
ar
X

iv
:2

11
1.

14
45

2v
3

 [
cs

.I
T

]
 1

2
Se

p
20

22
1

Concatenated Codes for Multiple Reads

of a DNA Sequence
Issam Maarouf†, Andreas Lenz∗, Lorenz Welter∗,

Antonia Wachter-Zeh∗, Eirik Rosnes†, and Alexandre Graell i Amat‡†

†Simula UiB, N-5006 Bergen, Norway
∗Institute for Communications Engineering, Technical University of Munich, DE-80333 Munich, Germany
‡Department of Electrical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

Abstract—Decoding sequences that stem from multiple trans-
missions of a codeword over an insertion, deletion, and substitu-
tion channel is a critical component of efficient deoxyribonucleic
acid (DNA) data storage systems. In this paper, we consider
a concatenated coding scheme with an outer nonbinary low-
density parity-check code or a polar code and either an inner
convolutional code or a time-varying block code. We propose two
novel decoding algorithms for inference from multiple received
sequences, both combining the inner code and channel to a
joint hidden Markov model to infer symbolwise a posteriori
probabilities (APPs). The first decoder computes the exact APPs
by jointly decoding the received sequences, whereas the second
decoder approximates the APPs by combining the results of
separately decoded received sequences and has a complexity that
is linear with the number of sequences. Using the proposed
algorithms, we evaluate the performance of decoding multiple
received sequences by means of achievable information rates and
Monte-Carlo simulations. We show significant performance gains
compared to a single received sequence. In addition, we succeed in
improving the performance of the aforementioned coding scheme
by optimizing both the inner and outer codes.

Index Terms—Achievable information rates, concatenated
codes, DNA storage, insertion/deletion/substitution (IDS) channel,
low-density parity-check (LDPC) code, polar code, synchroniza-
tion codes.

I. INTRODUCTION

Error correction of data storage in deoxyribonucleic acid

(DNA) has recently gained a lot of attention from the coding

theory community. This attention increased after several suc-

cessful experiments [2]–[15] that demonstrated the viability of

using synthetic DNA as a reliable medium for data storage. As

a result of the pioneering DNA storage experiments, several

information-theoretic problems have been identified. The most

important problem to our work is reliable communication

over channels that introduce insertions, deletions, and sub-

stitutions (IDSs) [16] as the processes of DNA synthesis

and DNA sequencing introduce errors in the forms of IDSs.

Furthermore, in the literature, channels that introduce IDSs

have been proposed to model synchronization errors. Thus,

Parts of this work have been presented at the 2020/2021 IEEE Information
Theory Workshop (ITW) [1].

The work of A. Lenz, L. Welter, and A. Wachter-Zeh has been supported by
the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant Agreement No. 801434).

The work of A. Graell i Amat was supported by the Swedish Research
Council under grant 2020-03687 and by a Technical University of Munich
Global Visiting Professor Fellowship.

coding techniques are an indispensable component to cope

with IDSs and improve the reliability of DNA storage systems

and channels that are prone to desynchronization.

Work on synchronization errors began decades ago. Several

papers in the 1960s-70s have dealt with information-theoretic

aspects of IDS errors, some even proposed codes to correct

these errors [17]–[21]. From these works, several constructions

of error-correcting codes for the IDS channel have been

proposed in the last decade. Among the most important ones,

and most relevant to our work, is the one introduced by

Davey and MacKay [22]. In that paper, the authors introduce

a concatenated coding scheme composed of an inner block

code and an outer low-density parity-check (LDPC) code. In

addition, they propose a decoding algorithm based on dynamic

programming that represents the inner code and channel by

a hidden Markov model (HMM). By doing so, the decoding

algorithm allows to infer a posteriori probabilities (APPs) to be

passed to the outer decoder, which will complete the message

recovery process. Inspired by Davey and MacKay’s work, the

Markov process of convolutional codes was extended to the

IDS channel, allowing for decoding algorithms of convolu-

tional codes to be run for the IDS channel [23], [24]. An

improvement of the decoding algorithm in [22] was introduced

in [25]. Furthermore, marker codes were used as inner codes

in [26], which improved the performance of the inner codes

of [22]. Additionally, standalone codes (i.e., without an inner

code) such as LDPC codes in [27] and polar codes in [28],

[29] were studied to tackle synchronization errors.

Most of these studies have focused on error correction for

a single block transmission over an IDS channel. However, in

DNA-based storage the data is synthesized into many short

DNA strands (or sequences), where each strand is replicated

thousands of times. As a result, when the data is read via DNA

sequencing, multiple copies of each data strand are obtained.

Decoding multiple reads of a DNA sequence is typically

performed via a multiple sequence alignment (MSA) [30]–[33]

of the received sequences, followed by a majority decision on

the alignment. This method is popular, since it is possible to

employ standard decoders on the single resulting sequence to

correct remaining errors and has been used in several recent

experiments [8], [9], [13], [15].

In this paper, we introduce concatenated coding schemes

for multiple sequence transmission over parallel IDS channels

over the DNA alphabet. The proposed schemes employ an

http://arxiv.org/abs/2111.14452v3

2

inner block code or convolutional code (as introduced in [22]

and [34], respectively) that corrects insertions and deletions,

concatenated with an outer LDPC or polar code, which cor-

rects remaining (mostly substitution) errors. Our key contri-

bution is a low-complexity decoding strategy that properly

combines information from the multiple reads. Compared to

MSA techniques, which make hard decisions on the DNA

symbols, the proposed strategy provides soft information to the

outer decoder. The proposed schemes achieve significant gains

over the single sequence transmission case and outperform

MSA if the number of traces is small. Furthermore, for a larger

number of traces, they yield comparable performance to MSA

at lower complexity. Our main contributions are summarized

as follows.

• We propose two novel decoding algorithms for the de-

coding of the combination of the inner code and the

IDS channel with multiple reads: an exact symbolwise

maximum a posteriori (MAP) decoder based on a multi-

dimensional trellis encompassing the inner code and the

multiple IDS channels, and a sub-optimal decoder that

decodes each received sequence independently and com-

bines the results into a single sequence of approximate

APPs that are fed to the outer decoder. The first decoder

is optimal but of high complexity, whereas the second

decoder is a practical decoder that significantly reduces

the complexity while achieving excellent performance.

For instance, for a considered scenario, we show that

separate decoding with three sequences has comparable

performance to joint decoding with two sequences, but

with much lower decoding complexity.

• We improve on the performance of earlier concatenated

schemes by providing optimization techniques tailored to

the IDS channel for both the inner and outer codes. In

particular, we design an inner time-varying code (TVC)

concatenated with either an LDPC code or a polar code.

• To gain insight into the asymptotic performance of the

proposed schemes, we compute achievable information

rates (AIRs) for the case with no iterations between the

inner and outer decoder and the case where iterations

are allowed. The computed AIRs depend on the inner

code—but not on the outer code—and thus can be used

to evaluate and select the inner code.

Related Work

Work related to ours includes the study of repeated trans-

mission over an erroneous channel, which goes back to

Levenshtein [35], who introduced the sequence reconstruction

problem. Here, the goal is to analytically quantify the number

of sequences, as a function of the sequence length, that are

required to guarantee correct reconstruction under an adver-

sarial channel. Recently, the original formulation has been

extended to an adversarial DNA channel [36]. Furthermore,

similar in spirit to our work, yet different in methods and

objectives, is the research on the trace reconstruction problem

over deletion channels [37]–[39], which is the probabilistic

variant of the sequence reconstruction problem. These works

focus on asymptotic results, while we discuss both asymp-

totic and finite-length results of received sequences over a

channel that additionally allows insertions and substitutions.

More recently, the trace reconstruction problem has also been

formulated for a fixed number of sequences with a larger

focus on algorithmic aspects [40], [41]. However, these works

consider only uncoded sequences, while we are interested in

coded transmissions.

Inspired by our work [1], independently of this paper, the

authors in [42] worked on multiple sequence transmission over

parallel IDS channels. In particular in [42], they presented

a practical sub-optimal decoder, referred to as trellis bitwise

majority alignment, which slightly improves the performance

compared to our sub-optimal decoder, while slightly increasing

the complexity. The authors in [42] also proposed a less

complex decoder than our optimal APP decoder. In [43], a

more complex sub-optimal decoder compared to our separate

decoder was presented for multiple sequence transmission over

the IDS channel, as well as a similar optimal APP decoder as

ours. In [44], a concatenated coding scheme with an outer

LDPC code and an inner trellis code approaching the Markov

capacity of a channel with insertions and deletions for single

sequence transmission was proposed.

Other works that discuss AIRs for IDS channels are [44],

[45]. These works consider a binary channel and the single

sequence case. In [45], bounds on the capacity of binary

IDS channels are computed, while in [44] a Markovian input

process for their binary insertion and deletion channel is

optimized, which results in better AIRs.

II. SYSTEM MODEL

A. Channel Model

We consider the IDS channel model depicted in Fig. 1

[22]–[26], [28], [29], [46]. Let x = (x1, . . . , xN), xi ∈
Σq = {0, 1, . . . , q − 1}, be the information sequence to be

transmitted over the channel. The sequence can be viewed as a

queue where each symbol xi is successively transmitted over

the channel. We describe in the following how the received

sequence y = (y1, . . . , yN ′) is generated state by state.

Assume xi is queued and therefore sought to be transmitted

over the channel. The channel enters state xi and three events

may occur: (i) With probability pI, an insertion event occurs

where a uniformly random symbol a ∈ Σq is appended to

the received sequence. In this case, xi remains in the queue

and the channel returns to state xi. (ii) Symbol xi is deleted

with probability pD. Consequently, the queued symbol xi is

not appended to y and the next symbol xi+1 is enqueued

and the channel enters state xi+1. (iii) xi is transmitted with

probability pT = 1 − pI − pD. In this case, the symbol is

substituted with a uniformly random symbol a∗ 6= xi with

probability pS and the next transmit symbol xi+1 is enqueued

and the channel enters state xi+1. When the last transmit

symbol xN leaves the queue, the procedure finishes and the

channel outputs y. Note that the length of the output sequence

N ′ is random and depends on the probabilities pD and pI.

B. Coding Scheme

Following [22], we consider an error-correcting code con-

sisting of the serial concatenation of two codes. The role of

3

xi. . .

Insert:

y ← (y, a) Delete:

y ← y

Transmit

No error:

y ← (y, xi)

Substitute:

y ← (y, a∗)

xi+1 . . .

pI pD

pT

pS

1− pS

Fig. 1. State-based IDS channel [22].

the inner code is to maintain synchronization and provide

reliable soft information to the outer code, while the task of

the outer code is to use this soft information to perform an

accurate estimate of the transmitted information. In particular,

given that the inner code provides reliable synchronization

information, the outer code corrects the remaining errors on

the synchronized sequence.

We investigate multiple choices of inner codes, which can

be classified into two categories: (i) Convolutional codes as

introduced in [34], and (ii) TVCs. Note that the inner code

construction introduced in [22] can be seen as a non-time-

varying block code or a convolutional code with memory zero

and thus, for simplicity, we restrict some passages in this work

to convolutional inner codes only. Moreover, the outer code is

either a nonbinary LDPC code or a nonbinary polar code.

The considered system model is depicted in Fig. 2. The

information vector u = (u1, . . . , uK), ui ∈ Fqo , is encoded

by an [No,K]qo outer code to a codeword w = (w1, . . . , wNo
),

wi ∈ Fqo . We consider the field Fqo to be a binary extension

field of size qo = 2k, where k is the dimension of the inner

code. The codeword w is then encoded by the inner code,

either an (n, k,m)q convolutional code of block length n,

binary input length k, memory m, and output alphabet Σq,

or an [n, k, t]q TVC, where t denotes the number of different

codebooks that are used. The codeword generated by the inner

code is denoted by v = (v1, . . . , vN), vi ∈ Σq , of length

N = (No + m)n for the case of an inner convolutional

code (due to termination) and N = Non for the case of

an inner TVC. Finally, a pseudo-random offset sequence is

optionally added to v before transmission, resulting in the

sequence x = (x1, . . . , xN). The random sequence is known

to the decoder and supports the inner decoder to maintain

synchronization at especially high probabilities of insertions

or deletions [22], [47]. Section V-A gives a more detailed

description of the role of the random sequence. The rate of

the concatenated code is measured in bits per DNA symbol

and is given as R = RoRi = Kk/N , where Ro = K/No is the

rate of the outer code and Ri = Nok/N the rate of the inner

code.

The sequence x is transmitted M times independently over

an IDS channel resulting in the received sequences y1, . . . ,yM

corresponding to M reads of the original strand. The inner

decoder uses these received sequences to infer likelihoods

for the symbols in w. These likelihoods are then fed to

u
Outer

code

Conv./block

code
Offset

IDS

channel

IDS

channel
. . . IDS

channel

Inner

decoder

Outer

decoder
û

w v

x

y1 y2 yM

p(wi|y1, . . . ,yM)

Inner code

Channel

Fig. 2. Communication via multiple transmissions over an IDS channel with
a concatenated coding scheme. The IDS channel, depicted in Fig. 1, is fed
M times with the encoded transmit sequence x.

the outer decoder, which decides on the decoded sequence

û. Furthermore, we can also iterate between the inner and

outer decoder, exchanging extrinsic information between them,

which is referred to as turbo decoding in the literature.

III. SYMBOLWISE MAP DECODING FOR THE IDS

CHANNEL (INNER DECODING)

The random memory associated with the insertion and dele-

tion processes makes decoding for IDS channels challenging.

This is visualized by the receiver’s inability to directly identify

the origin of a received symbol yi. Since insertions or deletions

before symbol yi might have moved the symbol right or left in

the received sequence, yi could be the result of transmitting a

symbol xi′ with i′ 6= i. In the following, we describe how it is

still possible to infer a posteriori likelihoods from this channel

using a hidden Markov representation of the channel [22],

[24], [25]. We present and discuss this HMM for M = 1 first

and extend it to M > 1 multiple received sequences afterward.

Here we restrict the discussion to convolutional inner codes,

as a TVC with t = 1 can be viewed as a convolutional code

with m = 0. The APP of the outer code symbol wi is

p(wi|y) =
p(y, wi)

p(y)
.

The joint probability p(y, wi) can be computed by de-

marginalizing with respect to the memory states of the convo-

lutional code corresponding to symbol wi. This is possible due

to the Markov property of the convolutional code. However,

this Markov property no longer holds for the IDS channel

as a result of its memory. To circumvent this issue, a new

hidden state variable, the so-called drift [22], that incorporates

insertions and deletions, is added to the original Markov

process, creating an augmented hidden Markov process. The

drift di, 0 ≤ i < No+m, is defined as the number of insertions

minus the number of deletions that occurred before symbol

xni+1 is enqueued, while dNo+m is defined as the number of

insertions minus deletions that occurred after the last symbol

xn(No+m) has been transmitted. Thus, by definition, d0 = 0
and dNo+m = N ′ − N , both known to the receiver. In

the resulting HMM, a transition from time i − 1 to time i

4

corresponds to a transmission of symbols xin
(i−1)n+1, where

xb
a = (xa, xa+1, . . . , xb). Further, when transitioning from

state di−1 to di, the HMM emits n+di−di−1 output symbols

depending on both the previous and new drift. The key prop-

erty of the drift is that, by its inclusion as a new state variable

inside the Markov process, the Markov property is restored.

This is because the drift sequence itself forms a Markov chain

and, conditioned on the memory state and drift at time i, the

output of the channel after time i becomes independent of the

previous memory states and drifts. Introducing the joint state

variable σi = (si, di), where si denotes the state variables of

the convolutional code, we obtain with slight abuse of notation

p(y, wi) =
∑

(σ,σ′):wi

p(y, σ, σ′),

where σ and σ′ denote realizations of the random variables

σi−1 and σi, respectively. The summation is over all convo-

lutional code memory states that correspond to information

symbol wi. Using the Markov property, we can expand the

joint probability p(y, σ, σ′) into three parts as

p(y,σ,σ′)=p
(
y
(i−1)n+d
1 , σ

)
p
(
yin+d′

(i−1)n+d+1, σ
′
∣∣σ
)
p
(
yN ′

in+d′+1

∣∣∣σ′
)
.

Abbreviating the above terms by αi−1(σ), γi(σ, σ
′), and

βi(σ
′) in order of appearance, one can deduce the forward

and backward recursions

αi(σ
′) =

∑

σ

αi−1(σ)γi(σ, σ
′), (1)

βi−1(σ) =
∑

σ′

βi(σ
′)γi(σ, σ

′).

Knowing the initial and final drift of the received sequence, the

initial and termination conditions of the forward and backward

recursions are

α0(σ) =

{
1 if σ = (0, 0)

0 otherwise,

βNo+m(σ) =

{
1 if σ = (0, N ′ −N)

0 otherwise.

The branch metric can be decomposed as

γi(σ, σ
′) = p(wi)p(y

in+d′

(i−1)n+d+1, d
′
∣∣d, s, s′),

where p(wi) is the a priori probability of symbol wi. The

expression p(yin+d′

(i−1)n+d+1, d
′
∣∣d, s, s′) can be efficiently com-

puted using a lattice structure [20], [48] as explained as

follows.

Define the lattice Fn×µ with n+1 rows corresponding to the

transmitted sequence xin
(i−1)n+1 = ẋ = (ẋ1, . . . , ẋn) of length

n, and µ+ 1 = n+ d′ − d+ 1 columns corresponding to the

received sequence yin+d′

(i−1)n+d+1 = ẏ = (ẏ1, . . . , ẏµ) of length

µ. A horizontal transition in the lattice represents an insertion

with probability pI/q, a vertical transition represents a deletion

with probability pD, while a diagonal transition represents

a transmission. The last event has probability pT(1 − pS) if

the corresponding elements in ẏ and ẋ match or probability
pTpS/(q−1) otherwise. Let the value of the lattice point in row

r and column l be represented by Fr,l, see Fig. 3. Then, for

l = 0 1 2 . . . µ− 1 µ
r = 0

1

2

...

n− 1

n

Fig. 3. The lattice used to compute p(yin+d′

(i−1)n+d+1
, d′

∣

∣d, s, s′).

0 < r < n and 0 < l ≤ µ, a lattice computation is defined

recursively as

Fr,l =
1

q
pIFr,l−1 + pDFr−1,l +Q(ẏl, ẋr)Fr−1,l−1,

where

Q(ẏ, ẋ) =

{
pT

pS

q−1 if ẏ 6= ẋ

pT(1− pS) otherwise.

The lattice computation is initialized as

Fr,l =

{
1 if r = 0, l = 0

0 otherwise,

and for the last row (r = n), since the HMM does not allow

insertions at the end of the transmitted sequence, the lattice

computation becomes

Fn,l = pDFn−1,l +Q(ẏl, ẋn)Fn−1,l−1.

Finally, p(yin+d′

(i−1)n+d+1, d
′
∣∣d, s, s′) = Fn,µ.

IV. SYMBOLWISE MAP DECODING FOR MULTIPLE

RECEIVED SEQUENCES

In this work, we propose two novel approaches to take

advantage of the redundancy arising from multiple received

sequences. The first approach, which we refer to as joint

decoding, calculates the APPs exactly and works on a multi-

sequence state-based trellis (or a joint trellis). The second

approach, referred to as separate decoding, considers each

sequence trellis separately and then combines their respective

APPs. Although the first approach offers the best solution for

the multiple received sequences problem, it comes with the

drawback of very high complexity as will be shown later. As

a result, the second approach is proposed as a more practical

and less complex solution to the same problem, at the expense

of a slight reduction in performance.

A. Joint Decoding

To calculate the APPs of code symbols wi given multiple

received sequences, we proceed as follows. We introduce

a drift state vector di = (di,1, . . . , di,M) representing the

drift at time instant i for each sequence. The resulting

5

HMM has the combined (M + 1)-dimensional state variables

σi = (si, di,1, . . . , di,M) with corresponding branch metric

γi(σ, σ
′) = p(wi)

M∏

j=1

p
(
(yj)

in+d′

j

(i−1)n+dj+1, d
′
j

∣∣dj , s, s′
)
,

where yj , 1 ≤ j ≤ M , is the j-th received sequence. This

branch metric can be efficiently computed using the lattice

implementation as γi(σ, σ
′) = p(wi)

∏M
j=1 F

j
n,µj

, where F j
n,µj

is the result of the recursive lattice computation based on the

substring (yj)
in+d′

j

(i−1)n+dj+1 of the j-th received sequence yj

and µj = n + d′j − dj is its length. The APPs can then

be computed applying the BCJR algorithm with initial and

termination conditions

α0(σ) =

{
1 if σ = (0, 0, . . . , 0)

0 otherwise,

βNo+m(σ) =

{
1 if σ = (0, N ′

1 −N, . . . , N ′
M −N)

0 otherwise,

where N ′
j denotes the length of the j-th received sequence.

B. Separate Decoding

We propose a decoding approach that approximates the

APPs by decoding each received sequence separately and com-

bining the resulting single sequence APPs. The proposed sepa-

rate decoding yields a significant reduction in complexity com-

pared to joint decoding, as discussed in Section IV-C. More

precisely, we approximate the joint APPs p(wi|y1, . . . ,yM)
given the single sequence APPs p(wi|yj), 1 ≤ j ≤M , as

p(wi|y1, . . . ,yM) ∝∼
∏M

j=1 p(wi|yj)

p(wi)M−1
.

The individual APPs p(wi|yj) can be calculated via the BCJR

decoder presented in Section III. As we show in Appendix A,

this approximation holds exactly for memoryless channels,

which motivates the proposed separate decoding. However, it

results here in a loss of performance, which we discuss in

Sections VI-A and VII. Note that the separation of the joint

APPs could have been carried out as well at other stages in

the decoding flow, e.g., directly between the channel and the

inner code decoder or after decoding the outer code. However,

we observed that for the considered parameters, the proposed

stage yields the best results.

C. Complexity Analysis

In this subsection, we evaluate the complexity of joint and

separate decoding. The number of performed operations by the

inner BCJR decoding is mainly proportional to the number

of edges in the trellis inferred by the HMM. In line with

[22], for all methods we limit the drift to a fixed interval,

di,j ∈ [dmin, dmax], and the maximum number of insertions

per symbol to Imax. Let us denote by ∆ = dmax−dmin+1 the

total number of drift states. Moreover, we can quantify the total

number of possible drift transisitions as δ = n(Imax +1)+ 1.

Let ν be the number of binary memory elements of the

convolutional encoder. The complexity to decode a single

received sequence by the inner BCJR deocoder is

Csingle =
N

n
2ν+k∆δ.

When considering the multiple sequence case, with M being

the total number of sequences, the complexity of the presented

methods can be computed as follows. For the separate de-

coding, the complexity is simply M times that of the single

sequence decoding, i.e.,

Csep = M · Csingle =
N

n
2ν+kM∆δ.

Since the joint decoding introduces a joint drift state vector,

the decoding trellis grows exponentially in the number of

sequences M . Thus, the complexity of joint decoding is

Cjoint =
N

n
2ν+k(∆δ)M .

Note that we do not take into account the effect of the trellis

termination on the number of edges in the aforementioned

decoding methods. Moreover, typical values for the product

∆δ can be as high as ≈ 1000 in the DNA storage application.

Therefore, the inner code decoding is the main contributor

to the overall complexity and thus we have neglected the

complexity of the outer code decoding.

For a fixed length N , increasing the number of sequences

M has different impact in the scale of complexity. The

complexity of the separate decoding method scales linearly

with M while the complexity of the joint decoding approach

scales exponentially with M . Therefore, it directly becomes

evident that the joint decoding method is only practical for a

small number of sequences. Hence, the reason we proposed

the separate decoding algorithm. With separate decoding, one

can increase the number of sequences M in order to match

the performance of optimal joint decoding with a significantly

lower complexity. As illustrated in later sections of the paper,

the number of sequences needed to match the performance of

joint decoding with M = 2 is low.

V. CONCATENATED CODE DESIGN

In this section, we discuss the optimization of the coding

scheme. On a high level, we proceed as follows. We first

design a novel inner TVC that is optimized in terms of the

Levenshtein distance between two codewords in a block and

also avoids overlaps between the codebooks of two adjacent

blocks, improving its time variance. We evaluate the perfor-

mance of this inner code by computing AIRs in Section VI

and compare with codes from the literature. For a selected

inner code, we then proceed with optimizing an outer LDPC

code using protographs and density evolution (DE). We also

optimize the frozen symbols of an outer nonbinary polar code

using Monte-Carlo methods.

A. Inner Block Code

Our goal is to improve on the performance of the inner

code construction introduced in [22], which we refer to as

the Davey-MacKay (DM) construction. The authors of [22]

6

proposed to construct a binary inner block code of size 2k

and length n by selecting the 2k vectors of lowest Hamming

weight from all 2n vectors of length n. In other words, the

constructed code consists of the 2k sparsest length-n binary

vectors. We refer to the combination of the block code arising

from the DM construction and a random offset sequence as a

watermark code.

The use of a random offset sequence is essential as it

helps the inner code in maintaining synchronization with the

transmitted sequence. More precisely, the random sequence

helps in tracking the codeword boundaries between consec-

utive transmissions of inner code codewords. This in turn

helps the inner code to avoid confusing adjacent codewords,

especially in the presence of a large number of insertions

and deletions. The authors in [22] state that the more random

the watermark code is, the better the synchronization, which

motivated their sparse code construction, as it alters little the

random sequence. However, for low IDS probabilities, where

loss of synchronization is less probable, the dominating factor

of the inner code performance is its edit distance profile.

The edit distance between two codewords, denoted by de, is

defined as the minimum number of IDS errors required to

change one codeword into another. Hence, an inner code with

good minimum de, d
min
e , will perform well in that region. We

observe this phenomenon in the AIR results in Section VI

(for an in-depth discussion on the synchronization ability

and performance of inner codes, we refer the reader to that

section). In the special case when no substitutions are allowed,

the edit distance is typically referred to as the Levenshtein

distance, which we denote by dL.

It was shown in [49] that the DM construction is far

from optimal due to its poor Levenshtein distance profile.

The authors in [50] considered the so-called weighted Lev-

enshtein distance and improved its profile for the watermark

code, hence the code performance, by first building a set

of sequences that when added to the codewords, improve

the overall distance profile of the code. Secondly, for every

transmission, a sequence is randomly picked from this set.

However, the performance is still relatively poor due to a

low dmin
e . In [47], [48], it was proposed to use codewords

from Varshamov-Tenegol’ts (VT) codes [51], known for their

good IDS correction capabilities, to construct an inner code. In

particular, in [48], the authors chose a set of codewords from

a VT code using a simulated annealing algorithm [52] that

targets the minimization of the so-called change probability of

the set. One more issue to combat comes from the requirement

of using a random offset sequence which does not destroy

the edit distance properties of the inner code. This issue was

previously addressed by the same authors in [47] where they

proposed to randomly choose an offset sequence only from the

set of sequences that when added to the codewords of the inner

code do not alter its dmin
e .1 However, such inner codes perform

better when the codeword boundaries between consecutive

transmissions are known, which is typically not the case. As

a result, in the later work [48], TVCs, which are composed

of several alternating codebooks found by minimizing the

1Note that in [47] the edit distance is referred to as the Levenshtein distance.

TABLE I
DESIGNED TVC WITH 4 CODEBOOKS

Codebook 1 Codebook 2 Codebook 3 Codebook 4

(0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 3, 0) (0, 0, 0, 3)
(0, 0, 2, 2) (0, 0, 3, 3) (0, 1, 1, 1) (0, 0, 2, 2)
(0, 3, 2, 3) (0, 2, 1, 2) (0, 2, 3, 2) (0, 3, 2, 3)
(1, 0, 1, 0) (1, 0, 2, 0) (0, 3, 1, 3) (1, 0, 1, 1)
(1, 1, 1, 1) (1, 1, 2, 2) (1, 0, 0, 1) (1, 1, 0, 0)
(1, 1, 3, 3) (1, 1, 3, 1) (1, 2, 0, 2) (1, 1, 3, 3)
(1, 2, 3, 2) (1, 3, 0, 3) (1, 3, 2, 3) (1, 2, 3, 2)
(2, 0, 2, 1) (2, 0, 0, 2) (2, 2, 0, 0) (2, 1, 2, 1)
(2, 1, 2, 0) (2, 2, 0, 3) (2, 2, 1, 3) (2, 2, 0, 0)
(2, 2, 2, 2) (2, 2, 1, 1) (2, 2, 2, 2) (2, 2, 2, 3)
(2, 2, 3, 3) (2, 3, 1, 3) (2, 3, 0, 3) (2, 3, 0, 3)
(3, 0, 3, 1) (3, 0, 1, 0) (3, 0, 0, 2) (3, 0, 0, 1)
(3, 1, 3, 0) (3, 2, 2, 2) (3, 2, 1, 2) (3, 1, 3, 0)
(3, 2, 0, 0) (3, 2, 3, 0) (3, 3, 1, 1) (3, 2, 0, 2)
(3, 3, 2, 2) (3, 3, 1, 1) (3, 3, 2, 0) (3, 2, 3, 1)
(3, 3, 3, 3) (3, 3, 3, 2) (3, 3, 3, 3) (3, 3, 3, 3)

change probability through a simulated annealing search, were

proposed. One issue that may arise is that using the simulated

annealing algorithm does not guarantee all codebooks to have

the best dmin
e .

Here, we consider nonbinary TVCs, where the codebooks

are found by searching for cliques in an undirected graph as

described below. Searching for codebooks in this way guaran-

tees that they all have the same dmin
e . First, an undirected graph

with a vertex for each vector in Σn
q is constructed. Then, we

search for a maximum clique in that graph. In general, finding

a maximum clique in a graph is an NP-hard problem. However,

for small graphs, there exist several efficient algorithms that

can be used [53]–[55]. Here, we use the branch-and-bound

algorithm proposed in [54]. Formally, let G = (V , E) be an

undirected graph, where V denotes the set of vertices and

E the set of edges. Each vertex v = v(c) ∈ V represents

a nonbinary vector c ∈ Σn
q , and there is an edge between

vertices v(ci) and v(cj) if and only if de(ci, cj) ≥ dmin
e , where

dmin
e is a prescribed minimum edit distance.2 Then, an [n, k]q

(nonlinear) block code with edit distance at least equal to dmin
e

corresponds to a clique of size 2k in G.

The branch-and-bound algorithm searches for a set of

cliques (or codebooks) of a given size, and from this set we

select t codebooks that overlap as little as possible using a

heuristic approach. The t selected codebooks can then either

be repeated periodically or randomly in order to construct a

TVC. In this work, we only consider the special case of no

substitutions when constructing a TVC. Hence, we consider

the Levenshtein distance. In Table I, we list t = 4 quaternary

codebooks, each of size 16, length n = 4, and with minimum

Levenshtein distance dmin
L = 4. Note that for these code

parameters, finding 4 disjoint codebooks is difficult. Hence,

some of the codebooks overlap and the number of distinct

codewords is 56. The resulting TVC is a [4, 4, 4]4 TVC.

In Section VII, we compare the performance of our concate-

nated coding schemes using a quaternary watermark code and

the quaternary TVC code in Table I as inner codes. We further

2Here, de(·, ·) denotes the edit distance between its first and second
argument. Moreover, when computing the distance, according to the IDS
channel model, we do not allow for insertions at the end.

7

consider the use of a convolutional inner code. Here, we do

not extend the inner code optimization to the convolutional

code, but rather pick the same code as in [48], which is the

one corresponding to the generator polynomial g = [5, 7]oct.

By grouping trellis sections together in the decoding stage, we

can interpret this convolutional code also as a nonbinary inner

code, thus forming APPs for higher order field sizes.

B. Outer Code: Low-Density Parity-Check Code

We consider protograph LDPC codes as they facilitate

achieving lower error floors compared to unstructured codes.

Formally, a protograph is a small multi-edge-type graph with

np variable-node (VN) types and rp check-node (CN) types.

A protograph can be represented by a base matrix

B =

b0,0 b0,1 . . . b0,np−1

b1,0 b1,1 . . . b1,np−1

...
... . . .

...

brp−1,0 brp−1,1 . . . brp−1,np−1

 ,

where entry bi,j is an integer representing the number of edge

connections from a type-i VN to a type-j CN. A parity-check

matrix H of an LDPC code can then be constructed by lifting

the base matrix B by replacing each nonzero (zero) bi,j with a

Qp×Qp circulant (zero) matrix with row and column weight

equal to bi,j . The circulant matrices are picked in order to

maximize the girth of the corresponding Tanner graph by

using the progressive edge-growth algorithm [56]. The result-

ing lifted parity-check matrix, of dimensions Qprp × Qpnp,

defines an LDPC code of length Qpnp and dimension at least

Qp(np − rp). To construct a nonbinary code from the lifted

matrix, we randomly assign nonzero entries from Fqo to the

edges of the corresponding Tanner graph.

We optimize the protograph using DE.

Particularly, we consider the DE algorithm proposed in [57]

for the optimization of binary LDPC codes for intersymbol

interference channels, extended to nonbinary protographs.

The algorithm is based on estimating the probability density

functions of the messages from the inner code to the outer

LDPC code via Monte-Carlo simulations of the inner decoder

and channel detector. When performing the DE, we assume

uniformly random protograph edge weights. The optimized

protograph is then chosen as the one yielding the best iterative

decoding threshold, pth. The iterative decoding threshold pre-

dicts the asymptotic performance of the code, in the sense that

the bit error probability under iterative decoding approaches

zero for pI = pD < pth, for a given pS, as the block length

goes to infinity. The optimization problem is hence

argmax
B

pth

s.t. bi,j ≤ bmax, ∀ (i, j),
np ≤ nmax

p ,

np − rp
np

= Ro,

where bmax is the maximum allowed circulant weight, nmax
p is

the maximum allowed number of different VN types, and Ro

is the design rate of the LDPC code.

One issue with optimizing over protographs is that neither

the dimensions of the protograph nor the number of edge

connections have a natural limit. To make the search feasible,

we restrict the search to nmax
p = 4 and bmax = 2.

C. Outer Code: Polar Code

As another choice for the nonbinary outer code, we consider

the polar code construction from [58] over the field Fqo . The

construction’s main feature is the extension of Arıkan’s binary

kernel [59] to a nonbinary kernel

K =

(
1 0
α β

)
,

where α, β ∈ Fqo . The encoding can be written as w =
u′K⊗ logqo

No , where (·)⊗ denotes the Kronecker power and

u′ ∈ F
No
qo . One can determine a mapping from the actual

information vector u ∈ F
K
qo to u′ by fixing No−K positions,

denoted as frozen positions, to a specific symbol and padding

the vector u into the remaining positions. For decoding, we

use successive cancellation list (SCL) decoding over Fqo as

described in [58], [60]. To boost the decoding performance

of the SCL decoder, a cyclic redundancy check (CRC) of

bit length ℓCRC is applied. To ensure comparability for fixed

rates, the number of frozen positions is hence reduced to

No −K − ℓCRC/log(qo).3

In this work, we optimize two components of the nonbinary

polar code for our channel using Monte-Carlo simulations: the

kernel selection and the frozen positions. For the kernel, we

optimize the single-level polarization effect as described in

[58], which means that the optimization step is only done via

considering a single 2×2 kernel. We revise the method shortly

here while directly applying our channel model. We treat the

inner code including the IDS channels as an auxiliary channel.

For this channel, we generate random input sequences w uni-

formly at random and transmit them via the auxiliary channel

to gain APP samples p(wi|y), where y = (y1, . . . ,yM).
First, fix α, β ∈ Fqo and do the following.

1) Choose an input vector u′ = (u1, u2) = (0, u2), where

u2 ∈ Fqo is chosen uniformly at random.

2) Calculate w = (w1, w2) = (u1 + αu2, βu2).
3) Pick uniformly at random two APP samples p(w1|y) and

p(w2|y) under the constraint that these correspond to the

values in the vector w.

4) Calculate p(u2|u1 = 0,y) using the APP samples.

Consequently, we have that p(u2|u1 = 0,y) is a random

variable depending only on the auxiliary channel. Hence, we

can find the best ratio α/β via Monte-Carlo simulations by

choosing

α

β
= argmin

α
β
∈Fqo

E (1− p(u2|u1 = 0,y)) ,

where the expectation is taken with respect to the random

variable on the auxiliary channel with fixed inner code and

channel parameters.

3To simplify notation, in the rest of the paper, log denotes logarithm to the
base 2.

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10−6

10−5

10−4

10−3

10−2

10−1

100

α/β

E
(1
−
p
(u

2
|u

1
=

0
,y

))

p = 0.01 p = 0.02 p = 0.03
p = 0.04 p = 0.06 p = 0.08

Fig. 4. Monte-Carlo simulations of E (1− p(u2|u1 = 0,y)) for M = 1,
pS = 0, and different pI = pD = p on different ratios α/β with fixed
β = 1, qo = 16, and primitive polynomial x4 + x + 1. The inner code is
a convolutional code with generator polynomial g = [5, 7]oct with a random
offset sequence.

This optimization is dependent on the choice of the inner

code and may vary for different codes. In Fig. 4, the failure

rate E (1− p(u2|u1 = 0,y)) is depicted as a function of

the ratio α/β for various insertion and deletion probabilities

pI = pD = p, with pS = 0 and M = 1. We denote the

field elements α, β ∈ Fqo as integers such that their binary

transformation corresponds to the coefficients of the respective

polynomial representation. Since the goal is to find the best

kernel selection, i.e., minimize the failure rate over all possible

values p for a given inner code, good choices of the kernel

parameters for the depicted setup would be α = 3, 5, 10, 11, 12
while fixing β = 1.

Moreover, we determine the frozen positions via a genie-

aided rate-one polar code with a fixed inner coding scheme

by using Monte-Carlo simulations.

VI. ACHIEVABLE INFORMATION RATES

We now turn to presenting AIRs over multiple IDS channels

to benchmark our coding schemes. We follow two standard

approaches for the estimation of AIRs over hidden Markov

channels, i.e., channels whose output is the output of a HMM.

The first approach is to compute the so-called BCJR-once rate

[57], [61], [62], which is defined as the symbolwise mutual

information between the input process and its corresponding

log-likelihood ratios, produced by a symbolwise MAP detector

(BCJR algorithm). The second approach is based on [63], [64]

and uses concentration properties of Markov chains to estimate

the mutual information between channel input and output.

A. BCJR-Once Rate

The BCJR-once rate [57], [61], [62], which we denote by

RBCJR-once, serves as an information rate that can be achieved

using an inner decoder that passes once symbolwise APPs

to an appropriate outer decoder that is unaware of possible

correlations between the symbolwise estimates. The outer and

inner decoders hereby perform no iterations. The BCJR-once

rate can be derived by computing an AIR of a mismatched

decoder as follows. While computing achievable rates for

mismatched decoders is well understood [65], we shortly

review the most important derivations for completeness and

convenience of the readers. To this end, denote by q(w|y),
where y = (y1, . . . ,yM), an arbitrary decoding metric that is

a valid distribution, i.e.,
∑

w q(w|y) = 1 for all y and satisfies

q(w|y) = 0 if p(w|y) = 0. In the following, let H(·) denote

the entropy function. We obtain for the mutual information

between the message w and output y,4

I(w;y) = H(w) −H(w|y)
= H(w) +

∑

w,y

p(w,y) log p(w|y)

= H(w) +
∑

w,y

p(w,y)

(
log q(w|y) + log

p(w|y)
q(w|y)

)

≥ H(w) +
∑

w,y

p(w,y) log q(w|y), (2)

where the last inequality is due to identifying the sum over

the second summand as a Kullback-Leibler divergence, which

is nonnegative. Next, we concretize the mismatched metrics

for the BCJR-once rate and separate decoding, including a

description of how we numerically estimate the above terms.

Using the mismatched decoding setup, we can obtain the

BCJR-once rate by computing the AIR of a mismatched

decoder with decoding metric

qBCJR(w|y) =
No+m∏

i=1

q(wi|y).

Note that here also the symbolwise a posteriori likelihoods

q(wi|y) are considered mismatched, due to the fact that their

trellis-based computation is not exact as we truncate some of

the edges and states for complexity reasons. For the case of

decoding multiple received sequences with separate decoding,

we use the mismatched metric

qBCJR-sep(w|y1, . . . ,yM) ∝
No+m∏

i=1

M∏

j=1

q(wi|yj),

where the proportionality constant is chosen such

that the decoding metric is a valid distribution, i.e.,∑
w qBCJR-sep(w|y1, . . . ,yM) = 1. Defining the associated

mismatched log-likelihood ratios

LBCJR-sep
i (a) =

M∑

j=1

ln
q(wi = a|yj)

q(wi = 0|yj)

for all a ∈ Fqo , we can combine the mismatched metric with

the mismatched log-likelihood ratios to obtain

qBCJR-sep(w|y1, . . . ,yM) =

No+m∏

i=1

eL
BCJR-sep
i

(wi)

∑
a∈Fqo

eL
BCJR-sep
i

(a)
,

4With some abuse of notation, for simplicity, we do not distinguish
notationwise between random variables and their realizations. Hence, e.g.,
w in H(w) denotes a random vector, while p(w) denotes the probability of
a given realization.

9

TABLE II
INNER CODE SCHEME SELECTION

Scheme Inner code Gen. polynomial Alt. pattern Rate

CC-1 (2, 2, 2)4 Conv. code with RS g1∗ - 0.98
CC-2 (4, 4, 2)4 Conv. code with RS g2∗ - 0.98
WM [4, 4, 1]4 Watermark code - - 1.0

TVC-1 [4, 4, 4]4 TVC - Random* 1.0
TVC-2 [4, 4, 4]4 TVC with RS - CB1 to CB4* 1.0

*The alternating pattern of the TVC-1 scheme is done by choosing randomly
the 4 codebooks, denoted by CB1-CB4, from Table I and avoiding consecutive
codebooks. For the TVC-2 scheme, it is simply done by repeating CB1 to CB4
in a round Robin fashion. The generator polynomials are g1 = [5, 7, 12, 16]oct

and g2 = [24, 34, 70, 120, 160, 240, 340]oct , where g1 and g2 correspond to
combining 2 and 4 consecutive trellis sections of g = [5, 7]oct, respectively.
RS is shorthand for random sequence.

where the denominator has been chosen such that we obtain

a valid distribution. Plugging the result into (2) yields

I(w;y) ≥ H(w) +
∑

w,y

p(w,y) log qBCJR-sep(w|y)

= H(w) +

No+m∑

i=1

∑

wi,y

p(wi,y) log
eL

BCJR-sep
i

(wi)

∑
a∈Fqo

eL
BCJR-sep
i

(a)
.

For independent and uniform inputs, we obtain H(w) =
(No + m) log qo. Under the assumption that the expectation

above obeys asymptotic ergodicity, we conclude that, for large

No, we can estimate the BCJR-once rate by sampling a long

input sequence w and corresponding output sequence y and

compute the log-likelihood ratios LBCJR-sep
i (a), allowing to

conclude with the estimate

RBCJR-once ≈ Ri log qo+
Ri

No +m

No+m∑

i=1

log
eL

BCJR-sep
i

(wi)

∑
a∈Fqo

eL
BCJR-sep
i

(a)
.

Note that in the above expression, we have taken into account

that the BCJR-once rate is measured in terms of information

bits per channel use and we thus normalize the above sum

with respect to the number of channel uses (No+m)/Ri. This

expression has previously been derived in, e.g., [65], [66]

and is also valid for mismatched log-likelihood ratios, as we

have shown in our derivation. It is important to mention that

to compute this expression, it is necessary to use both the

mismatched log-likelihood ratios L
BCJR-sep
i (a) and the original

input sequence w. Other approaches to compute the BCJR-

once rate [67], [68] rely on the correctness of the computed

log-likelihood ratios. In that case, it is possible to estimate the

rate using a formula that only depends on the log-likelihood

ratios and not the input sequence w, as pointed out in [66].

However, in our case we compute mismatched log-likelihood

ratios, and thus such an approach might give incorrect results.

Fig. 5 compares the BCJR-once rates of some inner codes

we will use in this paper along with an inner code designed

in [42] for the single sequence scenario. The parameters of

the inner codes are given in Table II. These plots have been

simulated with 105 channel uses and have been smoothed

over several iterations. Interestingly, we can observe that it

seems that codes that perform well for small insertion and

deletion error probabilities perform poor for large error rates

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

pI = pD

R
B

C
JR

-o
n
ce

CC-2

WM

TVC-1

TVC-2

Repetition [42]

Fig. 5. BCJR-once rates RBCJR-once versus pI = pD with pS = 0 and M = 1
using different inner codes.

and vice versa. While we do not conjecture this to be a

general result, this can be explained for our codes at hand as

follows. For small error probabilities, the distance spectrum

within a single code block, i.e., the set of possible length-

n words that can be generated within one trellis section,

is the dominant property influencing the performance, as

synchronization between blocks is not a problem. However,

on the other hand, for large error rates, codes that can retain

synchronization between blocks provide the highest BCJR-

once rates. In particular, codes for which the codewords in

one block have a small dmin
L , such as the watermark code,

synchronize well, as the structure of a block is less variable

over codewords within one block, helping the receiver to know

the rough structure of this block.

The above exposition also indicates in which cases the

employment of a random offset sequence can improve the per-

formance of a code. In particular, adding a random sequence

has three effects on the inner code. First, while the Hamming

distance spectrum is invariant to offsets, the Levenshtein

distance spectrum can both improve or worsen when adding an

offset sequence. Second, a convolutional code, as a block code,

is block-cyclic, meaning that shifting an inner codeword by n
symbols to the left or right will again be a valid codeword.

It is not surprising that such a property is problematic for

synchronization and thus a random offset sequence, which

destroys the cyclicity, improves the performance at higher

error rates. We can identify this behavior for the TVC-2 inner

coding scheme, whose performance worsens compared to

TVC-1 for small error probabilities, as the carefully designed

Levenshtein distance spectrum is destroyed when adding a

random sequence. However, for large error probabilities, the

random sequence helps as it produces a larger spectrum of

possible codewords, increasing the distinguishability between

close blocks. We refer the reader to Section V-A for an in-

depth discussion of inner code design.

Fig. 6 shows the BCJR-once rates for the TVC-2 inner

10

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

pI = pD

R
B

C
JR

-o
n
ce

M = 1

M = 2, sep.

M = 2, joint

M = 3, sep.

M = 5, sep.

M = 10, sep.

Fig. 6. BCJR-once rates RBCJR-once versus pI = pD with pS = 0 using
the TVC-2 inner coding scheme with different number of transmissions
M . The red solid circle indicates the iterative decoding threshold of our
concatenated coding scheme with the optimized outer protograph LDPC code
from Section VII-B for M = 1.

coding scheme with different number of transmissions M .

It is observed that multiple transmissions can significantly

improve the BCJR-once rates. In particular, even going from

one to two sequences, we already see a notable difference

in terms of information rates. In addition, as expected, we

observe a reduced achievable rate with separate decoding

compared to joint decoding. However, this loss can be com-

pensated by decoding more received sequences. For instance,

for pI = pD = 0.16, the BCJR-once rate of separate decoding

for M = 3 is close to that of joint decoding for M = 2,

but with a much lower decoding complexity. In Fig. 6, we

also show the iterative decoding threshold of our concatenated

coding scheme (red solid circle) using the TVC-2 inner coding

scheme concatenated with an optimized outer protograph

LDPC code for M = 1. We observe that (in the asymptotic

limit of infinitely-large block length) the proposed coding

scheme performs very close to the corresponding AIR. The

optimized base matrix found by computer search along with

the corresponding iterative decoding threshold are given in

Section VII-B.

In Fig. 7, we show BCJR-once rates with an inner convolu-

tional code (CC-2) for both single and double sequence trans-

mission (separate and joint decoding) when pS = 0, 0.05, 0.1.

As can be observed from the figure, the achievable rate loss

of separate decoding with increasing pS is about the same for

M = 1 and M = 2. Moreover, the gap between separate

and joint decoding (for M = 2) stays approximately the

same for different pS, which shows that the proposed separate

decoding approach is robust to substitution errors. In the

figure we also show the iterative decoding thresholds of our

concatenated coding scheme (solid circles) using the CC-2
inner coding scheme with optimized outer protograph LDPC

codes, optimized individually for each pS, for M = 1 (see

Section VII-E for the optimized base matrices).

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

pI = pD

R
B

C
JR

-o
n
ce

pS = 0

pS = 0.05

pS = 0.1

Fig. 7. BCJR-once rates RBCJR-once versus pI = pD with pS = 0, 0.05, 0.1
using the CC-2 inner coding scheme with M = 1 and M = 2. Solid lines
are for M = 1, dashed lines are for M = 2 and separate decoding, and dash
dotted lines are for M = 2 and joint decoding. The solid circles indicate
the iterative decoding thresholds of our concatenated coding scheme with the
optimized outer protograph LDPC codes from Section VII-E for M = 1.

B. Mutual Information Rate

A method to compute the mutual information for a given

coding scheme was introduced in [63], [64], where the mutual

information between an input process w = (w1, w2, . . .) and

an output process y = (y1, y2, . . .), I(w;y), is computed via

trellis-based simulations. Given that a source/channel decoding

trellis exists for a coding scheme, the mutual information point

I(w; y) , lim
No→∞

1

No +m
I(w;y), (3)

which is an AIR, can be computed using the forward recursion

of the BCJR algorithm on the given trellis. Since

I(w;y) = H(w) +H(y)−H(w,y)

and log p(w), log p(y), and log p(w,y) converge with proba-

bility 1 to H(w), H(y), and H(w,y), respectively, for long

sequences, I(w; y) can be estimated by

Î(w; y) =− 1

No +m
log p(w)− 1

No +m
log p(y)

+
1

No +m
log p(w,y)

when No is very large.

This approach can be used for our coding schemes as

well. For the case of single sequence transmission, given

an input sequence w to the inner code and a corresponding

output sequence y from the channel, log p(y), log p(w,y), and

log p(w) can be computed as follows. First, compute log p(y)
from

p(y) =
∑

σ

p
(
y
(No+m)n+d
1 , σ

) (a)
=

∑

σ

αNo+m(σ),

where (a) follows since αi(σ) = p
(
yin+d
1 , σ

)
. Hence, it can

be computed using the recursion in (1). Second, log p(w) and

11

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

pI = pD

R
M

I

Uncoded

CC-1/CC-2

WM

TVC-1

TVC-2

Fig. 8. Mutual information rates RMI versus pI = pD with pS = 0 for single
sequence transmission for several inner coding schemes.

log p(w,y) can be computed using a recursion in a similar

manner. In particular, the recursion for computing p(w,y) is

α
(w,y)
i (σ) =

∑

σ̂

α
(w,y)
i−1 (σ̂)γi(σ̂, σ),

where the summation is over all states σ̂ with an outgoing edge

to σ labeled with the input sequence symbol wi at time i. In

other words, the recursion for p(w,y) does not marginalize

the input sequence w like in p(y). Then,

p(w,y) =
∑

σ

α
(w,y)
No+m(σ).

The recursion for computing p(w) is

α
(w)
i (σ) =

∑

σ̂

α
(w)
i−1(σ̂)p(wi, σ|σ̂),

where again the summation is over all states σ̂ with an

outgoing edge to σ labeled with the input sequence symbol

wi at time i. Then,

p(w) =
∑

σ

α
(w)
No+m(σ).

However, since we consider an input sequence of independent

and uniformly distributed symbols, H(w) is equal to (No +
m) log qo, and hence we do not need to run the recursion.

Similarly, this approach can be used to compute the analog

mutual information point of (3) for the case of multiple

received sequences. Given an input sequence w transmitted

over M identical and independent IDS channels, we will

receive the M output sequences y1, . . . ,yM . Then, the analog

mutual information point of (3), denoted by I(w; y1, . . . , yM),
which is an AIR, can be estimated by

Î(w; y1, . . . , yM) =− 1

No +m
log p(w)

− 1

No +m
log p(y1, . . . ,yM)

+
1

No +m
log p(w,y1, . . . ,yM)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

pI = pD

R
M

I

Uncoded

CC-1/CC-2

WM

TVC-1

TVC-2

Fig. 9. Mutual information rates RMI versus pI = pD with pS = 0 for
multiple sequence transmission with M = 2 for several inner coding schemes.

when No is very large. By considering the joint sequences

(y1)
in+d1

1 , . . . , (yM)in+dM

1 , log p(w), log p(y1, . . . ,yM), and

log p(w,y1, . . . ,yM) can be computed in an analog way as

for the single sequence case.

Fig. 8 shows the mutual information rate RMI ≈ Î(w; y) for

the different inner codes that we consider in this paper (see

Table II). These plots have been simulated using 106 channel

uses. It is evident from the curves that the TVC-1 scheme

performs the best for high insertion and deletion probabilities.

The TVC-1 scheme even outperforms the uncoded scheme,

which might seem surprising at first glance; however, this can

happen when memory is introduced to the source/channel,

which is the case for TVC-1. The mutual information rate

gives us insights on the expected performance of the tabulated

inner codes concatenated with an outer code tailored toward

them, where extrinsic information has been passed between

the inner and outer decoders. In other words, the achievable

rates RMI give insights on the inner-outer iterative decoding

performance of our coding scheme. This is the reason why we

see a difference between mutual information and BCJR-once

rates (RMI ≥ RBCJR-once), where we also observe a change in

which inner code achieves the better rate. This is expected

since the effects of synchronization loss can be mitigated by

performing inner-outer decoding. We observe and confirm this

disposition in our results section. Finally, the achievable rate

RMI ≈ Î(w; y1, . . . , yM) for the case of multiple sequence

transmission with M = 2 is shown in Fig. 9.

It should be noted that the rate RMI for the uncoded case

in Figs. 8 and 9 is computed using the lattice implementation

introduced in Section III. Since in our decoding algorithm we

have to limit the maximum and minimum drift values, we end

up with inaccurate computations of log p(y) and log p(w,y).
By using a lattice implementation, we can exactly compute

these quantities (details omitted for brevity). The discrepancy

between the two methods is most visible for the uncoded case,

whereas it is negligible for the other inner codes.

12

VII. SIMULATION RESULTS

In this section, we provide frame error rate (FER) per-

formance results for several set-ups of our coding schemes.

First, we show a comparison of the different inner coding

schemes introduced in the earlier sections. In particular, we

show that our results are in accordance with the BCJR-once

and mutual information rates. Second, we simulate the FER

performance of our designed nonbinary polar and LDPC codes

with the TVC-2 inner coding scheme. Third, we simulate our

coding schemes under short sequence transmission conditions.

Next, we combine the best inner and outer code selection

and simulate for the case of multiple received sequences. In

addition, we compare the performance of our coding schemes

in the multiple sequence transmission scenario with an existing

MSA algorithm. Finally, to show robustness to substitution

errors, we present FER results for two different values of

pS > 0 using the CC-2 inner coding scheme concatenated

with a designed nonbinary LDPC code.

Our simulations are done over an alphabet of size q = 4,

which equates to the four bases {A,C,G,T} of the DNA and

we set pS = 0 (except for Fig. 15) and pI = pD. An outer

LDPC code is decoded via belief propagation with a maximum

number of 100 iterations. When applicable, the maximum

number of iterations between the inner and outer decoders

is set to 100. The polar code is decoded via CRC-aided

SCL decoding. Regarding the inner codes, we set Imax = 2
and the limit of the drift random variable in decoding is

set dynamically as follows. We set the drift limit to five

times the standard deviation of the final drift at position N ,

i.e., dmax = −dmin = 5
√
N pD

1−pD
. However, if the received

sequence has a drift outside this limit, we increase the limit

to be ten times the standard deviation. This can be motivated

by the fact that in DNA storage, the length of each strand is

known, so the drift limit in decoding can be set accordingly.

Moreover, for multiple transmissions, we use M = 2, 3, 5, and

10. For short sequence transmission, our overall code length

is N = 128 DNA symbols, while we use N = 960 DNA

symbols otherwise. We picked the short and long sequence

lengths to be within the range of the corresponding DNA

sequencing technologies. Illumina sequencing can produce

sequence lengths ranging between 100 − 300 DNA symbols,

while Oxford nanopore sequencing produces sequences of

lengths 1000− 2000 DNA symbols. All FER results are with

an overall code rate of R = 1/2 (in bits per DNA symbol),

with an outer code rate of Ro = 1/2 and an inner code rate of

Ri = 1.

A. Inner Code Optimization/Comparison

Comparing the different inner codes in our coding schemes

can be done in several ways. We have already presented

one way of comparison by providing the BCJR-once and

mutual information rates. However, these rates correspond

to the asymptotics of these codes. To present a more clear

comparison, we plot in Fig. 10 the FER performance of the dif-

ferent inner coding schemes concatenated with a [240, 120]24
WiMax-like nonbinary outer LDPC code. Confirming the

BCJR-once rate results in Fig. 5, for a coding rate of 1/2,

0.05 0.1 0.15 0.2 0.25
10−5

10−4

10−3

10−2

10−1

100

pI = pD

F
E

R

CC-2

WM

TVC-1

TVC-2

Fig. 10. FER performance vs. pI = pD on different inner codes concatenated
with a [240, 120]24 WiMax-like outer LDPC code with overall block length
of N = 960 DNA symbols and with pS = 0. Dashed lines are with inner-
outer iterations while solid lines are without.

TABLE III
ITERATIVE DECODING THRESHOLDS OF LDPC CODES WITH pS = 0

Code pth Rate

Designed 0.142 1/2
WiMax-like 0.139 1/2

we observe that the TVC-2 inner coding scheme performs the

best with no iterations between the inner and outer decoders.

Furthermore, when considering iterative inner-outer decoding,

the TVC-1 scheme performs the best. This in turn confirms the

mutual information rate results in Fig. 8. It is evident that our

designed inner code improves the performance of the overall

concatenated coding scheme.

B. Outer Code Optimization

In the following, we show FER performance results for the

TVC-2 inner coding scheme concatenated with our designed

outer codes. The optimization of the outer code was presented

in Sections V-B and V-C, where we describe how to design,

respectively, an outer LDPC or polar code tailored to an

inner coding scheme combined with the IDS channel. The

results are shown in Fig. 11. Furthermore, Table III shows the

iterative decoding threshold pth of the WiMax-like LDPC code

and our designed protograph LDPC code. The base matrix

corresponding to our designed protograph LDPC code is

B =

(
1 2 1 1
1 1 2 1

)
. (4)

It should be noted that we simulate the ensemble average of the

lifted protograph (see Section V-B) by assigning new random

weights for the edges of the Tanner graph for every new block

transmission. Also, the LDPC code has been optimized for the

case of no iterations between the inner and outer decoders and

for the TVC-2 inner coding scheme. Evidently, we succeed

in improving the performance of our coding schemes with

13

0.05 0.1 0.15 0.2 0.25
10−5

10−4

10−3

10−2

10−1

100

pI = pD

F
E

R

WiMax-like LDPC

Opt. polar

Opt. LDPC

Fig. 11. FER performance vs. pI = pD on different outer codes concatenated
with the TVC-2 inner coding scheme, with pS = 0 and with no iterations
between the inner and outer decoders. The polar code has parameters No =
256, Ro = 1/2, qo = 16, α/β = 6, list size 32, and ℓCRC = 8.

both of the designed outer codes; the protograph LDPC code

performing the best. The designed protograph LDPC code

is a [240, 120]24 code with girth 10, which gives a block

length of N = 960 DNA symbols, while the designed polar

code is a [256, 128]24 code, resulting in N = 1024 DNA

symbols. Again, as for the LDPC code, the polar code has

been optimized for the TVC-2 inner coding scheme and with

no iterations between the inner and outer decoders. These

results validate our optimization and design techniques as we

have managed to improve the performance compared to the

standard case. For a better visual representation of how well

the optimization performs, we plotted in Fig. 6 (the red solid

circle) the iterative decoding threshold for our concatenated

coding scheme (TVC-2 inner coding scheme and optimized

outer LDPC code constructed from the base matrix B in (4))

for M = 1. The gap to the AIR curve is very small, which

validates our optimization. On a side note, optimizing the inner

code is of greater importance as the inner code is responsible

for maintaining synchronization, which is the main obstacle

faced when dealing with IDS channels.

C. Short Sequence Transmission

The FER performance for the short block length regime is

presented in Fig. 12. The comparison is done on different inner

codes using a [64, 32]22 outer polar code or a [64, 32]22 LDPC

code that both have been optimized separately for each inner

coding scheme. In fact, the protograph in (4) is optimal for all

four WM, CC-1, TVC-1, and TVC-2 inner coding schemes,

which could be attributed to the rather small search space.

The corresponding designed nonbinary LDPC code has girth

8. Similar to the long sequence case, the watermark code is

performing worse than other inner code choices, which has

been as well predicted by the AIR results for our chosen

rate. Surprisingly, other combinations of inner and outer codes

perform very similar in the short sequence case. Due to clarity

0.02 0.04 0.06 0.08 0.1 0.12 0.14
10−5

10−4

10−3

10−2

10−1

100

pI = pD

F
E

R

CC-1

WM

TVC-1

Fig. 12. FER performance vs. pI = pD on short sequences of N = 128
DNA symbols for different inner coding schemes, with pS = 0 and with no
iterations between the inner and outer decoders. Solid lines are for an outer
polar code with parameters No = 64, Ro = 1/2, qo = 4, α/β = 3, list size
32, and ℓCRC = 8, while dashed lines are for an outer [64, 32]22 optimized
LDPC code.

of presentation, we have excluded in the plot the results for

the TVC-2 inner coding scheme, which performed the best

for long sequences. However, the performance of this coding

scheme is slightly worse than the CC-1 and TVC-1 results.

Moreover, the TVC-1 inner coding scheme performs better

for higher insertion and deletion probabilities than all inner

codes with a random offset sequence. The difference of the

results compared to the AIR and long sequence results may

stem from the fact that for short sequences the synchronization

process is done over a shorter trellis. Therefore, the knowledge

of the fixed start and end point has more influence on the APPs

in the middle of the sequence, which makes synchronization

without a random offset sequence also more feasible for higher

insertion and deletion probabilities. However, the CC-1 inner

coding scheme seems to perform best for decreasing failure

probabilities for short sequences. Considering the outer code

choice, for the TVC-1 and CC-1 inner coding schemes, the

LDPC code and the polar code yield similar performance, with

the polar code slightly outperforming the optimized nonbinary

LDPC code for high deletion and insertion probabilities and

vice versa for low error probabilities. However, the polar code

outperforms the LDPC code by a more significant gap for

the WM inner coding scheme. This may be explained by

the limited search space for the LDPC protograph; a higher

dimension protograph might allow to close the gap.

D. Multiple Sequence Transmission

Next, we present FER results for the case of multiple

sequence transmission with both long and short sequences.

For transmission block length N = 960 DNA symbols,

we have shown that our designed protograph LDPC code

combined with the TVC-2 inner coding scheme performs the

best when we do not iterate between the inner and outer

14

0.05 0.1 0.15 0.2 0.25
10−5

10−4

10−3

10−2

10−1

100

pI = pD

F
E

R

M = 1

M = 2, sep.

M = 2, joint

M = 3, sep.

M = 5, sep.

M = 10, sep.

Fig. 13. FER performance vs. pI = pD for the TVC-2 inner coding scheme
concatenated with our optimized [240, 120]24 outer LDPC code with block
length N = 960 DNA symbols for multiple sequences, with pS = 0 and
with no iterations between the inner and outer decoders. Solid lines represent
separate decoding while dash dotted are for joint decoding.

decoders. Fig. 13 shows the FER results for this scheme with

multiple sequences, where we observe a significant gain in

performance when increasing the number of sequences. There

is also a notable gain of joint decoding compared to separate

decoding as illustrated for M = 2 sequences. Moreover,

separate decoding with M = 3 performs similar to optimal

joint decoding for M = 2, but with much lower complexity.

This confirms the earlier observation with the BCJR-once rates

(see Fig. 6), and shows the viability of our proposed sub-

optimal decoding algorithm. For short sequence transmission

we perform our analysis with an outer polar code using the

CC-1 inner coding scheme. In the following we include a

comparison of that coding scheme with an existing MSA

method from the literature for the multiple sequence scenario.5

MSA tools are often used in the biological sector for re-

construction of an original sequence given multiple corrupted

sequences. Here, we consider the T-Coffee MSA method

presented in [32] using the open-source library SeqAn [33].

Given the M sequences y1, . . . ,yM from the channel output,

the MSA algorithm computes a consensus sequence ỹ =
(ỹ1, . . . , ỹÑ), where ỹi ∈ Σq and Ñ is not necessarily equal

to N . We use a simple Levenshtein distance orientated scoring

scheme to compute the alignment, where a match, a mismatch,

and a gap have scores 0, −2, and −1, respectively. Given

the computed alignment, we apply a majority decision to

output the consensus sequence ỹ. Subsequently, the sequence

ỹ is given to the inner decoder to compute the symbol APPs

p(wi|ỹ) for each outer codeword symbol as described in

Section III. We can directly determine the total number of

computed operations by the sum of that of decoding a single

received sequence using the inner code and that of the MSA

5Note that we have not optimized neither the LDPC code nor the polar
code for the multiple sequence scenario, but rather use the optimized codes
for the case of a single sequence transmission.

0.05 0.1 0.15 0.2 0.25
10−5

10−4

10−3

10−2

10−1

100

pI = pD

F
E

R

M = 1

M = 2, sep.

M = 2, joint

M = 3, sep.

M = 5, sep.

M = 10, sep.

Fig. 14. FER performance vs. pI = pD on short sequences of N = 128
DNA symbols, with pS = 0 and with no iterations between the inner and
outer decoders. The outer code is a polar code with parameters No = 64,
Ro = 1/2, qo = 4, α/β = 3, list size 32, and ℓCRC = 8, while we use
the CC-1 inner coding scheme. Comparison on different multiple sequence
decoding approaches. Solid lines represent separate decoding, dashed are for
MSA decoding, and dash dotted are for joint decoding.

algorithm itself. Therefore, combining the complexity of the

T-Coffee algorithm according to [32] and that of decoding a

single received sequence using the inner code, the complexity

of the MSA method is

CMSA = Csingle +O(M2N2) +O(M3N).

Fig. 14 shows the FER of a [64, 32]22 outer polar code

concatenated with the CC-1 inner coding scheme for a short

block length of N = 128 DNA symbols and multiple re-

ceived sequences. Specifically, we compare the separate and

joint decoding approaches discussed in Section IV and the

aforementioned MSA method. First observe that due to com-

plexity reasons joint decoding for M > 2 becomes infeasible.

Moreover, the MSA method is impractical for the case of

M = 2 due to the applied majority decision. For the case of

M = 2, we see a significant gain of joint decoding compared

to separate decoding. This is no surprise since joint decoding

exploits the full knowledge of the two received sequences con-

currently, however, at the expense of a large trellis increasing

exponentially in M . On the other hand, the separate decoding

approach ignores during the inner decoding the fact that the

received sequences stem from the same original transmitted

sequence. Comparing the MSA method and separate decoding

for the case of M > 2, we see that the performance of separate

decoding is better than that of the MSA method for M = 3,

similar for M = 5, and worse for M = 10. This can be

explained similarly as before, since the MSA method exploits

coherences between the received sequences, albeit without

any structural assumption, e.g., knowledge of the codebooks.

Nevertheless, the gain of the MSA method comes at the

price of a higher complexity, where the dominating factor is

O(M2N2) + O(M3N) compared to separate decoding with

15

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
10−5

10−4

10−3

10−2

10−1

100

pI = pD

F
E

R

pS = 0

pS = 0.05

pS = 0.1

Fig. 15. FER performance vs. pI = pD for the CC-2 inner coding scheme
concatenated with an optimized [240, 120]24 outer LDPC code with block
length N = 960 DNA symbols for several substitution error probabilities and
with no iterations between the inner and outer decoders. Solid lines correspond
to M = 1 and dashed lines to M = 2 with separate decoding.

O(MN 3/2) complexity, as the total number of drift states ∆
is of order O(

√
N).

For a better grasp on the difference in complexity between

joint and separate decoding, we now provide some numerical

examples of the total number of candidates for the HMM

state variable σi, denoted by σtotal, for the case of an inner

convolutional code. For a sequence of length N = 960 and

pI = pD = 0.15, σtotal = 2ν × 131 for separate decoding,

while σtotal = 2ν × 131M for joint decoding. For a sequence

of length N = 128, σtotal = 2ν × 48 for separate decoding,

while σtotal = 2ν × 48M for joint decoding.

E. Frame Error Rate Results With Substitution Errors

To show the robustness of our coding schemes and de-

coding algorithms to substitution errors, we show in Fig. 15

FER results with pS > 0. We use the CC-2 inner coding

scheme concatenated with an optimized (for single sequence

transmission and with no iterations between the inner and

outer decoders) nonbinary protograph LDPC code using the

techniques mentioned earlier. The optimal base matrix for the

case of pS = 0 is B = (1 2 1 1
1 1 2 1) as mentioned earlier, while

B = (1 2 1 1
1 1 1 1) gives the best performance for pS = 0.05

and 0.1. The FER curves in Fig. 15 are in agreement with

the BCJR-once rates in Fig. 7; the loss in performance with

increasing pS is approximately the same for M = 1 and

M = 2 with separate decoding.

VIII. CONCLUSION

In this paper, we proposed concatenated coding schemes

for the problem of transmitting one DNA sequence over

multiple parallel IDS channels. First, we proposed two novel

approaches, or decoding algorithms, for multiple sequence

transmission. The first algorithm, being a benchmark for the

second one, is an optimal symbolwise MAP decoder but it

suffers from high complexity, while the second algorithm is a

sub-optimal but more practical decoder with much reduced

complexity. We showed with these algorithms that we can

achieve significant gains as compared to the single sequence

transmission case. Second, we proposed optimization tech-

niques for both the inner and outer codes tailored to the

IDS channel. We designed an inner TVC and outer nonbinary

LDPC and polar codes that improve the overall performance

of the scheme. In addition, we studied the asymptotic per-

formance of different inner codes through AIRs and showed

that the FER results are in accordance with them. Lastly, we

would like to point out that the code rate for our concatenated

coding scheme was chosen for convenience, while for a

real-life scheme it should be selected based on the target

IDS channel error rates which depend on the sequencing

technology. Although it may be considered to be a low rate,

the scheme can be straightforwardly adapted to higher rates.

In this work, we showed that for an IDS channel with a very

high error rate for insertions and deletions, our coding scheme

with rate 1/2 performs very well.

APPENDIX A

SYMBOLWISE APPS FOR MEMORYLESS CHANNELS

We show that for independent channel input symbols, i.e.,

p(x) =
∏N

i=1 p(xi) and a memoryless channel that produces

M output sequences it holds that

p(xi|y) ∝ p(xi)
1−M

M∏

j=1

p(xi|yj),

where the proportionality is with respect to a constant that

does not depend on xi. We start with expanding the APP to

p(xi|y)
(a)
=

∑

x:xi

p(x|y) =
∑

x:xi

p(y|x)p(x)
p(y)

=
∑

x:xi

p(x)

p(y)

M∏

j=1

p(yj |x)

(b)
=

∑

x:xi

1

p(y)

N∏

k=1

p(xk)

M∏

j=1

p(yj,k|xk)

(c)
= p(xi)

M∏

j=1

p(yj,i|xi)
∑

x:xi

1

p(y)

∏

k 6=i

p(xk)

M∏

l=1

p(yl,k|xk)

∝ p(xi)

M∏

j=1

p(yj,i|xi),

where in (a) we used the notation of the sum over x : xi,

which ranges over all vectors x whose i-th symbol is equal to

xi. Equality (b) is due to the fact that the channel is memo-

ryless. Finally, in (c) we factored out the terms corresponding

to xi, which is possible as xi is constant within the sum. We

can do the analogous steps for p(xi|yj) to deduce that

p(xi|yj) ∝ p(xi)p(yj,i|xi).

Combining these two equivalences, we arrive at the desired

proportionality. Notice that this relation translates to the APPs

p(wi|y) when no inner code is used, i.e., when w = x.

16

REFERENCES

[1] A. Lenz, I. Maarouf, L. Welter, A. Wachter-Zeh, E. Rosnes, and
A. Graell i Amat, “Concatenated codes for recovery from multiple reads
of DNA sequences,” in Proc. IEEE Inf. Theory Workshop, Riva del
Garda, Italy, Apr. 2020.

[2] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital infor-
mation storage in DNA,” Science, vol. 337, no. 6102, p. 1628, Aug.
2012.

[3] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, vol. 494,
no. 7435, pp. 77–80, Feb. 2013.

[4] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angew. Chem. Int. Ed., vol. 54, no. 8, pp. 2552–2555,
Feb. 2015.

[5] M. Blawat, K. Gaedke, I. Hütter, X.-M. Chen, B. Turczyk, S. Inverso,
B. W. Pruitt, and G. M. Church, “Forward error correction for DNA
data storage,” in Proc. Int. Conf. Comput. Sci., San Diego, CA, USA,
Jun. 2016, pp. 1011–1022.

[6] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and
K. Strauss, “A DNA-based archival storage system,” in Proc. Int. Conf.
Architect. Supp. Program. Lang. Operat. Syst., Atlanta, Georgia, USA,
Mar. 2016, pp. 637–649.

[7] Y. Erlich and D. Zielinski, “DNA fountain enables a robust and efficient
storage architecture,” Science, vol. 355, no. 6328, pp. 950–954, Mar.
2017.

[8] S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-
free DNA-based data storage,” Sci. Rep., vol. 7, no. 5011, pp. 1–6, Jul.
2017.

[9] L. Organick, S. D. Ang, Y.-J. Chen, R. Lopez, S. Yekhanin,
K. Makarychev, M. Z. Racz, G. Kamath, P. Gopalan, B. Nguyen,
C. N. Takahashi, S. Newman, H.-Y. Parker, C. Rashtchian, K. Stewart,
G. Gupta, R. Carlson, J. Mulligan, D. Carmean, G. Seelig, L. Ceze, and
K. Strauss, “Random access in large-scale DNA data storage,” Nature

Biotechnol., vol. 36, no. 3, pp. 242–248, Mar. 2018.
[10] Y. Wang, M. Noor-A-Rahim, J. Zhang, E. Gunawan, Y. L. Guan,

and C. L. Poh, “High capacity DNA data storage with variable-length
oligonucleotides using repeat accumulate code and hybrid mapping,” J.

Biol. Eng., vol. 13, no. 89, pp. 1–11, Nov. 2019.
[11] S. Chandak, J. Neu, K. Tatwawadi, J. Mardia, B. Lau, M. Kubit,

R. Hulett, P. Griffin, M. Wootters, T. Weissman, and H. Ji, “Overcoming
high nanopore basecaller error rates for DNA storage via basecaller-
decoder integration and convolutional codes,” in Proc. IEEE Int. Conf.
Acoust., Speech, Sig. Process., Barcelona, Spain, May 2020, pp. 8822–
8826.

[12] S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A
rewritable, random-access DNA-based storage system,” Sci. Rep., vol. 5,
no. 14138, pp. 1–10, Sep. 2015.

[13] C. Pan, S. K. Tabatabaei, S. M. H. T. Yazdi, A. G. Hernandez, C. M.
Schroeder, and O. Milenkovic, “Rewritable two-dimensional DNA-based
data storage with machine learning reconstruction,” Nature Commun.,
vol. 13, no. 2984, pp. 1–12, May 2022.

[14] S. K. Tabatabaei, B. Pham, C. Pan, J. Liu, S. Chandak, S. A. Shorkey,
A. G. Hernandez, A. Aksimentiev, M. Chen, C. M. Schroeder, and
O. Milenkovic, “Expanding the molecular alphabet of DNA-based data
storage systems with neural network nanopore readout processing,”
Nano Lett., vol. 22, no. 5, pp. 1905–1914, Mar. 2022.

[15] P. L. Antkowiak, J. Lietard, M. Z. Darestani, M. M. Somoza, W. J.
Stark, R. Heckel, and R. N. Grass, “Low cost DNA data storage using
photolithographic synthesis and advanced information reconstruction
and error correction,” Nature Commun., vol. 11, no. 5345, Oct. 2020.

[16] R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of the DNA
data storage channel,” Sci. Rep., vol. 9, no. 9663, pp. 1–12, Jul. 2019.

[17] R. G. Gallager, “Sequential decoding for binary channel with noise and
synchronization errors,” Arlington, VA, USA, Tech. Rep., Sep. 1961.

[18] K. S. Zigangirov, “Sequential decoding for a binary channel with drop-
outs and insertions,” Probl. Peredachi Inf., vol. 5, no. 2, pp. 23–30,
1969.

[19] L. Calabi and W. E. Hartnett, “Some general results of coding theory
with applications to the study of codes for the correction of synchro-
nization errors,” Inf. Control, vol. 15, no. 3, pp. 235–249, Sep. 1969.

[20] L. R. Bahl and F. Jelinek, “Decoding for channels with insertions,
deletions, and substitutions with applications to speech recognition,”
IEEE Trans. Inf. Theory, vol. 21, no. 4, pp. 404–411, Jul. 1975.

[21] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710,
Feb. 1966.

[22] M. C. Davey and D. J. C. MacKay, “Reliable communication over
channels with insertions, deletions, and substitutions,” IEEE Trans. Inf.

Theory, vol. 47, no. 2, pp. 687–698, Feb. 2001.
[23] M. F. Mansour and A. H. Tewfik, “Convolutional decoding in the

presence of synchronization errors,” IEEE J. Sel. Areas Commun.,
vol. 28, no. 2, pp. 218–227, Feb. 2010.

[24] V. Buttigieg and N. Farrugia, “Improved bit error rate performance of
convolutional codes with synchronization errors,” in Proc. IEEE Int.

Conf. Commun., London, U.K., Jun. 2015, pp. 4077–4082.
[25] J. A. Briffa, H. G. Schaathun, and S. Wesemeyer, “An improved

decoding algorithm for the Davey-MacKay construction,” in Proc. IEEE

Int. Conf. Commun., Cape Town, South Africa, May 2010.
[26] M. Inoue and H. Kaneko, “Adaptive synchronization marker for inser-

tion/deletion/substitution error correction,” in Proc. IEEE Int. Symp. Inf.
Theory, Cambridge, MA, USA, Jul. 2012, pp. 508–512.

[27] R. Shibata, G. Hosoya, and H. Yashima, “Design of irregular LDPC
codes without markers for insertion/deletion channels,” in Proc. IEEE
Glob. Commun. Conf., Waikoloa, HI, USA, Dec. 2019.

[28] H. Koremura and H. Kaneko, “Insertion/deletion/substitution error cor-
rection by a modified successive cancellation decoding of polar code,”
IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol. E103.A,
no. 4, pp. 695–703, Apr. 2020.

[29] H. D. Pfister and I. Tal, “Polar codes for channels with insertions,
deletions, and substitutions,” in Proc. IEEE Int. Symp. Inf. Theory,
Melbourne, Australia, Jul. 2021, pp. 2554–2559.

[30] R. C. Edgar, “MUSCLE: multiple sequence alignment with high ac-
curacy and high throughput,” Nucleic Acids Res., vol. 32, no. 5, pp.
1792–1797, Mar. 2004.

[31] J. Kim and J. Ma, “PSAR-Align: Improving multiple sequence alignment
using probabilistic sampling,” Bioinformatics, vol. 30, no. 7, pp. 1010–
1012, Apr. 2014.

[32] C. Notredame, D. G. Higgins, and J. Heringa, “T-Coffee: A novel
method for fast and accurate multiple sequence alignment,” J. Mol. Biol.,
vol. 302, no. 1, pp. 205–217, Sep. 2000.

[33] K. Reinert, T. H. Dadi, M. Ehrhardt, H. Hauswedell, S. Mehringer,
R. Rahn, J. Kim, C. Pockrandt, J. Winkler, E. Siragusa, G. Urgese,
and D. Weese, “The SeqAn C++ template library for efficient sequence
analysis: A resource for programmers,” J. Biotechnol., vol. 261, pp.
157–168, Nov. 2017.

[34] H. Mercier and V. K. Bhargava, “Convolutional codes for channels with
deletion errors,” in Proc. Canadian Workshop Inf. Theory, Ottawa, ON,
Canada, May 2009, pp. 136–139.

[35] V. I. Levenshtein, “Efficient reconstruction of sequences from their
subsequences or supersequences,” J. Combin. Theory, Series A, vol. 93,
no. 2, pp. 310–332, Feb. 2001.

[36] M. A. Sini and E. Yaakobi, “Reconstruction of sequences in DNA
storage,” in Proc. IEEE Int. Symp. Inf. Theory, Paris, France, Jul. 2019,
pp. 290–294.

[37] J. Brakensiek, R. Li, and B. Spang, “Coded trace reconstruction in a
constant number of traces,” in Proc. IEEE Annu. Symp. Found. Comput.

Sci., Durham, NC, USA, Nov. 2020, pp. 482–493.
[38] M. Cheraghchi, R. Gabrys, O. Milenkovic, and J. Ribeiro, “Coded trace

reconstruction,” IEEE Trans. Inf. Theory, vol. 66, no. 10, pp. 6084–6103,
Oct. 2020.

[39] M. Abroshan, R. Venkataramanan, L. Dolecek, and A. Guillén i
Fàbregas, “Coding for deletion channels with multiple traces,” in Proc.
IEEE Int. Symp. Inf. Theory, Paris, France, Jul. 2019, pp. 1372–1376.

[40] S. R. Srinivasavaradhan, M. Du, S. Diggavi, and C. Fragouli, “Symbol-
wise MAP for multiple deletion channels,” in Proc. IEEE Int. Symp. Inf.

Theory, Paris, France, Jul. 2019, pp. 181–185.
[41] O. Sabary, A. Yucovich, G. Shapira, and E. Yaakobi, “Reconstruction

algorithms for DNA-storage systems,” Sep. 2020. [Online]. Available:
https://www.biorxiv.org/content/10.1101/2020.09.16.300186v1

[42] S. R. Srinivasavaradhan, S. Gopi, H. D. Pfister, and S. Yekhanin, “Trellis
BMA: Coded trace reconstruction on IDS channels for DNA storage,”
in Proc. IEEE Int. Symp. Inf. Theory, Melbourne, Australia, Jul. 2021,
pp. 2453–2458.

[43] R. Sakogawa and H. Kaneko, “Symbolwise MAP estimation for
multiple-trace insertion/deletion/substitution channels,” in Proc. IEEE

Int. Symp. Inf. Theory, Los Angles, CA, USA, Jun. 2020, pp. 781–785.
[44] R. Shibata, G. Hosoya, and H. Yashima, “Concatenated LDPC/trellis

codes: Surpassing the symmetric information rate of channels with
synchronization errors,” IEICE Trans. Fundam. Electron., Commun.

Comput. Sci., vol. E103.A, no. 11, pp. 1283–1291, Nov. 2020.

17

[45] D. Fertonani, T. M. Duman, and M. F. Erden, “Bounds on the capacity
of channels with insertions, deletions and substitutions,” IEEE Trans.
Commun., vol. 59, no. 1, pp. 2–6, Jan. 2011.

[46] R. L. Dobrushin, “Shannon’s theorems for channels with synchronization
errors,” Probl. Peredachi Inf., vol. 3, no. 4, pp. 18–36, 1967.

[47] V. Buttigieg and J. A. Briffa, “Codebook and marker sequence design for
synchronization-correcting codes,” in Proc. IEEE Int. Symp. Inf. Theory,
Saint Petersburg, Russia, Jul./Aug. 2011, pp. 1579–1583.

[48] ——, “Improved code construction for synchronization error correction,”
in Proc. 10th Int. ITG Conf. Syst., Commun. Coding, Hamburg, Germany,
Feb. 2015.

[49] J. A. Briffa and H. G. Schaathun, “Improvement of the Davey-MacKay
construction,” in Proc. Int. Symp. Inf. Theory Appl., Auckland, New
Zealand, Dec. 2008.

[50] P.-M. Nguyen, M. A. Armand, and T. Wu, “On the watermark string in
the Davey-MacKay construction,” IEEE Commun. Lett., vol. 17, no. 9,
pp. 1830–1833, Sep. 2013.

[51] R. R. Varshamov and G. M. Tenengol’ts, “Code correcting single
asymmetric errors,” Avtomat. Telemekh., vol. 26, no. 2, pp. 288–292,
1965.

[52] A. A. El Gamal, L. A. Hemaspaandra, I. Shperling, and V. K. Wei,
“Using simulated annealing to design good codes,” IEEE Trans. Inf.

Theory, vol. 33, no. 1, pp. 116–123, Jan. 1987.
[53] P. R. J. Östergård, “A fast algorithm for the maximum clique problem,”

Discrete Appl. Math., vol. 120, no. 1–3, pp. 197–207, Aug. 2002.
[54] E. C. Sewell, “A branch and bound algorithm for the stability number

of a sparse graph,” INFORMS J. Comput., vol. 10, no. 4, pp. 438–447,
Nov. 1998.

[55] R. Carraghan and P. M. Pardalos, “An exact algorithm for the maximum
clique problem,” Operations Res. Lett., vol. 9, no. 6, pp. 375–382, Nov.
1990.

[56] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Progressive edge-growth
Tanner graphs,” in Proc. IEEE Glob. Telecommun. Conf., San Antonio,
TX, USA, Nov. 2001, pp. 995–1001.

[57] A. Kavčić, X. Ma, and M. Mitzenmacher, “Binary intersymbol interfer-
ence channels: Gallager codes, density evolution, and code performance

bounds,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1636–1652, Jul.
2003.

[58] P. Yuan and F. Steiner, “Construction and decoding algorithms for polar
codes based on 2 × 2 non-binary kernels,” in Proc. Int. Symp. Turbo

Codes Iterative Inf. Process., Hong Kong, China, Dec. 2018.
[59] E. Arıkan, “Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,” IEEE

Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.
[60] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.

Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.
[61] R. R. Muller and W. H. Gerstacker, “On the capacity loss due to

separation of detection and decoding,” IEEE Trans. Inf. Theory, vol. 50,
no. 8, pp. 1769–1778, Aug. 2004.

[62] J. B. Soriaga, H. D. Pfister, and P. H. Siegel, “Determining and
approaching achievable rates of binary intersymbol interference channels
using multistage decoding,” IEEE Trans. Inf. Theory, vol. 53, no. 4, pp.
1416–1429, Apr. 2007.

[63] H. D. Pfister, J. B. Soriaga, and P. H. Siegel, “On the achievable
information rates of finite state ISI channels,” in Proc. IEEE Glob.

Telecommun. Conf., San Antonio, TX, USA, Nov. 2001, pp. 2992–2996.
[64] D. M. Arnold, H.-A. Loeliger, P. O. Vontobel, A. Kavčić, and W. Zeng,

“Simulation-based computation of information rates for channels with
memory,” IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3498–3508, Aug.
2006.

[65] L. Szczecinski and A. Alvarado, Bit-Interleaved Coded Modulation:

Fundamentals, Analysis and Design. Chichester, U.K.: John Wiley
and Sons, 2015.

[66] J. Hagenauer, “The exit chart - introduction to extrinsic information
transfer in iterative processing,” in Proc. Eur. Sig. Process. Conf.,
Vienna, Austria, Sep. 2004, pp. 1541–1548.

[67] I. Land, P. A. Hoeher, and S. Gligorević, “Computation of symbol-wise
mutual information in transmission systems with logAPP decoders and
application to EXIT charts,” in Proc. Int. ITG Conf. Source Channel

Coding, Erlangen, Germany, Jan. 2004, pp. 195–202.
[68] J. Kliewer, S. X. Ng, and L. Hanzo, “Efficient computation of EXIT

functions for nonbinary iterative decoding,” IEEE Trans. Commun.,
vol. 54, no. 12, pp. 2133–2136, Dec. 2006.

