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Maximally Recoverable Codes with Hierarchical
Locality: Constructions and Field-Size Bounds

D. Shivakrishna, Aaditya M. Nair and V. Lalitha

Abstract

Maximally recoverable codes are a class of codes which recover from all potentially recoverable erasure patterns given the
locality constraints of the code. In earlier works, these codes have been studied in the context of codes with locality. The notion
of locality has been extended to hierarchical locality, which allows for locality to gradually increase in levels with the increase
in the number of erasures. We consider the locality constraints imposed by codes with two-level hierarchical locality and define
maximally recoverable codes with data-local and local hierarchical locality. We derive certain properties related to their punctured
codes and minimum distance. We give a procedure to construct hierarchical data-local MRCs from hierarchical local MRCs. We
provide a construction of hierarchical local MRCs for all parameters. We also give constructions of MRC with hierarchical locality
for some parameters, whose field size is smaller than that of known constructions for general parameters. We also derive a field
size lower bound on MRC with hierarchical locality.

I. INTRODUCTION

With application to distributed storage systems, the notion of locality of a code was introduced in [2], which enables efficient
node repair in case of single node failures (node failures modelled as erasures) by contacting fewer nodes than the conventional
erasure codes based on maximum distance separable (MDS) codes. An extension to handle multiple erasures has been studied
in [3]. A code symbol is said to have (r,d) locality if there exists a punctured code C; such that ¢; € Supp(C;) and the
following conditions hold,

o dim(C;) <r and
An [n, k, dpmin] code is said to have (r,d) information locality, if k& data symbols have (r,d) locality and it is said to have
all-symbol locality if all the n code symbols have (r, ) locality. An upper bound on the minimum distance of a code with
(r,0) information locality is given by

dmmgn—k+1—(M—1)(5—1). 0

r

A. Maximally Recoverable Codes with Locality

Maximally recoverable codes (MRC) are a class of codes which recover from all information theoretically recoverable
erasure patterns given the locality constraints of the code. Maximally recoverable codes with locality have been defined for
the case of § = 2 in [4]]. We extend the definitions here for the general §.

Definition 1 (Data Local Maximally Recoverable Code). Let C be a systematic [n, k, d ] code. We say that C is an [k, r, h, 0]
data-local maximally recoverable code if the following conditions are satisfied
e rlkandn=k+%.54+n
o Data symbols are partitioned into é groups of size r. For each such group, there are § local parity symbols.
e The remaining h global parity symbols may depend on all k symbols.
o For any set E C [n] where E is obtained by picking § coordinates from each % local groups, puncturing C in coordinates
in E yields a [k + h, k] MDS code.

[k, T, h, 8] data-local MRC is optimum with respect to minimum distance bound in (I). The minimum distance of a [k, 7, h, §]
data-local MRC is given by

Definition 2 (Local Maximally Recoverable Code). Let C' be a systematic [n,k,dpmin] code. We say that C is an [k,r, h,d]
local maximally recoverable code if the following conditions are satisfied

o r|(k+h)andn=k+ L. 541
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o There are k data symbols and h global parity symbols where each global parity may depend on all data symbols.
o These k + h symbols are partitioned into @ groups of size r. For each group there are ¢ local parity symbols.
e Forany set E C [n] where E is obtained by picking § coordinates from each ki—h local groups, puncturing C in coordinates

in E yields a [k + h, k] MDS code.

[k, 7, h,d] local MRC is optimum with respect to minimum distance bound in (). The minimum distance of a [k, r, h, d]
local MRC is given by
h
r
Maximally recoverable codes with locality are also known in literature as Partial-MDS codes (PMDS) codes [3]. Constructions
of PMDS codes with two and three global parities have been discussed in [6], [7]. A general construction of PMDS codes based
on linearized polynomials has been provided in [8]. An improved construction of PMDS codes for all parameters over small
field sizes has been presented in [9]. Construction of MRCs over small field sizes have been investigated in [10]], [[L1]. Recently,
construction of MRCs based on linearized Reed Solomon codes and skew polynomials have been studied in [12]—[14].

B. Codes with Hierarchical Locality

The concept of locality has been extended to hierarchical locality in [15]. In the case of (r,d) locality, if there are more
than § erasures, then the code offers no locality. In the case of codes with hierarchical locality, the locality constraints are such
that with the increase in the number of erasures, the locality increases in steps. The following is the definition of code with
two-level hierarchical locality.

Definition 3. An [n, k, dynin| linear code C is a code with hierarchical locality having parameters [(r1,01), (r2, 62)] if for every
symbol ¢;, 1 < i < n, there exists a punctured code C; such that c; € Supp(C;) and the following conditions hold,

. dzm(Cz) S 1

. dmm(Cz) 2 51 and

e C; is a code with (ra,d2) locality.

An upper bound on the minimum distance of a code with two-level hierarchical locality is given by

dgn—kﬂ—([ﬁ]_1)(52_1)_([3]—1)(51—52). @

T2 1

C. Our Contributions

In this work, we consider the locality constraints imposed by codes with two-level hierarchical locality and define maximally
recoverable codes with data-local and local hierarchical locality. We prove that certain punctured codes of these codes are
data-local/local MRCs. We derive the minimum distance of hierarchical data-local MRCs. We give a procedure to construct
hierarchical data-local MRCs from hierarchical local MRCs. We provide a construction of hierarchical local MRCs for all
parameters. We also give constructions of MRC with hierarchical locality for some parameters, whose field size is smaller
than that of known constructions for general parameters. We also derive a field size lower bound on MRC with hierarchical
locality.

D. Notation

For any integer n, [n] = {1,2,3...,n}. Forany E C [n], E = [n] — E. For any [n, k] code, and any E C [n], C| refers to
the punctured code obtained by restricting C to the coordinates in E. This results in an [n — |E|, k'] code where k' < k. For
any m X n matrix H and E C [n], H|g is the m X |F| matrix formed by restricting H to columns indexed by E. In several

definitions to follow, we implicitly assume certain divisibility conditions which will be clear from the context.

II. MAXIMALLY RECOVERABLE CODES WITH HIERARCHICAL LOCALITY

In this section, we define hierarchical data-local and local MRCs and illustrate the definitions through an example.

Definition 4 (Hierarchical Data Local Code). We define a [k, 71,72, h1, ha, 8] hierarchical data local (HDL) code of length

n=k+hy 42 (hy + 1L5)
™ T2
as follows:
o The code symbols c1, ..., c, satisfy hy global parities given by Z?Zl u‘gz)cj =0, 1<l<hy.
o The first n— hy code symbols are partitioned into t1 = % groups A;, 1 <1 <ty such that |A;| = r1+ha + :—;6 =ny. The

code symbols in the i group, 1 < i < t; satisfy the following hy mid-level parities Z;il vf?c(i_l)m_,_j =0, 1 <0< ho.



o The first ny — hy code symbols of the i™ group, 1 < i < t| are partitioned into t,
such that |B; s| = m2 + § = na. The code symbols in the (i,s)™ group, 1 < i

n2

local parities ijl wz(,és),jC(z‘—l)n1+(s—1)n2+j =0, 1<£<6.

L groups B 5,1 <i<t;,1<s<t

< t1,1 < s < tg satisfy the following §

Definition 5 (Hierarchical Data Local MRC). Let C be a [k, 11,72, h1, ha, 8] HDL code. Then C' is maximally recoverable if
for any set E C [n] such that |E| =k + hy and

1) EﬂB’LS S T2 V i,S,

2) EmAl =T Vi,
the punctured code C|g is a [k + h1,k, h1 + 1] MDS code.

Definition 6 (Hierarchical Local Code). We define a [k, 1,72, h1, h,d] hierarchical local (HL) code of length n =k + h1 +
kJrrlh_l (ho + %6) as follows:

o The code symbols c1,...,cy, satisfy h1 global parities given by Z;.lzl u;e)cj =0, 1<{<h;.
o The n code symbols are partitioned into t1 = % groups A;,1 < i <ty such that |A;] =11 + ha + %5 =n1. The

code symbols in the i group, 1 < i < t satisfy the following ho mid-level parities Z;il vl(_?c(i,l)mﬂ =0, 1</< hs.
o The ny code symbols of the i group, 1 <1 < t1 are partitioned into to = % groups B; 5,1 <1 <t;,1 <5<t
such that |B; s| = r2 + § = na. The code symbols in the (i,s)™ group, 1 < i < t1,1 < s < t5 satisfy the following §
local parities 2321 wg_’es)yjc(i,l)nﬁr(s,l)nfrj =0, 1<¢<6.
Definition 7 (Hierarchical Local MRC). Let C be a [k,r1,72, h1, ha,d] HL code. Then C' is maximally recoverable if for any
set E C [n] such that |E| =k + hy and
1) EmB’LS S T2 V i,S,
2) EmAi:Tl V’L,

the punctured code C|g is a [k + h1,k, h1 + 1] MDS code.

In an independent parallel work [12]], a class of MRCs known as multi-layer MRCs have been introduced. We would like
to note that hierarchical local MRCs (given in Definition [7)) form a subclass of these multi-layer MRCs. One key difference
between the codes constructed in [[12] and the current paper is that the authors in [12]] take the generator matrix based approach
and we take the parity-check matrix based approach.

Example 1. We demonstrate the structure of the parity check matrix for an [k = 5,11 = 3,179 =2,h1 = 1,ho = 1,6 = 2] HL
code. The length of the code is n =k + hy + %(hg + %6) = 16. The parity check matrix of the code is given below:

—Ml,l -
My o
Ny
H = M271
My o
N,
. O -
where,
1 1 1 1
M . — wEJ)l wfa)z wa)B wfj)4
N P C)) ) ) )
wz,j,l wz,j,Z wz,j,3 wz,],4
N; = [vg}f Uz(,lz) o ’Ul(_rlg)}
o=[u ) . uld]

III. PROPERTIES OF MRC WITH HIERARCHICAL LOCALITY
In this section, we will derive two properties of MRC with hierarchical locality. We will show that the middle codes of a
HDL/HL-MRC have to be data-local and local MRC respectively. Also, we derive the minimum distance of HDL MRC.

Lemma IIL.1. Consider a [k,r1,72,h1, ho,§] HDL-MRC C. Let A;,1 < i < t1 be the supports of the middle codes as defined
in Definition dl Then, for each i, Ca, is a [r1,r2, ho, 8] data-local MRC.

Proof. Suppose not. This means that for some i, the middle code Cy4, is not a [r1, r2, ha, 6] data-local MRC. By the definition
of data-local MRC, we have that there exists a set F; C A; such that |Ey| =1 + hy and Cpg, is not an [rq + ha, 72, ho + 1]



Reference Parameters of HL-MRC Field Size
Construction 1 in [[12]] [k, 71,72, h1, ha, 0] o(t)

Construction [V2] [k, 71,79, h1, ha, ] O(ngngéﬂ)hl71n(‘5+1)(h2+1)h1_1)
in the current paper

Construction [V1] [k,71,72,h1 =1, ha, 0] O(ngngéﬂ)(hﬁl)*l)
in the current paper

Construction [V.3] [k,r1,72,h1 = 1,hg = 1, 4] O(n1)
in the current paper

Construction [V.6] [k,r1,7m2,h1 = 2,hy = 1,0] O(n?)
in the current paper

TABLE I
SUMMARY OF HL-MRC CONSTRUCTIONS.

MDS code. This implies that there exists a subset E' C E; such that |E’| = r1 and rank(G|g/) < r;. We can extend the set
E’ to obtain a set E C [n], |E| = k+ h; which satisfies the conditions in the definition of HDL-MRC. The resulting punctured
code Cp cannot be MDS since there exists an r; < k sized subset of F such that rank(G|g/) < 71. O

Lemma IIL2. Consider a [k,r1,72,h1,ha, 8] HL-MRC C. Let A;,1 < i < t1 be the supports of the middle codes as defined
in Definition[6 Then, for each i, Ca, is a [r1,r2, ha, ] local MRC.

Proof. Proof is similar to the proof of Lemma [IIL.1 O

A. Minimum Distance of HDL-MRC
Lemma IIL3. The minimum distance of a [k,r1,72, h1, ha,d] HDL-MRC is given by d = hy + ha + 6 + 1.

Proof. Based on the definition of HDL-MRGC, it can be seen that the [k, 1, 12, h1, ha, 6] HDL-MRC is a code with hierarchical
locality as per Definition [3| with the following parameters:

e k,r1, 7o are the same.

e 00—1=6,01=ha+0+1.
Substituting these parameters in the minimum distance bound in ), we have that

d<hi+hy+d+1 5)

By Lemma[ILT] we know that C4, is a [r1, 72, ha, §] data-local MRC. The minimum distance of C4, (from @)) is ho+d+1.
Thus, the middle code itself can recover from any hs + § erasures. The additional h; erasures can be shown to be extended
to a set E (consisting of k additional non-erased symbols) which satisfies the conditions in Definition A Since, the punctured
code C|g is a [k + h1, k, h1 + 1] MDS code, it can be used to recover the hy erasures. Hence, [k, r1, 72, h1, he, ] HDL-MRC
can recover from any hy + hy + § erasures. O

B. Deriving HDL-MRC from HL-MRC

In this section, we give a method to derive any HDL-MRC from a HL-MRC. Assume an [k, 1,72, h1, he, ] HL-MRC C.
Consider a particular set F of k + hy symbols satisfying the conditions given in Definition [l We will refer to the elements of
set F as “primary symbols”. By the definition of HL-MRC, the code C when punctured to E results in a [k + hqy,k, by + 1]
MDS code. Hence, any k subset of E forms an information set. We will refer to the first £ symbols of E as “data symbols”
and the rest hq symbols as global parities. The symbols in [n]\ E will be referred to as parity symbols (mid-level parities and
local parities) and it can be observed that the parity symbols can be obtained as linear combinations of data symbols.

. IfT‘l | hl al‘ldTg |h2
1) For A;, % < i < kM drop all the parity symbols, including ko mid-level parities per A; as well as the & local

r1
parities per B; s C A;. As a result, we would be left with h; “primary symbols” in the local groups A;, % <1<
k+hy
T

~+. These form the global parities of the HDL-MRC. This step ensures that mid-level and local parities formed
from global parities are dropped.
2) For each B; ,, 1 < ¢ < %, 5 > :—;, drop the § local parities. This step ensures that local parities formed from
mid-level parities are dropped.
This results in an [k, 71,72, h1, he, §] HDL-MRC.
. If’l’l 'i'hl and T2 | h2,



1) From the groups A;, L%J +1<1< kjjlhl, drop all the parity symbols, including he mid-level parities per A; as
well as the ¢ local parities per B; ; C A;.

2) Foreach B; 5, 1 <i< L%J, s> :—;, drop the ¢ local parities.

3) Drop the k — L%Jrl data symbols in A;,i = L%J + 1 and recalculate all the parities (local, mid-level and global)
by setting these data symbols as zero in the linear combinations.

£ |r1,71,79, b1, ha, 5] HDL-MRC.

For the case of 73 {1 ha, HDL-MRC can be derived from HL-MRC using similar techniques as above. Hence, in the rest of the
paper, we will discuss the constructions of HL-MRC.

This results in an [|

IV. GENERAL CONSTRUCTION OF HL-MRC

In this section, we will present a general construction of [k, 1,72, h1, he,d] HL-MRC. First, we will provide the structure
of the code and then derive necessary and sufficient conditions for the code to be HL-MRC. Finally, we will apply a known
result of BCH codes to complete the construction.

Definition 8. A multiset S C T is k-wise independent over F if for every set T C S such that |T| < k, T is linearly independent
over F.

Lemma IV.1. Let Fyn be an extension of Fy. Let aq,as,...,ay, be elements of Fym. The following matrix
ay a as C an
ad al ag .. al
a'f]kl a%nil agwl . a?fﬁl
is the generator matrix of a [n, k] MDS code if and only if a1,aq, ..., a, are k-wise linearly independent over F,.
Proof. Directly follows from Lemma 3 in [9]. O

Construction IV.2. The structure of the parity check matrix of a [k,r1,72, h1, he, 8] HL-MRC is given by
",
Hy

Hy
0 Hy ... H,

Here, Hy is an (ta - 6 + ho) X ny matrix and H;,1 < i <1 are an hy X ny matrix. Hy is then further subdivided as follows:

My
My

Hy =

My
My, My ... M,

My has the dimensions § X no and M;,1 < i <ty is an ho X no matrix.

Assume q to be a prime power such that ¢ > n, F o, be an extension field of ¥y and ¥ n is an extension field of F gy,
where My | M.

In this case, the construction is given by the following.

1 1 1 e 1
0o B 32 e Bzl
2 4 2(n2—1)
My= [0 BB 8 ,
0 ﬁé—l ﬁ2(6_1) . /3(6—1)(77,2—1)
where 8 € Fy is a primitive element.
Oé@l 041'72 e Oéim2
q q q
;1 Qig oo Qg
M; = : ’
hg—1 hg—1 hg—1
q q q
a1 Q; o i,m2



where i € [ta], a;j € Forry, 1 <i <tg,1 < j < mo.

Hi = [Hi71 Hi)g . 'Hi,tg]

)\i,s,l /\i,s,Q cee Ai,s.,ng
)\qu /\qu M
1,8,1 1,8,2 T 1,8,M2
Hi,s = . )
)\qM] (h1—1) gM1n—) )\qlwl(hl—l)
1,8,1 1,8,2 T 1,5,M2

where i € [tl],s S [tg], )\i,s,j € FqM,l <1 <t,1 <5<t,1 <5 < no.

A (0, ho) erasure pattern is defined by the following two sets:

o A is a three dimensional array of indices with the first dimension 4 indexing the middle code and hence 1 < I < ¢4, the
second dimension s indexing the local code and hence 1 < s < ¢5. The third dimension j varies from 1 to § and used to
index the & coordinates which are erased in the (i, s)® group. Let e € [n] denote the actual index of the erased coordinate
in the code and e € B, ,, then we set A; , j = (e mod ma)+1. A; s is used to denote the vector of ¢ coordinates which
are erased in the (i,s)™ group. A; ; is used to denote the complement of A; s in the set [na].

o I' is a two dimensional array of indices with the first dimension ¢ indexing the middle code and hence 1 < ¢ < ¢;. The
second dimension j varies from 1 to ho and used to index the additional hy coordinates which are erased in the ™ group.
Let e € [n] denote the actual index of the erased coordinate in the code and e € A;, then we set I'; j = (¢ mod nq) + 1.
I'; is used to denote the vector of hy coordinates which are erased in the i group. T'; is used to denote the complement
of T'; in the set [n] \ (U2, A, ).

We define some matrices and sets based on the parameters of the construction, which will be useful in proving the subsequent
necessary and sufficient condition for the construction to be HL-MRC.

Lis = (Mola,,)” ' Molg, .
U, = {aga,, tasa, Lis, 1 <s <t}
{Yir,, ¥;r,}
= {Yits s Vihgs Vishot1s s Viry+ho
The above equalities follow by noting that the U221Ai,s =T, UT;. We will refer to the elements in W, by {ti1,.- s Yih,}

and those in \I/i)f*i by {¥i ho+1s-- s Vir +hs - Consider the following matrix based on the elements of ¥,
Wil Pi2 cor Vi thy
;1,1 1/}3,2 T wzrﬁ-hz
F; = [Fi|r, Filp,] = ' . ; (6)
hg—1 hg—1 hg—1
31 wZQ T g-ﬂ“lJrhz
And
(I)i = {)\i,&ﬁi& + )\i,s,AiysLi,su 1<s< t2}
= {(I)i-,Fiv (I)i,f‘i}
= {di1,- s Pihor Pihot1s- s Piritha}
Zi = (Filr,) "' Filr, (7)

Finally, the set © = {®; ¢, + ®; 1, Z;, 1 < i <11}

Theorem IV.3. The code described in Construction[lV2is a [k, 11,72, h1, ha, 8] HL-MRC if and only if for any (8, ha) erasure
pattern, the following two conditions are satisfied:

1) Each ¥;,1 <1 <ty is hp-wise independent over I

2) O is hy-wise independent over F o,

Proof. By Lemma [[IL2] we have that C is a HL-MRC if and only if the C|4, is a [r1, 72, ha, §] local MRC. By the definition
of local MRC, a code is a [r1, 732, ha,d] local MRC, if after puncturing § coordinates in each of the ”:2}12 local groups, the
resultant code is [ry + ha, 71, ho + 1] MDS code.

The puncturing on a set of coordinates in the code is equivalent to shortening on the same set of coordinates in the dual
code. Shortening on a set of coordinates in the dual code can be performed by zeroing the corresponding coordinates in the




parity check matrix by row reduction. To prove that C| 4, is a [r1, 2, ha, §] local MRC, we need to show that certain punctured
codes are MDS (Definition 2). We will equivalently that the shortened codes of the dual code are MDS.
Consider the coordinates corresponding to (i,s)™ group in the parity check matrix. The sub-matrix of interest in this case

is the following:
My|a,.. | Mol

Ais
s, A s Qs A,
q q
asyAi,s as,ALS ,
ho— ho—
aq 2—1 aqlg 1
5,0 s 5,0

Where of A, . 1s the vector obtained by taking ¢ power of each element in the vector. Applying row reduction to the above
matrix, we have

MO|A1Z,3 M0|A1 s
0 Qs A, . + as,Ai,SLi,s
0 (o‘s,ﬁiys + o‘s,Ai,SLi,s)q
: : .
0 (o‘s,ﬁiys + as,Ai,SLi,s)qlz '

Note that L; ; can be pushed into the power of ¢ since the elements of L; ; are in [F;. After row reducing ¢ coordinates from
each of the % local groups in A;, the resultant parity check matrix is F;. Applying Lemma F; forms the generator
matrix of an MDS code if and only if the set ¥; is ho-wise independent over ;. The shortening of the code above is applicable
to mid-level parities. Now, we will apply similar shortening in two steps to global parities. The sub-matrix of interest in this
case is the following:

[ M0|Ai,s MO|A1Z,3 ]
Ag, A s Qs A,
q q
®s A QAL
ho—1 ho—1
q q
YA Y A
Ai75;Ai,s )\i;&Ai,s
qu )\qu,
1,5, s 4,8,0q,
gM1n—1) qﬂflf}Llfl)
L i75;Ai,s i,S,Aiys .
Applying row reduction to the above matrix, we have
My|a,., M|z, ,
0 A, t s, Lis
0 (o‘s,Ai,S + o‘s,Ai,SLi,s)q
’ qhgfl
0 (as,Ai s + aS;A'L,sLi;S)
0 /\i,s,Aiys + /\i,s,Ai,SLi,s
My
0 (Nis,A,. + Ais,ag, Lis)?
My (hy—1)
| 0 (Nis,ar, T Ais,a, Lis)? ]

To apply row reduction again, we consider the following submatrix obtained by deleting the zero columns and aggregating the
non-zero columns from the % groups,

Filr, Filr,
gt gt
®ir, P 5,
qu(hrlfl) qﬂjl(’n*l)

0,1 T




Applying row reduction to the above matrix, we have

Filr, Filr,
0 ®, 5, +Pir, Zi
0 (@ r, + Pir, Zi)"

0 | (®;p, +®ir, Z) "
Note that Z; can be pushed into the power of ¢ since the elements of Z; are in I, . Applying Lemma [V, the row reduced
matrix above forms the generator matrix of an MDS code if and only if the set © is hi-wise independent over g, . O

Lemma IV.4. For any (0, he) erasure pattern,
o For each i, ¥, = {a&& Ctasa Lis,1<s< to} is ho-wise independent over T, if the set

{as,j,1 <s<t3,1<j<ng}

is (6 + 1)ho-wise independent over F,,.
e ©={®, 5, +Pir,Z;,1 <i <t} is hi-wise independent over F i, if the set

{Nisj 1 <i<t1,1 <s<t,1<j<ny}
is (6 + 1)(ha + 1)hy-wise independent over F 1, .

Proof. Since the size of matrix L; 5 is d X (ng —0), each element of ¥; can be a F4-linear combination of atmost §+ 1 different
o, ;. Consider F4-linear combination of hy elements in W;. The linear combination will have at most (0 + 1)hy different o, -
Thus, if the set {as ;} is (§ + 1)ho-wise independent over F,, then ¥; is ho-wise independent over F,. To prove the second
part, we note that each element of ®; is a linear combination of at most § 4 1 different \; s ;. Since the size of the matrix Z;
is hy x (n1 — ha), each element of © can be a I, -linear combination of atmost (6 + 1)(ho + 1) different \; , ;. Consider
IF o, -linear combination of h; elements in ©. The linear combination will have at most (0 + 1)(ho + 1)hy different A; ;.
Thus, if the set {\; s ;} is (0 + 1)(h2 + 1)h;-wise independent over F ur,, then © is hi-wise independent over IFar, . O

We will design the {a; ;} and {\; s} based on the Lemma so that the field size is minimum possible. We will pick
these based on the following two properties:
 Property 1: The columns of parity check matrix of an [n, k, d] linear code over F, can be interpreted as n elements over
[Fn—x which are (d — 1)-wise linear independent over IF,.
 Property 2: There exists [n = ¢"* — 1, k,d] BCH codes over Fy [16], where the parameters are related as

n—k=1+ {%(d - 2)} [log,(n)]

Theorem IV.5. The code in Construction is a [k,r1,72, h1, ha, 0] HL-MRC if the parameters are picked as follows:
1) q is the smallest prime power greater than ns.
2) M, is chosen based on the following relation:

3) noty elements {s j} over F u, are set to be the columns of parity check matrix of the BCH code over ¥, with parameters
[n = glosa(nat2)1 _ 1 gllogq(nat)l _ 1 _ pp, (04+1)ha+1].
4) M is chosen to be the smallest integer dividing M, based on the following relation:

q]Wl _
M>1+ ’VqT((5 + 1)(h2 + 1)h1 — 1)-‘ ]—longl (nﬂ

5) nelements {\; s i} over F u are set to be the columns of parity check matrix of the BCH code over F i, with parameters
»85] q p ty q p
[n = g 1osan (T _q g Milogan (VT g np (54 1) (hg + 1)y + 1]

Proof. The proof follows from Lemma and Properties 1 and 2. (]

V. CoNSTRUCTIONS OF HL MRC oVER Low FIELD SIZES

In this section, we give three constructions of HL. MRC. The first one is for the case when h; = 1, the second construction
is for the case when both h; = 1 and ho = 1 and the third one is for the case when A1 = 2 and hy = 1.

The second construction is for the case when h; = 2 and ho = 1. This construction is based on the construction of local
MRC with 3 global parities in [[17].



A. HL-MRC Construction for hy = 1
In this section, we present a construction of HL-MRC for the case when h; = 1 over a field size lower than that provided
by Construction

Construction V.1. The structure of the parity check matrix for the present construction is the same as that given in Construction
V2] In addition, the matrices My and M;, 1 < i < ty also remain the same. We modify the matrix H;, 1 < i < t; as follows:

ho ho ho
R q q
H; = of | afy .. 'O‘t2,n2} ,

where {as j € Foan ;1 < s <ty,1 < j <na} are chosen to be (6 + 1) - (hy + 1)-wise independent over ¥, based on Theorem

Theorem V.2. The code C given by Construction VAl is a [k,r1,7r2,h1 = 1, ha, §] HL-MRC.
Proof. We show that H can be used to correct all erasure patterns defined in Definition [} From the definition the code should

recover from:

1) 0 errors per B; ¢

2) heo additional errors per A;

3) 1 more erasure anywhere in the entire code.

Now, with h; = 1, the last erasure can be part of one group. Thus, effectively the code should recover from hg + 1 erasures
per group. Suppose that the last erasure is in the i" group. The submatrix of interest for the (i, s)*" local group is

[ Mola,,, | Mo

A,
asti,s aS7Ai,
q q
a57Ai,s aS,Ai’s
ho—1 ho—1
qu A qu -
$,4,s S,Ai“
2 2
qu A, qu -
L §,84,s S,Aiys m

Following the proof of Theorem and performing row reduction of § coordinates, the resultant matrix is

i Vi oo Wirthe
q W7 q
i,1 i,2 e 1,r1+h2
gh2—t 2/] ho—1 g2t
i,lh i,2h te i{lJrhz
q"? q'? wq 2
4,1 0,2 tot i,71+ho

Now, by Lemma [[V.1] it is the generator matrix of an MDS code if and only if ¥, is (hy + 1)-wise independent over F,. [

B. Construction of HL MRC with h1 =1 and he = 1

Now we will describe the construction for the case when there is one mid-level parity per mid-level code (h2 = 1) and one
global parity (h; = 1). This construction is based on the construction of local MRC with 2 global parities in [17].

Construction V.3. We give a construction of the code C, which is specified by the following parity-check matrix H:

Hy Mo
HO MO
H = Hy = .
Hy My
H Hs, ... H, My My ... M,
a1 Q2 ... Qp,
of o3 ... Al
af af ad,
H; = [Hi,l Hi72 R Hiﬂgz]
5 s
H; ;= [a1+1 a2+1 . afgl}
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>

where the following conditions are satisfied:

e q is a prime power such that there exists a subgroup G of F of size atleast ny and with atleast ty cosets.
o a1,00,...0n, € G and o; # «;.

o A1, A2, ..., A, € FY be elements from distinct cosets of G.

We make use of the following determinantal identity to show that the matrix formed by the columns of the parity check
matrix corresponding to the erased positions are invertible and hence can be recovered.

Lemma V.4 ([17]). Let C1,---,Cy be ax (a+1) dimensional matrices and D1, -- - , Dy, be h x (a+1) dimensional matrices
over a field and let DEJ) be the j'" row of D;. Then,
cilol---]o0
olC---1T0o0
det : : . :
0 0o1---|C,
D,y | Dy |- | Dy
Ol Ch
det <o det
(o) 0 o)
ah(h—1)
=(=1)" 7 det : : :

C C
det <D§l)> ---  det <D§l)>

Theorem V.5. The code C given by Construction V3lis a [k,71,72,h1 = 1,ho = 1,6] HL MRC.

Proof: To show that the code is a [k, r1,72,1,1,0] HL MRC, we consider erasure patterns where there are § erasures per
local code, one erasure per mid-level code and one more erasure anywhere in the global code. We will show that any such
erasure pattern is recoverable.

Since there is only one global erasure and it can be in one mid-level code, we consider that the mid-level code which has
additional global erasure has index [ and for all j # [, there are no global erasures associated with these mid-level codes.

Correcting each mid-level code will, in the end, correct the original code.

We show how to correct each of these mid-level codes.

1) For all j** mid-level codes (j # 1), the corresponding erasure pattern is shown. Let the mid-level code where the erasure

occurs be j'.
The submatrix B; of the parity-check matrix which is used to recover the erasures within the j th mid-level code is given

by, ) )
OLJ/ Oéjé Oéjg Oéj(/;+1
a?i ai . a?(,s g
Bj=1" : .o :
a?i O‘ﬁé .. O‘i’s Oé?:Hl
LA Ay oo A Ay

where {ji,...j5,,} denote the § + 1 erased coordinates in the local group j’. We can clearly see that this matrix is a
Vandermonde matrix after scaling and permuting rows. Hence det(B;) # 0.

2) For the [*" mid-level code, we will also involve the global parity. This case can again be divided into two sub cases
depending on the local group where the extra erasure happens:

a) Both the mid-level erasure and the global erasure occur in the same local code, [’
The matrix formed will be,

ayr ay ay ay U
1 2 s 5+1 5+2
Ozlz/ Oél2/ Oél2/ Oél2/ al2/
1 2 S5 5+1 5+2
B=| : : :
a?/ Oé?./ Oé?./ Oé?./ a?/
1 2 S5 5+1 5+2
Al’ )\l’ Al’ g v
a?,+1 O(?,—l—l a?,+1 Oé?,—l—l a?,+1
2 5 S41 s+2
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This is similar to above where B, after scaling and permuting the rows is also a Vandermonde matrix. Hence

det(B;) # 0.
b) The mid-level and global erasure occur in different local codes. Let those local codes be I’ and I”. The matrix B,
det(Bl) =
Ozl/l RPN Oél:Hl
ol ... o
1 S5+1
of ... of
1 S5+1
aqr RN ¢ 914
det 1 5+1
Oél// e OLZ//
5+1
Oé?.// e Oé?.//
1 5+1
/\l’ e )\l’ )\l” e )\l”
5+1 5+1 5+1 5+1
al,Jr ... al,Jr al,fr .. al,fr
L ‘s+1 S+1 S+1 541
al2/1 al23+1 0112/1/ al:s/+1
ag al:s+1 o . al,é,“
det | : : det :
Of?/ O{?/ Of?// e al//
1 541 1 S+1
)\l/ Al/ )\l// )\l//
= det Qg ayr (o524 Qqrr
21 25+1 21 S+1
g alfs+1 Qg e alg+1
det det :
O[?/ OZ?/ OZ?// e OZ?//
1 S+1 1 S+1
5+1 o+1 5+1 o+1
Oél i Oél// 1"
L 5+1 541 5+1 541 .

The above equation implies that det(B;) = 0 if and only if

Al/ Al//
det | 541 5+1
| BT | Py ayy
Where we factored out the non-zero Vandermonde determinants from each column. Since oy, ayy € G and Ay, A\
are in different cosets of GG, the last determinant cannot be zero.

=0.

/
i

Hence, we proved that the code can recover from all possible erasure patterns specified by the definition of HL MRC and
hence it is a HL MRC with the corresponding parameters. 0

C. Construction for hy = 2 and hy =1

Now, we will provide the construction of a HL-MRC with 2 global parities (h; = 2) and 1 mid-level parity per mid-level
code (he = 1).
Construction V.6. We give a construction of code C, which is specified by the following parity-check matrix H:

HO MO
Hy My

HO MO
H, H, ... Hy My M, ... M,



ar—=PF1  ax=P1 T an,—B
1 1 1
ai—f2  az—P2 7 ap,—fB2
My = 2
1 1 1
ar—PBs az—Bs T an,—Bs
1 1 1
M; = [061*/55“ az—Ps+1 T *ﬁ&ﬂ}
H, = [H@l H;o ... Hi,tz}
Ast(i=Dty  Ast(i=1)ty Ast(i=1)ty
H, . = | @1=Bst2 az—PBst2 T ang—Bst2
1,8 Hs4(i—1)to Hs4(i—1)to Hst(i—1)to
a1 —PBs+3 az2—PBs+3 T ang—Bsts

The parameters described in the above parity-check matrix are picked as follows:

qo > 2(na2 + 9) + 3 is a prime power.

There exists a subgroup G of 7~ of size at least ny + 2 with atleast 1l cosets.

F, is an extension field of .

U1, .-, Hiyt, are picked from distinct cosets of G.

Choose distinct Bsi1, 8542, Bs+3 € IF%O.
642

. ;i — i —Bst1
Pick o, . ..o, €y, such that, o= Brrs’ aisBsis © G.

Pick distinct B1,...,0s € Fgo \{a1, ..., an,, Bs+1, Bs+2, Bs+3}
A, A2, Ay, € By are picked 4 wise-independent over .

12

|

Theorem V.7. The code C given by Construction V.8l is a [k,71,7m2,h1 = 1,hy = 1,8] HL-MRC.

Proof:
Again as in previous proof, we consider the case when there are 0 erasures per mid-level code, one erasure per mid-level
code and two more global erasures anywhere in the code. We again look at the erasure patterns within each mid-level codes.
The following distinct patterns are possible with respect to the mid-level codes.

1) No global erasures occur in that mid-level code.
2) Either one or both of the global erasures occur in the mid-level code.

We prove that all the above erasure patterns are recoverable.

1) When no global erasures occur in the mid-level code, there are § erasures per local code and one more erasure per

mid-level code.

In this scenario, we involve the mid-level parities. Let [ be the affected mid-level code and !’ be the local code within

the mid-level code where the erasure occurs. Let v; ; = ﬁ The matrix, B;
J i

V1,1, Y1, SR /A
V2,14 V2,1 e V2.5,
Bi=1 : :
Vs, RLRA e LR/
Vo1, Vo1, - V105
Where {l3,15,...,15,,} are the erased coordinates in local code I’. This is a Cauchy matrix and hence det(B;) # 0.

2) When there are global erasures, there are  erasures per local code, one erasure per mid-level code and two more erasures

anywhere in the code

We will only list the cases (6 in total) of erasure patterns here. We refer the reader to Appendix A for details of the
proof, where we derive that in each of the following cases, the parity-check matrix restricted to the erased columns is

full rank.
a) Both global erasures are in the same local code as the mid-level code.

b) Both global erasures are in the same local code but different one from the mid-level erasure for that mid-level code.
c) Both global and the one mid-level erasures are in different local code but the same mid-level code.
d) Both global erasures are in different mid-level code but share that local code with the mid-level parities for that

mid-level code.

e) Each global erasure is in their own different local code and do not share with the mid-level erasures.
f) In this case, one of the global erasure shares the local code with a mid-level code while the other does not.



13

VI. A FIELD SI1ZE LOWER BOUND FOR HL. MRC

In this section, we will derive lower bounds on the field size of HL MRC. The proof technique is similar to the one developed
in [17], with the difference being that in this case, there are mid-level codes as well and hence while performing shortening
in the parity check matrix, this has to be taken into account. The following lemma derived in [17] will be useful in deriving
the lower bounds on field size.

Lemma VL1 ( [17]). Let X, Xo,...,
projective space PY(F,) . If ¢ < (% — 1)
X1, Xo,..., X,

Theorem VL.2. Consider a [k,r1,72,h1,ha,0] HL MRC. If (§ +2) < hy + ho, hy < nil and ho < Z—; — 1, then the field size

q is lower bounded as follows:
- r+9
> —2—— 1 —4. 8
q_<h1h2+h1—1 )<5+1) ®)

Proof. Consider an arbitrary [k, r1, r2, hi, ha, 6] HL MRC with ¢t; = % mid-level codes and t5 = Z—; local codes per mid-level
code. The code has parity-check matrix of the form

X4 € Pd(Fq) be mutually disjoint subsets each of size t with ¢ > d + 1 of the
t — 4. Then, there exists a hyperplane which intersects d + 1 distinct subsets among

M,y M; 1
Moy M; o
H = ) M’L = .. )
Mtl Mi=t2
Pl PQ . Pt1 Ni71 Ni72 e Ni,t2
where My, ..., M, are §' x (r; +¢') matrices over F,, where §' = hy + (%) 5. P,..., Py, are hy x r1 + ¢’ matrices
over Fy. M;1,...,M;,, are § x (ro + 0) matrices over Fy. N;1,...,N;, are hy X 7o + ¢ matrices over F,. For every subset

S C [r+ 0] of size [S| =641, M; ;(S) is an § x (§ + 1) matrix is full rank. Let M; ;(S)* € F5™ be a nonzero vector
orthogonal to the row space of M; ;(S). We know that M; ;(S)M; ;(S)*= = 0. ¢7;(S) = N ;(S)M; ;(S)* where g7 ;(S) is
a hy x 1 matrix and ¢} ;(S) = P; ;(S)M; ;(S)* where qi j(S) is a hy x 1 matrix. M;(S;)* is defined as follows:

M;1(Siq1)*t .
M(S) = 2(5i2
M i, (Sits)*
Let
Ml(Sl)
My (S2)
D =

Mtl(Stl)

Pi(S1)  Pa(S2) ... Py (Sy)

We form the matrix
Q = D diag(M,(S1)*, Ma(S2)L, ..., My, (Si,)h).

After removing the zero rows in the () matrix, the structure of the resulting matrix is as follows:

2 2
a,,1,50, - qll,h,gvsl,}m

Q =
2 2
qlhl,lvsh,l,l qlhl,h?,-,shl,h,g
1 1 1 1
90,81, qll,h37sl,h3 T qlhl,hshl,l T qlhl,hg,shl,h3

We denote the first block of columns of the above matrix by ¢, ,,s, ,, second by g, , s, , and the last one by qi,, ...,
With this notation, the following lemma gives the rank property of the above matrix.

Shy, ho+1*

Lemma VL.3. For any I C [t1], with |I| = hy and for every i € I, l;1,1;2,...,1; (h,41) and subsets S;1,Si 2, ..., Sin,41 C
[r + 8] of size § + 1 each, Then (hiha + hq) x (hihs + h1) matrix Q' is full rank.

Proof: Follows from the HL MRC property of the code under consideration. g

[r+46]

Lemma VL4. For every i,j € [t1,t2], no two vectors in {¢; ;(S) : S C (6+1

)} are multiples of each other.
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Proof. Suppose ¢; ;(S) = Ag; ;(T) for some distinct S, T C [r + §] of size § + 1 each and some nonzero \ € F,,.

[M;,;(S) M; ;(T)
Nij(S) | Mij(S)r =X | Nijg(T) | Mi;(T)*
RERICY Fiy(T)
[0 0
qu,j(S) = A qu,j(T) =0.
Lai ;(S) 4,,(T)
Note that every coordinate of M; ;(S)L is nonzero. Otherwise, it implies a linear dependence among & columns of M; ;(S).
Thus, we have a linear combination of | N; ;(SUT) |. However, [SUT| < 2§42 < § + hy + ha. By the MR property, any
Pi7j(S U T)
set of columns of the matrix | N; ; | of size  + hq + ho has to be full rank. Thus, we arrive at a contradiction. Thus, no two
PZ7‘]
vectors in {g; ;(S) : S C ([gi‘f)} are multiples of each other. O
By the above lemma, we can think of {¢; ;(S) : S C ([gi‘ls])} as distinct points in P(*1P2+h=1)(F ). Define set X; ; as
follows: X; ; = {¢;;(S) : S C ([gif])}. The sets {X; ;,i € [t1],j € [t2]} are all mutually disjoint. Since ¢; > hi and

ty > ho + 1, it follows that t;ty > hihs + hy. Based on Lemma [VL4] there is no hyperplane in P(*1/2+hi—=1)(F ) which
contains hihg + hy points from distinct subsets of {X; j,i € [t1],j € [t2]}. By Lemma [VLIl we have lower bound on the
field size.

O
Theorem VLS. Consider a [k,r1,72,h1,ha,0] HL MRC. If 4 < hy +hy < (6 +2), hy < o= and hy < Z—; — 1, then the field

size q is lower bounded as follows:

- hi+ hy —2
0> . 1\ (7 + A1+ ho _4 9)
hiha +h; —1 hi+hy—1

Proof. In this case, we do not take arbitrary S and 7" as in the case of proof of Theorem but consider subsets S that
have size § 4+ 1 but constrained to contain the subset {1,2,...,(d + 2 — hy — hs). By picking the sets in this way, we still
ensure that the pairwise unions have size atmost § + hj + ho. The total number of such sets is given by (T‘}:E_Zfif) Based
on this counting, the statement of the theorem follows. o

Theorem VL.6. Consider a [k,71,72,h1,h2,d] HL-MRC. If (6 +2) < hy + ha, hy > 7o and hy < Z—; — (’Z—H, then the field
size q is lower bounded as follows:

T r+46
> . ne 0 — 4.
9= (%hz-ﬁ-hl -1 1) (5+ 1) 4 (10)

Proof. Let f1 > fa > ... > fi be such that f; = [?—11] or L?—;J and 251:1 fi = hy. From each i*" middle code, pick hy + f;
local codes and 0 + 1 columns from every local code. By applying the row reduction similar to the proof of Theorem
and applying appropriately modifying versions of Lemmas and the result follows. O
Remark 1. Please note that we derive the field size bounds for the cases when (i) (6+2) < hy+ha, b1 < nil and hy < Z—; —
(ii) (04+2) < hy+ha, hy > nﬂl and ho < Z—; — f?—ﬂ There are other cases of parameters d, hy, hs for which field-size bounds
need to be derived and we leave it as part of future work.

APPENDIX A
PROOF OF THEOREM [V.7]

The following results related to the determinants of matrices will be useful in proving Theorem



15

Lemma A.1 ( [17]). Let Cy be an a x (a+ 1) matrix, Cy be an a x (a + 2) matrix, Dy be a 3 x (a + 1) matrix and Do be
a 3 x (a+ 2) matrix and let DZ(]) be the j'"* row of D;. Then,

Cy ] 0 o & o Cy
d —(_1)@ 1 | _ 1 (1)
et| 0 |Cy | =(-1) -(det( (1)>-det D, det( (2))-det D,
Dy | Do Dr DY Dy DY)

Cs

C

+det< @) -det | DSV
Dy @

D

2

Lemma A.2 ( [17]). Given Cy and C5 to be a X a + 1 matrices and Cs5 to be an a x (a + 2) matrix. Also, D1 and Dy are
4 x (a + 1) matrices while D3 is a 4 x (a + 2) matrix. It is also given that Dél), D§2), D§2) = [0]. Then,

ci| 0 0 Cs

0|Cy| 0 | a 1 Co 2)
det 0 0 Cs = (—1) . (det (D51)> - det (Dég) - det D%4)

Dy | D2 | Ds Dy

C3
C

(i)) -det | DSY

D, p®

C3

C C

+ det ( (}3)) - det ( (21)) - det Déz)
Dl D2 D(4)

3

C

— det ( (i)) -det (
Di Dl

Cs
Co 2
Dél)) - det Dé ) )
Proof: Follow as a result of Lemmas B.2 in [17]. ]
We also define a cauchy matrix here.

Cq
det - det
+ de <D§1)> e

Lemma A.3 (Cauchy Matrix [16]). Let a1, a2, ...,an,b1,bo,...,b, € Fy be all distinct. Then,

1 1 1
alIbl azIbl e anfbl
det ay—ba az—by "7 apn—bz | Hi>j (ai - aj)(bi - b])
: SR [T;;(ai = ;)
1 1 1
alfbn aszn e anfbn

Such a matrix is called an Cauchy Matrix. Every minor of a Cauchy matrix is also an Cauchy matrix.

Again as in previous proof, we consider the case when there are § erasures per local code, one erasure per mid-level code
and two more global erasures anywhere in the code. We again look at the erasure patterns within each mid-level codes. There
are three distinct patterns possible

1) No global erasures occur in that mid-level code.

2) Either one or both of the global erasures occur in the mid-level code.

We that each of the above are correctible.

Let ’}/1 j= ﬁ
1) When no global erasures occur in the mid-level code, there are § erasures per local code and one more erasure per

mid-level code.

In this scenario, we involve the mid-level parities. Let [ be the affected mid-level code and I’ be the local code within

the mid-level code where the erasure occurs. The matrix, B;

V1,1 V1,1, SR W/
V2,14 V2,1, s 72,1;”1
Bi=| : :
V8,14 5,14 e V8,5,
Vo+1,0y  VS+1y - ”YéJrl.,lle
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Where {11,105, ...,l5,,} are the erased coordinates in local code I’. This is a Cauchy matrix and hence det(5;) # 0.
2) When there are global erasures, there are § erasures per local code, one erasure per mid-level code and two more erasures

anywhere in the code

Here we have a lot more sub-cases.

a) Both global erasures are in the same local code as the mid-level code. Let [ be the affected mid-level code and I’
be the local code in the mid-level code where the erasure happens. The matrix B; in that case,

1,1 cee 71,1;”3
B p—
! Vo+1,1 e Vo+1,05 4
A X A R LEE N/
e N A (U L NS N/

This is also a Cauchy matrix with the last two rows scaled to A;; and p; respectively. Hence det(B;) # 0 and this
erasure pattern is correctible.

b) Both global erasures are in the same local code but different one from the mid-level erasure for that mid-level code.
Assume that the [*" mid-level code is affected. Let I” be the local code with two erasures while I’ be the other one
within this mid-level code.

Yoo 71,1;”1
Voun e Vel
R4 O W
By = . .
R (N
Yo+, - ’Y&+1,lg+l Yo+1,0y - 75+1,lg+2
A Yooy e A Ve, A Ysagy e A Yag2uy,,
A L o N L e L N S L N R A LS N
Expanding this via the lemma
" .. "
Vg e g V1,14 VLY,
5 541 .
det(B;) =det : : - det
(5 RLRA N N Vel o QLI
o ot A Yooy oo A Va2,
Vo100 - Vo410 otz
! o+t Bur - Yoaay - B Vo304,
" .. "
Vi e M, i s
— det . . . det 75,”1/ - 75,”/
V8.l e Vol o 5 e
541,10 e 541,10
)\l’ '75+2,l’1 /\l/ '75+2,l3+] +1,0% +105 5
L R B I o O (5 R
" .. "
Y N Y, V1,14 Ly,
+ det : : : -det 75,l'1' e 75"1:5/+2
Ys,14 e V5,05,
) , ) , Yo+1,1y s ’Y&+1,lg’+2
L N I N F N A A
Vo Ysk2,0y e A Ysk2,0y,,
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Y,y V1,1
; NP
V1,14 Y,
det B :/\ i ~det : ~det
(Bi) =N ) ) V8,1 Vo1,
Vs, RERIAN
Yo+2,1y ’75+2,lg+2
Ys+1,14 76-1-1,13“
Vs+3,1% 76+3,lg’+2
Y1,y Y11y
, A5 o
V1,14 V1,05,
— A\ - det : -det
i Hr Vs, Vo1,
SIRA Vo5,
Vo107 Yo+, ,
Ys+2,1, 76+2,l3+1 . N
Y5+3,1 75+3,l5+2
Y11y V1,14
, 5o
V1,1, V05, )
—+ )\ by - det : . det
17 by / ) Vs, Ve,
5,14 LR/
Vo107 Vo101,
V843,14 Vo305, 4
Yo+2,1y ”Yé+2.,lg+2

Each term in this determinant is A;u; multiplied by a Cauchy matrix € Fg,. The determinant is again a linear
combination of \;y and \;. Again, this determinant cannot be zero because \’s are 4-wise independent.

c) Both global and the one mid-level erasures are in different local code but the same mid-level code.
Let the affected mid-level code be [ and the local codes within, where the erasure occurs, be [ (1), 12 and I®, The

matrix Bj,

[ e} <)

REWHS T8,

1 1

RENIS V5,082,

B =
REESEI REESRION

AICIRRPIPRIE A RLEENION i)
(1) " Ve 1) 1) * (1 2
L@ 70+3,l§ ) ’Y,;Jrg,lH)l Ky

N T,
@ o)
Vs REXISH
Vo1, Vo103,
V2,2 N Vs o),
. 2 bp(2) * 2
Vo132 Ky 75+3J§ﬁ1

3 3)

Y1 7108,
3 3

Vs,1® RENISH
3 3

To41,0(Y Vo108,
A 3) * 3 A 3) * 3
1@ Voqo1 1 V2@,

Hi3) - ’Y(;+3’l<13> Hi3) - 754;',3’[21)1_

det(B;) can be expanded via lemma [V4l After doing that and setting the determinant to zero,

det(B;) = 0,
we get,
c,1) Al L;e15(Bi—Bst1) c,2) 41115 (Bi—Bst1)
€,(1) niel(l) (i—Bs+1) €,2) Hiez(z) (i—Bs+1)
det [ - 61(1)dﬁi€[5](ﬁi*ﬁ5+2) Ao - Cl(z)dﬁie[(;](ﬁi*ﬁau)
€ 1 €,(1) HiElu)(ai*ﬁHz) S €,2) HiEl(z) (ai—Bs42)
5 g
) ¢, 1) dTT;e15(Bi—Bs+3) ) ¢, 2 A1 1;c15(Bi—Bs+3)
e €,(1) niez(51>(ai—ﬂé+3) Ha €,(2) niez(52> (i —Bs+3)
i 1 1 1
ai—fBsy1 ai—Bs41
det )‘l(l) Hiel(sl) ai*gwrz )\1(2) Hiel(;) Oci*gé+2 )\1(3) Hiel(;)
X —Ps41 Qi —Ps+1
_Ml(l) Hiel(sl) ;i —fBs43 Hy2) Hiel(;) a;—Bsi2 Hy3) Hielg)

Where,

¢,3) 41 1icis)(Bi—Bs+1)
€,(3) niez(‘” (ai—Bs+1)
Aocay - Cz(S)dﬁie[a](ﬁi*%Jrz)
i3 €1(3) Hiez(?’) (ai—Bs42)
s
01(3)dnie[a] (ﬂi—,@6+3)
€1(3) niel(S) (i —Bs+3)
s

Ky

ai*ﬁé#»l
047;*5(54»3
ai7ﬁ5+l
ai7ﬁ5+3
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o 19 =00,

o Ci(i) = Hf>gjg€l(1) (Oéf )
o d=1lsg10e 5]([3 ﬁg)

L4 el() - fel( i) ge[é' /B(])

Now, by the choice of a’s, Hl a® z:%ggii € (G. And because p; belong to different cosets in G, the last row in
the above matrix consists of distinct elements. This determinant is a linear combination in the three \’s. Hence the
determinant is non-zero because the \’s are 4-wise independent.

d) Both global erasures are in different mid-level code but share that local code with the mid-level parities for that
mid-level code.

Assume k" and [*" mid-level codes are affected. The local codes within them, where the erasure occurs, are &’

and !’. The matrix By,

Yk o oo T, k;w
VYo+1,ky - ”Yé+1,k3+2
By = V1,1, SR W/
Vo101 - Vo105,
Ak sk e ARV, AU Yokl o AU Vetay,
LIk - Vo4+3,k, -0 MR V43K, MU V3,0 - I Y843, l6+2
Therefore, for det(By,;) =
Mk e Mk, ]
Vo+1,ky - VoH1KS
Y1, ce 1,1
det(Bkyl) = det T o+2 =0
Yo+, - VoL,
AR Vst kg e AR Yok, AV Vekal oo AU Vstaly,,
LIk = Yo+3,k, - R VS4B, HU V30 - U Y305
[ 1.k, e YLk, RN e Y, i
det : B : det
Vo+1,k e Vo+1,k5 Yo+1,14 e Vo+1,05
~ det Akt Vo2 ky oo AR Vo42,k),, A sty e A Yer2ig,) | 0
Y1,k e Yk, V1,04 e Ty,
det : - : det
Vo4+1,k, e Vo+1,k5 Yo+1,14 e Vo+1,05,,
L Mkr = Vo43,ky - HE V543K, M- Ye43,0p - B V43,05,
A .. Hi5[5+1](ﬁi*ﬁ6+2) A .. Hi€[5+1](51 55+2)
~ det k ILieny (@i—Pst2) ! [T, (@i—Bst2) 0
€  licrsin(Bi—Bora) L e 1) (Bi—Bors)
Fk Hiek/s (ai—Bss) M nielé(ai_ﬂzPrS)
d t Ak/ )\[/ O
= de (0 —PBs+2) (i=Bsy2) | =
Fk! Hiek’s (@i—Bssa) MV Hie”s (ai—Bs+3)
Where kg = {k{,..., k5, o} and I'y = {l1,...,l5 5 }. The terms ¢;, d and e, were factored out from the above

determinant where,

* am = Hf>gjgel“)( F—ag).
« d= Hf>g,j.,g€[5+1](6 ﬁq)
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o Cii) = erlg),gE[JJrl] (af - BQ)

By the choice of a;’s, [[;c, Ez%g‘;izg € G forzx

Hence this determinant is non-zero and the erasure pattern correctable.

Each global erasure is in their own different local code and do not share with the mid-level erasures.

There are four local groups where the erasure occurs, two in each mid-level code. Let the affected mid-level codes
be k and [ while the local codes within, where the erasure occurs, be k(1) and k(® and (V) and I(?) respectively.

The matrix By is similar to lemma [A]

= k%,l. This yet again is a linear combination of two \’s.

- A B
A det (C(l) det D(l)
By = B| = det(Bkyl) = det A B =0
71,k Ty,
V5,60 V5.k),
= 2) @
A V1 kS Tk,
) @
Vs, k¢ Vo,
REESWAS Tor1kD, Top1p® Vo162, |
T,
(1) 1
V16 RENISH
= @ @
B 71 T,
2 2
V5,12 V512,
| Vs41,080 Vo108, Vo102 Vo102, ]
oo AR Vs yo jh A Vs o kD AR@ " Vs g k@ AR Vo k)
_:uk(l) . 7(5—1—3,/@51) M) * V5+3,k§21 M) - 7(5-1—3,/@52) M) - 75_,.37]@((;%21
D— A+ Vg g 40 Ay RETSRION A Vs y04@ A2 Vo202,
1) * 1 1) 1 2) * (2) (2) - (2)
_,ul( ) 75+3,l(1 ) ) 75+3,l(5+)1 M) 75_,_37[1 Mg 7(5+3,l5+1



To calculate the whole determinant, We consider the first element,
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T T,
(1) 1
T,k To.k{D,
A Vi @ V1 k@
_ R 541
det (C(l) = det
(2) 2
RER V5.,
1 1 (2) (2)
Vo415 Vo168, Vs41,k¢ Vo168,
Ak(l) . 7(5+27/€§1) Ak(l) . 75-1—2,/9((521 Ak@) . 75+2,k§2) )\k(2) 7(5—}-2 k(2+)1_
71D Tk, 71 kP T2,
det det
RENAS Vo, kY, Vs 1 V5,2,
_ det Vo416 Vo168, V541,682 Vs+1,63),
QAW Tk, Tk Tk,
det det
Vs 1D V5K, Vs k(2 Vo,
A Vg p g0 AR Yoy kD) A~ Vg pg 12 A Vg 1),
e, ) A5 (Bi—Bst1) ¢, A1 (Bi—Bs41)
d €, (1) HiEku) (i —Bst1) €, (2) HiEk(z) (i —Bst1)
= det A CGmd 15[5]( —36+2) A Tics) (Bi—Po+2)
kW e o TL ek(l) —Bst2) k@ e Hiek(;) (i —PBs+2)
2 1 I1 1
Ck(1)ck(2)d Hiek(l) a;i—PBst1 iek® a; —Bs+1
= 2 T (8 = Bs1)(Bi — Boya) - det \ 'HS 1 \ 'HS 1
Cr Cp(2) ic[d] k) iek(sl) ;i —PBst2 k@ iek(;) a;—Bs+2
Where,
i) _ 1.9
=k, L)
o Cr(i) = Hj>g fgek( >(af - ag).
e d= Hf>q7f,q€ 5]([3 ﬁg)
L4 ek;() - fek()qe 5] ﬂg)

Applying all this in the main determinant and setting,

det(Bk)l) =

and factoring out the common multiples, we get

1 1
Hieki}) ;i —fBs11 HiEkg) a;i—Bsi1

1
Hz‘Elg) ai—Bst1

1
Hielg) aj—

o
det 1 1 det 1 potl
det Ap - Hiekg) ai—Bsi2 A - Hiekf) a;—Bsi2 A - Hielg) ai—Bsi2 A - Hielff) ai—Bsi2 -0
1 by L 1 oL -
1 Hiekgl) ai—Bsi1 Hiekfj) a;—Bst1 1 Hielg) a;—Bst1 Hielfj) a;—PBsi1
ae M 1'H 1+ ,LLZ'H 2+ E /Il'H 1+ ,LLZ'H 2+
'k 7'616( ) ai—Bs43 k3 iekg) ai—Bs+3 " 7'61( ) a;—PBs543 1 iélg) a;—PBs13
—Bs+ i —Bst1 —Bst1 ai—Bs41
det Ap@ Hlek@) 7. B o ILgw s=5n e Hzglu) 5= Mo - TLaw s=mm | 0
—Bsy1 ai—Bsi1 —Bst1 ai—=Bsy1 | T
e 11, iek® —m Boys  HE® Hiek(sn @i—Bsys M@ I, iel® —al Bsis MW Hieﬂsn @i —Pots

Where similarly, lg = {lli),

A1),

Now, since the \;’s are 4-w1se 1ndependent over ]qu, the first row is never zero. Similarly, all the p;’s are in

—Bs+1

different cosets of GG and by choice of a’s H €9 kY @ Bsys

determinant resolves into a linear combination for 4 dlff
of ), this determinant is also non-zero.

€ G. Hence the last row isn’t zero either. Then this
rent values of \;s. Hence, by linear independence rules

In this case, one of the global erasure shares the local code with a mid-level code while the other does not. Assume

that the k' and [** mid-level codes are affected. Let the local codes within, where the erasure occurs, be k(l), k2

and [(Y). The matrix By,



1
M),

T,k

Yo 1,

)\ 1) * 1) /\ 2)
kD 76+2,k§+1 k)

H "Y5+37k§1+>1 Pre2) -

2
717,6% )

Vs k>

2
Vo412

2
V542,53

2
Vo436

(2)
’Yl’k5+1

2
V42,

Vo152,

A 2) ° 2
K@ Vs k),

M) - 76+3,k((§i)1

e
REWAS

1

Vo180

A 1) °* 1
UORMFFERIS)

1) ° 1
w31

<1>
Y1082,

REFSWI

542
A 1) * 1
1O Vo0,

a - )
Hiy = Vs g0, |

Now, after permuting one row, we can apply to expand the matrix for the determinant,

71,1#)
RENAS
By, =
o151
AR Vs 0
|HE " Vs yg 1D
det(Bk)l) =

Now, in this massive expansion, we can take A; and p; out of the determinants. What we will find is that each term

det

det

det

det

1 1
71,k Tk,
: det
/5. k(1 /5.1
RERAC: RENION
V51 (D o Ae@
To1,k Vo160, k
1 1
71,k Tk,
: det
/¢ (1 /¢ (1
Vs e RENION
V51 (D ® @
T2,k Vo1, Hi
RIWES RWION
’yﬁ-rk'gl) ’y§=l"c(§14r)1
Ak Vg yp 50 Ak Vo2,
1 E® LI
Yo Torlh,

PR Vsgg g

(1) * Vs - 1
Pe® * Vsp3,50,

@
71,k

75,1;52)

o2,k
Y1 6@
71,k

75,1;52)

Vsaa p®
To43,k¢

M1k

det

2
V51,6

Y1k

det

V51,6

YO
RER

@
RERES

M2,

: det
W{S,k:fgi)l

Ak@ Vs 1@
k@ Vs k()

/1 1)
r\ll’kﬁi»l

det
2)
’y’s'rkfﬂl
@ Vi3 p@
FE® * Vsy3 1@,

160
'}lvk(wl

det

e
/y(;‘k'tﬂ»l
@
Vo162,
/. 2
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76’k6+1

Y,

1
71,!5)

1
75.’15 )
V1,60

(Lp(1) * 1
P Vs gz 10

1
’Yly,p

1

’Ylg’lg )
V1,60

AN - 1
1D Vopo (1)

w
RERLS

<1
’Y(,,lg )
V1,80

Ly(1) * Q 7(1
Hi@  Vsyg 10

<1>
T

/ 1
Wlm )
/ 1

Vo110

A 1) ° - 1
1D Vo0
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v 1
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/ 1
REISWICN
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o 1
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A Vs
1 Vo000,
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Vs
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i,

1
Vo1,

A - Vo2,
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is A\;p; multiplied by the product of the determinant of three Cauchy matrices. Each of those determinant € F,.
Hence the final determinant is actually the linear combination of three A; in Fy,. Hence det(By,;) # 0.
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