +
∑

j∈N

〈X, fj〉fj

∥∥∥∥∥∥

2

= ‖X − q(Y )‖2. (374)

Finally, we show uniqueness. So, assume that r ∈ Pn is such that

‖X − EA
n [X | Y ]‖ = ‖X − r(Y )‖, (375)

so this value lower bounds ‖X − p(Y )‖ for any p(Y ) ∈ Pn(Y ). Note that (EA
n [X | Y ] + r(Y ))/2 ∈ Pn(Y ).

Hence, ‖X− (EA
n [X | Y ]+ r(Y ))/2‖ is lower bounded by both ‖X−EA

n [X | Y ]‖ and ‖X− r(Y )‖. We utilize
the parallelogram law, ‖a+ b‖2+ ‖a− b‖2 = 2‖a‖2+2‖b‖2 for a, b ∈ L2(F). Setting a = X −EA

n [X | Y ] and
b = X − r(Y ) in the parallelogram law, we have that

0 ≤ ‖EA
n [X | Y ]− r(Y )‖2 = ‖(X − r(Y ))− (X − EA

n [X | Y ])‖2 (376)

= 2‖X − r(Y )‖2 + 2‖X − EA
n [X | Y ]‖2 − 4‖X − (EA

n [X | Y ] + r(Y ))/2‖2 ≤ 0. (377)

Therefore, ‖EA
n [X | Y ] − r(Y )‖ = 0, i.e., EA

n [X | Y ] = r(Y ). Hence, EA
n [X | Y ] uniquely minimizes

‖X − p(Y )‖ over p(Y ) ∈ Pn(Y ). Therefore, by definition of EB
n [X | Y ], we get that EB

n [X | Y ] is well
defined and that

EA
n [X | Y ] = EB

n [X | Y ], (378)

and the proof is complete.

C.2 Proof of Theorem 5: PMMSE Converges to MMSE

First, we show that the limits hold if Y has finite support. Suppose supp(Y ) = {yj}j∈[m]. Let q ∈ Pm be
the polynomial interpolant of {(yj,E[X | Y = yj ])}j∈[m], so q(Y ) = E[X | Y ]. Then, for every n ≥ m, we
have that En[X | Y ] = q(Y ) = E[X | Y ]. Hence, the limits (102) and (103) hold in this case. Thus, we may
assume that |supp(Y )| = ∞.

By Carleman’s condition, polynomials are dense in L2(σ(Y )) [5], i.e.,

⋃

n∈N

Pn(Y ) = L2(σ(Y )). (379)

In particular, the collection of monomials {Y k}k∈N is a complete set, i.e., if Z ∈ L2(σ(Y )) satisfies 〈Z, Y k〉 = 0
for every k ∈ N then it must be that Z = 0. Further, since |supp(Y )| = ∞, the monomials are linearly inde-
pendent. Hence, applying Gram-Schmidt, one obtains an orthonormal basis for the Hilbert space L2(σ(Y ))
consisting of polynomials {qk(Y )}k∈N such that qk ∈ Pk for each k ∈ N.

Therefore, we may write

E[X | Y ] =
∑

k∈N

〈E[X | Y ], qk(Y )〉qk(Y ) (380)
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where the series converges in the L2(σ(Y ))-norm sense. Further, by the orthogonality principle for E[X | Y ]

〈E[X | Y ], qk(Y )〉 = 〈X, qk(Y )〉 (381)

for every k ∈ N. Now, by the characterization in (86) that En[X | Y ] is the orthogonal projection of X onto
Pn(Y ), we know that

En[X | Y ] =

n∑

k=0

〈X, qk(Y )〉qk(Y ) (382)

for each n ∈ N (note that {qk(Y )}k∈[n] is an orthonormal basis for Pn(Y )). Therefore,

E[X | Y ] = lim
n→∞

n∑

k=0

〈X, qk(Y )〉qk(Y ) = lim
n→∞

En[X | Y ], (383)

i.e., (102) holds.
Finally, for (103), note that

pmmsen(X | Y ) = ‖X − En[X | Y ]‖22 (384)

mmse(X | Y ) = ‖X − E[X | Y ]‖22. (385)

Since both RVs En[X | Y ] and E[X | Y ] are elements in L2(σ(Y )), the orthogonality principle of E[X | Y ]
implies that X−E[X | Y ] and En[X | Y ]−E[X | Y ] are orthogonal. Then, the Pythagorean theorem implies
that

pmmsen(X | Y )−mmse(X | Y ) = ‖E[X | Y ]− En[X | Y ]‖22, (386)

and the limit (103) follows from the limit (102).

C.3 Proof of Lemma 7: Invertibility of MY,n

The matrix MY,n is symmetric. We show that it is positive-semidefinite, and that it is positive-definite if
and only if |supp(Y )| > n. For any d ∈ Rn+1, we have the inequality

dTMY,nd = dTE

[
Y (n)

(
Y (n)

)T]
d = E

[
dTY (n)

(
Y (n)

)T
d

]
= E

[∣∣∣dTY (n)
∣∣∣
2
]
≥ 0, (387)

so MY,n is positive-semidefinite. Furthermore, the equality case

E

[∣∣∣dTY (n)
∣∣∣
2
]
= 0 (388)

holds if and only if
∣∣dTY (n)

∣∣2 = 0, and this latter relation holds if and only if dTY (n) = 0. Therefore,

MY,n is positive-definite if and only if dTY (n) = 0 implies d = 0, i.e., Y (n) does not lie almost surely in a
hyperplane in Rn+1. Finally, Y (n) lies almost surely in a hyperplane in Rn+1 if and only if |supp(Y )| ≤ n.
Therefore, the desired result that MY,n is invertible if and only if |supp(Y )| > n follows.

C.4 Proof of Lemma 8: An Orthonormal Basis for Pn(Y )

First, note that Lemma 7 implies that MY,n is invertible. To show orthonormality, we show that the
expectation of the outer product of the random vector

V = M
−1/2
Y,n Y (n) (389)

is the identity matrix. We have that

E
[
V V T

]
= E

[
M

−1/2
Y,n Y (n)

(
Y (n)

)T (
M

−1/2
Y,n

)T]
= M

−1/2
Y,n MY,n

(
M

−1/2
Y,n

)T
= In+1, (390)
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where we have used that (see (49))

M
1/2
Y,n

(
M

1/2
Y,n

)T
= MY,n (391)

and (see (50))

M
−1/2
Y,n =

(
M

1/2
Y,n

)−1

. (392)

Hence, the entries of the vector M
−1/2
Y,n Y (n) form an orthonormal subset of Pn(Y ). Since we have that

span({1, · · · , Y n}) = Pn(Y ), and M
−1/2
Y,n is invertible, we conclude that the entries of M

−1/2
Y,n Y (n) also span

Pn(Y ), which completes the proof.

C.5 A Second Proof for Theorem 6

By assumption on Y, Lemma 8 yields invertibility of MY,n. Denote

cX,Y,n := M−1
Y,nE

[
XY (n)

]
, (393)

and we will show that strict convexity of the function g : Rn+1 → [0,∞) defined by

g(d) = E

[(
X − dTY (n)

)2]

implies that cX,Y,n is its unique minimizer. For any d ∈ Rn+1, linearity of expectation implies that the
gradient of g is

∇g(d) =
(
E
[
2Y k

(
dTY (n) −X

)])
0≤k≤n

,

so the Hessian of g is the constant 2MY,n. As MY,n is positive-definite, g is strictly convex. As ∇g(d) = 0
is equivalent to MY,nd = E

[
XY (n)

]
, i.e., to d = cX,Y,n, the desired result follows.

Appendix D Proofs of Section 4: Basic PMMSE Properties

D.1 Proof of Proposition 9: PMMSE and Affine Transformations

Set U = Y + β. For any c ∈ Rn+1,

X + α− cTU (n) = X − (Mc − αe1)
TY (n), (394)

where we define the matrix

M :=

(
βi−j

(
i

j

))

(i,j)∈[n]2
, (395)

and we set βi−j
(
i
j

)
= 0 when j > i and β0

(
i
i

)
= 1 when β = 0. Then M is lower-triangular with an all-1

diagonal, so the inverseM−1 exists. Thus, the mapping Rn+1 → Rn+1 defined by c 7→ Mc−αe1 is invertible
(where d 7→ M−1(d+αe1) is the inverse mapping). Therefore, the following two subsets of L2(F) are equal

{
X + α− cTU (n) ; c ∈ Rn+1

}
=
{
X − dTY (n) ; d ∈ Rn+1

}
. (396)

Then, by the definition of the PMMSE, equality (128) holds.
Equation (129) may be treated similarly. First, note that the case α = 0 is immediate, because then

αX = 0 ∈ Pn(βY ) implies pmmsen(αX | βY ) = 0. Assume α 6= 0. Setting V = βY, one has that for any
c ∈ Rn+1

αX − cTV (n) = α
(
X − (Lc)TY (n)

)
(397)

where we define the invertible matrix

L := diag
((
βk/α

)
k∈[n]

)
. (398)

As c 7→ Lc is a bijection of Rn+1, the definition of the PMMSE yields equation (129).
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D.2 Proof of Lemma 11: PMMSE Operator Properties

Let e0, e1, · · · , en denote the standard basis vectors for Rn+1. For (i), we first note that

M−1
Z,nE

[
Z(n)

]
= e0, (399)

because E[Z(n)] = MZ,ne0. By the formula for En[X | Z] in Theorem 6

En[X | Z] = E
[
XZ(n)

]T
M−1

Z,n Z
(n). (400)

Taking the expectation and using (399),

E [En[X | Z]] = E[X ]. (401)

For (ii), we generalize this approach and note that

M−1
Z,nE

[
ZjZ(n)

]
= ej . (402)

for each j ∈ [n]. Then, for any monomial Zj with j ∈ [n] we have from (400) and (402) that

E
[
En[X | Z]Zj

]
= E

[
XZ(n)

]T
ej = E[XZj ]. (403)

In other words, for all j ∈ [n],
E
[
(X − En[X | Z])Zj

]
= 0. (404)

By linearity of expectation, we conclude that for any polynomial p ∈ Pn

E[(X − En[X | Z])p(Z)] = 0. (405)

Properties (iii)-(vi) follow immediately by Proposition 10. Alternatively, the linearity in (iii) follows from
linearity of expectation in view of the formula for En[ · | Z] in (400), the contractivity in (iv) follows since
0 ≤ pmmsen(X | Y ) = ‖X‖22 − ‖En[X | Y ]‖22, the idempotence in (v) follows directly from the fact that
En[X | Z] ∈ Pn(Z), and the self-adjointness in (vi) can be verified via formula (400).

If X and Z are independent, then

E
[
XZ(n)

]
= E[X ] E

[
Z(n)

]
. (406)

Therefore, from M−1
Z,nE

[
Z(n)

]
= e0 in (399), and in view of formula (400) for En[X | Z], we have that

En[X | Z] = E[X ]eT0 Z
(n) = E[X ], (407)

so (vii) follows.
Finally, for (viii), assume that X—Y—Z is a Markov chain. Then, for every j ∈ [n]

E
[
XZj

]
= E

[
E
[
XZj | Y

]]
= E

[
E [X | Y ]E

[
Zj | Y

]]
. (408)

Further, we have that
E
[
E [X | Y ]E

[
Zj | Y

]]
= E

[
E [X | Y ]Zj

]
(409)

by the orthogonality property for E[ · | Y ]:

E
[
E [X | Y ]

(
Zj − E

[
Zj | Y

])]
= 0. (410)

Combining (408) and (409), we obtain that for every j ∈ [n]

E
[
XZj

]
= E

[
E [X | Y ]Zj

]
. (411)

Multiplying (411) on the right by M−1
Z,nZ

(n), the formula for En[ · | Z] (see (400)) implies that

En [X | Z] = En [E[X | Y ] | Z] , (412)

as desired.
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D.3 Proof of Proposition 12: PMMSE for Symmetric RVs

We may assume that X and Z are symmetric around 0, since Em[X + a | X + Z + b] = a+Em[X | X + Z]
for every m ∈ N and a, b ∈ R. Then, E[Xj] = E[Zj ] = 0 for every odd j ∈ N. Set Y = X + Z and n = 2k.
Then, E[Y j ] = 0 for every odd j ∈ N, and E[XY ℓ] = 0 for every even ℓ ∈ N. Then, the coefficient of Y n in
En[X | Y ] is

1

detMY,n

∑

ℓ∈[n]
ℓ odd

E
[
XY ℓ

] [
M−1

Y,n

]
ℓ,n
, (413)

where
[
M−1

Y,n

]
ℓ,n

denotes the (ℓ, n)-th entry of M−1
Y,n. Fix an odd ℓ ∈ [n]. Let T

(ℓ,n)
n denote the set of

permutations of [n] that send ℓ to n. We have that

[
M−1

Y,n

]
ℓ,n

= −
∑

π∈T
(ℓ,n)
n

sgn(π)
∏

r∈[n]\{ℓ}
E
[
Y r+π(r)

]
. (414)

We have that, for every π ∈ T
(ℓ,n)
n ,

∑
r∈[n]\{ℓ} r + π(r) = n(n + 1)− ℓ − n, which is odd. Therefore, for at

least one r ∈ [n] \ {ℓ}, the integer r + π(r) is odd. Hence, E[Y r+π(r)] = 0, implying that
[
M−1

Y,n

]
ℓ,n

= 0. As

this is true for every odd ℓ ∈ [n], we conclude that the coefficient of Y n in En[X | Y ] is 0, i.e., (143) holds.
Equation (144) follows from (143) as pmmsem(X | Y ) = ‖X − Em[X | Y ]‖22 for every m ∈ N.

Appendix E Proofs of Section 5

E.1 Proof of Theorem 17: Uniform Convergence of the PMMSE

We start the proof by obtaining from Proposition 5 pointwise convergence. Let N ∼ N (0, 1) be independent
of X. We shall verify the assumptions in Proposition 5 on

√
tX +N for fixed t ≥ 0: i) As N is continuous

and X is independent of N we must have |supp(
√
tX +N)| = ∞, and ii) The MGF of

√
tX +N exists (it is

the product of the MGFs of
√
tX and N) and this implies that

√
tX +N satisfies Carleman’s condition [5].

Hence, by Proposition 5, we get that for every t ≥ 0

lim
n→∞

pmmsen(X, t) = mmse(X, t). (415)

Now, we show that the convergence is uniform.
Set, for each n ∈ N and t ∈ [0,∞),

gn(t) := pmmsen(X, t)−mmse(X, t) (416)

for short. We will show that
lim
n→∞

sup
t∈[0,∞)

gn(t) = 0, (417)

which is the uniform convergence in (160).
The limit (415) says that

lim
n→∞

gn(t) = 0 (418)

for every fixed t ≥ 0. In addition, the asymptotics given in Corollary 15 imply that for each fixed n ∈ N

lim
t→∞

gn(t) = 0. (419)

By definition of the PMMSE as the minimum over sets of increasing size (in n), for each fixed t ≥ 0 the
sequence {pmmsen(X, t)}n∈N is decreasing. So {gn}n∈N is a pointwise decreasing sequence of functions (i.e.,
g1(t) ≥ g2(t) ≥ · · · for each fixed t ≥ 0). Note that the gn are nonnegative. We finish the proof via Cantor’s
intersection theorem.
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Fix ε > 0. For each n ∈ N, let Cε,n = g−1
n ([ε,∞)), where g−1 denotes the set-theoretic inverse. As {gn}n∈N

is decreasing, Cε,1 ⊇ Cε,2 ⊇ · · · is decreasing too. As each gn is continuous, each Cε,n is closed. Further,
limt→∞ g1(t) = 0 implies that Cε,1 is bounded, hence each Cε,n is bounded. Thus, each Cε,n is compact. But,
the intersection

⋂
n∈N Cε,n is empty, for if t0 were in the intersection then lim infn→∞ gn(t0) ≥ ε violating

that limn→∞ gn(t0) = 0. Hence, by Cantor’s intersection theorem, it must be that the Cε,n are eventually
empty, i.e., there is an m ∈ N such that supt∈[0,∞) gn(t) ≤ ε for every n > m. This is precisely the uniform
convergence in (417), and the proof is complete.

E.2 Proof of Lemma 19

The integer i + π(i) is odd if and only if i and π(i) have opposite parities. Thus, the desired result follows
from the following more general characterization. For any partition [n] = A ∪B, the cardinality of the set

I := {i ∈ {1, · · · , n} ; (i, π(i)) ∈ (A×B) ∪ (B ×A)} (420)

is even. The desired result follows by letting A and B be even and odd integers, respectively, in [n]. Now,
we show that the general characterization holds.

Let Aπ ⊂ A denote the subset of elements of A that get mapped by π into B, i.e.,

Aπ := {i ∈ A ; π(i) ∈ B}, (421)

and define Bπ similarly. Then, I = Aπ ∪Bπ is a partition. As |Aπ| = |Bπ|, the desired result follows.

E.3 Proof of Lemma 21

For each (i, j) ∈ [n]2 let the subset T
(i,j)
n ⊂ S[n] denote the collection of permutations sending i to j, i.e.,

T (i,j)
n :=

{
π ∈ S[n] ; π(i) = j

}
. (422)

We define, for each (i, j) ∈ [n]2, the cofactor functions c
(i,j)
X,n : [0,∞) → R and the products d

(i,j)
X,n : [0,∞) → R

by

c
(i,j)
X,n (t) :=

∑

π∈T
(i,j)
n

sgn(π)
∏

k 6=i

(
M√

tX+N,n

)
k,π(k)

, (423)

d
(i,j)
X,n (t) := vX,i(t) c

(i,j)
X,n (t) vX,j(t). (424)

Here,
(
M√

tX+N,n

)
a,b

is the (a, b)-th entry of M√
tX+N,n, i.e.,

(
M√

tX+N,n

)
a,b

= E

[(√
tX +N

)a+b
]
. (425)

Note that c
(i,j)
X,n (t) is the (i, j)-th cofactor of M√

tX+N,n. The cofactor matrix CX,n : [0,∞) → R(n+1)×(n+1)

of t 7→ M√
tX+N,n is given by

CX,n :=
(
c
(i,j)
X,n

)
(i,j)∈[n]2

. (426)

We define the function DX,t : [0,∞) → R by

DX,n := vT
X,nCX,nvX,n. (427)

We have the following two relations. First, DX,n is the sum of the d
(i,j)
X,n

DX,n(t) =
∑

(i,j)∈[n]2

d
(i,j)
X,n (t). (428)
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Second, by Cramer’s rule, and because symmetry of the matrix M√
tX+N,n implies that its cofactor is equal

to its adjugate, we have the formula

M−1√
tX+N,n

=
1

detM√
tX+N,n

CX,n. (429)

Therefore, we obtain

FX,n(t) =
DX,n(t)

detM√
tX+N,n

=

∑
(i,j)∈[n]2 d

(i,j)
X,n (t)

detM√
tX+N,n

. (430)

Hence, it suffices to study the d
(i,j)
X,n .

We start with a characterization of the cofactors c
(i,j)
X,n . Namely, we show that if i+ j is even then c

(i,j)
X,n (t)

is a polynomial in t, and if i+ j is odd then
√
tc

(i,j)
X,n (t) is a polynomial in t. If i+ j is even, then

c
(i,j)
X,n (t) =

∑

π∈T
(i,j)
n

sgn(π) tδ(π)/2
∏

k∈[n]
k+π(k) odd

o1,X,k+π(k)(t)
∏

r∈[n], r 6=i
r+π(r) even

e1,X,r+π(r)(t), (431)

whereas if i+ j is odd then

c
(i,j)
X,n (t) =

∑

π∈T
(i,j)
n

sgn(π) t
δ(π)−1

2

∏

k∈[n], k 6=i
k+π(k) odd

o1,X,k+π(k)(t)
∏

r∈[n]
r+π(r) even

e1,X,r+π(r)(t). (432)

Thus, evenness of δ(π) for each π ∈ S[n] implies that each c
(i,j)
X,n (t) is a polynomial when i + j is even and

that each
√
tc

(i,j)
X,n (t) is a polynomial when i + j is odd. Further, the degree of c

(i,j)
X,n for even i + j is upper

bounded by

δ(π)

2
+

∑

k+π(k) odd

k + π(k)− 1

2
+

∑

r+π(r) even ; r 6=i

r + π(r)

2
=
n(n+ 1)

2
− i + j

2
, (433)

whereas the degree of
√
tc

(i,j)
X,n and for odd i + j is upper bounded by

δ(π)

2
+

∑

k+π(k) odd ; k 6=i

k + π(k)− 1

2
+

∑

r+π(r) even

r + π(r)

2
=
n(n+ 1)

2
− i+ j − 1

2
. (434)

We note that both upper bounds are equal to

n(n+ 1)

2
−
⌊
i+ j

2

⌋
. (435)

Finally, considering the terms of highest order, we see that the term

∑

π∈T
(i,j)
n

sgn(π)
∏

k∈[n]\{i}
Xk+π(k) (436)

is the coefficient of t
n(n+1)

2 −⌊ i+j
2 ⌋ in c

(i,j)
X,n when i+ j is even and in

√
tc

(i,j)
X,n when i+ j is odd.

Now, to show that DX,n is a polynomial, it suffices to check that each d
(i,j)
X,n is. We consider separately

the parity of i + j and build upon the characterization of c
(i,j)
X,n . If i + j is even, so i and j have the same

parity, then

E

[
X
(√

tX +N
)i]

E

[
X
(√

tX +N
)j]
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is a polynomial in t of degree at most (i+ j)/2 with the coefficient of t(i+j)/2 being Xi+1Xj+1. If i+ j is odd,
so i and j have different parities, then

t−1/2E

[
X
(√

tX +N
)i]

E

[
X
(√

tX +N
)j]

is a polynomial in t of degree at most (i+ j − 1)/2 with the coefficient of t(i+j−1)/2 being Xi+1Xj+1.

Thus, from the characterization of c
(i,j)
X,n , regardless of the parity of i + j we obtain that d

(i,j)
X,n (t) is a

polynomial in t of degree at most n(n+ 1)/2 with the coefficient of tn(n+1)/2 being

Xi+1Xj+1

∑

π∈T
(i,j)
n

sgn(π)
∏

k∈[n]\{i}
Xk+π(k). (437)

Summing over all (i, j) ∈ [n]2, we obtain that the coefficient of tn(n+1)/2 in DX,n(t) is

∑

(i,j)∈[n]2

∑

π∈T
(i,j)
n

sgn(π)Xi+1Xj+1

∏

k∈[n]\{i}
Xk+π(k). (438)

The proof is completed by noting that, for each i ∈ [n], we have a partition

S[n] =
⋃

j∈[n]

T (i,j)
n . (439)

E.4 Proof of Lemma 22

The formulas for an,0X and bn,0X follow by setting t = 0 in (213) and (214). Indeed, if N ∼ N (0, 1) is
independent of X, then

FX,n(0) = X 2
1 E

[
N (n)

]T
M−1

N,n E
[
N (n)

]
= X 2

1 (440)

because E
[
N (n)

]
is the leftmost column of MN,n. Therefore,

an,0X = σ2
X detMN,n = σ2

Xb
n,0
X . (441)

Further, by direct computation or using the connection between Hankel matrices and orthogonal polynomi-
als [53, Appendix A] along with the fact that the probabilist’s Hermite polynomials qk satisfy the recurrence
xqk(x) = qk+1(x) + kqk−1(x), it follows that detMN,n =

∏n
k=1 k! = G(n + 2) where G is the Barnes G-

function. Equation (219) for bn,dn

X is proved in Lemma 20. To simplify the proof of formula (218) for bn,1X ,
we first show the shift-invariance stated in (221).

Fix s ∈ R. For any i.i.d. RVs Z,Z0, · · · , Zn, we have that (see, e.g., [53, Appendix A])

detMZ,n =
1

(n+ 1)!
E


 ∏

0≤i<j≤n

(Zi − Zj)
2


 . (442)

From equation (442), since (Zi + s)− (Zj + s) = Zi − Zj , we obtain that

detMZ+s,n = detMZ,n. (443)

Let N ∼ N (0, 1) be independent of X. Then, for every t ∈ [0,∞), considering Z =
√
tX + N in (443), we

obtain
detM√

t(X+s)+N,n = detM√
tX+N,n. (444)

As both sides of (444) are polynomials in t, we obtain that bn,jX+s = bn,jX for every j ∈ [dn]. Since we also have
pmmsen(X + s, t) = pmmsen(X, t), it follows that

t 7→
∑

j∈[dn]

an,jX tj = pmmsen(X, t)
∑

j∈[dn]

bn,jX tj (445)
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is also invariant under shifting X, so we also obtain an,jX+s = an,jX .

By the shift-invariance of bn,1X , we may assume that X1 = 0 (so X2 = σ2
X). Now, as each entry in

M√
tX+N,n is a polynomial in

√
t, we see that we may drop any term of order (

√
t)3 or above for the sake of

finding bn,1X (which is the coefficient of t in detM√
tX+N,n). In other words,

bn,1X = det

((
i+ j

2

)
σ2
XE

[
N i+j−2

]
t+ E

[
N i+j

])

(i,j)∈[n]2
. (446)

By Leibniz’s formula, we conclude

bn,1X = σ2
X

∑

π∈S[n]

k∈[n]

sgn(π)

(
k + π(k)

2

)
E
[
Nk+π(k)−2

] ∏

i∈[n]\{k}
E
[
N i+π(i)

]
. (447)

But, for any non-negative integer m

(
m

2

)
E
[
Nm−2

]
=
m

2
E [Nm] . (448)

Therefore, (447) simplifies to

bn,1X =
σ2
X

2

∑

π∈S[n]

k∈[n]

sgn(π)(k + π(k))
∏

i∈[n]

E
[
N i+π(i)

]
. (449)

Evaluating the summation over k for each fixed π, we obtain that

bn,1X =

(
n+ 1

2

)
σ2
X

∑

π∈S[n]

sgn(π)
∏

i∈[n]

E
[
N i+π(i)

]
. (450)

Finally, by Leibniz’s formula for detMN,n, we obtain that

bn,1X =

(
n+ 1

2

)
σ2
X detMN,n, (451)

as desired.

E.5 Formulas for an,jX

We have (see (211)) the polynomial in t

(X2 − FX,n(t)) detM√
tX+N,n =

∑

j∈[dn]

an,jX tj . (452)

We obtain from (229)

X2 detM√
tX+N,n =

∑

j∈[dn]

X2b
n,j
X tj . (453)

The function t 7→ FX,n(t) detM√
tX+N,n was also shown in Lemma 21 to be a polynomial of degree at most

dn. By definition of FX,n in (175), we obtain that

FX,n(t) detM√
tX+N,n = vX,n(t)

TC√
tX+N,nvX,n(t), (454)

where C√
tX+N,n is the cofactor matrix of M√

tX+N,n and vX,n is the vector-valued function defined in
(172) and (173). As the entries in the cofactor matrix are ±1 times determinants of minors of M√

tX+N,n,
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we may use Leibniz’s formula here too. Explicitly, if u = (u0, · · · , un)T ∈ Rn+1 is any vector and H =
(hi+j)(i,j)∈[n]2 ∈ R(n+1)×(n+1) is any Hankel matrix, and if R is the cofactor matrix of H , then

uTRu =
∑

(i,π)∈[n]×S[n]

(−1)i+π(i) sgn(π)uiuπ(i)
∏

r∈[n]\{i}
hr+π(r). (455)

Applying (455) to the triplet

(u,H ,R) = (vX,n(t),M√
tX+N,n,C

√
tX+N,n), (456)

we obtain a formula for FX,n(t) detM√
tX+N,n similar to (455). Then, analogously to how we obtained (226)

from (225), expanding the powers and expectations we obtain from (454) and (455) that

FX,n(t) detM√
tX+N,n =

∑

(i,π)∈[n]×S[n]

(w,z)∈[i]×[π(i)]
kr∈[r+π(r)], ∀r∈[n]\{i}

t(w+z+si(k))/2γi,π,k,w,zXw+1Xz+1

∏

r∈[n]\{i}
Xkr

, (457)

where γi,π,k,w,z are the integers14

γi,π,k,w,z = (−1)i+π(i)sgn(π)

(
i

w

)(
π(i)

z

)
E[N i−w]E[Nπ(i)−z ]

∏

r∈[n]\{i}

(
r + π(r)

kr

)
E[N r+π(r)−kr ], (458)

and where we define the restricted sums

si(k) =
∑

r∈[n]\{i}
kr. (459)

Since FX,n(t) detM√
tX+N,n is shown in Lemma 21 to be a polynomial in t, the summation in (457) may be

restricted to run through only those parameters for which w + z + si(k) is even. Therefore,

FX,n(t) detM√
tX+N,n =

∑

j∈[dn]

tj
∑

(i,π)∈[n]×S[n]

(w,z)∈[i]×[π(i)]
kr∈[r+π(r)], ∀r∈[n]\{i}

w+z+si(k)=2j

γi,π,k,w,zXw+1Xz+1

∏

r∈[n]\{i}
Xkr

. (460)

Now, returning to the definition of the an,jX in (213)

(X2 − FX,n(t)) detM√
tX+N,n =

∑

j∈[dn]

an,jX tj , (461)

we obtain that

an,jX =
∑

π∈S[n]

kr∈[r+π(r)], ∀r∈[n]
k0+···+kn=2j

βπ;k0,··· ,kn
X2Xk0 · · · Xkn

−
∑

(i,π)∈[n]×S[n]

(w,z)∈[i]×[π(i)]
kr∈[r+π(r)], ∀r∈[n]\{i}

w+z+si(k)=2j

γi,π,k,w,zXw+1Xz+1

∏

r∈[n]\{i}
Xkr

.

(462)

From (462), we obtain
an,jX ∈ H2j+2,min(n,2j)+2,τn(j)(X) (463)

where

τn(j) =





2 if j = 0,
2j + 1 if 1 ≤ j ≤ n

2 ,
2j if n+1

2 ≤ j ≤ n,
2n if j > n.

(464)

14An alternative proof of Lemma 21 is derivable via analysing when these coefficients are nonzero.
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E.6 Proof of Lemma 23

Fix ε > 0. Let W be a discrete RV with finite support such that E
[
W k
]
= µk for each k ∈ [m], which exists

by the solution to the truncated Hamburger moment problem [47, Theorem 3.1]. Set A = supp(W ), and let
{qa}a∈A ⊂ [0, 1] be such that pW =

∑
a∈A qaδa is the PMF of W. Then, for each k ∈ [m], we have that

∑

a∈A

qaa
k = µk. (465)

For each s > 0, a ∈ A, and k ∈ [m], we have that

∫ a+s

a−s

zk

2s
dz =

(a+ s)k+1 − (a− s)k+1

2s(k + 1)
. (466)

Further, we have the limit

lim
s→0+

(a+ s)k+1 − (a− s)k+1

2s(k + 1)
= ak. (467)

Therefore, there exist constants ηa,k > 0, for (a, k) ∈ A× [m], such that 0 < s ≤ ηa,k implies

∣∣∣∣
(a+ s)k+1 − (a− s)k+1

2s(k + 1)
− ak

∣∣∣∣ < ε. (468)

Let η = min(a,k)∈A×[m] ηa,k and consider the continuous RV Z whose PDF is given by

pZ(z) =
∑

a∈A

qa
2η

1[a−η,a+η](z). (469)

Thus, for each k ∈ [m],

E
[
Zk
]
=
∑

a∈A

qa ·
(a+ η)k+1 − (a− η)k+1

2η(k + 1)
∈
(∑

a∈A

qa(a
k − ε),

∑

a∈A

qa(a
k + ε)

)
= (µk − ε, µk + ε) , (470)

which follow by (466), (468), and (465), respectively.

E.7 Proof of Proposition 24

We proceed by induction on m. The case m = 1 follows because then by assumption on p we have that
p(k) = 0 for every positive integer k as can be seen by taking X ∼ N (k, 1), but the only polynomial with
infinitely many zeros is the zero polynomial. Now, assume that the statement of the proposition holds for
every polynomial in m− 1 variables, where m ≥ 2.

Fix a polynomial p in m variables, and assume that p|Cm = 0. Regarding p as a polynomial in one of the
variables with coefficients being polynomials in the remaining m− 1 variables, we may write

p(u1, · · · , um) =
∑

j∈[d]

pj(u1, · · · , um−1)u
j
m, (471)

for some polynomials p0, · · · , pd in m − 1 variables, where d is the total degree of p. We show that p = 0
identically by showing that each pj vanishes on Cm−1 and using the induction hypothesis to obtain pj = 0
identically.

Fix µµµ = (µ1, · · · , µm−1) ∈ Cm−1. Let µm be a variable, and set ℓ = ⌊m/2⌋. We have that ℓ = (m− 1)/2
if m is odd, and ℓ = m/2 if m is even. Set H = (µi+j)(i,j)∈[ℓ]2 . If m is even, then detH = αµm + β for
some constants α, β ∈ R determined by µµµ, with α = det(µi+j)(i,j)∈[ℓ−1]2 > 0. In the case m is even, we set
t = −β/α, and in the case m is odd, we set t = 0. Then, H is positive definite whenever µm > t.

For each integer k ≥ 1 and real ε > 0, Lemma 23 yields a RV Xk,ε ∈ Rm satisfying

δk,j(ε) := E[Xj
k,ε]− µj ∈ (−ε, ε) (472)
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for each j ∈ {1, · · · ,m− 1} and

δk,m(ε) := E[Xm
k,ε]− (t+ k) ∈ (−ε, ε). (473)

Then, by assumption on p, for every ε > 0 and k ∈ N≥1,

∑

j∈[d]

pj(µ1 + δk,1(ε), · · · , µm−1 + δk,m−1(ε))(t+ k + δk,m(ε))j = 0. (474)

Taking the limit ε→ 0+, we deduce that

∑

j∈[d]

pj(µ1, · · · , µm−1)(t+ k)j = 0. (475)

Considering (475) as a univariate polynomial in k, we see that its vanishing at infinitely many values of k
implies that

pj(µ1, · · · , µm−1) = 0 (476)

for every j ∈ [d]. This holds for every (µ1, · · · , µm−1) ∈ Cm−1, i.e., the premise of the proposition applies to
each pj (namely, for every X ∈ Rm−1 we have pj(E[X ], · · · ,E[Xm−1]) = 0). By the induction hypothesis,
we obtain pj = 0, as polynomials, for every j ∈ [d]. Therefore, p = 0, and the proof is complete.

Appendix F Proofs of Section 6

F.1 Proof of Proposition 27: Conditional Expectation Derivatives

Recall that the conditional expectation can be expressed as

E[Z | Y = y] =
E
[
Ze−(X−y)2/2

]

E
[
e−(X−y)2/2

] (477)

for any RV Z for which Ze−(X−y)2/2 is integrable. This formula applies for both Z = X and Z = (X−E[X |
Y = y])k, where (y, k) ∈ R × N, because they are polynomials in X and the map x 7→ q(x)e−(x−y)2/2 is
bounded for any polynomial q.

Differentiating (477) for Z = X and rearranging terms, we obtain

d

dy
E[X | Y = y] =

E
[
(X − E[X | Y = y])2e−(X−y)2/2

]

E
[
e−(X−y)2/2

] , (478)

i.e., f ′ = g2. Note that g0 ≡ 1 and g1 ≡ 0. Differentiating gr for r ≥ 1, we obtain that

g′r = gr+1 − rg2gr−1. (479)

We apply successive differentiation to f ′ = g2 and recover patterns by utilizing (479) at each step.
From f ′ = g2 and (479), we infer the first few derivatives

f (2) = g3, f
(3) = g4 − 3g22, f

(4) = g5 − 10g2g3. (480)

We see a homogeneity in (480), namely, f (r−1) is an integer linear combination of terms of the form gα1

i1
· · · gαℓ

iℓ
with i1α1 + · · ·+ iℓαℓ = r. This homogeneity can be shown to hold for a general r by induction, which we

show next. For most of the remainder of the proof, we forget the numerical values of the f (k) and the g
(k)
r and

only treat them as symbols satisfying f ′ = g2 and g′r = gr+1 − rg2gr−1 that respect rules of differentiation
and which commute.

We call
∑ℓ

j=1 ijαj the weighted degree of any nonzero integer multiple of gα1

i1
· · · gαℓ

iℓ
. This is a well-defined

degree because it is invariant to the way the product is arranged. We also say that a sum is of weighted
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degree r if each summand is of weighted degree r. To prove the claim of homogeneity, i.e., that f (r−1) is
of weighted degree r, we differentiate and apply the relation in (479) to a generic term gα1

i1
· · · gαℓ

iℓ
whose

weighted degree is r. We have the derivative

(
gα1

i1
· · · gαℓ

iℓ

)′
=
(
gα1

i1

)′ · · · gαℓ

iℓ
+ · · ·+ gα1

i1
· · ·
(
gαℓ

iℓ

)′
. (481)

From (479), for integers i, α ≥ 1,

(gαi )
′
= αgα−1

i gi+1 − αig2gi−1g
α−1
i . (482)

Therefore, the derivative of gαi has weighted degree iα + 1. In other words, differentiation increased the

weighted degree of gαi by 1. From (481), then, we see that the weighted degree of
(
gα1

i1
· · · gαℓ

iℓ

)′
is r+1. Since

f ′ = g2 is of weighted degree 2, induction and linearity of differentiation yield that f (r−1) is of weighted
degree r for each r ≥ 2.

Now, we fix the way we are writing products of the gi. We ignore explicitly writing g0 and g1, collect
identical terms into an exponent, and write lower indices first. One way to keep this notation is via integer
partitions. Consider the “homogeneous” sets

Gr :=




∑

λλλ∈Πr

βλλλg
λλλ ; βλλλ ∈ Z for each λλλ ∈ Πr



 . (483)

The homogeneity property for the derivatives of f can be written as f (r−1) ∈ Gr for each r ≥ 2.
Next, we investigate the exact integer coefficients hλλλ in the expression of the derivatives of f in terms of

the gλλλ. Homogeneity of the derivatives of f says that we may write each f (r−1), r ≥ 2, as an integer linear
combination of {gλλλ}λλλ∈Πr

. One way to obtain such a representation is via repeated differentiation of f ′ = g2,
applying the relation (482), and discarding any term that is a multiple of g1. Applying these steps, we arrive
at representations

f (r−1) =
∑

λλλ∈Πr

hλλλg
λλλ, cλλλ ∈ Z. (484)

The terms gννν that appear upon differentiating a term gλλλ can be described as follows. For (λ2, · · · , λℓ) =
λλλ ∈ Πr, we call λ2 the leading term of λλλ. Consider for a tuple λλλ ∈ Πr the following two sets of tuples
τ+(λλλ), τ−(λλλ) ⊂ Πr+1:

• The set τ+(λλλ) consists of all tuples obtainable from λλλ via replacing a pair (λi, λi+1) with (λi−1, λi+1+1)
(so, necessarily λi ≥ 1) while keeping all other entries unchanged;

• The set τ−(λλλ) consists of all tuples obtainable from λλλ via replacing a pair (λi−1, λi), for which i ≥ 3,
with the pair (λi−1 +1, λi− 1) (so, necessarily λi ≥ 1) and additionally increasing the leading term by
1 while keeping all other terms unchanged.

For example, if λλλ = (0, 5, 0, 1) ∈ Π20 then

τ+(λλλ) = {(0, 4, 1, 1), (0, 5, 0, 0, 1)} ⊂ Π21 (485)

and
τ−(λλλ) = {(2, 4, 0, 1), (1, 5, 1)} ⊂ Π21. (486)

The relation (482) yields, in view of

(
gλ2
2 · · · gλℓ

ℓ

)′
=
(
gλ2
2

)′
· · · gλℓ

ℓ + · · ·+ gλ2
2 · · ·

(
gλℓ

ℓ

)′
, (487)

that (
gλλλ
)′

=
∑

ννν∈τ+(λλλ)

aλλλ,νννg
ννν −

∑

ννν∈τ−(λλλ)

bλλλ,νννg
ννν (488)
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for some positive integers aλλλ,ννν and bλλλ,ννν , which we describe next. Finding aλλλ,ννν and bλλλ,ννν can be straightfor-
wardly done from (482) in view of (487). If ννν ∈ τ+(λλλ), say

(νi, νi+1) = (λi − 1, λi+1 + 1), (489)

then aλλλ,ννν = λi. If ννν ∈ τ−(λλλ), say
(νi−1, νi) = (λi−1 + 1, λi − 1), (490)

then bλλλ,ννν = iλi. In our example of λλλ = (0, 5, 0, 1), we get

a(0,5,0,1),(0,4,1,1) = 5 (491)

a(0,5,0,1),(0,5,0,0,1) = 1, (492)

whereas

b(0,5,0,1),(2,4,0,1) = 15 (493)

b(0,5,0,1),(1,5,1) = 5. (494)

Note that the two sets τ+(λλλ) and τ−(λλλ) are disjoint because, e.g., the sum of entries of a tuple in τ+(λλλ) is
the same as that for λλλ, whereas the sum of entries of a tuple in τ−(λλλ) is one more than that for λλλ.

We next describe how to use what we have shown thus far to deduce a recurrence relation for the hλλλ.
Let θ be a process inverting τ, i.e., define for ννν ∈ Πr+1 the two sets

θ+(ννν) := {λλλ ∈ Πr ; ννν ∈ τ+(λλλ)} (495)

and
θ−(ννν) := {λλλ ∈ Πr ; ννν ∈ τ−(λλλ)} (496)

The two sets θ+(ννν) and θ−(ννν) are disjoint because the two sets τ+(λλλ) and τ−(λλλ) are disjoint for each fixed λλλ.
Recall our process for defining hλλλ: we start with f ′ = g2, so h(1) = 1; we successively differentiate f ′ = g2;
after each differentiation, we use (482) and (487) (recall that we have the understanding g0i = 1); we discard
any ensuing multiple of g1; after r − 2 differentiations, we get an equation f (r−1) =

∑
λλλ∈Πr

hλλλg
λλλ, which

we take to be the definition of the hλλλ. The point here is that it could be that f (r−1) is representable as an
integer linear combination of the gλλλ in more than one way, which can only be verified after the numerical
values for the gi are taken into account, but we are not doing that: our approach treats the gi as symbols
following the laid out rules. Now, we look at one of the steps of this procedure, starting at differentiating

f (r−1) =
∑

λλλ∈Πr
hλλλg

λλλ, so f (r) =
∑

λλλ∈Πr
hλλλ
(
gλλλ
)′
. Replacing (gλλλ)′ via (488),

f (r) =
∑

λλλ∈Πr


 ∑

ννν∈τ+(λλλ)

aλλλ,νννg
ννν −

∑

ννν∈τ−(λλλ)

bλλλ,νννg
ννν


 . (497)

Exchanging the order of summations (for which we use θ),

f (r) =
∑

ννν∈Πr+1


 ∑

λλλ∈θ+(ννν)

hλλλaλλλ,ννν −
∑

λλλ∈θ−(ννν)

hλλλbλλλ,ννν


gννν . (498)

Therefore, by definition of the hλλλ, we have the recurrence: for each ννν ∈ Πr+1

hννν =
∑

λλλ∈θ+(ννν)

hλλλaλλλ,ννν −
∑

λλλ∈θ−(ννν)

hλλλbλλλ,ννν , h(1) = 1. (499)

One instance of this recurrence is, e.g.,

h(2,1) = 3h(3) − 4h(1,0,1) − 6h(0,2). (500)

Now, we show that the recurrence in (499) also generates eλλλ as defined in (57). For (λ2, · · · , λℓ) = λλλ ∈ Πr,
denote σ(λλλ) = λ2+ · · ·+λℓ. If ννν ∈ τ+(λλλ) then σ(ννν) = σ(λλλ), and if ννν ∈ τ−(λλλ) then σ(ννν) = σ(λλλ)+1. Therefore,
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λλλ ∈ θ+(ννν) implies σ(ννν) = σ(λλλ), and λλλ ∈ θ−(ννν) implies σ(ννν) = σ(λλλ) + 1. Multiplying (499) by (−1)σ(ννν)−1

yields the equivalent recurrence

tννν =
∑

λλλ∈θ+(ννν)

tλλλaλλλ,ννν +
∑

λλλ∈θ−(ννν)

tλλλbλλλ,ννν , t(1) = 1, (501)

where tλλλ := (−1)σ(λλλ)−1hλλλ. We show that cλλλ = (−1)σ(λλλ)−1eλλλ (see (57)) satisfies this recurrence, which is
equivalent to eλλλ satisfying the recurrence (499). Clearly, c(1) = 1, so consider cννν for ννν ∈ Πr with r ≥ 3.

Consider labelled elements s1, s2, · · · , and let Sk = {s1, · · · , sk} for each k ≥ 2. For any λλλ ∈ Πk, let Cλλλ
be the set of arrangements of cyclically-invariant set-partitions of Sk according to λλλ, so |Cλλλ| = cλλλ. Now, fix
ννν ∈ Πr+1, and we will build Cννν from the Cλλλ where λλλ ranges over θ+(ννν) ∪ θ−(ννν). Consider first λλλ ∈ θ+(ννν),
where a partition in Cννν is constructed from a partition in Cλλλ by appending sr+1 to one of the parts of the
latter partition. Note that adding sr+1 to two distinct partitions of Sr cannot produce the same partition
of Sr+1; indeed, just removing sr+1 shows that that is impossible. Now, let i be the unique index such that
(νi, νi+1) = (λi − 1, λi+1 + 1). Then, a partition P ∈ Cννν of Sr+1 is induced by a partition P ′ ∈ Cλλλ of Sr if
and only if sr+1 is added to a part in P ′ of size i, of which there are exactly λi = aλλλ,ννν . Therefore, we get a
contribution of

∑
λλλ∈θ+(ννν) cλλλaλλλ,ννν towards cννν , which is the first part in (501).

For the second part,
∑

λλλ∈θ−(ννν) cλλλbλλλ,ννν , we consider the remaining ways of generating a partition in Cννν
from a partition according to some λλλ ∈ θ−(ννν). In this case, sr+1 is not appended to an existing part, but it
is used to create a new part of size 2. Thus, we need to also move an element sj , 1 ≤ j ≤ r, from a part of
size at least 3 to be combined with sr+1 to create a new part of size 2. It is also clear in this case that such
a procedure applied to two distinct partitions in Cλλλ cannot produce the same partition in Cννν . Let i be the
unique index for which (νi−1, νi) = (λi−1 + 1, λi − 1). There are λi parts to choose from, and i elements to
choose from once a part is chosen, so there are a total of iλi = bλλλ,ννν ways to generate a partition in Cννν from
a partition in Cλλλ. This gives the second sum in (501), and we conclude that

cννν =
∑

λλλ∈θ+(ννν)

cλλλaλλλ,ννν +
∑

λλλ∈θ−(ννν)

cλλλbλλλ,ννν . (502)

Therefore, the cλλλ and the tλλλ satisfy the same recurrence, which takes the form: for ννν ∈ Πr+1 there are
integers {dλλλ,ννν}λλλ∈Πr

such that

uννν =
∑

λλλ∈Πr

dλλλ,νννuλλλ (503)

with the initial condition u(1) = 1. Then, we can induct on r to conclude that the cλλλ and the tλλλ are the same
sequence. Since Π2 = {(1)}, we see that cλλλ = tλλλ for every λλλ ∈ Π2. Suppose r ≥ 2 is such that cλλλ = tλλλ for
every λλλ ∈ Πr. Hence, for every ννν ∈ Πr+1, we have that

∑

λλλ∈Πr

dλλλ,νννcλλλ =
∑

λλλ∈Πr

dλλλ,νννtλλλ. (504)

Since both sequences cλλλ and tλλλ satisfy the recurrence (503), we obtain from (504) that cννν = tννν for every
ννν ∈ Πr+1. Therefore, we obtain by induction that cλλλ = tλλλ for every λλλ ∈ Πr for every r, as desired.

F.2 Proof of Theorem 29

Fix p ∈ D , suppose X ∼ p, and write Y = X + N and pY = e−Q. First, we note that Q′(y) is equal to
E[N | Y = y].

Lemma 52. Fix a random variable X and let Y = X +N where N ∼ N (0, 1) is independent of X. Writing
pY = e−Q, we have that Q′(y) = E[N | Y = y].

Proof. We have that pY (y) = E[e−(y−X)2/2]/
√
2π. Differentiating this equation, we obtain that p′Y (y) =

E[(X − y)e−(y−X)2/2]/
√
2π, where the exchange of differentiation and integration is warranted since t 7→

te−t2/2 is bounded. Now, Q = − log pY , so Q
′ = −p′Y /pY , i.e.,

Q′(y) = y − E[Xe−(y−X)2/2]

E[e−(y−X)2/2]
= y − E [X | Y = y] . (505)
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The proof is completed by substituting X = Y −N.

In view of Lemma 52, that p is even and non-increasing over [0,∞) ∩ supp(p) imply that Q satisfies
conditions (1)–(4) of Definition 5. It remains to show that property (5) holds. To this end, we show that if
supp(p) ⊂ [−M,M ] and λ =M + 2, then for every y > M + 4 we have that

1 <
M2 + 5M + 8

2(M + 2)
≤ Q′(λy)

Q′(y)
≤ M2 + 7M + 8

4
. (506)

First, since Q′(y) = y − E[X | Y = y] (see (505)), we have the bounds y −M ≤ Q′(y) ≤ y +M for every
y ∈ R. Therefore, y > M and λ > 1 imply that

λy −M

y +M
≤ Q′(λy)

Q′(y)
≤ λy +M

y −M
. (507)

Further, since y > M + 4 and λ =M + 2, we have

M2 + 5M + 8

2(M + 2)
< λ− M(M + 3)

y +M
=
λy −M

y +M
(508)

and
λy +M

y −M
= λ+

M(M + 3)

y −M
≤ M2 + 7M + 8

4
. (509)

The fact that 1 < M2+5M+8
2(M+2) follows since the discriminant of M2 + 3M + 4 is −7 < 0. Therefore, pY is a

Freud weight.

F.3 Proof of Inequality (245)

By Lemma 52,
Q′(y) = E[N | Y = y] = y − E[X | Y = y]. (510)

Therefore X ≤M implies that, for any constant z ≥ 0, we have

∫ 1

0

ztQ′(zt)√
1− t2

dt =
π

4
z2 − z

∫ 1

0

t√
1− t2

E
[
Xe−(X−zt)2/2

]

E
[
e−(X−zt)2/2

] dt (511)

≥ π

4
z2 −Mz. (512)

We have πz2/4 − Mz > n for z = (2M +
√
2)
√
n. Since y 7→ yQ′(y) is strictly increasing over (0,∞)

(condition (3) of Definition 5), we conclude that an(Q) ≤ (2M +
√
2)
√
n.

Appendix G Proof of Proposition 33: hn Under Affine Transfor-
mations

Fix n ∈ N≥1 and let N ∼ N (0, 1) be independent of Y. From equation (128) in Proposition 9, for any fixed
t ≥ 0

pmmsen(αY + β, t) = pmmsen(αY + β |
√
t(αY + β) +N) (513)

= pmmsen(αY + β |
√
α2tY + β

√
t+N) (514)

= pmmsen(αY |
√
α2tY +N). (515)

Also, from equation (129) in Proposition 9,

pmmsen(αY |
√
α2tY +N) = α2pmmsen(Y |

√
α2tY +N) = α2pmmsen(Y, α

2t). (516)
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Combining these two relations, we obtain

pmmsen(αY + β, t) = α2pmmsen(Y, α
2t). (517)

Therefore, by definition of hn (see equation (254))

hn(αY + β) =
1

2

∫ ∞

0

pmmsen(αY + β, t)− 1

2πe+ t
dt (518)

=
1

2

∫ ∞

0

α2pmmsen(Y, α
2t)− 1

2πe+ t
dt (519)

=
1

2

∫ ∞

0

(
pmmsen(Y, α

2t)− 1

2πeα2 + α2t

)
α2dt. (520)

Performing the substitution u = α2t,

hn(αY + β) =
1

2

∫ ∞

0

pmmsen(Y, u)−
1

2πeα2 + u
du. (521)

Finally, from (251) (with a = 1/(2πeα2) and b = 1/(2πe)), we obtain

1

2

∫ ∞

0

1

2πeα2 + u
− 1

2πe+ u
du =

1

2
log

1

α2
= − log |α|. (522)

Note that the integrand in the right hand side of (521) and the integrand in the left hand side of (522) are
both absolutely integrable over (0,∞). Therefore, adding (521) and (522), and utilizing the definition of hn
in (254) again, we obtain

hn(αY + β)− log |α| = 1

2

∫ ∞

0

pmmsen(Y, u)−
1

2πe+ u
du = hn(Y ), (523)

and the proof is complete.

Appendix H Proofs of Section 10

H.1 Proof of Lemma 38

Fix X, and let W be its orthogonal projection onto the closed subspace V . Consider the symmetric ma-
trix M = E[V V T ]. Since cTMc = E[|cTV |2] for each c ∈ Rn+1, linear independence of the Vj implies
that M is positive-definite. Let M1/2 be the unique lower-triangular matrix with positive diagonal such

that M1/2
(
M1/2

)T
= M , and denote its inverse by M−1/2. Let (U0, · · · , Un)

T = U = M−1/2V . Then,
{Uj}j∈[n] ⊂ V and E[UUT ] = In+1. Therefore, {Uj}j∈[n] is an orthonormal basis of V ; indeed, it is the
output of Gram-Schmidt orthonormalization on {Vj}j∈[n]. Then, because W is the orthogonal projection of
X onto V , we can express W as

W =
∑

j∈[n]

E[XUj] Uj = E[XUT ]U . (524)

Plugging the defining formulas of U and M into (524),

W = E [XV ]
T
E
[
V V T

]−1
V . (525)

Finally, being the orthogonal projection of X onto V , W is the unique closest element in V to X ; hence,
equation (284) follows.

73



H.2 Proof of Corollary 40

Fix q ≥ 1. For each j, Carleman’s condition on Yj yields that the set of polynomials in Yj , i.e.,
⋃

n∈N Pn(Yj),
is dense in L2q(σ(Yj)). Therefore, by Theorem 39,

⋃

n∈N

Pn,m(Y ) = Lq(σ(Y )). (526)

Now, fix (f1, · · · , fm)T = f ∈ Lq(Rm, σ(Y )). For each j, fj ∈ Lq(σ(Y )). Hence, there is a sequence
{gj,n}n∈N ⊂ Pn,m(Y ) such that fj = limn→∞ gj,n in Lq(σ(Y ))-norm. Set gn = (g1,n, · · · , gm,n)

T , and note
that gn ∈ Pm

n,m(Y ). By definition of the norm in Lq(Rm, σ(Y )), we deduce

lim
n→∞

‖f − gn‖qq = lim
n→∞

m∑

j=1

‖fj − gj,n‖qq = 0, (527)

and the desired denseness result follows.

H.3 Proof of Theorem 41

Since the Yj do not satisfy a polynomial relation, the matrix MY ,n is invertible for each n ∈ N. Further,
the entries of Y (n,m) are linearly independent for each n. Then, by Lemma 38, equation (301) follows, i.e.,

En[X | Y ] is the ℓ-RV whose k-th entry is E
[
XkY

(n,m)
]T

M−1
Y ,nY

(n,m). By Corollary 40, since each Yj
satisfies Carleman’s condition, the set of vectors of polynomials

⋃
n∈N Pm

n,m(Y ) is dense in L2(Rm, σ(Y )).
In particular,

⋃
n∈N Pn,m(Y ) is dense in L2(σ(Y )). By Theorem 37, we have the L2(σ(Y )) limits

E[Xk | Y ] = lim
n→∞

E
[
XkY

(n,m)
]T

M−1
Y ,nY

(n,m) (528)

for each k ∈ {1, · · · , ℓ}. We conclude that En[X | Y ] → E[X | Y ] in L2(Rℓ, σ(Y )), as desired.

H.4 Proof of Proposition 42

Set Y = (Y1, Y2)
T . Equation (306) is straightforward: since En[X | Y1] ∈ Pn(Y1) ⊂ Pn,2(Y ), the projection

of En[X | Y1] onto Pn,2(Y ) is En[X | Y1] again. Equation (307) also follows by an orthogonal projection
argument. There is a unique representation X = p1,2 + p⊥1,2 for (p1,2, p

⊥
1,2) ∈ Pn,2(Y ) × Pn,2(Y )⊥. There

is also a unique representation p1,2 = q2 + q⊥2 for (q2, q
⊥
2 ) ∈ Pn(Y2) × Pn(Y2)

⊥. The projection of X onto
Pn,2(Y ) is p1,2, whose projection onto Pn(Y2) is q2, i.e.,

En [En[X | Y1, Y2] | Y2] = q2. (529)

Furthermore, we have the representation X = q2+(q⊥2 +p⊥1,2), for which (q2, q
⊥
2 +p⊥1,2) ∈ Pn(Y2)×Pn(Y2)

⊥.
Hence, the projection of X onto Pn(Y2) is q2 too, i.e.,

En[X | Y2] = q2. (530)

From (529) and (530) we get (307). Equation (307) can also be deduced from the formula of W := E[X | Y ].

Denote Y
(n)
2 = (1, Y2, · · · , Y n

2 )T . We have that

W = E
[
XY (n,2)

]T
M−1

Y ,nY
(n,2) (531)

and

En[W | Y2] = E
[
WY

(n)
2

]T
M−1

Y2,n
Y

(n)
2 . (532)

For k ∈ [n], let δ(k) ∈
[(

n+2
2

)
− 1
]
be the index of the entry in Y (n,2) that equals Y k

2 . Then,

E
[
Y k
2 Y

(n,2)
]
= MY ,neδ(k), (533)
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where e0, · · · , e(n+2
2 )−1 are the standard basis vectors of R(

n+2
2 ). Therefore, plugging (531) into (532), we

obtain

En[W | Y2] = E
[
XY

(n)
2

]T
M−1

Y2,n
Y

(n)
2 , (534)

which is just En[X | Y2], as desired.

Appendix I Multidimensional MMSE Dimension (Theorem 43)

In this proof, we will denote the Euclidean norm in Rm by the unsubscripted ‖ · ‖, so if N = (N1, · · · , Nm)T

then ‖N‖ =
√
N2

1 + · · ·+Nm
m is a RV.

Our proof is a straightforward extension of the proof for the one-dimensional case given in [32]. In
particular, we use the concept of approximations to the identity.

Definition 11. The set of functions {Kδ : R
m → R}δ>0 is called an approximation to the identity if

(i)
∫
Rm Kδ(y) dy = A for each δ > 0,

(ii) |Kδ(y)| ≤ Bδ−m for each δ > 0, and y ∈ Rm,

(iii) |Kδ(y)| ≤ Bδ/‖y‖m+1 for each δ > 0 and y ∈ Rm \ {0},
where A and B are constants that are independent of δ and y.

We apply the following theorem [45, Theorem 2.1] stating that approximations to the identity closely
approximate an identity operation under convolution. Recall that a point x ∈ Rm is called a Lebesgue point
of a function f : Rm → R if

lim
r→0+

1

µL(Br(x))

∫

Br(x)

|f(y)− f(x)| dy = 0, (535)

where Br(x) ⊂ Rm is the open ball around x of radius r, and µL is the Lebesgue measure in Rm.

Theorem 53. If {Kδ : Rm → R}δ>0 is an approximation to the identity with
∫
Rm Kδ(y) dy = A for every

δ > 0 (see Definition 11), then for every f ∈ L1(Rm) we have that

lim
δ→0+

(Kδ ∗ f)(x) = A · f(x) (536)

at each Lebesgue point x of f.

We use the following auxiliary result showing that the Lebesgue set is Borel.

Lemma 54. The set of Lebesgue points of an integrable Borel function is Borel.

Proof. Fix a Borel function f ∈ L1(Rm), denote the set of its Lebesgue points by L, and define the function
F : Rm × (0,∞) → [0,∞) by

F (x, r) :=
1

rm

∫

Br(x)

|f(y)− f(x)| dy. (537)

Then L = {x ∈ Rm ; limr→0+ F (x, r) = 0}. By definition of limits, the set L might be rewritten as

L =
⋂

k∈N

⋃

δ∈Q>0

⋂

r∈(0,δ)

{
x ∈ Rm ; F (x, r) ≤ 2−k

}
. (538)

Now, we show that the uncountable intersection over r ∈ (0, δ) may be replaced with a countable intersection
over only the rational points r ∈ Q ∩ (0, δ). For this, it will suffice to show that, for each fixed x ∈ Rm,
the function r 7→ F (x, r) is continuous over r ∈ (0,∞). Clearly, the function r 7→ r−m is continuous. In
addition, by the monotone convergence theorem, we obtain the continuity of the function

r 7→
∫

Br(x)

|f(y)− f(x)| dy. (539)
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Therefore, r 7→ F (x, r) is continuous too. Thus, if F (x, r) ≤ 2−k for every r ∈ Q ∩ (0, δ), the density of Q
in R implies that F (x, r) ≤ 2−k for every r ∈ (0, δ). Hence, we may write

L =
⋂

k∈N

⋃

δ∈Q>0

⋂

r∈Q∩(0,δ)

{
x ∈ Rm ; F (x, r) ≤ 2−k

}
. (540)

Finally, we show that each set {x ∈ Rm ; F (x, r) ≤ 2−k} is a Borel set (for fixed r > 0 and k ∈ N) by
showing that x 7→ F (x, r) is a Borel function. Indeed, we may write F (x, r) =

∫
Rm g(x,y) dν(y) where ν is

the restriction of the Lebesgue measure of Rm to the Borel subsets, and

g(x,y) :=
1

rm
|f(y)− f(x)| · 1Br(x)(y). (541)

Note that 1Br(x)(y) = 1A(x,y), where A = {(x,y) ∈ R2m ; ‖x−y‖2 < r} is a Borel set. Thus, g is a Borel
function. Therefore, by the Fubini-Tonelli theorem [54, Section 2.5, Theorem 14] x 7→

∫
Rm g(x,y) dν(y) is a

Borel function, and the proof is complete.

I.1 Proof of Theorem 43

Denote δ = 1/
√
t, and consider the m-RVs Yδ := X + δN . We have that

mmse(X |
√
tX +N) = mmse(X | X + δN) = ‖X − E [X | Yδ]‖22 = ‖X − E [Yδ − δN | Yδ]‖22 (542)

= δ2 ‖N − E [N | Yδ]‖22 = δ2 mmse (N | Yδ) . (543)

Therefore, the statement of the theorem is equivalent to

lim
δ→0+

mmse(N | Yδ) = tr ΣN . (544)

To show that (544) holds, it suffices to show that

lim inf
δ→0+

mmse(N | Yδ) ≥ tr ΣN . (545)

Indeed, the constant estimator ψ(y) = E[N ] attains an error of tr ΣN when estimating N given Yδ, hence

lim sup
δ→0+

mmse(N | Yδ) ≤ tr ΣN . (546)

Fix ε > 0. By the square-integrability assumption on N , there is an M ≥ 0 such that

∥∥N1(M,∞)(‖N‖)
∥∥
2
≤ ε. (547)

By the triangle inequality in L2(Rm,F),

mmse (N | Yδ)
1/2

= ‖N − E [N | Yδ]‖2 (548)

≥
∥∥N − E

[
N1[0,M ](‖N‖) | Yδ

]∥∥
2
−
∥∥E
[
N1(M,∞)(‖N‖) | Yδ

]∥∥
2
. (549)

Now, since
∥∥E
[
N1(M,∞)(‖N‖) | Yδ

]∥∥
2
≤
∥∥N1(M,∞)(‖N‖)

∥∥
2
, we obtain from (547) that

mmse (N | Yδ)
1/2 ≥

∥∥N − E
[
N1[0,M ](‖N‖) | Yδ

]∥∥
2
− ε. (550)

Therefore, to obtain (545), it suffices to show that

lim inf
δ→0+

∥∥N − E
[
N1[0,M ](‖N‖) | Yδ

]∥∥
2
≥
√
tr ΣN (551)

since ε is arbitrary. Now, consider the function f : Rm × Rm × (0,∞) → Rm given by

f(x, z; δ) := E
[
N 1[0,M ](‖N‖) | Yδ = x+ δz

]
, (552)
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and note that we have
f(X,N ; δ) = E

[
N 1[0,M ](‖N‖) | Yδ

]
. (553)

We will show that
lim

δ→0+
f(X,N ; δ) = E

[
N 1[0,M ](‖N‖)

]
(554)

almost surely. The limit in (554) suffices to conclude the proof of the theorem, because it implies inequal-
ity (551) via Fatou’s lemma. Indeed, from (554) we obtain

lim inf
δ→0+

‖N − f(X,N ; δ)‖2 ≥
∥∥N − E

[
N 1[0,M ](‖N‖)

]∥∥
2
≥ ‖N − E [N ]‖2 =

√
tr ΣN , (555)

where the penultimate step follows because E[N ] is the best constant estimator of N in the mean-square
sense. Thus, the rest of the proof is devoted to showing that the limit in (554) holds.

Note that

pYδ
(y) =

1

δm
E

[
pN

(
1

δ
(y −X)

)]
= E [pX (y − δN)] . (556)

We have the conditional expectation formulas

E [X | Yδ = y] = E

[
X pN

(
1

δ
(y −X)

)]
· 1

E
[
pN
(
1
δ (y −X)

)] , (557)

E [N | Yδ = y] = E [N pX (y − δN)] · 1

E [pX (y − δN)]
, (558)

f(x, z; δ) = E
[
N 1[0,M ](‖N‖) pX(x+ δz − δN)

]
· 1

pYδ
(x+ δz)

. (559)

Define the function g : Rm × Rm × (0,∞) → Rm

g(x, z; δ) := E
[
N 1[0,M ](‖N‖) pX(x+ δz − δN)

]
, (560)

and note that

f(x, z; δ) = g(x, z; δ) · 1

pYδ
(x+ δz)

. (561)

Let L ⊂ Rm be the Lebesgue set of pX , S := {x ∈ Rm ; pX(x) > 0}, and T := L∩S. We will show that the
limit in (554) holds almost surely by showing that the following two limits hold for every (x, z) ∈ T × Rm

lim
δ→0+

g(x, z; δ) = E
[
N 1[0,M ](‖N‖)

]
pX(x), (562)

lim
δ→0+

pYδ
(x+ δz) = pX(x). (563)

We describe first how (562) and (563) imply (554). We have that PX(S) = 1 because S is a Borel set and

PX(Sc) =

∫

Sc

pX(x) dx =

∫

Sc

0 dx = 0. (564)

By the Lebesgue differentiation theorem, since pX ∈ L1(Rm), the complement Lc has zero Lebesgue measure.
Further, L is a Borel set by Lemma 54, since pX is a Borel function. Thus, as PX is absolutely continuous
with respect to the Lebesgue measure, we deduce that PX(Lc) = 0, i.e., PX(L) = 1. Therefore, PX(T ) = 1,
from which we obtain PX,N (T × Rm) = PX(T ) = 1. In other words, if (562) and (563) hold for every
(x, z) ∈ T × Rm then (554) holds almost surely. We now focus on showing (562) and (563).

Fix z ∈ Rm, and denote f = (f1, · · · , fm)T and g = (g1, · · · , gm)T . We apply Theorem 53. The following
convolution relations hold for every j ∈ {1, · · · , ℓ}

gj(x, z; δ) = (pX ∗Gδ,j)(x) (565)

pYδ
(x+ δz) = (pX ∗Kδ)(x), (566)
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where the functions Gδ,j and Kδ are defined by

Gδ,j(y) := (δ−1yj + zj)1[0,M ]

(∥∥δ−1y + z
∥∥) pN

(
δ−1y + z

)
δ−m (567)

Kδ(y) := δ−mpN
(
δ−1y + z

)
. (568)

Indeed, denoting qj(u) = uj1[0,M ] (‖u‖) , and using the substitution y = δ(u − z), we may compute

(pX ∗Gδ,j)(x)=

∫

Rm

pX(x− y)qj(δ
−1y + z)pN

(
δ−1y + z

)
δ−mdy (569)

=

∫

Rm

pX(x− δ(u − z))qj(u)pN (u) dw = E [pX(x− δ(N − z))qj(N)] = gj(x, z; δ). (570)

Also, noting that
Kδ(y) = δ−mpN (δ−1y + z) = pδ(N−z)(y), (571)

and by independence of X and δ(N − z), we obtain the convolution

(pX ∗Kδ)(x) = (pX ∗ pδ(N−z))(x) = pX+δ(N−z)(x) = pYδ
(x+ δz). (572)

Therefore, equations (565) and (566) hold. Fix j ∈ {1, · · · ,m}.We show next that {Gδ,j}δ>0 and {Kδ}δ>0 are
approximations to the identity. For condition (i) of Definition 11, we note that the substitution y = δ(u−z)
implies that ∫

Rm

Gδ,j(y) dy = E
[
Nj1[0,M ](‖N‖)

]
, (573)

which is a constant independent of δ. Also, since Kδ is the PDF of δ(N − z) (see (571)), we have

∫

Rm

Kδ(y) dy = 1. (574)

Therefore, condition (i) in Definition 11 is satisfied by both the Gδ,j and the Kδ. We now show that the
bounds in conditions (ii) and (iii) of Definition 11 hold with the constant B chosen as B := (1 + ‖z‖)m+1C
where C > 0 is any constant such that

pN (u) ≤ C

1 + ‖u‖m+2
(575)

holds for every u ∈ Rm. Note that such a constant C exists by assumption (308) on the decay of pN .
Since vβ ≤ 1 + vm+2 for every v ≥ 0 and β ∈ [0,m+ 2], inequality (575) implies the uniform bounds

‖u‖βpN (u) ≤ C (576)

for every u ∈ Rm and β ∈ [0,m+ 2]. Denote

Sβ := sup
u∈Rm

‖u‖βpN (u), (577)

so Sβ ≤ C ≤ B for every 0 ≤ β ≤ m+ 2. For condition (ii), we have that for every δ > 0 and y ∈ Rm,

δm|Gδ,j(y)| ≤
∣∣δ−1yj + zj

∣∣ pN (δ−1y + z) ≤
∥∥δ−1y + z

∥∥ pN (δ−1y + z) ≤ S1 ≤ C ≤ B (578)

and
δmKδ(y) = pN (δ−1y + z) ≤ S0 ≤ C ≤ B. (579)

Therefore, condition (ii) of Definition 11 is satisfied by both the Gδ,j and the Kδ. Finally, for condition (iii),
noting that ∥∥δ−1y

∥∥ ≤
∥∥δ−1y + z

∥∥+ ‖z‖ , (580)
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we have the inequalities

‖y‖m+1

δ
|Gδ(y)| ≤

∥∥δ−1y
∥∥m+1 ∣∣δ−1yj + zj

∣∣ pN (δ−1y + z) (581)

≤
(∥∥δ−1y + z

∥∥+ ‖z‖
)m+1 ∥∥δ−1y + z

∥∥ pN (δ−1y + z) (582)

≤
(
S
1/(m+1)
m+2 + ‖z‖S1/(m+1)

1

)m+1

≤ (1 + ‖z‖)m+1C = B (583)

and

‖y‖m+1

δ
Kδ(y) =

∥∥δ−1y
∥∥m+1

pN (δ−1y + z) ≤
(
S
1/(m+1)
m+1 + ‖z‖S1/(m+1)

0

)m+1

≤ (1 + ‖z‖)m+1C = B

(584)

for every δ > 0 and y ∈ Rm. Therefore, condition (iii) in Definition 11 is satisfied by both the Gδ,j and the
Kδ. In other words, each of {Gδ,j}δ>0 and {Kδ}δ>0 is an approximation to the identity.

Therefore, by Theorem 53, for each j ∈ {1, · · · ,m} and (x, z) ∈ L × Rm, we have that

lim
δ→0+

gj(x, z; δ) = E
[
Nj1[0,M ](‖N‖)

]
pX(x) (585)

and
lim

δ→0+
pYδ

(x+ δz) = pX(x). (586)

Hence, by (561), we obtain that for every (x, z) ∈ T × Rm

lim
δ→0+

f(X,N ; δ) = E
[
N 1[0,M ](‖N‖)

]
, (587)

which is the desired limit (554), completing the proof.

Appendix J Proofs of Subsection 11.2

J.1 Proof of Theorem 48: Consistency of the Differential Entropy Estimator

We use the formula for hn given in Lemma 46,

hn(X) =
1

2
log

(
2πe

(
detMX,n

detMN,n

)1/dn

)
+

∫ ∞

0

ρX,n(t) dt, (588)

where dn =
(
n+1
2

)
and N ∼ N (0, 1). We may assume that N is independent of X and the Xj . For each

m ∈ N, let Sm := {Xj}j∈[m], and consider the sequence {Um ∼ Unif(Sm)}m∈N. For each m ∈ N, let Em

be the event that X0, · · · , Xm are distinct, and let E be the event that the Xj , for j ∈ N, are all distinct.

Whenever m ≥ n and Em occurs, we have by Definition 9 of ĥn and formula (588) for hn the following
estimate

ĥn (Sm) =
1

2
log

(
2πe

(
detMUm,n

detMN,n

)1/dn

)
+

∫ ∞

0

ρUm,n(t) dt. (589)

Since X is continuous, we have that P (Em) = 1 for every m ∈ N. Further, E0 ⊃ E1 ⊃ · · · and E =
⋂

m∈N Em,

hence P (E) = 1. Therefore, for the purpose of proving the almost-sure limit ĥn (Sm) → hn(X), we may
assume that E occurs. We first treat convergence of the integral part. We show that the integral part is a
continuous function of the moments, then the continuous mapping theorem yields that

∫ ∞

0

ρUm,n(t) dt →
∫ ∞

0

ρX,n(t) dt (590)

almost surely asm→ ∞ because sample moments converge almost surely to the moments. A similar method
is then applied to the convergence of the log detMX,n part.
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We fix n ∈ N≥1, and assume m ≥ n throughout the proof. We use the following notation. The 2n-RV
µµµ(m) consists of the first 2n moments of Um

µµµ(m) :=

(∑m
j=0Xj

m+ 1
, · · · ,

∑m
j=0X

2n
j

m+ 1

)T

. (591)

Let µ
(m)
k be the k-th coordinate of µµµ(m), so µµµ(m) =

(
µ
(m)
1 , · · · , µ(m)

2n

)T
. We write Xk := E

[
Xk
]
for k ∈ N,

and consider the constant vector
XXX := (Xk)1≤k≤2n . (592)

By the strong law of large numbers, we have the almost-sure convergence µ
(m)
k → Xk for each 1 ≤ k ≤ 2n.

Then, µµµ(m) →XXX almost surely as m→ ∞.We show next that the function XXX 7→
∫∞
0 ρX,n(t) dt is continuous.

By definition of ρX,n (see (342)), there are polynomials A1, · · · , Adn−2 and B1, · · · , Bdn
in 2n variables

such that

ρX,n(t) =

∑dn−2
j=1 Aj(XXX ) tj

cn +
∑dn

j=1 Bj(XXX ) tj
(593)

where cn :=
∏n

k=1 k! (we are subsuming the 1/2 factor in (342) in the numerator, so we have the equality

δX,n(t) = cn +
∑dn

j=1 Bj(XXX )tj). Being polynomials, each of the Aj and the Bℓ is continuous over R
2n. Then,

by the continuous mapping theorem, we have the almost-sure convergences

Aj

(
µ(m)

)
→ Aj(XXX ) and Bℓ

(
µ(m)

)
→ Bℓ(XXX ) (594)

as m→ ∞ for each 1 ≤ j ≤ dn − 2 and 1 ≤ ℓ ≤ dn. Denote

A(XXX ) := (Aj(XXX ))1≤j≤dn−2 , (595)

B(XXX ) := (Bj(XXX ))1≤j≤dn
. (596)

We show next that the there is an open set O ⊂ Rdn containing the point B(XXX ) such that the mapping
f : Rdn−2 ×O → R defined by

f(p1, · · · , pdn−2, q1, · · · , qdn
) :=

∫ ∞

0

∑dn−2
j=1 pjt

j

cn +
∑dn

j=1 qjt
j
dt (597)

is continuous at the point (A(XXX ), B(XXX )). To this end, we shall show first that the mapping in (597) is
well-defined on an open neighborhood of (A(XXX ), B(XXX )). In other words, the denominator of the integrand

t 7→ cn +
∑dn

j=1 qjt
j cannot have a root t ∈ [0,∞) for any q ∈ O, and the rational function integrand has to

be integrable. For integrability, we will restrict the set O to contain only points having qdn
> 0, so showing

that the integrand’s denominator is strictly positive over t ∈ [0,∞) will be enough to deduce integrability
in (597).

We consider the subset G ⊂ Rdn defined by

G :=

{
g ∈ Rdn ; gdn

> 0, and

dn∑

ℓ=1

gjt
j > −cn for every t ≥ 0

}
(598)

where in this definition and the subsequent argument we set g = (g1, · · · , gdn
)
T
. Note that B(XXX ) ∈ G.

Indeed, since X is continuous, Bdn
(XXX ) = detMX,n > 0; similarly, for every t ∈ [0,∞), continuity of√

tX + N implies that detM√
tX+N > 0 (recall that cn +

∑dn

j=1 Bj(XXX )tj = detM√
tX+N ). We show that

G is an open set. Fix g ∈ G and ε1 ∈ (0, gdn
) . We have that the polynomial

∑dn

j=1(gj − ε1)t
j is eventually

increasing and approaches infinity as t→ ∞. Let t0 > 1 be such that for every t > t0 we have

dn∑

ℓ=1

(gj − ε1)t
j > −cn. (599)
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Being continuous, the polynomial
∑dn

j=1 gjt
j attains its minimum over the compact set [0, t0]. Let s denote

this minimum, and note that s > −cn. Let ε ∈ (0, 1) be defined by

ε :=
1

2
min

(
ε1,

(s+ cn)(t0 − 1)

t0(t
dn

0 − 1)

)
. (600)

As ε < ε1, inequality (599) yields that for every t > t0

dn∑

j=1

(gj − ε)tj > −cn. (601)

In addition, for any t ∈ [0, t0],

dn∑

j=1

(gj − ε)tj =

dn∑

j=1

gjt
j − ε

dn∑

j=1

tj ≥ s− ε

dn∑

j=1

tj0 > s− (s+ cn)(t0 − 1)

t0(t
dn

0 − 1)

dn∑

j=1

tj0 = s− (s+ cn) = −cn. (602)

Thus, combining (601) and (602) we obtain

dn∑

j=1

(gj − ε)tj > −cn (603)

for every t ∈ [0,∞). Hence, for any (δj)1≤j≤dn
=: δ ∈ Rdn such that ‖δ‖2 < ε, we have that for all t ∈ [0,∞)

dn∑

j=1

(gj − δj)t
j ≥

dn∑

j=1

(gj − ‖δ‖2)tj ≥
dn∑

j=1

(gj − ε)tj > −cn. (604)

In other words, the open ball {q ∈ R2n ; ‖q − g‖ < ε} lies within G. This completes the proof that G is
open. Then, the function f given by (597) is well-defined on the open set Rdn−2 ×G. We will replace G with
an open box O ⊂ G to simplify the notation for the proof of continuity of f.

By openness of G, there is an η1 ∈ (0, Bdn
(XXX )) such that the open box

O1 :=

dn∏

j=1

(Bj(XXX )− η1, Bj(XXX ) + η1) ⊂ G (605)

contains B(XXX ). Since O1 ⊂ G, we have by the definition of G in (598) that for any g ∈ O1 the lower bound

cn +

dn∑

ℓ=1

gℓt
ℓ > 0 (606)

holds for every t ≥ 0. In particular, with η := η1/2, the set

O :=

dn∏

j=1

(Bj(XXX )− η,Bj(XXX ) + η) ⊂ O1 ⊂ G (607)

is an open set containing B(XXX ), and the point (Bj(XXX ) − η)1≤j≤2n lies inside G. Then, the function f :
Rdn−2 ×O → R given by (597) is well-defined, and for any g ∈ O we have the lower bound (over t ∈ [0,∞))

cn +

dn∑

ℓ=1

gℓt
ℓ ≥ cn +

dn∑

ℓ=1

(Bℓ(XXX )− η)tℓ > 0. (608)

From (608), Lebesgue’s dominated convergence shows continuity of f at (A(XXX ),B(XXX )), as follows.
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Let w := (u,v) ∈ Rdn−2 ×O be such that ‖w‖2 < η. The integrand in f at (A(XXX ),B(XXX ))− (u,v) may
be bounded as

∣∣∣∣∣

∑dn−2
j=1 (Aj(XXX )− uj)t

j

cn +
∑dn

ℓ=1(Bℓ(XXX )− vℓ)tℓ

∣∣∣∣∣ =

∣∣∣
∑dn−2

j=1 (Aj(XXX )− uj)t
j
∣∣∣

cn +
∑dn

ℓ=1(Bℓ(XXX )− vℓ)tℓ
≤

∑dn−2
j=1 (|Aj(XXX )|+ η)tj

cn +
∑dn

ℓ=1(Bℓ(XXX )− η)tℓ
. (609)

The bound in (609) is uniform in w, and the upper bound is integrable over [0,∞) as the denominator’s
degree exceeds that of the numerator by at least 2 and the denominator is strictly positive by (608). Hence,
by Lebesgue’s dominated convergence

lim
‖w‖→0

f ((A(XXX ),B(XXX ))−w) = f (A(XXX ),B(XXX )) , (610)

i.e., f is continuous at (A(XXX ),B(XXX )), as desired. Denote

A(m) :=
(
Aj(µ

(m))
)
1≤j≤dn−2

, (611)

B(m) :=
(
Bℓ(µ

(m))
)
1≤ℓ≤dn

. (612)

We have the formulas

f(A(m),B(m)) =

∫ ∞

0

ρUm,n(t) dt (613)

and

f(A(XXX ),B(XXX )) =

∫ ∞

0

ρX,n(t) dt. (614)

Since (A(m),B(m)) → (A(XXX ),B(XXX )) almost surely, continuity of f at (A(XXX ),B(XXX )) implies by the contin-
uous mapping theorem that

f(A(m),B(m)) → f(A(ν),B(ν)) (615)

almost surely as m→ ∞, i.e., (590) holds.
Now, for the convergence of the logarithmic part, recall that we have the almost sure convergence

detMUm,n = Bdn
(µ(m)) → Bdn

(XXX ) = detMX,n (616)

as m → ∞. As the mapping R>0 → R defined by q 7→ log q is continuous, the continuous mapping theorem
yields that

log detMUm,n → log detMX,n (617)

almost surely as m→ ∞. Combining (615) and (617), we obtain that

ĥn (Sm) → hn(X) (618)

almost surely as m→ ∞. Finally, (347) follows from (618) by Theorem 32.

J.2 Proof of Corollary 49: Consistency of the Mutual Information Estimator

Denote Sm = {(Xj, Yj)}j∈[m], and consider the empirical measure

P̂m(x) :=
∑

j∈[m]

δx(Xj)

m+ 1
. (619)

Let Dm be the event that for each x ∈ supp(X) there is a subset of indices Jx ⊂ [m] of size at least n + 1
such that: i) Xj = x for each j ∈ Jx, and ii) the Yj , for j ∈ Jx, are distinct. If Dm occurs, then we may
write

În(Sm) = ĥn(Am)−
∑

x∈supp(X)

P̂m(x) ĥn(Bm,x), (620)
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where Am := {Yj}j∈[m] and Bm,x := {Yj ; j ∈ [m], Xj = x}. By the assumption of continuity of Y, it holds
with probability 1 that the Yj , for j ∈ N, are all distinct. In addition, we have that PX(x) > 0 for each
x ∈ supp(X). Therefore, P (Dm) → 1 as m→ ∞. Note that D0 ⊂ D1 ⊂ · · · .

Let C be the event that limm→∞ ĥn(Am) = hn(Y ) and, for each x ∈ supp(X), limm→∞ ĥn(Bm,x) =
hn(Y

(x)). By Theorem 48 and finiteness of supp(X), for each integer m′ ≥ (n + 1)|supp(X)|, we have that

P (C | Dm′) = 1. Let F be the event that the empirical measure P̂m converges to PX , i.e., that for each

x ∈ supp(X) the limit P̂m(x) → PX(x) holds as m → ∞. By the strong law of large numbers, P (F) = 1.
Therefore,

P
(

lim
m→∞

În(Sm) = I(X ;Y )
)
≥ P (C ∩ F ∩Dm′) ≥ P (F) + P (C ∩Dm′)− 1 = P (Dm′). (621)

Taking m′ → ∞, we deduce that În(Sm) → I(X ;Y ) almost surely.

Appendix K Proofs of Subsection 11.3: Sample Complexity

K.1 Proof of Proposition 50: Differential Entropy

Suppose supp(X) ⊂ [p, q] ⊂ (0,∞), and write S = {Xj}mj=1; note that we may assume, without loss of
generality, that X is strictly positive because hn is shift-invariant. We use the same notation in Appendix J.
In particular, Xk = E[Xk], and XXX = (X1, · · · ,X2n)

T . Let U ∼ Unif(S). Let Em be the event that X1, · · · , Xm

are distinct. From equations (588) and (589), if m > n and Em holds, then we have that

ĥn(S)− hn(X) =
1

2dn
log

detMU,n

detMX,n
+

∫ ∞

0

ρU,n(t) − ρX,n(t) dt. (622)

By the assumption of continuity of X, we have that P (Em) = 1 for every m. Therefore, for the purpose of
proving a sample complexity bound, we may assume that m > n and that Em occurs.

We will consider the determinant part and the integral part in (622) separately, but the proof technique
will be the same. Let Aj and Bℓ be the polynomials as defined by equation (593) in Appendix J, so

ρX,n(t) =

∑dn−2
j=1 Aj(XXX ) tj

cn +
∑dn

j=1 Bj(XXX ) tj
(623)

where cn :=
∏n

k=1 j!. We split each of the polynomials Aj and Bℓ into a positive part and a negative

part. More precisely, we collect the terms in Aj that have positive coefficients into a polynomial A
(+)
j , and

the terms in Aj with negative coefficients into a polynomial −A(−)
j (so A

(−)
j has positive coefficients, and

Aj = A
(+)
j −A(−)

j ). Define B
(+)
ℓ and B

(−)
ℓ from Bℓ similarly. By positivity of X, each moment Xk is (strictly)

positive. Then, we may write

ρX,n(t) =
fX(t)− gX(t)

uX(t)− vX(t)
(624)

with the polynomials in t

fX(t) :=

dn−2∑

j=1

A
(+)
j (XXX )tj (625)

gX(t) :=

dn−2∑

j=1

A
(−)
j (XXX )tj (626)

uX(t) := cn +

dn∑

ℓ=1

B
(+)
ℓ (XXX )tℓ (627)

vX(t) :=

dn∑

ℓ=1

B
(−)
ℓ (XXX )tℓ, (628)
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having all non-negative coefficients. We note that we have suppressed the dependence on n in the notation
used for these polynomials for readability. For q ∈ {f, g, u, v}, let qU be the random variable whose value is
what is obtained via qX when the moments of X are replaced with the sample moments obtained from the
samples S, e.g.,

fU (t) :=

dn−2∑

j=1

A
(+)
j

(∑m
i=1Xi

m
, · · · ,

∑m
i=1X

2n
i

m

)
tj . (629)

Note that uU (t) − vU (t) = detM√
tU+N,n > 0, where N ∼ N (0, 1) is independent of X,X1, · · · , Xm. Then

the function

ρU,n(t) =
fU (t)− gU (t)

uU (t)− vU (t)
(630)

is well-defined over t ∈ [0,∞). By the homogeneity properties proved in Theorem 18, we know that the total
degree of Aj is at most 2j + 2, and the total degree of Bℓ is at most 2ℓ. Therefore, for any η ∈ (0, 1) and
(ξ1, · · · , ξ2n) ∈ R2n

≥0, we have the inequalities

(1 − η)2j+2A
(±)
j (ξ1, · · · , ξ2n) ≤ A

(±)
j ((1− η)ξ1, · · · , (1− η)ξ2n) (631)

A
(±)
j ((1 + η)ξ1, · · · , (1 + η)ξ2n) ≤ (1 + η)2j+2A

(±)
j (ξ1, · · · , ξ2n) (632)

(1− η)2ℓB
(±)
ℓ (ξ1, · · · , ξ2n) ≤ B

(±)
ℓ ((1 − η)ξ1, · · · , (1 − η)ξ2n) (633)

B
(±)
ℓ ((1 + η)ξ1, · · · , (1 + η)ξ2n) ≤ (1 + η)2ℓB

(±)
ℓ (ξ1, · · · , ξ2n) (634)

for every 1 ≤ j ≤ dn − 2 and 1 ≤ ℓ ≤ dn.
For each η ∈ (0, 1), we denote the event

An,η(S) :=
{
1− η ≤

∑m
i=1X

k
i

mXk
≤ 1 + η for every k ∈ [2n]

}
, (635)

Hoeffding’s inequality yields that, for any z > 0 and 1 ≤ k ≤ 2n,

P

(∣∣∣∣∣Xk − 1

m

m∑

i=1

Xk
i

∣∣∣∣∣ ≥ z

)
≤ 2e−2mz2/(qk−pk)2 . (636)

Setting z = ηXk ≥ ηpk > 0 for η ∈ (0, 1) yields that

P

(
(1 − η)Xk <

1

m

m∑

i=1

Xk
i < (1 + η)Xk

)
≥ 1− 2e−2mη2/((q/p)k−1)

2

. (637)

Therefore, the union bound yields that

P (An,η(S)) ≥ 1− 4ne−2mη2/((q/p)2n−1)
2

. (638)

If An,η(S) occurs, we show a bound on the estimation error that is linear in η

ĥn(S)− hn(X) = OX,n(η), (639)

independent of the number of samples m, for all small enough η. Then, we choose η to be linear in the error
ε to conclude the proof.

We may bound ρU,n(t) (see (630)) via the bounds in (631)–(634) under the assumption that An,η(S)
occurs. If (1 − η)Xk ≤ 1

m

∑m
i=1X

m
i ≤ (1 + η)Xk holds for every 1 ≤ k ≤ 2n, then by (631)–(634) we have

that for every t ≥ 0 and η ∈ (0, 1)

(1− η)2fX((1− η)2t)− (1 + η)2gX((1 + η)2t)

uX((1 + η)2t)− vX((1 − η)2t)
≤ fU (t)− gU (t)

uU (t)− vU (t)
= ρU,n(t). (640)
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For an analogous upper bound, we first verify the positivity

uX((1 − η)2t)− vX((1 + η)2t) > 0 (641)

for every small enough η. Let

µX := sup
t∈[0,∞)

vX(t)

uX(t)
. (642)

We show that µX < 1. We have the limit

ξX := lim
t→∞

vX(t)

uX(t)
=
B

(−)
dn

(XXX )

B
(+)
dn

(XXX )
. (643)

Recall that B
(+)
dn

(XXX ) − B
(−)
dn

(XXX ) = Bdn
(XXX ) = detMX,n > 0 and both B

(+)
dn

(XXX ) and B
(−)
dn

(XXX ) are non-

negative, hence B
(+)
dn

(XXX ) > 0. Then, ξX < 1. Thus, there is a t0 ≥ 0 such that vX(t)/uX(t) < (1+ ξX)/2 < 1
whenever t > t0. Further, by the extreme value theorem, there is a t1 ∈ [0, t0] such that vX(t)/uX(t) ≤
vX(t1)/uX(t1) < 1 for every t ∈ [0, t0]. Therefore, µX ≤ max((1 + ξX)/2, vX(t1)/uX(t1)) < 1, as desired.
Note that if µX = 0 then vX ≡ 0 identically, in which case (641) trivially holds by positivity of uX . So, for
the purpose of showing (641), it suffices to consider the case µX ∈ (0, 1). Denote

ν :=

(
1 + η

1− η

)2

. (644)

Now, since vX is a polynomial of degree at most dn, we have that vX(ατ) ≤ αdnvX(τ) for every α ≥ 1 and

τ ≥ 0. Therefore, for every 1 ≤ ν < µ
−1/dn

X and t ≥ 0, we have that

vX((1 + η)2t)

uX((1− η)2t)
≤
(
1 + η

1− η

)2dn

· vX((1− η)2t)

uX((1 − η)2t)
≤ νdnµX < 1, (645)

i.e., inequality (641) holds. Therefore, for every 1 ≤ ν < µ
−1/dn

X (if µX = 0, we allow 1 ≤ ν < ∞),
inequalities (631)–(634) imply the bound

ρU,n(t) =
fU (t)− gU (t)

uU (t)− vU (t)
≤ (1 + η)2fX((1 + η)2t)− (1− η)2gX((1 − η)2t)

uX((1− η)2t)− vX((1 + η)2t)
. (646)

Combining (640) and (646), then integrating with respect to t over [0,∞) and performing a change of
variables from t to (1− η)2t, we obtain the bounds

∫ ∞

0

fX(t)− νgX(νt)

uX(νt)− vX(t)
dt ≤

∫ ∞

0

ρU,n(t) dt ≤
∫ ∞

0

νfX(νt)− gX(t)

uX(t)− vX(νt)
dt. (647)

Next, we further develop these bounds. For any s ∈ (0, 1), denote

νX,n,s :=

(
1− sµX

1− s

)1/dn

. (648)

Consider the functions

ϕX(t; ν) :=
uX(t)− vX(t)

uX(t)− vX(νt)
, (649)

ψX(t; ν) :=
uX(t)− vX(t)

uX(νt)− vX(t)
. (650)

We show in Appendix K.2 that, for any s ∈ (0, (1− µX)/(1 + µX)) and 1 ≤ ν ≤ νX,n,s, the uniform bounds

1− s ≤ ψX(t; ν) ≤ 1 ≤ ϕX(t; ν) ≤ 1 + s (651)
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hold over t ∈ [0,∞). Fix s ∈ (0, (1− µX)/(1 + µX)) and 1 ≤ ν ≤ νX,n,s.
Now, the integrand in the upper bound in (647) can be rewritten as

νfX(νt)− gX(t)

uX(t)− vX(νt)
= ϕX(t; ν)

(
fX(t)− gX(t)

uX(t)− vX(t)
+
νfX(νt)− fX(t)

uX(t)− vX(t)

)
. (652)

The integrand in the lower bound in (647) can be rewritten as

fX(t)− νgX(νt)

uX(νt)− vX(t)
= ψX(t; ν)

(
fX(t)− gX(t)

uX(t)− vX(t)
+
gX(t)− νgX(νt)

uX(t)− vX(t)

)
. (653)

By the bounds in (651), we have that for every t ≥ 0

0 ≤ ϕX(t; ν)− 1 ≤ s. (654)

Hence, by non-negativity of fX and gX , we deduce

(ϕX(t; ν) − 1) · fX(t)− gX(t)

uX(t)− vX(t)
≤ s · fX(t)

uX(t)− vX(t)
, (655)

i.e.,

ϕX(t; ν) · fX(t)− gX(t)

uX(t)− vX(t)
≤ fX(t)− gX(t)

uX(t)− vX(t)
+ s · fX(t)

uX(t)− vX(t)
. (656)

In addition, since fX(νt) ≤ νdn−2fX(t) over t ∈ [0,∞), inequality (654) implies that

ϕX(t; ν) · νfX(νt)− fX(t)

uX(t)− vX(t)
≤ (1 + s)(νdn−1 − 1)fX(t)

uX(t)− vX(t)
. (657)

Therefore, applying inequalities (656) and (657) in formula (652), we deduce in view of the upper bound
in (647) the inequality

∫ ∞

0

ρU,n(t)− ρX,n(t) dt ≤
(
(1 + s)νdn−1 − 1

) ∫ ∞

0

fX(t)

uX(t)− vX(t)
dt. (658)

Similarly, we derive a lower bound on (653). By (651), we have that for every t ≥ 0

s ≥ 1− ψX(t; ν) ≥ 0. (659)

Hence, by non-negativity of fX and gX ,

s · fX(t)

uX(t)− vX(t)
≥ (1− ψX(t; ν))

fX(t)− gX(t)

uX(t)− vX(t)
, (660)

i.e.,

ψX(t; ν) · fX(t)− gX(t)

uX(t)− vX(t)
≥ fX(t)− gX(t)

uX(t)− vX(t)
− s · fX(t)

uX(t)− vX(t)
. (661)

In addition, from ψX(t; ν) ≤ 1 ≤ ν and gX(νt) ≤ νdn−2gX(t) for t ≥ 0, we deduce

ψX(t; ν) · gX(t)− νgX(νt)

uX(t)− vX(t)
≥ ψX(t; ν) · (1− νdn−1)gX(t)

uX(t)− vX(t)
≥
(
1− νdn−1

) gX(t)

uX(t)− vX(t)
. (662)

Therefore, applying inequalities (661) and (662) in formula (653), the lower bound in (647) yields bound

∫ ∞

0

ρU,n(t)− ρX,n(t) dt ≥ −s
∫ ∞

0

fX(t)

uX(t)− vX(t)
dt−

(
νdn−1 − 1

) ∫ ∞

0

gX(t)

uX(t)− vX(t)
dt. (663)

In particular, (663) implies that

∫ ∞

0

ρU,n(t)− ρX,n(t) dt ≥ −
(
νdn−1 − (1− s)

) ∫ ∞

0

fX(t) + gX(t)

uX(t)− vX(t)
dt. (664)
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Now, note that (1 + s)νdn−1 − 1 ≥ νdn−1 − (1− s). Therefore, combining the upper bound in (658) and the
lower bound in (664), we deduce that

∣∣∣∣
∫ ∞

0

ρU,n(t)− ρX,n(t) dt

∣∣∣∣ ≤
(
(1 + s)νdn−1 − 1

) ∫ ∞

0

fX(t) + gX(t)

uX(t)− vX(t)
dt. (665)

The upper bound in (665) may be made as small as needed by choosing a small s then choosing a small ν.
The second part of the proof, given in Appendix K.3, derives the following error bound for estimating

log detMX,n from samples. If B
(−)
dn

(XXX ) > 0, we denote

τX,n :=

(
B

(+)
dn

(XXX )/B
(−)
dn

(XXX ) + 1

2

)1/(n+1)

∈ (1,∞) (666)

and

ηX,n := min

(
1

2
,
τX,n − 1

τX,n + 1

)
∈ (0, 1/2]. (667)

If B
(−)
dn

(XXX ) = 0, then we set τX,n = ∞ and ηX,n = 1/2. We show that for all η ∈ (0, ηX,n), if An,η(S) holds,
then we have the bound ∣∣∣∣

1

2dn
log

detMU,n

detMX,n

∣∣∣∣ ≤
6η

n
·
B

(+)
dn

(XXX ) +B
(−)
dn

(XXX )

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )
. (668)

To finish the proof, we choose η so that the desired accuracy is achieved with high probability. Recall
from (638) that

P (An,η(S)) ≥ 1− 4ne−mη2αX,n (669)

where we denote the constant

αX,n := 2 ·
((

q

p

)2n

− 1

)−2

. (670)

In addition, from (665) and (668), we know that if s ∈ (0, (1− µX)/(1 + µX)), ν ∈ [1, νX,n,s], η ∈ (0, ηX,n),
and An,η(S) occurs, then

∣∣∣ĥn(S) − hn(X)
∣∣∣ ≤ η · βX,n +

(
(1 + s)νdn−1 − 1

)
· γX,n (671)

where we denote the constants

βX,n :=
6

n
·
B

(+)
dn

(XXX ) +B
(−)
dn

(XXX )

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )
, (672)

γX,n :=

∫ ∞

0

fX(t) + gX(t)

uX(t)− vX(t)
dt. (673)

Consider the constant εX,n ∈ (0, 2γX,n] defined by

εX,n := 2γX,n · 1− µX

1 + µX
. (674)

Fix ε ∈ (0, εX,n), set s := ε/(6γX,n) ∈ (0, 1/3], denote

κX,n := min

(
3, τX,n,

(
1− sµX

1− s

)1/(2dn)

,
1 + ε/(2βX,n)

1− ε/(2βX,n)

)
, (675)

and fix η ∈ (0, (κX,n − 1)/(κX,n + 1)). Since κX,n ≤ 3, we obtain η < 1/2. In addition, κX,n ≤ τX,n,
hence η < (κX,n − 1)/(κX,n + 1) implies that η < ηX,n. Note that, for a ∈ (0, 1) and b > 1, the inequality
a ≤ (b− 1)/(b+ 1) is equivalent to (1 + a)/(1− a) ≤ b. By definition,

κX,n ≤
(
1− sµX

1− s

)1/(2dn)

, (676)
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hence we have

(1+s)νdn = (1+s)

(
1 + η

1− η

)2d

< (1+s)κ2dX,n ≤ (1+s)· 1− sµX

1− s
≤ 1 + s

1− s
≤ 1 + s+ s(1− 3s)

1− s
= 1+3s. (677)

In addition, since

κX,n ≤ 1 + ε/(2βX,n)

1− ε/(2βX,n)
, (678)

and since we assume η < (κX,n − 1)/(κX,n + 1), we deduce the inequality η < ε/(2βX,n). Applying the two
inequalities η < ε/(2βX,n) and (1 + s)νdn ≤ 1 + 3s (see (677)) into inequality (671), we conclude that

∣∣∣ĥn(S)− hn(X)
∣∣∣ ≤ η · βX,n +

(
(1 + s)νdn−1 − 1

)
· γX,n ≤ ε

2
+
ε

2
= ε (679)

whenever An,η(S) occurs.
Now, fix δ ∈ (0, 1/(4n)). Set

η :=
1

2
· κX,n − 1

κX,n + 1
. (680)

We show that η ≥ εcX,n, where we denote the constant cX,n by

cX,n := min

(
1

8γX,n
,

τX,n − 1

4γX,n(τX,n + 1)
,

1− µX

72γX,ndn
,

1

4βX,n

)
. (681)

In this definition of cX,n, the term involving τX,n is removed if τX,n = ∞. We assume that

m ≥
2/(c2X,nαX,n)

ε2
log

1

δ
. (682)

From η ≥ εcX,n and (682), it follows that the probability that the event An,η(S) does not occur is bounded
as

P (An,η(S)c) ≤ 4ne−mη2αX,n ≤ δ. (683)

Note that this would conclude the proof, as then we would have that

P
(∣∣∣ĥn(S) − hn(X)

∣∣∣ ≤ ε
)
≥ P

(∣∣∣ĥn(S) − hn(X)
∣∣∣ ≤ ε

∣∣∣ An,η(S)
)
P (An,η(S)) = P (An,η(S)) > 1−δ. (684)

The rest of the proof is devoted to showing that η ≥ εcX,n holds.
Let ρ = (1− µX)/(6dn). We will show that

(
1− sµX

1− s

)1/(2dn)

≥ 1 + sρ

1− sρ
. (685)

Inequality (685) is equivalent to

(1− sµX)(1 − sρ)2dn ≥ (1 + ρs)2dn(1 − s). (686)

By Bernoulli’s inequality, since 0 ≤ sρ ≤ 1, we have that (1− sρ)2dn ≥ 1− 2dnρs. In addition, the inequality
1 + 2az ≥ eaz ≥ (1 + a)z for a, z ≥ 0 satisfying az ≤ log 2 implies, in view of 2dnρs ≤ 1/9 < log 2, that

1 + 4dnρs ≥ (1 + ρ)2dn . (687)

Therefore, to show (686), it suffices to show that

(1− sµX)(1 − 2dnρs) ≥ (1 + 4dnρs)(1− s). (688)

Now, using the definition ρ = (1− µX)/(6dn), inequality (688) follows as

(1− sµX)(1 − 2dnρs) = (1 − sµX)(1− s(1− µX)/3) = (1 + 2(1− µX)s/3)(1− s) + s2(1− µX)(µX + 2)/3

≥ (1 + 2(1− µX)s/3)(1− s) = (1 + 4dnρs)(1− s). (689)
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Since (688) holds, we conclude that inequality (685) holds.
Now, by the definition of κX,n in (675) there are four possible values κX,n can take. First, if κX,n = 3,

then

η =
1

4
= ε · 1

4ε
≥ ε · 1

8γX,n
≥ εcX,n (690)

since ε < εX,n ≤ 2γX,n. Now, if κX,n = τX,n (so B
(−)
dn

(XXX ) > 0), then

η =
1

2
· τX,n − 1

τX,n + 1
≥ ε

4γX,n
· τX,n − 1

τX,n + 1
(691)

since ε < 2γX,n. Next, suppose that

κX,n =

(
1− sµX

1− s

)1/(2dn)

. (692)

By (685) and (692), we deduce that

κX,n ≥ 1 + sρ

1− sρ
. (693)

Recall that, for 0 < a < 1 < b, the inequalities (1 + a)/(1 − a) ≥ b and (b − 1)/(b + 1) ≥ a are equivalent.
Therefore, the definition of η in (680) yields from (693) that η ≥ sρ/2. Plugging in the definitions of s and
ρ, we conclude that

η ≥ ε · 1− µX

72γX,ndn
≥ εcX,n. (694)

Finally, when

κX,n =
1 + ε/(2βX,n)

1− ε/(2βX,n)
, (695)

the definition of η implies that η ≥ ε/(4βX,n) ≥ εcX,n. Combining these four cases, we conclude that we
must have η ≥ εcX,n independently of the value of κX,n. The proof is thus complete.

K.2 Uniform Bounds on ϕX and ψX : Inequalities (651)

Being polynomials of degree at most dn with non-negative coefficients, the functions uX and vX satisfy
uX(νt) ≤ νdnuX(t) and vX(νt) ≤ νdnvX(t) for every ν ≥ 1 and t ≥ 0. Note also that both uX and vX are
nondecreasing. In addition, we have vX(t) < uX(t) for every t ≥ 0, because uX(t)−vX(t) = detM√

tX+N,n >
0. We have also shown that µX < 1, where µX is defined in (642) as

µX := sup
t∈[0,∞)

vX(t)

uX(t)
. (696)

These facts will be enough to deduce the bounds in (651).
We show first the bounds on ϕX in (651). It suffices to consider the case µX > 0, for otherwise vX

vanishes identically and ϕX ≡ 1 identically. We show that for every s > 0 and 1 ≤ ν ≤ ν′X,n,s, where

ν′X,n,s := ((1/s+ 1/µX)/(1/s+ 1))
1/dn , the uniform bound 1 ≤ ϕX(t; ν) ≤ 1 + s in (651) holds.

Consider the lower bound on ϕX . For every 1 ≤ ν < µ
−1/dn

X , we have the uniform bound

vX(νt)

uX(t)
≤ νdnvX(t)

uX(t)
≤ νdnµX < 1 (697)

over t ∈ [0,∞). In particular,
uX(t)− vX(νt) > 0 (698)

for every 1 ≤ ν < µ
−1/dn

X and t ≥ 0. Since vX is nondecreasing, we conclude that ϕX(t; ν) = (uX(t) −
vX(t))/(uX(t) − vX(νt)) ≥ 1 whenever 1 ≤ ν < µ

−1/dn

X . Note that ν′X,n,s < µ
−1/dn

X for every s > 0 since
µX ∈ (0, 1).
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Next, we show the upper bound on ϕX . Fix s > 0 and ν ∈ [1, ν′X,n,s]. Since vX(t)/µX ≤ uX(t), we have
for every t ≥ 0 the bound

vX(νt) ≤ νdnvX(t) ≤ 1/s+ 1/µX

1/s+ 1
· vX(t) ≤ vX(t)/s+ uX(t)

1/s+ 1
= vX(t) +

uX(t)− vX(t)

1/s+ 1
. (699)

Rearranging (699), we obtain the bound

−1

1/s+ 1
≤ vX(t)− vX(νt)

uX(t)− vX(t)
. (700)

Adding 1 to both sides of (700) then inverting, we obtain ϕX(t; ν) ≤ 1 + s; for this step, we used the fact

that uX(t)− vX(νt) > 0, which follows by (698) since ν ≤ ν′X,n,s < µ
−1/dn

X .
Next, we prove the bounds on ψX in (651). We do not assume µX > 0. The upper bound ψX(t; ν) ≤ 1

follows for every ν ≥ 1 by monotonicity of uX . For the lower bound on ψX , we show that for every s ∈ (0, 1)
and 1 ≤ ν ≤ νX,n,s, where νX,n,s := ((1− sµX)/(1− s))1/dn , the uniform bound ψX(t; ν) ≥ 1− s holds over
t ∈ [0,∞). We have, for every s ∈ (0, 1) and ν ∈ [1, νX,n,s], the bound

uX(νt) ≤ νdnuX(t) ≤ 1− sµX

1− s
· uX(t) ≤ uX(t)− svX(t)

1− s
=
uX(t)− vX(t)

1− s
+ vX(t) (701)

over t ∈ [0,∞). Rearranging (701), we obtain ψX(t; ν) ≥ 1− s, as desired.
Finally, note that νX,n,s ≤ ν′X,n,s is equivalent to s ≤ (1− µX)/(1 + µX). This concludes the proof that,

for every s ∈ (0, (1− µX)/(1 + µX)) and ν ∈ [1, νX,n,s], the uniform bounds in (651)

1− s ≤ ψX(t; ν) ≤ 1 ≤ ϕX(t; ν) ≤ 1 + s (702)

hold over t ∈ [0,∞).

K.3 Error in Estimating log detMX,n: Inequality (668)

Recall that
detMX,n = Bdn

(XXX ) = B
(+)
dn

(XXX )−B
(−)
dn

(XXX ). (703)

We bound the error when estimating log detMX,n from the samples S. Denote the random vector µµµ :=(∑m
i=1 Xi

m , · · · ,
∑m

i=1 X2n
i

m

)
, and note that

detMU,n = Bdn
(µµµ) = B

(+)
dn

(µµµ)−B
(−)
dn

(µµµ). (704)

We assume that m > n. Let ηX,n be as defined by (666) and (667), and fix η ∈ (0, ηX,n). Then we show that
under An,η(S) ∣∣∣∣

1

2dn
log

detMU,n

detMX,n

∣∣∣∣ ≤
6η

n
·
B

(+)
dn

(XXX ) +B
(−)
dn

(XXX )

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )
. (705)

By (179) in Theorem 18, each term in the polynomials B
(±)
dn

is a product of at most n+1 monomials. Thus,

(1− η)n+1B
(±)
dn

(XXX ) ≤ B
(±)
dn

(µµµ) ≤ (1 + η)n+1B
(±)
dn

(XXX ). (706)

It suffices to consider the case when B
(−)
dn

is not the zero polynomial, for if B
(−)
dn

is the zero polynomial then
we obtain from (668) the bound

∣∣∣∣
1

2dn
log

detMU,n

detMX,n

∣∣∣∣ =
1

2dn

∣∣∣∣∣log
B

(+)
dn

(µµµ)

B
(+)
dn

(XXX )

∣∣∣∣∣ ≤
max (log(1 + η),− log(1− η))

n
=

− log(1 − η)

n
<

2η

n
(707)

where the last inequality follow because − log(1− z) < 2z for z ∈ (0, 1/2), which can be verified by checking

the derivative. Note that the bound 2η/n in (707) is stronger than the bound in (705). Assume that B
(−)
dn

does not vanish identically, so positivity of X yields that B
(−)
dn

(XXX ) > 0.
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From (706), we have that

log
B

(+)
dn

(XXX )− ν
n+1
2 B

(−)
dn

(XXX )

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )
+ (n+ 1) log(1− η) ≤ log

detMU,n

detMX,n
(708)

and

log
detMU,n

detMX,n
≤ log

B
(+)
dn

(XXX )− ν−
n+1
2 B

(−)
dn

(XXX )

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )
+ (n+ 1) log(1 + η) (709)

where we used our assumption that

ν
n+1
2 =

(
1 +

2

1/η − 1

)n+1

<
1

2

(
B

(+)
dn

(XXX )

B
(−)
dn

(XXX )
+ 1

)
<
B

(+)
dn

(XXX )

B
(−)
dn

(XXX )
. (710)

Now, for every (w, z, r) ∈ R3 such that w > z > 0 and w/z > r > 1, rearranging r + 1/r > 2 we have that

w − z/r

w − z
<

w − z

w − rz
. (711)

Setting (w, z, r) = (B
(+)
dn

(XXX ), B
(−)
dn

(XXX ), ν(n+1)/2), we obtain that

1 <
B

(+)
dn

(XXX )− ν−
n+1
2 B

(−)
dn

(XXX )

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )
<

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )

B
(+)
dn

(XXX )− ν
n+1
2 B

(−)
dn

(XXX )
. (712)

Therefore,

0 < log
B

(+)
dn

(XXX )− ν−
n+1
2 B

(−)
dn

(XXX )

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )
<

∣∣∣∣∣log
B

(+)
dn

(XXX )− ν
n+1
2 B

(−)
dn

(XXX )

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )

∣∣∣∣∣ . (713)

Applying (713) in (709) and combining that with (708), we obtain (since log(1 + η) < − log(1 − η)) the
bound ∣∣∣∣log

detMU,n

detMX,n

∣∣∣∣ ≤ log
B

(+)
dn

(XXX )−B
(−)
dn

(XXX )

B
(+)
dn

(XXX )− ν
n+1
2 B

(−)
dn

(XXX )
+ (n+ 1) log

1

1− η
. (714)

Now, we may write

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )

B
(+)
dn

(XXX )− ν
n+1
2 B

(−)
dn

(XXX )
=

(
1−

B
(−)
dn

(XXX )

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )

(
ν

n+1
2 − 1

))−1

. (715)

The proof of (705) is completed by showing that for (w, z, r) ∈ R3
>0 such that (1 + z)r < 1 + 1

2w we have

− log (1− w ((1 + z)r − 1)) ≤ (2w + 1)rz. (716)

Before showing that (716) holds, we note how it completes the proof. Setting

(w, z, r) =

(
B

(−)
dn

(XXX )

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )
,

2η

1− η
, n+ 1

)
, (717)

we obtain that

log
B

(+)
dn

(XXX )−B
(−)
dn

(XXX )

B
(+)
dn

(XXX )− ν
n+1
2 B

(−)
dn

(XXX )
≤
B

(+)
dn

(XXX ) +B
(−)
dn

(XXX )

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )
· (n+ 1) · 2η

1− η
(718)

since

ν
n+1
2 <

1

2

(
B

(+)
dn

(XXX )

B
(−)
dn

(XXX )
+ 1

)
. (719)
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Then − log(1 − η) < 2η yields from (714) and (718) that

1

2dn

∣∣∣∣log
detMU,n

detMX,n

∣∣∣∣ ≤
B

(+)
dn

(XXX ) +B
(−)
dn

(XXX )

B
(+)
dn

(XXX )−B
(−)
dn

(XXX )
· 2η

n(1− η)
+

2η

n
. (720)

Then (718) yields the desired inequality (668) as η ∈ (0, 1/2).
Finally, to see that (716) holds, we consider for fixed w, r > 0

f(z) := (2w + 1)rz + log (1− w ((1 + z)r − 1)) (721)

over 0 ≤ z < (1+1/(2w))1/r−1. Inequality (716) is restated as f(z) ≥ 0 for every 0 < z < (1+1/(2w))1/r−1,
which follows since f is continuous, f(0) = 0, f ′(0+) = (w + 1)r > 0, and

f ′(z) = (2w + 1)r − wr(1 + z)r−1

1− w((1 + z)r − 1)
> (2w + 1)r − wr(1 + z)r

1− w((1 + z)r − 1)
(722)

> (2w + 1)r − wr(1 + 1/(2w))

1− w((1 + 1/(2w))− 1)
= 0 (723)

for every 0 ≤ z < (1 + 1/(2w))1/r − 1.

K.4 Proof of Proposition 51: Mutual Information

Let {(Xj , Yj)}j∈N be i.i.d. samples drawn according to PX,Y . Denote Sm = {Xj}mj=1. By continuity of Y, we
may assume that all the Yj , for j ∈ N, are distinct. For each x ∈ supp(X), let Jx := {1 ≤ j ≤ m ; Xj = x}.
Let Dm be the event that, for every x ∈ supp(X), we have that |Jx| > n. We use Hoeffding’s inequality to
obtain a lower bound on the probability

P (Dm) = P

(
min

x∈supp(X)
|Jx| > n

)
. (724)

Let P̂m be the empirical measure: P̂m(x) := m−1
∑m

j=1 δx(Xj). Note that |Jx| = mP̂m(x).

Let x0 ∈ supp(X) be such that PX(x0) is minimal, set ζ := PX(x0)/2, and suppose m ≥ ζ−1n. Then,
the union bound and ζ ≤ PX(x)− ζ for each x ∈ supp(X) yield that

P

(
n ≥ min

x∈supp(X)
|Jx|

)
≤ P

(
mζ ≥ min

x∈supp(X)
|Jx|

)
≤

∑

x∈supp(X)

P (mζ ≥ |Jx|) (725)

≤
∑

x∈supp(X)

P (m(PX(x) − ζ) ≥ |Jx|) =
∑

x∈supp(X)

P
(
PX(x) − P̂m(x) ≥ ζ

)
. (726)

Since E[P̂m(x)] = PX(x) for each x ∈ supp(X), Hoeffding’s inequality yields that P
(
PX(x)− P̂m(x) ≥ ζ

)
≤

e−2ζ2m. Therefore,

P

(
n ≥ min

x∈supp(X)
|Jx|

)
≤ |supp(X)| · e−2ζ2m. (727)

In other words, for every m ≥ 2n/PX(x0), we have the bound

P (Dm) ≥ 1− |supp(X)| · e−mPX(x0)
2/2. (728)

Denote πX := 4/PX(x0)
2 and

δX,n := min

(
1

4|supp(X)| , e
−PX(x0)n/2

)
. (729)

We conclude from (728) that, for every δ ∈ (0, δX,n), if m ≥ πX log(1/δ) then P (Dm) > 1− δ/4.
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Consider the event Pm,ε that the empirical measure P̂m is pointwise ε-close to the true measure PX , i.e.,

Pm,ε :=

{
max

x∈supp(X)

∣∣∣P̂m(x) − PX(x)
∣∣∣ < ε

}
. (730)

By the union bound, we have that

P
(
Pc

m,ε

)
≤

∑

x∈supp(X)

P
(∣∣∣P̂m(x) − PX(x)

∣∣∣ ≥ ε
)
. (731)

By Hoeffding’s inequality, for each x ∈ supp(X), we have that

P
(∣∣∣P̂m(x)− PX(x)

∣∣∣ ≥ ε
)
≤ 2e−2mε2 . (732)

Therefore, we obtain the bound

P (Pm,ε) > 1− 2|supp(X)|e−2mε2 . (733)

In particular, if δ ∈ (0, 1/(4|supp(X)|)), then m ≥ (1/ε2) log(1/δ) implies P (Bm,ε) > 1− δ/2.
Recall that, if Dm occurs, then we may write

În(Sm) = ĥn(Am)−
∑

x∈supp(X)

P̂m(x) ĥn(Bm,x), (734)

where Am := {Yj}mj=1 and Bm,x := {Yj ; 1 ≤ j ≤ m,Xj = x}. Then,
∣∣∣În(Sm)− In(X ;Y )

∣∣∣ ≤
∣∣∣ĥn(Am)− hn(Y )

∣∣∣+
∑

x∈supp(X)

P̂m(x)
∣∣∣ĥn(Bm,x)− hn(Y

(x))
∣∣∣

+

(
max

x∈supp(X)

∣∣∣P̂m(x) − PX(x)
∣∣∣
) ∑

x∈supp(X)

|hn(Y (x))|. (735)

Denote HX,Y,n :=
∑

x∈supp(X) |hn(Y (x))|. Consider the events

Hx,ε :=
⋂

x∈supp(X)

{∣∣∣ĥn(Bm,x)− hn(Y
(x))
∣∣∣ < ε

3

}
(736)

H′
ε :=

{∣∣∣ĥn(Am)− hn(Y )
∣∣∣ < ε

3

}
. (737)

Set Hε :=
⋂

x∈supp(X) Hx,ε. From Theorem 48, we know that there is a constant CX,Y,n such that for every

small enough ε, δ > 0, if m ≥ (CX,Y,n/ε
2) log(1/δ) then P (Hx,ε | Dm) ≥ 1 − δ/(8|supp(X)|) for each

x ∈ supp(X) and P (H′
ε | Dm) > 1 − δ/8. Then, P (Hε ∩ H′

ε | Dm) ≥ 1 − δ/4. We conclude, possibly after
increasing CX,Y,n, that P (Hε ∩H′

ε ∩Dm) ≥ 1− δ/2. Also, P (Bm,ε/(2HX,Y,n)) > 1− δ/2. Then, P (Hε ∩ H′
ε ∩

Dm ∩Bm,ε/(2HX,Y,n)) ≥ 1− δ. But under the event Hε ∩ H′
ε ∩Dm ∩Bm,ε/(2HX,Y,n), we have the bound

∣∣∣În(Sm)− In(X ;Y )
∣∣∣ < ε, (738)

and the proof is complete.

Appendix L Algebraic Proof of Corollary 25

We provide here an alternative algebraic proof of the formulas an,dn−1
X = detMX,n and an,dn

X = 0 (see
equations (212)–(214) for the definition of these quantities). These equations were proved in Section 5 by
invoking that mmse(X, t) ∼ 1/t (as t→ ∞) for a continuous RV X. Ultimately, via Proposition 24, we have
shown that these formulas hold identically as polynomials in the symbols {Xj}2nj=1. The alternative proof
we present in this appendix directly derives this latter result by algebraic means without appealing to the
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MMSE asymptotic result. The point of including this alternative proof is that it might shed light on deriving
simple expressions for the other constants an,jX for 1 ≤ j ≤ dn− 2 and bn,ℓX for 2 ≤ ℓ ≤ dn− 1. See Remark 14

for the polynomial expressions of the an,jX .
We consider indeterminates R1, · · · ,R2n, which we think of as moments of a RV R. For a permutation

π ∈ S[n] and integers m ∈ N and {i1, · · · , im} ⊆ [n], it will be convenient to denote the products

QR(π; i1, · · · , im) :=
∏

k 6∈{i1,··· ,im}
Rk+π(k), (739)

and QR(π) :=
∏

k∈[n] Rk+π(k). We let T
(i,j)
n ⊂ S[n] denote the subset of permutations that send i to j, i.e.,

T (i,j)
n := {π ∈ S[n] ; π(i) = j}. (740)

Note that, for each fixed i ∈ [n], we have a partition

S[n] =
⋃

j∈[n]

T (i,j)
n . (741)

We will denote for i ∈ [n] and π ∈ S[n] the composition of permutations

πi := π ◦ (1 i). (742)

If i = 1, then πi = π. Further, for each i ∈ [n], as multiplication by (1 i) is an automorphism of S[n], the
mapping π 7→ πi is a bijection of S[n]. In addition, when i 6= 1,

sgn(πi) = −sgn(π). (743)

L.1 Leading Coefficients

We first show that the coefficient of tdn in FR,n(t) is R2 detMR,n, i.e., that

∑

i∈[n]

∑

π∈S[n]

sgn(π)Ri+1Rπ(i)+1QR(π; i) = R2 detMR,n. (744)

For each i ∈ [n] \ {1}, we have that

∑

π∈S[n]

sgn(π)Rπ(i)+1QR(π; i) =
∑

π∈S[n]

sgn(π)Rπ(i)+1Rπ(1)+1QR(π; 1, i) (745)

=
∑

π∈S[n]

sgn(πi)Rπi(i)+1Rπi(1)+1QR(πi; 1, i) (746)

= −
∑

π∈S[n]

sgn(π)Rπ(1)+1Rπ(i)+1QR(π; 1, i) (747)

= −
∑

π∈S[n]

sgn(π)Rπ(i)+1QR(π; i). (748)

Hence, ∑

π∈S[n]

sgn(π)Rπ(i)+1QR(π; i) = 0. (749)

Thus, only i = 1 could give a nonzero sum in the left hand side of (744). Furthermore, when i = 1 in (744),
we obtain the sum

∑

π∈S[n]

sgn(π)R2Rπ(1)+1QR(π; 1) = R2

∑

π∈S[n]

sgn(π)QR(π) = R2 detMR,n. (750)
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Thus, (744) follows. In view of equation (209) in Lemma 21, equation (744) yields that an,dn

R = 0. Next, we

apply similar bijectivity tricks to show that an,dn−1
R = detMR,n.

Via the application of Leibniz’s formula in equation (203), a preliminary formula for an,dn−1
R is as follows

an,dn−1
R = R2

∑

r∈[n]

∑

π∈S[n]

sgn(π)

(
r + π(r)

2

)
Rr+π(r)−2QR(π; r)

−
∑

(i,j)∈[n]2

∑

π∈T
(i,j)
n

∑

r 6=i

sgn(π)

(
r + π(r)

2

)
Ri+1Rj+1Rr+π(r)−2QR(π; i, r)

−
∑

(i,j)∈[n]2

∑

π∈T
(i,j)
n

sgn(π)QR(π; i)

((
i

2

)
Ri−1Rj+1 +

(
j

2

)
Ri+1Rj−1

)
, (751)

where we set Rℓ = 0 when ℓ < 0. We will deal with each of the three sums in this preliminary formula
separately; so, denote the three sums, in order, by S1,S2,S3 (where, for S1, we absorb the factor R2 inside
the sum), i.e., define

S1 :=
∑

r∈[n]

∑

π∈S[n]

sgn(π)

(
r + π(r)

2

)
R2Rr+π(r)−2QR(π; r), (752)

S2 := −
∑

(i,j)∈[n]2

∑

π∈T
(i,j)
n

∑

r 6=i

sgn(π)

(
r + π(r)

2

)
Ri+1Rj+1Rr+π(r)−2QR(π; i, r), (753)

S3 := −
∑

(i,j)∈[n]2

∑

π∈T
(i,j)
n

sgn(π)QR(π; i)

((
i

2

)
Ri−1Rj+1 +

(
j

2

)
Ri+1Rj−1

)
. (754)

Thus, an,dn−1
R = S1 +S2 +S3. We show that this coefficient is equal to detMR,n by showing that

S1 +S2 = detMR,n (755)

and that
S3 = 0. (756)

For i1, · · · , iℓ ∈ [n], let [n]i1,··· ,iℓ := [n] \ {i1, · · · , iℓ}.
For the first sum, S1, we partition [n]× S[n] into three parts as

[n]× S[n] =
(
{1} × T (1,1)

n

)
∪


{1} ×

⋃

j∈[n]1

T (1,j)
n


 ∪

(
[n]1 × S[n]

)
, (757)

and we let S1 = S1,1 +S1,2 +S1,3 be the ensuing decomposition, which we express next. For the first part
in (757), we obtain

S1,1 =
∑

π∈T
(1,1)
n

sgn(π)QR(π), (758)

whereas the second and third parts give

S1,2 =
∑

j∈[n]1

∑

π∈T
(1,j)
n

sgn(π)

(
j + 1

2

)
R2Rj−1QR(π; 1) (759)

and

S1,3 =
∑

(r,π)∈[n]1×S[n]

sgn(π)

(
r + π(r)

2

)
R2Rr+π(r)−2QR(π; r), (760)
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respectively. We will show that both S1,2 andS1,3 cancel out identically when summed with parts of the sum
S2. We also note that S1,1 provides part of the sum that will ultimately produce detMR,n; the remaining
part lies in S2, which we treat next.

Let
U (i,j)
n =

{
(i, j, π) ; π ∈ T (i,j)

n

}
. (761)

For the second sum, S2, we employ the partition

⋃

(i,j)∈[n]2

(
U (i,j)
n × [n]i

)
= p1 ∪ p2 ∪ p3 ∪ p4 (762)

where

p1 :=
⋃

j∈[n]

(
U (1,j)
n × [n]1

)
(763)

p2 :=
⋃

i∈[n]1

(
U (i,1)
n × {1}

)
(764)

p3 :=
⋃

(i,j)∈[n]1×[n]

(
U (i,j)
n × [n]1,i

)
(765)

p4 :=
⋃

(i,j)∈[n]21

(
U (i,j)
n × {1}

)
. (766)

We will denote the ensuing sums by S2,1,S2,2,S2,3,S2,4, which we express next. We will denote a generic

element ((i, j, π), r) ∈ U
(i,j)
n × [n]i as (i, j, π, r) for short. The p1-part yields

S2,1 = −
∑

(r,π)∈[n]1×S[n]

sgn(π)

(
r + π(r)

2

)
R2Rr+π(r)−2QR(π; r), (767)

the p2-part yields

S2,2 = −
∑

i∈[n]1

∑

π∈T
(i,1)
n

sgn(π)

(
π(1) + 1

2

)
R2Rπ(1)−1QR(π; 1), (768)

and the p3-part yields

S2,3 = −
∑

i∈[n]1

∑

r∈[n]1,i

∑

π∈S[n]

sgn(π)

(
r + π(r)

2

)
Ri+1Rπ(i)+1Rr+π(r)−2QR(π; i, r). (769)

We further partition the p4-part according to whether permutations fix 1, namely,

p4 = p4,1 ∪ p4,2 (770)

where

p4,1 := {(i, j, π, 1) ∈ p4 ; π(1) = 1} (771)

p4,2 := {(i, j, π, 1) ∈ p4 ; π(1) 6= 1} . (772)

We denote the ensuing sums by S2,4,1,S2,4,2. The p4,1-part gives

S2,4,1 = −
∑

(i,j)∈[n]21

∑

π∈T
(i,j)
n ∩T

(1,1)
n

sgn(π)Ri+1Rπ(i)+1QR(π; i, 1), (773)

whereas the p4,2-part gives

S2,4,2 = −
∑

(i,j,k)∈[n]31

∑

π∈T
(i,j)
n ∩T

(1,k)
n

sgn(π)

(
π(1) + 1

2

)
Ri+1Rπ(i)+1Rπ(1)−1QR(π; 1, i). (774)
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With this decomposition of an,dn−1
R at hand, we proceed to show that equations (755) and (756) hold by

showing that the following six equations hold. We will show that

S1,1 +S2,4,1 = detMR,n, (775)

S1,2 +S2,2 = 0, (776)

S1,3 +S2,1 = 0, (777)

S2,3 = 0, (778)

S2,4,2 = 0, (779)

S3 = 0. (780)

Summing (775)–(780) gives an,dn−1
R = detMR,n.

We first show that (775) holds. From (758), we have that

S1,1 =
∑

π∈T
(1,1)
n

sgn(π)QR(π). (781)

We show that S2,4,1 complements this summation to give detMR,n, i.e., that (775) holds. From the Leibniz
formula for the determinant, we have that

detMR,n =
∑

π∈S[n]

sgn(π)QR(π). (782)

From the partition S[n] =
⋃

i∈[n] T
(i,1)
n (similar to the partition in (741)), then, it suffices to show that

S2,4,1 =
∑

i∈[n]1

∑

π∈T
(i,1)
n

sgn(π)QR(π). (783)

We proceed to show that (783) holds. We employ a similar technique to how we showed (744). Fix i ∈ [n]1.
By the change of variables σ = πi (equivalently, π = σi, since (1 i)−1 = (1 i)) we have that

∑

j∈[n]1

∑

π∈T
(i,j)
n ∩T

(1,1)
n

sgn(π)Ri+1Rπ(i)+1QR(π; i, 1) =
∑

j∈[n]1

∑

σ∈T
(i,1)
n ∩T

(1,j)
n

sgn(σi)Ri+1Rσi(i)+1QR(σi; i, 1) (784)

= −
∑

j∈[n]1

∑

σ∈T
(i,1)
n ∩T

(1,j)
n

sgn(σ)Ri+σ(i)Rσ(1)+1QR(σ; i, 1) (785)

= −
∑

j∈[n]1

∑

σ∈T
(i,1)
n ∩T

(1,j)
n

sgn(σ)QR(σ) (786)

= −
∑

σ∈T
(i,1)
n

sgn(σ)QR(σ). (787)

Summing over all i ∈ [n]1 and noting the minus sign in the definition of S2,4,1 in (773), we obtain that (783)
holds. Hence, equation (775) holds. We now show that the other parts give a vanishing contribution, i.e.,
that (776)–(780) all hold.

Equations (776) and (777) follow from the expressions we we give in (759),(760),(767),(768). For (776),

we note that each j in the summand in (759) may be replaced with π(1) as π ∈ T
(1,j)
n . Then, as

⋃

j∈[n]1

T (1,j)
n =

⋃

i∈[n]1

T (i,1)
n (788)

are both partitions of the same set, namely, the set of permutations that do not fix 1, equations (759)
and (768) yield that S1,2 = −S2,2, i.e., (776) holds. For (777), the expressions in (760) and (767) show that
S1,3 = −S2,1, i.e., that (777) holds.
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Next, we show that (778) holds. Fix i ∈ [n]1 and r ∈ [n]1,i. We will show that the following sum vanishes

∑

π∈S[n]

sgn(π)

(
r + π(r)

2

)
Rπ(i)+1Rr+π(r)−2QR(π; i, r) = 0. (789)

As S2,3, according to equation (769), is a linear combination of such sums, we would obtain that S2,3 = 0,
i.e., that (778) holds. To show that (789) holds, we utilize that π 7→ πi is an automorphism of S[n], as follows.
We have that

∑

π∈S[n]

sgn(π)

(
r + π(r)

2

)
Rπ(i)+1Rr+π(r)−2QR(π; i, r)

=
∑

π∈S[n]

sgn(π)

(
r + π(r)

2

)
Rπ(i)+1Rr+π(r)−2Rπ(1)+1QR(π; 1, i, r) (790)

=
∑

π∈S[n]

sgn(πi)

(
r + πi(r)

2

)
Rπi(i)+1Rr+πi(r)−2Rπi(1)+1QR(πi; 1, i, r) (791)

= −
∑

π∈S[n]

sgn(π)

(
r + π(r)

2

)
Rπ(1)+1Rr+π(r)−2Rπ(i)+1QR(π; 1, i, r) (792)

= −
∑

π∈S[n]

sgn(π)

(
r + π(r)

2

)
Rr+π(r)−2Rπ(i)+1QR(π; i, r), (793)

so the vanishing in (789) holds. Hence, (778) holds.
Next, we show that (779) holds. We rewrite (774) as

S2,4,2 = −
∑

(i,j,k,ℓ)∈[n]41

∑

π∈T
(i,j)
n ∩T

(1,k)
n ∩T

(ℓ,1)
n

sgn(π)

(
k + 1

2

)
Ri+1Rj+1Rk−1Rℓ+1QR(π; 1, i, ℓ). (794)

We fix (j, k) ∈ [n]21 and show the vanishing of each of the following sums

∑

(i,ℓ)∈[n]21

Ri+1Rℓ+1

∑

π∈T
(i,j)
n ∩T

(1,k)
n ∩T

(ℓ,1)
n

sgn(π)QR(π; 1, i, ℓ) = 0. (795)

From (794), we may write S2,4,2 as a linear combination of such sums, so we would obtain that S2,4,2 = 0.
We show (795) next. We change variables as σ = π ◦ (i ℓ) in the inner sum in (795) to obtain that

∑

π∈T
(i,j)
n ∩T

(1,k)
n ∩T

(ℓ,1)
n

sgn(π)QR(π; 1, i, ℓ) =
∑

σ∈T
(ℓ,j)
n ∩T

(1,k)
n ∩T

(i,1)
n

sgn(σ ◦ (i ℓ))QR(σ ◦ (i ℓ); 1, i, ℓ) (796)

= −
∑

σ∈T
(ℓ,j)
n ∩T

(1,k)
n ∩T

(i,1)
n

sgn(σ)QR(σ; 1, i, ℓ). (797)

Multiplying by Ri+1Rℓ+1 then summing over (i, ℓ) ∈ [n]21, we obtain that the quantity on the left hand side
of (795) is equal to its negative. Hence (795) holds, and we obtain that S2,4,2 = 0.

Finally, we show that S3 = 0. We may write

S3 =−
∑

i∈[n]1

(
i

2

)
Ri−1

∑

π∈S[n]

sgn(π)Rπ(i)+1QR(π; i)−
∑

j∈[n]1

(
j

2

)
Rj−1

∑

π∈S[n]

sgn(π)Rπ−1(j)+1QR(π;π
−1(j)).

(798)

We will show that for each (i, j) ∈ [n]21,

∑

π∈S[n]

sgn(π)Rπ(i)+1QR(π; i) = 0 (799)

98



and ∑

π∈S[n]

sgn(π)Rπ−1(j)+1QR(π;π
−1(j)) = 0. (800)

Together, equations (799) and (800) imply in view of (798) that S3 = 0. To show that (799) holds, we apply
the automorphism π 7→ πi of S[n], from which we obtain

∑

π∈S[n]

sgn(π)Rπ(i)+1QR(π; i) =
∑

π∈S[n]

sgn(π)Rπ(i)+1Rπ(1)+1QR(π; 1, i) (801)

=
∑

π∈S[n]

sgn(πi)Rπi(i)+1Rπi(1)+1QR(πi; 1, i) (802)

= −
∑

π∈S[n]

sgn(π)Rπ(1)+1Rπ(i)+1QR(π; 1, i) (803)

= −
∑

π∈S[n]

sgn(π)Rπ(i)+1QR(π; i) (804)

and (799) follows. Now, we show that (800) reduces to (799) via the automorphism π 7→ π−1 of S[n]. First,
note that for any π ∈ S[n] we have

QR(π;π
−1(k1), · · · , π−1(kℓ)) = QR(π

−1; k1, · · · , kℓ). (805)

Hence, the left hand side of (800) may be rewritten as

∑

π∈S[n]

sgn(π)Rπ−1(j)+1QR(π;π
−1(j)) =

∑

π∈S[n]

sgn(π)Rπ−1(j)+1Rπ−1(1)+1QR(π;π
−1(j), π−1(1)) (806)

=
∑

π∈S[n]

sgn(π)Rπ−1(j)+1Rπ−1(1)+1QR(π
−1; j, 1). (807)

Further, the bijection π 7→ π−1 yields that

∑

π∈S[n]

sgn(π)Rπ−1(j)+1Rπ−1(1)+1QR(π
−1; j, 1) =

∑

π∈S[n]

sgn(π−1)Rπ(j)+1Rπ(1)+1QR(π; j, 1) (808)

=
∑

π∈S[n]

sgn(π)Rπ(j)+1Rπ(1)+1QR(π; j, 1). (809)

Combining (807) and (809), we get that

∑

π∈S[n]

sgn(π)Rπ−1(j)+1QR(π;π
−1(j)) =

∑

π∈S[n]

sgn(π)Rπ(j)+1Rπ(1)+1QR(π; j, 1), (810)

i.e., the left hand side of (800) is equal to the left hand side of (799) with j in place of i. As (799) holds, (800)

holds too. Therefore, S3 = 0. This concludes the proof that the coefficient an,dn−1
R is equal to detMR,n.
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