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Abstract. Gossip protocols are popular methods for average consensus problems in distributed
computing. We prove new convergence guarantees for a variety of such protocols, including path,

clique, and synchronous pairwise gossip. These arise by exploiting the connection between these

protocols and the block randomized Kaczmarz method for solving linear systems. Moreover, we
extend existing convergence results for block randomized Kaczmarz to allow for a more general

choice of blocks, rank-deficient systems, and provide a tighter convergence rate guarantee. We

furthermore apply this analysis to inconsistent consensus models and obtain similar guarantees.
An extensive empirical analysis of these methods is provided for a variety of synthetic networks.

1. Introduction

Consider a network in which every node has a secret (unknown by the other nodes) value, and the
goal is for all nodes to learn the average of these values. This problem is a classical and fundamental
problem in distributed computing and multi-agent systems known as average consensus [18]; it has
additional real-world applications in clock synchronization [11], PageRank, localization without
GPS [37], opinion formation, distributed data fusion in sensor networks [36], blockchain technology,
and load balancing [5]. See Figure 1 for a visualization of an average consensus problem.

Initial approaches for this problem may be to allow all nodes to pass their secret value to a single
hub node which would then perform the averaging and pass this value back to the others, or for
every node to share its stored knowledge of all other nodes’ secret values with its neighbours until
all nodes have learned all stored values (a process known as flooding [35]). However, such methods
are problematic. The first requires communication that may be infeasible as it may not respect the
topology of the underlying network; in particular, there may be no hub node (see Figure 1). The
second may require many instances of communication between nodes and thus struggle to scale to
modern large-scale networks. An attractive class of methods that go some way towards rectifying
these issues are gossip protocols, where at each time-step some subset of nodes are ‘activated’
to share their stored information with each other across network edges. As is common in large-
scale settings, such protocols are randomized in the sense that activated nodes are often chosen at
random, with distribution depending on the particular gossip protocol. Over many iterations, the
values held at each node converge to the average over the whole network (with mild assumptions
including connectivity of the underlying network) and the problem is solved in a distributed manner.
Such methods have been a topic of popular study this side of the millenium, with the seminal 2006
paper of Boyd et al. [2] sparking a flurry of research on the topic [1, 7, 8, 15, 19, 25, 30, 39].
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Figure 1. Average consensus problem with initial (secret) values listed. The
consensus value for this problem is c̄ = 20.

In [22], Loizou and Richtárik united the study of randomized gossip protocols with randomized
numerical linear algebra. They showed that a wide class of gossip protocols can be interpreted, under
certain assumptions, as randomized iterative linear system solvers applied to a linear system derived
from the network at hand. This remarkable connection prompted a variety of convergence results,
new accelerated and weighted gossip variants, and dual edge-based gossip protocols, opening up the
possibility for further links to be developed. In this paper, we hone in on the class of block gossip
algorithms discussed in their work: we show that several popular gossip protocols are members of
this class, give strong convergence results for said methods, and generalize the theory on both the
linear algebra and gossip protocol sides of the problem.

1.1. Contributions. Our main contributions in this work are threefold:

• We generalize previous results on randomized block iterative methods for solving linear
systems (see [24, 27, 28]) to include the case where the system is less than full rank (which
is vital for the average consensus case, as we will see), to include a wider class of block
sampling protocols, and to sharpen the resulting convergence rate guarantee.

• We derive new convergence rates for popular gossip protocols such as path [4], clique [20],
and edge-independent set [2] gossiping, by showing they can be interpreted as block gossip
methods. We furthermore generalize to include the case where multiple node sets can be
activated simultaneously, and analyze the dependence of a protocol’s performance on the
spanning trees of the activated subgraphs.

• We give new analyses of gossip for inconsistent consensus models. We link edge com-
munication errors in a network to inconsistent, or noisy, linear systems, and connect the
performance of iterative solvers on said systems to the performance of gossip protocols on
said networks.

Furthermore, we provide a wide range of experiments to demonstrate the comparative perfor-
mance of the discussed algorithms, both previously existing and new, on a variety of network
structures.

We remark that we do not go into detail regarding the specific communication protocols that
networks may have. For example, certain methods (e.g., path gossiping [4]) require multiple in-
stances of information sharing at each iteration, which may not be implementable in all networks,
and others (e.g., edge independent set gossiping [2]) require communication across each edge only
once at each time step. We point the reader to [2, 29] for more details on network communication
protocols and their use in gossip algorithms.
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1.2. Organization. The rest of the paper is organized as follows. In Section 1.3, we introduce
notation that will be used throughout the work. In Section 1.4, we describe in detail the methods
considered in this paper and present our main theoretical results. In Section 1.5, we provide
detailed background on the average consensus problem, and recent work on block iterative methods
for solving linear systems. In Section 2, we prove our generalization of the block iterative method
theory, and go into detail on the connection between this and block gossip algorithms for average
consensus. In Section 3, we connect particularly popular block gossip algorithms with our theory and
produce explicit convergence rates for them. In Section 4, we explore the case of average consensus
models with edge miscommunication and provide convergence results for the gossip method on this
type of faulty model. Lastly, in Section 5, we provide numerous experiments and compare our
theoretical results with the empirical behavior of the considered gossip methods.

1.3. Notation and Definitions. Let G = (V, E) denote an undirected network where V denotes
the n nodes of the network and E denotes the m edges. Let Q ∈ Rm×n denote the incidence matrix
of the network. Each row of Q corresponds to an edge of the network and each column corresponds
to a node. If row l of Q, denoted qTl , corresponds to the edge eij ∈ E connecting node i and j, then
all but the ith and jth entries of ql are zero with these entries containing a one and negative one
(the order of the positive and negative entries does not matter).

We recall the notion of several special subgraph structures. We remind the reader of the definition
of an independent edge set, that is a subset of edges of the graph in which no two edges are incident
to the same node. Additionally, we remind the reader that a clique subgraph, or complete subgraph,
is a subset of edges of the graph which together form a subgraph in which every pair of nodes is
connected; that is, the edge-induced subgraph is a clique. Finally, we remind the reader of the
definition of a path subgraph, a subset of edges which together form a path graph; that is, the
edge-induced subgraph is a path.

Throughout, we let [m] denote the set of integers from one to m; [m] := {1, 2, · · · ,m}. We
additionally let 0 denote the vector of all zeros and let 1 denote the vector of all ones (the dimensions
of these vectors will be given or obvious from context).

In what follows, we let Aτ denote the subset of matrix A with rows indexed by the set τ . We let
λmin(A), λmin+(A), and λmax(A) denote the minimum, minimum non-zero, and maximum eigenval-
ues of the matrix A, respectively. Additionally, we denote by A† the Moore-Penrose pseudoinverse
of the matrix A.

We additionally recall the notion of a row paving of a matrix A, which controls the conditioning
of a set of submatrices that partition the matrix A. We include here the definition provided by
Needell and Tropp in [27], and note that earlier work on the construction of pavings for block
projection methods is due to Popa [31]. In the wider operator theory context, pavings have long
been a topic of interest; see [34] for a review.

Definition 1.1. A (d, α, β) row paving of a matrix A is a partition T = {τ1, τ2, · · · , τd} of the row
indices that satisfies

α ≤ λmin(AτA
>
τ ) and λmax(AτA

>
τ ) ≤ β for each τ ∈ T.

We will additionally be interested in subsets of the row indices that do not necessarily partition
the rows. We define a row covering to be the natural relaxation of a row paving in which the
requirement that the subsets partition the row indices be relaxed and where the parameter α
provides a lower-bound for the minimum non-zero eigenvalue rather than the minimum eigenvalue.
Each of these are important generalizations for our application of interest, gossip algorithms for
average consensus.
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Definition 1.2. A (d, α, β, r, R) row covering of a matrix A is a collection of subsets T = {τ1, τ2, · · · , τd}
of the row indices, τi ⊂ [m] for all i = 1, · · · , d, that covers the row indices, for each i ∈ [m] we
have i ∈ τl for some l = 1, · · · , d, and that satisfies

α ≤ λmin+(AτA
>
τ ) and λmax(AτA

>
τ ) ≤ β for each τ ∈ T,

where r and R are the minimum and maximum, respectively, number of blocks in which a single
row appears, i.e., r = mini∈[m] |{τl ∈ T : i ∈ τl}| and R = maxi∈[m] |{τl ∈ T : i ∈ τl}|.

First, note that the minimum and maximum number of repeated occurrences of a row in the
blocks, r and R, satisfy

1 ≤ r ≤ R ≤ d.
Further, note that a (d, α, β) row paving is by definition a (d, α, β, 1, 1) row covering. Next, we
remind the readers that every sufficiently tall row-normalized matrix A admits a row paving with
α > 0 and β < 2 [27]; the authors illustrate that additional mild assumptions on the matrix allows
one to produce such a row paving via random partitioning. Additionally, we note that if the matrix
in question is an incidence matrix Q, where rows correspond to edges in a graph G = (V, E), then
the row covering T = {τ1, · · · , τd} corresponds to a collection of sets of edges such that every edge
appears in at least one set; that is τi ⊂ E for all i ∈ [d] and for all e ∈ E , we have e ∈ τl for some
l ∈ [d].

1.4. Main Results. The average consensus problem is defined over an undirected network G =
(V, E). We let c = (c(1), c(2), ..., c(n))T denote the vector of secret values (i.e., c(i) is the secret value
of the ith node) initally held by the nodes of the network. The average consensus problem is then
to ensure, after some communication protocol is applied, that each node stores the averaged value
c̄ := mean(c); that is the final vector of updated node values is c∗ = c̄1 where 1 ∈ Rn is the vector
of all ones. We can formulate this problem as:

(1) Find c∗ = argminx∈Rn‖x− c‖2 s.t. Qx = 0.

Here 0 ∈ R|E| denotes the all zeros vector. The average consensus problem may be formulated in
this way using either the incidence matrix or the Laplacian matrix, L = D − A where D is the
diagonal matrix of node degrees and A is the adjacency matrix, or more generally as an average
consensus system as defined in [21]. In this work, we will focus upon the block gossip methods for
this problem, in which groups of edges are sampled and nodes connected by these edges update
their value to their average (or the average of a subset of these nodes); pseudocode for this method
is provided in Algorithm 1. See Figure 2 for a visualization of one step of Algorithm 1 on the
average consensus problem of Figure 1 with independent edge set, path, and clique block sampling.

We next present our main result which illustrates that the block gossip method converges at least
linearly in expectation to consensus if the underlying graph is connected. Moreover, we specialize
this result to three special cases: the case when the blocks of edges sampled in each iteration are
independent edge sets, when they are clique subgraphs, and when they are path subgraphs, and
give refined convergence rates for these cases.

Corollary 1.3. Suppose graph G = (V, E) is connected, Q ∈ R|E|×|V| is the incidence matrix for
G, and T = {τ1, · · · , τd} is a (d, α, β, r, R) row covering for Q with M = maxi∈[d] |τi|. Then the
block gossip method with blocks determined by T converges at least linearly in expectation with the
guarantee

E ‖ck − c∗‖2 ≤
(

1− rα(G)

βd

)k
‖c− c∗‖2 ,
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where α(G) is the algebraic connectivity of graph G.

(1) If T consists of independent edge sets, the rate constant can be bounded by

(
1− rα(G)

2d

)
.

(2) If T consists of path subgraphs, the rate constant can be bounded by

(
1− rα(G)

(2− 2 cos Mπ
M+1 )d

)
≤
(

1− rα(G)

4d

)
.

(3) If T consists of clique subgraphs, the rate constant can be bounded by

(
1− rα(G)

(2− 2 cos Mπ
M+1 )d

)
≤
(

1− rα(G)

4d

)
.

(4) If T consists of arbitrary connected subgraphs, the rate constant can be bounded by

(
1− rα(G)

Md

)
.

Algorithm 1 Block Gossip Method

1: procedure BG(G, c0 = c, T = {τ1, · · · , τd})
2: k = 0
3: repeat
4: k ← k + 1
5: Choose edge subset τ uniformly at random from elements of T .
6: Form Gτ = (Vτ , Eτ ), the edge-induced subgraph of G defined by edges in τ .
7: Nodes outside of Vτ do not update secret values, (ck)VCτ ← (ck−1)VCτ .
8: for all connected components G′ = (V ′, E ′) of Gτ do

9: Nodes in V ′ solve average consensus on G′, (ck)V′ ←
[

1
|V′|

∑
i∈V′(ck)i

]
1|V′|.

10: end for
11: until stopping criterion reached
12: return ck
13: end procedure
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33.5 0.1

25.5

25.51.9

33.5

(a) One iteration of block gossip
with a block corresponding to an
independent edge set of size 2.

84 -5

60

-9-5

-5

(b) One iteration of block gossip
with a block corresponding to a
path of length 2.

84 -5

60

-9-5

-5

(c) One iteration of block gossip
with a block corresponding to a
clique of size 3.

Figure 2. The average consensus problem of Figure 1 after an iteration of the
block gossip method (Algorithm 1) with various types of block structures. The
edges defining the sampled block are represented by bold lines.

This result follows from a new bound on the convergence rate of the block Kaczmarz method
on a potentially rank-deficient least-squares problem. The block Kaczmarz method samples blocks
of rows of the matrix A in each iteration and performs an update which projects the previous
iterate onto the solution space of the subset of sampled equations; note that the standard single-
row Kaczmarz updates are a special case of block Kaczmarz with block size one. The details of this
method are provided in Algorithm 2. The block gossip method with blocks T produces the same
iterates as the block Kaczmarz method performed with A = Q,b = 0, and x0 = c with blocks T .

Algorithm 2 Block Kaczmarz Method

1: procedure BK(A,b,x0, T = {τ1, · · · , τd})
2: k = 0
3: repeat
4: k ← k + 1
5: Choose row block τ uniformly at random from T .
6: xk ← xk−1 + A†τ (bτ −Aτxk−1)
7: until stopping criterion reached
8: return xk
9: end procedure

Our main result regarding the block Kaczmarz method generalizes the main result of [27] in
several ways:

• Generalizes to the case when the least-squares problem is rank-deficient.
• Relaxes the requirement that the row blocks be sampled from a matrix paving.
• Demonstrates that the convergence horizon depends upon the minimum nonzero singular

value of the blocks Aτ rather the absolute minimum singular value (often 0).

These generalizations are important in our main application to the average consensus problem and
block gossip methods, but are likely of independent interest in other applications.
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Theorem 1.4. Consider the least-squares problem

min ‖Ax− b‖2

where A ∈ Rm×n is not necessarily full-rank and b ∈ Rm. Let e = Axe − b for some xe and let
{τ1, · · · , τd} be a (d, α, β, r, R) covering (not necessarily a paving) of the rows of A. Let xj denote
the jth iterate produced by Block RK on the system defined by A and b with initial iterate x0, and
let x∗ :=

(
I−A†A

)
x0 + A†(b + e) =

(
I−A†A

)
x0 + A†Axe. Then we have

(2) E
(
‖xj − x∗‖2

)
≤
(

1−
rσ2

min+(A)

βd

)j
‖x0 − x∗‖2 +

βR

αrσ2
min+(A)

‖e‖2 ,

where σmin+(A) is the smallest nonzero singular value of A.

Remark 1.5. The convergence horizon term, βR
αrσ2

min+(A)
‖e‖2, is minimized in the case that e = e∗

where e∗ is the minimum norm residual, i.e.,

e∗ = argmin ‖e‖2 s.t. e = Ax− b for some x ∈ Rn.

In this case, the iterates converge to x∗ :=
(
I−A†A

)
x0 + A†(b + e∗).

Remark 1.6. In other Kaczmarz literature, including Needell’s original result for Randomized
Kaczmarz applied to inconsistent linear systems [26, Theorem 2.1], the problem is formulated by
adding some vector of measurement noise r to a consistent system Ax = b, leading to a convergence
horizon term proportional to ‖r‖. We instead work with Ax = b being inconsistent and give a
horizon proportional to a residual, but we note that the two formulations are equivalent.

Remark 1.7. We include a generalization of Theorem 1.4 to the case when the right hand side, b,
is varying in each iteration according to mean-zero randomly distributed additive noise in Proposi-
tion 4.2.

1.5. Related Work. In this subsection we offer some related reading in the fields of average
consensus, gossip protocols, and block iterative methods, and draw connections between them and
our work.

Average consensus and gossip protocols. As mentioned, average consensus has been a
fundamental topic in distributed computing since the inception of the field. We refer the reader
to the classical work of DeGroot [6] for an inception of the consensus problem, and to the work
of Tsitsiklis, Bertsekas, and Athans [33] for a first look into stochastic protocols for distributed
computing. As networks have grown larger in size and have appeared in more applications, the
need for more efficient average consensus solvers motivated the development of gossip algorithms:
protocols that, in general, select some subset of nodes and allow them to ‘gossip’, i.e., share and
average their stored values. Boyd et al.’s 2006 paper [2] provided a fundamental exposition of
said protocols, particularly on the connection between their convergence rate and the underlying
network topology, and has motivated research in the topic ever since [7].

There have been a variety of works analyzing different node-selection protocols for gossiping. In
[4], at each epoch a path of nodes in the network is formed and the values along said path are
averaged. In [20], the network is decomposed beforehand into cliques (connected subgraphs), and
at each epoch one such clique is activated. Lastly in [2], at each epoch a selection of pairs are chosen
and each pair computes its own average (we call this edge independent set gossiping throughout).
These analyses are, however, somewhat disjoint, so we believe the unified convergence analysis
presented in this paper (which covers all of the aforementioned methods) to be novel.
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Block randomized Kaczmarz. The Kaczmarz method [17] is an iterative linear system solver
whose popularity boomed after its randomized variant was proven to have exponential convergence
by Strohmer and Vershynin [32]. After this work proved convergence for full-rank, consistent
systems, further work was done to generalize to the case of inconsistent [26] and rank-deficient [38]
systems.

A well-studied family of variants are block Kaczmarz methods, in which iterates are projected onto
subspaces corresponding to blocks of rows rather than single equations. Early references include
[9, 10, 31], but we focus on the block randomized Kaczmarz method introduced by Needell and
Tropp [27]. The authors proved that under certain restrictions on the choice of blocks, the method
achieves exponential convergence, and converges up to a threshold if the system is inconsistent. In
our work we significantly relax these conditions and achieve a similar convergence guarantee.

The connection between gossip algorithms and Kaczmarz methods for linear systems was ana-
lyzed in depth by Loizou and Richtárik in their 2019 paper [22]; others considering this connection
include [13, 39]. This connection was exploited in [22] to build a framework giving new convergence
guarantees for gossip protocols, accelerations via momentum, and other interesting discussions such
as dual gossip algorithms. In our work we hone in on their general exposition of block gossip algo-
rithms, and give more explicit links and convergence guarantees for previously mentioned existing
gossip protocols.

2. Convergence of Block Randomized Kaczmarz

In this section, we prove our main result, Theorem 1.4, which illustrates that the block random-
ized Kaczmarz method converges at least linearly in expectation on least-squares problems even in
the case that the matrix A is rank-deficint and the blocks are not sampled from a matrix paving.
We will then illustrate how this result specializes to prove Corollary 1.3.

Proof of Theorem 1.4. First, note that by definition, e = Axe − b and so

Ax∗ − b = (Ax0 −AA†Ax0) + AA†b + AA†e− b

= AA†b + AA†(Axe − b)− b(3)

= Axe − b = e,

where the second and third equation used the fact that AA†A = A.
Recall that our updates take the form xj+1 = xj + A†τ (bτ −Aτxj), where τ is chosen uniformly

at random from our set of blocks. We then have

‖xj+1 − x∗‖2 =
∥∥xj + A†τ (bτ −Aτxj)− x∗

∥∥2
=
∥∥(I−A†τAτ )xj + A†τ (Aτx

∗ − eτ )− x∗
∥∥2(4)

=
∥∥(I−A†τAτ )(xj − x∗)−A†τeτ

∥∥2
=
∥∥(I−A†τAτ )(xj − x∗)

∥∥2 +
∥∥A†τeτ∥∥2 ,

where we used that A†τ (bτ + eτ ) = A†τAτx
∗ and that Im(A†τ ) and Im(I−A†τAτ ) are orthogonal.

Then since I−A†τAτ is an orthogonal projector, we have

(5)
∥∥(I−A†τAτ )(xj − x∗)

∥∥2 = ‖xj − x∗‖2 −
∥∥A†τAτ (xj − x∗)

∥∥2 .
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Note that
∥∥A†τeτ∥∥2 ≤ σ2

max(A†τ ) ‖eτ‖2 = 1
σ2
min+(Aτ )

‖eτ‖2 ≤ 1
α ‖eτ‖

2
. Using this fact and taking

expectations, we obtain

Ej
(
‖xj+1 − x∗‖2

)
≤ ‖xj − x∗‖2 − Ej

(∥∥A†τA(xj − x∗)
∥∥2)+

1

α
Ej
(
‖eτ‖2

)
≤ ‖xj − x∗‖2 − 1

β
Ej
(
‖Aτ (xj − x∗)‖2

)
+

1

α
Ej
(
‖eτ‖2

)
(6)

≤ ‖xj − x∗‖2 − r

βd
‖A(xj − x∗)‖2 +

R

αd
‖e‖2 ,

where the last inequality follows from the fact that

Ej(‖vτ‖2) =
1

d

d∑
l=1

‖vτl‖
2

=
1

d

d∑
l=1

m∑
i=1

1(i ∈ τl)v2i =
1

d

m∑
i=1

[
d∑
l=1

1(i ∈ τl)

]
v2i

so we have r
d ‖v‖

2 ≤ Ej(‖vτ‖2) ≤ R
d ‖v‖

2
.

We now claim that for all j, xj −x∗ ∈ Im(AT ), i.e., the row space of A. We do so by induction;
firstly for j = 0 we have

x0 − x∗ = x0 − (I−A†A)x0 −A†(b + e) = A†(Ax0 − (b + e)),

and since Im(A†) = Im(AT ), we are done.
Now assume xl − x∗ ∈ Im(AT ). Then we have, for some τ ,

xl+1 − x∗ = xl + A†τ (bτ −Aτxl)− x∗.

By assumption xl − x∗ ∈ Im(AT ), and furthermore since Aτ is a row submatrix of A, we have

Im(A†τ ) = Im(AT
τ ) ⊆ Im(AT ).

Thus xl+1 − x∗ ∈ Im(AT ), and we are done by induction.
Now, returning to (6), since xj − x∗ ∈ Im(AT ) = Ker(A)⊥, we have

‖A(xj − x∗)‖2 ≥ σ2
min+(A) ‖xj − x∗‖ .

This yields

Ej
(
‖xj+1 − x∗‖2

)
≤
(

1−
rσ2

min+(A)

βd

)
‖xj − x∗‖2 +

R

αd
‖e‖2 ,

and by induction we obtain

E
(
‖xj+1 − x∗‖2

)
≤
(

1−
rσ2

min+(A)

βd

)j+1

‖x0 − x∗‖2 +

[
j∑
i=0

(
1−

rσ2
min+(A)

βd

)i]
R

αd
‖e‖2

≤
(

1−
rσ2

min+(A)

βd

)j+1

‖x0 − x∗‖2 +

[ ∞∑
i=0

(
1−

rσ2
min+(A)

βd

)i]
R

αd
‖e‖2(7)

=

(
1−

rσ2
min+(A)

βd

)j+1

‖x0 − x∗‖2 +
βR

αrσ2
min+(A)

‖e‖2 .

�

Remark 2.1. We note that in most applications, including our application of average consensus,
σmin+(A) is fixed, and so it is natural to seek to maximize r

βd . For the average consensus problem,

this equates to careful selection of the block set T .
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We next include a proof of Corollary 1.3 which follows from Theorem 1.4 due to the fact that
block gossip on the network G with initial secret node values c coincides with block randomized
Kaczmarz on the problem (1).

Proof of Corollary 1.3. Consider running block RK with A = Q,b = 0, and x0 = c with samples
τ ∈ T determined by the run of block gossip on G with c0 = c. Note that ker(Q) is nonempty since
rank(Q) ≤ n− 1, so e = 0. It follows from [22, Theorem 5] that block gossip iterate ck and block
RK iterate xk coincide for all k.

If we take x0 = c, then by Theorem 1.4 we know that block RK will converge to (I −Q†Q)c
(since b = e = 0 in this application). This is exactly the orthogonal projection of c onto ker(Q) =

span{1}, where 1 is the length-|E| vector of all ones. Then, since

{
1√
|E|

1

}
is an orthonormal basis

for ker(Q), we can compute this projection as

(I−Q†Q)c =

〈
c,

1√
|E|

1

〉
1√
|E|

1(8)

=
1

|E|

 |E|∑
i=1

ci

1(9)

= c∗.(10)

Finally, note that σ2
min+(Q) = λmin+(L) = α(G) where L is the Laplacian matrix of G. The

specific results enumerated in Corollary 1.3 follow from the singular value upper bounds presented
in Section 3. �

3. Block Gossip Sampling

In this section, we consider particular cases when the blocks used in the block gossip method
correspond to special subgraph structures, namely independent edge sets, clique subgraphs, path
subgraphs, and arbitrary connected subgraphs.

We begin with a lemma that will be used to strengthen our convergence results for these cases.

Lemma 3.1. Let τ be a subset of edges of G, and let τ ′ ⊆ τ be the edge set of a spanning tree of
Gτ . Then the block gossip updates produced by choosing blocks τ and τ ′ are identical.

Proof. This follows immediately from the fact that Gτ and Gτ ′ have the same vertex set, and block
gossip simply averages the stored values of said vertex set at each iteration. �

The value of this lemma comes from the fact that our convergence rate depends (in part) on the
maximum singular values of our blocks: removing rows from a matrix (i.e., using a subset of edges
in our block) decreases said singular values, improving the convergence rate.

Throughout this section, we make use of the fact that for any collection of row indices τ , the
spectra of QτQ

>
τ and Lτ are the same, up to zeros. In particular, we can identify our covering

constants α and β by analyzing the spectrum of Lτ , which is well understood for many of the graph
structures we will consider.
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3.1. Independent edge set blocks. In the case that T = {τ1, τ2, · · · , τd} is a row covering of Q
where each Gτi is an independent edge set, we have that

QτiQ
>
τi = 2I

for each i ∈ [d]. Thus, T is a (d, 2, 2, r, R) row covering of Q and we have that(
1− rα(G)

βd

)
=

(
1− rα(G)

2d

)
.

Note that each independent each set is its own spanning tree, so there is no improvement to be
made here via Lemma 3.1.

3.2. Path blocks. In the case that T = {τ1, τ2, · · · , τd} is a row covering of Q where each Gτi is a
path, we make use of the following fact about the eigenvalues of the Laplacian of a path subgraph
(see e.g., [12]).

Fact 3.2. Let Pn be a path subgraph of G of length n. Then the eigenvalues of LPn are

(11) 2− 2 cos
πk

n
for k = 0, 1, · · · , n− 1.

We then have for each i ∈ [d] that

λmax(QτiQ
>
τi) = λmax(Q>τiQτi) = 2− 2 cos

|τi|π
|τi|+ 1

≤ 2− 2 cos
Mπ

M + 1
,(12)

so T is a (d, α, 2− 2 cos Mπ
M+1 , r, R) row covering. Thus we have that(

1− rα(G)

βd

)
=

(
1− rα(G)

(2− 2 cos Mπ
M+1 )d

)
≤
(

1− rα(G)

4d

)
.

Again, each path is its own spanning tree, so this rate cannot be improved via Lemma 3.1.

3.3. Clique blocks. In the case that T = {τ1, τ2, · · · , τd} is a row covering of Q where each Gτi
is a complete subgraph of G, we make use of Lemma 3.1; in particular, for each τ ∈ T there exists
τ ′ ⊂ τ such that Gτ ′ is a spanning path of Gτ . See Figures 2b and 2c for an example of how a
spanning path block update coincides with the update produced by a clique block update.

In this way, we see that the bound on the convergence rate constant for complete subgraphs
must be no larger than that of path subgraphs and we recover the constant(

1− rα(G)

(2− 2 cos Mπ
M+1 )d

)
≤
(

1− rα(G)

4d

)
.

3.4. Arbitrary connected subgraph blocks. In the case that T = {τ1, τ2, · · · , τd} is a row
covering of Q where each Gτi is an arbitrary connected subgraph of G, we again make use of the
fact that we may replace every block τ ∈ T with a block τ ′ ⊂ τ such that Gτ ′ is a spanning tree of
Gτ to form T ′ = {τ ′1, τ ′2, · · · , τ ′d}. We note that the block gossip method with blocks sampled from
T will produce the same set of iterates as those sampled identically from T ′.

Now, we use that fact that the eigenvalues of the Laplacian of a tree, LT , are bounded above by
|E(T )| (and that in fact this bound is tight for the star graph), see [12]. Thus, we have

λmax(Qτ ′
i
Q>τ ′

i
) = λmax(Q>τ ′

i
Qτ ′

i
) ≤ |τi| ≤M.
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We use this bound to recover the constant upper bound(
1− rα(G)

Md

)
.

3.5. Multiple subgraph blocks. If the network allows for multiple disjoint components to be
activated at a single instance, we may form blocks consisting of multiple disjoint subgraphs of G.
In this case, to compute β we may use the following Lemma.

Lemma 3.3. Let Gτ be a subgraph of G consisting of disjoint connected subgraphs Gτ1 , · · · ,Gτk .
Then

(13) λmax(QτQ
>
τ ) = max

i
λmax(QτiQ

>
τi).

Proof. This follows immediately from the fact that since said subgraphs are edge-disjoint, we have
that the Laplacian of their union is the direct sum of their individual Laplacians:

(14) Lτ = Lτ1 ⊕ · · · ⊕ Lτk ,

and so the spectrum of Lτ is exactly the union of the spectra of Lτ1 , · · · ,Lτk . �

Suppose then that we take T = {τ1, τ2, · · · , τd}, where each τi is the union of a collection of rows

corresponding to disjoint connected subgraphs, say τi =
⋃
j τ

j
i . Then by Lemma 3.3 we have

λmax(QτiQ
>
τi) = max

j
λmax(Qτji

Q>
τji

).

One may then apply the relevant previous results of Section 3 to compute an upper bound on this
quantity, yielding β.

4. Inconsistent Consensus Models

In this section, we consider two models of inconsistent average consensus where communication
across edges is noisy and provide analyses of the natural block gossip method in these cases.

4.1. Constant edge communication error. Consider the average consensus problem in the
presence of constant edge communication error; that is, some blocks of nodes do not update to
local consensus during iterations of the block gossip method, but instead update according to an
attempt to satisfy constant edge miscommunication values. We denote m ∈ R|E| as the edge
miscommunication values and consider the block gossip updates under this edge miscommunication
to be

(15) ck = ck−1 + Q†τ (mτ −Qτck−1).

We can apply Theorem 1.4 to prove the following corollary. This result yields a guarantee of
convergence to a convergence horizon that depends upon the edge miscommunication vector m.

Corollary 4.1. Suppose graph G = (V, E) is connected, Q ∈ R|E|×|V| is the incidence matrix for
G, and T = {τ1, · · · , τd} is a (d, α, β, r, R) row covering for Q. Then the block gossip method under
edge miscommunication m as defined in (15) with blocks determined by T converges at least linearly
in expectation to a horizon determined by m with the guarantee

E ‖ck − c∗‖2 ≤
(

1− rα(G)

βd

)k
‖c− c∗‖2 +

βR

αrα(G)
‖m‖2,

where α(G) is the algebraic connectivity of graph G.



PAVING THE WAY FOR CONSENSUS: CONVERGENCE OF BLOCK GOSSIP ALGORITHMS 13

Proof. This result follows from Theorem 1.4 where b = m, A = Q, and e = −m. Note that
x∗ = (I−Q†Q)c + Q†(m−m) = (I−Q†Q)c = c∗. �

4.2. Randomly varying edge communication error. We now consider the average consen-
sus problem in the presence of randomly varying edge communication error. During the block
gossip method, blocks do not update to local consensus but instead update to attempt to satisfy
the iteration dependent edge miscommunication values. We denote mk ∈ R|E| as the edge mis-
communication values during the kth iteration and consider the block gossip updates under edge
miscommunication to be

(16) ck = ck−1 + Q†τ ((mk)τ −Qτck−1).

We prove a generalization of Theorem 1.4 and use it to prove a guarantee of convergence to a
convergence horizon that depends upon the distribution of the edge miscommunication values.

Proposition 4.2. Let b ∈ r(A) with A not necessarily full rank. Consider running the block
Kaczmarz method with matrix A and vector bk = b + ek in the kth iteration; that is

xk = xk−1 + A†τ ((bk)τ −Aτxk−1).

Assume that {ek} is sampled i.i.d. according to distribution D, ek ∼ D, with ED[ek] = 0 and
cov(ek) = ED[eke

>
k ] = Σ. Let T = {τ1, τ2, · · · , τd} be a (d, α, β, r, R) row covering of A. Let

x∗ = (I−A†A)x0 + A†b. Then we have

E‖xj+1 − x∗‖2 ≤
(

1−
rσ2

min+(A)

βd

)j+1

‖x0 − x∗‖2 +
βR

αrσ2
min+(A)

tr(Σ).

Proof. This proof proceeds in a manner highly similar to that of Theorem 1.4. First, note that in a
calculation similar to (3), we have that Ax∗ − bk = ek. Then, recalling that the updates take the
form xj+1 = xj + A†τ ((bk)τ −Aτxj) where τ is chosen uniformly from T , we compute

‖xj+1 − x∗‖2 = ‖(I−A†τAτ )(xj − x∗)‖2 + ‖A†τ (ej)τ‖2

in a manner similar to that of (4). Using (5) and taking expectation with respect to the sampled
block in iteration j, τj , conditioned on all previously sampled blocks, we have

Eτj‖xj+1 − x∗‖2 = ‖xj − x∗‖2 − Ej‖A†τAτ (xj − x∗)‖2 +
1

α
Ej‖(ej)τ‖2

≤
(

1−
rσ2

min+(A)

βd

)
‖xj − x∗‖2 +

R

αd
‖ej‖2.

Now, taking expectation with respect to the sampled error ej ∼ D conditioned upon all previously
sampled errors, we arrive at

Eej

[
Eτj‖xj+1 − x∗‖2

]
≤
(

1−
rσ2

min+(A)

βd

)
‖xj − x∗‖2 +

R

αd
Eej‖ej‖2

=

(
1−

rσ2
min+(A)

βd

)
‖xj − x∗‖2 +

R

αd
tr(Σ).

Iterating this expectation and proceeding inductively as in (7), we arrive at the desired result. �

We may now use this result to prove the following guarantee for convergence of block gossip
methods in the presence of randomly varying edge miscommunication error.
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Corollary 4.3. Suppose graph G = (V, E) is connected, Q ∈ R|E|×|V| is the incidence matrix for
G, and T = {τ1, · · · , τd} is a (d, α, β, r, R) row covering for Q. Assume that {mk} is sampled i.i.d.
according to distribution D, mk ∼ D, with ED[mk] = 0 and cov(mk) = ED[mkm

>
k ] = Σ. Then the

block gossip method under randomly varying edge miscommunication mk as defined in (16) with
blocks determined by T converges at least linearly in expectation to a horizon determined by tr(Σ)
with the guarantee

E ‖ck − c∗‖2 ≤
(

1− rα(G)

βd

)k
‖c− c∗‖2 +

βR

αrα(G)
tr(Σ),

where α(G) is the algebraic connectivity of graph G.

Proof. This result follows from Proposition 4.2 where b = 0, ek = mk, and A = Q. Note that
x∗ = (I−Q†Q)c = c∗. �

Remark 4.4. In the case that the blocks consist of single rows, then updates (15) and (16) cor-
respond to nodes updating to satisfy a misspecified (nonhomogenous) equation in the AC system,
which could model link communication failure. However, for larger blocks, the interpretation of
these updates break down and it is less clear that they model a natural gossip process, as the in-
dividual node value updates are produced by the collection of edge miscommunications. We note,
however, that such nonhomogenous systems of equations arise in practice elsewhere, e.g., in rank
aggregration from pairwise comparisons via Massey’s method [23] or Hodgerank [16].

5. Experiments

In this section we present empirical results from applying block gossip with various choices of
block structure to AC problems on multiple graph structures, including Erdös-Rényi graphs of
varying connectivity and square lattice graphs. All experiments were conducted in Python 3.8 with
the NetworkX [14] package used to generate and work with graph structures. We also present
results from applying said protocols to inconsistent consensus models as detailed in Section 4.

5.1. Preliminaries. Recall that an Erdös-Rényi graph ER(n,p) on n vertices is formed by ran-
domly including edges between each pair of nodes independently with probability p. We choose
to experiment on such graphs as they are popular models for real-life networks and highlight the
effects of varying connectivity (by varying p) on the convergence of the considered gossip protocols.
We also run experiments on n×n square lattice graphs, another widely-studied network structure;
see e.g., [4].

For all graphs we perform experiments with four block sampling protocols: independent edge
sets (IES), cliques, paths, and randomly selected blocks of fixed size. These protocols and the graph
structures underlying them are detailed in Subsection 1.4 and Section 3.

To produce an IES cover we use a greedy algorithm that repeatedly finds the largest independent
edge set, then removes it from the graph until there are no remaining edges. Similarly, a clique
edge cover of the graph is generated by a greedy algorithm that repeatedly finds the largest clique,
then removes it from the graph until there are no remaining edges. For path gossip, paths are
formed by selecting a node uniformly at random, adding a randomly selected neighbour to it, and
continuing to sequentially add neighbours until we have a path of the desired length l. Randomly
selected blocks are sampled by selecting edges uniformly at random to form a block of a specified
size. The blocks generated by these algorithms are then passed into our block gossip algorithm,
which randomly samples a block from the list of blocks at each iteration.
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Figure 3. Errors for all proto-
cols applied to ER(200, 0.2).

Figure 4. Errors for all proto-
cols applied to ER(200, 0.4).

Figure 5. Errors for all proto-
cols applied to ER(200, 0.6).

Figure 6. Errors for all proto-
cols applied to ER(200, 1).

We produce two types of plot: collapse plots, which are a visualization of individual node values
by iteration (as in [3]), and error plots, which show the error at each iteration, ‖ck − c∗‖, and for
some examples also display the predicted upper bound on convergence given by Corollary 1.3.

5.2. Erdös-Rényi Graphs. We apply each of our block sampling protocols to Erdös-Rényi graphs
ER(n, p) with p = 0.2, 0.4, 0.6, 0.8, 1 and n = 200.

In Figures 3 to 6 we compare the performance of each protocol (with path length l = 10 for path
gossip) across a range of p. It appears that, in the ER case, connectivity does not have a substantial
effect on the relative performance of our protocols, with IES gossip consistently being the strongest
by some margin. This aligns with the fact that independent edge sets will have the greatest node
overlap, particularly when compared to cliques – in the sense that a single node is likely to be in
many more independent edge sets than cliques – and so a larger amount of information is transferred
per iteration.
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Figure 7. Collapse plot for
ER(100, 0.6) under IES gossip.

Figure 8. Error plot for
ER(100, 0.6) under IES gossip.

Figure 9. Collapse plot for
ER(100, 0.6) under clique gossip.

Figure 10. Error plot for
ER(100, 0.6) under clique gossip.

In Figures 7 to 10, we present a closer look at best (IES) and worst (clique) performing proto-
cols from the previous experiments. The dramatic difference in convergence rate can be partially
explained by the collapse plots: we see that during clique gossip certain nodes will hold their value
for many iterations before updating, leading to dramatically slower convergence than IES gossip
seen in the error plots. This is again connected to the greater amount of node overlap that persists
in IES blocks, compared to cliques. We see from the error plots that both protocols respect the
upper bound on convergence given by Corollary 1.3, and that said bound predicts that IES gossip
should outperform clique gossip.

We analyze the effect of increasing p (and thus the connectivity of the graph) in Figures 11 to 14.
It can be seen that IES gossip is both fast and robust to variations in connectivity compared to other
protocols. This can be attributed heuristically to the fact that independent edge sets are formed by
selecting edges which separate nodes well, rather than selecting edges which join nodes well (as in
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Figure 11. IES gossip errors on
ER(200, p) for various p.

Figure 12. Clique gossip errors
on ER(200, p) for various p.

Figure 13. Path gossip errors
on ER(200, p) for various p.

Figure 14. Random gossip er-
rors on ER(200, p) for various p.

forming cliques). The performance of clique gossip improves significantly with p, corresponding to
the fact that ER(n, p) is likely to have a greater number of larger cliques as p, and thus its average
degree, increases. Note that we exclude clique gossip for p = 1, as the entire graph will be selected
as a clique and consensus will be reached in a single iteration.

5.3. Square Lattice. In Figure 15 we show the error plots from each of our sampling protocols
applied to the 10 × 10 square lattice. The graph structure restricts the size of cliques to only
single edges, leading to poor performance versus other protocols. Moreover, path gossip struggles
as nodes on opposite sides of the grid are a large graph distance apart. In this scenario, with our
‘special’ structures being limited, it is sensible to choose blocks at random to attempt to maximise
the dispersement of information, and this strategy indeed yields the best performance.
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Figure 15. Comparison of sampling protocols applied to a 10× 10 square lattice.

5.4. Inconsistent Consensus Models. We experimented with the two types of inconsistent aver-
age consensus systems described in Section 4, namely systems with a constant edge communication
error (CECE) and systems with a randomly varying edge communication error (VECE). In CECE,
all iterations are affected by the same edge miscommunication values m ∈ R|E| which is generated
(in advance) with entries sampled independently from N (0, 0.01), the mean-zero Gaussian distri-
bution with variance 0.01. In VECE, the edge miscommunication for the kth iteration, mk ∈ R|E|,
has entries sampled independently from N (0, 0.01).

In Figures 16 and 17, we display the errors for consistent block gossip updates (m = 0), CECE
updates (15) with constant edge communication values m sampled as described above, and VECE
updates (16) with varying edge communication values mk sampled as described above, on an
ER(n, p) graph with n = 150 and p = 0.6 with path block sampling and IES block sampling,
respectively. Note that IES block sampling gossip converges far more quickly than path block
sampling, and so we are able to see more clearly the effect of varying error in this plot. Note that
VECE has a fairly smooth convergence horizon, whereas the convergence horizon for CECE varies
widely as the updates sample the (fixed) values of edge miscommunication of differing magnitude.

In Figures 18 and 19, we display the errors for consistent block gossip updates (m = 0), CECE
updates (15) with constant edge communication values m sampled as described above, and VECE
updates (16) with varying edge communication values mk sampled as described above, on an
ER(n, p) graph with n = 150 and p = 0.6 with clique block sampling and random block sampling,
respectively. Note that clique block gossip and random block gossip converge so slowly that it takes
far longer to see clearly the convergence horizon for the CECE and VECE updates.

6. Conclusions

In this work, we prove a new convergence result for the block gossip method for the average con-
sensus problem and specialize this theoretical result to path [4], clique [20], and edge-independent
set [2] gossip protocols. We prove this result by exploiting the fact that these methods are gener-
alized by the block randomized Kaczmarz method for solving linear systems.

We prove a generalized convergence result for the block randomized Kaczmarz method which
generalizes the main result of [27] to the case of rank-deficient systems and relaxes requirements on
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Figure 16. Comparison of ef-
fect of different communication
errors on path gossip.

Figure 17. Comparison of ef-
fect of different communication
errors on IES gossip.

Figure 18. Comparison of ef-
fect of different communication
errors on clique gossip.

Figure 19. Comparison of ef-
fect of different communication
errors on random gossip.

the set of blocks to be sampled. While these generalization are highly important for the average
consensus problem, we expect that they will be of interest in other applications as well.

We additionally prove convergence results for the block gossip method on inconsistent consensus
models, and perform a broad set of experiments to compare our theoretical results to the empirical
behavior of the block gossip methods on various network structures.

Future directions include further exploration of inconsistent average consensus models, including
random link failure and adversarial nodes, bounded confidence models, which generalize the average
consensus model, and block Kaczmarz variants for randomly varying noise.
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