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Abstract

This paper investigates fundamental limits of exact recovery in the general d-uniform hypergraph stochastic block model

(d-HSBM), wherein n nodes are partitioned into k disjoint communities with relative sizes (p1, . . . , pk). Each subset of nodes

with cardinality d is generated independently as an order-d hyperedge with a certain probability that depends on the ground-truth

communities that the d nodes belong to. The goal is to exactly recover the k hidden communities based on the observed hypergraph.

We show that there exists a sharp threshold such that exact recovery is achievable above the threshold and impossible below the

threshold (apart from a small regime of parameters that will be specified precisely). This threshold is represented in terms of a

quantity which we term as the generalized Chernoff-Hellinger divergence between communities. Our result for this general model

recovers prior results for the standard SBM and d-HSBM with two symmetric communities as special cases. En route to proving

our achievability results, we develop a polynomial-time two-stage algorithm that meets the threshold. The first stage adopts a

certain hypergraph spectral clustering method to obtain a coarse estimate of communities, and the second stage refines each node

individually via local refinement steps to ensure exact recovery.

Index Terms

Community detection, hypergraph stochastic block model (HSBM), exact recovery, hypergraph spectral clustering methods.

I. INTRODUCTION

The stochastic block model (SBM) [1] is a celebrated random graph model that has been widely studied for the community

detection problem, and the objective therein is to partition n nodes into k disjoint communities (a.k.a., clusters) based on the

randomly generated graph. The recent award-winning1 papers [2], [3] discovered a phase transition phenomenon for exact

recovery (i.e., all the nodes are required to be classified correctly) in the SBM with two symmetric communities. That is,

there is a sharp threshold such that exact recovery is achievable above the threshold, and impossible below the threshold. This

phase transition phenomenon was later extended to the general SBM with k ≥ 2 communities and without imposing symmetric

structures [4], [5]. Popularized by these breakthroughs, community detection in the SBM and its variants have then received

significant attention, and many works have progressively contributed to this field by considering the information-theoretic

limits of some variants of the SBM [6]–[9], efficient algorithms with theoretical guarantees [10]–[17], the effect of side

information [18]–[22], etc. We refer the readers to [23] for a comprehensive survey.

While most prior works focused on community detection on graphs, it is also of keen interest to study community detection

on hypergraphs. This is because higher-order relational information among multiple nodes, which can naturally be captured by
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hypergraphs, is ubiquitous in many applications. For example, friendships between users in social networks can be captured by

graphs, but chat groups are usually represented by hyperedges in hypergraphs. Authors in co-authorship networks can also be

connected by hyperedges. There are also applications in computer vision (such as object recognition and image registration) that

are concerned with the point-set matching problem [24], [25], which aims to find strongly connected components in a uniform

hypergraph. Motivated by these applications, in recent years some efforts have been expended to advance our understanding

of community detection on hypergraphs. In particular, Ghoshdastidar and Dukkipati [26] first proposed a random hypergraph

model called the d-uniform hypergraph stochastic block model (d-HSBM), in which each subset of nodes with cardinality d

is generated independently as an order-d hyperedge with a certain probability that depends on the communities that the d

nodes belong to. Subsequent researchers further investigated the recovery limits of d-HSBMs by developing various hypergraph

clustering algorithms (such as spectral clustering methods [27]–[33], semidefinite programming-based methods [34]–[36], tensor

decomposition-based methods [37], approximate-message passing algorithms [38], [39], etc) with theoretical guarantees, and

characterizing the minimax misclassification proportion [40]–[42] as well as the exact recovery criterion for the special case of

two symmetric communities [34].2

Although an information-theoretic limit for exact recovery has been derived in [34], their setting considering only two

equal-sized communities and symmetric hyperedge generation probabilities is rather restrictive for real-world applications, and

a general theory for exact recovery in the d-HSBM is still lacking. Motivated by this gap in the literature, in this work we

consider the exact recovery criterion in the general d-HSBM. Our problem setting and the distinctions compared to other works

are summarized as follows.

1) Nodes are partitioned into k ≥ 2 non-overlapping communities, in which each node is assigned to one of these k

communities with probabilities {pi}ki=1. This generalizes the setting in [30], [34] in which k = 2 and p1 = p2, and the

setting in [31], [40]–[42] wherein the k communities are of equal or approximately equal sizes (i.e., pi ≈ pj for all

1 ≤ i < j ≤ k).

2) The probability that an order-d hyperedge appears depends on the number of nodes in each of the k communities (which

is quantified by a length-k vector (T1, T2, . . . , Tk) with
∑
i Ti = d, where Ti is the number of nodes in community

i). In contrast, many prior works with theoretical guarantees consider more restrictive assumptions on the probability

that a hyperedge is present. For example, in [30], [31], [33]–[35] the hyperedge probability can only take two values

depending on whether all the d nodes belong to the same community. Although other works such as [40]–[42] relax the

restrictions in [30], [31], [33]–[35], they are nevertheless particularizations of our general HSBM model. We are aware

that the assumption on hyperedge probabilities made in [26]–[29] is similar to ours, but their focus is to characterize the

performance of a hypergraph spectral clustering method contained therein in terms of the fraction of misclassified nodes,

whereas we aim to quantify necessary and sufficient conditions for exact recovery (see Definition 1 for details).

3) Based on the observed d-uniform hypergraph, the learner is tasked to achieve exact recovery of the hidden partition, i.e.,

all the n nodes should be assigned to the ground-truth communities that they belong to with high probability as the size

of the hypergraph grows. We are also interested in deriving an algorithm-agnostic impossibility result that matches the

performance guarantee of the learner’s algorithm.

2While this work mainly focuses on the d-HSBM, we are also aware that the clustering problem has also been explored in other hypergraph models, such as

the non-uniform HSBM [27]–[29], the generalized censored block model [43], the sub-hypergraph models [44], [45], etc.
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A. Main Contributions

The main contributions and key technical challenges of this work are summarized as follows.

1) We establish a phase transition for the general d-HSBM (see Theorems 1 and 2), apart from a small subset of d-HSBMs

that contains communities whose so-called second-order degree profiles are identical (to be specified in Section III-A).

That is, there is a sharp threshold such that exact recovery is possible above the threshold, and impossible below the

threshold. This threshold is represented in terms of a quantity which we term as the generalized Chernoff-Hellinger (GCH)

divergence between different communities, and is a generalization of the CH-divergence discovered in [4] for the SBM. Our

result also recovers the exact recovery criterions for the SBM [2], [3] and d-HSBM with two symmetric communities [34]

as special cases. The techniques for proving the fundamental limits are inspired by [4]; however, dealing with hypergraphs

requires us to carefully characterize different types of hyperedges that are induced by complicated community relations.

2) We develop a polynomial-time algorithm that meets the information-theoretic limits. This implies that there is no information-

computation gap for exact recovery in the general d-HSBM (apart from the aforementioned small regime of parameters).

Our two-stage algorithm consists of a hypergraph spectral clustering step in the first stage to ensure almost exact recovery3

(see Definition 2). It then performs local refinement steps for each of the n nodes in the second stage to ensure exact

recovery. To circumvent the problem that conditioned on the success of the first stage certain a priori independent random

variables become dependent, we adopt a hypergraph splitting technique to split the hypergraph into two sub-hypergraphs

(see Section IV-A), such that the two stages can be run on the two independent sub-hypergraphs respectively, preserving

the independence of the two stages to facilitate the analysis. Although this technique is not new, our analytical method is

different from previous analyses (such as [4]). We prove that with high probability over splitting of the given hypergraph

into two sub-hypergraphs, desirable properties of the resultant sub-hypergraphs are preserved, which further guarantees the

success of the two stages. This new analytical method for analyzing multi-stage algorithms may be of independent interest.

Algorithm 1 can also be improved to an agnostic algorithm that does not require the knowledge of model parameters (see

Remark 4).

3) A main technical challenge lies in the development and analysis of an efficient algorithm that leads to almost exact

recovery (for the first stage) for the general d-HSBM. To the best of our knowledge, such an algorithm with accompanying

guarantees is lacking in the literature. Thus, the hypergraph spectral clustering method developed here and its analysis may

be of independent interest. We are aware that various clustering algorithms have been developed. However, theoretical

guarantees (on the fraction of misclassified nodes) are usually restricted to special classes of HSBMs and they do not

readily apply to the general d-HSBM. For example, the performance of the spectral clustering method in [40] depends on

the k-th largest singular value of a specific matrix, but bounding this value turns out to be non-trivial for general d-HSBMs.

The semidefinite programming-based method in [34] is only applicable to symmetric settings. Our new algorithm overcomes

these stumbling blocks by leveraging and judiciously combining various ideas from prior works for the SBM [9], [10]

and the HSBM [40]. Our theoretical result (Theorem 3) shows that, with probability approaching one, all but a vanishing

fraction of the n nodes can be assigned to their true communities (i.e., almost exact recovery is achieved) in the general

d-HSBM.

3In the literature, “almost exact recovery” is sometimes also called “weak consistency”, and “exact recovery” is called “strong consistency”.
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B. Organization

We describe the general d-HSBM and the exact recovery criterion in Section II, and provide our main results (with

accompanying discussions) in Section III. Our computationally efficient two-stage algorithm is introduced in Section IV, and its

theoretical guarantee is formally established in Section V. The converse part is proved in Section VI. Section VII concludes

this work and proposes several directions that are fertile avenues for future research.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation

For any integer m ≥ 1, let [m] represent the set of integers {1, 2, . . . ,m}, and Sm be the set of all permutations from [m]

to [m]. Random variables and their realizations are respectively denoted by upper-case and lower-case letters, while vectors,

matrices, and tensors are denoted by boldface letters. For a length-n vector x, let xi denote its i-th element, and x∼i denote the

length-(n− 1) sub-vector that excludes xi. For a matrix A, its operator norm and Frobenius norm are respectively represented

by ‖A‖op and ‖A‖F, and its v-th column is denoted by Av .

B. The d-uniform hypergraph stochastic block model (d-HSBM)

Let n ∈ N be the number of nodes, and k ≥ 2 be the number of non-overlapping communities. Each node v ∈ [n] belongs to

one of the k communities, and is associated with a latent random variable Zv on [k] with prior distribution p = (p1, p2, . . . , pk),

where
∑
i∈[k] pi = 1. That is, if node v belongs to community i, then Zv = i. The length-n vector Z = (Z1, Z2, . . . , Zn) thus

represents the ground-truth community vector of the n nodes. Furthermore, we define Vi , {v ∈ [n] : Zv = i} as the collection

of nodes that belong to the community i (for i ∈ [k]).

Let d ≥ 2 be the order of the hyperedges (i.e., the number of nodes contained in each hyperedge), and W be the set of

all order-d hyperedges on [n] (where |W| =
(
n
d

)
). It is assumed that the hypergraph considered in this work only contains

order-d hyperedges; thus it is referred to as a d-uniform hypergraph. The generation process (underlying statistical model) of

our random d-uniform hypergraph G = ([n], E) is as follows. For each e ∈ W , the probability that it appears in the hypergraph

G (i.e., e ∈ E) depends on the number of nodes in each community {Vi}ki=1. Formally, let

T , {T ∈ Nk : T1 + T2 + · · ·+ Tk = d} (1)

be the collection of length-k vectors such that each vector T ∈ T (with Ti representing the number of nodes in Vi) represents

a possible community assignment of d nodes, where “community assignment” is referred to as the number of nodes contained

in each community. The generation of the hyperedges in G is fully characterized by a set of numbers {QT}T∈T ⊂ R+. The

probability of a hyperedge e ∈ W appearing is QT(e)
logn
nd−1 , where T(e) ∈ T denotes the community assignment of the d nodes

in hyperedge e. That is, T(e) is the length-k vector whose i-th entry represents the number of nodes in the hyperedge e that

belongs to the i-th community.

Example 1. Suppose d = 3, k = 4, n = 8, and V1 = {1, 2}, V2 = {3, 4}, V3 = {5, 6}, V4 = {7, 8}. We list three different

order-d hyperedges e1, e2, e3 ∈ W , as well as their community assignments in the table below. Although e1 6= e2, the

probabilities that e1 ∈ E and e2 ∈ E are the same since they have the same community assignment. On the other hand, the

probability that e3 ∈ E is in general different from that for e1 and e2.
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Hyperedges Community assignments Hyperedge probabilities

e1 = (1, 4, 8) T(e1) = (1, 1, 0, 1) Q(1,1,0,1)(log n)/n2

e2 = (1, 3, 7) T(e2) = (1, 1, 0, 1) Q(1,1,0,1)(log n)/n2

e3 = (2, 5, 7) T(e3) = (1, 0, 1, 1) Q(1,0,1,1)(log n)/n2

The reason why we consider the Θ( logn
nd−1 )-regime for the connectivity probability is that it ensures the average degree of

each node is Θ(log n) and it was shown [33], [34], [40] that phase transition for exact recovery occurs in this logarithmic

average degrees regime. Furthermore, we define Qmax , maxT∈T QT and Qmin , minT∈T QT, and it is assumed that the

parameters Qmax, Qmin, k, d and {pi}i∈[k] do not scale with n. We also note that several related works [26], [29], [37] allow

the number of communities k to diverge as n grows.

Similar to the adjacency matrices for graphs, any d-uniform hypergraph G can be represented by an order-d n× · · · × n

adjacency tensor A = [Ab], where b = [b1, . . . , bd] ∈ [n]d is the access index of the element in the tensor. Here, Ab ∈ {0, 1},

and Ab = 1 means the presence of the hyperedge corresponding to the d nodes in b. In particular, Ab = 0 if the d elements

in b are not distinct (since each hypergraph must contain d nodes), and Ab = Ab′ if there exists a permutation π such that

(b′π(1), b
′
π(2), . . . , b

′
π(d)) = (b1, b2, . . . , bd).

C. Objective

Given the observation of the hypergraph G (or the adjacency tensor A), the learner aims to use an estimator φ = φ(G) to

recover the partition of the n nodes into k communities. The output of the estimator φ is denoted by Ẑ = (Ẑ1, Ẑ2, . . . , Ẑn).

We measure the accuracy of Ẑ in terms of the misclassification proportion l(Ẑ,Z), which is defined as

l(Ẑ,Z) , min
π∈Sk

1

n

∑
v∈[n]

1

{
Ẑv 6= π(Zv)

}
. (2)

Definition 1 (Exact recovery). An estimator φ is said to achieve exact recovery if it ensures that with probability 1− o(1), the

misclassification proportion l(Ẑ,Z) = 0.

Definition 2 (Almost exact recovery). An estimator φ is said to achieve almost exact recovery if it ensures that with probability

1− o(1), the misclassification proportion l(Ẑ,Z)→ 0 as n tends to infinity.

III. MAIN RESULTS AND DISCUSSIONS

We first introduce several notations that are useful for stating our main results. Let

M , {m ∈ Nk : m1 +m2 + · · ·+mk = d− 1} (3)

be the collection of length-k vectors such that the sum of the k elements equals d− 1. Each element in M represents one

possible community assignment of d− 1 nodes. For each m ∈M, we define

Rm ,
k∏
s=1

(
nps
ms

)
and R′m ,

Rm

nd−1
(4)

as the expected number (and normalized expected number) of combinations of d− 1 nodes that have community assignment

m. Note that Rm = Θ(nd−1) since
(
nps
ms

)
= Θ(nms) and

∑
s∈[k]ms = d− 1, and thus R′m = Θ(1). Suppose a node belongs
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to Vi (where i ∈ [k]) and other d − 1 nodes have community assignment m = (m1, . . . ,mi, . . . ,mk) ∈ M, then the joint

community assignment of these d nodes is denoted by

m⊕ i , (m1, . . . ,mi−1,mi + 1,mi+1, . . . ,mk) ∈ T . (5)

For instance, when d = 3, k = 4, m = (1, 1, 0, 0) and i = 3, we have m⊕ i = (1, 1, 1, 0).

A. Separation between communities

1) Degree profile: For each community Vi (where i ∈ [k]), we define µm⊕i , R′mQm⊕i for each m ∈M. The interpretation

of µm⊕i is as follows: for any node v ∈ Vi, the expected number of hyperedges that contain v and have community assignment

m ⊕ i is Rm · Qm⊕i logn
nd−1 , thus µm⊕i is the corresponding normalized quantity which scales as Θ(1). We then refer to the

collection {µm⊕i}m∈M as the degree profile of community i. Intuitively, two communities are easier to be separated if the

degree profiles of these two communities are further apart. The discrepancy between any two communities in the d-HSBM can

be measured in terms of the generalized Chernoff-Hellinger divergence (GCH-divergence) between their degree profiles, which

generalizes the CH-divergence for the SBM that was first discovered by Abbe and Sandon [4, Eqn. (3)].

Definition 3 (GCH-divergence). For any i, j ∈ [k] such that i 6= j, we define the GCH-divergence between i and j as

D+(i, j) , max
t∈[0,1]

∑
m∈M

tµm⊕i + (1− t)µm⊕j − µtm⊕iµ1−t
m⊕j , (6)

where D+(i, j) is a function of p and {QT}T∈T .

Note that D+(i, j) = 0 if and only if the degree profiles of communities Vi and Vj are exactly the same, in which case the

two communities are statistically indistinguishable.

2) Second-order degree profile: For each community Vi (where i ∈ [k]), we define its second-order degree profile as{∑
m∈M:ms≥1msµm⊕i

}
s∈[k]

, where each element
∑

m∈M:ms≥1msµm⊕i represents the normalized expected number of

hyperedges that contain two fixed nodes belonging to Vi and Vs respectively. When the second-order degree profile of two

communities are exactly the same, our analysis also shows that there may be some inherent difficulties in distinguishing them.

Formally, we define Ξ as the subset of model parameters
(
p, {QT}T∈T

)
such that there exist two communities having the

same second-order degree profiles, i.e.,

Ξ ,

(p, {QT}T∈T
)

: ∃i 6= j such that
∑

m∈M:ms≥1

msµm⊕i =
∑

m∈M:ms≥1

msµm⊕j for all s ∈ [k]

 . (7)

B. Main results and discussions

Theorem 1 (Converse). It is impossible to achieve exact recovery when the model parameters
(
p, {QT}T∈T

)
satisfy

min
i,j∈[k]:i 6=j

D+(i, j) < 1. (8)

Theorem 2 (Achievability). Assume that the model parameters
(
p, {QT}T∈T

)
/∈ Ξ. Then the polynomial-time two-stage

algorithm (Algorithm 1) achieves exact recovery when the model parameters
(
p, {QT}T∈T

)
satisfy

min
i,j∈[k]:i 6=j

D+(i, j) > 1. (9)

Some remarks on Theorems 1 and 2 are in order.



7

1) For community detection in the d-HSBM, most of the settings considered in prior works, such as the one that {QT}T∈T can

only take two values depending on whether d nodes belong to the same community [30]–[35], satisfy
(
p, {QT}T∈T

)
/∈ Ξ.

Thus, our result is a strict generalization of these existing works. An example for the case that
(
p, {QT}T∈T

)
∈ Ξ is

as follows. Suppose k = 2, d = 3, p = (p1, p2), and {QT}T∈T = {Q(3,0), Q(2,1), Q(1,2), Q(0,3)}. When (p, {QT}T∈T )

satisfies p1 = p2 = 1/2, Q(3,0) = Q(1,2) and Q(2,1) = Q(0,3), one can check that the two communities V1 and V2 have

the same second-order degree profile, thus
(
p, {QT}T∈T

)
∈ Ξ.

2) When
(
p, {QT}T∈T

)
∈ Ξ and mini,j∈[k]:i 6=j D+(i, j) > 1, it remains open whether exact recovery is possible. However,

we would like to point out that this scenario does not apply to the SBM (equivalently, the 2-HSBM), since the condition

mini,j∈[k]:i 6=j D+(i, j) > 1 immediately implies that
(
p, {QT}T∈T

)
/∈ Ξ in this setting. Our sharp threshold is applicable

to all model parameters when d = 2.

3) When
(
p, {QT}T∈T

)
/∈ Ξ, the first stage of Algorithm 1 ensures almost exact recovery via hypergraph spectral clustering

(as shown in Theorem 3), and the condition mini,j∈[k]:i6=j D+(i, j) > 1 is the criterion for Stage 2 (local refinement steps)

to succeed. Roughly speaking, performing a local refinement step for each node is equivalent to performing a hypothesis

test with independent but non-identically distributed samples. The corresponding error probability can be represented by a

variant of the Chernoff information [46, Chapter 11.9], and this further reduces to n−mini,j∈[k]:i6=j D+(i,j) which is in the

form of the GCH-divergence. Thus, when mini,j∈[k]:i 6=j D+(i, j) > 1, taking a union bound over the n nodes results in a

vanishing error probability (i.e., exact recovery is achieved).

4) Our analysis of the first stage is not able to handle the case in which
(
p, {QT}T∈T

)
∈ Ξ because the key step in the

hypergraph spectral clustering method is to map the order-d adjacency tensor A to an n× n matrix L (defined in (17)

below), and the subsequent clustering algorithm critically relies on the discrepancy between the columns of L (which

corresponds to the second-order degree profiles of communities). We conjecture that this issue may be circumvented if

one directly applies clustering algorithms on the adjacency tensor (such as the method proposed in [37]), and the exact

recovery threshold mini,j∈[k]:i 6=j D+(i, j) = 1 holds without the assumption that the second-order degree profiles of any

two communities are distinct.

5) The algorithm performance also depends on the value of d. As d increases, the computational complexity of constructing

LΓ increases accordingly. If the hyperedge probabilities {QT}T∈T were unknown a priori, a larger value of d would also

increase the difficulty of learning {QT}T∈T , since |T | increases exponentially with d.

C. Recovering prior results from Theorems 1 and 2

To the best of our knowledge, the sharp threshold established by Theorems 1 and 2 is the most general result for exact

recovery in the SBM/HSBM literature. As discussed below, several problem settings investigated in prior works are subsumed

by our result, and the thresholds derived in the prior works can be recovered from Theorems 1 and 2.

1) Exact recovery in the SBM [4]: The SBM considered in [4] corresponds to our d-HSBM with d = 2. In [4], the prior

distribution of each node is also p = (p1, p2, . . . , pk), and the edge probabilities are characterized by
{
Qi,j

logn
n

}
i,j∈[k]

, where

Qi,j corresponds to edges that contain nodes in Vi and Vj . The authors of [4] showed that the threshold for exact recovery is

min
i,j∈[k]:i 6=j

max
t∈[0,1]

∑
s∈[k]

ps
[
tQs,i + (1− t)Qs,j −Qts,iQ1−t

s,j

]
= 1. (10)

In our setting with d = 2, the set M = {m1,m2, . . . ,mk} contains k distinct length-k vectors, where each ms ,

(0, . . . , 0, 1, 0, . . . , 0) contains a single one which is at the s-th location. By noting that µm⊕i = psQs,i (resp. µm⊕j = psQs,j)
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in [4] and
(
p, {QT}T∈T

)
/∈ Ξ when mini,j∈[k]:i6=j D+(i, j) > 1, we recover their threshold stated in Eqn. (10) from Theorems 1

and 2.

Remark 1. One major distinction between the algorithms in [4] and this work is the initialization step (Stage 1). We use the

spectral clustering method while [4] uses the so-called sphere comparison algorithm. The main idea of the sphere comparison

algorithm is to determine whether two nodes belong to a same community by counting the common neighbors at a large enough

depth between them. While it works well for regular graphs, generalizing it to hypergraphs may be non-trivial.

2) Exact recovery in the d-HSBM with two symmetric communities [34]: The model considered in [34] is a special d-

HSBM with two equal-sized communities that have symmetric structures. It corresponds to our general d-HSBM with k = 2,

p1 = p2 = 1/2, and {QT}T∈T = {Q1, Q2} (where each hyperedge appears with probability Q1 when d nodes are in the same

communities, and Q2 otherwise). Kim, Bandeira, and Goemans [34] showed that the threshold for exact recovery is

1

2d−1

(√
Q1

(d− 1)!
−

√
Q2

(d− 1)!

)2

= 1. (11)

Specializing our result to this symmetric setting, we note that the set M = {(d− 1, 0), (d− 2, 1), . . . , (0, d− 1)} contains d

distinct length-2 vectors, and the values of µm⊕1 and µm⊕2 for all m ∈M can then be calculated. By noting that the model

parameters (p, {QT}T∈T ) /∈ Ξ and t = 1/2 maximizes the GCH-divergence in (6) for symmetric SBMs and HSBMs, we

recover the threshold stated in Eqn. (11) from Theorems 1 and 2. Furthermore, we also recover the celebrated exact recovery

threshold |
√
Q1 −

√
Q2| =

√
2 for the SBM with two symmetric communities [2], since it is a special case of [34] for d = 2.

D. Comparisons with the results on the misclassification proportion in the HSBM [40]

The work [40] studied the fundamental limit of misclassification proportion in d-HSBMs. Their model assumes that there

are k approximately equal-sized communities, and the hyperedge probabilities depend only on the sorted histogram vector

(in descending order) of the community assignment vector (e.g., the community assignment vectors T = (d, 0, . . . , 0) and

T′ = (0, . . . , 0, d) correspond to a same sorted histogram vector (d, 0, . . . , 0)). Thus, their model is a particularization of our

general HSBM model. While the main focus of their work is to characterize the negative exponent of the misclassification

proportion l(Ẑ,Z) (as defined in Eqn. (2)), their results can also be applied to finding the exact recovery threshold by setting

the negative exponent to be greater than log n (which means l(Ẑ,Z) < 1/n and thus implies exact recovery). In the following,

we show that the exact recovery thresholds derived in this work and [40, Theorem 3.1, Theorem 3.2] are exactly the same

when d = 2 and d = 3. When d ≥ 4, the expressions in both works become highly complicated (and moreover, [40] did not

provide the precise value of their expression for d ≥ 5), thus it is difficult to make comparisons; however, we conjecture that

the thresholds should still be the same for d ≥ 4 due to the evidence shown for d = 2 and d = 3.

1) Comparison for d = 2: For a valid comparison, we assume that (i) there are k communities of equal sizes, and (ii) the

hyperedge probabilities are either q1 = Q1
logn
n or q2 = Q2

logn
n , depending on whether two nodes belong to a same community.

For the standard SBM with d = 2, the theoretical result in [40] reduces to the minimax misclassification proportion in [47], in

which the negative exponent is dominated by (n/k) · Iq1q2 , where Iq1q2 , −2 log(
√
q1q2 +

√
1− q1

√
1− q2) and can further
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be simplified as

−2 log(
√
q1q2 +

√
1− q1

√
1− q2) = −2 log

{
√
q1q2 +

(
1− 1

2
q1 +O(q2

1)

)
+

(
1− 1

2
q2 +O(q2

2)

)}
= −2 log

{
1−

(
1

2
(q1 + q2)−√q1q2 +O(q1q2)

)}
= 2

(
1

2
(q1 + q2)−√q1q2

)
+O(q1q2)

= (
√
q1 −

√
q2)2 +O(q1q2), (12)

= (
√
Q1 −

√
Q2)2 log n

n
+O((log n)2/n2).

The first equality follows from
√

1− x = 1− 1
2x+O(x2) for x→ 0. For sufficiently large n, when the parameters satisfy

(
√
Q1 −

√
Q2)2

k
> 1, (13)

the negative exponent of the misclassification proportion will be greater than log n (i.e., the misclassification proportion will be

less than 1/n), which implies exact recovery.

On the other hand, when d = 2, the theoretical guarantee of exact recovery in our work reduces to the threshold in [4],

which is exactly the condition given in (13). This means that for d = 2, the exact recovery thresholds in [40] and this work are

the same.

2) Comparison for d = 3: For a valid comparison, we assume that (i) there are k communities of equal sizes, and (ii) the

hyperedge probabilities scale as Θ( logn
n2 ), and depend only on the sorted histogram vector of the community assignment:

• A hyperedge appears with probability q1 = Q1
logn
n2 if all three nodes belong to a same community;

• A hyperedge appears with probability q2 = Q2
logn
n2 if only two nodes belong to a same community;

• A hyperedge appears with probability q3 = Q3
logn
n2 if three nodes belong to three different communities.

We note that [40, Theorem 3.1] guarantees that the misclassification proportion between the true and estimated labels is at most

exp{−(1− ξn)[ n
2

2k2 Iq1q2 + n2(k−2)
k2 Iq2q3 ]} with high probability, where Iqiqj = −2 log(

√
qiqj +

√
1− qi

√
1− qj) and ξn → 0

as n→∞. To ensure exact recovery, the negative exponent should satisfy

n2

2k2
Iq1q2 +

n2(k − 2)

k2
Iq2q3 > log n. (14)

Next, we figure out the condition under which (14) holds. Recalling from (12) that Iqiqj = (
√
qi −

√
qj)

2 +O(qiqj), thus the

LHS of (14) can be expressed as

n2

2k2
(
√
q1 −

√
q2)2 +

n2(k − 2)

k2
(
√
q2 −

√
q3)2 +O(n2q1q2)

=

(
(
√
Q1 −

√
Q2)2

2k2
+

(k − 2)(
√
Q2 −

√
Q3)2

k2

)
· log n+O

(
(log n)2

n2

)
For sufficiently large n, when the model parameters satisfy

(
√
Q1 −

√
Q2)2

2k2
+

(k − 2)(
√
Q2 −

√
Q3)2

k2
> 1, (15)

the misclassification proportion will be less than 1/n, which implies exact recovery.

Next, we specialize our results to the setting of interest. Note that M =
{
m ∈ Nk : m1 + m2 + · · · + mk = 2

}
, and

R′m = 1/k2 if maxl∈[k]ml = 1, and R′m = 1/(2k2) if maxl∈[k]ml = 2. One can check that the second-order degree profile

condition is satisfied. Without loss of generality, we focus on the first two communities: V1 with degree profile {µm⊕1}m∈M
and V2 with degree profile {µm⊕2}m∈M. In the following, we consider m ∈M such that µm⊕1 and µm⊕2 are different:
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– When m = (2, 0, 0 . . . , 0), we have µm⊕1 = Q1/(2k
2) and µm⊕2 = Q2/(2k

2);

– When m = (0, 2, 0 . . . , 0), we have µm⊕1 = Q2/(2k
2) and µm⊕2 = Q1/(2k

2);

– When m satisfies m1 = 1,m2 = 0, and there exists only one index l ∈ {3, . . . , k} such that ml = 1, we have

µm⊕1 = Q2/k
2 and µm⊕2 = Q3/k

2;

– When m satisfies m1 = 0,m2 = 1, and there exists only one index l ∈ {3, . . . , k} such that ml = 1, we have

µm⊕1 = Q3/k
2 and µm⊕2 = Q2/k

2.

Thus, the GCH-Divergence D+(1, 2) between the first two communities is

max
t∈[0,1]

[
t
Q1

2k2
+ (1− t) Q2

2k2
−
(
Q1

2k2

)t(
Q2

2k2

)1−t
]

+

[
t
Q2

2k2
+ (1− t) Q1

2k2
−
(
Q2

2k2

)t(
Q1

2k2

)1−t
]

+ (k − 2)

[
t
Q2

k2
+ (1− t)Q3

k2
−
(
Q2

k2

)t(
Q3

k2

)1−t
]

+ (k − 2)

[
t
Q3

k2
+ (1− t)Q2

k2
−
(
Q3

k2

)t(
Q2

k2

)1−t
]
,

where the minimum is obtained at t = 1/2, yielding that D+(1, 2) = (
√
Q1−

√
Q2)2

2k2 + (k−2)(
√
Q2−

√
Q3)2

k2 . Finally, by symmetry

one can show that D+(i, j) = D+(1, 2) for other pairs of i, j ∈ [k]. Therefore, the exact recovery threshold is

(
√
Q1 −

√
Q2)2

2k2
+

(k − 2)(
√
Q2 −

√
Q3)2

k2
> 1, (16)

which is exactly the same as the threshold (15) derived in [40].

IV. THE TWO-STAGE ALGORITHM FOR EXACT RECOVERY

In this section, we present our polynomial-time algorithm that is used to achieve the information-theoretic limit shown in

Theorem 2. As mentioned in Section III-B, our algorithm consists of two stages such that the first stage achieves almost exact

recovery via the hypergraph spectral clustering method and the second stage achieves exact recovery via local refinement steps.

This “from global to local” principle has been employed in many contexts, such as community detection in the SBM [4],

[9]–[11], [48] and HSBM [33], [34], [40]–[42], matrix completion [49]–[51], etc. It is also worth noting that when analyzing

two-stage algorithms, random variables that are initially independent may become dependent conditioned on the success of a

preceding stage. To ameliorate this problem, we adopt the graph splitting technique (as described in Subsection IV-A) which is

inspired by prior works on community detection [4], [11], [33], [52]. Our algorithm is described in detail in Algorithm 1.

A. Graph Splitting

Let F = ([n],W) be the complete d-uniform hypergraph on node set [n], and the hyperedge setW contains all the
(
n
d

)
order-d

hyperedges (as defined in Section II-B). We randomly split F into two sub-hypergraph F1 = ([n],W1) and F2 = ([n],W2).

Each hyperedge in W is sampled to W1 with probability γn/ log n, and to W2 with probability 1 − (γn/ log n), where γn

can be any value in ω(1) ∩ o(log n). For concreteness we set γn =
√

log n. Note that W2 is the complement of W1. This

splitting process is independent of the generation of the hypergraph G = ([n], E) (which is generated according to p and{
QT(log n)/nd−1

}
T∈T ). We then define G1 = ([n], E1) as the sub-HSBM that is generated on the hyperedge set W1 of F1,

where E1 = E ∩W1 is the intersection of the hyperedge sets of the HSBM G and the sub-hypergraph F1. Similarly, we define

G2 = ([n], E2) as the sub-HSBM that is generated on the hyperedge set W2 of F2, where E2 = E ∩W2.
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Algorithm 1: THE TWO-STAGE ALGORITHM

1 Input: Hypergraphs G1, G2, number of communities k, γn =
√

log n, radius r =
γ2
n

n log(γn) , V̂(0)
0 = ∅;

2 Stage 1: Almost exact recovery via hypergraph spectral clustering

3 L← HH> −D; LΓ ← trim the rows and columns in L that correspond to v /∈ Γ;

4 L
(k)
Γ ← rank-k approximation of LΓ;

5 Ψ← a subset of nodes that contains dlog ne random samples (with replacement) from Γ;

6 Bv ← {u ∈ Γ : ‖(L(k)
Γ )u − (L

(k)
Γ )v‖22 ≤ r}, for all v ∈ Ψ;

7 for j = 1 to k do

8 v∗j ← arg maxv∈Ψ |Bv \ (∪j−1
l=0 V̂

(0)
l )|;

9 V̂(0)
j ← Bv∗j \ (∪j−1

l=0 V̂
(0)
l )

10 end

11 for v ∈ Γ \ (∪kj=1V̂
(0)
j ) do

12 j∗ ← arg minj ‖(L
(k)
Γ )v − (L

(k)
Γ )v∗j ‖

2
2;

13 V̂(0)
j∗
← V̂(0)

j∗
∪ {v}

14 end

15 Randomly assign each v ∈ [n] \ Γ to one community in {V̂(0)
i }i∈[k]

16 Output the initial estimate Ẑ(0) based on {V̂(0)
i }i∈[k]

17 Stage 2: Local refinement steps

18 for v ∈ [n] do

19 Ẑv , arg maxi∈[k] P
(
Zv = i

∣∣G2 = g2, Ẑ
(0)
∼v = ẑ

(0)
∼v

)
;

20 end

Output : Final estimate Ẑ = (Ẑ1, Ẑ2, . . . , Ẑn)

B. Almost exact recovery via hypergraph spectral clustering (Stage 1)

The main focus of this subsection is the sub-HSBM G1 = ([n], E1). We apply a hypergraph spectral clustering method on

G1 to obtain an initial estimate of the ground-truth community vector Z, denoted by Ẑ(0) = (Ẑ
(0)
1 , . . . , Ẑ

(0)
n ).

Let H = [Hve] be the n×
(
n
d

)
binary incidence matrix corresponding to G1 such that each entry Hve = 1 if the hyperedge

e ∈ E1 and e contains node v, and Hve = 0 otherwise. Note that there is an one-to-one mapping between H and the observed

adjacency tensor A, thus one can obtain H from A. For each node v ∈ [n], its degree (in G1) is denoted by dv ,
∑
e∈E Hve.

Let D = diag(d1, . . . , dn) be an n×n diagonal matrix that represents the degrees of the n nodes. We then define the hypergraph

Laplacian as

L , HH> −D, (17)

where L is an n× n matrix and the (i, j)-entry represents the number of hyperedges that contain both node i and node j. To

ensure a good performance of the hypergraph spectral clustering method, one typically needs to remove a small fractions of

nodes that have significantly higher degrees [40] than the average. Thus, we define the set of “good” nodes that have degree no

larger than a certain threshold τ as

Γ , {v ∈ [n] : dv ≤ τ}, (18)



12

Nodes in Γ \Ψ

Nodes in Γ ∩Ψ

(a) Illustration of nodes in Γ.

V̂(0)
1 = Bv∗1

V̂(0)
2 = Bv∗2 \ V̂

(0)
1V̂(0)

3 = Bv∗3 \ (V̂(0)
1 ∪ V̂(0)

2 )

(b) The estimated communities V̂(0)
1 , V̂(0)

2 , V̂(0)
3 after running the

first “for loop” in Stage 1 (lines 7− 10).

Fig. 1: An example with 3 communities. Each node corresponds to a column of L(k)
Γ .

where τ is set to be CQmaxγn for some large constant C > 0, such that τ is much larger than the expected degree of every

node.

We apply Stage 1 of Algorithm 1 (lines 2 − 16) to obtain an almost exact recovery of the k communities. Initially, we

calculate the hypergraph Laplacian L, and then “trim” the rows and columns in L that correspond to nodes that do not belong

to Γ. Specifically, for each of the n nodes v ∈ [n], if v /∈ Γ, we replace all the entries in the v-th row and v-th column of L by

all zeros. This yields the trimmed hypergraph Laplacian LΓ. In addition, we also perform an singular value decomposition

(SVD) on LΓ to obtain the optimal rank-k approximation L
(k)
Γ , i.e., L(k)

Γ =
∑k
i=1 σiuiv

T
i where σ1 ≥ σ2 ≥ · · · ≥ σk are the

largest k singular values, and ui and vi are the corresponding singular vectors of LΓ.

We then perform a clustering algorithm (lines 5− 16) on the columns of L(k)
Γ , i.e., the set of column vectors {(L(k)

Γ )v}v∈Γ.

An example of our clustering algorithm is illustrated in Fig. 1. We first randomly select dlog ne nodes from Γ (with replacement)

as reference nodes, and it can be shown (in Lemma 5 below) that each community contains at least one reference node with

high probability. This set of reference nodes is denoted by Ψ. For each node v ∈ Ψ, we construct a ball Bv with center v and

radius r , γ2
n

n log(γn) which includes all the neighboring nodes (i.e., the nodes in Bv). Among {Bv}v∈Ψ, we find the one that has

the largest cardinality, declare v∗1 , arg maxv∈Ψ |Bv|, and set the largest community V̂(0)
1 to be Bv∗1 . To find the second largest

community, we remove all the nodes in V̂(0)
1 and then follow a similar procedure to find the ball with the largest cardinality.

That is, we declare v∗2 , arg maxv∈Ψ |Bv \ V̂
(0)
1 |, and set the second largest community V̂(0)

2 to be Bv∗2 \ V̂
(0)
1 . By repeating

this procedure for 2 ≤ j ≤ k, we obtain k estimated communities V̂(0)
1 , V̂(0)

2 , . . . , V̂(0)
k (lines 7− 10). Furthermore, we assign

the nodes belonging to Γ \ (∪j∈[k]V̂
(0)
j ) to their nearest communities (lines 11− 14), and the nodes that do not belong to Γ to

each community randomly (line 15). Finally, for each node v ∈ V̂(0)
j (for all j ∈ [k]), we set Ẑ(0)

v = j.

The high-level intuition of the analysis of Stage 1 is as follows. Let M , E(LΓ) be the expected trimmed hypergraph

Laplacian, where M is identical to E(L) except that the rows and columns corresponding to nodes that do not belong to Γ are

set to zeros. Note that M is an n× n matrix of rank at most k when
(
p, {QT}T∈T

)
/∈ Ξ. If nodes u and v are in the same

cluster, we have Mu = Mv; otherwise they are far apart in the sense that ‖Mu −Mv‖22 = Ω(γ2
n/n) (as shown in Lemma 3

below). On the other hand, the sum of the distances between each column (L
(k)
Γ )v and its expectation Mv satisfies

∑
v∈Γ

‖(L(k)
Γ )v −Mv‖22 = ‖L(k)

Γ −M‖2F
(a)

≤ 8k‖LΓ −M‖2op

(b)
= O(γn)

with high probability, where (a) follows from the Eckart–Young–Mirsky theorem and Weyl’s inequality, and (b) is proved by
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leveraging the random matrix theory (see Lemma 4 for details). By a careful analysis of Stage 1, one can show that each

node v will be misclassified only if the distance ‖(L(k)
Γ )v −Mv‖22 = Ω(γ2

n/n) (as proved in Section V-A). Thus, the output of

Stage 1 results in a misclassification of at most O(n/γn) nodes. Since γn = ω(1), the misclassified proportion l(Z,Z(0)) tends

to zero as n tends to infinity, i.e., almost exact recovery is achieved.

Remark 2. The number of randomly selected reference nodes is set to be dlog ne such that it is large enough to ensure that

each community contains at least one reference node (with high probability). Since the radius r = γ2
n/(n log γn) is also large

enough, one can use the reference node in each community (denoted by v) to find most of its community members, via the

ball Bv with center v and radius r. As a result, we only need to compute Θ(n log n) pairwise distances ‖(L(k)
Γ )u − (L

(k)
Γ )v‖22;

while some related works [40] use all the n nodes as reference nodes and thus Θ(n2) pairwise distances need to be computed.

C. Local refinements (Stage 2)

After obtaining the initial estimate Ẑ(0), we refine the label of each node v ∈ [n] based on the observation of the hypergraph

G2 = g2 as well as the estimated labels {Ẑ(0)
∼v} for the remaining nodes. For each node v ∈ [n], we perform a local maximum

a posteriori (MAP) estimation as follows:

Ẑv(g2, ẑ
(0)
∼v) , arg max

i∈[k]

P
(
Zv = i

∣∣G2 = g2, Ẑ
(0)
∼v = ẑ(0)

∼v

)
. (19)

This leads to the final estimate Ẑ = (Ẑ1, . . . , Ẑn) of the ground-truth community vector. A detailed analysis of Stage 2 is

provided in Section V-B.

Remark 3. Instead of computing the posterior probability P(Zv = i|G2 = g2, Ẑ
(0)
∼v = ẑ

(0)
∼v) directly, one can compute the

probability P(G2 = g2|Zv = i, Ẑ
(0)
∼v = ẑ

(0)
∼v) · pi which is proportional to the posterior probability. Note that the sub-HSBM

G2 is generated on the hyperedge set W2 of the sub-hypergraph F2 (as defined in Section IV-A due to graph splitting). The

presence or absence of each hyperedge in W2 can be modelled by a Bernoulli random variable whose success probability

is governed by Zv and ẑ
(0)
∼v. Hence, the probability P(G2 = g2|Zv = i, Ẑ

(0)
∼v = ẑ

(0)
∼v) is essentially a product of |W2| terms4

corresponding to the presence or not of hyperedges in W2, and each term equals either the “success probability” or “one minus

the success probability” depending on whether the hyperedge appears in g2.

Remark 4. It is straightforward to improve Algorithm 1 to an agnostic algorithm that does not require the knowledge of model

parameters. Before performing the local refinement steps, one can estimate the distribution of communities p̂ = (p̂1, . . . , p̂k)

based on the estimated community vector Ẑ(0), and the hyperedge probabilities {Q̂T}T∈T based on both Ẑ(0) and the hyperedges

in the sub-hypergraph G2. Due to the law of large numbers and the fact that l(Z, Ẑ(0)) = o(1), these estimates p̂ and {Q̂T}T∈T
are expected to be close to the true values p and {QT}T∈T respectively. As a result, it can be shown that running the local

refinement steps in Stage 2 still yields exact recovery. Furthermore, even if the number of communities k is not given a priori,

one can still apply a singular value thresholding method (as employed in [9]) to the hypergraph Laplacian LΓ to estimate the

value of k in Stage 1.

Remark 5. We note that the algorithm in [40] also relies on a hypergraph spectral clustering step plus a local refinement step.

However, their hypergraph spectral clustering method is different from ours, with main distinctions described as follows.

4Note that it suffices to focus on hyperedges in W2 that contains node v only, since the presence or absence of other hyperedges does not depend on which

community node v belongs to, thus has no influence on the decision rule in (19).
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– In our work, we use the entire rank-k approximation of the trimmed hypergraph Laplacian L
(k)
Γ =

∑k
i=1 σiuiv

T
i as the

input of our subsequent clustering step (lines 5-15 in Algorithm 1).

– The algorithm in [40] applies a singular value decomposition to LΓ to obtain the k leading singular vectors [u1, . . . ,uk],

and then apply their subsequent clustering step by representing each of the n node by a reduced k-dimensional vector.

The advantage of our algorithm is that its accompanying analysis does not involve the k-th largest singular value of E(L),

while the theoretical guarantee of the spectral clustering step in [40] depends on the k-th largest singular value. In the setting

of [40] (described in Section III-D), their algorithm works well because the k-th largest singular value is reasonably large (as

shown in [40, Lemma 5.1]). However, in our more general setting, the k-th largest singular value is not always large enough,

which prohibits the applicability of the algorithm in [40]. In contrast, our algorithm is applicable to a larger set of parameters,

i.e., as long as the second-order degree profile condition is satisfied.

V. THEORETICAL GUARANTEES OF ALGORITHM 1 (THEOREM 2)

In this section, we prove that as long as mini,j∈[k]:i 6=j D+(i, j) > 1 and
(
p, {QT}T∈T

)
/∈ Ξ, applying Algorithm 1 on the

observed hypergraph G ensures l(Z, Ẑ) = 0 with high probability for sufficiently large n (i.e., exact recovery).

First, we note that with high probability, the size of each community Vj = {v ∈ [n] : Zv = j} is close to npj for all j ∈ [k].

This is stated in Lemma 1 below and can be proved by applying the Chernoff bound

Lemma 1. Fix a constant δ ∈ (0, 1) which can be chosen to be arbitrarily small. We say that the length-n vector Z ∈ AZ
(where AZ is referred to as the typical set of Z) if the communities {Vj}j∈[k] associated with Z satisfy(

1− n− 1
2 + δ

2

)
pjn ≤ |Vj | ≤

(
1 + n−

1
2 + δ

2

)
pjn, for all j ∈ [k]. (20)

Then, we have P(Z ∈ AZ) ≥ 1− exp(−Θ(nδ)).

Therefore, one can focus on typical ground-truth community vectors z ∈ AZ in the following analysis.

A. Theoretical guarantees of Stage 1

For a fixed ground-truth community vector z ∈ AZ , we first introduce an artificial d-HSBM G̃1 which is generated with

respect to the ground-truth community vector z and hyperedge probabilities {QTγn
nd−1 }T∈T . Note that the generation process of G̃1

is equivalent to first generating a sub-hypergraph F1 (with splitting parameter γn/ log n) and then generating a sub-HSBM G1

on the hyperedge set of F1 (with hyperedge probabilities {QT logn
nd−1 }T∈T ). Thus, we investigate the misclassification proportion

l(z, Ẑ(0)) based on the random hypergraph G̃1.

Theorem 3 (Theoretical guarantee of Stage 1). Suppose the model parameters
(
p, {QT}T∈T

)
/∈ Ξ. For any fixed z ∈ AZ ,

there exist vanishing sequences {εn} and {ηn} (which depend on {γn}) such that with probability at least 1− εn over the

generation of G̃1, running Stage 1 of Algorithm 1 ensures that l(z, Ẑ(0)) ≤ ηn, i.e., almost exact recovery is achieved.

Theorem 3 is proved in the rest of this section, and in the following we assume that
(
p, {QT}T∈T

)
/∈ Ξ.

Note that with high probability over the generation of G̃1, the degrees of most nodes in [n] are smaller than the threshold τ ,

thus only a vanishing fraction of nodes (at most O(n/γn) nodes) is trimmed. This result is adapted from [40, Lemma D.3] and

stated below.

Lemma 2 (Adapted from Lemma D.3 in [40]). There exists a large constant C > 0 such that if we set τ = CQmaxγn, then

with probability at least 1− exp(−C ′n) (for some constant C ′ > 0), the cardinality of the set Γ satisfies |Γ| ≥ n(1− (1/τ)).
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Furthermore, let VΓ
j , Vj ∩ Γ for all j ∈ [k]. Lemma 2 also implies that with high probability,

(1− o(1))pjn ≤ |VΓ
j | ≤ (1 + o(1))pjn, for all j ∈ [k]. (21)

We then focus on the remaining nodes in the set Γ. First recall that M = E(LΓ) is a matrix of rank at most k, and satisfies

Mu = Mv if u and v belong to the same community (where u, v ∈ Γ). Lemma 3 below shows that the distance between the

two columns Mu and Mv scales as Ω(γ2
n/n) if u and v belong to different communities.

Lemma 3. Suppose u, v ∈ Γ. When the second-order degree profile condition is satisfied (i.e.,
(
p, {QT}T∈T

)
/∈ Ξ), we have

‖Mu −Mv‖22 =

0, if u and v belong to the same community;

Ω(γ2
n/n), otherwise.

(22)

The proof of Lemma 3 can be found in Appendix A. Lemma 4 below shows that with high probability, both the operator

norm and the Frobenius norm of the difference between LΓ and M can be appropriately upper bounded.

Lemma 4. For any constant C ′1 > 0, there exists some constant C1 > 0 such that with probability at least 1− n−C′1 ,

‖LΓ −M‖op ≤ C1 ·
[√

γnQmax +
√
τ +

γnQmax√
γnQmax +

√
τ

]
. (23)

As a result, the Frobenius norm between M and L
(k)
Γ (the rank-k approximation of LΓ) can be upper-bounded as

‖L(k)
Γ −M‖2F ≤ 8kC2

1 ·
[√

γnQmax +
√
τ +

γnQmax√
γnQmax +

√
τ

]2

= O(γn). (24)

Proof of Lemma 4. The proof of (23) can be adapted from [40, Lemma D.4], so our main focus is on the proof of (24). Note

that

‖L(k)
Γ −M‖2F ≤ 2k · ‖L(k)

Γ −M‖2op (25)

≤ 4k · ‖L(k)
Γ − LΓ‖2op + 4k · ‖LΓ −M‖2op (26)

≤ 4k · σ2
k+1 + 4k · ‖LΓ −M‖2op (27)

≤ 8k · ‖LΓ −M‖2op, (28)

where σk+1 is the (k + 1)-th largest singular value of LΓ. Eqn. (25) holds since the rank of L
(k)
Γ −M is at most 2k, and

‖X‖2F ≤ r‖X‖2op for any matrix X of rank r. Eqn. (26) holds since ‖L(k)
Γ −M‖op ≤ ‖L(k)

Γ − LΓ‖op + ‖LΓ −M‖op and

2‖L(k)
Γ −LΓ‖op ·‖LΓ−M‖op ≤ ‖L(k)

Γ −LΓ‖2op +‖LΓ−M‖2op. Eqn. (27) follows from the Eckart–Young–Mirsky theorem [53],

while Eqn. (28) is due to Weyl’s inequality5 [54]. Combining Eqns (23) and (28), it is then clear that

‖L(k)
Γ −M‖2F ≤ 2k · ‖L(k)

Γ −M‖2op ≤ 8kC2
1 ·
[√

γnQmax +
√
τ +

γnQmax√
γnQmax +

√
τ

]2

= O(γn). (29)

This completes the proof of Lemma 4.

Analysis of Stage 1: In the following, we show that when Lemmas 2–4 hold, running Stage 1 ensures that l(z, Ẑ(0))→ 0 with

high probability. Our analysis is inspired by [9] for SBMs, but is adapted to our general d-HSBM problem. We first partition

the nodes in Γ as follows. Recall that the radius r is set to be γ2
n/(n log(γn)), and let

I in
j , {v ∈ VΓ

j : ‖(L(k)
Γ )v −Mv‖22 ≤ r/4}, for all j ∈ [k], (30)

Iout
j , {v ∈ VΓ

j : ‖(L(k)
Γ )v −Mv‖22 ≤ 4r}, for all j ∈ [k], (31)

5Let A and B be n×n matrices, and their singular values are respectively denoted by {σi(A)}i∈[n] and {σi(B)}i∈[n], both in decreasing orders. Weyl’s

inequality states that for every i ∈ [n], |σi(A)− σi(B)| ≤ ‖A−B‖op.
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and the remaining nodes in Γ belong to U , Γ \ {∪j∈[k]Iout
j }. Note that these sets have the following properties:

(i) For all j ∈ [k], most of the nodes v ∈ VΓ
j are such that (L

(k)
Γ )v is r

4 -close to its expectation Mv , since

|VΓ
j \ I in

j | ≤
‖L(k)

Γ −M‖2F
r/4

= O
(

log(γn)

γn
n

)
= o(n). (32)

Thus, |I in
j | ≥ |VΓ

j ∩ I in
j | = |VΓ

j | − |VΓ
j \ I in

j | ≥ pjn(1− o(1)).

(ii) Similar to (i), we have |U| ≤ |Γ \ (∪j∈[k]I in
j )| ≤ ‖L(k)

Γ −M‖2F/(r/4) = O
(

log(γn)
γn

n
)

= o(n).

(iii) If node v ∈ U ∩Ψ, then Bv ∩ (∪j∈[k]I in
j ) = ∅, and as a result of (i), we have |Bv| = O

(
log(γn)
γn

n
)

= o(n).

(iv) If node v ∈ I in
j ∩Ψ, then I in

j ⊆ Bv .

(v) If nodes u ∈ Iout
i and v ∈ Iout

j such that i 6= j, then Tu ∩ Bv = ∅.

(vi) For all j ∈ [k], |Iout
j | ≤ pjn(1 + o(1)). This is because |I in

j | ≥ pjn(1− o(1)) from (i), and thus

|Iout
j | ≤ n− |Γ| −

∑
j′ 6=j

|Iout
j′ | ≤ n−

∑
j′ 6=j

|I in
j′ | ≤ n− (pj′n(1− o(1))) ≤ pjn(1 + o(1)).

Lemma 5 below states that with high probability, each community contains at least one reference node.

Lemma 5. With probability 1− o(1) over the selection of Ψ, we have |I in
j ∩Ψ| ≥ 1 for all j ∈ [k].

Proof. For any j ∈ [k], the probability that a randomly selected reference node does not belong to I in
j is 1− (|I in

j |/n), thus

the probability that there exists at least one reference node belongs to I in
j is

1−
(
1− (|I in

j |/n)
)logn

= 1− exp(−Θ(n/ log n)). (33)

Taking a union bound over all j ∈ [k], we complete the proof.

With these properties, we are able to show that running Stage 1 yields almost exact recovery. For ease of presentation, in the

following we focus mainly on the case when p1 > p2 > . . . > pk (such that the community sizes satisfy |VΓ
1 | > |VΓ

2 | > . . . > |VΓ
k |

with high probability). The analysis can be easily generalized to the case when pi = pj for some i 6= j, but it requires more

cumbersome notations (such as permutations) which makes the subsequent analysis more difficult to understand.

The “for loop” in lines 7− 10: When j = 1, we will show that v∗1 ∈ Iout
1 and |Bv∗1 | ≥ np1(1− o(1)). From Lemma 5, there

exists a node v1 ∈ I in
1 ∩Ψ, and its corresponding set Bv1 is a superset of I in

1 (due to (iv)). Thus, we have |Bv1 | ≥ |I in
1 | ≥

p1n(1− o(1)), where the last inequality is due to (i). As |Bv∗1 | is at least |Bv1 |, we obtain that |Bv∗1 | ≥ p1n(1− o(1)). To prove

that v∗1 ∈ Iout
1 , one can verify that

1) for any v ∈ U ∩Ψ, |Bv| = o(n) < |Bv∗1 | by (iii);

2) for any v ∈ Iout
j ∩ Ψ where j 6= 1, |Bv| ≤ |Iout

j | + |U| ≤ npj(1 + o(1)) + o(n) < |Bv∗1 | (due to (vi) and the fact that

p1 > pj).

For 2 ≤ j ≤ k, we will show that v∗j ∈ Iout
j and |Bv∗j | ≥ npj(1− o(1)). Similar to the analysis above, there exists a node

vj ∈ I in
j ∩Ψ and Bvj ⊇ I in

j . From (v) we know that |Bvj \(∪
j−1
l=0 V̂

(0)
l )| = |Bvj |, thus |Bvj \(∪

j−1
l=0 V̂

(0)
l )| ≥ |I in

j | ≥ npj(1−o(1)).

As |Bv∗j \ (∪j−1
l=0 V̂

(0)
l )| is at least |Bvj \ (∪j−1

l=0 V̂
(0)
l )|, we obtain that |Bv∗j | ≥ pjn(1− o(1)). To prove that v∗j ∈ Iout

j , one can

verify that

1) for any v ∈ U ∩Ψ, |Bv \ (∪j−1
l=0 V̂

(0)
l )| = o(n);

2) for any v ∈ Iout
j′ ∩ Ψ where j′ > j, |Bv \ (∪j−1

l=0 V̂
(0)
l )| ≤ |Bv| ≤ |Iout

j′ | + |U| ≤ npj′(1 + o(1)) + o(n) < |Bv∗j | (due to

(vi) and the fact that pj > pj′ );
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3) for any v ∈ Iout
j′ ∩ Ψ where j′ < j, we have |Bv \ (∪j−1

l=0 V̂
(0)
l )| ≤ |Bv \ V̂(0)

j′ | ≤ |Iout
j | + |U| − |Bv∗j′ | = o(n), since

|Bv∗
j′
| ≥ npj′(1− o(1)).

Therefore, under the assumption p1 > p2 > · · · > pk, we have v∗j ∈ Iout
j for all j ∈ [k].6 This implies that all the elements in

{v∗j }j∈[k] are far from each other—specifically, every pair of nodes (v∗i , v
∗
j ) satisfies

‖(L(k)
Γ )v∗i − (L

(k)
Γ )v∗j ‖

2
2 ≥

1

2
‖Mv∗i

− (L
(k)
Γ )v∗j ‖

2
2 − ‖Mv∗i

− (L
(k)
Γ )v∗i ‖

2
2

≥ 1

2

(
1

2
‖Mv∗j

−Mv∗i
‖22 − ‖Mv∗j

− (L
(k)
Γ )v∗j ‖

2
2

)
− ‖Mv∗i

− (L
(k)
Γ )v∗i ‖

2
2 = Ω(γ2

n/n), (34)

since ‖(L(k)
Γ )v∗i −Mv∗i

‖22 ≤ 4r, ‖(L(k)
Γ )v∗j −Mv∗j

‖22 ≤ 4r, and ‖Mv∗j
−Mv∗i

‖22 = Ω(γ2
n/n) by Lemma 3. If a node

v ∈ VΓ
i is misclassified to V̂(0)

j (where i 6= j) in the first “for loop”, then it must be close to the center of V̂(0)
j , i.e.,

‖(L(k)
Γ )v − (L

(k)
Γ )v∗j ‖

2
2 ≤ r. Thus, we have

‖(L(k)
Γ )v −Mv‖22 ≥

1

2
‖Mv −Mv∗j

‖22 − ‖(L
(k)
Γ )v −Mv∗j

‖22

≥ 1

2
‖Mv −Mv∗j

‖22 − 2‖(L(k)
Γ )v − (L

(k)
Γ )v∗j ‖

2
2 − 2‖(L(k)

Γ )v∗j −Mv∗j
‖22

= Ω(γ2
n/n). (35)

The “for loop” in lines 11− 14: Consider a specific node v ∈ Γ \ (∪kj=1V̂
(0)
j ). If v ∈ VΓ

i is misclassified to V̂(0)
j (where i 6= j)

in the second “for loop”, then it must be closer to the center of V̂(0)
j than the center of V̂(0)

i , i.e., ‖(L(k)
Γ )v − (L

(k)
Γ )v∗j ‖

2
2 ≤

‖(L(k)
Γ )v − (L

(k)
Γ )v∗i ‖

2
2. Since the two centers are far from each other, one can show that v is far from the center of V̂(0)

i , i.e.,

Ω(γ2
n/n) ≤ ‖(L(k)

Γ )v∗i − (L
(k)
Γ )v∗j ‖

2
2 ≤ 2‖(L(k)

Γ )v∗i − (L
(k)
Γ )v‖22 + 2‖(L(k)

Γ )v∗j − (L
(k)
Γ )v‖22 ≤ 4‖(L(k)

Γ )v∗i − (L
(k)
Γ )v‖22. (36)

Thus, node v must satisfy

‖(L(k)
Γ )v −Mv‖22 ≥

1

2
‖(L(k)

Γ )v − (L
(k)
Γ )v∗i ‖

2
2 − ‖Mv − (L

(k)
Γ )v∗i ‖

2
2 = Ω(γ2

n/n). (37)

Combining Eqns. (35) and (37), we conclude that for any node v ∈ Γ, if it is misclassified to another cluster, it must satisfy

‖(L(k)
Γ )v −Mv‖22 = Ω(γ2

n/n). Since
∑
v∈Γ ‖(L

(k)
Γ )v −Mv‖22 = ‖L(k)

Γ −M‖2F = O(γn) (by Lemma 4), we know that the

number of misclassified nodes in Γ is at most O(n/γn). Taking into account the number of nodes that do not belong to Γ

(which also scales as O(n/γn) by Lemma 2), we complete the proof of Theorem 3.

B. Theoretical guarantees of Stage 2

From Theorem 3 we know that for a fixed ground-truth community vector z ∈ AZ , running Stage 1 on G̃1 ensures that

l(z, Ẑ(0)) ≤ ηn with probability at least 1− εn. In the following, we show that the hypergraph spectral clustering method does

not only work well on G̃1, but also works well on the sub-HSBM G1 (which is generated on the fixed sub-hypergraph F1)

with high probability over the graph splitting process.

Definition 4. Let (f1, f2) be the realizations of the sub-HSBMs (F1, F2), and consider a fixed ground-truth community vector

z.

• We say f1 is a good realization of the first sub-hypergraph with respect to z (denoted by f1 ∈ Gz1 ) if the probability that

“running Stage 1 on G1 (which depends on f1) ensures l(z, Ẑ(0)) ≤ ηn” is at least 1−√εn, i.e., PG1(l(z, Ẑ(0)) ≤ ηn) ≥

1−√εn.

6Without this assumption, we have that there exists a permutation π on [k] such that v∗j ∈ Ioutπ(j)
for all j ∈ [k].
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• We say f2 is a good realization of the second sub-hypergraph with respect to z (denoted by f2 ∈ Gz2 ) if for every node

v ∈ [n] and every community assignment m ∈M, the number of hyperedges in f2 that includes node v and other d− 1

nodes with community assignment m (denoted by Dv,m) satisfies (1− (3γn/ log n))Rm ≤ Dv,m ≤ (1 + n−
1
2 + δ

2 )Rm.

Lemma 6. Suppose z ∈ AZ . With probability at least 1− 2
√
εn, the randomly generated sub-hypergraphs (F1, F2) satisfy

F1 ∈ Gz1 and F2 ∈ Gz2 simultaneously.

Proof. See Appendix B.

Due to Lemma 6, one can then focus on a specific typical ground-truth community vector z ∈ AZ and good realizations of the

sub-hypergraphs f1 ∈ Gz1 and f2 ∈ Gz2 in the following. Also, one can suppose that the initial estimate ẑ(0) (after Stage 1) satisfies

l(z, ẑ(0)) ≤ ηn, since running Stage 1 on G1 (which depends on the good realization f1) ensures l(z, Ẑ(0)) ≤ ηn with high

probability. Without loss of generality, we further assume that the minimum value of l(z, ẑ(0)) = minπ∈Sk
1
n

∑
v∈[n] 1{ẑ

(0)
v 6=

π(zv)} is achieved by the identity permutation in Sk, and this assumption helps us to remove the presence of the permutation

in the following analysis.

Note that the local MAP estimation in (19) for each node v ∈ [n] can be alternatively represented as

Ẑv(g2, ẑ
(0)
∼v) = arg max

i∈[k]

P
(
Zv = i

∣∣G2 = g2, Ẑ
(0)
∼v = ẑ(0)

∼v

)
(38)

= arg max
i∈[k]

P
(
G2 = g2

∣∣Zv = i, Ẑ(0)
∼v = ẑ(0)

∼v

)
· pi. (39)

Thus, for a fixed node v ∈ Vi (i.e., zv = i) for some i ∈ [k], the probability that it is misclassified to a different community

can be bounded as follows:

P
(
Ẑv(G2, ẑ

(0)
∼v) 6= zv

)
= PG2

(
arg max
i′∈[k]

P
(
G2

∣∣Zv = i′, ẑ(0)
∼v

)
· pi′ 6= i

)
(40)

= PG2

(
∃j 6= i : P

(
G2

∣∣Zv = j, ẑ(0)
∼v

)
· pj ≥ P

(
G2

∣∣Zv = i, ẑ(0)
∼v

)
· pi
)

(41)

≤
∑
j 6=i

PG2

(
P
(
G2

∣∣Zv = j, ẑ(0)
∼v

)
· pj ≥ P

(
G2

∣∣Zv = i, ẑ(0)
∼v

)
· pi
)

(42)

=
∑
j 6=i

∑
g2

P
(
g2

∣∣Zv = i, z∼v
)
× 1

{
P
(
g2

∣∣Zv = j, ẑ(0)
∼v

)
· pj ≥ P

(
g2

∣∣Zv = i, ẑ(0)
∼v

)
· pi
}
. (43)

Note that the above error probability depends only on the hyperedges in G2 (which is generated on the sub-hypergraph f2) that

contains node v. Recall that the number of hyperedges in f2 that comprise node v and other d − 1 nodes with community

assignment m is Dv,m (as defined in Definition 4), thus these hyperedges can be represented by Bernoulli random variables

{Xm
a }

Dv,m
a=1 , where Xm

a = 1 means the presence of this hyperedge in G2. Taking all possible m ∈ M into account, we

know that the hyperedges in f2 that contains node v can be represented by the collection of Bernoulli random variables{
{Xm

a }
Dv,m
a=1

}
m∈M. We also denote Dv ,

∑
m∈MDv,m as the total number of hyperedges in f2 that contains v, where Dv

scales as Θ(nd−1) by Lemma 6.

To further upper bound (43), we would like to substitute the terms P(g2

∣∣Zv = i, ẑ
(0)
∼v) and P(g2

∣∣Zv = j, ẑ
(0)
∼v) in the indicator

function by P
(
g2

∣∣Zv = i, z∼v
)

and P
(
g2

∣∣Zv = j, z∼v
)

respectively; thus we can get rid of the fact that ẑ(0)
∼v is not exactly the

same as z∼v . We now consider the ratio between P(G2

∣∣Zv = j, ẑ
(0)
∼v) and P

(
G2

∣∣Zv = j, z∼v
)

for an arbitrary j ∈ [k]. Due to

the independence of hyperedges
{
{Xm

a }
Dv,m
a=1

}
m∈M in G2, we have

P
(
G2

∣∣Zv = j, ẑ
(0)
∼v

)
P
(
G2

∣∣Zv = j, z∼v
) =

∏
m∈M

Dv,m∏
a=1

P
(
Xm
a

∣∣Zv = j, ẑ
(0)
∼v

)
P
(
Xm
a

∣∣Zv = j, z∼v
) (44)
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Conditioned on Zv = j and the ground truth z∼v, the hyperedge Xm
a includes node v ∈ Vj and d − 1 other nodes with

community assignment m, thus P(Xm
a = 1

∣∣Zv = j, z∼v) =
Qm⊕j logn

nd−1 . On the other hand, conditioned on Zv = j and the

estimated labels ẑ
(0)
∼v , the hyperedge Xm

a is considered to include node v ∈ Vj , but the community assignment of the other d− 1

nodes, denoted by m′ ∈M, may not be equal to m, and we have P(Xm
a = 1

∣∣Zv = j, ẑ
(0)
∼v) =

Qm′⊕j logn

nd−1 . Here, m′ = m if

all the d− 1 nodes (except for v) in this hyperedge are not misclassified in ẑ
(0)
∼v , while m′ 6= m otherwise. For hyperedges such

that their community assignments m′ (under ẑ(0)
∼v) equal m, they are cancelled out in (44) since the distributions are invariant

conditioned on either ẑ(0)
∼v or z∼v. It then remains to focus on the hyperedges that contain at least one misclassified node in

ẑ
(0)
∼v . Since l(z, ẑ(0)) ≤ ηn, the number of such hyperedges is at most ηnn ·

(
n−2
d−2

)
, D′v , where D′v scales as O(ηnn

d−1). For

ease of presentation, these D′v Bernoulli random variables in
{
{Xm

a }
Dv,m
a=1

}
m∈M are alternatively relabelled as {Ya}

D′v
a=1.

Definition 5. Let {cn} be a vanishing sequence that satisfy cn log(cn/ηn) = ω(1). We say G2 ∈ Gv if the random variables

{Ya}
D′v
a=1 satisfies

∑D′v
a=1 Ya ≤ cn log n, and G2 /∈ Gv otherwise.

Lemma 7 below states that G2 ∈ Gv with high probability (conditioned on the ground truth Zv = i and z∼v), and for every

realization g2 ∈ Gv , the ratio between P(g2|Zv = j, ẑ
(0)
∼v) and P(g2|Zv = j, z∼v) is bounded for any j ∈ [k].

Lemma 7. Suppose the initial estimate ẑ(0) satisfies l(z, ẑ(0)) ≤ ηn. The probability that G2 does not belong to Gv is at most

n−ω(1), i.e.,

P
(
G2 /∈ Gv

∣∣Zv = i, z∼v
)

= P
( D′v∑
a=1

Ya > cn log n
∣∣Zv = i, z∼v

)
≤ n−ω(1). (45)

Furthermore, there exist Lh = no(1) and Ll = n−o(1) such that for all g2 ∈ Gv and j ∈ [k],

Ll ≤
P(g2|Zv = j, ẑ

(0)
∼v)

P(g2|Zv = j, z∼v)
≤ Lh. (46)

Proof. See Appendix C.

We now return to (43). When g2 ∈ Gv and P(g2|Zv = j, ẑ
(0)
∼v) · pj ≥ P(g2|Zv = i, ẑ

(0)
∼v) · pi, we have P(g2|Zv = i, z∼v) ≤

(pjLu/piLl)P(g2|Zv = j, z∼v) according to Lemma 7. Thus, one can upper-bound (43) as

∑
j 6=i

∑
g2∈Gv

P
(
g2

∣∣Zv = i, z∼v
)
1

{
P
(
g2

∣∣Zv = j, ẑ(0)
∼v

)
· pj ≥ P

(
g2

∣∣Zv = i, ẑ(0)
∼v

)
· pi
}

+
∑
g2 /∈Gv

P(g2|Zv = i, z∼v)

≤
∑
j 6=i

∑
g2∈Gv

pjLu
piLl

min
{
P
(
g2

∣∣Zv = i, z∼v
)
,P
(
g2

∣∣Zv = j, z∼v
)}

+ n−ω(1) (47)

≤
∑
j 6=i

pjLu
piLl

∑
g2

min
{
P
(
g2

∣∣Zv = i, z∼v
)
,P
(
g2

∣∣Zv = j, z∼v
)}

+ n−ω(1). (48)

Lemma 8 below bounds the term
∑
g2

min
{
P
(
g2

∣∣Zv = i, z∼v
)
,P
(
g2

∣∣Zv = j, z∼v
)}

for any i 6= j in terms of the GCH-

divergence D+(i, j) between communities Vi and Vj .

Lemma 8. When the ground-truth community vector z ∈ AZ and the sub-hypergraphs f1 ∈ Gz1 and f2 ∈ Gz2 , we have

∑
g2

min
{
P
(
g2

∣∣Zv = i, z∼v
)
,P
(
g2

∣∣Zv = j, z∼v
)}
≤ n−D+(i,j)+o(1), (49)

where D+(i, j) = maxt∈[0,1]

∑
m∈M tµm⊕i + (1− t)µm⊕j − µtm⊕iµ

1−t
m⊕j .
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Proof of Lemma 8. As G2 is equivalent to the collection of random variables
{
{Xm

a }
Dv,m
a=1

}
m∈M, we have∑

g2

min
{
P
(
g2

∣∣Zv = i, z∼v
)
,P
(
g2

∣∣Zv = j, z∼v
)}

=
∑

m∈M

∑
{xm
a }

Dv,m
a=1

min

 ∏
m∈M

Dv,m∏
a=1

P
(
xma
∣∣Zv = i, z∼v

)
,
∏

m∈M

Dv,m∏
a=1

P
(
xma
∣∣Zv = j, z∼v

) (50)

≤
∑

m∈M

∑
{xm
a }

Dv,m
a=1

 ∏
m∈M

Dv,m∏
a=1

P
(
xma
∣∣Zv = i, z∼v

)t ∏
m∈M

Dv,m∏
a=1

P
(
xma
∣∣Zv = j, z∼v

)1−t

(51)

=
∏

m∈M

Dv,m∏
a=1

∑
xm
a ∈{0,1}

P
(
xma
∣∣Zv = i, z∼v

)t P (xma ∣∣Zv = j, z∼v
)1−t

(52)

=
∏

m∈M

[(
Qm⊕i log n

nd−1

)t(
Qm⊕j log n

nd−1

)1−t

+

(
1− Qm⊕i log n

nd−1

)t(
1− Qm⊕j log n

nd−1

)1−t
]Dv,m

, (53)

where (51)-(53) hold for any t ∈ [0, 1]. By applying a Taylor series expansion, we have(
1− Qm⊕i log n

nd−1

)t(
1− Qm⊕j log n

nd−1

)1−t

= exp

{
log

{
(nd−1 −Qm⊕i log n)t(nd−1 −Qm⊕j log n)1−t

nd−1

}}
(54)

= exp

{
t log

(
nd−1

(
1− Qm⊕i log n

nd−1

))
+ (1− t) log

(
nd−1

(
1− Qm⊕j log n

nd−1

))
− log(nd−1)

}
(55)

= exp

{
−tQm⊕i log n

nd−1
− (1− t)Qm⊕j log n

nd−1
− 1

2

(
tQ2

m⊕i + (1− t)Q2
m⊕j

) (log n)2

n2d−2
+O

(
(log n)3

n3d−3

)}
(56)

= 1− tQm⊕i log n

nd−1
− (1− t)Qm⊕j log n

nd−1
−O

(
(log n)2

n2d−2

)
, (57)

where in (57) one needs to be aware that the lower order term has a negative coefficient. Thus, one can rewrite (53) as

exp

{ ∑
m∈M

Dv,m · log

[
1− tQm⊕i log n

nd−1
− (1− t)Qm⊕j log n

nd−1
+

(
Qm⊕i log n

nd−1

)t(
Qm⊕j log n

nd−1

)1−t

−O
(

(log n)2

n2d−2

)]}

= exp

{
−(log n)

∑
m∈M

Dv,m

nd−1
·
(
tQm⊕i + (1− t)Qm⊕j −Qtm⊕iQ1−t

m⊕j +O
(

log n

nd−1

))}
(58)

≤ n−
∑

m∈M R′m(tQm⊕i+(1−t)Qm⊕j−Qtm⊕iQ
1−t
m⊕j)+O(γn/ logn), (59)

where (59) is due to the fact that (1− (3γn/ log n))Rm ≤ Dv,m ≤ (1 + n−
1
2 + δ

2 )Rm. Since (59) is valid for any t ∈ [0, 1]

and recall that µm⊕i = R′mQm⊕i, we eventually obtain that∑
g2

min
{
P
(
g2

∣∣Zv = i, z∼v
)
,P
(
g2

∣∣Zv = j, z∼v
)}
≤ n−maxt∈[0,1]

∑
m∈M tµm⊕i+(1−t)µm⊕j−µtm⊕iµ

1−t
m⊕j+o(1) (60)

= n−D+(i,j)+o(1). (61)

This completes the proof of Lemma 8.

Since mini,j∈[k]:i6=j D+(i, j) > 1, there exists an ε > 0 such that D+(i, j) > 1 + ε for all i 6= j. By also noting that

Lu/Ll = no(1), we have that
∑
j 6=i(pjLu/piLl)

∑
g2

min{P (g2|Zv = i, z∼v) ,P
(
g2

∣∣Zv = j, z∼v
)
} ≤ n−(1+ε)+o(1). Thus,

one can bound the error probability for node v from above as

P
(
Ẑv 6= zv

)
≤ n−(1+ε)+o(1) + n−ω(1). (62)
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Note that the above analysis is also valid for nodes that belong to any other communities (not necessarily community Vi), thus

one can take a union bound over all the n nodes to obtain that

P
(
∃v ∈ [n] : Ẑv 6= zv

)
= P

(
Ẑ 6= z

)
≤ n−ε/2 (63)

when n is sufficiently large. This means that all the nodes can be recovered correctly with probability at least 1− n−ε/2.

C. The Overall Success Probability

Let Esuc be the event that l(z, Ẑ) = 0. From the analysis of Stage 2, we know that for all z ∈ AZ , f1 ∈ Gz1 , f2 ∈ Gz2 , and

ẑ(0) satisfying l(z, ẑ) ≤ ηn,

P(Esuc|z, f1, f2, ẑ
(0)) ≥ 1− n−ε/2, (64)

Therefore, the overall success probability is

P
(
l(Z, Ẑ) = 0

)
=
∑
z

P(z)
∑
f1,f2

P(f1, f2)
∑
ẑ(0)

P(ẑ(0)|z, f1, f2) · P(Esuc|z, f1, f2, ẑ
(0)) (65)

≥
∑
z∈AZ

P(z)
∑

f1∈Gz
1 ,f2∈Gz

2

P(f1, f2)
∑

ẑ(0):l(ẑ(0),z)≤ηn

P(ẑ(0)|z, f1, f2) · P(Esuc|z, f1, f2, ẑ
(0)) (66)

≥ (1− exp(−Θ(nδ))) · (1− 2
√
εn) · (1−

√
εn) · (1− n−ε/2) (67)

= 1− o(1), (68)

where inequality (67) follows from Lemma 1, Lemma 6, the definition of good realization f1 in Definition 4, and Eqn. (64).

This means that exact recovery is achievable.

VI. PROOF OF CONVERSE (THEOREM 1)

In this section, we show that when the model parameters
(
p, {QT}T∈T

)
satisfy mini,j∈[k]:i 6=j D+(i, j) < 1, exact recovery

is impossible. This converse proof is inspired by that for the SBM [4], but is adapted to the d-HSBM setting.

First, we recall from Lemma 1 that with high probability the number of nodes in each community Vj is tightly concentrated

around the expectation npj (i.e., the ground-truth community vector Z ∈ AZ). Hence, we consider a fixed z ∈ AZ from now

on. Let S be a random set that contains n/(log n)3 randomly selected nodes from [n]. By applying the Chernoff bound, we

can show that with probability 1− exp(−Θ(nδ)) over the selection process, the number of nodes in both Vj and S, denoted

by VSj , satisfies

(1− n− 1
2 + δ

2 )2 npj
(log n)3

≤ |VSj | ≤ (1 + n−
1
2 + δ

2 )2 npj
(log n)3

, ∀j ∈ [k], (69)

and thus the number of nodes in both Vj and Sc, denoted by VScj , satisfies

npj

(
1− 1

(log n)3
− 2n−

1
2 + δ

2

)
≤ |VS

c

j | ≤ npj
(

1− 1

(log n)3
+ 2n−

1
2 + δ

2

)
, ∀j ∈ [k] (70)

for sufficiently large n. We then consider a fixed set S that satisfies (69) and (70). Let

fi,j(t) ,
∑

m∈M
tµm⊕i + (1− t)µm⊕j − µtm⊕iµ1−t

m⊕j , (71)

and note that D+(i, j) = maxt∈[0,1] fi,j(t). To obtain the maximizer of fi,j(t), we set f ′i,j(t) = 0 and this implies∑
m∈M

µtm⊕iµ
1−t
m⊕j log

(
µm⊕i

µm⊕j

)
=
∑

m∈M
µm⊕i − µm⊕j . (72)
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Let τ i,jm , bµt∗m⊕iµ
1−t∗
m⊕j log nc for each m ∈M, where t∗ is set to satisfy (72).

Definition 6. For each node v ∈ S, let Nm
v denote the number of hyperedges that contains v and other d − 1 nodes from

[n] \ S that have community assignment m ∈M. A node v ∈ S is said to be ambiguous if Nm
v = τ i,jm for all m ∈M.

In the following, we show that if D+(i, j) < 1, there is at least one ambiguous node in VSi and one ambiguous node in

VSj . For a node v ∈ VSi , Nm
v equals the sum of R̃m i.i.d. Bernoulli random variables {Bm

r }
R̃m
r=1 with expectation Qm⊕i

logn
nd−1 ,

where R̃m =
∏
s∈[k]

(|VScs |
ms

)
. Due to (69) and (70), one can show that(

1− 1

(log n)3
− 2n−

1
2 + δ

2

)
≤ R̃m

Rm
≤
(

1− 1

(log n)3
+ 2n−

1
2 + δ

2

)
. (73)

Following [55, Exercise 2.2], one can show that the probability of Nm
v = τ i,jm is

P

R̃m∑
r=1

Bm
r = τ i,jm

 = exp

{
− R̃mD

(
Rm

R̃m

Qt
∗

m⊕iQ
1−t∗
m⊕j log n

nd−1

∥∥∥∥∥Qm⊕i log n

nd−1

)
− 1

2
log(2πR̃m)

− 1

2
log

(
1− Rm

R̃m

Qt
∗

m⊕iQ
1−t∗
m⊕j log n

nd−1

)
− 1

2
log

(
Rm

R̃m

Qt
∗

m⊕iQ
1−t∗
m⊕j log n

nd−1

)
− C2

}
, (74)

where C2 > 0 is a constant. By using a Taylor series expansion and the fact that R̃m/Rm is bounded (as shown in (73)), we

have

R̃mD

(
Rm

R̃m

Qt
∗

m⊕iQ
1−t∗
m⊕j log n

nd−1

∥∥∥∥∥Qm⊕i log n

nd−1

)

= Rm

Qt
∗

m⊕iQ
1−t∗
m⊕j log n

nd−1
log

(
Rm

R̃m

(
Qm⊕j

Qm⊕i

)1−t∗
)

+ R̃m

(
1− Rm

R̃m

Qt
∗

m⊕iQ
1−t∗
m⊕j log n

nd−1

)

× log

1 +
Qm⊕i log n− Rm

R̃m
Qt
∗

m⊕iQ
1−t∗
m⊕j log n

nd−1 −Qm⊕i log n

 (75)

= R′mQ
t∗

m⊕iQ
1−t∗
m⊕j(log n)(1− t∗) log

(
Qm⊕j

Qm⊕i

)
+
R̃m

Rm

(
R′mQm⊕i log n− Rm

R̃m

R′mQ
t∗

m⊕iQ
1−t∗
m⊕j log n+O(1/(log n)2)

)
(76)

= (log n)

[
µt
∗

m⊕iµ
1−t∗
m⊕j(1− t

∗) log

(
µm⊕j

µm⊕i

)
+ µm⊕i − µt

∗

m⊕iµ
1−t∗
m⊕j +O(1/(log n)3)

]
. (77)

Since R̃m = Θ(nd−1), we also have

1

2
log(2πR̃m) +

1

2
log

(
1− Rm

R̃m

Qt
∗

m⊕iQ
1−t∗
m⊕j log n

nd−1

)
+

1

2
log

(
Rm

R̃m

Qt
∗

m⊕iQ
1−t∗
m⊕j log n

nd−1

)
(78)

=
d− 1

2
log n− d− 1

2
log n+O(log log n) = O(log log n). (79)

Combining (74), (77), and (79), we then have

P(Nm
v = τ i,jm ) = n

−
[
(1−t∗)µt

∗
m⊕iµ

1−t∗
m⊕j log(µm⊕j/µm⊕i)+µm⊕i−µt

∗
m⊕iµ

1−t∗
m⊕j +o(1)

]
. (80)

Taking all m ∈M into account, we obtain the probability that a node v ∈ VSi is ambiguous as follows:

P(v ∈ VSi is ambiguous) = P(∀m ∈M : Nm
v = τ i,jm ) (81)

= n
−
[∑

m∈M(1−t∗)µt
∗

m⊕iµ
1−t∗
m⊕j log(µm⊕j/µm⊕i)+µm⊕i−µt

∗
m⊕iµ

1−t∗
m⊕j +o(1)

]
(82)

= n−[D+(i,j)+o(1)], (83)
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where (82) is due to the independence of {Nm
v }m∈M, and (83) holds since t∗ satisfies (72). Similarly, one can also show that

for a node v ∈ VSj ,

P(v ∈ VSj is ambiguous) = P(∀m ∈M : Nm
v = τ i,jm ) (84)

= n
−
[∑

m∈M t∗µt
∗

m⊕iµ
1−t∗
m⊕j log(µm⊕i/µm⊕j)+µm⊕j−µt

∗
m⊕iµ

1−t∗
m⊕j +o(1)

]
(85)

= n−[D+(i,j)+o(1)]. (86)

By noting that D+(i, j) < 1 and the cardinalities of both VSi and VSj scale as Θ(n/(log n)3), one can show that with probability

1− o(1), there is at least one ambiguous node in VSi (denoted by v1) and also one ambiguous node in VSj (denoted by v2).

In addition, we prove that with high probability, node v1 (resp. v2) is not connected to any node in S. This is because

the number of hyperedges that contains v1 (resp. v2) and another node in S is at most |S|
(
n
d−2

)
≤ nd−1/(log n)3, and the

probability of each hyperedge is at most Qmax(log n)/nd−1, thus the probability that v1 (resp. v2) does not have any connection

with other nodes in S is at least (
1−Qmax

log n

nd−1

) nd−1

(logn)3

≥ e−
2Qmax
(logn)2 ≥ 1− 4Qmax

(log n)2
, (87)

for sufficiently large n. Finally, note that both v1 and v2 are not connected to any node in S, and both of them are ambiguous

(i.e., have the same number of hyperedges {Nm
v }m∈M outside S), thus it is impossible to distinguish them and to achieve

exact recovery.

VII. CONCLUSION, DISCUSSIONS, AND FUTURE DIRECTIONS

This paper establishes a sharp phase transition for exact recovery in the general d-HSBM, apart from a small subset of

generative distributions such that there exists two communities with the same second-order degree profiles. We also develop a

polynomial-time algorithm (with theoretical guarantees) that achieves the information-theoretic limit, showing that there is no

information-computation gap. Our two-stage algorithm is based on hypergraph spectral clustering and local refinement steps.

Next, we discuss some connections between our results and related works.

1) The second-order degree profile condition for our algorithm to succeed is milder than the conditions of several existing

hypergraph spectral clustering methods, e.g., [29], [40], which typically require the k-th largest singular value of the

expected hypergraph Laplacian E(L) to be sufficiently large (referred to as the singular value condition below). Thus, our

achievability result (Theorem 2) is applicable to a larger set of parameters. To be specific:

– When the second-order degree profile condition is violated, there must exist two communities having the same second-

order degree profile, which implies that the columns corresponding to these two communities in E(L) are the same.

Thus, the rank of E(L) is less than k and the k-th largest singular value equals zero. This means that the singular value

condition is also violated.

– When the singular value condition is violated, it does not necessarily imply that the second-order degree profile

condition is violated. For example, suppose node u ∈ V1, node v ∈ V2, and their corresponding columns in E(L) satisfy

E(L)u = 2E(L)v , then the rank of E(L) is less than k and the k-th largest singular value is zero (i.e., the singular value

condition is violated). However, since the columns corresponding to V1 and V2 are different (though they are linearly

dependent), the second-order degree profiles of V1 and V2 are different, which does not imply that the second-order

degree profile condition is violated.
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2) Another work that is closely related to ours is [56], which considered the fundamental question of whether communities

exist or not in a hypergraph. They characterized the condition under which a hypergraph generated according to a d-HSBM

can be successfully distinguished from a hypergraph generated according to an Erdős–Rényi hypergraph model, where the

d-HSBM contains k equal-sized communities and the hyperedge probabilities are assumed to be either an or bn (depending

on whether all d nodes belong to a same community). Their main messages are that (i) when an, bn ∈ o(n−d+1), these two

models are indistinguishable; (ii) when an, bn ∈ ω(n−d+1), their proposed test ensures the two models to be distinguishable

with probability approaching one; (iii) when an, bn ∈ Θ(n−d+1), the two models are distinguishable if the so-called SNR

is greater than a certain threshold, while indistinguishable if the SNR is below another threshold. Comparing [56] with our

work, it is interesting to note that the phase transition occurs in the constant average degrees regime for detecting the

existence of communities [56], while the phase transition occurs in the logarithmic average degrees regime for exactly

recovering communities.

3) Community detection in hypergraphs is also related to the planted k-SAT problem [57], in which the objective is to identify a

planted assignment σ ∈ {±1}n of n Boolean variables {x1, x2 . . . , xn} given a sequence of randomly generated k-clauses,

where each k-clause is a collection of k distinct elements chosen from {x1, x2 . . . , xn} and their negations {x̄1, x̄2 . . . , x̄n}.

Let Xk be the set of all k-clauses (with |Xk| =
(

2n
k

)
), and Q : {±1}k → [0, 1] be a probability distribution7 on {±1}k such

that
∑

y∈{±1}k Q(y) = 1. At each time when we generate a k-clause, the probability of a k-clause c = [c1, . . . , ck] (where

ci ∈ {x1, x2 . . . , xn} ∪ {x̄1, x̄2 . . . , x̄n}) being selected is P(c is selected) = Q(σ(c))∑
c′∈{±1}k Q(σ(c′)) , where σ(c) ∈ {±1}k is

the assignment of the k elements in c under the assignment σ. In the planted k-SAT problem, we generate M independent

k-clauses, and the question of interest is to find how many clauses M are required for successful recovery of the assignment

σ with high probability. This planted k-SAT problem can be viewed as a random hypergraph (V, E), where the node set

V = {x1, x2 . . . , xn}∪ {x̄1, x̄2 . . . , x̄n} is of size 2n, and the edge set E contains M k-uniform hyperedges with each one

corresponding to a randomly generated k-clause. The nodes in V are partitioned into two communities that correspond to

‘+1’ and ‘−1’, where the two communities are of exactly equal sizes by construction. While the planted k-SAT problem

can be approximately viewed as the HSBM problem studied in this work, there are also several notable differences. First,

the generation process of k-clauses is different from the generation process of hyperedges in the HSBM—the former

allows each k-clause to be selected for multiple times, while the latter only allows each k-uniform hyperedge to be selected

once. Second, the assignments of nodes in the planted k-SAT problem are strongly correlated, e.g., the signs of xi and x̄i

must be different, while there is no such restriction in the HSBM.

Despite the differences, our algorithm is applicable to the planted k-SAT problem. One can first convert the k-SAT

problem to a hypergraph with 2n nodes and M k-uniform hyperedges, construct the corresponding trimmed hypergraph

Laplacian, and then apply our spectral clustering method (lines 2-16 in Algorithm 1) to obtain an initial assignment σ̂(0)

of nodes {x1, x2 . . . , xn} ∪ {x̄1, x̄2 . . . , x̄n}. It is expected that this stage leads to an almost exact recovery of the true

assignment σ, as long as M ∈ ω(n) (corresponding to hyperedge probabilities being ω(1/nk−1) in the HSBM). In the

second stage, one can use the local MAP estimation for each of the 2n nodes (lines 17-20 in Algorithm 1) to refine the

assignments. However, since xi and x̄i in the planted k-SAT problem are of different signs, one can instead choose to

refine each pair (xi, x̄i) jointly via the local MAP estimation, which may lead to a better performance. It is expected that

when the probability distribution Q : {±1}k → [0, 1] in the planted k-SAT problem is specialized to a simple function

7Probability distributions of special interests are that satisfy Q({−1, . . . ,−1}) = 0, which correspond to a common assumption that only satisfied clauses

are allowed to appear.
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whose values depend only on the number of ‘+1’ in the input (in which case the distribution Q is equivalent to the

hyperedge probabilities {QT}T∈T in the HSBM), the second stage leads to exact recovery of the true assignment with

high probability if M ∈ Θ(n log n) (corresponding to the logarithmic average degrees regime in the HSBM). We also

expect that the GCH-divergence plays a role in the minimum pre-constant of Θ(n log n); however, this pre-constant may

not be obtained as a direct consequence of our result due to the several important differences between the planted k-SAT

problem and HSBM.

Finally, we put forth two promising directions for future work.

1) Our algorithm fails if the parameters belong to Ξ because we apply the hypergraph spectral clustering method to the

processed hypergraph Laplacian L (rather than the observed adjacency tensor A). This pre-processing step from A to L

annihilates some salient information for distinguishing two communities with the same second-order degree profile. Thus,

any clustering algorithms that rely merely on L must be restricted to this second-order degree profile condition. On the other

hand, we conjecture that the second-order degree profile condition is not necessary, and this issue may be circumvented if

one directly applies clustering algorithms to the adjacency tensor A (such as the tensor-based method proposed in [37]).

As shown empirically in [37, Section 3.4] (particularly in Figure 3), their method avoids unwanted information loss caused

by projecting hypergraphs to weighted graphs under a variety of parameter settings. Unfortunately, their concentration

tools for random tensors are only applicable when the average degree is ω(log2(n)), and thus are not powerful enough

for the logarithmic average degrees regime considered in this paper. The analysis in [37] of tensor concentration relies

on the notion of the incoherent tensor operator norm, the properties of the tensor, as well as concentration inequalities

such as the Bernstein’s inequality and Chernoff bound. In contrast, the concentration of random matrices is relatively well

understood, and the analysis in this paper relies mainly on techniques from random matrix theory. In future work, it is

interesting to investigate whether tensor-based methods can be applied to hypergraphs with logarithmic average degrees,

and to validate whether our conjecture that the exact recovery threshold mini,j∈[k]:i 6=j D+(i, j) = 1 holds even without

the condition on the second-order degree profile discussed in Section III-A.

2) It would also be interesting to extend our theory to even more general settings and other variants of the HSBM, such as

the non-uniform HSBM (as proposed in [27]–[29]), HSBM with overlapping communities, weighted or labelled HSBMs,

HSBM with side information, etc.

APPENDIX A

PROOF OF LEMMA 3

Without loss of generality, we assume nodes u and v respectively belong to communities Vi and Vj . Since we require(
p, {QT}T∈T

)
/∈ Ξ, there must exist a s ∈ [k] such that

∑
m∈M:ms≥1

msµm⊕i 6=
∑

m∈M:ms≥1

msµm⊕j . (88)
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Let Rm,s ,
(
nps
ms−1

)
·
∏
a∈[k]\{s}

(
npa
ma

)
. Thus, we have

‖Mu −Mv‖22 ≥
∑
w∈Vs

(Mw,u −Mw,v)
2 (89)

=
∑
w∈Vs

 ∑
m∈M:ms≥1

Rm,sQm⊕i
γn
nd−1

−
∑

m∈M:ms≥1

Rm,sQm⊕j
γn
nd−1

2

(90)

=
∑
w∈Vs

 γn
nps

 ∑
m∈M:ms≥1

msµm⊕i −msµm⊕j

2

(91)

= Ω(γ2
n/n), (92)

where (91) holds since Rm,s = msRm/(nps) and RmQm⊕i/n
d−1 = µm⊕i, and (92) follows from (88) and |Vs| ≈ nps.

APPENDIX B

PROOF OF LEMMA 6

For any realization F1 = f1, let Psuc(f1, z) be the probability that running a hypergraph spectral clustering method on G1

(which depends on f1) ensures l(z, Ẑ(0)) ≤ ηn. From Theorem 3, we have∑
f1

P(F1 = f1)Psuc(f1, z) ≥ 1− εn. (93)

We now prove Lemma 6 by contradiction. Suppose the probability that F1 ∈ Gz1 is less than 1−√εn, then we have∑
f1

P(F1 = f1)Psuc(f1, z) <
∑
f1∈Gz

1

P(F1 = f1) +
∑
f1 /∈Gz

1

P(F1 = f1)(1−
√
εn) (94)

=
∑
f1∈Gz

1

P(F1 = f1) + (1−
√
εn)

(
1−

∑
f1 /∈Gz

1

P(F1 = f1)

)
(95)

< 1−
√
εn + (1−

√
εn) ·

√
εn (96)

= 1− εn, (97)

where (94) follows from the fact that Psuc(f1, z) < 1−√εn for f1 /∈ Gz1 (see Definition 4), and (96) is due to our assumption.

Since Eqns. (94)-(97) contradict with the fact in (93), we obtain that P(F1 ∈ Gz1) ≥ 1−√εn.

Let Nm ,
∏k
s=1

(|Vs|
ms

)
for each m ∈ M. For each node v ∈ [n], the expected number of hyperedges in F2 that contain

node v and other d− 1 nodes with community assignment m is E(Dv,m) = Nm

(
1− γn

logn

)
. By applying the Chernoff bound,

we have

P
(
Dv,m ≤ Nm

(
1− 2γn

log n

))
≤ P

(
Dv,m ≤

(
1− γn

log n

)
E(Dv,m)

)
≤ exp

(
−1

3

γ2
n

(log n)2
E(Dv,m)

)
(98)

= exp
(
−Θ(nd−1γ2

n/(log n)2)
)
. (99)

Taking a union bound over all m ∈M and all the n nodes, we have that with probability at least 1−exp
(
−Θ(nd−1γ2

n/(log n)2)
)
,

every node v ∈ [n] satisfies

(1− (2γn/ log n))Nm ≤ Dv,m ≤ Nm, ∀m ∈M. (100)

Combining the fact that (1− n− 1
2 + δ

2 )Rm ≤ Nm ≤ (1 + n−
1
2 + δ

2 )Rm (since z ∈ AZ), we have

(1− (3γn/ log n))Rm ≤ Dv,m ≤ (1 + n−
1
2 + δ

2 )Rm, ∀m ∈M. (101)

Thus, P(F2 ∈ Gz2) ≥ 1− exp
(
−Θ(nd−1γ2

n/(log n)2)
)
. This completes the proof.
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APPENDIX C

PROOF OF LEMMA 7

Note that E(
∑D′v
a=1 Ya) ≤ D′v ·Qmax(log n)/nd−1 = O(ηn log n), since the success probability of each Bernoulli random

variable is at most Qmax(log n)/nd−1. In the following, we show that the probability that
∑D′v
a=1 Ya ≥ cn log n is at most

n−ω(1), where cn log n = ω(ηn log n). Note that

P

D′v∑
a=1

Ya ≥ cn log n

 =

D′v∑
θ=cn logn

P

D′v∑
a=1

Ya = θ

 (102)

=

D′v∑
θ=cn logn

(
D′v
θ

)(
Qmax log n

nd−1

)θ (
1− Qmax log n

nd−1

)D′v−θ
(103)

≤ D′v ·
(

eD′v
cn log n

)cn logn(
Qmax log n

nd−1

)cn logn

(104)

= D′v · n−cn log(cn/ηn) = n−ω(1), (105)

where (104) follows from the facts that
(
n
k

)
≤ (en/k)k and θ = cn log n maximizes the terms in (103).

We then prove the second part. For random variables {Ya}
D′v
a=1, we have

Qmin

Qmax
≤P(Ya = 1|Zv = j, ẑ

(0)
∼v)

P(Ya = 1|Zv = j, z∼v)
≤ Qmax

Qmin
, and (106)

1− (Qmax −Qmin) log n

nd−1
≤P(Ya = 0|Zv = j, ẑ

(0)
∼v)

P(Ya = 0|Zv = j, z∼v)
≤ 1 +

(Qmax −Qmin) log n

nd−1
. (107)

Since
∑D′v
a=1 ya ≤ cn log n for g2 ∈ Gv , we have

P(g2|Zv = j, ẑ
(0)
∼v)

P(g2|Zv = j, z∼v)
=

∏D′v
a=1 P(ya|Zv = j, ẑ

(0)
∼v)∏D′v

a=1 P(ya|Zv = j, z∼v)
≤
(
Qmax

Qmin

)cn logn(
1 +

(Qmax −Qmin) log n

nd−1

)D′v−cn logn

, Lh, (108)

P(g2|Zv = j, ẑ
(0)
∼v)

P(g2|Zv = j, z∼v)
=

∏D′v
a=1 P(ya|Zv = j, ẑ

(0)
∼v)∏D′v

a=1 P(ya|Zv = j, z∼v)
≥
(
Qmin

Qmax

)cn logn(
1− (Qmax −Qmin) log n

nd−1

)D′v−cn logn

, Ll, (109)

and note that Lh = no(1) and Ll = n−o(1).
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