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Abstract
In classical information theory, a causal relationship

between two variables is typically modelled by assuming
that, for every possible state of one of the variables, there
exists a particular distribution of states of the second variable.
Let us call these two variables the causal and caused
variables, respectively. We shall assume that both variables
are continuous and one-dimensional. In this work we consider
a procedure to transform each variable, using transformations
that are differentiable and strictly increasing. We call these
increasing transformations. Any causal relationship (as
defined here) is associated with a channel capacity, which
is the maximum rate that information could be sent if the
causal relationship was used as a signalling system. Channel
capacity is unaffected when the two variables are changed by
use of increasing transformations. For any causal relationship
we show that there is always a way to transform the caused
variable such that the entropy associated with the caused
variable is independent of the value of the causal variable.
Furthermore, the resulting universal entropy has an absolute
value that is equal to the channel capacity associated with
the causal relationship. This observation may be useful in
statistical applications. For any causal relationship, it implies
that there is a ‘natural’ way to transform a continuous caused
variable. We also show that, with additional constraints on
the causal relationship, a natural increasing transformation of
both variables leads to a transformed causal relationship that
has properties that might be expected from a well-engineered
measuring device.

Index terms: information theory, causal relationship, mutual
information, measuring device
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I. INTRODUCTION

Many phenomena interact with one another. For example,
objects generally interact with light, and thus they affect the
number and qualities of the photons that they emit, absorb, or
reflect. Because of these interactions, various phenomena pro-
vide information about other phenomena. Thus, for example,
the pattern of light arriving from the direction of a particular
object will typically provide information about the properties
of that object. Nevertheless, if two phenomena interact and we
try to use one to assess the properties of the other, we are likely
to find that the details of the interaction make it difficult to
produce a useful assessment. This is because the interaction is
unlikely to have the convenient characteristics that are typical
in the case of artificially created measuring instruments, like
thermometers, seismographs, Geiger counters, etc. Here, we
show that it is often possible to transform measurements of
natural phenomena in a way that gives them some (or all)
of the sorts of convenient characteristics usually associated
with artificial measuring instruments. This may provide tech-
nical advantages, and it also suggests, for a given interaction
between two phenomena, that there will often be natural
transformed variables with which it is convenient to measure
these phenomena. This observation may prove useful in a
variety of contexts, including the measurement of biological
adaptation [1].

To begin, it is worth considering the case of an artificially
designed measuring apparatus. Let us say that we wish to
measure the temperature of the air in a particular room.
Temperature (on, say, a Celsius scale) is a linear function of
the average kinetic energy of the particles that make up the
air in the room. As such, it has a definite value at any given
time. Next, imagine a digital thermometer that is situated in
the room. Assume that this thermometer has an extremely fine
scale, so it divides each degree of temperature into a very large
number of equally sized parts.

The air in contact with the thermometer, at any given time, is
only a small sample of all the air in the room. For this reason
(along with others) we expect some difference between the
reading of the thermometer and the actual temperature of the
air in the room. However, if the thermometer is functioning
properly then: (i) for a given temperature of the air in the
room, the readings of the thermometer should, typically, be
approximately equal to the actual temperature, (ii) the accu-
racy and precision of the thermometer should roughly be the
same for all temperatures within its operating range. Here,
accuracy refers to the proximity of measured temperature to
the actual temperature, while precision refers to the extent
to which repeated measurements, under the same conditions,
yield similar results.

The convenient characteristics of a typical thermometer are,
of course, the result of engineering efforts. Natural phenomena
are usually very different. For example, imagine a patch of
ground where we notice that, after a rainstorm, the patch tends
to dry out faster on hot days than cold days. This relationship
may be fairly reliable, but it is unlikely to have the character-
istics of a good thermometer. For example, suppose we find
that the average drying time is approximately 200 minutes

at 10◦C, and approximately 100 minutes at 20◦C. If drying
time was like a thermometer, then it would (approximately)
be a linear function of temperature, such that at 15◦C the
drying time would be about 150 minutes. Furthermore, the
variation that occurs in drying time would be approximately
the same, regardless of whether the weather is warm or cold.
However, in reality, there is no reason to expect that drying
time will decrease linearly with temperature. For example,
the effect of temperature on drying time may be relatively
small when the soil is already dry, and thus the drying time,
at 15◦C, may substantially differ from 150 minutes. Similarly,
variation in cloud cover may be much greater on cold days, and
thus variation in drying time may be much greater when the
temperature is below 10◦C, as compared with warmer days.
Can anything be done with natural relationships so they can
be made similar to the artificial relationships of measuring
devices that we design and manufacture?

As we shall see, it appears that the mathematical theory of
information can help. An example is the case of the relation
between drying time and temperature that is described above.
In general, this relationship can be expected to have some
inconvenient features, including non-linearity. It may, however,
be possible to transform both of the variables (drying time
and temperature) to new variables, such that the new variable
(that is a transformation of the drying time) has a mean value
that changes strictly linearly with the value of the other new
variable (the transformation of the temperature). Furthermore,
these transformations may be able to ensure that the level of
variation in the transformed drying time will always be the
same, regardless of the value of the transformed temperature.

II. MATHEMATICAL MODEL

Let us consider a mathematical model in which the state of
a local environment is represented by a random variable E.
We will use a second random variable, Q, to represent the state
(or quality) of some system that will be used to measure the
environment. For the sake of simplicity, we will assume that
both E and Q are continuously distributed one-dimensional
(or scalar) quantities, like length, mass, luminosity, etc. We
identify E and Q with the causal and caused variables,
respectively, as described above.

Here, we present the principal results from the mathematical
model. Some mathematical background of the distributions
and related quantities, that appear in the model, are given in
Appendix I. Results in subsequent appendices provide proofs
of the results given in the main text.

Proceeding, let e and q represent particular values (or
realisations) of the random variables E and Q, respectively. In
the analysis we present, we will use the shorthand distribution
for a probability density function, and, in particular, we will
make extensive use of conditional distributions. For example,
we will write fQ|E(q|e) for the conditional distribution of Q,
when E takes the value e (i.e., when E = e). Thus, for the
example of drying ground mentioned above, E and Q would
represent air temperature and drying time, respectively, while
fQ|E(q|e) would be the distribution of drying times when the
air is at the particular temperature e.
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A natural way to characterise the relationship between E
and Q is in terms of information. That is, it is natural to
ask: how much information does knowledge of the value
of E provide about the value of Q (and vice versa)? The
standard way to answer this question uses the idea of mutual
information, as introduced by Claude Shannon in the mid 20th
century ( [2], [3]). Mutual information is a powerful concept
that has proved to be extremely useful in both science and
engineering ( [4], [5], [6]).

According to the concept of mutual information, when we
receive information we experience a decrease in ‘uncertainty.’
Thus, if we know the actual temperature in a room, then
our uncertainty about the next reading we will observe on
a thermometer located in the room is decreased. Similarly,
knowing the thermometer’s reading decreases our uncertainty
about the air temperature. Thus, the information is ‘mutual.’

Uncertainty is quantified by entropy ( [2], [3]). For a one-
dimensional (or scalar) random variable X , with distribution
fX(x), the entropy is −

∫∞
−∞ fX(x) log2 [fX(x)] dx ( [2], [3]).

Note that the range of the integral defining the entropy need
not be infinite1.

Entropy is a measure of the extent a random variable is
dispersed over its range. For example, if there is a finite
range of X values, then the entropy is maximised when X
is uniformly distributed over its range, and minimised when
its distribution is appreciable over only a very small range.
This justifies entropy as a measure of uncertainty.

While entropy is not identical to variance, various well-
known families of distributions (including Gaussian, uniform,
exponential, and chi-squared) have entropies that increase with
variance, so large entropies are associated with high variances.

We note that the entropy of a continuous random variable,
as specified above in the form of an integral, is often called
differential entropy in the information-theoretic literature [3].
This phrase is used to distinguish differential entropy from
the entropy of a discrete random variable. The distinction is
important in some cases. However, the focus of the current
study is on mutual information, and in this context the
differences between differential entropy and the entropy of
discrete variables can largely be ignored. Perhaps for this
reason, various authors use the word “entropy” to refer to both
differential entropy and to the entropy of discrete variables (
[2], [3]). We will follow this tradition here, and will use the
term ‘entropy’ to refer to the differential entropy associated
with continuous variables.

Entropy is a characteristic of a probability distribution.
When E = e the distribution of Q is fQ|E(q|e), and the
relevant entropy of Q is that associated with fQ|E(q|e), which
we denote by h(Q|e). We assume that the value of E varies
from place to place (or that E varies over time), and write the
distribution of E as fE(e).

The (global) distribution of Q values is obtained from an
average over all locations (or all times), and is denoted by

1The limits of the x integral range from−∞ to∞, implicitly assuming that
possible values of X lie in this infinite range. However, if X takes values
in a smaller range, then fX(x) vanishes for x outside this range (as does
fX(x) log2 [fX(x)] when naturally defined as a limit). Thus only x-values
that are within the range of X contribute to the entropy.

fQ(q). It is given by

fQ(q) =

∫ ∞
−∞

fQ|E(q|e)fE(e)de. (1)

We can think of Eq. (1) as a specification of the distribution of
Q that applies when the value of E is not known. The entropy
associated with the distribution fQ(q) is written as h(Q).

Let I(Q; e) represent the information gained (or uncertainty
decreased) about the value of Q when we observe that the
environmental variable, E, takes the value e (that is, when
E = e). From the definitions and considerations given above
we have

I(Q; e) = h(Q)− h(Q|e). (2)

The mutual information between E and Q, denoted I(Q;E),
corresponds to the average amount of information gained
about the value of Q when we observe the value of E. Thus
I(Q;E) is the average over all e of I(Q; e), i.e.,

I(Q;E) =

∫ ∞
−∞

I(Q; e)fE(e)de. (3)

Note that I(Q;E) is always non-negative ( [2], [3]).
In an entirely analogous way, we can condition on Q = q,

leading to the conditional distribution of E, which is given by
fE|Q(e|q). We then define: (i) the corresponding entropy of E
when Q = q, which we write as h(E|q), (ii) the entropy of E
when we do not condition on the value of Q, written h(E),
and associated with the distribution fE(e).

Using these definitions we can specify I(E; q), the infor-
mation that is gained about the value of E when Q = q:

I(E; q) = h(E)− h(E|q). (4)

The average amount of information about E that is obtained
when the value of Q is observed is

I(E;Q) =

∫ ∞
−∞

I(E; q)fQ(q)dq. (5)

We are guaranteed that I(E;Q) = I(Q;E) ( [2], [3]), hence
I(Q;E) and I(E;Q) are referred to as measures of mutual
information.

From Eqs. (1), (2) and (3) we can see that mutual infor-
mation depends on the distribution of E, as represented by
fE(e). Let f̃E(e) denote a distribution of E that maximises
the mutual information. Note that in what follows, we shall
indicate by a tilde, ˜ , all quantities that depend on (or are)
the mutual-information maximising distribution of E.

Let Ĩ(E;Q) be the maximal value of I(E;Q) (which is
achieved when the distribution of E coincides with f̃E(e)).
The value of Ĩ(E;Q) is known as the channel capacity, and
may be thought of as a measure of how precisely the value
of E determines the value of Q. (If there are multiple forms
of fE(e) that all maximise the mutual information, then we
arbitrarily choose one of these and call it f̃E(e).)

Let us now return to the matter of measurement. In general,
there is no reason to expect that the naturally occurring
relationship between E and Q will be similar to the engineered
relationship between air temperature and the measured temper-
ature that would be apparent in a well-behaved thermometer,



4

such as the one described above. However, we can try to
improve the situation with the use of a transformation of Q
that creates a new variable with desirable properties. To this
end, we consider a transformation of Q in the form of a strictly
increasing and differentiable function. We call transformations
of this sort increasing transformations. As an example, if Q
is a positive-valued variable that represents mass, then we
could transform Q by taking the logarithm of mass. Like all
increasing transformations, this means there is a unique value
of the transformed variable (the logarithm of mass) for every
possible value of the original variable (mass). Furthermore,
the transformed variable increases continuously with Q, and
is a differentiable function of Q. For additional properties of
increasing transformations, see Appendix II.

It can be shown that replacing Q by an increasing transfor-
mation of Q has no effect on channel capacity (see [7], and
for more details see Appendix II). Thus, channel capacity is
invariant under all possible increasing transformations. Indeed,
channel capacity is shown in Appendix II to be invariant even
if we use two different increasing transformations: one to
transform Q, the other to transform E. We will make use
of this fact presently.

In order to determine one of the transformations we shall
use, we introduce

f̃Q(q) =

∫ ∞
−∞

fQ|E(q|e)f̃E(e)de (6)

which is the distribution of Q that follows (from Eq. (1))
when the distribution of E maximises the mutual information.
For details of the maximisation of the mutual information that
determines f̃E(e), see Appendix III.

Using f̃E(e) and f̃Q(q) we specify two increasing transfor-
mations: one for E and one for Q. We call the transformed
variables E∗ and Q∗, respectively. The transformation from E
to E∗ can be specified in terms of the way a particular value
of E, say e, is transformed into the corresponding particular
value of E∗, which we write as e∗. The transformation is given
by

e∗ =

∫ e

−∞
f̃E(x)dx. (7)

A shorter, equivalent way to define E∗ can be given2.
Similarly, the way a particular value of Q, say q, is

transformed into the corresponding particular value of Q∗,
which we write as q∗, is

q∗ =

∫ q

−∞
f̃Q(x)dx. (8)

Although the transformations in Eqs. (7) and (8) employ
the distribution of E that maximises the mutual information
(f̃E(e)), we note that the random variable E has the distribu-
tion fE(e), which generally differs from f̃E(e).

In the case where the distribution of E coincides with
the information-maximising distribution, f̃E(e), we denote the
resulting distributions of E∗ and Q∗ by f̃E∗(e∗) and f̃Q∗(q∗),
respectively.

2If we define F̃E(e) =
∫ e
−∞ f̃E(x)dx, then the relation between E and

E∗ can be compactly written as E∗ = F̃E(E).

Note that both f̃E∗(e
∗) and f̃Q∗(q

∗) are uniform distribu-
tions on the interval 0 to 1. This is because transformations
of the form of Eqs. (7) and (8) produce uniform distributions
[8]. The uniformity of E∗ and Q∗ is both convenient, and
satisfyingly simple. In addition, uniform distributions are what
one might expect for a typical measuring instrument that is
functioning properly.

Let fQ∗|E∗(q∗|e∗) represent the distribution of Q∗ that
applies when E∗ = e∗. Thus, fQ∗|E∗(q∗|e∗) is the conditional
distribution of the transformed variable, Q∗. Let h(Q∗|e∗)
represent the entropy associated with fQ∗|E∗(q∗|e∗).

We are now in a position to state our first theorem, which
forms the primary result presented in this work:

Theorem 1. For all values of e∗ in the range 0 < e∗ < 1 we
have

h(Q∗|e∗) = −Ĩ(E;Q). (9)

Thus, the entropy of Q∗, when E∗ takes the particular value e∗

(i.e., when E∗ = e∗), is entirely independent of that particular
value. In other words, the entropy, h(Q∗|e∗), always takes
the same value, regardless of the value of the environmental
variable, e∗. Furthermore, this universal value of h(Q∗|e∗)
is equal, in absolute value, to the channel capacity associated
with the causal relationship between Q and E. We use the
phrase homogenization of the entropy to refer to the indepen-
dence of h(Q∗|e∗) from the value of e∗.

Note that, because Q∗ and E∗ are confined to a range be-
tween zero and one, they can only have (differential) entropies
that are less than or equal to zero. Thus, Eq. (9) is consistent
with the fact that mutual information is always non-negative.

A proof of Theorem 1 appears in Appendix IV.
As we shall see, E∗ has some additional convenient proper-

ties that E does not possess. However, we can also condition
on the non-transformed variable, E, and calculate fQ∗|E(q∗|e),
the distribution of Q∗ given that E = e. Doing this, we find
that h(Q∗|e), the entropy of fQ∗|E(q∗|e), is independent of
e, just as h(Q∗|e∗) is independent of e∗. This is of interest
because it allows for a substantial generalisation of Theorem 1.
In particular, while we have assumed that E is one dimensional
and continuous, this is not necessary for the independence-
of-entropy result embodied in Theorem 1. In point of fact,
h(Q∗|e) is independent of the value of e even if E is a more
general sort of random variable, for example discrete, or mul-
tidimensional and continuous, or multidimensional with some
dimensions continuous, and others discrete (see Appendix IV
for more details.)

For many families of continuous probability distributions,
the entropy is completely determined by the variance, and
vice versa. This is true, for example, of uniform, Gaussian,
exponential and chi-squared distributions. If the conditional
distributions are from a family of distributions with this
property, then h(Q∗|e∗) being independent of the value of e∗

implies that the variance of fQ∗|E∗(q∗|e∗) is also independent
of the value of e∗.

As a consequence of Theorem 1, we know that, for any
choice of fE(e), the amount of information about the value
of Q∗ that we obtain when we observe that E∗ = e∗, namely
I(Q∗; e∗), is the same for all possible values of e∗ (see (Eq.
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(2)). This is an encouraging and potentially useful result, as
one of our objectives is to ensure that measurement of the
environment is equally accurate and precise for all states of the
environment. However, at present there is no reason to expect,
if E∗ = e∗, that the values of Q∗ that we obtain will tend to
cluster around e∗, as we would expect for a typical artificial
measuring device. Another problem is that the method we have
described depends on knowing f̃E(e), which is an information-
maximising distribution of E. However, there is no general
method by which f̃E(e) can be calculated (though, in specific
situations, it can often be found or estimated [3], [7]). Finally,
while I(Q∗; e∗) is the same for all values of e∗, the same
is not generally true for I(E∗; q∗) (the information about the
value of E∗ that we obtain when we observe that Q∗ = q∗).
Thus, we may gain more information about the value of E∗

when we observe certain values of Q∗, as compared to other
values of Q∗ (we will see an example of this below). This
does not suggest the sort of symmetry that we expect from a
good measuring device. We shall now show that all of these
problems can be ameliorated if we restrict the range of cases
under consideration.

A. Slow-change regime

Let us now consider a more restricted set of situations which
facilitate further analysis. We call this set of situations the
slow-change regime. The slow-change regime is defined by
a set of additional assumptions. In particular, for the slow-
change regime, we assume that both E and Q have finite
ranges, and that they are positively correlated. For this last
point, let m(e) represent the mean value of Q when E = e.
That is, m(e) is the mean of the conditional distribution
fQ|E(q|e). We incorporate positive correlation of E and Q
by assuming that m(e) is a strictly increasing function of e.
With the derivative of m(e) with respect to e written m′(e),
the property that m(e) is strictly increasing corresponds to
m′(e) > 0 for all allowed values of e.

Let σmax represent the maximum value of the standard
deviation of fQ|E(q|e), over all possible values of e. For
the slow-change regime we assume that σmax is very small
compared with the typical range over which ‘shape-statistics’
of fQ|E(q|e), such as the variance, the skew, and the kurtosis,
all appreciably change with e. We also assume that m′(e)
changes slowly in comparison to σmax. This is the sense in
which “change” is “slow” in the slow-change regime.

The slow-change regime is relatively broad in the sense that
the shape of fQ|E(q|e) can be very different for two values
of e that differ by many σmax. Furthermore, the relationship
between the value of e and m(e) can vary greatly with e.
Thus, for example, m(e) may increase rapidly with e when e
is small, and increase slowly with e when e is large.

We now give the form of the information-maximising dis-
tribution of E, namely f̃E(e), under the assumptions of the
slow-change regime. In Appendix V we prove the following
theorem:

Theorem 2. Under the assumptions of the slow-change
regime, the value of f̃E(e) is proportional to

m′(e)

2h(Q|e) . (10)

Thus, f̃E(e) is an increasing function of m′(e), but a decreas-
ing function of h(Q|e).

A straightforward consequence of Theorem 2 is the follow-
ing corollary:

Corollary 2.1. Writing emin and emax for the minimum
and maximum values, respectively, that E can take, the
information-maximising distribution of E is given by

f̃E(e) =
1

N
× m′(e)

2h(Q|e) (11)

where N is the normalising factor N =
∫ emax

emin

m′(x)
2h(Q|x)

dx.

In Appendix V we prove that the channel capacity as-
sociated with a causal relationship is determined by the
normalising factor, N . In particular, we have the following
additional corollary to Theorem 2:

Corollary 2.2. Under the assumptions of the slow-change
regime, the channel capacity associated with fQ|E(q|e) is
given by

Ĩ(Q;E) = log2

(∫ emax

emin

m′(x)

2h(Q|x)
dx

)
. (12)

In Appendix V we also show that, under the assumptions
of the slow-change regime, the relationship between the trans-
formed variables E∗ and Q∗ is similar to the relationship
between a well-made measuring device and the environmental
variable it measures. In particular, if we represent the mean
value of Q∗ when E∗ = e∗ as m∗(e∗), then we have

Corollary 2.3. Under the assumptions of the slow-change
regime, when E∗ = e∗, the mean value of Q∗ is given by

m∗(e∗) = e∗ +O(σmax). (13)

Corollary 2.3 shows that our measuring variable is likely to
take values that cluster around the value of the environmental
variable, as would naturally be required of a good measuring
device. Furthermore, recall that: (i) for many commonly used
continuous distributions, the entropy of the distribution (i.e.,
h(Q∗|e∗)) determines the variance of the distribution (and
vice versa), and (ii) h(Q∗|e∗) is independent of the value of
e∗. These two facts suggest that, typically, the precision with
which the value of E∗ predicts the value of Q∗ will be inde-
pendent of the value of E∗. Thus, under the assumptions of the
slow-change regime, the relationship between our transformed
variables will tend to have the same character as that between a
well-behaved measuring device and the environmental variable
it measures.

In addition to ensuring the highly suitable character of
the mean and the entropy associated with fQ∗|E∗(q

∗|e∗) ,
the assumptions of the slow-change regime imply that our
transformed variables have other characteristics that one might
expect from a good measuring device. For example, as noted
above, channel capacity is achieved when E∗ is uniformly
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distributed. Under the slow-change regime, when E∗ takes its
uniform, information-maximising form, we can then calculate
the conditional distribution of E∗ given Q∗ = q∗, namely
fE∗|Q∗(e

∗|q∗). In Appendix V we prove the following corol-
lary to Theorem 2:

Corollary 2.4. Under the assumptions of the slow-change
regime, when Q∗ = q∗ and when the distribution of E∗ is
uniform, the mean value of E∗ is given by:

q∗ +O(σmax). (14)

Furthermore, under these conditions, h(E∗|q∗), which rep-
resents the entropy of E∗ when Q∗ = q∗, takes the same
value for all allowable values of q∗. This universal value of
h(E∗|q∗) is given by:

h(E∗|q∗) = −Imax(E|Q). (15)

Corollary 2.4 implies that, under the slow-change regime,
when the distribution of E∗ is uniform, the values of E∗ that
we observe when Q∗ = q∗ will tend to be close in value to
q∗. Furthermore, under these conditions, the information about
the value of E∗ that we obtain by observing the value of Q∗ is
the same for all possible values of Q∗. This is a consequence
of Eq. (15), as one can see from Eq. (4). Once again, these
results are consistent with what we might expect from a well-
behaved measuring device. Furthermore, the results suggest a
certain symmetry, in that the ability to predict the value of Q∗

by using the value of E∗ is the same for all possible values
of E∗, and vice versa.

B. Illustrative examples

In this section we present three examples in which the trans-
formations described above, in Eqs. (7) and (8 ), have been
applied. The first two are calculated under the assumptions of
the slow-change regime, while the last example is not. These
three examples illustrate three different ways in which the
transformations can operate to achieve their effects. For ease
of exposition, we have made some convenient choices about
the ranges of E and Q.

Under the assumptions of the slow-change regime there are
two sources of statistical ‘noise’ that can cause uncertainty
about the state of the environment (i.e., about the value of
E) when a value of the measuring variable (Q) is observed.
The first of these sources of noise is a relatively high level
of variation in the value of Q that may arise when the
environmental variable takes certain values. This source of
noise relates to the value of the denominator of the expression
in Eq. (10 ), namely 2h(Q|e), which increases in magnitude
with the entropy of Q associated with the particular value e
of E. An example of this sort of noise is given in Fig. 1.

In Fig. 1, the mean value of Q associated with any given
value of E is equal to that given value, which is why the
lines shown leading from E to Q in Fig. 1a are vertical.
However, the variation (i.e., the entropy) in Q is larger when
E ≥ 1/2, compared with when E < 1/2. In this case, the
numerator of the expression in Eq. (10), namely m′(e), will
equal unity for all values of e. However, the denominator
of this expression will be larger when e ≥ 1/2 than when

e < 1/2. This leads to the form of f̃E(e) shown in Fig. 1b,
and thus (via Eq. (1)) to the form of f̃Q(q) shown in Fig.
1c. When Q∗ is generated, this form of f̃Q(q) causes (via
Eq. (8)) a stretching-apart of Q values for Q < 1/2 and a
shrinking of the distance between Q values for Q ≥ 1/2. This
stretching and shrinking equalises the entropy in Q such that,
for the transformed variables (E∗ and Q∗), the entropy of Q∗

is independent of the value of E∗. In this case, E undergoes
an identical shrinking and stretching (via Eq. (7)), when E∗ is
produced. This ensures that, in Fig. 1d, the mean value of the
transformed measured variable (Q∗) is approximately equal to
the value of the transformed environmental variable (E∗), just
as was the case for the untransformed variables.

Fig. 2 relates to the second source of statistical noise that
can cause uncertainty about the state of the environment (i.e.,
about the value of E). This source is associated with the
numerator of Eq. (10), and it arises when there is overlap
in the conditional distributions of Q that are associated with
two different values of E. This overlap, in turn, depends on
m′(e), the derivative, with respect to e, of the mean of the
conditional distribution of Q. Indeed, if m′(e) is a constant
for all values of e, then, for any two different values of e, the
separation of the means of the two associated distributions of
Q vanishes in the limit as m′(e)→ 0, and the overlap of the
two distributions approaches zero in the limit as m′(e)→∞.

In Fig. 2, the entropy associated with fQ|E(q|e) does not
change as a function of e. However, for e < 1/2 we have
m′(e) = 1, while for e ≥ 1/2 we have m′(e) = 1/2. This
leads to the form of f̃E(e) shown in Fig. 2b, and thus to the
form of f̃Q(q) shown in Fig. 2c. In the construction of E∗,
the form of f̃E(e) leads to exactly the same stretching and
shrinking of the distance between values of E that was seen
in Fig. 1. On the other hand, the form of f̃Q(q) leads, in the
construction Q∗, to a uniform expansion of the space between
values of Q. (This uniform expansion occurs for all values
of Q that are associated with a non-zero probability density.)
As a result of these two different transformations, there is an
alignment of the values of E∗ with the means of the associated
conditional distributions of Q∗ values, as shown by the vertical
dotted lines in Fig. 2d. Furthermore, the uniform expansion
that creates Q∗ means that, for every possible environmental
condition (i.e., for every possible value of e∗), the entropy
of Q∗ increases and becomes equal (in absolute value) to the
channel capacity.

In Fig. 1 the transformation that constructs Q∗ ensures
that h(Q∗|e∗) is independent of e∗. This is accomplished by
stretching and shrinking the space between various values of Q
in a way that may homogenize the variance of the conditional
distributions of Q∗ that are associated with various values
of E∗. However, it is of interest to consider what happens
when such a homogenization of variance is not possible. A
very simple example of such a situation is portrayed in Fig.
3. Here, we assume that only two forms of the conditional
distribution of Q are possible, and both forms have exactly
the same mean. The first form of the conditional distribution
of Q is associated with values of E that are less than 3/5.
This is a uniform distribution with mean equal to 1/2 (see
Fig. 3a). The second form of the conditional distribution of Q
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Fig. 1. Transformation of variables when h(Q|e) varies with e.
This figure is calculated under the approximation of the slow-change regime.
The figure applies for the special case m(e) = e, where the conditional
distribution fQ|E(q|e) takes two different forms, depending on whether
e < 1/2 or e ≥ 1/2. The two forms of fQ|E(q|e) are such that the
entropy, h(Q|e), for e ≥ 1/2, exceeds the corresponding entropy for
e < 1/2 by an amount of unity. Panel (a): This panel contains dotted
lines that connect values of e with the associated values of m(e). The
bell-shaped curves represent conditional distributions of Q (i.e., fQ|E(q|e))
centered on various values of m(e). Note that, here and in Fig. 2, these
bell-shaped curves are illustrative, and are not drawn to scale. Panels (b&c):
The marginal distributions f̃E(e) and f̃Q(q) are plotted for the situation
described. Panel (d): This panel is the analogue of Panel (a) of this figure,
after the transformations of Eqs. (7) and (8) have been applied. Note that
as a consequence of the transformations, the scale has been stretched for
e < 1/2, and squeezed for e ≥ 1/2. For example, when q = 1/2, we have
q∗ = 2/3 + O(σmax). The same happens for e and e∗. As a result, for all
values of e∗, the mean of fQ∗|E∗ (q∗|e∗) equals e∗+O(σmax). In addition,
the entropy of fQ∗|E∗ (q∗|e∗) has the same value for all values of e∗. In
Panels (a) and (d), the parts shown in red relate to values of e for which,
before transformation, h(Q|e) is relatively large.

is associated with values of E that equal or exceed 3/5. This
second form of the conditional distribution also has a mean
of 1/2 and it is also uniform. However, its variance is four
times that of the first form of the distribution (see Fig. 3b). In
Appendix VI we show that no increasing transformation (as
defined above) can homogenize the variance such that, after
the transformation, the variance for the two possible forms
of the conditional distributions of the transformed measuring
variable will be the same.

For this example, we picked 3/5 as the critical value of

Fig. 2. Transformation of variables when m′(e) varies with e. This
figure is calculated under the approximation of the slow-change regime. The
figure applies for the special case where m′(e) = 1 for e < 1/2, and
m′(e) = 1/2 for e ≥ 1/2. For this figure we assume that h(Q|e) has
the same value for all possible values of e. Panel (a): This panel contains
dotted lines that connect values of e with the associated values of m(e).
Panels (b&c):, The marginal distributions f̃E(e) and f̃Q(q) are plotted for
the situation described. Panel (d): This panel is the analogue of Panel (a) of
this figure, after the transformations of Eqs. (7) and (8) have been applied.
The transformation from E to E∗ is exactly as in Fig. 1. The transformation,
from Q to Q∗, involves a uniform stretching of the scale (by a factor of 4/3)
for q < 3/4. Thus, when q = 1/2 we have q∗ = 2/3+O(σmax), and when
q = 3/4 we have q∗ = 1 + O(σmax). The differences in the way that Q
and E are transformed result in an alignment such that, for all values of e∗,
the mean of fQ∗|E∗ (q∗|e∗) is equal to e∗ + O(σmax). In Panels (a) and
(d), parts shown in red relate to values of e for which, before transformation,
m′(e) = 1/2.

E because, when E is uniformly distributed from 0 to 1,
this results in the information-maximising distribution of E
(i.e., f̃E(e)), which is shown in Fig. 3c. From this we can
obtain f̃Q(q), as shown in Fig. 3d. Because f̃E(e) is uniform
on the interval from 0 to 1, application of Eq. (7) has no
effect, so that any distribution of values of E is identical to
the associated distribution of values of E∗ that is obtained
from the transformation represented by Eq. (7).

In constructing Q∗, the form of f̃Q(q) leads to a uniform
expansion of the distance between values of Q for those values
of Q that lie between 1/4 and 3/4. For values of Q that are
above or below these limits, the form of f̃Q(q) leads to a
shrinking of the distance between values of Q when Q∗ is
constructed. The result is the creation of two possible forms
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Fig. 3. Transformation of variables when the variance cannot be
homogenized. In this case fQ|E(q|e) is assumed to take two different forms.
For e < 3/5 the form of fQ|E(q|e) is shown in Panel (a), while for e ≥ 3/5
the form of fQ|E(q|e) is shown in Panel (b). Panels (c&d): The marginal
distributions f̃E(e) and f̃Q(q) are plotted for the situation described. Panels
(e&f): The two possible forms of the conditional distribution of the measuring
variable (Q∗), namely fQ∗|E∗ (q∗|e∗), are plotted as functions of q∗.

for the conditional distribution of Q∗ (i.e., fE∗|Q∗(e∗|q∗)).
The first of these is associated with values of e∗ that are less
than 3/5, and this is shown in Fig. 3e. The second form is for
values of e∗ that equal or exceed 3/5, and is shown in Fig. 3f.
Obviously, the variance of the distribution shown in Fig. 3e is
less than that for the distribution in Fig. 3f. Nevertheless, the
entropy of these two distributions is identical, as guaranteed
by the analysis presented in Appendix VI. This Appendix
also provides a calculation to demonstrate that, in this case,
if E∗ takes its uniform, information-maximising form, we
nevertheless gain more information about the value of E∗

when we observe some values of Q∗ compared with other
values. Note that, as mentioned above, this cannot happen
under the slow-change regime.

III. EXPLAINING THE RESULTS

Explicit proofs of the claims made in this work are
contained in the Appendices. In this section we hope to give
some insight into the mathematical realities that lie behind the
results, and into the logic followed in the proofs that appear in
the Appendices. We will focus on the core result, as embodied

in Theorem 1. This theorem states that the entropy of Q∗ is
independent of the nature of the environment in which the
entropy of Q∗ is measured, namely h(Q∗|e∗)).

Note that this section is quite technical, and some readers
may prefer to skip directly to the Discussion, in which the
possible wider implications of the results are discussed.

A. Why is the entropy of Q∗ independent of environmental
conditions?

It is reasonable to ask why the transformation specified
by Eq. (8) leads to the homogenization of the entropy of
the transformed measuring variable (Q∗) that is found under
different environmental conditions. Here we will attempt, in
a non-rigorous way, to provide some insight as to why this
result is true.

For our current purposes, it is convenient to define the
conditional entropy of Q as the weighted average of h(Q|e)
over the values of e that occur. We write this weighted average
as h(Q|E) and thus have h(Q|E) =

∫∞
−∞ h(Q|e)fE(e)de.

This can be used to rewrite Eq. (3) as:

I(Q;E) = h(Q)− h(Q|E). (16)

Recall that the channel capacity is the maximum-possible
value of I(Q;E). Channel capacity is achieved when the
distribution of environmental effects (fE(e)) takes on its
information-maximising form, which we have called f̃E(e).
Now, let us imagine that, for sufficiently small deviations in
the distribution of environments from f̃E(e), the value of h(Q)
(i.e., the entropy of Q) is unchanged. If this was true, then
what would it tell us about the entropy of Q under various
environmental conditions? That is, what would it tell us about
the value of h(Q|e) that we would find for various values of
e?

The answer is that this odd set of circumstances would
imply that there is no variation among the values of h(Q|e).
To see why, imagine, for example, that f̃E(e) is non-zero on
the interval (0, 1), and that h(Q|e) is smaller, for all allowed
e < 0.2, compared with h(Q|e) for all allowed e ≥ 0.2.
In this case, if fE(e) takes its information-maximising form
(i.e., f̃E(e)), then we could decrease h(Q|E) by increasing
fE(e) for e < 0.2, while simultaneously decreasing fE(e)
for e ≥ 0.2. Note that, by our assumption, a sufficiently
small change in fE(e) from f̃E(e) will not alter h(Q),
and so this decrease in h(Q|E) (if the associated change
in fE(e) is sufficiently small) will lead to an increase in
the mutual information, I(Q;E) (Eq. (16)). However, this
increase in I(Q;E) is impossible because it arose by changing
fE(e) from f̃E(e), and f̃E(e) is defined as the information-
maximising form of fE(e). This logical contradiction shows
that our initial assumptions are incompatible. In other words,
if our assumption that h(Q) is unchanged by sufficiently
small changes in fE(e) from f̃E(e) is true, then variation in
h(Q|e) of the sort described must be impossible. By extending
this example to all possible cases of variation in the h(Q|e)
values, we can show that, in general, the assumption about
the immutability of h(Q) when fE(e) is sufficiently close to
f̃E(e) implies that no variation is possible among the values
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of h(Q|e) that are associated with the various possible values
of e.

Of course, in general, h(Q) will not be unaffected by
changes in fE(e) when fE(e) is similar to f̃E(e), and thus
variation in h(Q|e) is possible. However, consider what would
happen if, when fE(e) takes its information-maximising form
(namely f̃E(e)), it so happened that the resulting distribution
of Q (i.e., f̃Q(q)) was uniform on some interval (and had zero
height elsewhere).

As noted above, a uniform distribution maximises the en-
tropy (in comparison with all other distributions that have non-
zero probability density only on a particular interval). A direct
implication of this maximisation is that very small changes in
non-zero values of fQ(q) lead to yet smaller effects on h(Q).
In particular, if the deviation of fQ(q) is of order α, then the
changes to h(Q) will be of order α2.

Of course, changes in h(Q) that are of order α2 are not
the same as no change at all to h(Q). However, because α2

vanishes in comparison to α as α approaches zero, it turns
out that these changes in h(Q) are small enough to force
equality among the values of h(Q|e) that obtain for different
values of e. However, this equality depends on our supposition
that f̃Q(q) is uniform. In general, it will not be uniform.
However, we can use an increasing transformation to create a
new variable with a different distribution. A function that does
this in a way that ensures that the new distribution is uniformly
distributed on the interval (0, 1) is given by Eq. (8). Thus, for
the transformed variable produced by Eq. (8) (namely Q∗), it
is plausible that the entropy (namely h(Q∗|e)) must be equal
for all possible values of e.

B. Summary of the proof that the entropy of Q∗ is independent
of environmental conditions

We shall now provide a sketch of the proof, contained in
Appendices III and IV, that demonstrates the independence
of the entropy of Q∗ from the value of e∗ (which is a
measure of environmental conditions). These results arise,
in part, from the condition that the mutual information is
maximised. To find this condition, we look for the form of
the distribution of E, such that to linear order in changes in
this distribution, the mutual information does not change (in a
functional sense, independence of changes, at linear order, is a
basic condition for stationarity). The form of the distribution of
E that maximises the mutual information is written as f̃E(e).
We find it satisfies∫ ∞
−∞

fQ|E(q|e) log2

[
f̃Q(q)

]
dq + h(Q|e) = −Ĩ(Q;E) (17)

with f̃E(e) implicitly present because of its control over the
form of f̃Q(q) (see Eq. (6)). The freedom that arises from
the mutual information being unchanged in value, when the
random variables Q and E are replaced by new random
variables that are increasing transformations of Q and E,
allows us to transform the left side of Eq. (17), without
changing the value of Ĩ(Q;E). In particular, when the distri-
bution of E maximises the mutual information, it is possible
to find an increasing transformation that converts Q to a

new random variable, Q∗, with the special property that its
distribution, f̃Q∗(q∗), is uniform over 0 < q∗ < 1 and
zero elsewhere. When we use Q∗ in place of Q in Eq.
(17), we note that the first term on the left hand side of
this equation vanishes identically (log2 [1] = 0) and we
arrive at h(Q∗|e) = −Ĩ(Q;E). This result indicates that the
entropy h(Q∗|e) has been homogenized in the sense that it
is independent of the value of e. Additionally, we are still
free to transform E. It is also possible to find an increasing
transformation that converts E to a new random variable E∗

that is uniform over 0 < e∗ < 1 and zero elsewhere. This leads
to the result h(Q∗|e∗) = −Imax(Q;E) and indicates that the
entropy h(Q∗|e∗) is independent of e∗ for 0 < e∗ < 1.

IV. DISCUSSION

As we have seen, transformations of the sort described by
Eqs. (7) and (8) do not change the amount of information
that knowledge about one variable provides about the state of
another variable. With that in mind, it is worth considering
whether such transformations can be of any practical use.

Under certain conditions, the transformations described by
Eqs. (7) and (8) make natural relationships behave in a manner
that is similar to the relationship between a continuously
varying environmental variable and a typical measuring device
that is behaving properly. The fact that humans go to so
much trouble to produce good measuring devices suggests that,
in itself, this effect of the transformations is valuable. They
bring a certain homogeneity in that, after they are applied, the
effect of the environmental variable on the measuring variable
can be about the same throughout the range of possible
environmental-variable values. Humans apparently find this
sort of homogeneity to be pleasing and/or useful.

A very practical possible application of the results presented
here has to do with statistical analysis. For data sets that arise
from causal relationships that are sufficiently similar to the
situation described by the slow-change regime, the methods
described here can transform the data so as to linearise the
relationship between two data sets, and to homogenize the
entropy among samples collected under different conditions.
As entropy is often closely related to variance, this may imply
a homogenization of variance as well. Regression analysis
and similar techniques often assume a linear relationship
between independent and dependent variables, and they also
typically assume that the variance is homogeneous. Thus, the
transformations described here may be useful in adjusting
data so as to meet the requirements for the most powerful
statistical techniques available for data analysis [9]. Even for
situations that are very different from those described by the
slow-change regime, a transformation of the sort described
here can typically be used to homogenize the entropy of Q,
the measuring variable, and it seems likely that this will be
advantageous when statistical analyses are carried out.

Given that the transformations described here homogenize
entropy in measuring variables (which may or may not have
implications for the homogenization of the variance) it is inter-
esting to speculate on the possibility of developing hypothesis-
testing analyses in which the measure of data dispersion is
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entropy, and not the variance ( [10], [11], [12]). This possibility
is particularly intriguing because there are situations in which
entropy can be homogenized, but variance cannot. (A simple
example is provided in Fig. 3.) In this regard, the transforma-
tions bear some resemblance to histogram equalisation, which
is a method employed to enhance low-quality optical images,
amongst other uses ( [13], [14], [15], [16]). However, this
resemblance is in appearance only, since histogram equalisa-
tion does not generally lead to a homogenization of entropy
between environmental conditions. This is due, in part, to the
fact that, unlike the transformations we have described in the
present study, histogram equalisation does not involve using
the information- maximising distribution of the causal variable
to create a transformed version of the caused variable. Instead,
in histogram equalisation, the distribution of inputs (the causal
variable) is typically taken from real-world data. For example,
to use histogram equalisation to enhance a digital image of a
countryside scene, one might use the distribution of brightness
levels that are reflected from objects in a natural landscape.

In this work we have focused on the information-theoretic
analysis of continuous variables. However, discrete variables
have generally attracted much more attention from information
theorists than have continuous variables. It is not obvious
how to apply some of the concepts that have been developed
in the realm of discrete variables to the case of continuous
variables. One example of this difficulty has to do with the
concept of functional information, as proposed by J. Szostak
( [17], [18]). Szostak, writing in the context of biomolecules
such as enzymes, says that “functional information is simply
− log2 of the probability that a random sequence will encode
a molecule with greater than any given degree of function”
[17]. In addition to its use in the context of biomolecules,
functional information (or a very similar concept) has also
been used to characterise adaptation [1] and the closely allied
concept of ‘biological complexity’ ( [19], [20]). In these cases,
expected reproductive success (i.e., fitness) is the ‘function’
in terms of which the functional information associated with
different types of organisms is evaluated. However, these wider
applications have been confined to studying the adaptedness
of genomes (or the biological complexity of genomes). This
is problematic because it is in the realm of phenotypes that
adaptedness is generally recognised. We infer a highly adapted
genotype when we see a highly adapted phenotype, and, in
general, not vice versa. Thus, it would be advantageous to be
able to apply the idea of functional information to the con-
tinuously varying traits that are typically used to characterise
phenotypes.

Unfortunately, the value of functional information for a
continuously varying phenotypic variable will, in general,
depend on how that variable is transformed. For example,
if the variable is body mass, then we might measure the
fitness associated with different body-mass values (holding
all else constant), and thus we could calculate the functional
information associated with any given body mass. However,
we may get very different values for functional information
if, instead of body mass, we consider the logarithm of body
mass. This would introduce problematic ambiguity if there was

no natural transformed variable with which to measure body
mass. However, the variation in body mass that we see within
groups of organisms tends to relate, in part, to the different
evolutionary pressures that prevail in various environments (
[21], [22], [23]). This relationship might usefully be charac-
terised as a causal relationship of the sort discussed above.
As such, the results presented here suggest that, typically,
there will be a natural transformed variable to use in the
measurement of body mass (or whatever other continuously
varying trait is being considered). This, in turn, suggests
that the results presented here may facilitate the extension
of information-theoretic concepts that were developed in the
context of discrete variables to the realm of continuously
distributed variables. The implications of the resulting increase
in analytic power are not clear, but they may include the
development of useful quantitative tools to study some of the
most fascinating phenomena that are associated with life.
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APPENDICES
In the following appendices, when we refer to a partic-

ular distribution we mean a particular ‘probability density
function’, and when we refer to an entropy, we mean the
‘differential entropy’ (which is the entropy associated with a
continuous random variable [3]).

We shall also make use of the Dirac delta function which,
for argument x, is written δ(x). The Dirac delta function, δ(x),
is a spike-like probability density, with a vanishingly small
variance and an area of unity that is located at x = 0. We
shall freely exploit the following two properties of a Dirac
delta function: (i) with E [...] denoting an expected value, the
joint probability density function of two random variables E
and Q, when evaluated at the values e and q, respectively,
is E [δ (e− E) δ (q −Q)] (see e.g., the textbook [24] for this
point of view); (ii) when a function of x, say q(x), vanishes
at only one point, say x0, the quantity δ(q(x)) equals δ(x −
x0)/|q′(x0)| where q′(x) = dq(x)/dx (see e.g., [25]).

APPENDIX I
MATHEMATICAL DETAILS OF THE MODEL

In this appendix we introduce the form of the joint distribu-
tion of the random variables Q and E that we consider in this
work. The joint distribution of Q and E arises from a fixed
form of the conditional distribution, fQ|E(q|e), but different
forms of the marginal distribution of E, namely fE(e).

This appendix also contains basic mathematical details
of the model adopted, along with definitions of some key
distributions and the mutual information.

To begin, consider a mathematical model involving two
continuous one-dimensional random variables that we write as
E and Q. Generally, E and Q are not statistically independent.

We shall write the limits of various integrals involving
distributions of the random variables E and Q as ranging
from −∞ to ∞, implicitly assuming that possible values
of E and Q lie in this infinite range. However, when we
consider new random variables (related to E and Q) that take
values in a smaller range, the corresponding distributions will
vanish outside the ranges of the new variables, and make no
contribution to the integrals. When we need to be explicit
about finite ranges of random variables, we will indicate this
in the limits of any integrals that arise.

A. Distributions

Some properties of important distributions are as follows.
1) The conditional distribution of Q, given that E takes the

value e (i.e., given that E = e), is written as fQ|E(q|e).
This, like all probability density functions, has a total
integrated probability of unity, and for the present case
this reads ∫ ∞

−∞
fQ|E(q|e)dq = 1. (18)

A key assumption of this work is that fQ|E(q|e) has
its q and e dependence specified at the outset, and its
specified form is not varied in the ensuing analysis.

By contrast, we shall consider different forms of the
marginal distribution of E, written fE(e).

2) The joint distribution of Q and E is given in terms of
fQ|E(q|e) and fE(e) as

fQ,E(q, e) = fQ|E(q|e)fE(e). (19)

3) The marginal distribution of Q is given by

fQ(q) =

∫ ∞
−∞

fQ|E(q|e)fE(e)de. (20)

We note that because of the fixed nature of fQ|E(q|e),
different forms of fE(e) produce different statistical properties
of both E and Q. In particular, Eqs. (19) and (20) explicitly
show that the distributions fQ,E(q, e) and fQ(q) depend on the
marginal distribution of E, namely fE(e). As a consequence,
a change in fE(e) induces changes in both fQ,E(q, e) and
fQ(q).

B. Differential entropy and mutual information

A continuous random variable, such as Q, has an entropy
(strictly, differential entropy) that we denote by h(Q), and is
defined by

h(Q) = −
∫ ∞
−∞

fQ(q) log2 [fQ(q)] dq (21)

where log2 (x) denotes the logarithm of x to base 2.
Let us suppose that the random variable E is observed to

take the particular value e (i.e., E = e). Then the relevant
distribution of Q is the conditional probability density of Q,
given that E = e, namely fQ|E(q|e). The entropy associated
with Q in this case is written as h(Q|e), and is calculated
from fQ|E(q|e) according to

h(Q|e) = −
∫ ∞
−∞

fQ|E(q|e) log2

[
fQ|E(q|e)

]
dq. (22)

The mutual information is defined as

I(Q;E) =

∫ ∞
−∞

[h(Q)− h(Q|e)] fE(e)de

= h(Q)−
∫ ∞
−∞

h(Q|e)fE(e)de. (23)

This is closely analogous to the mutual information of a pair
of discrete random variables, which corresponds to the average
reduction in the uncertainty of Q that results from knowledge
of the value of E.

APPENDIX II
INCREASING TRANSFORMATIONS

In this appendix we demonstrate that the value of the mutual
information is unchanged on replacing the random variables
Q and E by independent (and generally different) transfor-
mations of these random variables. The transformations are
implemented with functions that are at least once differentiable
and strictly increasing and in this work are termed increasing
transformations.
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In Appendix I, we started with the random variables Q and
E. We now consider transformed versions of these variables.
Using transformed versions of Q and E gives us the freedom
to make different choices of the transformations adopted.

To define the transformed variables, we introduce two real
functions, P (x) and D(x), that are at least once differentiable
and are strictly increasing. We shall call such functions
‘increasing transformations’. We then define a pair of new
continuous random variables, Q◦ and E◦ via

Q◦ = P (Q) (24)

and
E◦ = D(E) (25)

which are thus increasing transformations of the random vari-
ables Q and E, respectively. Note that Eq. (24) is equivalent
to q◦ = P (q), where q is a particular value of Q and q◦ is
the corresponding particular value of Q◦ that arises. Similarly,
Eq. (25) is equivalent to e◦ = P (e), where e is a particular
value of E and e◦ is the corresponding particular value of E◦

that arises.
Increasing transformations are invertible, which means, for

example, that Q◦ uniquely determines Q and vice versa. Thus
Eqs. (24) and (25) can also be written as Q = P (−1)(Q◦) and
E = D(−1)(E◦) where a (−1) superscript denotes the inverse
function, such that P (P (−1)(x)) = x and P (−1)(P (x)) = x.

It might be expected that Q◦ and E◦ are, in some sense, an
equivalent way of describing the problem at hand. Indeed, we
shall show that the mutual information between Q and E, is
identical to the mutual information between Q◦ and E◦. Thus,
at the level of mutual information, the transformed pair of
variables, Q◦ and E◦, are completely equivalent to the original
pair of variables, Q and E. Of course some versions of Q◦

and E◦ may have some additional properties that make them
more useful than others.

We next show how some key statistical properties of the
transformed variables (Q◦ and E◦) are related to the corre-
sponding properties of the original variables (Q and E). Since,
in general, Q◦ and E◦ do not take the same range of values
as the original variables, we shall incorporate this into the
analysis by taking Q◦ to lie in the range q◦1 to q◦2 , and E◦ to
lie in the range e◦1 to e◦2.

A. Conditional distributions fQ◦|E◦(q◦|e◦) and fE◦|Q◦(e◦|q◦)

We stated in Appendix I that the conditional distribution
fQ|E(q|e) is specified from the outset. It is convenient, how-
ever, to represent it in a form where it can be related to the
corresponding distribution involving the transformed variables
Q◦ and E◦. With E [...] denoting an expected value over Q
and E, and δ(x) denoting a Dirac delta function of argument
x, the required representation of fQ|E(q|e) is given by

fQ|E(q|e) =
E [δ (q −Q) δ(e− E)]

E [δ(e− E)]
. (26)

Consider now the corresponding conditional distribution of
Q◦, conditional on the value of E◦, when evaluated at q◦ and

e◦, respectively, namely fQ◦|E◦(q◦|e◦). This can be similarly
written as

fQ◦|E◦(q
◦|e◦) =

E [δ (q◦ −Q◦) δ(e◦ − E◦]
E [δ(e◦ − E◦]

=
E [δ (q◦ − P (Q)) δ(e◦ −D(E))]

E [δ(e◦ −D(E))]
. (27)

This is well defined for e◦1 < e◦ < e◦2 and in this range we
have

fQ◦|E◦(q
◦|e◦)

=


E[δ(P (−1)(q◦)−Q)δ(D(−1)(e◦)−E)]
P ′(P (−1)(q◦))E[δ(D(−1)(e◦)−E)]

for q◦1 < q◦ < q◦2

0 otherwise.
(28)

This can then be directly expressed in terms of fQ|E(q|e),
using Eq. (26), as

fQ◦|E◦(q
◦|e◦)

=


fQ|E(P (−1)(q◦)|D(−1)(e◦))

P ′(P (−1)(q◦))
for q◦1 < q◦ < q◦2

0 otherwise.
(29)

In a similar way the distribution fE◦|Q◦(e
◦|q◦) is well

defined for q◦1 < q◦ < q◦2 and in this range is given by

fE◦|Q◦(e
◦|q◦)

=


fE|Q(D(−1)(e◦)|P (−1)(q◦))

D′(D(−1)(e◦))
for e◦1 < e◦ < e◦2

0 otherwise.
(30)

B. Marginal distributions fE◦(e◦) and fQ◦(q◦)

The marginal distribution of E, when evaluated at e, can be
written as fE(e) = E [δ(e− E)]. The marginal distribution of
E◦, when evaluated at e◦, is given by

fE◦(e
◦) = E [δ(e◦ − E◦)] = E [δ(e◦ −D(E))] . (31)

Since E◦ only takes values in the range e◦1 to e◦2 we have

fE◦(e
◦) =


E
[
δ(D(−1)(e◦)− E)

]
D′(D(−1)(e◦))

for e◦1 < e◦ < e◦2

0 otherwise.
(32)

This can be written as

fE◦(e
◦) =


fE(D(−1)(e◦)))

D′(D(−1)(e◦))
for e◦1 < e◦ < e◦2

0 otherwise.

(33)
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Similarly, the marginal distribution of Q◦, when evaluated at
q◦, is given by

fQ◦(q
◦) =


fQ(P (−1)(q◦))

P ′(P (−1)(q◦))
for q◦1 < q◦ < q◦2

0 otherwise.

(34)

C. Differential entropy h(Q◦)

We write the (differential) entropy of Q as h(Q).
This is given in Eq. (21). The corresponding entropy
of Q◦ is written as h(Q◦) and given by h(Q◦) =

−
∫ q◦2
q◦1
fQ◦(q

◦) log2 [fQ◦(q
◦)] dq◦. Using Eq. (34) yields

h(Q◦) = −
∫ q◦2
q◦1

fQ(P (−1)(q◦))

P ′(P (−1)(q◦))
log2

[
fQ(P (−1)(q◦))

P ′(P (−1)(q◦))

]
dq◦ and

with the change of variables q◦ = P (q) we obtain

h(Q◦) = −
∫ ∞
−∞

fQ(q) log2

[
fQ(q)

P ′(q)

]
dq

= h(Q) +

∫ ∞
−∞

fQ(q) log2 [P ′(q)] dq. (35)

D. Differential entropy h(Q◦|e◦)
We write the entropy of Q, when E takes the particular

value e, as h(Q|e). This is given in Eq. (22). We write
the corresponding entropy of Q◦, given that E◦ takes the
particular value e◦, as h(Q◦|e◦) and this is given by

h(Q◦|e◦) = −
∫ q◦2

q◦1

fQ◦|E◦(q
◦|e◦) log2

[
fQ◦|E◦(q

◦|e◦)
]
dq◦

= −
∫ q◦2

q◦1

fQ|E(P (−1)(q◦)|D(−1)(e◦))

P ′(P (−1)(q◦))

× log2

[
fQ|E(P (−1)(q◦)|D(−1)(e◦))

P ′(P (−1)(q◦))

]
dq◦

= −
∫ ∞
−∞

fQ|E(q|D(−1)(e◦))

× log2

[
fQ|E(q|D(−1)(e◦))

P ′(q)

]
dq

= h(Q|D(−1)(e◦))

+

∫ ∞
−∞

fQ|E(q|D(−1)(e◦)) log2 [P ′(q)] dq. (36)

E. Mutual information I(Q◦;E◦)

The mutual information about Q that is gained from knowl-
edge of E is written I(Q;E) and is given in Eq. (23). The
corresponding mutual information that we gain about the value

of Q◦, from knowledge of E◦, is written as I(Q◦;E◦) and
given by

I(Q◦;E◦) =

∫ e◦2

e◦1

[h(Q◦)− h(Q◦|e◦)] fE◦(e◦)de◦. (37)

We have, using above results for h(Q◦) and h(Q◦|e◦), that

h(Q◦)− h(Q◦|e◦)

= h(Q)− h(Q|D(−1)(e◦))

+

∫ ∞
−∞

[
fQ(q)− fQ|E(q|D(−1)(e◦))

]
log2 [P ′(q)] dq. (38)

Thus

I(Q◦;E◦)

=

∫ e◦2

e◦1

[h(Q◦)− h(Q◦|e◦)] fE◦(e◦)de◦

=

∫ e◦2

e◦1

[
h(Q)− h(Q|D(−1)(e◦))

] fE(D(−1)(e◦))

D′(D(−1)(e◦))
de◦

+

∫ ∞
−∞

dq

∫ e◦2

e◦1

de◦
[
fQ(q)− fQ|E(q|D(−1)(e◦))

]

× log2 [P ′(q)]
fE(D(−1)(e◦))

D′(D(−1)(e◦))
. (39)

The second integral in the above expression vanishes identi-
cally, hence I(Q◦;E◦) =

∫∞
−∞ [h(Q)− h(Q|e)] fE(e)de or

I(Q◦;E◦) = I(Q;E). (40)

It follows that when Q◦ is related to Q by an increasing
transformation, and E◦ is related to E by a generally different
increasing transformation (as given in Eqs. (24) and (25),
respectively), the mutual information between Q◦ and E◦ is
identical to the mutual information between Q and E.

APPENDIX III
MAXIMUM MUTUAL INFORMATION

In this appendix, we vary the distribution fE(e) and de-
termine a condition that the mutual information is maximal.
This condition implicitly determines the form of fE(e) that
maximises the mutual information. We write the maximising
form of the distribution of E as f̃E(e). From (1) it follows
that the corresponding distribution of Q, when the mutual
information is maximised, is f̃Q(q) =

∫
fQ|E(q|e)f̃E(e)de.

The rationale of the calculations in this appendix are as
follows: (i) the mutual information is a functional of the
distribution of E, thus to determine the maximum mutual
information, we perform a functional change in the distribution
of E, such that the distribution always lies within the space
non-negative functions that have a total integral of unity; (ii)
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we look for the condition that the mutual information does
not change, to linear order in the functional change of the
distribution of E. This is the condition for the maximum
mutual information, and leads to an equation that determines
the maximising distribution of E and the channel capacity.

We begin, noting that in Appendix B it was shown that the
mutual information between Q and E is identical to the mutual
information between Q◦ and E◦. The mutual information can
thus be maximised when expressed in terms of distributions
of Q and E, or in terms of distributions of Q◦ and E◦. We
shall carry out the calculations in terms of the distributions of
Q◦ and E◦, since this is an efficient way of obtaining all of
the results we require.

We rewrite the form of the mutual information in Eq. (37)
as

I(Q◦;E◦)

=

∫ q◦2

q◦1

∫ e◦2

e◦1

fQ◦|E◦(q
◦|e◦)

{
log2

[
fQ◦|E◦(q

◦|e◦)
]

− log2 [fQ◦(q
◦)]} fE◦(e◦)dq◦de◦. (41)

The above expression for I(Q◦;E◦) depends on the form of
the distribution fE◦(e

◦) (which by Eq. (33) is determined
from the form of fE(e)). We proceed by determining how
I(Q◦;E◦) behaves under the functional change of fE◦(e◦)
given by

fE◦(e
◦)→ fE◦(e

◦) + ∆fE◦(e
◦) (42)

Let ∆fQ◦(q
◦) denote the change in fQ◦(q

◦) that
is produced by the change of ∆fE◦(e

◦) in fE◦(e
◦).

The transformed version of Eq. (20) is fQ◦(q
◦) =∫ e◦2

e◦1
fQ◦|E◦(q

◦|e◦)fE◦(e◦)de◦ and hence

∆fQ◦(q
◦) =

∫ e◦2

e◦1

fQ◦|E◦(q
◦|e◦)∆fE◦(e◦)de◦. (43)

This result indicates that ∆fQ◦(q
◦) depends linearly on

∆fE◦(e
◦).

We define ∆I(Q◦;E◦) to be the change in the mutual
information, produced by the change of ∆fE◦(e

◦) in fE◦(e◦),
to precisely first order in ∆fE◦(e

◦), while the change in
I(Q◦;E◦) to second order in ∆fE◦(e

◦) indicates that the
mutual information has a maximum (results not shown). We

have

∆I(Q◦;E◦)

=

∫ q◦2

q◦1

∫ e◦2

e◦1

fQ◦|E◦(q
◦|e◦)

{
log2

[
fQ◦|E◦(q

◦|e◦)
]

− log2 [fQ◦(q
◦)]}∆fE◦(e

◦)dq◦de◦

−
∫ q◦2

q◦1

∫ e◦2

e◦1

fQ◦|E◦(q
◦|e◦)fE◦(e◦)

∆fQ◦(q
◦)dq◦de◦

fQ◦(q◦) ln(2)

=

∫ q◦2

q◦1

∫ e◦2

e◦1

fQ◦|E◦(q
◦|e◦)

{
log2

[
fQ◦|E◦(q

◦|e◦)
]

− log2 [fQ◦(q
◦)]}∆fE◦(e

◦)dq◦de◦

−
∫ q◦2

q◦1

1

ln(2)
∆fQ◦(q

◦)dq◦. (44)

We note that because
∫ e◦2
e◦1
fE◦(e

◦)de◦ = 1 the change
∆fE◦(e

◦) in fE◦(e◦) is subject to the condition∫ e◦2

e◦1

∆fE◦(e
◦)de◦ = 0. (45)

For the same reason, ∆fQ◦(q
◦) has a vanishing integral3:∫ q◦2

q◦1
∆fQ◦(q

◦)dq◦ = 0, which indicates that the final term
in Eq. (44) vanishes, and ∆I(Q◦;E◦) reduces to

∆I(Q◦;E◦) =

∫ q◦2

q◦1

∫ e◦2

e◦1

fQ◦|E◦(q
◦|e◦)

×
{

log2

[
fQ◦|E◦(q

◦|e◦)
]
− log2 [fQ◦(q

◦)]
}

×∆fE◦(e
◦)dq◦de◦. (46)

Let f̃E◦(e
◦) denote the form of fE◦(e

◦) that makes
∆I(Q◦;E◦) vanish and maximises the mutual information.
That is, setting fE◦(e◦) equal to f̃E◦(e◦) in Eq. (46) leads to
the condition∫ q◦2

q◦1

∫ e◦2
e◦1
fQ◦|E◦(q

◦|e◦)
{

log2

[
fQ◦|E◦(q

◦|e◦)
]

− log2

[
f̃Q◦(q

◦)
]}

∆fE◦(e
◦)dq◦de◦ = 0

(47)

3We have ∆fQ◦ (q◦) =
∫ e◦2
e◦1

fQ◦|E◦ (q◦|e◦)∆fE◦ (e◦)de◦. Integrat-
ing this over q◦ and using normalisation of fQ◦|E◦ (q◦|e◦), we ob-

tain
∫ q◦2
q◦1

∆fQ◦ (q◦)dq◦ =
∫ e◦2
e◦1

∆fE◦ (e◦)de◦. Hence vanishing of∫ e◦2
e◦1

∆fE◦ (e◦)de◦ produces vanishing of
∫ q◦2
q◦1

∆fQ◦ (q◦)dq◦.
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where

f̃Q◦(q
◦) =

∫ e◦2

e◦1

fQ◦|E◦(q
◦|e◦)f̃E◦(e◦)de◦ (48)

is the marginal distribution of Q◦ when E◦ has the maximising
distribution, f̃E◦(e◦). Generally, we indicate distributions that
depend on the mutual-information maximising distribution of
E by a tilde4.

Apart from ∆fE◦(e
◦) satisfying Eq. (45), it can be chosen

in an arbitrary way5. The most general way for Eq. (47) to
hold is for the coefficient of ∆fE◦(e

◦) in Eq. (47) to equal
a constant that we shall write as C. This general condition
follows since then the right hand side of Eq. (46) takes the
form

∫ e◦2
e◦1
C∆fE◦(e

◦)de◦ which vanishes identically because
of Eq. (45), resulting in ∆I(Q◦;E◦) = 0. Thus the condition
for the mutual information to be maximised at fE◦(e◦) =
f̃E◦(e

◦) is∫ q◦2
q◦1
fQ◦|E◦(q

◦|e◦)

×
{

log2

[
fQ◦|E◦(q

◦|e◦)
]
− log2

[
f̃Q◦(q

◦)
]}

dq◦ = C.

(49)

Equation (49) is an equation that implicitly determines: (i)
the distribution of E◦ that maximises the mutual information,
namely f̃E◦(e

◦), and (ii) the constant C. In Appendix V we
give an approximate analysis that illustrates how both f̃E◦(e◦)
and C are determined from Eq. (49).

When the distribution fE◦(e
◦) is set equal to f̃E◦(e

◦)
within I(Q◦, E◦), the result is the maximum mutual
information, which we write as Ĩ(Q◦, E◦). Using Eq. (41),
we can write Ĩ(Q◦, E◦) as

∫ q◦2
q◦1

∫ e◦2
e◦1
fQ◦|E◦(q

◦|e◦)

×
{

log2

[
fQ◦|E◦(q

◦|e◦)
]
− log2

[
f̃Q◦(q

◦)
]}

f̃E◦(e
◦)dq◦de◦

and using Eq. (49) within this expression yields∫ e◦2
e◦1
C f̃E◦(e

◦)de◦ = C. Hence we have

Ĩ(Q◦, E◦) = maximum mutual information = C. (50)

Thus, the constant C in Eq. (49) represents the maximum
value of the mutual information, i.e., the channel capacity (
[2], [3]).

Note that by simply taking the transformations P (x) and
D(x) of Eqs. (24) and (25), respectively, to be the identity
transformation: P (x) = x and D(x) = x, leads to versions of
Eqs. (48) and (49) that apply to the original variables. That is

f̃Q(q) =

∫ ∞
−∞

fQ|E(q|e)f̃E(e)de (51)

4Thus in Eq. (48), the distribution of Q◦, namely f̃Q◦ (q◦), has been
decorated with a tilde because it depends on the distribution f̃E◦ (e◦), which,
in turn, depends on the distribution f̃E(e), which maximises the mutual
information.

5More precisely, apart from ∆fE(e) satisfying Eq. (45), it must not cause
the distribution of E to become negative for any e, but is otherwise arbitrary.

and∫ ∞
−∞

fQ|E(q|e)
{

log2

[
fQ|E(q|e)

]
− log2

[
f̃Q(q)

]}
dq = C

(52)
where f̃E(e) is the distribution of E that maximises the mutual
information, I(Q,E), and is related to f̃E◦(e◦) by Eq. (33).

APPENDIX IV
SPECIAL TRANSFORMED VARIABLES

In this appendix, we introduce a special transformed version
of the random variable Q whose entropy is homogenized in the
sense it is independent of any value that E is conditioned upon.
We additionally introduce two special transformed versions of
E.

Let us first consider the form of Eq. (49) that applies when
the increasing transformation P (x), that appears in Eq. (24),
has the special form

P (x) = F̃Q(x) (53)

where

F̃Q(x) =

∫ x

−∞
f̃Q(q)dq =

∫ x

−∞
dq

∫ ∞
−∞

de fQ|E(q|e)f̃E(e).

(54)
is the cumulative distribution function of Q when fE(e) is
the mutual information maximising distribution f̃E(e). Since
we are considering a special transformation, we shall give the
transformed variable a special name and call it Q∗ (rather than
Q◦). Thus, we define

Q∗ = F̃Q(Q) (55)

(cf. Eq. (24)). Taking into account that Q∗ can only take
values in the range 0 to 1 (because F̃Q(x) is a cumulative
distribution), the integral in Eq. (49) covers the range 0 to 1.
Additionally, the special choice of P (x) in Eq. (53) causes
f̃Q∗(q

∗) to take the value of unity over the range 0 to 1 of the
integral6. With this form of f̃Q∗(q∗), Eq. (49) becomes∫ 1

0

fQ∗|E◦(q
∗|e◦) log2

[
fQ∗|E◦(q

∗|e◦)
]
dq∗ = C. (56)

Equation (56) can be written in the compact form

h(Q∗|e◦) = −C. (57)

This result signals homogenization of the entropy, where the
entropy of Q∗ is independent of the value that E◦ (and hence
E) is conditioned upon.

We note that the transformation from E to E◦, namely
D(x), is arbitrary. The special choice D(x) = F̃E(x) where

F̃E(x) =

∫ x

−∞
f̃E(e)de (58)

6The distribution f̃Q∗ (q∗) follows from Eq. (34) with: (i) fQ(x) set equal
to f̃Q(x) (given in Eq. (51)), (ii) P (x) set equal to F̃Q(x) (given in Eq.

(54)). Then for 0 < q∗ < 1 we have f̃Q∗ (q∗) =
f̃Q(F̃

(−1)
Q (q∗))

F̃Q
′(F̃

(−1)
Q (q∗))

and

since F̃ ′Q(x) = f̃Q(x) we have f̃Q∗ (q∗) = 1.
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leads to a transformed variable we call E∗ which is defined
by

E∗ = F̃E(E). (59)

The variable E∗, like Q∗, has a uniform distribution:
f̃E∗(e

∗) = 1 for 0 < e∗ < 1 (and is zero elsewhere) and
Eq. (57) takes the form

h(Q∗|e∗) = −C. (60)

Another special choice for D(x) is D(x) = x and leads to
E◦ = E and we write the corresponding version of Eq. (57)
as h(Q∗|e) = −C.

APPENDIX V
SLOW CHANGE REGIME

In this appendix, approximate results are derived, based on
the assumption that fQ|E(q|e) has, as a function of q, a width
that is very small for all e,

We shall now work under the explicit assumption both q
and e lie in a finite range of values, given by

qmin < q < qmax and emin < e <max . (61)

A. Approximate analysis for the slow change regime

The approximate analysis we shall present is based on
the key assumption that the distribution fQ|E(q|e) has, as a
function of q, a width that is very small for all e. To specify
this more precisely, we note that given Eq. (61) we have∫ qmax

qmin

fQ|E(q|e)dq = 1 (62)

which indicates that fQ|E(q|e), as a function of q, is a nor-
malised probability density. We define the mean and variance
of fQ|E(q|e), written m(e) and σ2(e), respectively, as

m(e) =

∫ qmax

qmin

qfQ|E(q|e)dq (63)

σ2(e) =

∫ qmax

qmin

[q −m(e)]
2
fQ|E(q|e)dq (64)

and take σ(e) to be positive.
Since qmin < q < qmax we must have m(e) also lying

somewhere between qmin and qmax. We assume that Q and E
are positively correlated by taking m(e) to be an increasing
function of e, i.e., m′(e) > 0 where m′(e) = dm(e)/de. We
thus have

qmin < m(0) < m(1) < qmax. (65)

Let us write fQ|E(q|e) in terms of a new function φ (x|e)
defined by

fQ|E(q|e) =
1

σ(e)
φ

(
q −m(e)

σ(e)

∣∣∣∣ e) . (66)

The properties of fQ|E(q|e) in Eq. (62) - (64 ) are fully
reproduced when φ (x|e) has the properties∫ x2

x1

φ (x|e) dx = 1 (67)

∫ x2

x1

xφ (x|e) dx = 0 (68)

∫ x2

x1

x2φ (x|e) dx = 1 (69)

where

x1 =
qmin −m(e)

σ(e)
and x2 =

qmax −m(e)

σ(e)
. (70)

We write the maximum value of σ(e), over all e, as σmax,
hence

σ(e) ≤ σmax. (71)

We make approximations for the regime where σmax is small.
More explicitly, when e changes by an amount σmax, i.e. e→
e+ σmax we have m(e+ σmax) ' m(e)×

(
1 + σmax

m′(e)
m(e)

)
and the quantity σmax

m′(e)
m(e) ≡ σmax

d ln(m(e))
de is a measure of

the fractional change in m(e). The slow change regime corre-
sponds to small fractional changes in m(e), φ (x|e), and σ(e)

occurring when e changes by σmax, i.e., σmax
d ln(m(e))

de � 1,
σmax

∂ ln(φ(x|e))
∂e � 1, and σmax

d ln(σ(e))
de � 1.

B. Approximation of the distribution f̃E(e) in the slow change
regime

We shall now present results when the mutual information is
maximised. That is, where E is governed by the information-
maximising distribution f̃E(e), and as a consequence, the
marginal distribution of Q is f̃Q(q).

To find an approximation for f̃E(e) we start with the
condition that mutual information is maximised, Eq. (52),
which applies for all allowed values of e. We can write this
equation, with no approximation, as

−
∫ qmax

qmin

fQ|E(q|e) log2

[
f̃Q(q)

]
dq = C + h(Q|e) (72)

where h(Q|e) is given by Eq. (22).
In terms of φ (x|e) we can write Eq. (72) as

−
∫ qmax

qmin

1
σ(e)φ

(
q−m(e)
σ(e)

∣∣∣ e) log2

[
f̃Q(q)

]
dq

= C + h(Q|e)
(73)

and using the integration variable x = q−m(e)
σ(e) yields

−
∫ x2

x1

φ (x|e) log2

[
f̃Q(m(e) + σ(e)x)

]
dx = C + h(Q|e).

(74)
In this expression, x is effectively restricted to a range of
O(1), because of Eqs. (67) and (69). We assume that f̃Q(q)
changes very little over an interval of σmax, so7 the leading

7The result we obtain later, for f̃Q(q) is consistent with this assumption.
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approximation of the above equation, for small σmax, follows
from neglecting the σ(e)x term on the left hand side. This
leads to −

∫ x2

x1
φ (x|e) log2

[
f̃Q(m(e))

]
dx ' C + h(Q|e).

Using Eq. (67), this equation reduces to − log2

[
f̃Q(m(e))

]
'

C + h(Q|e) or

f̃Q(m(e)) ' 1

2C+h(Q|e) . (75)

We can obtain another expression for f̃Q(m(e)) that holds
under similar conditions. We have, by definition, that f̃Q(q) =∫ emax

emin
fQ|E(q|r)f̃E(r)dr which can be written in terms of

φ (x|r) as f̃Q(q) =
∫ emax

emin

1
σ(r)φ

(
q−m(r)
σ(r)

∣∣∣ r) f̃E(r)dr. Setting
q = m(e) in this expression gives

f̃Q(m(e)) =

∫ emax

emin

1

σ(r)
φ

(
m(e)−m(r)

σ(r)

∣∣∣∣ r) f̃E(r)dr.

(76)
Given the properties of φ (x|r), the above integral is dominated
by the range of r given by

∣∣∣m(e)−m(r)
σ(r)

∣∣∣ . 1 and working under

the assumption that f̃E(r) varies slowly with r we have

f̃Q(m(e)) ' f̃E(e)

σ(e)

∫ emax

emin

φ

(
m(e)−m(r)

σ(e)

∣∣∣∣ e) dr
' f̃E(e)

σ(e)

∫ emax

emin

φ

(
−(r − e)m′(e)

σ(e)

∣∣∣∣ e) dr
' f̃E(e)

m′(e)
. (77)

Comparing Eqs. (75) and (77) yields

f̃E(e) ' m′(e)

2C+h(Q|e) . (78)

This is the approximate distribution of E that maximises
the mutual information. Additionally, from Eq. (77), the
approximate distribution of Q that applies when the mutual
information is maximised is

f̃Q(q) ' f̃E(m(−1)(q))

m′(m(−1)(q))

=
m′(m(−1)(q))

m′(m(−1)(q))2C+h(Q|m(−1)(q))

=
1

2C+h(Q|m(−1)(q))
. (79)

Since f̃E(e) is normalised to unity, we can infer the channel
capacity from 1 =

∫ emax

emin
f̃E(e)de '

∫ emax

emin

m′(e)
2C+h(Q|e) de. This

yields

C ' log2

(∫ emax

emin

m′(e)

2h(Q|e) de

)
. (80)

We can also write f̃E(e) as

f̃E(e) ' 1

N
× m′(e)

2h(Q|e) (81)

where
N =

∫ emax

emin

m′(x)

2h(Q|x)
dx. (82)

We note that the above results apply when q and e have
finite ranges. A finite range of q and e was adopted since for
variables with an infinite range, the form of f̃E(e) in Eq. (78)
is not guaranteed to be normalisable.

C. Particular results for the slow change regime
We shall now determine some approximate results in the

slow change regime when E has the mutual-information-
maximising distribution f̃E(e). The transformations adopted
for Q and E are

Q∗ = F̃Q(Q) and E∗ = F̃E(E) (83)

where F̃Q(x) and F̃E(e) are given in Eqs. (51) and (58),
respectively.

The joint distribution fQ∗,E∗(q∗, e∗) is given by

fQ∗,E∗(q
∗, e∗) =

∫ qmax

qmin

dq

∫ emax

emin

deδ
(
q∗ − F̃Q(q)

)

× δ
(
e∗ − F̃E(q)

)
fQ|E(q|e)f̃E(e). (84)

For 0 < q∗ < 1 and 0 < e∗ < 1 we have fQ∗,E∗(q
∗, e∗)

non-zero and given by

fQ∗,E∗(q
∗, e∗) =

fQ|E(F̃
(−1)
Q (q∗)|F̃ (−1)

E (e∗))

f̃Q

(
F̃

(−1)
Q (q∗)

) . (85)

From the results in Appendix IV, we know that f̃Q∗(q∗)
and f̃E∗(e

∗) are uniform distributions on 0 to 1 (and zero
elsewhere). This has the consequence that for q∗ and e∗ both
in the range 0 to 1 that

f̃Q∗,E∗(q
∗, e∗) = fQ∗|E∗(q

∗|e∗) = f̃E∗|Q∗(e
∗|q∗). (86)

D. Conditional mean values of Q∗ and E∗ in the slow change
regime

The mean value of Q∗, conditional on E∗ = e∗, is∫ 1

0
q∗f̃Q∗|E∗(q

∗|e∗)dq∗. Using Eqs. (85) and (86), and chang-
ing variable from q∗ to q via q∗ = F̃Q(q), we obtain∫ 1

0

q∗f̃Q∗|E∗(q
∗|e∗)dq∗

=

∫ qmax

qmin

F̃Q(q)fQ|E(q|F̃ (−1)
E (e∗))dq. (87)

Similarly, the mean value of E∗, conditional on Q∗ = q∗, is∫ 1

0
e∗f̃E∗|Q∗(e

∗|q∗)de∗ and using Eqs. (85) and (86) we find∫ 1

0

e∗f̃E∗|Q∗(e
∗|q∗)de∗

=

∫ emax

emin

F̃E(e)
fQ|E(F̃

(−1)
Q (q∗)|e)f̃E (e)

f̃Q

(
F̃

(−1)
Q (q∗)

) de. (88)
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We now approximate both of these results by using the
assumption that fQ|E(q|e) is very sharply peaked around
q = m(e) or equivalently around e = m(−1)(q). In F̃Q(q)
in Eq. (87), we neglect deviations of q around the mean value
of fQ|E(q|F̃ (−1)

E (e∗)), namely m
(
F̃

(−1)
E (e∗)

)
. This leads to∫ 1

0

q∗f̃Q∗|E∗(q
∗|e∗)dq∗ ' F̃Q

(
m
(
F̃

(−1)
E (e∗)

))
. (89)

Similarly, in Eq. (88) we obtain∫ 1

0

e∗f̃E∗|Q∗(e
∗|q∗)de∗ ' F̃E

(
m(−1)

(
F̃

(−1)
Q (q∗)

))
.

(90)
Lastly, we write Eq. (77) in the form f̃Q(m(e))m′(e) ' f̃E(e)
and integrate to obtain F̃Q(m(e)) ' F̃E(e) and using this
result in Eqs. (89) and (90) yields the results∫ 1

0

q∗f̃Q∗|E∗(q
∗|e∗)dq∗ ' e∗ (91)

and ∫ 1

0

e∗f̃E∗|Q∗(e
∗|q∗)de∗ ' q∗ (92)

respectively.

Equation (91) tells us that with corrections of order σmax,
the expected value of Q∗, conditional on the value of E∗,
approximately equals the value that E∗ is conditioned upon.
Equation (92) tells us that an equivalent result is obtained,
when the roles of Q∗ and E∗ are interchanged.

E. Approximate property of h(E∗|q∗)

We have already established that h(Q∗|e∗) is independent
of e∗ (see Eq. (60)). Here we show that when the distribution
of E maximises the mutual information, and the slow-change
regime applies, that h(E∗|q∗) is approximately independent
of q∗.

To proceed we write Eq. (52) in terms of φ (x| e) defined
in Eq. (66), and again approximate f̃Q(m(e) + σ(e)x) by
f̃Q(m(e)). The result is∫

φ (x| e) log2 [φ (x| e)] dx− log2

[
σ(e)f̃Q(m(e))

]
' C

(93)
and to avoid additional notation, we have omitted integration
limits, knowing they are adequate to capture the full weight of
φ (x| e) (see Eqs. (67) - (69)). Equation (93) tells us that with
corrections of order σmax, the left hand side is independent of
the value of e.

Now consider h(E∗|q∗). From Eq. (86) we have
that for q∗ and e∗ both in the range 0 to 1 that
f̃Q∗,E∗(q

∗, e∗) = f̃E∗|Q∗(e
∗|q∗). We can thus write

h(E∗|q∗) = −
∫ 1

0
fQ∗,E∗(q

∗, e∗) log2 [fQ∗,E∗(q
∗, e∗)] de∗

and using Eq. (85) yields

h(E∗|q∗) = −
∫ 1

0

fQ|E(F̃
(−1)
Q (q∗)|F̃ (−1)

E (e∗))

f̃Q
(
F̃

(−1)
Q (q∗)

)

× log2

[
fQ|E(F̃

(−1)
Q (q∗)|F̃ (−1)

E (e∗))

f̃Q
(
F̃

(−1)
Q (q∗)

) ]
de∗

= −
∫ emax

emin

fQ|E(θ|e)
f̃Q(θ)

log2

[
fQ|E(θ|e)
f̃Q(θ)

]
f̃E (e) de

(94)

where
θ = F̃

(−1)
Q (q∗). (95)

In terms of φ (x| e) defined in Eq. (66) we have

h(E∗|q∗) = −
∫ emax

emin

1
f̃Q(θ)

1
σ(e)φ

(
θ−m(e)
σ(e)

∣∣∣ e)

× log2

[
1

σ(e)
φ( θ−m(e)

σ(e) |e)
f̃Q(θ)

]
f̃E (e) de

' −
∫ emax

emin

1
f̃Q(θ)

1
σ(α)φ

(
θ−m(e)
σ(α)

∣∣∣α)

× log2

 1
σ(e)

φ

(
θ−m(e)
σ(α)

∣∣∣∣α)
f̃Q(θ)

 f̃E (α) de (96)

where slowness of the e dependence of various quantities has
allowed us to replace e by

α = m(−1)(θ). (97)

Using Eq. (77) to replace f̃Q (θ) ≡ f̃Q (m(α)) with
f̃E(α)/m′(α) and changing to the integration variable x =
θ−m(e)
σ(α) yields

h(E∗|q∗) ' −
∫
φ (x|α) log2 [φ (x|α)] dx

+ log2

[
σ(α)f̃Q (m(α))

]
. (98)

A comparison of this result with the left hand side of Eq.
(93) indicates that h(E∗|q∗) is approximately independent of
α which is equivalent to it being independent of q∗.

APPENDIX VI
MISCELLANEOUS RESULTS ASSOCIATED WITH

FIGURE 3
In this appendix, we give some additional results associated

with Figure 3.

A. Figure 3a and 3b

For Fig. 3, we assumed that only two forms of the
conditional distribution fQ|E(q|e) occurred. The first form
of fQ|E(q|e) is associated with e < 3/5. It is a uniform
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distribution that is non-zero for q ranging from 1/4 to 3/4,
and has mean 1/2 (see Fig. 3a). The second form of fQ|E(q|e)
is associated with e ≥ 3/5. It is also a uniform distribution
that is non-zero for q ranging from 0 to 1, and also has mean
1/2 (see Fig. 3b). However the variance of this form of the
distribution is four times that of the first form. Here, we show
that no increasing transformation (as defined in this work)
exists that can act on Q and homogenize the variance in the
sense that, after transformation, the resulting two forms of the
conditional distribution have the same variance.

To begin, we note that Fig. 3a contains the distribution of the
random variable Q1 = 1

4 + 1
2U where U is a random variable

that is uniformly distributed from 0 to 1. By contrast, Fig. 3b
contains the distribution of the random variable Q2 = U . We
shall interpolate between Q1 and Q2 using

Qb =
2− b

4
+
b

2
U with 1 ≤ b ≤ 2 (99)

such that Qb coincides with Q1 or Q2, when b = 1 or 2,
respectively.

We write the extreme values that Qb can take as

q± ≡ q±(b) =
1

2
± b

4
. (100)

The random variable Qb is uniformly distributed from q−(b)
to q+(b), and has a height of 1/ [q+(b)− q−(b)] = 2/b.

The distribution of Qb, when evaluated at q, is

fQb(q) =
2

b
Θ(q+ − q)Θ(q − q−) (101)

where Θ(x) is a Heaviside step function of argument x (Θ(x)
is 1 for x > 0 and 0 for x < 0). We then find that

dfQb(q)

db
= −fQb(q)

b
+

1

2b
[δ(q − q+) + δ(q − q−)] (102)

where δ(x) denotes a Dirac delta function of argument x.
Let us now introduce a general increasing transformation,

namely a real function of q, written G(q), which is differen-
tiable and strictly increasing. The extreme values that G(Qb)
can take are

G± ≡ G(q±(b)). (103)

We shall now use E[...] to denote an expected value over U .
Then the variance of G(Qb) is Var(G(Qb)) = E

[
G2(Qb)

]
−

E2 [G(Qb)] and we shall write this in the shorter notation

Vb = E
[
G2(Qb)

]
− E2 [G(Qb)]

= G2 − Ḡ2 (104)

noting that Ḡ = E [G(Qb)] and G2 = E
[
G2(Qb)

]
are both

functions of b.
Multiplying Eq. (102) by G(Qb) and integrating gives

dḠ

db
= − Ḡ

b
+

1

2b
(G+ +G−) . (105)

Multiplying Eq. (102) by G2(Qb) and integrating gives

dG2

db
= −G

2

b
+

1

2b

(
G2

+ +G2
−
)
. (106)

The derivative dVb
db =

d(G2−Ḡ2)
db can be written as

dVb
db

=

[(
G2

++G2
−

2

)
−
(
G++G−

2

)2
]
−
(
G2 − Ḡ2

)
b

+

(
Ḡ− G++G−

2

)2

b
. (107)

We note that:

1)
(
G2

++G2
−

2

)
−
(
G++G−

2

)2

is the variance of a distribution
containing two Dirac delta functions that are located at
G± that each have weight 1/2. This is the maximum
possible variance of a random variable that takes values
in the interval [G−, G+].

2) G2 − Ḡ2 is the variance of the random variable G(Qb)
whose distribution is non-zero in the entire interval
[G−, G+].

3)
(
Ḡ− G++G−

2

)2

is non-negative.

From (1) and (2) we have
(
G2

++G2
−

2

)
−
(
G++G−

2

)2

>

G2 − Ḡ2 and because of this and (3) we have that dVb
db > 0.

Integrating this inequality from b = 1 to b = 2 yields V2 > V1

or explicitly

Var(G(Q2)) > Var(G(Q1)). (108)

This result tells us that for any increasing transformation,
which we write as G(q), the variance of the transformed ver-
sion of Q2, namely G(Q2), will always exceed the variance of
the transformed version of Q1, namely G(Q1). In other words,
no increasing transformation can homogenize the variances of
the two forms of the conditional distribution fQ|E(q|e).

B. Figure 3e and 3f

We now consider the situation illustrated in Figs. 3e and 3f
and described in the associated text.

The distribution of Q∗, conditional on the value of E∗,
generally written as fQ∗|E∗(q∗|e∗), takes two different forms
according to whether e∗ < 3/5 or e∗ ≥ 3/5. We write
these two different forms in this part of the appendix as
fQ∗|E∗(q

∗|e∗ < 3/5) and fQ∗|E∗(q∗|e∗ ≥ 3/5), respectively.
In Fig. 3e we plot fQ∗|E∗(q∗|e∗ < 3/5) as a function of q∗,
as given by

fQ∗|E∗(q
∗|e∗ < 3/5) =


0, for 0 ≤ q∗ < 1

10

5
4 , for 1

10 ≤ q
∗ < 9

10

0, for 9
10 ≤ q

∗ ≤ 1

while in Fig. 3f we plot

fQ∗|E∗(q
∗|e∗ ≥ 3/5) =


5
2 , for 0 ≤ q∗ < 1

10

5
8 , for 1

10 ≤ q
∗ < 9

10

5
2 , for 9

10 ≤ q
∗ ≤ 1.
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We have

h(Q∗|e∗) = −
∫ 1

0

fQ∗|E∗(q
∗|e∗)

× log2

[
fQ∗|E∗(q

∗|e∗)
]
dq∗

and hence

h(Q∗|e∗ < 3/5) = −
∫ 9/10

1/10

5

4
log2

(
5

4

)
dq∗ = 2− log2(5)

(109)
while

h(Q∗|e∗ ≥ 3/5) = −
∫ 1/10

0
5
2 log2

(
5
2

)
dq∗

−
∫ 9/10

1/10
5
8 log2

(
5
8

)
dq∗

−
∫ 1

9/10
5
2 log2

(
5
2

)
dq∗

= 2− log2(5).

(110)

Thus, the two different forms of fQ∗|E∗(q∗|e∗) lead to the
same value of the entropy of Q∗, when E∗ is conditioned to
lie in two different ranges. This example is an illustration of
h(Q∗|e∗) being independent of the value of e∗.

Let us now consider h(E∗|q∗). Because of Eq. (86) we have
h(E∗|q∗) = −

∫ 1

0
fQ∗|E∗(q

∗|e∗) log2

[
fQ∗|E∗(q

∗|e∗)
]
de∗

hence

h(E∗|q∗) = −
∫ 3/5

0
fQ∗|E∗(q

∗|e∗ < 3/5)

× log2

[
fQ∗|E∗(q

∗|e∗ < 3/5)
]
de∗

−
∫ 1

3/5
fQ∗|E∗(q

∗|e∗ ≥ 3/5)

× log2

[
fQ∗|E∗(q

∗|e∗ ≥ 3/5)
]
de∗.

(111)

This leads to

h(E∗|q∗)

=



−
∫ 1

3/5
5
2 log2

(
5
2

)
de∗, for 0 ≤ q∗ < 1

10

−
∫ 3/5

0
5
4 log2

(
5
4

)
de∗

−
∫ 1

3/5
5
8 log2

(
5
8

)
de∗

 , for 1
10 ≤ q

∗ < 9
10

−
∫ 1

3/5
5
2 log2

(
5
2

)
de∗, for 9

10 ≤ q
∗ ≤ 1

(112)

i.e.,

h(E∗|q∗) =


1− log2 (5) , for 0 ≤ q∗ < 1

10

9
4 − log2(5), for 1

10 ≤ q
∗ < 9

10

1− log2 (5) , for 9
10 ≤ q

∗ ≤ 1.

(113)

We explicitly see that the entropy of E∗, when Q∗ is condi-

tioned to take different particular values, exhibits variation.
The conditional entropy of E∗ given Q∗ is defined as

h(E∗|Q∗) =

∫ 1

0

h(E∗|q∗)f̃Q∗(q∗)dq∗. (114)

Since Q∗ is uniformly distributed over 0 to 1, it follows that∫ 1

0
h(E∗|q∗)f̃Q∗(q∗)dq∗ is given by

h(E∗|Q∗) =

∫ 1

0

h(E∗|q∗)dq∗

=
2

10
[1− log2 (5)] +

8

10

[
9

4
− log2(5)

]

= 2− log2(5).

This value of h(E∗|Q∗) coincides with the value of h(Q∗|E∗)
(≡ h(Q∗|e∗)). Thus, despite the variation in the entropy of E∗

that is exhibited when Q∗ is conditioned to take different par-
ticular values, we nevertheless have h(E∗|Q∗) = h(Q∗|E∗),
as required by the basic results concerning mutual information.

A last point we shall make concerns what happens when E∗

takes its mutual information-maximising form. In this case the
distribution of E∗ is uniform over 0 to 1. We can calculate
the information gained about E∗ when Q∗ is observed to have
the particular value q∗, that we write as I(E∗; q∗). We find
from Eq. (113) that

I(E∗; q∗) = h(E∗)− h(E∗|q∗)

=


log2 (5)− 1, for 0 ≤ q∗ < 1

10

log2(5)− 9
4 , for 1

10 ≤ q
∗ < 9

10

log2 (5)− 1, for 9
10 ≤ q

∗ ≤ 1.

(115)

This result explicitly shows that I(E∗; q∗) depends on q∗. In
other words, we gain more information about the value of E∗

when we observe some values of Q∗ compared with other
values.
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